A Genetic Approach to Promoter Recognition during Trans Induction of Viral Gene Expression
NASA Astrophysics Data System (ADS)
Coen, Donald M.; Weinheimer, Steven P.; McKnight, Steven L.
1986-10-01
Viral infection of mammalian cells entails the regulated induction of viral gene expression. The induction of many viral genes, including the herpes simplex virus gene encoding thymidine kinase (tk), depends on viral regulatory proteins that act in trans. Because recognition of the tk promoter by cellular transcription factors is well understood, its trans induction by viral regulatory proteins may serve as a useful model for the regulation of eukaryotic gene expression. A comprehensive set of mutations was therefore introduced into the chromosome of herpes simplex virus at the tk promoter to directly analyze the effects of promoter mutations on tk transcription. The promoter domains required for efficient tk expression under conditions of trans induction corresponded to those important for recognition by cellular transcription factors. Thus, trans induction of tk expression may be catalyzed initially by the interaction of viral regulatory proteins with cellular transcription factors.
Gordon, Bradley S; Steiner, Jennifer L; Rossetti, Michael L; Qiao, Shuxi; Ellisen, Leif W; Govindarajan, Subramaniam S; Eroshkin, Alexey M; Williamson, David L; Coen, Paul M
2017-12-01
The metabolic stress placed on skeletal muscle by aerobic exercise promotes acute and long-term health benefits in part through changes in gene expression. However, the transducers that mediate altered gene expression signatures have not been completely elucidated. Regulated in development and DNA damage 1 (REDD1) is a stress-induced protein whose expression is transiently increased in skeletal muscle following acute aerobic exercise. However, the role of this induction remains unclear. Because REDD1 altered gene expression in other model systems, we sought to determine whether REDD1 induction following acute exercise altered the gene expression signature in muscle. To do this, wild-type and REDD1-null mice were randomized to remain sedentary or undergo a bout of acute treadmill exercise. Exercised mice recovered for 1, 3, or 6 h before euthanization. Acute exercise induced a transient increase in REDD1 protein expression within the plantaris only at 1 h postexercise, and the induction occurred in both cytosolic and nuclear fractions. At this time point, global changes in gene expression were surveyed using microarray. REDD1 induction was required for the exercise-induced change in expression of 24 genes. Validation by RT-PCR confirmed that the exercise-mediated changes in genes related to exercise capacity, muscle protein metabolism, neuromuscular junction remodeling, and Metformin action were negated in REDD1-null mice. Finally, the exercise-mediated induction of REDD1 was partially dependent upon glucocorticoid receptor activation. In all, these data show that REDD1 induction regulates the exercise-mediated change in a distinct set of genes within skeletal muscle. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friddle, Carl J; Koga, Teiichiro; Rubin, Edward M.
2000-03-15
While cardiac hypertrophy has been the subject of intensive investigation, regression of hypertrophy has been significantly less studied, precluding large-scale analysis of the relationship between these processes. In the present study, using pharmacological models of hypertrophy in mice, expression profiling was performed with fragments of more than 3,000 genes to characterize and contrast expression changes during induction and regression of hypertrophy. Administration of angiotensin II and isoproterenol by osmotic minipump produced increases in heart weight (15% and 40% respectively) that returned to pre-induction size following drug withdrawal. From multiple expression analyses of left ventricular RNA isolated at daily time-points duringmore » cardiac hypertrophy and regression, we identified sets of genes whose expression was altered at specific stages of this process. While confirming the participation of 25 genes or pathways previously known to be altered by hypertrophy, a larger set of 30 genes was identified whose expression had not previously been associated with cardiac hypertrophy or regression. Of the 55 genes that showed reproducible changes during the time course of induction and regression, 32 genes were altered only during induction and 8 were altered only during regression. This study identified both known and novel genes whose expression is affected at different stages of cardiac hypertrophy and regression and demonstrates that cardiac remodeling during regression utilizes a set of genes that are distinct from those used during induction of hypertrophy.« less
Choi, Soon Gang; Wang, Qian; Jia, Jingjing; Chikina, Maria; Pincas, Hanna; Dolios, Georgia; Sasaki, Kazuki; Wang, Rong; Minamino, Naoto; Salton, Stephen R J; Sealfon, Stuart C
2016-09-30
Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gα s knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gα s knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gα s In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Qian; Jia, Jingjing; Chikina, Maria; Pincas, Hanna; Dolios, Georgia; Sasaki, Kazuki; Wang, Rong; Minamino, Naoto; Sealfon, Stuart C.
2016-01-01
Reproductive function is controlled by the pulsatile release of hypothalamic gonadotropin-releasing hormone (GnRH), which regulates the expression of the gonadotropins luteinizing hormone and FSH in pituitary gonadotropes. Paradoxically, Fshb gene expression is maximally induced at lower frequency GnRH pulses, which provide a very low average concentration of GnRH stimulation. We studied the role of secreted factors in modulating gonadotropin gene expression. Inhibition of secretion specifically disrupted gonadotropin subunit gene regulation but left early gene induction intact. We characterized the gonadotrope secretoproteome and global mRNA expression at baseline and after Gαs knockdown, which has been found to increase Fshb gene expression (1). We identified 1077 secreted proteins or peptides, 19 of which showed mRNA regulation by GnRH or/and Gαs knockdown. Among several novel secreted factors implicated in Fshb gene regulation, we focused on the neurosecretory protein VGF. Vgf mRNA, whose gene has been implicated in fertility (2), exhibited high induction by GnRH and depended on Gαs. In contrast with Fshb induction, Vgf induction occurred preferentially at high GnRH pulse frequency. We hypothesized that a VGF-derived peptide might regulate Fshb gene induction. siRNA knockdown or extracellular immunoneutralization of VGF augmented Fshb mRNA induction by GnRH. GnRH stimulated the secretion of the VGF-derived peptide NERP1. NERP1 caused a concentration-dependent decrease in Fshb gene induction. These findings implicate a VGF-derived peptide in selective regulation of the Fshb gene. Our results support the concept that signaling specificity from the cell membrane GnRH receptor to the nuclear Fshb gene involves integration of intracellular signaling and exosignaling regulatory motifs. PMID:27466366
Offenbacher, Steven; Barros, Silvana P; Paquette, David W; Winston, J Leslie; Biesbrock, Aaron R; Thomason, Ryan G; Gibb, Roger D; Fulmer, Andy W; Tiesman, Jay P; Juhlin, Kenton D; Wang, Shuo L; Reichling, Tim D; Chen, Ker-Sang; Ho, Begonia
2009-12-01
To our knowledge, changes in the patterns of whole-transcriptome gene expression that occur during the induction and resolution of experimental gingivitis in humans were not previously explored using bioinformatic tools. Gingival biopsy samples collected from 14 subjects during a 28-day stent-induced experimental gingivitis model, followed by treatment, and resolution at days 28 through 35 were analyzed using gene-expression arrays. Biopsy samples were collected at different sites within each subject at baseline (day 0), at the peak of gingivitis (day 28), and at resolution (day 35) and processed using whole-transcriptome gene-expression arrays. Gene-expression data were analyzed to identify biologic themes and pathways associated with changes in gene-expression profiles that occur during the induction and resolution of experimental gingivitis using bioinformatic tools. During disease induction and resolution, the dominant expression pathway was the immune response, with 131 immune response genes significantly up- or downregulated during induction, during resolution, or during both at P <0.05. During induction, there was significant transient increase in the expression of inflammatory and oxidative stress mediators, including interleukin (IL)-1 alpha (IL1A), IL-1 beta (IL1B), IL8, RANTES, colony stimulating factor 3 (CSF3), and superoxide dismutase 2 (SOD2), and a decreased expression of IP10, interferon inducible T-cell alpha chemoattractant (ITAC), matrix metalloproteinase 10 (MMP10), and beta 4 defensin (DEFB4). These genes reversed expression patterns upon resolution in parallel with the reversal of gingival inflammation. A relatively small subset (11.9%) of the immune response genes analyzed by array was transiently activated in response to biofilm overgrowth, suggesting a degree of specificity in the transcriptome-expression response. The fact that this same subset demonstrates a reversal in expression patterns during clinical resolution implicates these genes as being critical for maintaining tissue homeostasis at the biofilm-gingival interface. In addition to the immune response pathway as the dominant response theme, new candidate genes and pathways were identified as being selectively modulated in experimental gingivitis, including neural processes, epithelial defenses, angiogenesis, and wound healing.
Xing, Li-Bo; Zhang, Dong; Li, You-Mei; Shen, Ya-Wen; Zhao, Cai-Ping; Ma, Juan-Juan; An, Na; Han, Ming-Yu
2015-10-01
Flower induction in apple (Malus domestica Borkh.) is regulated by complex gene networks that involve multiple signal pathways to ensure flower bud formation in the next year, but the molecular determinants of apple flower induction are still unknown. In this research, transcriptomic profiles from differentiating buds allowed us to identify genes potentially involved in signaling pathways that mediate the regulatory mechanisms of flower induction. A hypothetical model for this regulatory mechanism was obtained by analysis of the available transcriptomic data, suggesting that sugar-, hormone- and flowering-related genes, as well as those involved in cell-cycle induction, participated in the apple flower induction process. Sugar levels and metabolism-related gene expression profiles revealed that sucrose is the initiation signal in flower induction. Complex hormone regulatory networks involved in cytokinin (CK), abscisic acid (ABA) and gibberellic acid pathways also induce apple flower formation. CK plays a key role in the regulation of cell formation and differentiation, and in affecting flowering-related gene expression levels during these processes. Meanwhile, ABA levels and ABA-related gene expression levels gradually increased, as did those of sugar metabolism-related genes, in developing buds, indicating that ABA signals regulate apple flower induction by participating in the sugar-mediated flowering pathway. Furthermore, changes in sugar and starch deposition levels in buds can be affected by ABA content and the expression of the genes involved in the ABA signaling pathway. Thus, multiple pathways, which are mainly mediated by crosstalk between sugar and hormone signals, regulate the molecular network involved in bud growth and flower induction in apple trees. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, B.; Laouar, A.; Huberman, E.
1998-05-08
Induction of the 92-kDa gelatinase (MMP-9) gene expression is associated with macrophage differentiation. In this study, we explored the regulatory mechanisms underlying this differentiation-associated MMP-9 gene expression in human HL-60 myeloid leukemia cells and human peripheral blood monocytes. Phorbol 12-myristate 13-acetate (PMA) markedly induced MMP-9 gene expression in HL-60 cells; the induction closely paralleled the timing and extent of PMA-induced cell adhesion and spreading, a hallmark of macrophage differentiation. Similarly, treatment with PMA or macrophage-colony stimulating factor stimulated adherence and spreading of blood monocytes with a concurrent 7- or 5-fold increase in MMP-9 production, respectively. In protein kinase C (PKC)-betamore » -deficient HL-60 variant cells (HL-525), PMA failed to induce cell adhesion and MMP-9 gene expression. Transfecting HL-525 cells with a PKC-beta expression plasmid restored PKC-beta levels and PMA inducibility of cell adhesion and spreading as well as MMP-9 gene expression. Induction of cell adhesion and MMP-9 gene expression in HL-60 cells and blood monocytes was strongly inhibited by neutralizing monoclonal antibodies to fibronectin (FN) and its receptor {alpha}5{beta}1 integrin. HL-525 cells, which constitutively display high levels of surface {alpha}5{beta}1 integrin, adhered and spread on immobilized FN with concomitant induction of MMP-9 gene expression. Cytochalasins B and D were each a potent inhibitor of MMP-9 production. Our results suggest that {alpha}5{beta}1 integrin-mediated interaction of immature hematopoietic cells with FN plays a critical role in modulating matrix-degrading activities during macrophage differentiation.« less
Cloning of Trametes versicolar genes induced by nitrogen starvation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trudel, P.; Courchesne, D.; Roy, C.
1988-06-01
We have screened a genomic library of Trametes versicolar for genes whose expression is associated with nitrogen starvation, which has been shown to induce ligninolytic activity. Using two different approaches based on differential expression, we isolated 29 clones. These were shown by restriction mapping and cross-hybridization to code for 11 distinct differentially expressed genes. Northern analysis of the kinetics of expression of these genes revealed that at least four of them have kinetics of induction that parallel kinetics of induction of ligninolytic activity.
Infrared laser-mediated local gene induction in medaka, zebrafish and Arabidopsis thaliana.
Deguchi, Tomonori; Itoh, Mariko; Urawa, Hiroko; Matsumoto, Tomohiro; Nakayama, Sohei; Kawasaki, Takashi; Kitano, Takeshi; Oda, Shoji; Mitani, Hiroshi; Takahashi, Taku; Todo, Takeshi; Sato, Junichi; Okada, Kiyotaka; Hatta, Kohei; Yuba, Shunsuke; Kamei, Yasuhiro
2009-12-01
Heat shock promoters are powerful tools for the precise control of exogenous gene induction in living organisms. In addition to the temporal control of gene expression, the analysis of gene function can also require spatial restriction. Recently, we reported a new method for in vivo, single-cell gene induction using an infrared laser-evoked gene operator (IR-LEGO) system in living nematodes (Caenorhabditis elegans). It was demonstrated that infrared (IR) irradiation could induce gene expression in single cells without incurring cellular damage. Here, we report the application of IR-LEGO to the small fish, medaka (Japanese killifish; Oryzias latipes) and zebrafish (Danio rerio), and a higher plant (Arabidopsis thaliana). Using easily observable reporter genes, we successfully induced gene expression in various tissues in these living organisms. IR-LEGO has the potential to be a useful tool in extensive research fields for cell/tissue marking or targeted gene expression in local tissues of small fish and plants.
Soleimani, Maryam Zohour; Jalali Mashayekhi, Farideh; Mousavi Hasanzade, Morteza; Baazm, Maryam
2018-03-01
CatSper gene, a member of cation channel sperm family, has an essential role in sperm motility and male fertility. Following varicocele, sperm parameters especially sperm movement decreases. For this reason, we hypothesized that CatSper gene expression might be reduced after varicocele induction in an animal model. The aim of this study was to evaluate the expression of CatSper 1 and 2 genes, sperm parameters and testis histology following varicocele induction . A total of 30 Wistar male rats were randomly divided into three following groups (n=10/ each): control, sham, and varicocele group. Experimental varicocele was induced by partial ligation of the left renal vein. The epididymal sperm parameters, CatSper 1 and 2 genes expression, and testes histology were studied two months after varicocele induction. Our results revealed that motility (32.73±16.14%), morphology (48.80±17%) and viability (31.23±9.82%) of sperms significantly reduced following varicocele induction. In addition, we showed a significant decrease in the number of spermatogonia (43.63±5.31) and seminiferous tubules diameters (190.51±19.23 mm) in experimental varicocele rats. The level of CatSper 1 and 2 genes expression evaluated using real-time polymerase chain reaction was significantly downregulated 2 months after varicocele induction. Our data indicated that experimental varicocele has deleterious effects on sperm parameters, testis structure as well as the expression of CatSper 1 and 2 genes.
2017-01-01
Experiments in synthetic biology and microbiology can benefit from protein expression systems with low cell-to-cell variability (noise) and expression levels precisely tunable across a useful dynamic range. Despite advances in understanding the molecular biology of microbial gene regulation, many experiments employ protein-expression systems exhibiting high noise and nearly all-or-none responses to induction. I present an expression system that incorporates elements known to reduce gene expression noise: negative autoregulation and bicistronic transcription. I show by stochastic simulation that while negative autoregulation can produce a more gradual response to induction, bicistronic expression of a repressor and gene of interest can be necessary to reduce noise below the extrinsic limit. I synthesized a plasmid-based system incorporating these principles and studied its properties in Escherichia coli cells, using flow cytometry and fluorescence microscopy to characterize induction dose-response, induction/repression kinetics and gene expression noise. By varying ribosome binding site strengths, expression levels from 55–10,740 molecules/cell were achieved with noise below the extrinsic limit. Individual strains are inducible across a dynamic range greater than 20-fold. Experimental comparison of different regulatory networks confirmed that bicistronic autoregulation reduces noise, and revealed unexpectedly high noise for a conventional expression system with a constitutively expressed transcriptional repressor. I suggest a hybrid, low-noise expression system to increase the dynamic range. PMID:29084263
Zhu, Luchang; Lin, Jingjun; Kuang, Zhizhou; Vidal, Jorge E.; Lau, Gee W.
2015-01-01
Summary The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 “late” competence genes. Interestingly, only 16 late genes are essential for genetic transformation. We hypothesized that these late genes that are dispensable for competence are beneficial to pneumococcal fitness during infection. These late genes were systematically deleted, and the resulting mutants were examined for their fitness during mouse models of bacteremia and acute pneumonia. Among these, 14 late genes were important for fitness in mice. Significantly, deletion of some late genes attenuated pneumococcal fitness to the same level in both wild-type and ComX-null genetic backgrounds, suggesting that the constitutive baseline expression of these genes was important for bacterial fitness. In contrast, some mutants were attenuated only in the wild-type genetic background but not in the ComX-null background, suggesting that specific expression of these genes during competence state contributed to pneumococcal fitness. Increased virulence during competence state was partially caused by the induction of allolytic enzymes that enhanced pneumolysin release. These results distinguish the role of basal expression versus competence induction in virulence functions encoded by ComX-regulated late competence genes. Graphical abstract During genetic transformation of pneumococcus, the alternative sigma factor ComX regulates expression of 14 late competence genes important for virulence. The constitutive baseline expression of some of these genes is important for bacteremia and acute pneumonia infections. In contrast, elevated expression of DprA, CbpD, CibAB, and Cinbox are dependent on competence development, enhancing the release of pneumolysin. These results distinguish the role of basal expression versus competence induction in virulence determinants regulated by ComX. PMID:25846124
Szymanowska, Malgorzata; Hendry, Kay A K; Robinson, Claire; Kolb, Andreas F
2009-01-01
Extracellular matrix metalloproteinase inducer (EMMPRIN/basigin/CD147) is a cell surface protein, which has been associated with the induction of matrix metalloproteinase (MMP) genes during cancer metastasis. EMMPRIN plays a role in a variety of physiological processes as is evident by the diverse deficiencies detectable in EMMPRIN knockout mice. We have analysed the role of EMMPRIN in the induction of MMP genes during mammary gland differentiation and involution. Co-transfection studies showed that EMMPRIN has diverse effects on MMP promoter activity in different mammary and non-mammary cell lines. Expression of EMMPRIN mRNA is enhanced markedly by insulin in a mammary gland cell line but appears to have no direct effect on MMP gene expression in these cells. Microarray analysis and quantitative PCR show that EMMPRIN is expressed throughout mammary gland differentiation in the mouse. Its expression decreases during early pregnancy and briefly after induction of mammary gland involution by litter removal. Immunohistochemical analysis shows that EMMPRIN expression is limited to the stromal compartment during pregnancy, whereas it is strongly expressed in the epithelium during lactation. In summary the data argue against a causal role for EMMPRIN for the induction of MMP gene expression during adult mammary gland development. These data therefore support a physiological role for EMMPRIN other than MMP induction in mammary gland biology. 2008 Wiley-Liss, Inc.
Fan, Sheng; Zhang, Dong; Zhang, Lizhi; Gao, Cai; Xin, Mingzhi; Tahir, Muhammad Mobeen; Li, Youmei; Ma, Juanjuan; Han, Mingyu
2017-10-27
The plant-specific gibberellic acid stimulated Arabidopsis (GASA) gene family is critical for plant development. However, little is known about these genes, particularly in fruit tree species. We identified 15 putative Arabidopsis thaliana GASA (AtGASA) and 26 apple GASA (MdGASA) genes. The identified genes were then characterized (e.g., chromosomal location, structure, and evolutionary relationships). All of the identified A. thaliana and apple GASA proteins included a conserved GASA domain and exhibited similar characteristics. Specifically, the MdGASA expression levels in various tissues and organs were analyzed based on an online gene expression profile and by qRT-PCR. These genes were more highly expressed in the leaves, buds, and fruits compared with the seeds, roots, and seedlings. MdGASA genes were also responsive to gibberellic acid (GA 3 ) and abscisic acid treatments. Additionally, transcriptome sequencing results revealed seven potential flowering-related MdGASA genes. We analyzed the expression levels of these genes in response to flowering-related treatments (GA 3 , 6-benzylaminopurine, and sugar) and in apple varieties that differed in terms of flowering ('Nagafu No. 2' and 'Yanfu No. 6') during the flower induction period. These candidate MdGASA genes exhibited diverse expression patterns. The expression levels of six MdGASA genes were inhibited by GA 3 , while the expression of one gene was up-regulated. Additionally, there were expression-level differences induced by the 6-benzylaminopurine and sugar treatments during the flower induction stage, as well as in the different flowering varieties. This study represents the first comprehensive investigation of the A. thaliana and apple GASA gene families. Our data may provide useful clues for future studies and may support the hypotheses regarding the role of GASA proteins during the flower induction stage in fruit tree species.
Lim, Mi-na; Lee, Sung-eun; Yim, Hui-kyeong; Kim, Jeong Hoe; Yoon, In Sun; Hwang, Yong-sic
2013-01-01
The interaction between the dual roles of sugar as a metabolic fuel and a regulatory molecule was unveiled by examining the changes in sugar signaling upon oxygen deprivation, which causes the drastic alteration in the cellular energy status. In our study, the expression of anaerobically induced genes is commonly responsive to sugar, either under the control of hexokinase or non-hexokinase mediated signaling cascades. Only sugar regulation via the hexokinase pathway was susceptible for O2 deficiency or energy deficit conditions evoked by uncoupler. Examination of sugar regulation of those genes under anaerobic conditions revealed the presence of multiple paths underlying anaerobic induction of gene expression in rice, subgrouped into three distinct types. The first of these, which was found in type-1 genes, involved neither sugar regulation nor additional anaerobic induction under anoxia, indicating that anoxic induction is a simple result from the release of sugar repression by O2-deficient conditions. In contrast, type-2 genes also showed no sugar regulation, albeit with enhanced expression under anoxia. Lastly, expression of type-3 genes is highly enhanced with sugar regulation sustained under anoxia. Intriguingly, the inhibition of the mitochondrial ATP synthesis can reproduce expression pattern of a specific set of anaerobically induced genes, implying that rice cells may sense O2 deprivation, partly via perception of the perturbed cellular energy status. Our study of interaction between sugar signaling and anaerobic conditions has revealed that sugar signaling and the cellular energy status are likely to communicate with each other and influence anaerobic induction of gene expression in rice. PMID:23852132
Ketoconazole attenuates radiation-induction of tumor necrosis factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallahan, D.E.; Virudachalam, S.; Kufe, D.W.
1994-07-01
Previous work has demonstrated that inhibitors of phospholipase A2 attenuate ionizing radiation-induced arachidonic acid production, protein kinase C activation, and prevent subsequent induction of the tumor necrosis factor gene. Because arachidonic acid contributes to radiation-induced tumor necrosis factor expression, the authors analyzed the effects of agents which alter arachidonate metabolism on the regulation of this gene. Phospholipase A2 inhibitors quinicrine, bromphenyl bromide, and pentoxyfylline or the inhibitor of lipoxygenase (ketoconazole) or the inhibitor of cycloxygenase (indomethacine) were added to cell culture 1 h prior to irradiation. Radiation-induced tumor necrosis factor gene expression was attenuated by each of the phospholipase A2more » inhibitors (quinicrine, bromphenylbromide, and pentoxyfylline). Furthermore, ketoconazole attenuated X ray induced tumor necrosis factor gene expression. Conversely, indomethacin enhanced tumor necrosis factor expression following irradiation. The finding that radiation-induced tumor necrosis factor gene expression was attenuated by ketoconazole suggests that the lipoxygenase pathway participates in signal transduction preceding tumor necrosis factor induction. Enhancement of tumor necrosis factor expression by indomethacin following irradiation suggests that prostaglandins produced by cyclooxygenase act as negative regulators of tumor necrosis factor expression. Inhibitors of tumor necrosis factor induction ameliorate acute and subacute sequelae of radiotherapy. The authors propose therefore, that ketoconazole may reduce acute radiation sequelae such as mucositis and esophagitis through a reduction in tumor necrosis factor induction or inhibition of phospholipase A2 in addition to its antifungal activity. 25 refs., 2 figs.« less
Ectopical expression of FABP4 gene can induce bovine muscle-derived stem cells adipogenesis.
Zhang, Le; Zhao, Yanfang; Ning, Yue; Wang, Hongbao; Zan, Linsen
2017-01-08
Fatty acid binding protein 4 (FABP4) plays a key role in Fatty acid catabolism in mammals. Findings from our previous studies have indicated that FABP4 neither affect the differentiation of bovine preadipocytes nor does it change the expression of upstream genes. To investigate whether ectopically expressed FABP4 can induces Muscle-Derived Stem Cells (MDSCs) lipid synthesis and understand the regulatory mechanism behind it. In this study, adenoviruses infection is achieved to ectopically expressed FABP4 in bovine MDSCs, RNA-seq analyses at the very early stages of induction were performed to reveal gene expression level changes during MDSCs transdifferentiation. Results showed FABP4 can induce bovine Muscle-Derived Stem Cells transdifferentiation into adipocyte-like cells, 23 genes' expression levels changed after 24 h inducing although there is no significant change in cell phenotypes. Along with induction time, more differently expressed genes (256 genes changes after 48 h induction) were screened out. These genes should be at the downstream of signal pathways and be regulated by the 23 genes identified before. Our findings may provide a unique new model for studying the molecular control of cattle cross-talk between adipose and skeletal muscle. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
The recent interest in hormonally active environmental contaminants has sparked a drive to find sensitive methods to measure their effects on wildlife. A molecular-based assay has been developed to measure the induction of gene expression in sheepshead minnows (Cyprinodon variega...
Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway
Reizis, Boris; Leder, Philip
2002-01-01
The Notch signaling pathway regulates the commitment and early development of T lymphocytes. We studied Notch-mediated induction of the pre-T cell receptor α (pTa) gene, a T-cell-specific transcriptional target of Notch. The pTa enhancer was activated by Notch signaling and contained binding sites for its nuclear effector, CSL. Mutation of the CSL-binding sites abolished enhancer induction by Notch and delayed the up-regulation of pTa transgene expression during T cell lineage commitment. These results show a direct mechanism of stage- and tissue-specific gene induction by the mammalian Notch/CSL signaling pathway. PMID:11825871
Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds.
Cao, Dechang; Xu, Huimin; Zhao, Yuanyuan; Deng, Xin; Liu, Yongxiu; Soppe, Wim J J; Lin, Jinxing
2016-12-01
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. © 2016 American Society of Plant Biologists. All Rights Reserved.
Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds1
Xu, Huimin; Liu, Yongxiu; Soppe, Wim J.J.; Lin, Jinxing
2016-01-01
Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. PMID:27760880
Hox11 paralogous genes are essential for metanephric kidney induction
Wellik, Deneen M.; Hawkes, Patrick J.; Capecchi, Mario R.
2002-01-01
The mammalian Hox complex is divided into four linkage groups containing 13 sets of paralogous genes. These paralogous genes have retained functional redundancy during evolution. For this reason, loss of only one or two Hox genes within a paralogous group often results in incompletely penetrant phenotypes which are difficult to interpret by molecular analysis. For example, mice individually mutant for Hoxa11 or Hoxd11 show no discernible kidney abnormalities. Hoxa11/Hoxd11 double mutants, however, demonstrate hypoplasia of the kidneys. As described in this study, removal of the last Hox11 paralogous member, Hoxc11, results in the complete loss of metanephric kidney induction. In these triple mutants, the metanephric blastema condenses, and expression of early patterning genes, Pax2 and Wt1, is unperturbed. Eya1 expression is also intact. Six2 expression, however, is absent, as is expression of the inducing growth factor, Gdnf. In the absence of Gdnf, ureteric bud formation is not initiated. Molecular analysis of this phenotype demonstrates that Hox11 control of early metanephric induction is accomplished by the interaction of Hox11 genes with the pax-eya-six regulatory cascade, a pathway that may be used by Hox genes more generally for the induction of multiple structures along the anteroposterior axis. PMID:12050119
Hox11 paralogous genes are essential for metanephric kidney induction.
Wellik, Deneen M; Hawkes, Patrick J; Capecchi, Mario R
2002-06-01
The mammalian Hox complex is divided into four linkage groups containing 13 sets of paralogous genes. These paralogous genes have retained functional redundancy during evolution. For this reason, loss of only one or two Hox genes within a paralogous group often results in incompletely penetrant phenotypes which are difficult to interpret by molecular analysis. For example, mice individually mutant for Hoxa11 or Hoxd11 show no discernible kidney abnormalities. Hoxa11/Hoxd11 double mutants, however, demonstrate hypoplasia of the kidneys. As described in this study, removal of the last Hox11 paralogous member, Hoxc11, results in the complete loss of metanephric kidney induction. In these triple mutants, the metanephric blastema condenses, and expression of early patterning genes, Pax2 and Wt1, is unperturbed. Eya1 expression is also intact. Six2 expression, however, is absent, as is expression of the inducing growth factor, Gdnf. In the absence of Gdnf, ureteric bud formation is not initiated. Molecular analysis of this phenotype demonstrates that Hox11 control of early metanephric induction is accomplished by the interaction of Hox11 genes with the pax-eya-six regulatory cascade, a pathway that may be used by Hox genes more generally for the induction of multiple structures along the anteroposterior axis.
AFos Dissociates Cardiac Myocyte Hypertrophy and Expression of the Pathological Gene Program
Jeong, Mark Y.; Kinugawa, Koichiro; Vinson, Charles; Long, Carlin S.
2005-01-01
Background Although induction of activator protein-1 (AP-1) transcription factor activity has been observed in cardiac hypertrophy, a direct role for AP-1 in myocardial growth and gene expression remains obscure. Methods and Results Hypertrophy was induced in cultured neonatal rat cardiomyocytes with phenylephrine or overexpression of a constitutively active MAP3K, MKK6. In both treatment groups, induction of the pathological gene profile was observed, ie, expression of β-myosin heavy chain (βMHC), atrial/brain natriuretic peptides (ANP/BNP), and skeletal α-actin (sACT) was increased, whereas expression for α-myosin heavy chain (αMHC) and the sarcoplasmic reticulum Ca2+-ATPase (SERCA) genes was repressed. The role of AP-1 in the hypertrophic phenotype was evaluated with the use of an adenoviral construct expressing a dominant negative mutant of the c-Fos proto-oncogene (AdAFos). Although AFos did not change the myocyte growth response, it abrogated the gene profile to both agonists, including the upregulation of both αMHC and SERCA expression. Conclusions Although c-Fos/AP-1 is necessary for induction of the pathological/fetal gene program, it does not appear to be critical for cardiomyocyte hypertrophy. PMID:15795322
Coffee induces breast cancer resistance protein expression in Caco-2 cells.
Isshiki, Marina; Umezawa, Kazuo; Tamura, Hiroomi
2011-01-01
Coffee is a beverage that is consumed world-wide on a daily basis and is known to induce a series of metabolic and pharmacological effects, especially in the digestive tract. However, little is known concerning the effects of coffee on transporters in the gastrointestinal tract. To elucidate the effect of coffee on intestinal transporters, we investigated its effect on expression of the breast cancer resistance protein (BCRP/ABCG2) in a human colorectal cancer cell line, Caco-2. Coffee induced BCRP gene expression in Caco-2 cells in a coffee-dose dependent manner. Coffee treatment of Caco-2 cells also increased the level of BCRP protein, which corresponded to induction of gene expression, and also increased cellular efflux activity, as judged by Hoechst33342 accumulation. None of the major constituents of coffee tested could induce BCRP gene expression. The constituent of coffee that mediated this induction was extractable with ethyl acetate and was produced during the roasting process. Dehydromethylepoxyquinomicin (DHMEQ), an inhibitor of nuclear factor (NF)-κB, inhibited coffee-mediated induction of BCRP gene expression, suggesting involvement of NF-κB in this induction. Our data suggest that daily consumption of coffee might induce BCRP expression in the gastrointestinal tract and may affect the bioavailability of BCRP substrates.
Fan, Sheng; Zhang, Dong; Xing, Libo; Qi, Siyan; Du, Lisha; Wu, Haiqin; Shao, Hongxia; Li, Youmei; Ma, Juanjuan; Han, Mingyu
2017-08-01
Although INDETERMINATE DOMAIN (IDD) genes encoding specific plant transcription factors have important roles in plant growth and development, little is known about apple IDD (MdIDD) genes and their potential functions in the flower induction. In this study, we identified 20 putative IDD genes in apple and named them according to their chromosomal locations. All identified MdIDD genes shared a conserved IDD domain. A phylogenetic analysis separated MdIDDs and other plant IDD genes into four groups. Bioinformatic analysis of chemical characteristics, gene structure, and prediction of protein-protein interactions demonstrated the functional and structural diversity of MdIDD genes. To further uncover their potential functions, we performed analysis of tandem, synteny, and gene duplications, which indicated several paired homologs of IDD genes between apple and Arabidopsis. Additionally, genome duplications also promoted the expansion and evolution of the MdIDD genes. Quantitative real-time PCR revealed that all the MdIDD genes showed distinct expression levels in five different tissues (stems, leaves, buds, flowers, and fruits). Furthermore, the expression levels of candidate MdIDD genes were also investigated in response to various circumstances, including GA treatment (decreased the flowering rate), sugar treatment (increased the flowering rate), alternate-bearing conditions, and two varieties with different-flowering intensities. Parts of them were affected by exogenous treatments and showed different expression patterns. Additionally, changes in response to alternate-bearing and different-flowering varieties of apple trees indicated that they were also responsive to flower induction. Taken together, our comprehensive analysis provided valuable information for further analysis of IDD genes aiming at flower induction.
Minow, Mark A A; Ávila, Luis M; Turner, Katie; Ponzoni, Elena; Mascheretti, Iride; Dussault, Forest M; Lukens, Lewis; Rossi, Vincenzo; Colasanti, Joseph
2018-05-25
Temperate maize was domesticated from its tropical ancestor, teosinte. Whereas temperate maize is an autonomous day-neutral plant, teosinte is an obligate short-day plant that requires uninterrupted long nights to induce flowering. Leaf-derived florigenic signals trigger reproductive growth in both teosinte and temperate maize. To study the genetic mechanisms underlying floral inductive pathways in maize and teosinte, mRNA and small RNA genome-wide expression analyses were conducted on leaf tissue from plants that were induced or not induced to flower. Transcriptome profiles reveal common differentially expressed genes during floral induction, but a comparison of candidate flowering time genes indicates that photoperiod and autonomous pathways act independently. Expression differences in teosinte are consistent with the current paradigm for photoperiod-induced flowering, where changes in circadian clock output trigger florigen production. Conversely, differentially expressed genes in temperate maize link carbon partitioning and flowering, but also show altered expression of circadian clock genes that are distinct from those altered upon photoperiodic induction in teosinte. Altered miRNA399 levels in both teosinte and maize suggest a novel common connection between flowering and phosphorus perception. These findings provide insights into the molecular mechanisms underlying a strengthened autonomous pathway that enabled maize growth throughout temperate regions.
Li, Jin-Xue; Hou, Xiao-Jin; Zhu, Jiao; Zhou, Jing-Jing; Huang, Hua-Bin; Yue, Jian-Qiang; Gao, Jun-Yan; Du, Yu-Xia; Hu, Cheng-Xiao; Hu, Chun-Gen; Zhang, Jin-Zhi
2017-01-01
Water deficit is a key factor to induce flowering in many woody plants, but reports on the molecular mechanisms of floral induction and flowering by water deficit are scarce. Here, we analyzed the morphology, cytology, and different hormone levels of lemon buds during floral inductive water deficits. Higher levels of ABA were observed, and the initiation of floral bud differentiation was examined by paraffin sections analysis. A total of 1638 differentially expressed genes (DEGs) were identified by RNA sequencing. DEGs were related to flowering, hormone biosynthesis, or metabolism. The expression of some DEGs was associated with floral induction by real-time PCR analysis. However, some DEGs may not have anything to do with flowering induction/flower development; they may be involved in general stress/drought response. Four genes from the phosphatidylethanolamine-binding protein family were further investigated. Ectopic expression of these genes in Arabidopsis changed the flowering time of transgenic plants. Furthermore, the 5′ flanking region of these genes was also isolated and sequence analysis revealed the presence of several putative cis-regulatory elements, including basic elements and hormone regulation elements. The spatial and temporal expression patterns of these promoters were investigated under water deficit treatment. Based on these findings, we propose a model for citrus flowering under water deficit conditions, which will enable us to further understand the molecular mechanism of water deficit-regulated flowering in citrus. Highlight: Based on gene activity during floral inductive water deficits identified by RNA sequencing and genes associated with lemon floral transition, a model for citrus flowering under water deficit conditions is proposed. PMID:28659956
Li, Chun Ge; Wang, Hui; Chen, Hong Ju; Zhao, Yan; Fu, Pei Sheng; Ji, Xiang Shan
2014-01-01
Nowadays, high temperature effects on the molecular pathways during sex differentiation in teleosts need to be deciphered. In this study, a systematic differential expression analysis of genes involved in high temperature-induced sex differentiation was done in the Nile tilapia gonad and brain. Our results showed that high temperature caused significant down-regulation of CYP19A1A in the gonad of both sexes in induction group, and FOXL2 in the ovary of the induction group. The expressions of GTHα, LHβ and ERα were also significantly down-regulated in the brain of both sexes in the induction and recovery groups. On the contrary, the expression of CYP11B2 was significantly up-regulated in the ovary, but not in the testis in both groups. Spearman rank correlation analysis showed that there are significant correlations between the expressions of CYP19A1A, FOXL2, or DMRT1 in the gonads and the expression of some genes in the brain. Another result in this study showed that high temperature up-regulated the expression level of DNMT1 in the testis of the induction group, and DNMT1 and DNMT3A in the female brain of both groups. The expression and correlation analysis of HSPs showed that high temperature action on tilapia HSPs might indirectly induce the expression changes of sex differentiation genes in the gonads. These findings provide new insights on TSD and suggest that sex differentiation related genes, heat shock proteins, and DNA methylation genes are new candidates for studying TSD in fish species. Copyright © 2014 Elsevier Inc. All rights reserved.
Expression of the cloned ColE1 kil gene in normal and Kilr Escherichia coli.
Altieri, M; Suit, J L; Fan, M L; Luria, S E
1986-01-01
The kil gene of the ColE1 plasmid was cloned under control of the lac promoter. Its expression under this promoter gave rise to the same pattern of bacterial cell damage and lethality as that which accompanies induction of the kil gene in the colicin operon by mitomycin C. This confirms that cell damage after induction is solely due to expression of kil and is independent of the cea or imm gene products. Escherichia coli derivatives resistant to the lethal effects of kil gene expression under either the normal or the lac promoter were isolated and found to fall into several classes, some of which were altered in sensitivity to agents that affect the bacterial envelope. PMID:2946661
Persistent induction of c-fos and c-jun expression by asbestos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heintz, N.H.; Mossman, B.T.; Janssen, Y.M.
To investigate the mechanisms of asbestos-induced carcinogenesis, expression of c-fos and c-jun protooncogenes was examined in rat pleural mesothelial cells and hamster tracheal epithelial cells after exposure to crocidolite or chrysotile asbestos. In contrast to phorbol 12-myristate 13-acetate, which induces rapid and transient increases in c-fos and c-jun mRNA, asbestos causes 2- to 5-fold increases in c-fos and c-jun mRNA that persist for at least 24 hr in mesothelial cells. The induction of c-fos and c-jun mRNA by asbestos in mesothelial cells is dose-dependent and is most pronounced with crocidolite, the type of asbestos most pathogenic in the causation ofmore » pleural mesothelioma. Induction of c-jun gene expression by asbestos occurs in tracheal epithelial cells but is not accompanied by a corresponding induction of c-fos gene expression. In both cell types, asbestos induces increases in protein factors that bind specifically to the DNA sites that mediate gene expression by the AP-1 family of transcription factors. The persistent induction of AP-1 transcription factors by asbestos suggests a model of asbestos-induced carcinogenesis involving chronic stimulation of cell proliferation through activation of the early response gene pathway that includes c-jun and/or c-fos. 30 refs., 5 figs.« less
Suzuki, Motoshi; Toyoda, Naoya; Takagi, Shin
2014-01-01
Methods for turning on/off gene expression at the experimenter’s discretion would be useful for various biological studies. Recently, we reported on a novel microscope system utilizing an infrared laser-evoked gene operator (IR-LEGO) designed for inducing heat shock response efficiently in targeted single cells in living organisms without cell damage, thereby driving expression of a transgene under the control of a heat shock promoter. Although the original IR-LEGO can be successfully used for gene induction, several limitations hinder its wider application. Here, using the nematode Caenorhabditis elegans (C. elegans) as a subject, we have made improvements in IR-LEGO. For better spatial control of heating, a pulsed irradiation method using an optical chopper was introduced. As a result, single cells of C. elegans embryos as early as the 2-cell stage and single neurons in ganglia can be induced to express genes selectively. In addition, the introduction of site-specific recombination systems to IR-LEGO enables the induction of gene expression controlled by constitutive and cell type-specific promoters. The strategies adopted here will be useful for future applications of IR-LEGO to other organisms. PMID:24465705
Liu, Peng-Cheng; Liu, Kuan; Liu, Jun-Feng; Xia, Kuo; Chen, Li-Yang; Wu, Xing
2016-09-27
The effect of overexpressing the Indian hedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a simulated microgravity environment. An adenovirus plasmid encoding the rabbit IHH gene was constructed in vitro and transfected into rabbit BMSCs. Two large groups were used: conventional cell culture and induction model group and simulated microgravity environment group. Each large group was further divided into blank control group, GFP transfection group, and IHH transfection group. During differentiation induction, the expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins in each group were determined. In the conventional model, the IHH transfection group expressed high levels of cartilage-related factors (Coll2 and ANCN) at the early stage of differentiation induction and expressed high levels of cartilage hypertrophy-related factors (Coll10, annexin 5, and ALP) at the late stage. Under the simulated microgravity environment, the IHH transfection group expressed high levels of cartilage-related factors and low levels of cartilage hypertrophy-related factors at all stages of differentiation induction. Under the simulated microgravity environment, transfection of the IHH gene into BMSCs effectively promoted the generation of cartilage and inhibited cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.
Hormonal regulation of platypus Beta-lactoglobulin and monotreme lactation protein genes.
Enjapoori, Ashwantha Kumar; Lefèvre, Christophe M; Nicholas, Kevin R; Sharp, Julie A
2017-02-01
Endocrine regulation of milk protein gene expression in marsupials and eutherians is well studied. However, the evolution of this complex regulation that began with monotremes is unknown. Monotremes represent the oldest lineage of extant mammals and the endocrine regulation of lactation in these mammals has not been investigated. Here we characterised the proximal promoter and hormonal regulation of two platypus milk protein genes, Beta-lactoglobulin (BLG), a whey protein and monotreme lactation protein (MLP), a monotreme specific milk protein, using in vitro reporter assays and a bovine mammary epithelial cell line (BME-UV1). Insulin and dexamethasone alone provided partial induction of MLP, while the combination of insulin, dexamethasone and prolactin was required for maximal induction. Partial induction of BLG was achieved by insulin, dexamethasone and prolactin alone, with maximal induction using all three hormones. Platypus MLP and BLG core promoter regions comprised transcription factor binding sites (e.g. STAT5, NF-1 and C/EBPα) that were conserved in marsupial and eutherian lineages that regulate caseins and whey protein gene expression. Our analysis suggests that insulin, dexamethasone and/or prolactin alone can regulate the platypus MLP and BLG gene expression, unlike those of therian lineage. The induction of platypus milk protein genes by lactogenic hormones suggests they originated before the divergence of marsupial and eutherians. Copyright © 2015 Elsevier Inc. All rights reserved.
Identification, Classification, and Expression Analysis of GRAS Gene Family in Malus domestica
Fan, Sheng; Zhang, Dong; Gao, Cai; Zhao, Ming; Wu, Haiqin; Li, Youmei; Shen, Yawen; Han, Mingyu
2017-01-01
GRAS genes encode plant-specific transcription factors that play important roles in plant growth and development. However, little is known about the GRAS gene family in apple. In this study, 127 GRAS genes were identified in the apple (Malus domestica Borkh.) genome and named MdGRAS1 to MdGRAS127 according to their chromosomal locations. The chemical characteristics, gene structures and evolutionary relationships of the MdGRAS genes were investigated. The 127 MdGRAS genes could be grouped into eight subfamilies based on their structural features and phylogenetic relationships. Further analysis of gene structures, segmental and tandem duplication, gene phylogeny and tissue-specific expression with ArrayExpress database indicated their diversification in quantity, structure and function. We further examined the expression pattern of MdGRAS genes during apple flower induction with transcriptome sequencing. Eight higher MdGRAS (MdGRAS6, 26, 28, 44, 53, 64, 107, and 122) genes were surfaced. Further quantitative reverse transcription PCR indicated that the candidate eight genes showed distinct expression patterns among different tissues (leaves, stems, flowers, buds, and fruits). The transcription levels of eight genes were also investigated with various flowering related treatments (GA3, 6-BA, and sucrose) and different flowering varieties (Yanfu No. 6 and Nagafu No. 2). They all were affected by flowering-related circumstance and showed different expression level. Changes in response to these hormone or sugar related treatments indicated their potential involvement during apple flower induction. Taken together, our results provide rich resources for studying GRAS genes and their potential clues in genetic improvement of apple flowering, which enriches biological theories of GRAS genes in apple and their involvement in flower induction of fruit trees. PMID:28503152
Identification, Classification, and Expression Analysis of GRAS Gene Family in Malus domestica.
Fan, Sheng; Zhang, Dong; Gao, Cai; Zhao, Ming; Wu, Haiqin; Li, Youmei; Shen, Yawen; Han, Mingyu
2017-01-01
GRAS genes encode plant-specific transcription factors that play important roles in plant growth and development. However, little is known about the GRAS gene family in apple. In this study, 127 GRAS genes were identified in the apple ( Malus domestica Borkh.) genome and named MdGRAS1 to MdGRAS127 according to their chromosomal locations. The chemical characteristics, gene structures and evolutionary relationships of the MdGRAS genes were investigated. The 127 MdGRAS genes could be grouped into eight subfamilies based on their structural features and phylogenetic relationships. Further analysis of gene structures, segmental and tandem duplication, gene phylogeny and tissue-specific expression with ArrayExpress database indicated their diversification in quantity, structure and function. We further examined the expression pattern of MdGRAS genes during apple flower induction with transcriptome sequencing. Eight higher MdGRAS ( MdGRAS6, 26, 28, 44, 53, 64, 107 , and 122 ) genes were surfaced. Further quantitative reverse transcription PCR indicated that the candidate eight genes showed distinct expression patterns among different tissues (leaves, stems, flowers, buds, and fruits). The transcription levels of eight genes were also investigated with various flowering related treatments (GA 3 , 6-BA, and sucrose) and different flowering varieties (Yanfu No. 6 and Nagafu No. 2). They all were affected by flowering-related circumstance and showed different expression level. Changes in response to these hormone or sugar related treatments indicated their potential involvement during apple flower induction. Taken together, our results provide rich resources for studying GRAS genes and their potential clues in genetic improvement of apple flowering, which enriches biological theories of GRAS genes in apple and their involvement in flower induction of fruit trees.
Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S
1999-03-05
Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.
Gong, Youhui; Li, Ting; Zhang, Lee; Gao, Xiwu; Liu, Nannan
2013-01-01
The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.
Nitric oxide mediates antimicrobial peptide gene expression by activating eicosanoid signaling
Sadekuzzaman, Md.
2018-01-01
Nitric oxide (NO) mediates both cellular and humoral immune responses in insects. Its mediation of cellular immune responses uses eicosanoids as a downstream signal. However, the cross-talk with two immune mediators was not known in humoral immune responses. This study focuses on cross-talk between two immune mediators in inducing gene expression of anti-microbial peptides (AMPs) of a lepidopteran insect, Spodoptera exigua. Up-regulation of eight AMPs was observed in S. exigua against bacterial challenge. However, the AMP induction was suppressed by injection of an NO synthase inhibitor, L-NAME, while little expressional change was observed on injecting its enantiomer, D-NAME. The functional association between NO biosynthesis and AMP gene expression was further supported by RNA interference (RNAi) against NO synthase (SeNOS), which suppressed AMP gene expression under the immune challenge. The AMP induction was also mimicked by NO alone because injecting an NO analog, SNAP, without bacterial challenge significantly induced the AMP gene expression. Interestingly, an eicosanoid biosynthesis inhibitor, dexamethasone (DEX), suppressed the NO induction of AMP expression. The inhibitory activity of DEX was reversed by the addition of arachidonic acid, a precursor of eicosanoid biosynthesis. AMP expression of S. exigua was also controlled by the Toll/IMD signal pathway. The RNAi of Toll receptors or Relish suppressed AMP gene expression by suppressing NO levels and subsequently reducing PLA2 enzyme activity. These results suggest that eicosanoids are a downstream signal of NO mediation of AMP expression against bacterial challenge. PMID:29466449
Liu, Chuan-He; Fan, Chao
2016-01-01
A remarkable characteristic of pineapple is its ability to undergo floral induction in response to external ethylene stimulation. However, little information is available regarding the molecular mechanism underlying this process. In this study, the differentially expressed genes (DEGs) in plants exposed to 1.80 mL·L−1 (T1) or 2.40 mL·L−1 ethephon (T2) compared with Ct plants (control, cleaning water) were identified using RNA-seq and gene expression profiling. Illumina sequencing generated 65,825,224 high-quality reads that were assembled into 129,594 unigenes with an average sequence length of 1173 bp. Of these unigenes, 24,775 were assigned to specific KEGG pathways, of which metabolic pathways and biosynthesis of secondary metabolites were the most highly represented. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority were involved in metabolic and cellular processes, cell and cell part, catalytic activity and binding. Gene expression profiling analysis revealed 3788, 3062, and 758 DEGs in the comparisons of T1 with Ct, T2 with Ct, and T2 with T1, respectively. GO analysis indicated that these DEGs were predominantly annotated to metabolic and cellular processes, cell and cell part, catalytic activity, and binding. KEGG pathway analysis revealed the enrichment of several important pathways among the DEGs, including metabolic pathways, biosynthesis of secondary metabolites and plant hormone signal transduction. Thirteen DEGs were identified as candidate genes associated with the process of floral induction by ethephon, including three ERF-like genes, one ETR-like gene, one LTI-like gene, one FT-like gene, one VRN1-like gene, three FRI-like genes, one AP1-like gene, one CAL-like gene, and one AG-like gene. qPCR analysis indicated that the changes in the expression of these 13 candidate genes were consistent with the alterations in the corresponding RPKM values, confirming the accuracy and credibility of the RNA-seq and gene expression profiling results. Ethephon-mediated induction likely mimics the process of vernalization in the floral transition in pineapple by increasing LTI, FT, and VRN1 expression and promoting the up-regulation of floral meristem identity genes involved in flower development. The candidate genes screened can be used in investigations of the molecular mechanisms of the flowering pathway and of various other biological mechanisms in pineapple. PMID:26955375
Kamenšek, Simona; Browning, Douglas F; Podlesek, Zdravko; Busby, Stephen J W; Žgur-Bertok, Darja; Butala, Matej
2015-06-01
Colicins are plasmid-encoded narrow spectrum antibiotics that are synthesized by strains of Escherichia coli and govern intraspecies competition. In a previous report, we demonstrated that the global transcriptional factor IscR, co dependently with the master regulator of the DNA damage response, LexA, delays induction of the pore forming colicin genes after SOS induction. Here we show that IscR is not involved in the regulation of nuclease colicins, but that the AsnC protein is. We report that AsnC, in concert with LexA, is the key controller of the temporal induction of the DNA degrading colicin E8 gene (cea8), after DNA damage. We demonstrate that a large AsnC nucleosome-like structure, in conjunction with two LexA molecules, prevent cea8 transcription initiation and that AsnC binding activity is directly modulated by L asparagine. We show that L-asparagine is an environmental factor that has a marked impact on cea8 promoter regulation. Our results show that AsnC also modulates the expression of several other DNase and RNase colicin genes but does not substantially affect pore-forming colicin K gene expression. We propose that selection pressure has "chosen" highly conserved regulators to control colicin expression in E. coli strains, enabling similar colicin gene silencing among bacteria upon exchange of colicinogenic plasmids.
Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella.
Rychlik, Ivan; Elsheimer-Matulova, Marta; Kyrova, Kamila
2014-12-05
Chickens can be infected with Salmonella enterica at any time during their life. However, infections within the first hours and days of their life are epidemiologically the most important, as newly hatched chickens are highly sensitive to Salmonella infection. Salmonella is initially recognized in the chicken caecum by TLR receptors and this recognition is followed by induction of chemokines, cytokines and many effector genes. This results in infiltration of heterophils, macrophages, B- and T-lymphocytes and changes in total gene expression in the caecal lamina propria. The highest induction in expression is observed for matrix metalloproteinase 7 (MMP7). Expression of this gene is increased in the chicken caecum over 4000 fold during the first 10 days after the infection of newly hatched chickens. Additional highly inducible genes in the caecum following S. Enteritidis infection include immune responsive gene 1 (IRG1), serum amyloid A (SAA), extracellular fatty acid binding protein (ExFABP), serine protease inhibitor (SERPINB10), trappin 6-like (TRAP6), calprotectin (MRP126), mitochondrial ES1 protein homolog (ES1), interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), avidin (AVD) and transglutaminase 4 (TGM4). The induction of expression of these proteins exceeds a factor of 50. Similar induction rates are also observed for chemokines and cytokines such as IL1β, IL6, IL8, IL17, IL18, IL22, IFNγ, AH221 or iNOS. Once the infection is under control, which happens approx. 2 weeks after infection, expression of IgY and IgA increases to facilitate Salmonella elimination from the gut lumen. This review outlines the function of individual proteins expressed in chickens after infection with non-typhoid Salmonella serovars.
Expression of Allene Oxide Synthase Determines Defense Gene Activation in Tomato1
Sivasankar, Sobhana; Sheldrick, Bay; Rothstein, Steven J.
2000-01-01
Allene oxide synthase (AOS; hydroperoxide dehydratase; EC 4.2.1.92) catalyzes the first step in the biosynthesis of jasmonic acid from lipoxygenase-derived hydroperoxides of free fatty acids. Using the AOS cDNA from tomato (Lycopersicon esculentum), in which the role of jasmonic acid in wound-induced defense gene activation has been best described, we examined the kinetics of AOS induction in response to wounding and elicitors, in parallel with that of the wound-inducible PIN II (proteinase inhibitor II) gene. AOS was induced in leaves by wounding, systemin, 12-oxophytodienoic acid, and methyl jasmonate. The levels of AOS mRNA started declining by 4 h after induction, whereas the levels of PIN II mRNA continued to increase up to 20 h after induction. Salicylic acid inhibited AOS and PIN II expression, and the addition of 12-oxophytodienoic acid or methyl jasmonate did not prevent the inhibition of PIN II expression in the presence of salicylic acid. Ethylene induced the expression of AOS, but the presence of ethylene alone did not produce an optimal induction of PIN II. The addition of silver thiosulfate, an ethylene action inhibitor, prevented the wound-induced expression of both AOS and PIN II. Products of hydroperoxide lyase affected neither AOS nor PIN II, but induced expression of prosystemin. Based on these results, we propose an updated model for defense gene activation in tomato. PMID:10759530
Gli function is essential for motor neuron induction in zebrafish.
Vanderlaan, Gary; Tyurina, Oksana V; Karlstrom, Rolf O; Chandrasekhar, Anand
2005-06-15
The Gli family of zinc-finger transcription factors mediates Hedgehog (Hh) signaling in all vertebrates. However, their roles in ventral neural tube patterning, in particular motor neuron induction, appear to have diverged across species. For instance, cranial motor neurons are essentially lost in zebrafish detour (gli1(-)) mutants, whereas motor neuron development is unaffected in mouse single gli and some double gli knockouts. Interestingly, the expression of some Hh-regulated genes (ptc1, net1a, gli1) is mostly unaffected in the detour mutant hindbrain, suggesting that other Gli transcriptional activators may be involved. To better define the roles of the zebrafish gli genes in motor neuron induction and in Hh-regulated gene expression, we examined these processes in you-too (yot) mutants, which encode dominant repressor forms of Gli2 (Gli2(DR)), and following morpholino-mediated knockdown of gli1, gli2, and gli3 function. Motor neuron induction at all axial levels was reduced in yot (gli2(DR)) mutant embryos. In addition, Hh target gene expression at all axial levels except in rhombomere 4 was also reduced, suggesting an interference with the function of other Glis. Indeed, morpholino-mediated knockdown of Gli2(DR) protein in yot mutants led to a suppression of the defective motor neuron phenotype. However, gli2 knockdown in wild-type embryos generated no discernable motor neuron phenotype, while gli3 knockdown reduced motor neuron induction in the hindbrain and spinal cord. Significantly, gli2 or gli3 knockdown in detour (gli1(-)) mutants revealed roles for Gli2 and Gli3 activator functions in ptc1 expression and spinal motor neuron induction. Similarly, gli1 or gli3 knockdown in yot (gli2(DR)) mutants resulted in severe or complete loss of motor neurons, and of ptc1 and net1a expression, in the hindbrain and spinal cord. In addition, gli1 expression was greatly reduced in yot mutants following gli3, but not gli1, knockdown, suggesting that Gli3 activator function is specifically required for gli1 expression. These observations demonstrate that Gli activator function (encoded by gli1, gli2, and gli3) is essential for motor neuron induction and Hh-regulated gene expression in zebrafish.
THE USE OF GENE ARRAYS TO DETERMINE TEMPORAL GENE INDUCTION IN SHEEPSHEAD MINNOWS EXPOSED TO E2
Gene arrays provide a means to study differential gene expression in fish exposed to environmental estrogens by providing a "snapshot" of the genes expressed at a given time. Such array data may also uncover previously unknown biochemical pathways affected by estrogenic compounds...
Repression of Virus-Induced Interferon A Promoters by Homeodomain Transcription Factor Ptx1
Lopez, Sébastien; Island, Marie-Laure; Drouin, Jacques; Bandu, Marie-Thérese; Christeff, Nicolas; Darracq, Nicole; Barbey, Régine; Doly, Janine; Thomas, Dominique; Navarro, Sébastien
2000-01-01
Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by substitutions in the proximal positive virus responsive element A (VRE-A) of their promoters and by the presence or absence of a distal negative regulatory element (DNRE). The functional feature of the DNRE is to specifically act by repression of VRE-A activity. With the use of the yeast one-hybrid system, we describe here the identification of a specific DNRE-binding protein, the pituitary homeobox 1 (Ptx1 or Pitx1). Ptx1 is detectable in different cell types that differentially express IFN-A genes, and the endogenous Ptx1 protein binds specifically to the DNRE. Upon virus induction, Ptx1 negatively regulates the transcription of DNRE-containing IFN-A promoters, and the C-terminal region, as well as the homeodomain of the Ptx1 protein, is required for this repression. After virus induction, the expression of the Ptx1 antisense RNA leads to a significant increase of endogenous IFN-A gene transcription and is able to modify the pattern of differential expression of individual IFN-A genes. These studies suggest that Ptx1 contributes to the differential transcriptional strength of the promoters of different IFN-A genes and that these genes may provide new targets for transcriptional regulation by a homeodomain transcription factor. PMID:11003649
Cruz-Rodriguez, Nataly; Combita, Alba L; Enciso, Leonardo J; Quijano, Sandra M; Pinzon, Paula L; Lozano, Olga C; Castillo, Juan S; Li, Li; Bareño, Jose; Cardozo, Claudia; Solano, Julio; Herrera, Maria V; Cudris, Jennifer; Zabaleta, Jovanny
2016-04-05
B-Acute lymphoblastic leukemia (B-ALL) represents a hematologic malignancy with poor clinical outcome and low survival rates in adult patients. Remission rates in Hispanic population are almost 30% lower and Overall Survival (OS) nearly two years inferior than those reported in other ethnic groups. Only 61% of Colombian adult patients with ALL achieve complete remission (CR), median overall survival is 11.3 months and event-free survival (EFS) is 7.34 months. Identification of prognostic factors is crucial for the application of proper treatment strategies and subsequently for successful outcome. Our goal was to identify a gene expression signature that might correlate with response to therapy and evaluate the utility of these as prognostic tool in hispanic patients. We included 43 adult patients newly diagnosed with B-ALL. We used microarray analysis in order to identify genes that distinguish poor from good response to treatment using differential gene expression analysis. The expression profile was validated by real-time PCR (RT-PCT). We identified 442 differentially expressed genes between responders and non-responders to induction treatment. Hierarchical analysis according to the expression of a 7-gene signature revealed 2 subsets of patients that differed in their clinical characteristics and outcome. Our study suggests that response to induction treatment and clinical outcome of Hispanic patients can be predicted from the onset of the disease and that gene expression profiles can be used to stratify patient risk adequately and accurately. The present study represents the first that shows the gene expression profiling of B-ALL Colombian adults and its relevance for stratification in the early course of disease.
Wang, Shuai; Hannafon, Bethany N; Wolf, Roman F; Zhou, Jundong; Avery, Jori E; Wu, Jinchang; Lind, Stuart E; Ding, Wei-Qun
2014-05-01
The effect of docosahexaenoic acid (DHA) on heme oxygenase-1 (HO-1) expression in cancer cells has never been characterized. This study examines DHA-induced HO-1 expression in human cancer cell model systems. DHA enhanced HO-1 gene expression in a time- and concentration-dependent manner, with maximal induction at 21 h of treatment. This induction of HO-1 expression was confirmed in vivo using a xenograft nude mouse model fed a fish-oil-enriched diet. The increase in HO-1 gene transcription induced by DHA was significantly attenuated by the antioxidant N-acetyl cysteine, suggesting the involvement of oxidative stress. This was supported by direct measurement of lipid peroxide levels after DHA treatment. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediate the DHA-induced increase in HO-1 gene transcription. Knockdown of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression compromised the DHA-induced increase in HO-1 gene transcription, indicating the importance of the Nrf2 pathway in this event. However, the nuclear protein levels of Nrf2 remained unchanged upon DHA treatment. Further studies demonstrated that DHA reduces nuclear Bach1 protein expression by promoting its degradation and attenuates Bach1 binding to the AREs in the HO-1 gene promoter. In contrast, DHA enhanced Nrf2 binding to the AREs without affecting nuclear Nrf2 expression levels, indicating a new cellular mechanism that mediates DHA's induction of HO-1 gene transcription. To our knowledge, this is the first characterization of DHA-induced HO-1 expression in human malignant cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Reséndiz-Cardiel, Gerardo; Arroyo, Rossana; Ortega-López, Jaime
2017-06-01
The legumain-like cysteine proteinase TvLEGU-1 from Trichomonas vaginalis plays a major role in trichomonal cytoadherence. However, its structure-function characterization has been limited by the lack of a reliable recombinant expression platform to produce this protein in its native folded conformation. TvLEGU-1 has been expressed in Escherichia coli as inclusion bodies and all efforts to refold it have failed. Here, we describe the expression of the synthetic codon-optimized tvlegu-1 (tvlegu-1-opt) gene in Pichia pastoris strain X-33 (Mut+) under the inducible AOX1 promoter. The active TvLEGU-1 recombinant protein (rTvLEGU-1) was secreted into the medium when tvlegu-1-opt was fused to the Aspergillus niger alpha-amylase signal peptide. The rTvLEGU-1 secretion was influenced by the gene copy number and induction temperature. Data indicate that increasing tvlegu-1-opt gene copy number was detrimental for heterologous expression of the enzymatically active TvLEGU-1. Indeed, expression of TvLEGU-1 had a greater impact on cell viability for those clones with 26 or 29 gene copy number, and cell lysis was observed when the induction was carried out at 30 °C. The enzyme activity in the medium was higher when the induction was carried out at 16 °C and in P. pastoris clones with lower gene copy number. The results presented here suggest that both copy number and induction temperature affect the rTvLEGU-1 expression in its native-like and active conformation. Copyright © 2017 Elsevier Inc. All rights reserved.
Cytochrome P450IA mRNA expression in feral Hudson River tomcod
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreamer, G.L.; Squibb, K.; Gioeli, D.
1991-06-01
The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached bymore » 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.« less
Rat lung metallothionein and heme oxygenase gene expression following ozone and zinc oxide exposure.
Cosma, G; Fulton, H; DeFeo, T; Gordon, T
1992-11-01
We have conducted exposures in rats to determine pulmonary responses following inhalation of two common components of welding fumes, zinc oxide and ozone. To examine their effects on target-inducible gene expression, we measured mRNA levels of two metal-responsive genes, metallothionein (MT) and heme oxygenase (HO), in lung tissue by RNA slot-blot analysis. A 3-hr exposure to ZnO fume via a combustion furnace caused a substantial elevation in lung MT mRNA at all concentrations tested. Exposures to 5 and 2.5 mg/m3 ZnO resulted in peak 8-fold increases in MT mRNA levels (compared to air-exposed control animal values) immediately after exposure, while 1 mg/m3 ZnO exposure caused a 3.5-fold elevation in MT mRNA. These levels returned to approximate control gene expression values 24 hr after exposure. In addition, ZnO exposure caused an immediate elevation in lung HO gene expression levels, with 8-, 11-, and 5-fold increases observed after the same ZnO exposure levels (p < 0.05). Like MT gene induction, HO mRNA values returned to approximate control levels 24 hr after exposure. In striking contrast to the induction of MT and HO gene expression after ZnO exposures, there was no elevation in gene expression following a 6-hr exposure to 0.5 and 1 ppm ozone, even when lungs were examined as late as 72 hr after exposure. Our results demonstrate the induction of target gene expression following the inhalation of ZnO at concentrations equal to, and below, the current recommended threshold limit value of 5 mg/m3 ZnO. Furthermore, the lack of effect of ozone exposure on MT and HO gene expression suggests no involvement of these genes in the acute respiratory response to this oxidant compound.
Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy
Martínez-Andújar, Cristina; Ordiz, M. Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N.; Nonogaki, Hiroyuki
2011-01-01
Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism. PMID:21969557
Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy.
Martínez-Andújar, Cristina; Ordiz, M Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N; Nonogaki, Hiroyuki
2011-10-11
Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism.
Majumder, Pritha; Chattopadhyay, Biswanath; Mazumder, Arindam; Das, Pradeep; Bhattacharyya, Nitai P
2006-05-01
To decipher the pathway of apoptosis induction downstream to caspase-8 activation by exogenous expression of Hippi, an interactor of huntingtin-interacting protein Hip1, we studied apoptosis in HeLa and Neuro2A cells expressing GFP-tagged Hippi. Nuclear fragmentation, caspase-1, caspase-8, caspase-9/caspase-6 and caspase-3 activation were increased significantly in Hippi expressing cells. Cleavage of Bid, release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria were also increased in GFP-Hippi expressing cells. It was observed that caspase-1 and caspase-8 activation was earlier than caspase-3 activation and nuclear fragmentation. Expression of caspase-1, caspase-3 and caspase-7 was increased while anti-apoptotic gene Bcl-2 and mitochondrial genes ND1 and ND4 were reduced in Hippi expressing cells. Besides, the expression SDHA and SDHB, nuclear genes, subunits of mitochondrial complex II were decreased in GFP-Hippi expressing cells. Taken together, we concluded that Hippi expression induced apoptosis by releasing AIF and cytochrome c from mitochondria, activation of caspase-1 and caspase-3, and altering the expression of apoptotic genes and genes involved in mitochondrial complex I and II.
Addiction, Adolescence, and Innate Immune Gene Induction
Crews, Fulton T.; Vetreno, Ryan Peter
2011-01-01
Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control, and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB) facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g., negative affect-anxiety and loss of frontal–cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy. PMID:21629837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forde, C; Rocco, J; Fitch, J P
2004-06-09
A real-time reporter system was developed to monitor the thermal induction of virulence factors in Yersinia pestis. The reporter system consists of a plasmid in Y. pestis in which the expression of green fluorescent protein (GFP) is under the control of the promoters for six virulence factors, yopE, sycE, yopK, yopT, yscN, and lcrE/yopN, which are all components of the Type III secretion virulence mechanism of Y. pestis. Induction of the expression of these genes in vivo was determined by the increase in fluorescence intensity of GFP in real time. Basal expression levels observed for the Y. pestis promoters, expressedmore » as percentages of the positive control with GFP under the control of the lac promoter, were: yopE (15%), sycE (15%), yopK (13%), yopT (4%), lcrE (3.3%) and yscN (0.8%). The yopE reporter showed the strongest gene induction following temperature transition from 26 C to 37 C. The induction levels of the other virulence factors, expressed as percentages of yopE induction, were: yopK (57%), sycE (9%), yscN (3%), lcrE (3%), and yopT (2%). The thermal induction of each of these promoter fusions was repressed by calcium, and the ratios of the initial rates of thermal induction without calcium supplementation compared to the rate with calcium supplementation were: yopE (11 fold), yscN (7 fold), yopK (6 fold), lcrE (3 fold), yopT (2 fold), and sycE (2 fold). This work demonstrates a novel approach to quantify gene induction and provides a method to rapidly determine the effects of external stimuli on expression of Y. pestis virulence factors in real time, in living cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, H.; Lin, J.; Su, Z.-Z.
The melanoma differentiation associated gene, mda-6, which is identical to the P53-inducible gene WAF1/CIP1, encodes an M(r) 21,000 protein (p21) that can directly inhibit cell growth by repressing cyclin dependent kinases. mda-6 was identified using subtraction hybridization by virtue of its enhanced expression in human melanoma cells induced to terminally differentiate by treatment with human fibroblast interferon and the anti-leukemic compound mezerein (Jiang and Fisher, 1993). In the present study, we demonstrate that mda-6 (WAF1/CIP1) is an immediate early response gene induced during differentiation of the promyelocytic HL-60 leukemia cell line along the granulocytic or macrophage/monocyte pathway. mda-6 gene expressionmore » in HL-60 cells is induced within 1 to 3 h during differentiation along the macrophage/monocyte pathway evoked by 12-0-tetradecanoyl phorbol-13-acetate (TPA) or 1,25-dihydroxyvitamin D3 (Vit D3) or the granulocytic pathway produced by retinoic acid (RA) or dimethylsulfoxide (DMSO). Immunoprecipitation analyses using an anti-p21 antibody indicate a temporal induction of p21 protein following treatment with TPA, DMSO or RA. A relationship between rapid induction of mda-6 gene expression and differentiation is indicated by a delay in this expression in an HL-60 cell variant resistant to TPA-induced growth arrest and differentiation. A similar delay in mda-6 gene expression is not observed in Vit D3 treated TPA-resistant variant cells that are also sensitive to induction of monocytic differentiation. Since HL-60 cells have a null-p53 phenotype, these results demonstrate that p21 induction occurs during initiation of terminal differentiation in a p53-independent manner. In this context, p21 may play a more global role in growth control and differentiation than originally envisioned.« less
Mechanisms of neuroimmune gene induction in alcoholism.
Crews, Fulton T; Vetreno, Ryan P
2016-05-01
Alcoholism is a primary, chronic relapsing disease of brain reward, motivation, memory, and related circuitry. It is characterized by an individual's continued drinking despite negative consequences related to alcohol use, which is exemplified by alcohol use leading to clinically significant impairment or distress. Chronic alcohol consumption increases the expression of innate immune signaling molecules (ISMs) in the brain that alter cognitive processes and promote alcohol drinking. Unraveling the mechanisms of alcohol-induced neuroimmune gene induction is complicated by positive loops of multiple cytokines and other signaling molecules that converge on nuclear factor kappa-light-chain-enhancer of activated B cells and activator protein-1 leading to induction of additional neuroimmune signaling molecules that amplify and expand the expression of ISMs. Studies from our laboratory employing reverse transcription polymerase chain reaction (RT-PCR) to assess mRNA, immunohistochemistry and Western blot analysis to assess protein expression, and others suggest that ethanol increases brain neuroimmune gene and protein expression through two distinct mechanisms involving (1) systemic induction of innate immune molecules that are transported from blood to the brain and (2) the direct release of high-mobility group box 1 (HMGB1) from neurons in the brain. Released HMGB1 signals through multiple receptors, particularly Toll-like receptor (TLR) 4, that potentiate cytokine receptor responses leading to a hyperexcitable state that disrupts neuronal networks and increases excitotoxic neuronal death. Innate immune gene activation in brain is persistent, consistent with the chronic relapsing disease that is alcoholism. Expression of HMGB1, TLRs, and other ISMs is increased several-fold in the human orbital frontal cortex, and expression of these molecules is highly correlated with each other as well as lifetime alcohol consumption and age of drinking onset. The persistent and cumulative nature of alcohol on HMGB1 and TLR gene induction support their involvement in alcohol-induced long-term changes in brain function and neurodegeneration.
GHRICI, MOHAMED; EL ZOWALATY, MOHAMED; OMAR, ABDUL RAHMAN; IDERIS, AINI
2013-01-01
Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications. PMID:23807159
Ghrici, Mohamed; El Zowalaty, Mohamed; Omar, Abdul Rahman; Ideris, Aini
2013-09-01
Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications.
Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant.
Folcher, Marc; Oesterle, Sabine; Zwicky, Katharina; Thekkottil, Thushara; Heymoz, Julie; Hohmann, Muriel; Christen, Matthias; Daoud El-Baba, Marie; Buchmann, Peter; Fussenegger, Martin
2014-11-11
Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain-computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered optogenetic implant containing designer cells engineered for near-infrared (NIR) light-adjustable expression of the human glycoprotein SEAP (secreted alkaline phosphatase). The synthetic optogenetic signalling pathway interfacing the BCI with target gene expression consists of an engineered NIR light-activated bacterial diguanylate cyclase (DGCL) producing the orthogonal second messenger cyclic diguanosine monophosphate (c-di-GMP), which triggers the stimulator of interferon genes (STING)-dependent induction of synthetic interferon-β promoters. Humans generating different mental states (biofeedback control, concentration, meditation) can differentially control SEAP production of the designer cells in culture and of subcutaneous wireless-powered optogenetic implants in mice.
Molecular Regulation of Temperature-Dependent Floral Induction in Tulipa gesneriana.
Leeggangers, Hendrika A C F; Nijveen, Harm; Bigas, Judit Nadal; Hilhorst, Henk W M; Immink, Richard G H
2017-03-01
The vegetative-to-reproductive phase change in tulip ( Tulipa gesneriana ) is promoted by increasing temperatures during spring. The warm winters of recent years interfere with this process and are calling for new adapted cultivars. A better understanding of the underlying molecular mechanisms would be of help, but unlike the model plant Arabidopsis ( Arabidopsis thaliana ), very little is known about floral induction in tulip. To shed light on the gene regulatory network controlling flowering in tulip, RNA sequencing was performed on meristem-enriched tissue collected under two contrasting temperature conditions, low and high. The start of reproductive development correlated with rounding of the shoot apical meristem and induction of TGSQA expression, a tulip gene with a high similarity to Arabidopsis APETALA1 Gene Ontology enrichment analysis of differentially expressed genes showed the overrepresentation of genes potentially involved in floral induction, bulb maturation, and dormancy establishment. Expression analysis revealed that TERMINAL FLOWER1 ( TgTFL1 ) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-like1 ( TgSOC1-like1 ) might be repressors, whereas TgSOC1-like2 likely is an activator, of flowering. Subsequently, the flowering time-associated expression of eight potential flowering time genes was confirmed in three tulip cultivars grown in the field. Additionally, heterologous functional analyses in Arabidopsis resulted in flowering time phenotypes in line with TgTFL1 being a floral repressor and TgSOC1-like2 being a floral activator in tulip. Taken together, we have shown that long before morphological changes occur in the shoot apical meristem, the expression of floral repressors in tulip is suppressed by increased ambient temperatures, leading either directly or indirectly to the activation of potential flowering activators shortly before the commencement of the phase change. © 2017 American Society of Plant Biologists. All Rights Reserved.
Molecular Regulation of Temperature-Dependent Floral Induction in Tulipa gesneriana1
Leeggangers, Hendrika A.C.F.; Bigas, Judit Nadal
2017-01-01
The vegetative-to-reproductive phase change in tulip (Tulipa gesneriana) is promoted by increasing temperatures during spring. The warm winters of recent years interfere with this process and are calling for new adapted cultivars. A better understanding of the underlying molecular mechanisms would be of help, but unlike the model plant Arabidopsis (Arabidopsis thaliana), very little is known about floral induction in tulip. To shed light on the gene regulatory network controlling flowering in tulip, RNA sequencing was performed on meristem-enriched tissue collected under two contrasting temperature conditions, low and high. The start of reproductive development correlated with rounding of the shoot apical meristem and induction of TGSQA expression, a tulip gene with a high similarity to Arabidopsis APETALA1. Gene Ontology enrichment analysis of differentially expressed genes showed the overrepresentation of genes potentially involved in floral induction, bulb maturation, and dormancy establishment. Expression analysis revealed that TERMINAL FLOWER1 (TgTFL1) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-like1 (TgSOC1-like1) might be repressors, whereas TgSOC1-like2 likely is an activator, of flowering. Subsequently, the flowering time-associated expression of eight potential flowering time genes was confirmed in three tulip cultivars grown in the field. Additionally, heterologous functional analyses in Arabidopsis resulted in flowering time phenotypes in line with TgTFL1 being a floral repressor and TgSOC1-like2 being a floral activator in tulip. Taken together, we have shown that long before morphological changes occur in the shoot apical meristem, the expression of floral repressors in tulip is suppressed by increased ambient temperatures, leading either directly or indirectly to the activation of potential flowering activators shortly before the commencement of the phase change. PMID:28104719
Ren, Shuang; Hao, You-Jin; Chen, Bin; Yin, You-Ping
2017-01-01
The onion maggot, Delia antiqua, is a worldwide subterranean pest and can enter diapause during the summer and winter seasons. The molecular regulation of the ontogenesis transition remains largely unknown. Here we used high-throughput RNA sequencing to identify candidate genes and processes linked to summer diapause (SD) induction by comparing the transcriptome differences between the most sensitive larval developmental stage of SD and nondiapause (ND). Nine pairwise comparisons were performed, and significantly differentially regulated transcripts were identified. Several functional terms related to lipid, carbohydrate, and energy metabolism, environmental adaption, immune response, and aging were enriched during the most sensitive SD induction period. A subset of genes, including circadian clock genes, were expressed differentially under diapause induction conditions, and there was much more variation in the most sensitive period of ND- than SD-destined larvae. These expression variations probably resulted in a deep restructuring of metabolic pathways. Potential regulatory elements of SD induction including genes related to lipid, carbohydrate, energy metabolism, and environmental adaption. Collectively, our results suggest the circadian clock is one of the key drivers for integrating environmental signals into the SD induction. Our transcriptome analysis provides insight into the fundamental role of the circadian clock in SD induction in this important model insect species, and contributes to the in-depth elucidation of the molecular regulation mechanism of insect diapause induction. PMID:29158334
Xu, Jintao; Zhao, Guolei; Kou, Yanbo; Zhang, Weixin; Zhou, Qingxin; Chen, Guanjun
2014-01-01
Lactose (1,4-O-β-d-galacto-pyranosyl-d-glucose) induces cellulolytic enzymes in Trichoderma reesei and is in fact one of the most important soluble carbon sources used to produce cellulases on an industrial level. The mechanism underlying the induction is, however, not fully understood. In this study, we investigated the cellular functions of the intracellular β-glucosidases CEL1a and CEL1b in the induction of cellulase genes by lactose in T. reesei. We demonstrated that while CEL1a and CEL1b were functionally equivalent in mediating the induction, the simultaneous absence of these intracellular β-glucosidases abolished cbh1 gene expression on lactose. d-Galactose restored the efficient cellulase gene induction in the Δcel1a strain independently of its reductive metabolism, but not in the Δcel1a Δcel1b strain. A further comparison of the transcriptional responses of the Δcel1a Δcel1b strain complemented with wild-type CEL1a or a catalytically inactive CEL1a version and the Δcel1a strain constitutively expressing CEL1a or the Kluyveromyces lactis β-galactosidase LAC4 showed that both the CEL1a protein and its glycoside hydrolytic activity were indispensable for cellulase induction by lactose. We also present evidence that intracellular β-glucosidase-mediated lactose induction is further conveyed to XYR1 to ensure the efficiently induced expression of cellulase genes. PMID:24879125
Alonso-Peral, Maria M; Oliver, Sandra N; Casao, M Cristina; Greenup, Aaron A; Trevaskis, Ben
2011-01-01
The VERNALIZATION1 (VRN1) gene of temperate cereals is transcriptionally activated by prolonged cold during winter (vernalization) to promote flowering. To investigate the mechanisms controlling induction of VRN1 by prolonged cold, different regions of the VRN1 gene were fused to the GREEN FLUORESCENT PROTEIN (GFP) reporter and expression of the resulting gene constructs was assayed in transgenic barley (Hordeum vulgare). A 2 kb segment of the promoter of VRN1 was sufficient for GFP expression in the leaves and shoot apex of transgenic barley plants. Fluorescence increased at the shoot apex prior to inflorescence initiation and was subsequently maintained in the developing inflorescence. The promoter was also sufficient for low-temperature induction of GFP expression. A naturally occurring insertion in the proximal promoter, which is associated with elevated VRN1 expression and early flowering in some spring wheats, did not abolish induction of VRN1 transcription by prolonged cold, however. A translational fusion of the promoter and transcribed regions of VRN1 to GFP, VRN1::GFP, was localised to nuclei of cells at the shoot apex of transgenic barley plants. The distribution of VRN1::GFP at the shoot apex was similar to the expression pattern of the VRN1 promoter-GFP reporter gene. Fluorescence from the VRN1::GFP fusion protein increased in the developing leaves after prolonged cold treatment. These observations suggest that the promoter of VRN1 is targeted by mechanisms that trigger vernalization-induced flowering in economically important temperate cereal crops.
Liu, Nannan; Li, Ting; Reid, William R; Yang, Ting; Zhang, Lee
2011-01-01
Four cytochrome P450 cDNAs, CYP6AA7, CYP9J40, CYP9J34, and CYP9M10, were isolated from mosquitoes, Culex quinquefasciatus. The P450 gene expression and induction by permethrin were compared for three different mosquito populations bearing different resistance phenotypes, ranging from susceptible (S-Lab), through intermediate (HAmCq(G0), the field parental population) to highly resistant (HAmCq(G8), the 8(th) generation of permethrin selected offspring of HAmCq(G0)). A strong correlation was found for P450 gene expression with the levels of resistance and following permethrin selection at the larval stage of mosquitoes, with the highest expression levels identified in HAmCq(G8), suggesting the importance of CYP6AA7, CYP9J40, CYP9J34, and CYP9M10 in the permethrin resistance of larva mosquitoes. Only CYP6AA7 showed a significant overexpression in HAmCq(G8) adult mosquitoes. Other P450 genes had similar expression levels among the mosquito populations tested, suggesting different P450 genes may be involved in the response to insecticide pressure in different developmental stages. The expression of CYP6AA7, CYP9J34, and CYP9M10 was further induced by permethrin in resistant mosquitoes. Taken together, these results indicate that multiple P450 genes are up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, thus increasing the overall expression levels of P450 genes.
Analysis of regulatory mechanisms of an insulin-inducible SHARP-2 gene by (S)-Equol.
Haneishi, Ayumi; Takagi, Katsuhiro; Asano, Kosuke; Yamamoto, Taichi; Tanaka, Takashi; Nakamura, Soichiro; Noguchi, Tamio; Yamada, Kazuya
2012-09-01
Small compounds that activate the insulin-dependent signaling pathway have potential therapeutic applications in controlling type 2 diabetes mellitus. The rat enhancer of split- and hairy-related protein-2 (SHARP-2) is an insulin-inducible transcription factor that decreases expression of the phosphoenolpyruvate carboxykinase gene, a gluconeogenic enzyme gene. In this study, we screened for soybean isoflavones that can induce the rat SHARP-2 gene expression and analyzed their mechanism(s). Genistein and (S)-Equol, a metabolite of daidzein, induced rat SHARP-2 gene expression in H4IIE rat hepatoma cells. The (S)-Equol induction was mediated by both the phosphoinositide 3-kinase- and protein kinase C (PKC)-pathways. When a dominant negative form of atypical PKC lambda (aPKCλ) was expressed, the induction of SHARP-2 mRNA level by (S)-Equol was inhibited. In addition, Western blot analyses showed that (S)-Equol rapidly activated both aPKCλ and classical PKC alpha. Furthermore, the (S)-Equol induction was inhibited by treatment with a RNA polymerase inhibitor or a protein synthesis inhibitor. Finally, a reporter gene assay revealed that the transcriptional stimulation by (S)-Equol was mediated by nucleotide sequences located between -4687 and -4133 of the rat SHARP-2 gene. Thus, we conclude that (S)-Equol is an useful dietary supplement to control type 2 diabetes mellitus. Copyright © 2012 Elsevier Inc. All rights reserved.
The effect of mutation on Rhodococcus equi virulence plasmid gene expression and mouse virulence.
Ren, Jun; Prescott, John F
2004-11-15
An 81 kb virulence plasmid containing a pathogenicity island (PI) plays a crucial role in the pathogenesis of Rhodococcus equi pneumonia in foals but its specific function in virulence and regulation of plasmid-encoded virulence genes is unclear. Using a LacZ selection marker developed for R. equi in this study, in combination with an apramycin resistance gene, an efficient two-stage homologous recombination targeted gene mutation procedure was used to mutate three virulence plasmid genes, a LysR regulatory gene homologue (ORF4), a ResD-like two-component response regulator homologue (ORF8), and a gene (ORF10) of unknown function that is highly expressed by R. equi inside macrophages, as well as the chromosomal gene operon, phoPR. Virulence testing by liver clearance after intravenous injection in mice showed that the ORF4 and ORF8 mutants were fully attenuated, that the phoPR mutant was hypervirulent, and that virulence of the ORF10 mutant remained unchanged. A virulence plasmid DNA microarray was used to compare the plasmid gene expression profile of each of the four gene-targeted mutants against the parental R. equi strain. Changes were limited to PI genes and gene induction was observed for all mutants, suggesting that expression of virulence plasmid genes is dominated by a negative regulatory network. The finding of attenuation of ORF4 and ORF8 mutants despite enhanced transcription of vapA suggests that factors other than VapA are important for full expression of virulence. ORF1, a putative Lsr antigen gene, was strongly and similarly induced in all mutants, implying a common regulatory pathway affecting this gene for all four mutated genes. ORF8 is apparently the centre of this common pathway. Two distinct highly correlated gene induction patterns were observed, that of the ORF4 and ORF8 mutants, and that of the ORF10 and phoPR mutants. The gene induction pattern distinguishing these two groups paralleled their virulence in mice.
Sucharov, Carmen C; Mariner, Peter D; Nunley, Karin R; Long, Carlin; Leinwand, Leslie; Bristow, Michael R
2006-09-01
Beta-adrenergic signaling plays an important role in the natural history of dilated cardiomyopathies. Chronic activation of beta-adrenergic receptors (beta1-AR and beta2-AR) during periods of cardiac stress ultimately harms the failing heart by mechanisms that include alterations in gene expression. Here, we show that stimulation of beta-ARs with isoproterenol in neonate rat ventricular myocytes causes a "fetal" response in the relative activities of the human cardiac fetal and/or adult gene promoters that includes repression of the human and rat alpha-myosin heavy chain (alpha-MyHC) promoters with simultaneous activation of the human atrial natriuretic peptide (ANP) and rat beta-MyHC promoters. We also show that the promoter changes correlate with changes in endogenous gene expression as measured by mRNA expression. Furthermore, we show that these changes are specifically mediated by the beta1-AR, but not the beta2-AR, and are independent of alpha1-AR stimulation. We also demonstrate that the fetal gene response is independent of cAMP and protein kinase A, whereas inhibition of Ca2+/calmodulin-dependent protein kinase (CaMK) pathway blocks isoproterenol-mediated fetal gene program induction. Finally, we show that induction of the fetal program is dependent on activation of the L-type Ca2+ channel. We conclude that in neonatal rat cardiac myocytes, agonist-occupied beta1-AR mobilizes Ca2+ stores to activate fetal gene induction through cAMP independent pathways that involve CaMK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varner, J.E.
1993-06-01
Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a numbermore » of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H{sub 2}O{sub 2} production reinforce the earlier ideas of others that H{sub 2}O{sub 2} is involved in normal lignification.« less
[Hydroxyproline: Rich glycoproteins of the plant and cell wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varner, J.E.
1993-01-01
Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a numbermore » of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.« less
Bourquin, Jean-Pierre; Subramanian, Aravind; Langebrake, Claudia; Reinhardt, Dirk; Bernard, Olivier; Ballerini, Paola; Baruchel, André; Cavé, Hélène; Dastugue, Nicole; Hasle, Henrik; Kaspers, Gertjan L.; Lessard, Michel; Michaux, Lucienne; Vyas, Paresh; van Wering, Elisabeth; Zwaan, Christian M.; Golub, Todd R.; Orkin, Stuart H.
2006-01-01
Individuals with Down syndrome (DS) are predisposed to develop acute megakaryoblastic leukemia (AMKL), characterized by expression of truncated GATA1 transcription factor protein (GATA1s) due to somatic mutation. The treatment outcome for DS-AMKL is more favorable than for AMKL in non-DS patients. To gain insight into gene expression differences in AMKL, we compared 24 DS and 39 non-DS AMKL samples. We found that non-DS-AMKL samples cluster in two groups, characterized by differences in expression of HOX/TALE family members. Both of these groups are distinct from DS-AMKL, independent of chromosome 21 gene expression. To explore alterations of the GATA1 transcriptome, we used cross-species comparison with genes regulated by GATA1 expression in murine erythroid precursors. Genes repressed after GATA1 induction in the murine system, most notably GATA-2, MYC, and KIT, show increased expression in DS-AMKL, suggesting that GATA1s fail to repress this class of genes. Only a subset of genes that are up-regulated upon GATA1 induction in the murine system show increased expression in DS-AMKL, including GATA1 and BACH1, a probable negative regulator of megakaryocytic differentiation located on chromosome 21. Surprisingly, expression of the chromosome 21 gene RUNX1, a known regulator of megakaryopoiesis, was not elevated in DS-AMKL. Our results identify relevant signatures for distinct AMKL entities and provide insight into gene expression changes associated with these related leukemias. PMID:16492768
Morita, Miyo Terao; Tanaka, Yoshiyuki; Kodama, Takashi S.; Kyogoku, Yoshimasa; Yanagi, Hideki; Yura, Takashi
1999-01-01
Induction of heat shock proteins in Escherichia coli is primarily caused by increased cellular levels of the heat shock σ-factor σ32 encoded by the rpoH gene. Increased σ32 levels result from both enhanced synthesis and stabilization. Previous work indicated that σ32 synthesis is induced at the translational level and is mediated by the mRNA secondary structure formed within the 5′-coding sequence of rpoH, including the translation initiation region. To understand the mechanism of heat induction of σ32 synthesis further, we analyzed expression of rpoH–lacZ gene fusions with altered stability of mRNA structure before and after heat shock. A clear correlation was found between the stability and expression or the extent of heat induction. Temperature-melting profiles of mRNAs with or without mutations correlated well with the expression patterns of fusion genes carrying the corresponding mutations in vivo. Furthermore, temperature dependence of mRNA–30S ribosome–tRNAfMet complex formation with wild-type or mutant mRNAs in vitro agreed well with that of the expression of gene fusions in vivo. Our results support a novel mechanism in which partial melting of mRNA secondary structure at high temperature enhances ribosome entry and translational initiation without involvement of other cellular components, that is, intrinsic mRNA stability controls synthesis of a transcriptional regulator. PMID:10090722
Eticha, Dejene; Zahn, Marc; Bremer, Melanie; Yang, Zhongbao; Rangel, Andrés F.; Rao, Idupulapati M.; Horst, Walter J.
2010-01-01
Background and Aims Aluminium (Al) resistance in common bean is known to be due to exudation of citrate from the root after a lag phase, indicating the induction of gene transcription and protein synthesis. The aims of this study were to identify Al-induced differentially expressed genes and to analyse the expression of candidate genes conferring Al resistance in bean. Methods The suppression subtractive hybridization (SSH) method was used to identify differentially expressed genes in an Al-resistant bean genotype (‘Quimbaya’) during the induction period. Using quantitative real-time PCR the expression patterns of selected genes were compared between an Al-resistant and an Al-sensitive genotype (‘VAX 1’) treated with Al for up to 24 h. Key Results Short-term Al treatment resulted in up-regulation of stress-induced genes and down-regulation of genes involved in metabolism. However, the expressions of genes encoding enzymes involved in citrate metabolism were not significantly affected by Al. Al treatment dramatically increased the expression of common bean expressed sequence tags belonging to the citrate transporter gene family MATE (multidrug and toxin extrusion family protein) in both the Al-resistant and -sensitive genotype in close agreement with Al-induced citrate exudation. Conclusions The expression of a citrate transporter MATE gene is crucial for citrate exudation in common bean. However, although the expression of the citrate transporter is a prerequisite for citrate exudation, genotypic Al resistance in common bean particularly depends on the capacity to sustain the synthesis of citrate for maintaining the cytosolic citrate pool that enables exudation. PMID:20237115
Zhu, Luchang; Lin, Jingjun; Kuang, Zhizhou; Vidal, Jorge E; Lau, Gee W
2015-07-01
The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 'late' competence genes. Interestingly, only 16 late genes are essential for genetic transformation. We hypothesized that these late genes that are dispensable for competence are beneficial to pneumococcal fitness during infection. These late genes were systematically deleted, and the resulting mutants were examined for their fitness during mouse models of bacteremia and acute pneumonia. Among these, 14 late genes were important for fitness in mice. Significantly, deletion of some late genes attenuated pneumococcal fitness to the same level in both wild-type and ComX-null genetic backgrounds, suggesting that the constitutive baseline expression of these genes was important for bacterial fitness. In contrast, some mutants were attenuated only in the wild-type genetic background but not in the ComX-null background, suggesting that specific expression of these genes during competence state contributed to pneumococcal fitness. Increased virulence during competence state was partially caused by the induction of allolytic enzymes that enhanced pneumolysin release. These results distinguish the role of basal expression versus competence induction in virulence functions encoded by ComX-regulated late competence genes. © 2015 John Wiley & Sons Ltd.
Genes critical for the induction of cold acclimation in wheat (Triticum aestivum L.)
USDA-ARS?s Scientific Manuscript database
Phenotypic studies have shown that cold acclimation in wheat and its relatives start at different temperatures. To gain insight into the underlying mechanisms that regulate the induction of cold-acclimation process in cereals we compared the expression of genes in winter-habit (winter Norstar and w...
Xie, W; Fletcher, B S; Andersen, R D; Herschman, H R
1994-10-01
We recently reported the cloning of a mitogen-inducible prostaglandin synthase gene, TIS10/PGS2. In addition to growth factors and tumor promoters, the v-src oncogene induces TIS10/PGS2 expression in 3T3 cells. Deletion analysis, using luciferase reporters, identifies a region between -80 and -40 nucleotides 5' of the TIS10/PGS2 transcription start site that mediates pp60v-src induction in 3T3 cells. This region contains the sequence CGTCACGTG, which includes overlapping ATF/CRE (CGTCA) and E-box (CACGTG) sequences. Gel shift-oligonucleotide competition experiments with nuclear extracts from cells stably transfected with a temperature-sensitive v-src gene demonstrate that the CGTCACGTG sequence can bind proteins at both the ATF/CRE and E-box sequences. Dominant-negative CREB and Myc proteins that bind DNA, but do not transactivate, block v-src induction of a luciferase reporter driven by the first 80 nucleotides of the TIS10/PGS2 promoter. Mutational analysis distinguishes which TIS10/PGS2 cis-acting element mediates pp60v-src induction. E-box mutation has no effect on the fold induction in response to pp60v-src. In contrast, ATF/CRE mutation attenuates the pp60v-src response. Antibody supershift and methylation interference experiments demonstrate that CREB and at least one other ATF transcription factor in these extracts bind to the TIS10/PGS2 ATF/CRE element. Expression of a dominant-negative ras gene also blocks TIS10/PGS2 induction by v-src. Our data suggest that Ras mediates pp60v-src activation of an ATF transcription factor, leading to induced TIS10/PGS2 expression via the ATF/CRE element of the TIS10/PGS2 promoter. This is the first description of v-src activation of gene expression via an ATF/CRE element.
Ryan, Margaret M; Ryan, Brigid; Kyrke-Smith, Madeleine; Logan, Barbara; Tate, Warren P; Abraham, Wickliffe C; Williams, Joanna M
2012-01-01
Long-term potentiation (LTP) is widely accepted as a cellular mechanism underlying memory processes. It is well established that LTP persistence is strongly dependent on activation of constitutive and inducible transcription factors, but there is limited information regarding the downstream gene networks and controlling elements that coalesce to stabilise LTP. To identify these gene networks, we used Affymetrix RAT230.2 microarrays to detect genes regulated 5 h and 24 h (n = 5) after LTP induction at perforant path synapses in the dentate gyrus of awake adult rats. The functional relationships of the differentially expressed genes were examined using DAVID and Ingenuity Pathway Analysis, and compared with our previous data derived 20 min post-LTP induction in vivo. This analysis showed that LTP-related genes are predominantly upregulated at 5 h but that there is pronounced downregulation of gene expression at 24 h after LTP induction. Analysis of the structure of the networks and canonical pathways predicted a regulation of calcium dynamics via G-protein coupled receptors, dendritogenesis and neurogenesis at the 5 h time-point. By 24 h neurotrophin-NFKB driven pathways of neuronal growth were identified. The temporal shift in gene expression appears to be mediated by regulation of protein synthesis, ubiquitination and time-dependent regulation of specific microRNA and histone deacetylase expression. Together this programme of genomic responses, marked by both homeostatic and growth pathways, is likely to be critical for the consolidation of LTP in vivo.
Kaneda, Teruo; Motoki, Jun-ya Doi
2012-09-01
Studies of meso-endoderm and neural induction and subsequent body plan formation have been analyzed using mainly amphibians as the experimental model. Xenopus is currently the predominant model, because it best enables molecular analysis of these induction processes. However, much of the embryological information on these inductions (e.g., those of the Spemann-Mangold organizer), and on the morphogenetic movements of inductively interacting tissues, derives from research on non-model amphibians, especially urodeles. Although the final body pattern is strongly conserved in vertebrates, and although many of the same developmental genes are expressed, it has become evident that there are individually diverse modes of morphogenesis and timing of developmental events. Whether or not this diversity represents essential differences in the early induction processes remains unclear. The aim of this review is to compare the gastrulation process, induction processes, and gene expressions between a urodele, mainly Cynops pyrrhogaster, and an anura, Xenopus laevis, thereby to clarify conserved and diversified aspects. Cynops gastrulation differs significantly from that of Xenopus in that specification of the regions of the Xenopus dorsal marginal zone (DMZ) are specified before the onset of gastrulation, as marked by blastopore formation, whereas the equivalent state of specification does not occur in Cynops until the middle of gastrulation. Detailed comparison of the germ layer structure and morphogenetic movements during the pre-gastrula and gastrula stages shows that the entire gastrulation process should be divided into two phases of notochord induction and neural induction. Cynops undergoes these processes sequentially after the onset of gastrulation, whereas Xenopus undergoes notochord induction during a series of pre-gastrulation movements, and its traditionally defined period of gastrulation only includes the neural induction phase. Comparing the structure, fate, function and state of commitment of each domain of the DMZ of Xenopus and Cynops has revealed that the true form of the Spemann-Mangold organizer is suprablastoporal gsc-expressing endoderm that has notochord-inducing activity. Gsc-expressing deep endoderm and/or superficial endoderm in Xenopus is involved in inducing notochord during pre-gastrulation morphogenesis, rather than both gsc- and bra-expressing tissues being induced at the same time. Copyright © 2012 Elsevier Inc. All rights reserved.
Poupardin, Rodolphe; Reynaud, Stéphane; Strode, Clare; Ranson, Hilary; Vontas, John; David, Jean-Philippe
2008-05-01
The effect of exposure of Aedes aegypti larvae to sub-lethal doses of the pyrethroid insecticide permethrin, the organophosphate temephos, the herbicide atrazine, the polycyclic aromatic hydrocarbon fluoranthene and the heavy metal copper on their subsequent tolerance to insecticides, detoxification enzyme activities and expression of detoxification genes was investigated. Bioassays revealed a moderate increase in larval tolerance to permethrin following exposure to fluoranthene and copper while larval tolerance to temephos increased moderately after exposure to atrazine, copper and permethrin. Cytochrome P450 monooxygenases activities were induced in larvae exposed to permethrin, fluoranthene and copper while glutathione S-transferase activities were induced after exposure to fluoranthene and repressed after exposure to copper. Microarray screening of the expression patterns of all detoxification genes following exposure to each xenobiotic with the Aedes Detox Chip identified multiple genes induced by xenobiotics and insecticides. Further expression studies using real-time quantitative PCR confirmed the induction of multiple CYP genes and one carboxylesterase gene by insecticides and xenobiotics. Overall, this study reveals the potential of xenobiotics found in polluted mosquito breeding sites to affect their tolerance to insecticides, possibly through the cross-induction of particular detoxification genes. Molecular mechanisms involved and impact on mosquito control strategies are discussed.
Controlling false-negative errors in microarray differential expression analysis: a PRIM approach.
Cole, Steve W; Galic, Zoran; Zack, Jerome A
2003-09-22
Theoretical considerations suggest that current microarray screening algorithms may fail to detect many true differences in gene expression (Type II analytic errors). We assessed 'false negative' error rates in differential expression analyses by conventional linear statistical models (e.g. t-test), microarray-adapted variants (e.g. SAM, Cyber-T), and a novel strategy based on hold-out cross-validation. The latter approach employs the machine-learning algorithm Patient Rule Induction Method (PRIM) to infer minimum thresholds for reliable change in gene expression from Boolean conjunctions of fold-induction and raw fluorescence measurements. Monte Carlo analyses based on four empirical data sets show that conventional statistical models and their microarray-adapted variants overlook more than 50% of genes showing significant up-regulation. Conjoint PRIM prediction rules recover approximately twice as many differentially expressed transcripts while maintaining strong control over false-positive (Type I) errors. As a result, experimental replication rates increase and total analytic error rates decline. RT-PCR studies confirm that gene inductions detected by PRIM but overlooked by other methods represent true changes in mRNA levels. PRIM-based conjoint inference rules thus represent an improved strategy for high-sensitivity screening of DNA microarrays. Freestanding JAVA application at http://microarray.crump.ucla.edu/focus
Du, Lisha; Qi, Siyan; Ma, Juanjuan; Xing, Libo; Fan, Sheng; Zhang, Songwen; Li, Youmei; Shen, Yawen; Zhang, Dong; Han, Mingyu
2017-11-01
Trehalose (α-D-glucopyranosyl α-D-glucopyranoside) is a non-reducing disaccharide that serves as a carbon source and stress protectant in apple trees. Trehalose-6-phosphate (T6P) is the biosynthetic precursor of trehalose. It functions as a crucial signaling molecule involved in the regulation of floral induction, and is closely related to sucrose. Trehalose-6-phosphate synthase (TPS) family members are pivotal components of the T6P biosynthetic pathway. The present study identified 13 apple TPS family members and characterized their expression patterns in different tissues and in response to exogenous application of sucrose during floral induction. 'Fuji' apple trees were sprayed with sucrose prior to the onset of floral induction. Bud growth, flowering rate, and endogenous sugar levels were then monitored. The expression of genes associated with sucrose metabolism and flowering were also characterized by RT-quantitative PCR. Results revealed that sucrose applications significantly improved flower production and increased bud size and fresh weight, as well as the sucrose content in buds and leaves. Furthermore, the expression of MdTPS1, 2, 4, 10, and 11 was rapidly and significantly up-regulated in response to the sucrose treatments. In addition, the expression levels of flowering-related genes (e.g., SPL genes, FT1, and AP1) also increased in response to the sucrose sprays. In summary, apple TPS family members were identified that may influence the regulation of floral induction and other responses to sucrose. The relationship between sucrose and T6P or TPS during the regulation of floral induction in apple trees is discussed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Gingival tissue transcriptomes in experimental gingivitis
Jönsson, Daniel; Ramberg, Per; Demmer, Ryan T.; Kebschull, Moritz; Dahlén, Gunnar; Papapanou, Panos N.
2012-01-01
Aims We investigated the sequential gene expression in the gingiva during the induction and resolution of experimental gingivitis. Methods Twenty periodontally and systemically healthy non-smoking volunteers participated in a 3-week experimental gingivitis protocol, followed by debridement and 2-week regular plaque control. We recorded clinical indices and harvested gingival tissue samples from 4 interproximal palatal sites in half of the participants at baseline, Day 7, 14 and 21 (‘induction phase’), and at day 21, 25, 30 and 35 in the other half (‘resolution phase’). RNA was extracted, amplified, reversed transcribed, amplified, labeled and hybridized with Affymetrix Human Genome U133Plus2.0 microarrays. Paired t-tests compared gene expression changes between consecutive time points. Gene ontology analyses summarized the expression patterns into biologically relevant categories. Results The median gingival index was 0 at baseline, 2 at Day 21 and 1 at Day 35. Differential gene regulation peaked during the third week of induction and the first four days of resolution. Leukocyte transmigration, cell adhesion and antigen processing/presentation were the top differentially regulated pathways. Conclusions Transcriptomic studies enhance our understanding of the pathobiology of the reversible inflammatory gingival lesion and provide a detailed account of the dynamic tissue responses during induction and resolution of experimental gingivitis. PMID:21501207
Regulation of L-phenylalanine ammonia-lyase by L-phenylalanine and nitrogen in Neurospora crassa.
Sikora, L A; Marzluf, G A
1982-01-01
Neurospora crassa possesses an inducible L-phenylalanine ammonia-lyase that is expressed only when cells are derepressed for nitrogen in the presence of L-phenylalanine. Enzyme synthesis requires both induction by L-phenylalanine and simultaneous nitrogen catabolite derepression. Carbon limitation in the presence of phenylalanine does not elicit induction of L-phenylalanine ammonia-lyase. Specific induction by L-phenylalanine is required, and other amino acids completely failed to induce any lyase activity. The nit-2 gene is a major regulatory locus which is believed to mediate nitrogen catabolite repression in Neurospora. Mutants of nit-2 fail to express any phenylalanine ammonia-lyase activity under conditions of derepression and induction which lead to good enzyme induction in the wild type and in nit-2 revertants. The loss of lyase activity in nit-2 mutants does not result from inducer exclusion, which suggests that the nit-2 gene product has a direct role in controlling the expression of this enzyme. Substantial amounts of the enzyme were detected in the growth medium as well as in cell extracts. Inhibitors of protein synthesis or RNA synthesis block the induction of L-phenylalanine ammonia-lyase, suggesting that expression of this enzyme is controlled at the level of transcription. PMID:6210688
Perrine, Susan P.; Mankidy, Rishikesh; Boosalis, Michael S.; Bieker, James J.; Faller, Douglas V.
2011-01-01
Objectives The erythroid Kruppel-like factor (EKLF) is an essential transcription factor for β-type globin gene switching, and specifically activates transcription of the adult β-globin gene promoter. We sought to determine if EKLF is also required for activation of the γ-globin gene by short-chain fatty acid (SCFA) derivatives, which are now entering clinical trials. Methods The functional and physical interaction of EKLF and co-regulatory molecules with the endogenous human globin gene promoters was studied in primary human erythroid progenitors and cell lines, using chromatin immunoprecipitation (ChIP) assays and genetic manipulation of the levels of EKLF and co-regulators. Results and conclusions Knockdown of EKLF prevents SCFA-induced expression of the γ-globin promoter in a stably expressed μLCRβprRlucAγprFluc cassette, and prevents induction of the endogenous γ-globin gene in primary human erythroid progenitors. EKLF is actively recruited to endogenous γ-globin gene promoters after exposure of primary human erythroid progenitors, and murine hematopoietic cell lines, to SCFA derivatives. The core ATPase BRG1 subunit of the human SWI/WNF complex, a ubiquitous multimeric complex that regulates gene expression by remodeling nucleosomal structure, is also required for γ-globin gene induction by SCFA derivatives. BRG1 is actively recruited to the endogenous γ-globin promoter of primary human erythroid progenitors by exposure to SCFA derivatives, and this recruitment is dependent upon the presence of EKLF. These findings demonstrate that EKLF, and the co-activator BRG1, previously demonstrated to be required for definitive or adult erythropoietic patterns of globin gene expression, are co-opted by SCFA derivatives to activate the fetal globin genes. PMID:19220418
Keil, Jason M.; Liu, Xuwen; Antonetti, David A.
2013-01-01
Purpose. Glucocorticoids (GCs) effectively reduce retinal edema and induce vascular barrier properties but possess unwanted side effects. Understanding GC induction of barrier properties may lead to more effective and specific therapies. Previous work identified the occludin enhancer element (OEE) as a GC-responsive cis-element in the promoters of multiple junctional genes, including occludin, claudin-5, and cadherin-9. Here, we identify two OEE-binding factors and determine their contribution to GC induction of tight junction (TJ) gene expression and endothelial barrier properties. Methods. OEE-binding factors were isolated from human retinal endothelial cells (HREC) using DNA affinity purification followed by MALDI-TOF MS/MS. Chromatin immunoprecipitation (ChIP) assays determined in situ binding. siRNA was used to evaluate the role of trans-acting factors in transcription of TJ genes in response to GC stimulation. Paracellular permeability was determined by quantifying flux through a cell monolayer, whereas transendothelial electrical resistance (TER) was measured using the ECIS system. Results. MS/MS analysis of HREC nuclear extracts identified the heterodimer of transcription factors p54/NONO (p54) and polypyrimidine tract-binding protein-associated splicing factor (PSF) as OEE-binding factors, which was confirmed by ChIP assay from GC-treated endothelial cells and rat retina. siRNA knockdown of p54 demonstrated that this factor is necessary for GC induction of occludin and claudin-5 expression. Further, p54 knockdown ablated the pro-barrier effects of GC treatment. Conclusions. p54 is essential for GC-mediated expression of occludin, claudin-5, and barrier induction, and the p54/PSF heterodimer may contribute to normal blood-retinal barrier (BRB) induction in vivo. Understanding the mechanism of GC induction of BRB properties may provide novel therapies for macular edema. PMID:23640037
Keil, Jason M; Liu, Xuwen; Antonetti, David A
2013-06-12
Glucocorticoids (GCs) effectively reduce retinal edema and induce vascular barrier properties but possess unwanted side effects. Understanding GC induction of barrier properties may lead to more effective and specific therapies. Previous work identified the occludin enhancer element (OEE) as a GC-responsive cis-element in the promoters of multiple junctional genes, including occludin, claudin-5, and cadherin-9. Here, we identify two OEE-binding factors and determine their contribution to GC induction of tight junction (TJ) gene expression and endothelial barrier properties. OEE-binding factors were isolated from human retinal endothelial cells (HREC) using DNA affinity purification followed by MALDI-TOF MS/MS. Chromatin immunoprecipitation (ChIP) assays determined in situ binding. siRNA was used to evaluate the role of trans-acting factors in transcription of TJ genes in response to GC stimulation. Paracellular permeability was determined by quantifying flux through a cell monolayer, whereas transendothelial electrical resistance (TER) was measured using the ECIS system. MS/MS analysis of HREC nuclear extracts identified the heterodimer of transcription factors p54/NONO (p54) and polypyrimidine tract-binding protein-associated splicing factor (PSF) as OEE-binding factors, which was confirmed by ChIP assay from GC-treated endothelial cells and rat retina. siRNA knockdown of p54 demonstrated that this factor is necessary for GC induction of occludin and claudin-5 expression. Further, p54 knockdown ablated the pro-barrier effects of GC treatment. p54 is essential for GC-mediated expression of occludin, claudin-5, and barrier induction, and the p54/PSF heterodimer may contribute to normal blood-retinal barrier (BRB) induction in vivo. Understanding the mechanism of GC induction of BRB properties may provide novel therapies for macular edema.
Boyko, Anna A; Azhikina, Tatyana L; Streltsova, Maria A; Sapozhnikov, Alexander M; Kovalenko, Elena I
2017-01-01
Cell-type specific variations are typical for the expression of different members of the HSP70 family. In circulating immune cells, HSP70 proteins interact with units of signaling pathways involved in the immune responses and may promote cell survival in sites of inflammation. In this work, we compared basal HSP70 expression and stress-induced HSP70 response in polymorphonuclear and mononuclear human leukocytes. The intracellular content of inducible and constitutive forms of HSP70 was analyzed in relation to the transcriptional activity of HSPA genes. Hyperthermia was used as the stress model for induction of HSP70 synthesis in the cells. Our results demonstrated that granulocytes (mainly neutrophils) and mononuclear cells differ significantly by both basal HSP70 expression and levels of HSP70 induction under hyperthermia. The differences were observed at the levels of HSPA gene transcription and intracellular HSP70 content. The expression of constitutive Hsс70 protein was much higher in mononuclear cells consisting of monocytes and lymphocytes than in granulocytes. At the same time, intact neutrophils showed increased expression of inducible Hsp70 protein compared to mononuclear cells. Heat treatment induced additional expression of HSPA genes in leukocytes. The most pronounced increase in the expression was observed in polymorphonuclear and mononuclear leukocytes for HSPA1A/B. However, in granulocytes, the induction of the transcription of the HSPA8 gene encoding the Hsc70 protein was significantly higher than in mononuclear cells. These variations in transcriptional activity of HSPA genes and intracellular HSP70 content in different populations of leukocytes may reflect specified requirements for the chaperone activity in the cells with a distinct functional role in the immune system.
Joubert, D Albert; de Lorenzo, Giulia; Vivier, Melané A
2013-03-01
Regulation of defense in plants is a complex process mediated by various signaling pathways. Promoter analysis of defense-related genes is useful to understand these signaling pathways involved in regulation. To this end, the regulation of the polygalacturonase-inhibiting protein encoding gene from Vitis vinifera L. (Vvpgip1) was analyzed with regard to expression pattern and induction profile as well as the promoter in terms of putative regulatory elements present, core promoter size and the start of transcription. Expression of Vvpgip1 is tissue-specific and developmentally regulated. Vvpgip1 expression was induced in response to auxin, salicylic acid and sugar treatment, wounding and pathogen infection. The start of transcription was mapped to 17 bp upstream of the ATG and the core promoter was mapped to the 137 bp upstream of the ATG. Fructose- and Botrytis responsiveness were identified in the region between positions -3.1 and -1.5 kb. The analyses showed induction in water when the leaves were submersed and this response and the response to wounding mapped to the region between positions -1.1 and -0.1 kb. In silico analyses revealed putative cis-acting elements in these areas that correspond well to the induction stimuli tested.
Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803.
Abe, Koichi; Miyake, Kotone; Nakamura, Mayumi; Kojima, Katsuhiro; Ferri, Stefano; Ikebukuro, Kazunori; Sode, Koji
2014-03-01
In order to construct a green-light-regulated gene expression system for cyanobacteria, we characterized a green-light sensing system derived from Synechocystis sp. PCC6803, consisting of the green-light sensing histidine kinase CcaS, the cognate response regulator CcaR, and the promoter of cpcG2 (PcpcG 2 ). CcaS and CcaR act as a genetic controller and activate gene expression from PcpcG 2 with green-light illumination. The green-light induction level of the native PcpcG 2 was investigated using GFPuv as a reporter gene inserted in a broad-host-range vector. A clear induction of protein expression from native PcpcG 2 under green-light illumination was observed; however, the expression level was very low compared with Ptrc , which was reported to act as a constitutive promoter in cyanobacteria. Therefore, a Shine-Dalgarno-like sequence derived from the cpcB gene was inserted in the 5' untranslated region of the cpcG2 gene, and the expression level of CcaR was increased. Thus, constructed engineered green-light sensing system resulted in about 40-fold higher protein expression than with the wild-type promoter with a high ON/OFF ratio under green-light illumination. The engineered green-light gene expression system would be a useful genetic tool for controlling gene expression in the emergent cyanobacterial bioprocesses. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Saito, Takanori; Wang, Shanshan; Ohkawa, Katsuya; Ohara, Hitoshi; Ikeura, Hiromi; Ogawa, Yukiharu; Kondo, Satoru
2017-11-01
We found that lipid accumulation in the meristem region and the expression of MdLIP2A, which appears to be regulated by chromatin remodeling, coincided with endodormancy induction in the 'Fuji' apple. In deciduous trees, including apples (Malus × domestica Borkh.), lipid accumulation in the meristem region towards endodormancy induction has been thought to be an important process for the acquisition of cold tolerance. In this study, we conducted histological staining of crude lipids in the meristem region of 'Fuji' apples and found that lipid accumulation coincided with endodormancy induction. Since a major component of lipid bodies (triacylglycerol) is esterified fatty acids, we analysed fatty acid-derived volatile compounds and genes encoding fatty acid-modifying enzymes (MdLOX1A and MdHPL2A); the reduction of lipid breakdown also coincided with endodormancy induction. We then characterised the expression patterns of lipid body-regulatory genes MdOLE1 and MdLIP2A during endodormancy induction and found that the expression of MdLIP2A correlated well with lipid accumulation towards endodormancy induction. Based on these results, we conducted chromatin remodelling studies and localized the cis-element in the 5'-upstream region of MdLIP2A to clarify its regulatory mechanism. Finally, we revealed that chromatin was concentrated - 764 to - 862 bp of the 5'-upstream region of MdLIP2A, which harbours the GARE [gibberellin responsive MYB transcription factor binding site] and CArG [MADS-box transcription factor binding site] motifs-meristem development-related protein-binding sites.
Kaneko, Miyuki; Itoh, Hironori; Ueguchi-Tanaka, Miyako; Ashikari, Motoyuki; Matsuoka, Makoto
2002-01-01
We recently isolated two genes (OsGA3ox1 and OsGA3ox2) from rice (Oryza sativa) encoding 3β-hydroxylase, which catalyzes the final step of active gibberellin (GA) biosynthesis (H. Itoh, M. Ueguchi-Tanaka, N. Sentoku, H. Kitano, M. Matsuoka, M. Kobayashi [2001] Proc Natl Acad Sci USA 98: 8909–8914). Using these cloned cDNAs, we analyzed the temporal and spatial expression patterns of the 3β-hydroxylase genes and also an α-amylase gene (RAmy1A) during rice seed germination to investigate the relationship between GA biosynthesis and α-amylase expression. Northern-blot analyses revealed that RAmy1A expression in the embryo occurs before the induction of 3β-hydroxylase expression, whereas in the endosperm, a high level of RAmy1A expression occurs 1 to 2 d after the peak of OsGA3ox2 expression and only in the absence of uniconazol. Based on the analysis of an OsGA3ox2 null mutant (d18-Akibare dwarf), we determined that 3β-hydroxylase produced by OsGA3ox2 is important for the induction of RAmy1A expression and that the OsGA3ox1 product is not essential for α-amylase induction. The expression of OsGA3ox2 was localized to the shoot region and epithelium of the embryo, strongly suggesting that active GA biosynthesis occurs in these two regions. The synthesis of active GA in the epithelium is important for α-amylase expression in the endosperm, because an embryonic mutant defective in shoot formation, but which developed epithelium cells, induced α-amylase expression in the endosperm, whereas a mutant defective in epithelium development did not. PMID:11950975
Miao, Guangxia; Hayashi, Shigeo
2015-03-01
Induction of gene expression in a specific cell and a defined time window is desirable to investigate gene function at the cellular level during morphogenesis. To achieve this, we attempted to introduce the infrared laser-evoked gene operator system (IR-LEGO, Kamei et al., 2009) in the Drosophila embryo. In this technique, infrared laser light illumination induces genes to be expressed under the control of heat shock promoters at the single cell level. We applied IR-LEGO to a transgenic fly stock, HS-eGFP, in which the enhanced green fluorescent protein (eGFP) gene is placed under the control of heat shock protein 70 promoter, and showed that eGFP expression can be induced in single cells within 1-2 hr after IR illumination. Furthermore, induction of HS-Branchless transgene encoding the Drosophila fibroblast growth factor (FGF) effectively altered the migration and branching patterns of the tracheal system. Our results indicated that IR-LEGO is a promising choice for the timely control of gene expression in a small group of cells in the Drosophila embryo. By using IR-LEGO, we further demonstrated that the tracheal terminal branching program is sensitive to localized expression of exogenous FGF. © 2014 Wiley Periodicals, Inc.
Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: A genome-scale analysis.
Zhang, Jianhua; Zhang, Yixi; Wang, Yunchao; Yang, Yuanxue; Cang, Xinzhu; Liu, Zewen
2016-09-01
The overexpression of P450 monooxygenase genes is a main mechanism for the resistance to imidacloprid, a representative neonicotinoid insecticide, in Nilaparvata lugens (brown planthopper, BPH). However, only two P450 genes (CYP6AY1 and CYP6ER1), among fifty-four P450 genes identified from BPH genome database, have been reported to play important roles in imidacloprid resistance until now. In this study, after the confirmation of important roles of P450s in imidacloprid resistance by the synergism analysis, the expression induction by imidacloprid was determined for all P450 genes. In the susceptible (Sus) strain, eight P450 genes in Clade4, eight in Clade3 and two in Clade2 were up-regulated by imidacloprid, among which three genes (CYP6CS1, CYP6CW1 and CYP6ER1, all in Clade3) were increased to above 4.0-fold and eight genes to above 2.0-fold. In contrast, no P450 genes were induced in Mito clade. Eight genes induced to above 2.0-fold were selected to determine their expression and induced levels in Huzhou population, in which piperonyl butoxide showed the biggest effects on imidacloprid toxicity among eight field populations. The expression levels of seven P450 genes were higher in Huzhou population than that in Sus strain, with the biggest differences for CYP6CS1 (9.8-fold), CYP6ER1 (7.7-fold) and CYP6AY1 (5.1-fold). The induction levels for all tested genes were bigger in Sus strain than that in Huzhou population except CYP425B1. Screening the induction of P450 genes by imidacloprid in the genome-scale will provide an overall view on the possible metabolic factors in the resistance to neonicotinoid insecticides. The further work, such as the functional study of recombinant proteins, will be performed to validate the roles of these P450s in imidacloprid resistance. Copyright © 2015 Elsevier B.V. All rights reserved.
An essential role of a FoxD gene in notochord induction in Ciona embryos.
Imai, Kaoru S; Satoh, Nori; Satou, Yutaka
2002-07-01
A key issue for understanding the early development of the chordate body plan is how the endoderm induces notochord formation. In the ascidian Ciona, nuclear accumulation of beta-catenin is the first step in the process of endoderm specification. We show that nuclear accumulation of beta-catenin directly activates the gene (Cs-FoxD) for a winged helix/forkhead transcription factor and that this gene is expressed transiently at the 16- and 32-cell stages in endodermal cells. The function of Cs-FoxD, however, is not associated with differentiation of the endoderm itself but is essential for notochord differentiation or induction. In addition, it is likely that the inductive signal that appears to act downstream of Cs-FoxD does not act over a long range. It has been suggested that FGF or Notch signal transduction pathway mediates ascidian notochord induction. Our previous study suggests that Cs-FGF4/6/9 is partially involved in the notochord induction. The present experimental results suggest that the expression and function of Cs-FGF4/6/9 and Cs-FoxD are not interdependent, and that the Notch pathway is involved in B-line notochord induction downstream of Cs-FoxD.
NASA Technical Reports Server (NTRS)
Halfon, M. S.; Kose, H.; Chiba, A.; Keshishian, H.
1997-01-01
We have developed a method to target gene expression in the Drosophila embryo to a specific cell without having a promoter that directs expression in that particular cell. Using a digitally enhanced imaging system to identify single cells within the living embryo, we apply a heat shock to each cell individually by using a laser microbeam. A 1- to 2-min laser treatment is sufficient to induce a heat-shock response but is not lethal to the heat-shocked cells. Induction of heat shock was measured in a variety of cell types, including neurons and somatic muscles, by the expression of beta-galactosidase from an hsp26-lacZ reporter construct or by expression of a UAS target gene after induction of hsGAL4. We discuss the applicability of this technique to ectopic gene expression studies, lineage tracing, gene inactivation studies, and studies of cells in vitro. Laser heat shock is a versatile technique that can be adapted for use in a variety of research organisms and is useful for any studies in which it is desirable to express a given gene in only a distinct cell or clone of cells, either transiently or constitutively, at a time point of choice.
Tolerance to MHC class II disparate allografts through genetic modification of bone marrow
Jindra, Peter T.; Tripathi, Sudipta; Tian, Chaorui; Iacomini, John; Bagley, Jessamyn
2012-01-01
Induction of molecular chimerism through genetic modification of bone marrow is a powerful tool for the induction of tolerance. Here we demonstrate for the first time that expression of an allogeneic MHC class II gene in autologous bone marrow cells, resulting in a state of molecular chimerism, induces tolerance to MHC class II mismatched skin grafts, a stringent test of transplant tolerance. Reconstitution of recipients with syngeneic bone marrow transduced with retrovirus encoding H-2I-Ab (I-Ab) resulted the long-term expression of the retroviral gene product on the surface of MHC class II-expressing bone marrow derived cell types. Mechanistically, tolerance was maintained by the presence of regulatory T cells, which prevented proliferation and cytokine production by alloreactive host T cells. Thus, the introduction of MHC class II genes into bone marrow derived cells through genetic engineering results in tolerance. These results have the potential to extend the clinical applicability of molecular chimerism for tolerance induction. PMID:22833118
Tamoxifen induces the expression of maspin through estrogen receptor-alpha.
Liu, Zesheng; Shi, Heidi Y; Nawaz, Zafar; Zhang, Ming
2004-06-08
Maspin (mammary serine protease inhibitor) is a tumor suppressor gene that plays an important role in inhibiting tumor growth, invasion and metastasis. Maspin expression is down regulated at transcription level in primary and metastatic breast tumor cells. Previous studies on hormonal regulation of maspin prompt us to test whether an estrogen antagonist tamoxifen (TAM) can exert its anti-tumor function by up regulating maspin gene expression. For this purpose, we first tested whether maspin promoter could be activated in normal and several breast tumor cells. We then carried out a series of promoter analysis in which estrogen receptors and TAM were reconstituted in an in vitro cell culture system. Here we report our new finding that tumor suppresser gene maspin is one of the TAM target genes. TAM induces a maspin/luciferase reporter in cell culture and this induction requires the presence of (estrogen receptor alpha) ERalpha but not estrogen receptor-beta (ERbeta). Maspin promoter deletion and mutation analysis showed that the cis element(s) within a region between -90and+87 bp but not the HRE site (-272 bp) was involved in TAM induction of maspin expression. TAM bound ERalpha may directly control maspin gene expression through the interaction with cofactor (s). Analysis using several ERalpha mutants showed that the N-terminal A/B motif (AF-1) was critical for maspin basal level transcription activation. An ERalpha mutant with point mutations at DNA binding domain abolished estrogen induction of an ERE-luciferase reporter but was still active in activating maspin promoter by TAM. LBD-AF2 domain was required for ERalpha-dependent TAM induction. Deletion of LBD-AF2 or a point mutation in the ERalpha LBD-AF2 region (LBDmtL539A) completely abolished the activation of maspin promoter, suggesting that TAM induction of maspin involves the recruitment of cofactor(s) by ERalpha to the maspin promoter region. This finding indicates that one of the pathways for cancer prevention and tumor inhibition by TAM is mediated through the activation of tumor suppressor gene maspin in breast cancer.
Wounding induces expression of genes involved in tuber closing layer and wound-periderm development
USDA-ARS?s Scientific Manuscript database
Little is known about the coordinate induction of genes that may be involved in important wound-healing events. In this study, wound-healing events were determined together with wound-induced expression profiles of selected cell cycle, cell wall protein, and pectin methyl esterase genes using tuber...
Stimulation of glycerol kinase in grass carp preadipocytes by EPA.
Lei, Caixia; Tian, Jingjing; Ji, Hong
2017-06-01
This study was conducted to assess the effect of eicosapentaenoic acid (EPA) on grass carp preadipocyte glycerol kinase (GyK) expression, as well as to explore the mechanism. Here, we cloned partial sequence of grass carp GyK gene and analyzed its tissue distribution. The result showed that GyK gene expressed most in the liver, followed by adipose tissue and the kidney. Besides, 400 μM oleic acid (18:1n-9, OA) was used to establish a hypertrophic preadipocyte model. GyK gene expression and enzyme activity were significantly enhanced after model cells were treated with 100 μM eicosapentaenoic acid (20:5n-3, EPA) for 6, 12, and 24 h. Meanwhile, peroxisome proliferative-activated receptor (PPAR)γ, adipose triglyceride lipase (ATGL), and the two isoforms of grass carp HSL gene were first identified by Sun et al (2016), and they defined the two isoforms as HSLa and HSLb. Therefore, maybe HSLa and HSLb are appropriate.. The content of triglyceride was dramatically increased by EPA treatment for 24 h. Further, a competitive ATGL antagonist, HY-15859, attenuated the increase in GyK induced by EPA at 12 h. Surprisingly, the enhanced lipolysis and PPARγ gene expression induced by serum deprivation were paralleled by an increase in GyK gene expression, whereas a stabilization in GyK enzyme activity. Other fatty acids, including docosahexaenoic acid, alpha-linolenic acid, linoleic acid, and OA also promoted GyK gene expression. Moreover, an irreversible PPARγ antagonist, GW9662, was used to investigate the role of PPARγ in GyK induction. Data showed that GW9662 abolished the induction of GyK by EPA at 12 h. Together, these data suggested that EPA elevated grass carp preadipocytes GyK expression. ATGL and PPARγ contributed to the induction of GyK. PPARγ may be a key regulator in response to GyK expression induced by EPA.
Pajon, Melanie; Febres, Vicente J; Moore, Gloria A
2017-08-30
In citrus the transition from juvenility to mature phase is marked by the capability of a tree to flower and fruit consistently. The long period of juvenility in citrus severely impedes the use of genetic based strategies to improve fruit quality, disease resistance, and responses to abiotic environmental factors. One of the genes whose expression signals flower development in many plant species is FLOWERING LOCUS T (FT). In this study, gene expression levels of flowering genes CiFT1, CiFT2 and CiFT3 were determined using reverse-transcription quantitative real-time PCR in citrus trees over a 1 year period in Florida. Distinct genotypes of citrus trees of different ages were used. In mature trees of pummelo (Citrus grandis Osbeck) and 'Pineapple' sweet orange (Citrus sinensis (L.) Osbeck) the expression of all three CiFT genes was coordinated and significantly higher in April, after flowering was over, regardless of whether they were in the greenhouse or in the field. Interestingly, immature 'Pineapple' seedlings showed significantly high levels of CiFT3 expression in April and June, while CiFT1 and CiFT2 were highest in June, and hence their expression induction was not simultaneous as in mature plants. In mature citrus trees the induction of CiFTs expression in leaves occurs at the end of spring and after flowering has taken place suggesting it is not associated with dormancy interruption and further flower bud development but is probably involved with shoot apex differentiation and flower bud determination. CiFTs were also seasonally induced in immature seedlings, indicating that additional factors must be suppressing flowering induction and their expression has other functions.
de la Rosa, Xavier; Santalucía, Tomàs; Fortin, Pierre-Yves; Purroy, Jesús; Calvo, Maria; Salas-Perdomo, Angélica; Justicia, Carles; Couillaud, Franck; Planas, Anna M
2013-02-01
Stroke induces strong expression of the 72-kDa heat-shock protein (HSP-70) in the ischaemic brain, and neuronal expression of HSP-70 is associated with the ischaemic penumbra. The aim of this study was to image induction of Hsp-70 gene expression in vivo after brain ischaemia using reporter mice. A genomic DNA sequence of the Hspa1b promoter was used to generate an Hsp70-mPlum far-red fluorescence reporter vector. The construct was tested in cellular systems (NIH3T3 mouse fibroblast cell line) by transient transfection and examining mPlum and Hsp-70 induction under a challenge. After construct validation, mPlum transgenic mice were generated. Focal brain ischaemia was induced by transient intraluminal occlusion of the middle cerebral artery and the mice were imaged in vivo with fluorescence reflectance imaging (FRI) with an intact skull, and with confocal microscopy after opening a cranial window. Cells transfected with the Hsp70-mPlum construct showed mPlum fluorescence after stimulation. One day after induction of ischaemia, reporter mice showed a FRI signal located in the HSP-70-positive zone within the ipsilateral hemisphere, as validated by immunohistochemistry. Live confocal microscopy allowed brain tissue to be visualized at the cellular level. mPlum fluorescence was observed in vivo in the ipsilateral cortex 1 day after induction of ischaemia in neurons, where it is compatible with penumbra and neuronal viability, and in blood vessels in the core of the infarction. This study showed in vivo induction of Hsp-70 gene expression in ischaemic brain using reporter mice. The fluorescence signal showed in vivo the induction of Hsp-70 in penumbra neurons and in the vasculature within the ischaemic core.
Cario, Gunnar; Stanulla, Martin; Fine, Bernard M; Teuffel, Oliver; Neuhoff, Nils V; Schrauder, André; Flohr, Thomas; Schäfer, Beat W; Bartram, Claus R; Welte, Karl; Schlegelberger, Brigitte; Schrappe, Martin
2005-01-15
Treatment resistance, as indicated by the presence of high levels of minimal residual disease (MRD) after induction therapy and induction consolidation, is associated with a poor prognosis in childhood acute lymphoblastic leukemia (ALL). We hypothesized that treatment resistance is an intrinsic feature of ALL cells reflected in the gene expression pattern and that resistance to chemotherapy can be predicted before treatment. To test these hypotheses, gene expression signatures of ALL samples with high MRD load were compared with those of samples without measurable MRD during treatment. We identified 54 genes that clearly distinguished resistant from sensitive ALL samples. Genes with low expression in resistant samples were predominantly associated with cell-cycle progression and apoptosis, suggesting that impaired cell proliferation and apoptosis are involved in treatment resistance. Prediction analysis using randomly selected samples as a training set and the remaining samples as a test set revealed an accuracy of 84%. We conclude that resistance to chemotherapy seems at least in part to be an intrinsic feature of ALL cells. Because treatment response could be predicted with high accuracy, gene expression profiling could become a clinically relevant tool for treatment stratification in the early course of childhood ALL.
Transcriptional activation of the lipoprotein lipase gene in macrophages by dexamethasone.
Domin, W S; Chait, A; Deeb, S S
1991-03-12
The effect of dexamethasone on lipoprotein lipase (LPL) gene expression during macrophage differentiation was investigated by using the human monocytic leukemia cell line THP-1 and human monocyte-derived macrophages. Addition of dexamethasone to THP-1 cells increased steady-state levels of LPL mRNA and LPL mass accumulation in the medium during PMA-induced differentiation by 4-fold. Studies with human monocyte-derived macrophages showed a similar effect of dexamethasone on LPL expression. Peak LPL mRNA levels were achieved 24-h post-dexamethasone addition to THP-1 cells. Optimal stimulation of LPL mRNA occurred when dexamethasone was added 24 h after induction with PMA. Thereafter, there was rapid decline in responsiveness to dexamethasone. Induction of LPL mRNA in THP-1 cells was completely blocked by actinomycin D, suggesting that induction was transcription dependent. The stability of LPL mRNA was not influenced by dexamethasone. Treatment of THP-1 cells with PMA led to a 2-fold increase in specific binding of dexamethasone and a 4-fold increase in glucocorticoid receptor mRNA within 12 h. Thus, dexamethasone stimulates LPL gene expression during differentiation of human macrophages, a process that involves induction of glucocorticoid receptor synthesis and activation.
Moon, Ju Yeon; Lee, Jeong Hee; Oh, Chang-Sik; Kang, Hong-Gu; Park, Jeong Mee
2016-12-01
HRT is a plant coiled-coil, nucleotide-binding and leucine-rich repeat (CC-NB-LRR) disease resistance protein that triggers the hypersensitive response (HR) on recognition of Turnip crinkle virus (TCV) coat protein (CP). The molecular mechanism and significance of HR-mediated cell death for TCV resistance have not been fully elucidated. To identify the genes involved in HRT/TCV CP-mediated HR in Nicotiana benthamiana, we performed virus-induced gene silencing (VIGS) of 459 expressed sequence tags (ESTs) of pathogen-responsive Capsicum annuum genes. VIGS of CaBLP5, which encodes an endoplasmic reticulum (ER)-associated immunoglobulin-binding protein (BiP), silenced NbBiP4 and NbBiP5 and significantly reduced HRT-mediated HR. The induction of ER stress-responsive genes and the accumulation of ER-targeted BiPs in response to HRT-mediated HR suggest that ER is involved in HR in N. benthamiana. BiP4/5 silencing significantly down-regulated HRT at the mRNA and protein levels, and affected SGT1 and HSP90 expression. Co-expression of TCV CP in BiP4/5-silenced plants completely abolished HRT induction. Transient expression of TCV CP alone induced selected ER stress-responsive gene transcripts only in Tobacco rattle virus (TRV)-infected plants, and most of these genes were induced by HRT/TCV CP, except for bZIP60, which was induced specifically in response to HRT/TCV CP. TCV CP-mediated induction of ER stress-responsive genes still occurred in BiP4/5-silenced plants, but HRT/TCV CP-mediated induction of these genes was defective. Tunicamycin, a chemical that inhibits protein N-glycosylation, inhibited HRT-mediated HR, suggesting that ER has a role in HR regulation. These results indicate that BiP and ER, which modulate pattern recognition receptors in innate immunity, also regulate R protein-mediated resistance. © 2016 BSPP and John Wiley & Sons Ltd.
Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D
2007-04-01
Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.
Sexually divergent induction of microglial-associated neuroinflammation with hippocampal aging.
Mangold, Colleen A; Wronowski, Benjamin; Du, Mei; Masser, Dustin R; Hadad, Niran; Bixler, Georgina V; Brucklacher, Robert M; Ford, Matthew M; Sonntag, William E; Freeman, Willard M
2017-07-21
The necessity of including both males and females in molecular neuroscience research is now well understood. However, there is relatively limited basic biological data on brain sex differences across the lifespan despite the differences in age-related neurological dysfunction and disease between males and females. Whole genome gene expression of young (3 months), adult (12 months), and old (24 months) male and female C57BL6 mice hippocampus was analyzed. Subsequent bioinformatic analyses and confirmations of age-related changes and sex differences in hippocampal gene and protein expression were performed. Males and females demonstrate both common expression changes with aging and marked sex differences in the nature and magnitude of the aging responses. Age-related hippocampal induction of neuroinflammatory gene expression was sexually divergent and enriched for microglia-specific genes such as complement pathway components. Sexually divergent C1q protein expression was confirmed by immunoblotting and immunohistochemistry. Similar patterns of cortical sexually divergent gene expression were also evident. Additionally, inter-animal gene expression variability increased with aging in males, but not females. These findings demonstrate sexually divergent neuroinflammation with aging that may contribute to sex differences in age-related neurological diseases such as stroke and Alzheimer's, specifically in the complement system. The increased expression variability in males suggests a loss of fidelity in gene expression regulation with aging. These findings reveal a central role of sex in the transcriptomic response of the hippocampus to aging that warrants further, in depth, investigations.
Tavares, D; Tully, K; Dobner, P R
1999-10-15
The promoter region of the mouse high affinity neurotensin receptor (Ntr-1) gene was characterized, and sequences required for expression in neuroblastoma cell lines that express high affinity NT-binding sites were characterized. Me(2)SO-induced neuronal differentiation of N1E-115 neuroblastoma cells increased both the expression of the endogenous Ntr-1 gene and reporter genes driven by NTR-1 promoter sequences by 3-4-fold. Deletion analysis revealed that an 83-base pair promoter region containing the transcriptional start site is required for Me(2)SO activation. Detailed mutational analysis of this region revealed that a CACCC box and the central region of a large GC-rich palindrome are the crucial cis-regulatory elements required for Me(2)SO induction. The CACCC box is bound by at least one factor that is induced upon Me(2)SO treatment of N1E-115 cells. The Me(2)SO effect was found to be both selective and cell type-restricted. Basal expression in the neuroblastoma cell lines required a distinct set of sequences, including an Sp1-like sequence, and a sequence resembling an NGFI-A-binding site; however, a more distal 5' sequence was found to repress basal activity in N1E-115 cells. These results provide evidence that Ntr-1 gene regulation involves both positive and negative regulatory elements located in the 5'-flanking region and that Ntr-1 gene activation involves the coordinate activation or induction of several factors, including a CACCC box binding complex.
Epigenomics and bolting tolerance in sugar beet genotypes.
Hébrard, Claire; Peterson, Daniel G; Willems, Glenda; Delaunay, Alain; Jesson, Béline; Lefèbvre, Marc; Barnes, Steve; Maury, Stéphane
2016-01-01
In sugar beet (Beta vulgaris altissima), bolting tolerance is an essential agronomic trait reflecting the bolting response of genotypes after vernalization. Genes involved in induction of sugar beet bolting have now been identified, and evidence suggests that epigenetic factors are involved in their control. Indeed, the time course and amplitude of DNA methylation variations in the shoot apical meristem have been shown to be critical in inducing sugar beet bolting, and a few functional targets of DNA methylation during vernalization have been identified. However, molecular mechanisms controlling bolting tolerance levels among genotypes are still poorly understood. Here, gene expression and DNA methylation profiles were compared in shoot apical meristems of three bolting-resistant and three bolting-sensitive genotypes after vernalization. Using Cot fractionation followed by 454 sequencing of the isolated low-copy DNA, 6231 contigs were obtained that were used along with public sugar beet DNA sequences to design custom Agilent microarrays for expression (56k) and methylation (244k) analyses. A total of 169 differentially expressed genes and 111 differentially methylated regions were identified between resistant and sensitive vernalized genotypes. Fourteen sequences were both differentially expressed and differentially methylated, with a negative correlation between their methylation and expression levels. Genes involved in cold perception, phytohormone signalling, and flowering induction were over-represented and collectively represent an integrative gene network from environmental perception to bolting induction. Altogether, the data suggest that the genotype-dependent control of DNA methylation and expression of an integrative gene network participate in bolting tolerance in sugar beet, opening up perspectives for crop improvement. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Yang, Yuan-Xue; Yu, Na; Zhang, Jian-Hua; Zhang, Yi-Xi; Liu, Ze-Wen
2018-06-01
Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidacloprid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over-expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IMI and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD 85 ), and in N. lugens among three IMI doses (LD 15 , LD 50 and LD 85 ). When IMI and NMI at the LD 85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up-regulation of nine genes and down-regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD 85 dose, 10 genes had very similar patterns, such as up-regulation in seven genes, down-regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up-regulation in four genes at all doses and dose-dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up-regulated by the LD 50 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose-dependent. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Lee, Heung-Soon; Kwon, Soon-Ho; Ham, Ji-Eun; Lee, Joo Young; Kim, Dong-Hoon; Shin, Kyung-Ho; Choi, Sang-Hyun
2012-07-01
Previously, the authors reported that zaprinast, an inhibitor of cGMP-selective phosphodiesterases, induced the secretions of TNF-α and IL-1β by microglia and enhanced the induction of iNOS by lipopolysaccharide (LPS). In this study, the signaling mechanism responsible for microglial activation by zaprinast was investigated and the effects of zaprinast and LPS on microglial activation were compared. Zaprinast was found to activate ERK1/2, p38 MAPK, JNK, NFκB, and PI3K/Akt, and subsequently, induce the mRNA expressions of IL-1α, IL-1β, TNF-α, CCL2, CCL4, CXCL1, CXCL2, and CD14. Associations between signaling pathways and gene expressions were examined by treating microglia with signal inhibitors. PDTC inhibited the induction of all the above genes by zaprinast, and SB203580 inhibited all genes except CXCL1. SP600125, PD98059, and LY294002 inhibited the induction of at least CCL2. Microglial activation by zaprinast was then compared with full-blown activation by LPS. The zaprinast-induced phosphorylations of MAPKs and IκB were less prompt than LPS-induced phosphorylations. IκB degradation by LPS was significant at 10min and did not return to normal, whereas zaprinast induced a later, transient degradation. LPS induced the mRNA expressions of IL-1β, TNF-α, IL-6, CCL2, iNOS, and COX-2, and although zaprinast significantly induced the expressions of all except IL-6 and iNOS, these inductions were far less than those induced by LPS. Collectively, zaprinast was found to upregulate microglial activity mainly via NFκB and p38 MAPK signaling and the subsequent expressions of inflammatory genes. Although, zaprinast was found to have obvious effects on microglia, these were weaker than the effects of LPS. Copyright © 2012 Elsevier B.V. All rights reserved.
Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus)
2011-01-01
Background Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals. Results We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3), which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways. Conclusions Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments. PMID:21453527
Microaerobic glycerol formation in Saccharomyces cerevisiae.
Costenoble, R; Valadi, H; Gustafsson, L; Niklasson, C; Franzén, C J
2000-12-01
The yeast Saccharomyces cerevisiae produces large amounts of glycerol as an osmoregulator during hyperosmotic stress and as a redox sink at low oxygen availability. NAD(+)-dependent glycerol-3-phosphate dehydrogenase in S. cerevisiae is present in two isoforms, coded for by two different genes, GPD1 and GPD2. Mutants for either one or both of these genes were investigated under carefully controlled static and dynamic conditions in continuous cultures at low oxygen transfer rates. Our results show that S. cerevisiae controls the production of glycerol in response to hypoxic conditions by regulating the expression of several genes. At high demand for NADH reoxidation, a strong induction was seen not only of the GPD2 gene, but also of GPP1, encoding one of the molecular forms of glycerol-3-phosphatase. Induction of the GPP1 gene appears to play a decisive role at elevated growth rates. At low demand for NADH reoxidation via glycerol formation, the GPD1, GPD2, GPP1, and GPP2 genes were all expressed at basal levels. The dynamics of the gene induction and the glycerol formation at low demand for NADH reoxidation point to an important role of the Gpd1p; deletion of the GPD1 gene strongly altered the expression patterns of the GPD2 and GPP1 genes under such conditions. Furthermore, our results indicate that GCY1 and DAK1, tentatively encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, may be involved in the redox regulation of S. cerevisiae. Copyright 2000 John Wiley & Sons, Ltd.
An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis.
Linares, Daniel M; Perez, Marta; Ladero, Victor; Del Rio, Beatriz; Redruello, Begoña; Martin, M Cruz; Fernandez, María; Alvarez, Miguel A
2014-12-04
Scientific interest in Enterococcus faecalis has increased greatly over recent decades. Some strains are involved in food fermentation and offer health benefits, whereas others are vancomycin-resistant and cause infections that are difficult to treat. The limited availability of vectors able to express cloned genes efficiently in E. faecalis has hindered biotechnological studies on the bacterium's regulatory and pathogenicity-related genes. The agmatine deiminase (AGDI) pathway of E. faecalis, involved in the conversion of agmatine into putrescine, is driven by a response inducer gene aguR. This study describes that the exposure to the induction factor (agmatine) results in the transcription of genes under the control of the aguB promoter, including the aguBDAC operon. A novel E. faecalis expression vector, named pAGEnt, combining the aguR inducer gene and the aguB promoter followed by a cloning site and a stop codon was constructed. pAGEnt was designed for the overexpression and purification of a protein fused to a 10-amino-acid His-tag at the C-terminus. The use of GFP as a reporter of gene expression in E. faecalis revealed that under induction with 60 mM agmatine, fluorescence reached 40 arbitrary units compared to 0 in uninduced cells. pAGEnt vector can be used for the overexpression of recombinant proteins under the induction of agmatine in E. faecalis, with a close correlation between agmatine concentration and fluorescence when GFP was used as reporter.
Kalajdzic, Predrag; Markaki, Maria; Oehler, Stefan; Savakis, Charalambos
2013-10-01
Certain xenobiotics have the capacity to induce the expression of genes involved in various biological phenomena, including insecticide resistance. The induction potential of different chemicals, among them different insecticides, has been documented for a number of insect species. In this study, we have analyzed the induction potential of Imidacloprid, a widely used member of the neonicotinoid insecticide family. Genes Cyp6g1 and Cyp6a2, known to be involved in the resistance of mutant Drosophila melanogaster line MiT[W⁻]3R2 to Imidacloprid and DDT were included in the analyzed sample. We find that Imidacloprid does not induce expression of the analyzed genes. Copyright © 2013 Elsevier Ltd. All rights reserved.
2006-01-01
CYP3A4 gene expression by organochlorine pesticides . Biochem Pharmacol 64:1513-1519. Dinham B (1993) The Pesticide Hazard. A Global Health and...Coumoul X, Diry M and Barouki R (2002) PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides . Biochem Pharmacol 64:1513...system: CYP3A4 and CYP2B6 induction by pesticides . Biochem Pharmacol 68:2347-2358. 71 Nelson D (2003) Cytochrome P450 Homepage (http
He, Dongmei; Wang, Juan; Gao, Yangjun; Zhang, Yuan
2011-12-01
Mesenchymal stem cells (MSCs) have significant advantages over other stem cell types, and greater potential for immediate clinical application. MSCs would be an interesting cellular source for treatment of type 1 diabetes. In this study, MSCs from human umbilical cord were differentiated into functional insulin-producing cells in vitro by introduction of the pancreatic and duodenal homeobox factor 1 (PDX1) and in the presence of induction factors. The expressions of cell surface antigens were detected by flow cytometry. After induction in an adipogenic medium or an osteogenic medium, the cells were observed by Oil Red O staining and alkaline phosphatase staining. Recombinant adenovirus carrying the PDX1 gene was constructed and MSCs were infected by the recombinant adenovirus, then treated with several inducing factors for differentiation into islet β-like cells. The expression of the genes and protein related to islet β-cells was detected by immunocytochemistry, RT-PCR and Western blot analysis. Insulin and C-peptide secretion were assayed. Our results show that the morphology and immunophenotype of MSCs from human umbilical cord were similar to those present in human bone marrow. The MSCs could be induced to differentiate into osteocytes and adipocytes. After induction by recombined adenovirus vector with induction factors, MSCs were aggregated and presented islet-like bodies. Dithizone staining of these cells was positive. The genes' expression related to islet β-cells was found. After induction, insulin and C-peptide secretion in the supernatant were significantly increased. In conclusion, our results demonstrated that PDX1 gene-modified human umbilical cord mesenchymal stem cells could be differentiated into insulin-producing cells in vitro.
Rex, Maria; Hilton, Emma; Old, Robert
2002-03-01
We have investigated the induction of the six Xenopus nodal-related genes, Xnr1-Xnr6, by maternal determinants. The beta-catenin pathway was modelled by stimulation using Xwnt8, activin-like signalling was modelled by activin, and VegT action was studied by overexpression in animal cap explants. Combinations of factors were examined, and previously unrecognised interactions were revealed in animal caps and whole embryos. For the induction of Xnr5 and Xnr6 in whole embryos, using a beta-catenin antisense morpholino oligonucleotide or a dominant negative XTcf3, we have demonstrated an absolute permissive requirement for the beta-catenin/Tcf pathway, in addition to the requirement for VegT action. In animal caps Xnr5 and Xnr6 are induced in response to VegT overexpression, and this induction is dependent upon the concomitant activation of the beta-catenin pathway that VegT initiates in animal caps. For the induction of Xnr3, VegT interacts negatively so as to inhibit the induction otherwise observed with wnt-signalling alone. The negative effect of VegT is not the result of a general inhibition of wnt-signalling, and does not result from an inhibition of wnt-induced siamois expression. A 294 bp proximal promoter fragment of the Xnr3 gene is sufficient to mediate the negative effect of VegT. Further experiments, employing cycloheximide to examine the dependence of Xnr gene expression upon proteins translated after the mid-blastula stage, demonstrated that Xnrs 4, 5 and 6 are 'primary' Xnr genes whose expression in the late blastula is solely dependent upon factors present before the mid-blastula stage.
Androgen receptor agonism promotes an osteogenic gene program in preadipocytes
Hartig, Sean M.; Feng, Qin; Ochsner, Scott A.; Xiao, Rui; McKenna, Neil J.; McGuire, Sean E.; He, Bin
2013-01-01
Androgens regulate body composition by interacting with the androgen receptor (AR) to control gene expression in a tissue-specific manner. To identify novel regulatory roles for AR in preadipocytes, we created a 3T3-L1 cell line stably expressing human AR. We found AR expression is required for androgen-mediated inhibition of 3T3-L1 adipogenesis. This inhibition is characterized by decreased lipid accumulation, reduced expression of adipogenic genes, and induction of genes associated with osteoblast differentiation. Collectively, our results suggest androgens promote an osteogenic gene program at the expense of adipocyte differentiation. PMID:23567971
Enhanced animal growth via ligand-regulated GHRH myogenic-injectable vectors
NASA Technical Reports Server (NTRS)
Draghia-Akli, Ruxandra; Malone, P. Brandon; Hill, Leigh Anne; Ellis, Kenneth M.; Schwartz, Robert J.; Nordstrom, Jeffrey L.
2002-01-01
Regulated animal growth occurred following a single electroporated injection of a mixture of two plasmids (10 microg of DNA), one expressing the GeneSwitch regulator protein, the other an inducible growth hormone releasing hormone (GHRH) gene, into the tibialis anterior muscles of adult SCID mice. Administration of the ligand mifepristone (MFP) up-regulated GHRH expression, as shown by elevations of IGF-I levels, and when MFP dosing was withdrawn, IGF-I returned to baseline levels. Five cycles of IGF-I induction were observed during a five-month period. Chronic MFP dosing for 25 days increased lean body mass, weight gain, and bone mineral density significantly compared with non-MFP treated controls. In summary, long-term drug-regulated GHRH expression was achieved following plasmid-based gene therapy, and chronic induction of GHRH expression in adult animals led to improvements in weight gain and body composition.
T-cell receptor revision: friend or foe?
Hale, J Scott; Fink, Pamela J
2010-04-01
T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue.
Enhanced animal growth via ligand-regulated GHRH myogenic-injectable vectors.
Draghia-Akli, Ruxandra; Malone, P Brandon; Hill, Leigh Anne; Ellis, Kenneth M; Schwartz, Robert J; Nordstrom, Jeffrey L
2002-03-01
Regulated animal growth occurred following a single electroporated injection of a mixture of two plasmids (10 microg of DNA), one expressing the GeneSwitch regulator protein, the other an inducible growth hormone releasing hormone (GHRH) gene, into the tibialis anterior muscles of adult SCID mice. Administration of the ligand mifepristone (MFP) up-regulated GHRH expression, as shown by elevations of IGF-I levels, and when MFP dosing was withdrawn, IGF-I returned to baseline levels. Five cycles of IGF-I induction were observed during a five-month period. Chronic MFP dosing for 25 days increased lean body mass, weight gain, and bone mineral density significantly compared with non-MFP treated controls. In summary, long-term drug-regulated GHRH expression was achieved following plasmid-based gene therapy, and chronic induction of GHRH expression in adult animals led to improvements in weight gain and body composition.
Stress induction of Bm1 RNA in silkworm larvae: SINEs, an unusual class of stress genes
Kimura, Richard H.; Choudary, Prabhakara V.; Stone, Koni K.; Schmid, Carl W.
2001-01-01
This study surveys the induction of RNA polymerase III (Pol III)–directed expression of short interspersed element (SINE) transcripts by various stresses in an animal model, silkworm larvae. Sublethal heat shock and exposure to several toxic compounds increase the level of Bm1 RNA, the silkworm SINE transcript, while also transiently increasing expression of a well-characterized stress-induced transcript, Hsp70 messenger RNA (mRNA). In certain cases, the Bm1 RNA response coincides with that of Hsp70 mRNA, but more often Bm1 RNA responds later in recovery. Baculovirus infection and exposure to certain toxic compounds increase Bm1 RNA but not Hsp70 mRNA, showing that SINE induction is not necessarily coupled to transcription of this particular heat shock gene. SINEs behave as an additional class of stress-inducible genes in living animals but are unusual as stress genes because of their high copy number, genomic dispersion, and Pol III–directed transcription. PMID:11599568
Iborra, Severine; Hirschfeld, Marc; Jaeger, Markus; Zur Hausen, Axel; Braicu, Iona; Sehouli, Jalid; Gitsch, Gerald; Stickeler, Elmar
2013-07-01
Alternative splicing represents an important nuclear mechanism in the posttranscriptional regulation of gene expression, which is frequently altered during tumorigenesis. Previously, we described marked changes in alternative splicing of the CD44 gene in ovarian and breast cancer as well as specific induction of distinct splicing factors during tumor development. The present study was focused on the expression profiles of different splicing factors, including classical serine-arginine (SR) proteins including ASF/SF2, hTra2β1, hTra2α, and Y-box-binding protein (YB-1) in physiological and malignant epithelial ovarian tissue to evaluate their expression pattern with regard to tumor development and disease progression. Expression levels of the different splicing factors were analyzed in physiological epithelial ovarian tissue samples, primary tumors, and metastatic samples of patients with a diagnosis of epithelial ovarian cancer using quantified reverse transcription polymerase chain reaction analysis. We examined more closely the splicing factor hTra2β1 using Western blot analysis and immunohistochemistry. The analysis revealed a marked and specific induction of ASF/SF2, SRp20, hTra2β1, and YB-1 in primary tumors as well as in their metastatic sites. However, in our patient cohort, no induction was seen for the other investigated splicing factors SRp55, SRp40, and hTra2α. Our results suggest a specific induction of distinct splicing factors in ovarian cancer tumorigenesis. The involvement of hTra2β1, YB-1, SRp20, and ASF/SF2 in exon recognition and alternative splicing may be important for gene regulation of alternatively spliced genes like CD44 with potential functional consequences in this tumor type leading to progression and metastasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiler-Tuyns, A.; Merillat, A.M.; Haefliger, D.N.
Transfection of a human estrogen receptor cDNA expression vector (HEO) into cultured Xenopus kidney cells confers estrogen responsiveness to the recipient cells as demonstrated by the hormone dependent expression of co-transfected Xenopus vitellogenin-CAT chimeric genes. The estrogen stimulation of these vit-CAT genes is dependent upon the presence of the vitellogenin estrogen responsive element (ERE) in their 5{prime} flanking region. Thus, functional human estrogen receptor (hER) can be synthesized in heterologous lower vertebrate cells and can act as a trans-acting regulatory factor that is necessary, together with estradiol, for the induction of the vit-CAT constructs in these cells. In addition, vitellogeninmore » minigenes co-transfected with the HEO expression vector also respond to hormonal stimulation. Their induction is not higher than that of the vit-CAT chimeric genes. It suggests that in the Xenopus kidney cell line B 3.2, the structural parts of the vitellogenin minigenes do not play a role in the induction process. Furthermore, no stabilizing effect of estrogen on vitellogenin mRNA is observed in these cells.« less
Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...
Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...
c-jun gene expression in human cells exposed to either ionizing radiation or hydrogen peroxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collart, F.R.; Horio, M.; Huberman, E.
1993-06-01
We investigated the role of reactive oxygen intermediates (ROIs) and protein kinase C (PKC) in radiation- and H{sub 2}O{sub 2}-evoked c-jun gene expression in human HL-205 cells. This induction of c-jun gene expression could be prevented by pretreatment of the cells with Nacetylcysteine (an antioxidant) or H7 (a PKC and PKA inhibitor) but not by HA1004, a PKA inhibitor, suggesting a role for ROls and PKC in mediating c-jun gene expression. We also investigated potential differences in c-jun gene expression in a panel of normal and tumor cells untreated or treated with ionizing radiation or H{sub 2}O{sub 2}. Treatment withmore » radiation or H{sub 2}O{sub 2} produced a varied response, from some reduction to an increase of more than an order of magnitude in the steady-state level of c-jun mRNA. These data indicate that although induction of c-jun may be a common response to ionizing radiation and H{sub 2}O{sub 2}, this response was reduced or absent in some cell types.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffer, M.A.; Fischer, R.L.
We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases. We now demonstrate that C14 mRNA accumulation is a response common to both high (40{degree}C) and low (4{degree}C) temperature stresses. Exposure of tomato fruit to 40{degree}C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4{degree}C, but slower than the induction of many heat shock messages by 40{degree}C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activatemore » C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed.« less
Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network.
Fish, Jason E; Cantu Gutierrez, Manuel; Dang, Lan T; Khyzha, Nadiya; Chen, Zhiqi; Veitch, Shawn; Cheng, Henry S; Khor, Melvin; Antounians, Lina; Njock, Makon-Sébastien; Boudreau, Emilie; Herman, Alexander M; Rhyner, Alexander M; Ruiz, Oscar E; Eisenhoffer, George T; Medina-Rivera, Alejandra; Wilson, Michael D; Wythe, Joshua D
2017-07-01
The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis. © 2017. Published by The Company of Biologists Ltd.
Bloch, Sylwia; Nejman-Faleńczyk, Bożena; Dydecka, Aleksandra; Łoś, Joanna M.; Felczykowska, Agnieszka; Węgrzyn, Alicja; Węgrzyn, Grzegorz
2014-01-01
Lambdoid bacteriophages serve as useful models in microbiological and molecular studies on basic biological process. Moreover, this family of viruses plays an important role in pathogenesis of enterohemorrhagic Escherichia coli (EHEC) strains, as they are carriers of genes coding for Shiga toxins. Efficient expression of these genes requires lambdoid prophage induction and multiplication of the phage genome. Therefore, understanding the mechanisms regulating these processes appears essential for both basic knowledge and potential anti-EHEC applications. The exo-xis region, present in genomes of lambdoid bacteriophages, contains highly conserved genes of largely unknown functions. Recent report indicated that the Ea8.5 protein, encoded in this region, contains a newly discovered fused homeodomain/zinc-finger fold, suggesting its plausible regulatory role. Moreover, subsequent studies demonstrated that overexpression of the exo-xis region from a multicopy plasmid resulted in impaired lysogenization of E. coli and more effective induction of λ and Ф24B prophages. In this report, we demonstrate that after prophage induction, the increase in phage DNA content in the host cells is more efficient in E. coli bearing additional copies of the exo-xis region, while survival rate of such bacteria is lower, which corroborated previous observations. Importantly, by using quantitative real-time reverse transcription PCR, we have determined patterns of expressions of particular genes from this region. Unexpectedly, in both phages λ and Ф24B, these patterns were significantly different not only between conditions of the host cells infection by bacteriophages and prophage induction, but also between induction of prophages with various agents (mitomycin C and hydrogen peroxide). This may shed a new light on our understanding of regulation of lambdoid phage development, depending on the mode of lytic cycle initiation. PMID:25310402
Aromatase Inhibitor-Associated Bone Fractures: A Case-Cohort GWAS and Functional Genomics
Liu, Mohan; Goss, Paul E.; Ingle, James N.; Kubo, Michiaki; Furukawa, Yoichi; Batzler, Anthony; Jenkins, Gregory D.; Carlson, Erin E.; Nakamura, Yusuke; Schaid, Daniel J.; Chapman, Judy-Anne W.; Shepherd, Lois E.; Ellis, Matthew J.; Khosla, Sundeep; Wang, Liewei
2014-01-01
Bone fractures are a major consequence of osteoporosis. There is a direct relationship between serum estrogen concentrations and osteoporosis risk. Aromatase inhibitors (AIs) greatly decrease serum estrogen levels in postmenopausal women, and increased incidence of fractures is a side effect of AI therapy. We performed a discovery case-cohort genome-wide association study (GWAS) using samples from 1071 patients, 231 cases and 840 controls, enrolled in the MA.27 breast cancer AI trial to identify genetic factors involved in AI-related fractures, followed by functional genomic validation. Association analyses identified 20 GWAS single nucleotide polymorphism (SNP) signals with P < 5E-06. After removal of signals in gene deserts and those composed entirely of imputed SNPs, we applied a functional validation “decision cascade” that resulted in validation of the CTSZ-SLMO2-ATP5E, TRAM2-TMEM14A, and MAP4K4 genes. These genes all displayed estradiol (E2)-dependent induction in human fetal osteoblasts transfected with estrogen receptor-α, and their knockdown altered the expression of known osteoporosis-related genes. These same genes also displayed SNP-dependent variation in E2 induction that paralleled the SNP-dependent induction of known osteoporosis genes, such as osteoprotegerin. In summary, our case-cohort GWAS identified SNPs in or near CTSZ-SLMO2-ATP5E, TRAM2-TMEM14A, and MAP4K4 that were associated with risk for bone fracture in estrogen receptor-positive breast cancer patients treated with AIs. These genes displayed E2-dependent induction, their knockdown altered the expression of genes related to osteoporosis, and they displayed SNP genotype-dependent variation in E2 induction. These observations may lead to the identification of novel mechanisms associated with fracture risk in postmenopausal women treated with AIs. PMID:25148458
Global gene expression analysis of the heat shock response in the phytopathogen Xylella fastidiosa.
Koide, Tie; Vêncio, Ricardo Z N; Gomes, Suely L
2006-08-01
Xylella fastidiosa is a phytopathogenic bacterium that is responsible for diseases in many economically important crops. Although different strains have been studied, little is known about X. fastidiosa stress responses. One of the better characterized stress responses in bacteria is the heat shock response, which induces the expression of specific genes to prevent protein misfolding and aggregation and to promote degradation of the irreversibly denatured polypeptides. To investigate X. fastidiosa genes involved in the heat shock response, we performed a whole-genome microarray analysis in a time course experiment. Globally, 261 genes were induced (9.7%) and 222 genes were repressed (8.3%). The expression profiles of the differentially expressed genes were grouped, and their expression patterns were validated by quantitative reverse transcription-PCR experiments. We determined the transcription start sites of six heat shock-inducible genes and analyzed their promoter regions, which allowed us to propose a putative consensus for sigma(32) promoters in Xylella and to suggest additional genes as putative members of this regulon. Besides the induction of classical heat shock protein genes, we observed the up-regulation of virulence-associated genes such as vapD and of genes for hemagglutinins, hemolysin, and xylan-degrading enzymes, which may indicate the importance of heat stress to bacterial pathogenesis. In addition, we observed the repression of genes related to fimbriae, aerobic respiration, and protein biosynthesis and the induction of genes related to the extracytoplasmic stress response and some phage-related genes, revealing the complex network of genes that work together in response to heat shock.
Lo, Chao-Sheng; Shi, Yixuan; Chang, Shiao-Ying; Abdo, Shaaban; Chenier, Isabelle; Filep, Janos G; Ingelfinger, Julie R; Zhang, Shao-Ling; Chan, John S D
2015-10-01
We investigated whether heterogeneous nuclear ribonucleoprotein F (hnRNP F) stimulates renal ACE-2 expression and prevents TGF-β1 signalling, TGF-β1 inhibition of Ace-2 gene expression and induction of tubulo-fibrosis in an Akita mouse model of type 1 diabetes. Adult male Akita transgenic (Tg) mice overexpressing specifically hnRNP F in their renal proximal tubular cells (RPTCs) were studied. Non-Akita littermates and Akita mice served as controls. Immortalised rat RPTCs stably transfected with plasmid containing either rat Hnrnpf cDNA or rat Ace-2 gene promoter were also studied. Overexpression of hnRNP F attenuated systemic hypertension, glomerular filtration rate, albumin/creatinine ratio, urinary angiotensinogen (AGT) and angiotensin (Ang) II levels, renal fibrosis and profibrotic gene (Agt, Tgf-β1, TGF-β receptor II [Tgf-βrII]) expression, stimulated anti-profibrotic gene (Ace-2 and Ang 1-7 receptor [MasR]) expression, and normalised urinary Ang 1-7 level in Akita Hnrnpf-Tg mice as compared with Akita mice. In vitro, hnRNP F overexpression stimulated Ace-2 gene promoter activity, mRNA and protein expression, and attenuated Agt, Tgf-β1 and Tgf-βrII gene expression. Furthermore, hnRNP F overexpression prevented TGF-β1 signalling and TGF-β1 inhibition of Ace-2 gene expression. These data demonstrate that hnRNP F stimulates Ace-2 gene transcription, prevents TGF-β1 inhibition of Ace-2 gene transcription and induction of kidney injury in diabetes. HnRNP F may be a potential target for treating hypertension and renal fibrosis in diabetes.
FGF-mediated mesoderm induction involves the Src-family kinase Laloo.
Weinstein, D C; Marden, J; Carnevali, F; Hemmati-Brivanlou, A
1998-08-27
During embryogenesis, inductive interactions underlie the development of much of the body plan. In Xenopus laevis, factors secreted from the vegetal pole induce mesoderm in the adjacent marginal zone; members of both the transforming growth factor-beta (TGF-beta) and fibroblast growth factor (FGF) ligand families seem to have critical roles in this process. Here we report the identification and characterization of laloo, a novel participant in the signal transduction cascade linking extracellular, mesoderm-inducing signals to the nucleus, where alteration of cell fate is driven by changes in gene expression. Overexpression of laloo, a member of the Src-related gene family, in Xenopus embryos gives rise to ectopic posterior structures that frequently contain axial tissue. Laloo induces mesoderm in Xenopus ectodermal explants; this induction is blocked by reagents that disrupt the FGF signalling pathway. Conversely, expression of a dominant-inhibitory Laloo mutant blocks mesoderm induction by FGF and causes severe posterior truncations in vivo. This work provides the first evidence that a Src-related kinase is involved in vertebrate mesoderm induction.
Gene expression analysis of a porcine hepatocyte/bile duct in vitro differentiaion model
USDA-ARS?s Scientific Manuscript database
A serum-free, feeder-cell-dependent, inductive differentiation culture system of porcine hepatocytes and bile ductules was analyzed for differential gene expression on a porcine genome microarray. Primary cultures of baby pig hepatocytes (BPH) were matured in culture as a monolayer of hepatocytes w...
Wolschendorf, Frank; Duverger, Alexandra; Jones, Jennifer; Wagner, Frederic H; Huff, Jason; Benjamin, William H; Saag, Michael S; Niederweis, Michael; Kutsch, Olaf
2010-09-01
Current antiretroviral therapy (ART) efficiently controls HIV-1 replication but fails to eradicate the virus. Even after years of successful ART, HIV-1 can conceal itself in a latent state in long-lived CD4(+) memory T cells. From this latent reservoir, HIV-1 rebounds during treatment interruptions. Attempts to therapeutically eradicate this viral reservoir have yielded disappointing results. A major problem with previously utilized activating agents is that at the concentrations required for efficient HIV-1 reactivation, these stimuli trigger high-level cytokine gene expression (hypercytokinemia). Therapeutically relevant HIV-1-reactivating agents will have to trigger HIV-1 reactivation without the induction of cytokine expression. We present here a proof-of-principle study showing that this is a possibility. In a high-throughput screening effort, we identified an HIV-1-reactivating protein factor (HRF) secreted by the nonpathogenic bacterium Massilia timonae. In primary T cells and T-cell lines, HRF triggered a high but nonsustained peak of nuclear factor kappa B (NF-kappaB) activity. While this short NF-kappaB peak potently reactivated latent HIV-1 infection, it failed to induce gene expression of several proinflammatory NF-kappaB-dependent cellular genes, such as those for tumor necrosis factor alpha (TNF-alpha), interleukin-8 (IL-8), and gamma interferon (IFN-gamma). Dissociation of cellular and viral gene induction was achievable, as minimum amounts of Tat protein, synthesized following application of a short NF-kappaB pulse, triggered HIV-1 transactivation and subsequent self-perpetuated HIV-1 expression. In the absence of such a positive feedback mechanism, cellular gene expression was not sustained, suggesting that strategies modulating the NF-kappaB activity profile could be used to selectively trigger HIV-1 reactivation.
Guerra, Susana; López-Fernández, Luis A.; Conde, Raquel; Pascual-Montano, Alberto; Harshman, Keith; Esteban, Mariano
2004-01-01
The potential use of the modified vaccinia virus Ankara (MVA) strain as a live recombinant vector to deliver antigens and elicit protective immune responses against infectious diseases demands a comprehensive understanding of the effect of MVA infection on human host gene expression. We used microarrays containing more than 15,000 human cDNAs to identify gene expression changes in human HeLa cell cultures at 2, 6, and 16 h postinfection. Clustering of the 410 differentially regulated genes identified 11 discrete gene clusters with altered expression patterns after MVA infection. Clusters 1 and 2 (accounting for 16.59% [68 of 410] of the genes) contained 68 transcripts showing a robust induction pattern that was maintained during the course of infection. Changes in cellular gene transcription detected by microarrays after MVA infection were confirmed for selected genes by Northern blot analysis and by real-time reverse transcription-PCR. Upregulated transcripts in clusters 1 and 2 included 20 genes implicated in immune responses, including interleukin 1A (IL-1A), IL-6, IL-7, IL-8, and IL-15 genes. MVA infection also stimulated the expression of NF-κB and components of the NF-κB signal transduction pathway, including p50 and TRAF-interacting protein. A marked increase in the expression of histone family members was also induced during MVA infection. Expression of the Wiskott-Aldrich syndrome family members WAS, WASF1, and the small GTP-binding protein RAC-1, which are involved in actin cytoskeleton reorganization, was enhanced after MVA infection. This study demonstrates that MVA infection triggered the induction of groups of genes, some of which may be involved in host resistance and immune modulation during virus infection. PMID:15140980
Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food.
Fang, Yuan; Mercer, Ryan G; McMullen, Lynn M; Gänzle, Michael G
2017-10-01
The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δ stx2 :: gfp :: amp r In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H 2 O 2 (2.5 mM) induced the expression of stx 2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H 2 O 2 H 2 O 2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA , and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H 2 O 2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the single-cell level; membrane permeability and an indication of SOS response to environmental stress were additionally assessed. H 2 O 2 and mitomycin C induced expression of the prophage and activated a SOS response. In contrast, HCl and lactic acid induced the Stx-prophage but not the SOS response. The lifestyle of STEC exposes the organism to intestinal and extraintestinal environments that impose oxidative and acid stress. A more thorough understanding of the influence of food processing-related stressors on Stx-prophage expression thus facilitates control of STEC in food systems by minimizing prophage induction during food production and storage. Copyright © 2017 American Society for Microbiology.
Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food
Fang, Yuan; Mercer, Ryan G.; McMullen, Lynn M.
2017-01-01
ABSTRACT The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δstx2::gfp::ampr. In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H2O2 (2.5 mM) induced the expression of stx2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H2O2. H2O2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA, and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H2O2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the single-cell level; membrane permeability and an indication of SOS response to environmental stress were additionally assessed. H2O2 and mitomycin C induced expression of the prophage and activated a SOS response. In contrast, HCl and lactic acid induced the Stx-prophage but not the SOS response. The lifestyle of STEC exposes the organism to intestinal and extraintestinal environments that impose oxidative and acid stress. A more thorough understanding of the influence of food processing-related stressors on Stx-prophage expression thus facilitates control of STEC in food systems by minimizing prophage induction during food production and storage. PMID:28778890
Chen, Jiandong
2016-01-01
ABSTRACT The l-arabinose-inducible araBAD promoter (PBAD) enables tightly controlled and tunable expression of genes of interest in a broad range of bacterial species. It has been used successfully to study bacterial sRNA regulation, where PBAD drives expression of target mRNA translational fusions. Here we report that in Escherichia coli, Spot 42 sRNA regulates PBAD promoter activity by affecting arabinose uptake. We demonstrate that Spot 42 sRNA represses araF, a gene encoding the AraF subunit of the high-affinity low-capacity arabinose transporter AraFGH, through direct base-pairing interactions. We further show that endogenous Spot 42 sRNA is sufficient to repress araF expression under various growth conditions. Finally, we demonstrate this posttranscriptional repression has a biological consequence, decreasing the induction of PBAD at low levels of arabinose. This problem can be circumvented using strategies reported previously for avoiding all-or-none induction behavior, such as through constitutive expression of the low-affinity high-capacity arabinose transporter AraE or induction with a higher concentration of inducers. This work adds araF to the set of Spot 42-regulated genes, in agreement with previous studies suggesting that Spot 42, itself negatively regulated by the cyclic AMP (cAMP) receptor protein-cAMP complex, reinforces the catabolite repression network. IMPORTANCE The bacterial arabinose-inducible system is widely used for titratable control of gene expression. We demonstrate here that a posttranscriptional mechanism mediated by Spot 42 sRNA contributes to the functionality of the PBAD system at subsaturating inducer concentrations by affecting inducer uptake. Our finding extends the inputs into the known transcriptional control for the PBAD system and has implications for improving its usage for tunable gene expression. PMID:27849174
Induction of the SHARP-2 mRNA level by insulin is mediated by multiple signaling pathways.
Kanai, Yukiko; Asano, Kosuke; Komatsu, Yoshiko; Takagi, Katsuhiro; Ono, Moe; Tanaka, Takashi; Tomita, Koji; Haneishi, Ayumi; Tsukada, Akiko; Yamada, Kazuya
2017-02-01
The rat enhancer of split- and hairy-related protein-2 (SHARP-2) is an insulin-inducible transcription factor which represses transcription of the rat phosphoenolpyruvate carboxykinase gene. In this study, a regulatory mechanism of the SHARP-2 mRNA level by insulin was analyzed. Insulin rapidly induced the level of SHARP-2 mRNA. This induction was blocked by inhibitors for phosphoinositide 3-kinase (PI 3-K), protein kinase C (PKC), and mammalian target of rapamycin (mTOR), actinomycin D, and cycloheximide. Whereas an adenovirus infection expressing a dominant negative form of atypical PKC lambda (aPKCλ) blocked the insulin-induction of the SHARP-2 mRNA level, insulin rapidly activated the mTOR. Insulin did not enhance transcriptional activity from a 3.7 kb upstream region of the rat SHARP-2 gene. Thus, we conclude that insulin induces the expression of the rat SHARP-2 gene at the transcription level via both a PI 3-K/aPKCλ- and a PI 3-K/mTOR- pathways and that protein synthesis is required for this induction.
Zhu, Fang; Li, Ting; Zhang, Lee; Liu, Nannan
2008-09-25
Insects may use various biochemical pathways to enable them to tolerate the lethal action of insecticides. For example, increased cytochrome P450 detoxification is known to play an important role in many insect species. Both constitutively increased expression (overexpression) and induction of P450s are thought to be responsible for increased levels of detoxification of insecticides. However, unlike constitutively overexpressed P450 genes, whose expression association with insecticide resistance has been extensively studied, the induction of P450s is less well characterized in insecticide resistance. The current study focuses on the characterization of individual P450 genes that are induced in response to permethrin treatment in permethrin resistant house flies. The expression of 3 P450 genes, CYP4D4v2, CYP4G2, and CYP6A38, was co-up-regulated by permethrin treatment in permethrin resistant ALHF house flies in a time and dose-dependent manner. Comparison of the deduced protein sequences of these three P450s from resistant ALHF and susceptible aabys and CS house flies revealed identical protein sequences. Genetic linkage analysis located CYP4D4v2 and CYP6A38 on autosome 5, corresponding to the linkage of P450-mediated resistance in ALHF, whereas CYP4G2 was located on autosome 3, where the major insecticide resistance factor(s) for ALHF had been mapped but no P450 genes reported prior to this study. Our study provides the first direct evidence that multiple P450 genes are co-up-regulated in permethrin resistant house flies through the induction mechanism, which increases overall expression levels of P450 genes in resistant house flies. Taken together with the significant induction of CYP4D4v2, CYP4G2, and CYP6A38 expression by permethrin only in permethrin resistant house flies and the correlation of the linkage of the genes with resistance and/or P450-mediated resistance in resistant ALHF house flies, this study sheds new light on the functional importance of P450 genes in response to insecticide treatment, detoxification of insecticides, the adaptation of insects to their environment, and the evolution of insecticide resistance.
Litholdo, Celso G; Leal, Gildemberg A; Albuquerque, Paulo S B; Figueira, Antonio
2015-10-01
The resistance mechanism of cacao against M. perniciosa is likely to be mediated by JA/ET-signaling pathways due to the preferential TcAOS and TcSAM induction in a resistant genotype. The basidiomycete Moniliophthora perniciosa causes a serious disease in cacao (Theobroma cacao L.), and the use of resistant varieties is the only sustainable long-term solution. Cacao resistance against M. perniciosa is characterized by pathogen growth inhibition with reduced colonization and an attenuation of disease symptoms, suggesting a regulation by jasmonate (JA)/ethylene (ET) signaling pathways. The hypothesis that genes involved in JA biosynthesis would be active in the interaction of T. cacao and M. perniciosa was tested here. The cacao JA-related genes were evaluated for their relative quantitative expression in susceptible and resistant genotypes upon the exogenous application of ET, methyl-jasmonate (MJ), and salicylic acid (SA), or after M. perniciosa inoculation. MJ treatment triggered changes in the expression of genes involved in JA biosynthesis, indicating that the mechanism of positive regulation by exogenous MJ application occurs in cacao. However, a higher induction of these genes was observed in the susceptible genotype. Further, a contrast in JA-related transcriptional expression was detected between susceptible and resistant plants under M. perniciosa infection, with the induction of the allene oxide synthase gene (TcAOS), which encodes a key enzyme in the JA biosynthesis pathway in the resistant genotype. Altogether, this work provides additional evidences that the JA-dependent signaling pathway is modulating the defense response against M. perniciosa in a cacao-resistant genotype.
Leal, Gildemberg Amorim; Albuquerque, Paulo S B; Figueira, Antonio
2007-05-01
SUMMARY The basidiomycete Crinipellis perniciosa is the causal agent of witches' broom disease of Theobroma cacao (cocoa). Hypertrophic growth of infected buds ('brooms') is the most dramatic symptom, but the main economic losses derive from pod infection. To identify cocoa genes differentially expressed during the early stages of infection, two cDNA libraries were constructed using the suppression subtractive hybridization (SSH) approach. Subtraction hybridization was conducted between cDNAs from infected shoot-tips of the susceptible genotype 'ICS 39' and the resistant 'CAB 214', in both directions. A total of 187 unique sequences were obtained, with 83 from the library enriched for the susceptible 'ICS 39' sequences, and 104 for the resistant 'CAB 214'. By homology search and ontology analyses, the identified sequences were mainly putatively categorized as belonging to 'signal transduction', 'response to biotic and abiotic stress', 'metabolism', 'RNA and DNA metabolism', 'protein metabolism' and 'cellular maintenance' classes. Quantitative reverse transcription amplification (RT-qPCR) of 23 transcripts identified as differentially expressed between genotypes revealed distinct kinetics of gene up-regulation at the asymptomatic stage of the disease. Expression induction in the susceptible 'ICS 39' in response to C. perniciosa was delayed and limited, while in 'CAB 214' there was a quicker and more intense reaction, with two peaks of gene induction at 48 and 120 h after inoculation, corresponding to morphological and biochemical changes previously described during colonization. Similar differences in gene induction were validated for another resistant genotype ('CAB 208') in an independent experiment. Validation of these genes corroborated similar hypothetical mechanisms of resistance described in other pathosystems.
Singhal, Dinesh K; Singhal, Raxita; Malik, Hruda N; Kumar, Surender; Kumar, Sudarshan; Mohanty, Ashok K; Kaushik, Jai K; Malakar, Dhruba
2014-01-01
Nanog is a homeodomain containing protein which plays important roles in regulation of signaling pathways for maintenance and induction of pluripotency in stem cells. Because of its unique expression in stem cells it is also regarded as pluripotency marker. In this study goat Nanog (gNanog) gene has been amplified, cloned and characterized at sequence level with successful over-expression in CHO-K1 cell line using a lentiviral based system. gNanog ORF is 903 bp long which codes for Nanog protein of size 300 amino acids (aas). Complete nucleotide sequence shows some evolutionary mutation in goat in comparision to other species. Protein sequence of goat is highly similar to other species. Overall, gNanog nucleotide sequence and predicted protein sequence showed high similarity and minimum divergence with cattle (96 % identity/4 % divergence) and buffalo (94/5 %) while low similarity and high divergence with pig (84/15 %), human (81/23 %) and mouse (69/40 %) indicating evolutionary closeness of gNanog to cattle and buffalo. gNanog lentiviral expression construct was prepared for over-expression of Nanog gene in adult goat fibroblast cells. Lentiviral expression construct of Nanog enabled continuous protein expression for induction and maintenance of pluripotency. Western blotting revealed the expression of Nanog gene at protein level which supported that the lentiviral expression system is highly promising for Nanog protein expression in differentiated goat cell.
Induction of anti-aging gene klotho with a small chemical compound that demethylates CpG islands
Jung, Dongju; Xu, Yuechi; Sun, Zhongjie
2017-01-01
Klotho (KL) is described as an anti-aging gene because mutation of Kl gene leads to multiple pre-mature aging phenotypes and shortens lifespan in mice. Growing evidence suggests that an increase in KL expression may be beneficial for age-related diseases such as arteriosclerosis and diabetes. It remains largely unknown, however, how Kl expression could be induced. Here we discovered novel molecular mechanism for induction of Kl expression with a small molecule ‘Compound H’, N-(2-chlorophenyl)-1H-indole-3-caboxamide. Compound H was originally identified through a high-throughput screening of small molecules for identifying Kl inducers. However, how Compound H induces Kl expression has never been investigated. We found that Compound H increased Kl expression via demethylation in CpG islands of the Kl gene. The demethylation was accomplished by activating demethylases rather than inhibiting methylases. Due to demethylation, Compound H enhanced binding of transcription factors, Pax4 and Kid3, to the promoter of the Kl gene. Pax4 and Kid3 regulated Kl promoter activity positively and negatively, respectively. Thus, our results show that demethylation is an important molecular mechanism that mediates Compound H-induced Kl expression. Further investigation is warranted to determine whether Compound H demethylates the Kl gene in vivo and whether it can serve as a therapeutic agent for repressing or delaying the onset of age-related diseases. PMID:28657902
Imai, Kaoru S; Satoh, Nori; Satou, Yutaka
2002-04-01
In early Ciona savignyi embryos, nuclear localization of beta-catenin is the first step of endodermal cell specification, and triggers the activation of various target genes. A cDNA for Cs-FGF4/6/9, a gene activated downstream of beta-catenin signaling, was isolated and shown to encode an FGF protein with features of both FGF4/6 and FGF9/20. The early embryonic expression of Cs-FGF4/6/9 was transient and the transcript was seen in endodermal cells at the 16- and 32-cell stages, in notochord and muscle cells at the 64-cell stage, and in nerve cord and muscle cells at the 110-cell stage; the gene was then expressed again in cells of the nervous system after neurulation. When the gene function was suppressed with a specific antisense morpholino oligo, the differentiation of mesenchyme cells was completely blocked, and the fate of presumptive mesenchyme cells appeared to change into that of muscle cells. The inhibition of mesenchyme differentiation was abrogated by coinjection of the morpholino oligo and synthetic Cs-FGF4/6/9 mRNA. Downregulation of beta-catenin nuclear localization resulted in the absence of mesenchyme cell differentiation due to failure of the formation of signal-producing endodermal cells. Injection of synthetic Cs-FGF4/6/9 mRNA in beta-catenin-downregulated embryos evoked mesenchyme cell differentiation. These results strongly suggest that Cs-FGF4/6/9 produced by endodermal cells acts an inductive signal for the differentiation of mesenchyme cells. On the other hand, the role of Cs-FGF4/6/9 in the induction of notochord cells is partial; the initial process of the induction was inhibited by Cs-FGF4/6/9 morpholino oligo, but notochord-specific genes were expressed later to form a partial notochord.
Gurdon, J B; Fairman, S; Mohun, T J; Brennan, S
1985-07-01
Muscle gene expression is induced a few hours after vegetal cells of a Xenopus blastula are placed in contact with animal cells that normally develop into epidermis and nerve cells. We have used a muscle-specific actin gene probe to determine the timing of gene activation in animal-vegetal conjugates. Muscle actin RNA is first transcribed in a minority of animal cells at a stage equivalent to late gastrula. The time of muscle gene activation is determined by the developmental stage of the responding (animal) cells, and not by the time when cells are first placed in contact. The minimal cell contact time required for induction is between 1 1/2 and 2 1/2 hr, and the minimal time for gene activation after induction is 5-7 hr.
TEMPORAL GENE INDUCTION PATTERNS IN SHEEPSHEAD MINNOWS EXPOSED TO 17-ESTRADIOL
Gene arrays provide a powerful method to examine changes in gene expression in fish due to chemical exposures in the environment. In this study, we expanded an existing gene array for sheepshead minnows (Cyprinodon variegatus) (SHM) and used it to examine temporal changes in gene...
Saijo, Takanori; Nagasawa, Akitsu
2014-01-01
A newly developed copper-inducible gene expression system overcame the mixed results reported earlier, worked well both in cultured cells and a whole plant, and enabled to control flowering timing. Copper is one of the essential microelements and is readily taken up by plants. However, to date, it has rarely been used to control the expression of genes of interest, probably due to the inefficiency of the gene expression systems. In this study, we successfully developed a copper-inducible gene expression system that is based on the regulation of the yeast metallothionein gene. This system can be applied in the field and regulated at approximately one-hundredth of the rate used for registered copper-based fungicides. In the presence of copper, a translational fusion of the ACE1 transcription factor with the VP16 activation domain (VP16AD) of herpes simplex virus strongly activated transcription of the GFP gene in transgenic Arabidopsis. Interestingly, insertion of the To71 sequence, a 5'-untranslated region of the 130k/180k gene of tomato mosaic virus, upstream of the GFP gene reduced the basal expression of GFP in the absence of copper to almost negligible levels, even in soil-grown plants that were supplemented with ordinary liquid nutrients. Exposure of plants to 100 μM copper resulted in an over 1,000-fold induction ratio at the transcriptional level of GFP. This induction was copper-specific and dose-dependent with rapid and reversible responses. Using this expression system, we also succeeded in regulating floral transition by copper treatment. These results indicate that our newly developed copper-inducible system can accelerate gene functional analysis in model plants and can be used to generate novel agronomic traits in crop species.
Salmonella induces prominent gene expression in the rat colon
Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg MJ
2007-01-01
Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Results Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFNγ and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. Conclusion We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression. PMID:17850650
Salmonella induces prominent gene expression in the rat colon.
Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J
2007-09-12
Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFN gamma and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression.
Yang, Liang; Du, Zhenguo; Gao, Feng; Wu, Kangcheng; Xie, Lianhui; Li, Yi; Wu, Zujian; Wu, Jianguo
2014-05-06
Rice dwarf virus (RDV) is the causal agent of rice dwarf disease, which limits rice production in many areas of south East Asia. Transcriptional changes of rice in response to RDV infection have been characterized by Shimizu et al. and Satoh et al.. Both studies found induction of defense related genes and correlations between transcriptional changes and symptom development in RDV-infected rice. However, the same rice cultivar, namely Nipponbare belonging to the Japonic subspecies of rice was used in both studies. Gene expression changes of the indica subspecies of rice, namely Oryza sativa L. ssp. indica cv Yixiang2292 that show moderate resistance to RDV, in response to RDV infection were characterized using an Affymetrix Rice Genome Array. Differentially expressed genes (DEGs) were classified according to their Gene Ontology (GO) annotation. The effects of transient expression of Pns11 in Nicotiana benthaminana on the expression of nucleolar genes were studied using real-time PCR (RT-PCR). 856 genes involved in defense or other physiological processes were identified to be DEGs, most of which showed up-regulation. Ribosome- and nucleolus related genes were significantly enriched in the DEGs. Representative genes related to nucleolar function exhibited altered expression in N. benthaminana plants transiently expressing Pns11 of RDV. Induction of defense related genes is common for rice infected with RDV. There is a co-relation between symptom severity and transcriptional alteration in RDV infected rice. Besides ribosome, RDV may also target nucleolus to manipulate the translation machinery of rice. Given the tight links between nucleolus and ribosome, it is intriguing to speculate that RDV may enhance expression of ribosomal genes by targeting nucleolus through Pns11.
Antosova, Barbora; Smolikova, Jana; Klimova, Lucie; Lachova, Jitka; Bendova, Michaela; Kozmikova, Iryna; Machon, Ondrej; Kozmik, Zbynek
2016-01-01
Lens induction is a classical developmental model allowing investigation of cell specification, spatiotemporal control of gene expression, as well as how transcription factors are integrated into highly complex gene regulatory networks (GRNs). Pax6 represents a key node in the gene regulatory network governing mammalian lens induction. Meis1 and Meis2 homeoproteins are considered as essential upstream regulators of Pax6 during lens morphogenesis based on their interaction with the ectoderm enhancer (EE) located upstream of Pax6 transcription start site. Despite this generally accepted regulatory pathway, Meis1-, Meis2- and EE-deficient mice have surprisingly mild eye phenotypes at placodal stage of lens development. Here, we show that simultaneous deletion of Meis1 and Meis2 in presumptive lens ectoderm results in arrested lens development in the pre-placodal stage, and neither lens placode nor lens is formed. We found that in the presumptive lens ectoderm of Meis1/Meis2 deficient embryos Pax6 expression is absent. We demonstrate using chromatin immunoprecipitation (ChIP) that in addition to EE, Meis homeoproteins bind to a remote, ultraconserved SIMO enhancer of Pax6. We further show, using in vivo gene reporter analyses, that the lens-specific activity of SIMO enhancer is dependent on the presence of three Meis binding sites, phylogenetically conserved from man to zebrafish. Genetic ablation of EE and SIMO enhancers demostrates their requirement for lens induction and uncovers an apparent redundancy at early stages of lens development. These findings identify a genetic requirement for Meis1 and Meis2 during the early steps of mammalian eye development. Moreover, they reveal an apparent robustness in the gene regulatory mechanism whereby two independent "shadow enhancers" maintain critical levels of a dosage-sensitive gene, Pax6, during lens induction. PMID:27918583
Antoniv, Taras T; Ivashkiv, Lionel B
2011-01-01
Interleukin-10 (IL-10) is an immunosuppressive cytokine that inhibits inflammatory gene expression. Phosphatidylinositol 3-kinase (PI3K) -mediated signalling regulates inflammatory responses and can induce IL-10 production, but a role for PI3K signalling in cellular responses to IL-10 is not known. In this study we investigated the involvement of the PI3K-Akt-GSK3 signalling pathway in IL-10-induced gene expression and IL-10-mediated suppression of Toll-like receptor-induced gene expression in primary human macrophages. A combination of loss and gain of function approaches using kinase inhibitors, expression of constitutively active Akt, and RNA interference in primary human macrophages showed that expression of a subset of IL-10-inducible genes was dependent on PI3K-Akt signalling. The effects of PI3K-Akt signalling on IL-10 responses were mediated at least in part by glycogen synthase kinase 3 (GSK3). In accordance with a functional role for PI3K pathways in contributing to the suppressive actions of IL-10, PI3K signalling augmented IL-10-mediated inhibition of lipopolysaccharide-induced IL-1, IL-8 and cyclo-oxygenase-2 expression. The PI3K signalling selectively modulated IL-10 responses, as it was not required for inhibition of tumour necrosis factor expression or for induction of certain IL-10-inducible genes such as SOCS3. These findings identify a new mechanism by which PI3K-mediated signalling can suppress inflammation by regulating IL-10-mediated gene induction and anti-inflammatory function. PMID:21255011
Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y
2016-05-20
Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning 2 orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality.
Kumar, Mukesh; Belcaid, Mahdi; Nerurkar, Vivek R.
2016-01-01
Differential host responses may be critical determinants of distinct pathologies of West Nile virus (WNV) NY99 (pathogenic) and WNV Eg101 (non-pathogenic) strains. We employed RNA-seq technology to analyze global differential gene expression in WNV-infected mice brain and to identify the host cellular factors leading to lethal encephalitis. We identified 1,400 and 278 transcripts, which were differentially expressed after WNV NY99 and WNV Eg101 infections, respectively, and 147 genes were common to infection with both the viruses. Genes that were up-regulated in infection with both the viruses were mainly associated with interferon signaling. Genes associated with inflammation and cell death/apoptosis were only expressed after WNV NY99 infection. We demonstrate that differences in the activation of key pattern recognition receptors resulted in the induction of unique innate immune profiles, which corresponded with the induction of interferon and inflammatory responses. Pathway analysis of differentially expressed genes indicated that after WNV NY99 infection, TREM-1 mediated activation of toll-like receptors leads to the high inflammatory response. In conclusion, we have identified both common and specific responses to WNV NY99 and WNV Eg101 infections as well as genes linked to potential resistance to infection that may be targets for therapeutics. PMID:27211830
Estimation of gene induction enables a relevance-based ranking of gene sets.
Bartholomé, Kilian; Kreutz, Clemens; Timmer, Jens
2009-07-01
In order to handle and interpret the vast amounts of data produced by microarray experiments, the analysis of sets of genes with a common biological functionality has been shown to be advantageous compared to single gene analyses. Some statistical methods have been proposed to analyse the differential gene expression of gene sets in microarray experiments. However, most of these methods either require threshhold values to be chosen for the analysis, or they need some reference set for the determination of significance. We present a method that estimates the number of differentially expressed genes in a gene set without requiring a threshold value for significance of genes. The method is self-contained (i.e., it does not require a reference set for comparison). In contrast to other methods which are focused on significance, our approach emphasizes the relevance of the regulation of gene sets. The presented method measures the degree of regulation of a gene set and is a useful tool to compare the induction of different gene sets and place the results of microarray experiments into the biological context. An R-package is available.
NASA Technical Reports Server (NTRS)
Balcer-Kubiczek, Elizabeth K.; Harrison, George H.; Xu, Jing-Fan; Gutierrez, Peter L.
2002-01-01
The trefoil factors (TFFs) are pleiotropic factors involved in organization and homeostasis of the gastrointestinal tract, estrogen responsiveness, inflammatory disorders, and carcinogenesis. In an earlier study using cDNA array technologies to identify new genes expressed in irradiated cell survivors, we isolated a cDNA clone corresponding to the reported human TFF1 gene (E. K. Balcer-Kubiczek et al., Int. J. Radiat. Biol., 75: 529-541, 1999). To determine whether expression of other TFFs is altered by ionizing radiation, we quantified changes in expression of TFF3 as well as TFF1 in RNA samples obtained from irradiated and control human tumor breast, colon, and gastric tumor cells and examined expression kinetics up to 2 weeks after irradiation. X-ray-induced TFF1 and TFF3 expression profiles were compared with those induced by hydrogen peroxide (H2O2) or 17beta-estradiol (ES). The results revealed that TFF1 and TFF3 mRNA are coinduced by X-irradiation in a subset of the lines, but substantial heterogeneity in their responses was observed in cells derived from a single cell type. TFF1 and TFF3 transcriptional response to X-irradiation differed from that to H2O2 or ES in the timing of their induction as well as tissue-type dependence, i.e., their induction pattern after X-irradiation was late and sustained, whereas their induction by H2O2 or ES was early and transient. TFF1 mRNA, protein production in the cytoplasm, and secretion in the culture supernatant were coordinately regulated after X-irradiation. There was no requirement for TP53 in this induction. These results demonstrate the existence of a novel class of radiation-responsive genes that might be involved in bystander effects.
Velada, Isabel; Grzebelus, Dariusz; Lousa, Diana; M Soares, Cláudio; Santos Macedo, Elisete; Peixe, Augusto; Arnholdt-Schmitt, Birgit; G Cardoso, Hélia
2018-02-17
Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar "Galega vulgar". The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.
Tu, Yiji; Chen, Zenggan; Hu, Junda; Ding, Zuoyou; Lineaweaver, William C; Dellon, A Lee; Zhang, Feng
2018-04-25
This article investigates the role of chronic nerve compression in the progression of diabetic peripheral neuropathy (DPN) by gene expression profiling. Chronic nerve compression was created in streptozotocin (STZ)-induced diabetic rats by wrapping a silicone tube around the sciatic nerve (SCN). Neurological deficits were evaluated using pain threshold test, motor nerve conduction velocity (MNCV), and histopathologic examination. Differentially expressed genes (DGEs) and metabolic processes associated with chronic nerve compression were analyzed. Significant changes in withdrawal threshold and MNCV were observed in diabetic rats 6 weeks after diabetes induction, and in DPN rats 4 weeks after diabetes induction. Histopathologic examination of the SCN in DPN rats presented typical changes of myelin degeneration in DPN. Function analyses of DEGs demonstrated that biological processes related to inflammatory response, extracellular matrix component, and synaptic transmission were upregulated after diabetes induction, and chronic nerve compression further enhanced those changes. While processes related to lipid and glucose metabolism, response to insulin, and apoptosis regulation were inhibited after diabetes induction, chronic nerve compression further enhanced these inhibitions. Our study suggests that additional silicone tube wrapping on the SCN of rat with diabetes closely mimics the course and pathologic findings of human DPN. Further studies are needed to verify the effectiveness of this rat model of DPN and elucidate the roles of the individual genes in the progression of DPN. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...
Hondares, Elayne; Rosell, Meritxell; Gonzalez, Frank J; Giralt, Marta; Iglesias, Roser; Villarroya, Francesc
2010-03-03
Plasma FGF21 levels and hepatic FGF21 gene expression increase dramatically after birth in mice. This induction is initiated by suckling, requires lipid intake, is impaired in PPARalpha null neonates, and is mimicked by treatment with the PPARalpha activator, Wy14,643. Neonates exhibit reduced FGF21 expression in response to fasting, in contrast to the upregulation occurring in adults. Changes in FGF21 expression due to suckling or nutritional manipulations were associated with circulating free fatty acid and ketone body levels. We mimicked the FGF21 postnatal rise by injecting FGF21 into fasting neonates, and found that this enhanced the expression of genes involved in thermogenesis within brown fat, and increased body temperature. Brown adipocytes treated with FGF21 exhibited increased expression of thermogenic genes, higher total and uncoupled respiration, and enhanced glucose oxidation. We propose that the induction of FGF21 production by the liver mediates direct activation of brown fat thermogenesis during the fetal-to-neonatal transition. 2010 Elsevier Inc. All rights reserved.
Neubauer, Jonathan D; Lulai, Edward C; Thompson, Asunta L; Suttle, Jeffrey C; Bolton, Melvin D
2012-04-15
Little is known about the coordinate induction of genes that may be involved in agriculturally important wound-healing events. In this study, wound-healing events were determined together with wound-induced expression profiles of selected cell cycle, cell wall protein, and pectin methyl esterase genes using two diverse potato genotypes and two harvests (NDTX4271-5R and Russet Burbank tubers; 2008 and 2009 harvests). By 5 d after wounding, the closing layer and a nascent phellogen had formed. Phellogen cell divisions generated phellem layers until cessation of cell division at 28 d after wounding for both genotypes and harvests. Cell cycle genes encoding epidermal growth factor binding protein (StEBP), cyclin-dependent kinase B (StCDKB) and cyclin-dependent kinase regulatory subunit (StCKS1At) were induced by 1 d after wounding; these expressions coordinated with related phellogen formation and the induction and cessation of phellem cell formation. Genes encoding the structural cell wall proteins extensin (StExt1) and extensin-like (StExtlk) were dramatically up-regulated by 1-5 d after wounding, suggesting involvement with closing layer and later phellem cell layer formation. Wounding up-regulated pectin methyl esterase genes (StPME and StPrePME); StPME expression increased during closing layer and phellem cell formation, whereas maximum expression of StPrePME occurred at 5-14 d after wounding, implicating involvement in later modifications for closing layer and phellem cell formation. The coordinate induction and expression profile of StTLRP, a gene encoding a cell wall strengthening "tyrosine-and lysine-rich protein," suggested a role in the formation of the closing layer followed by phellem cell generation and maturation. Collectively, the genes monitored were wound-inducible and their expression profiles markedly coordinated with closing layer formation and the index for phellogen layer meristematic activity during wound periderm development; results were more influenced by harvest than genotype. Importantly, StTLRP was the only gene examined that may be involved in phellogen cell wall thickening after cessation of phellogen cell division. Published by Elsevier GmbH.
Inoue, Ryo; Otsuka, Mai; Nishio, Ayako; Ushida, Kazunari
2007-06-01
The administration of probiotic lactic acid bacteria (LAB) has been studied for its potential to prevent atopic dermatitis (AD). The objective of this study was to assess the inhibitory mechanism of a skin lesion by LAB using an experimental model that we previously demonstrated in NC/Nga mice. Lactobacillus johnsonii NCC533 (La1) was administered orally to the La1 group from 20 to 22 days after birth, while phosphate-buffered saline was given to the control group. After the induction of skin lesions in 6-week-old mice, the expression of genes supposedly involved in AD was evaluated. Gene expression of the proinflammatory cytokines [interleukin-8 (IL-8), IL-12 and IL-23] was significantly enhanced in the lesional skin of the control group by the induction of the lesion, whereas gene expression of those in the La1 group was not elevated. Interestingly, expression of the costimulatory molecule CD86 showed a pattern similar to the expression of the cytokines in the lesional skin. Moreover, the La1 group showed a significantly lower gene expression of CD86 in Peyer's patches and mesenteric lymph nodes than the control group. The suppression of proinflammatory cytokines and CD86 by primary administration of La1 may significantly contribute to the inhibitory effect on the skin lesion.
Gufford, Brandon T; Robarge, Jason D; Eadon, Michael T; Gao, Hongyu; Lin, Hai; Liu, Yunlong; Desta, Zeruesenay; Skaar, Todd C
2018-04-01
Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno- and endo-biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA-seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP-glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione-S-transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin-induced (>1.25-fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25-fold) the expression of 3 genes ( P < .05). Rifampin-induced miRNA expression changes correlated with mRNA changes and miRNAs were identified that may modulate conjugating enzyme expression. NAT2 gene expression was most strongly repressed (1.3-fold) by rifampin while UGT1A4 and UGT1A1 genes were most strongly induced (7.9- and 4.8-fold, respectively). Physiologically based pharmacokinetic modeling (PBPK) was used to simulate the clinical consequences of rifampin induction of CYP3A4- and UGT1A4-mediated midazolam metabolism. Simulations evaluating isolated UGT1A4 induction predicted increased midazolam N-glucuronide exposure (~4-fold) with minimal reductions in parent midazolam exposure (~10%). Simulations accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10-fold decrease in parent midazolam exposure with only a ~2-fold decrease in midazolam N-glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.
Bacterial infection as assessed by in vivo gene expression
Heithoff, Douglas M.; Conner, Christopher P.; Hanna, Philip C.; Julio, Steven M.; Hentschel, Ute; Mahan, Michael J.
1997-01-01
In vivo expression technology (IVET) has been used to identify >100 Salmonella typhimurium genes that are specifically expressed during infection of BALB/c mice and/or murine cultured macrophages. Induction of these genes is shown to be required for survival in the animal under conditions of the IVET selection. One class of in vivo induced (ivi) genes, iviVI-A and iviVI-B, constitute an operon that resides in a region of the Salmonella genome with low G+C content and presumably has been acquired by horizontal transfer. These ivi genes encode predicted proteins that are similar to adhesins and invasins from prokaryotic and eukaryotic pathogens (Escherichia coli [tia], Plasmodium falciparum [PfEMP1]) and have coopted the PhoPQ regulatory circuitry of Salmonella virulence genes. Examination of the in vivo induction profile indicates (i) many ivi genes encode regulatory functions (e.g., phoPQ and pmrAB) that serve to enhance the sensitivity and amplitude of virulence gene expression (e.g., spvB); (ii) the biochemical function of many metabolic genes may not represent their sole contribution to virulence; (iii) the host ecology can be inferred from the biochemical functions of ivi genes; and (iv) nutrient limitation plays a dual signaling role in pathogenesis: to induce metabolic functions that complement host nutritional deficiencies and to induce virulence functions required for immediate survival and spread to subsequent host sites. PMID:9023360
Garzia, Aitor; Etxebeste, Oier; Rodríguez-Romero, Julio; Fischer, Reinhard; Espeso, Eduardo A.
2013-01-01
Morphogenesis encompasses programmed changes in gene expression that lead to the development of specialized cell types. In the model fungus Aspergillus nidulans, asexual development involves the formation of characteristic cell types, collectively known as the conidiophore. With the aim of determining the transcriptional changes that occur upon induction of asexual development, we have applied massive mRNA sequencing to compare the expression pattern of 19-h-old submerged vegetative cells (hyphae) with that of similar hyphae after exposure to the air for 5 h. We found that the expression of 2,222 (20.3%) of the predicted 10,943 A. nidulans transcripts was significantly modified after air exposure, 2,035 being downregulated and 187 upregulated. The activation during this transition of genes that belong specifically to the asexual developmental pathway was confirmed. Another remarkable quantitative change occurred in the expression of genes involved in carbon or nitrogen primary metabolism. Genes participating in polar growth or sexual development were transcriptionally repressed, as were those belonging to the HogA/SakA stress response mitogen-activated protein (MAP) kinase pathway. We also identified significant expression changes in several genes purportedly involved in redox balance, transmembrane transport, secondary metabolite production, or transcriptional regulation, mainly binuclear-zinc cluster transcription factors. Genes coding for these four activities were usually grouped in metabolic clusters, which may bring regulatory implications for the induction of asexual development. These results provide a blueprint for further stage-specific gene expression studies during conidiophore development. PMID:23264642
Biophysical Constraints Arising from Compositional Context in Synthetic Gene Networks.
Yeung, Enoch; Dy, Aaron J; Martin, Kyle B; Ng, Andrew H; Del Vecchio, Domitilla; Beck, James L; Collins, James J; Murray, Richard M
2017-07-26
Synthetic gene expression is highly sensitive to intragenic compositional context (promoter structure, spacing regions between promoter and coding sequences, and ribosome binding sites). However, much less is known about the effects of intergenic compositional context (spatial arrangement and orientation of entire genes on DNA) on expression levels in synthetic gene networks. We compare expression of induced genes arranged in convergent, divergent, or tandem orientations. Induction of convergent genes yielded up to 400% higher expression, greater ultrasensitivity, and dynamic range than divergent- or tandem-oriented genes. Orientation affects gene expression whether one or both genes are induced. We postulate that transcriptional interference in divergent and tandem genes, mediated by supercoiling, can explain differences in expression and validate this hypothesis through modeling and in vitro supercoiling relaxation experiments. Treatment with gyrase abrogated intergenic context effects, bringing expression levels within 30% of each other. We rebuilt the toggle switch with convergent genes, taking advantage of supercoiling effects to improve threshold detection and switch stability. Copyright © 2017 Elsevier Inc. All rights reserved.
Homeobox genes Msx-1 and Msx-2 are associated with induction and growth of skin appendages.
Noveen, A; Jiang, T X; Ting-Berreth, S A; Chuong, C M
1995-05-01
The mechanism involved in the morphogenesis of skin appendages is a fundamental issue underlying the development and healing of skin. To identify molecules involved in the induction and growth of skin appendages, we studied the expression of two homeobox genes, Msx-1 and Msx-2, during embryonic chicken skin development. We found that i) both Msx-1 and Msx-2 are early markers of epithelial placodes for skin appendages; ii) both Msx-1 and Msx-2 are expressed in the growing feather bud epithelia but not in the interbud epithelia; iii) although mostly overlapping, there are differences between the expression of the two Msx genes, Msx-1 being expressed more toward the anterior whereas Msx-2 is expressed more toward the distal feather bud; iv) there is no body-position-specific expression pattern as was observed for members of the Hox A-D clusters; v) in the feather follicle, Msx-1 and 2 are expressed in the collar and barb ridge epithelia, both regions of continuous cell proliferation; vi) when feather-bud growth was inhibited by forskolin, an activator of adenylyl cyclase, the expression of both genes was reduced. These results showed that Msx genes are specifically expressed in epithelial domains destined to become skin appendages. Its function in skin-appendage morphogenesis may be twofold, first in making epithelial cells competent to become skin appendages and, second, in making epithelial cells maintain their potential for continuous growth.
Ons, Sheila; Martí, Octavi; Armario, Antonio
2004-06-01
Arc is an effector immediate early gene whose expression is induced in situations of increased neuronal activity. However, there is no report on the influence of stress on Arc expression. Here, we compared the induction of both c-fos and Arc mRNAs in the brain of rats exposed to one of three different stressful situations: novel environment, forced swimming and immobilization. An absent or weak c-fos mRNA signal was observed in control rats, whereas those exposed to one of three stressors showed enhanced c-fos expression in a wide range of brain areas. Constitutive Arc expression was observed in some areas such as cortex, striatum, hippocampus, reticular thalamic nucleus and cerebellar cortex. In response to stressors, a strong induction of Arc was observed, but the pattern was different from that of c-fos. For instance, activation of Arc but not c-fos was observed in the nucleus accumbens after immobilization and in the hippocampus after novel environment. No Arc induction was observed in diencephalic and brainstem areas. The present data show that Arc has a neuroanatomically restricted pattern of induction in the brain after emotional stress. Telencephalic activation suggests that a more intense induction of synaptic plasticity is occurring in this area after exposure to emotional stressors.
ERIC Educational Resources Information Center
Mokin, Maxim; Keifer, Joyce
2005-01-01
Expression of the immediate-early genes (IEGs) has been shown to be induced by activity-dependent synaptic plasticity or behavioral training and is thought to play an important role in long-term memory. In the present study, we examined the induction and expression of the IEG-encoded protein Egr-1 during an in vitro neural correlate of eyeblink…
Dynamic changes in gene expression during human trophoblast differentiation.
Handwerger, Stuart; Aronow, Bruce
2003-01-01
The genetic program that directs human placental differentiation is poorly understood. In a recent study, we used DNA microarray analyses to determine genes that are dynamically regulated during human placental development in an in vitro model system in which highly purified cytotrophoblast cells aggregate spontaneously and fuse to form a multinucleated syncytium that expresses placental lactogen, human chorionic gonadotropin, and other proteins normally expressed by fully differentiated syncytiotrophoblast cells. Of the 6918 genes present on the Incyte Human GEM V microarray that we analyzed over a 9-day period, 141 were induced and 256 were downregulated by more than 2-fold. The dynamically regulated genes fell into nine distinct kinetic patterns of induction or repression, as detected by the K-means algorithm. Classifying the genes according to functional characteristics, the regulated genes could be divided into six overall categories: cell and tissue structural dynamics, cell cycle and apoptosis, intercellular communication, metabolism, regulation of gene expression, and expressed sequence tags and function unknown. Gene expression changes within key functional categories were tightly coupled to the morphological changes that occurred during trophoblast differentiation. Within several key gene categories (e.g., cell and tissue structure), many genes were strongly activated, while others with related function were strongly repressed. These findings suggest that trophoblast differentiation is augmented by "categorical reprogramming" in which the ability of induced genes to function is enhanced by diminished synthesis of other genes within the same category. We also observed categorical reprogramming in human decidual fibroblasts decidualized in vitro in response to progesterone, estradiol, and cyclic AMP. While there was little overlap between genes that are dynamically regulated during trophoblast differentiation versus decidualization, many of the categories in which genes were strongly activated also contained genes whose expression was strongly diminished. Taken together, these findings point to a fundamental role for simultaneous induction and repression of mRNAs that encode functionally related proteins during the differentiation process.
Rudloff, Ina; Bachmann, Malte; Pfeilschifter, Josef; Mühl, Heiko
2012-01-01
IL-22 is an immunoregulatory cytokine displaying pathological functions in models of autoimmunity like experimental psoriasis. Understanding molecular mechanisms driving IL-22, together with knowledge on the capacity of current immunosuppressive drugs to target this process, may open an avenue to novel therapeutic options. Here, we sought to characterize regulation of human IL22 gene expression with focus on the established model of Jurkat T cells. Moreover, effects of the prototypic immunosuppressant cyclosporin A (CsA) were investigated. We report that IL-22 induction by TPA/A23187 (T/A) or αCD3 is inhibited by CsA or related FK506. Similar data were obtained with peripheral blood mononuclear cells or purified CD3+ T cells. IL22 promoter analysis (−1074 to +156 bp) revealed a role of an NF-AT (−95/−91 nt) and a CREB (−194/−190 nt) binding site for gene induction. Indeed, binding of CREB and NF-ATc2, but not c-Rel, under the influence of T/A to those elements could be proven by ChIP. Because CsA has the capability to impair IκB kinase (IKK) complex activation, the IKKα/β inhibitor IKKVII was evaluated. IKKVII likewise reduced IL-22 induction in Jurkat cells and peripheral blood mononuclear cells. Interestingly, transfection of Jurkat cells with siRNA directed against IKKα impaired IL22 gene expression. Data presented suggest that NF-AT, CREB, and IKKα contribute to rapid IL22 gene induction. In particular the crucial role of NF-AT detected herein may form the basis of direct action of CsA on IL-22 expression by T cells, which may contribute to therapeutic efficacy of the drug in autoimmunity. PMID:22170067
Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant.
Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi; Sekimizu, Kazuhisa
2014-04-01
We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.
Neumann, S; Ziv, E; Lantner, F; Schechter, I
1993-03-01
Analyses of RNA from different developmental stages of Schistosoma mansoni showed stage-specific expression of heat-shock protein 70 (hsp70), which is regulated by a developmental program and by stress. The developmental program, common to hsp70 and other genes (e.g. paramyosin), refers to constitutive expression in miracidia sporocyst and adult worm but not in cercariae, and to the termination of hsp70 gene transcription during sporocyst/cercaria transformation. Stress induction, specific to hsp70, refers to transient accumulation of high levels of hsp70 mRNA during cercariae/schistosomula transformation and in adult worms after heat shock (42 degrees C). Cercariae/schistosomula transformation can be visualized as a physiological stress involving shifts in temperature (23-37 degrees C) and in salt concentration (from water to isotonic medium), as well as removal of tails from cercariae to yield isolated bodies that transform into schistosomula. It was found that temperature is an important factor, but not sufficient for strong induction of the hsp70 genes of schistosomula. Tail removal is an obligatory step for full induction of the hsp70 genes of schistosomula, in response to a temperature shift from 23-37 degrees C. The hsp70 genes in cercariae and isolated tails do not respond to stimuli (salt and temperature increases) that strongly activate the genes in isolated bodies (i.e., schistosomula). We speculate that the hsp70 genes in intact cercariae are not inducible because the tails can produce inhibitory signals that diffuse to the bodies and suppress their hsp70 genes. This hypothesis is useful to explain the termination of hsp70 gene transcription during sporocyst/cercaria transformation by the inhibitory effect of the growing tail.
Targeting MOG expression to dendritic cells delays onset of experimental autoimmune disease.
Ko, Hyun-Ja; Chung, Jie-Yu; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Toh, Ban-Hock; Alderuccio, Frank
2011-05-01
Haematopoietic stem cell (HSC) transfer coupled with gene therapy is a powerful approach to treating fatal diseases such as X-linked severe combined immunodeficiency. This ability to isolate and genetically manipulate HSCs also offers a strategy for inducing immune tolerance through ectopic expression of autoantigens. We have previously shown that retroviral transduction of bone marrow (BM) with vectors encoding the autoantigen, myelin oligodendrocyte glycoprotein (MOG), can prevent the induction of experimental autoimmune encephalomyelitis (EAE). However, ubiquitous cellular expression of autoantigen driven by retroviral promoters may not be the best approach for clinical translation and a targeted expression approach may be more acceptable. As BM-derived dendritic cells (DCs) play a major role in tolerance induction, we asked whether targeted expression of MOG, a target autoantigen in EAE, to DCs can promote tolerance induction and influence the development of EAE. Self-inactivating retroviral vectors incorporating the mouse CD11c promoter were generated and used to transduce mouse BM cells. Transplantation of gene-modified cells into irradiated recipients resulted in the generation of chimeric mice with transgene expression limited to DCs. Notably, chimeric mice transplanted with MOG-expressing BM cells manifest a significant delay in the development of EAE suggesting that targeted antigen expression to tolerogenic cell types may be a feasible approach to inducing antigen-specific tolerance.
Transcriptome Analysis of Thermal Parthenogenesis of the Domesticated Silkworm.
Liu, Peigang; Wang, Yongqiang; Du, Xin; Yao, Lusong; Li, Fengbo; Meng, Zhiqi
2015-01-01
Thermal induction of parthenogenesis (also known as thermal parthenogenesis) in silkworms is an important technique that has been used in artificial insemination, expansion of hybridization, transgenesis and sericultural production; however, the exact mechanisms of this induction remain unclear. This study aimed to investigate the gene expression profile in silkworms undergoing thermal parthenogenesis using RNA-seq analysis. The transcriptome profiles indicated that in non-induced and induced eggs, the numbers of differentially expressed genes (DEGs) for the parthenogenetic line (PL) and amphigenetic line (AL) were 538 and 545, respectively, as determined by fold-change ≥ 2. Gene ontology (GO) analysis showed that DEGs between two lines were mainly involved in reproduction, formation of chorion, female gamete generation and cell development pathways. Upregulation of many chorion genes in AL suggests that the maturation rate of AL eggs was slower than PL eggs. Some DEGs related to reactive oxygen species removal, DNA repair and heat shock response were differentially expressed between the two lines, such as MPV-17, REV1 and HSP68. These results supported the view that a large fraction of genes are differentially expressed between PL and AL, which offers a new approach to identifying the molecular mechanism of silkworm thermal parthenogenesis.
Transcriptome Analysis of Thermal Parthenogenesis of the Domesticated Silkworm
Du, Xin; Yao, Lusong; Li, Fengbo; Meng, Zhiqi
2015-01-01
Thermal induction of parthenogenesis (also known as thermal parthenogenesis) in silkworms is an important technique that has been used in artificial insemination, expansion of hybridization, transgenesis and sericultural production; however, the exact mechanisms of this induction remain unclear. This study aimed to investigate the gene expression profile in silkworms undergoing thermal parthenogenesis using RNA-seq analysis. The transcriptome profiles indicated that in non-induced and induced eggs, the numbers of differentially expressed genes (DEGs) for the parthenogenetic line (PL) and amphigenetic line (AL) were 538 and 545, respectively, as determined by fold-change ≥ 2. Gene ontology (GO) analysis showed that DEGs between two lines were mainly involved in reproduction, formation of chorion, female gamete generation and cell development pathways. Upregulation of many chorion genes in AL suggests that the maturation rate of AL eggs was slower than PL eggs. Some DEGs related to reactive oxygen species removal, DNA repair and heat shock response were differentially expressed between the two lines, such as MPV-17, REV1 and HSP68. These results supported the view that a large fraction of genes are differentially expressed between PL and AL, which offers a new approach to identifying the molecular mechanism of silkworm thermal parthenogenesis. PMID:26274803
Ghorbel, Imen; Chaabane, Mariem; Elwej, Awatef; Boudawara, Ons; Abdelhedi, Sameh; Jamoussi, Kamel; Boudawara, Tahya; Zeghal, Najiba
2016-10-01
Hepatotoxicity, induced by aluminium chloride (AlCl 3 ), has been well studied but there are no reports about liver metallothionein (MT) genes induction. Therefore, it is of interest to establish the mechanism involving the relation between MT gene expression levels and the oxidative stress status in hepatic cells of aluminium-treated rats. Aluminium (Al) was administered to rats in their drinking water at a dose of 50 mg/kg body weight for three weeks. AlCl 3 provoked hepatotoxicity objectified by an increase in malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), advanced oxidation protein products (AOPP), protein carbonyls (PCO) and a decrease in reduced glutathione (GSH), non-protein thiols (NPSH) and vitamin C. CAT and Glutathione peroxidase (GPx) activities were decreased while Mn-SOD gene expression, total Metallothionein content and MT I and MT II genes induction were increased. There are changes in plasma of some trace elements, albumin levels, transaminases, LDH and ALP activities. All these changes were supported by histopathological observations.
Insulin stimulates the expression of the SHARP-1 gene via multiple signaling pathways.
Takagi, K; Asano, K; Haneishi, A; Ono, M; Komatsu, Y; Yamamoto, T; Tanaka, T; Ueno, H; Ogawa, W; Tomita, K; Noguchi, T; Yamada, K
2014-06-01
The rat enhancer of split- and hairy-related protein-1 (SHARP-1) is a basic helix-loop-helix transcription factor. An issue of whether SHARP-1 is an insulin-inducible transcription factor was examined. Insulin rapidly increased the level of SHARP-1 mRNA both in vivo and in vitro. Then, signaling pathways involved with the increase of SHARP-1 mRNA by insulin were determined in H4IIE rat hepatoma cells. Pretreatments with LY294002, wortmannin, and staurosporine completely blocked the induction effect, suggesting the involvement of both phosphoinositide 3-kinase (PI 3-K) and protein kinase C (PKC) pathways. In fact, overexpression of a dominant negative form of atypical protein kinase C lambda (aPKCλ) significantly decreased the induction of the SHARP-1 mRNA. In addition, inhibitors for the small GTPase Rac or Jun N-terminal kinase (JNK) also blocked the induction of SHARP-1 mRNA by insulin. Overexpression of a dominant negative form of Rac1 prevented the activation by insulin. Furthermore, actinomycin D and cycloheximide completely blocked the induction of SHARP-1 mRNA by insulin. Finally, when a SHARP-1 expression plasmid was transiently transfected with various reporter plasmids into H4IIE cells, the promoter activity of PEPCK reporter plasmid was specifically decreased. Thus, we conclude that insulin induces the SHARP-1 gene expression at the transcription level via a both PI 3-K/aPKCλ/JNK- and a PI 3-K/Rac/JNK-signaling pathway; protein synthesis is required for this induction; and that SHARP-1 is a potential repressor of the PEPCK gene expression. © Georg Thieme Verlag KG Stuttgart · New York.
Kumar, Vinay; Kumar, Anil; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis
2013-01-01
Monoterpenes, which are among the major components of plant essential oils, are known for their ecological roles as well for pharmaceutical properties. Geraniol, an acyclic monoterpene induces cell cycle arrest and apoptosis/senescence in various cancer cells and plants; however, the genes involved in the process and the underlying molecular mechanisms are not well understood. In this study, we demonstrate that treatment of tomato plants with geraniol results in induction of senescence due to a substantial alteration in transcriptome. We have identified several geraniol-responsive protein encoding genes in tomato using suppression subtractive hybridization (SSH) approach. These genes comprise of various components of signal transduction, cellular metabolism, reactive oxygen species (ROS), ethylene signalling, apoptosis and DNA damage response. Upregulation of NADPH oxidase and antioxidant genes, and increase in ROS level after geraniol treatment point towards the involvement of ROS in geraniol-mediated senescence. The delayed onset of seedling death and induced expression of geraniol-responsive genes in geraniol-treated ethylene receptor mutant (Nr) suggest that geraniol-mediated senescence involves both ethylene dependent and independent pathways. Moreover, expression analysis during tomato ripening revealed that geraniol-responsive genes are also associated with the natural organ senescence process. PMID:24098759
Soybean defense responses to the soybean aphid.
Li, Yan; Zou, Jijun; Li, Min; Bilgin, Damla D; Vodkin, Lila O; Hartman, Glen L; Clough, Steven J
2008-01-01
Transcript profiles in aphid (Aphis glycines)-resistant (cv. Dowling) and -susceptible (cv. Williams 82) soybean (Glycine max) cultivars using soybean cDNA microarrays were investigated. Large-scale soybean cDNA microarrays representing approx. 18 000 genes or c. 30% of the soybean genome were compared at 6 and 12 h post-application of aphids. In a separate experiment utilizing clip cages, expression of three defense-related genes were examined at 6, 12, 24, 48, and 72 h in both cultivars by quantitative real-time PCR. One hundred and forty genes showed specific responses for resistance; these included genes related to cell wall, defense, DNA/RNA, secondary metabolism, signaling and other processes. When an extended time period of sampling was investigated, earlier and greater induction of three defense-related genes was observed in the resistant cultivar; however, the induction declined after 24 or 48 h in the resistant cultivar but continued to increase in the susceptible cultivar after 24 h. Aphid-challenged resistant plants showed rapid differential gene expression patterns similar to the incompatible response induced by avirulent Pseudomonas syringae. Five genes were identified as differentially expressed between the two genotypes in the absence of aphids.
T-cell receptor revision: friend or foe?
Hale, J Scott; Fink, Pamela J
2010-01-01
T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue. PMID:20201984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Won Il; Park, Min Jung; An, Jin Kwang
2008-05-02
Bile reflux is considered to be one of the most important causative factors in gastric carcinogenesis, due to the attendant inflammatory changes in the gastric mucosa. In this study, we have assessed the molecular mechanisms inherent to the contribution of bile acid to the transcriptional regulation of inflammatory-related genes. In this study, we demonstrated that bile acid induced the expression of the SHP orphan nuclear receptor at the transcriptional level via c-Jun activation. Bile acid also enhanced the protein interaction of NF-{kappa}B and SHP, thereby resulting in an increase in c-Jun expression and the production of the inflammatory cytokine, TNF{alpha}.more » These results indicate that bile acid performs a critical function in the regulation of the induction of inflammatory-related genes in gastric cells, and that bile acid-mediated gene expression provides a pre-clue for the development of gastric cellular malformation.« less
Wegmann, U.; Klein, J. R.; Drumm, I.; Kuipers, O. P.; Henrich, B.
1999-01-01
Peptidases PepI, PepL, PepW, and PepG from Lactobacillus delbrueckii subsp. lactis, which have no counterparts in Lactococcus lactis, and peptidase PepQ were examined to determine their potential to confer new peptidolytic properties to lactococci. Controllable expression of the corresponding genes (pep genes) was achieved by constructing translational fusions with the promoter of the nisA gene (PnisA). A suitable host strain, UKLc10, was constructed by chromosomal integration of the genes encoding the NisRK two-component system into the fivefold peptidase-deficient mutant IM16 of L. lactis. Recombinants of this strain were used to analyze growth, peptidase activities, peptide utilization, and intracellular protein cleavage products. After nisin induction of PnisA::pep fusions, all of the peptidases were visible as distinct bands in protein gels. Despite the fact that identical transcription and translation signals were used to express the pep genes, the relative amounts of individual peptidases varied considerably. All of the peptidases exhibited activities in extracts of recombinant UKLc10 clones, but only PepL and PepG allowed the clones to utilize specific peptide substrates as sources of essential amino acids. In milk medium, induction of pepG and induction of pepW resulted in growth acceleration. The activities of all five peptidases during growth in milk medium were revealed by high-performance liquid chromatography analyses of intracellular amino acid and peptide pools. PMID:10543778
Hu, Xiang Yang; Neill, Steven J; Cai, Wei Ming; Tang, Zhang Cheng
2004-06-01
Responses to oligogalacturonic acid (OGA) were determined in transgenic Arabidopsis thaliana seedlings expressing the calcium reporter protein aequorin. OGA stimulated a rapid, substantial and transient increase in the concentration of cytosolic calcium ([Ca2+]cyt) that peaked after ca. 15 s. This increase was dose-dependent, saturating at ca. 50 ug Gal equiv/ml of OGA. OGA also stimulated a rapid generation of H2O2. A small, rapid increase in H2O2 content was followed by a much larger oxidative burst, with H2O2 content peaking after ca. 60 min and declining thereafter. Induction of the oxidative burst by OGA was also dose-dependent, with a maximum response again being achieved at ca. 50 ug Gal equiv/mL. Inhibitors of calcium fluxes inhibited both increases in [Ca2+]cyt and [H2O2], whereas inhibitors of NADPH oxidase blocked only the oxidative burst. OGA increased strongly the expression of the defence-related genes CHS, GST, PAL and PR-1. This induction was suppressed by inhibitors of calcium flux or NADPH oxidase, indicating that increases in both cytosolic calcium and H2O2 are required for OGA-induced gene expression.
Characterization, Expression and Function of DORMANCY ASSOCIATED MADS-BOX Genes from Leafy Spurge
USDA-ARS?s Scientific Manuscript database
DORMANCY ASSOCIATED MADS-BOX (DAM) genes are related to AGAMOUS-LIKE 24 and SHORT VEGETATIVE PHASE genes of arabidopsis and are differentially regulated coordinately with endodormancy induction and release in buds of several perennial plant species. DAM genes were first shown to directly impact endo...
Banerjee, Bodhisattwa; Koner, Debaprasad; Bhuyan, Gitalee; Saha, Nirmalendu
2018-06-01
The present study demonstrates the unique presence of three different gs genes (cmgs01, cmgs02, and cmgs03) in air-breathing ureogenic magur catfish (Clarias magur), which is otherwise reported to be encoded by a single gene in higher vertebrates. Of these three genes, two (cmgs01and cmgs03) were identified as 'liver' form, predominantly expressed in liver cells, and the third one as 'brain' form (cmgs02), expressed chiefly in brain cells. Molecular characterization studies have revealed conservation of homologous active site residues in all the three gs genes. In silico analysis, accompanied by GS enzyme assay and Western blot analysis of different GS isoforms in different subcellular fractions indicated the mitochondrial localization of cmGS01 and cmGS03 in liver and kidney cells and cytosolic localization of cmGS02 in brain cells. Further, exposure of magur catfish to high external ammonia (HEA; 25 mM NH 4 Cl) led to a significant induction of multiple gs genes as evidenced by higher expression of different gs mRNAs at variable levels in different tissues. The cmgs01 and cmgs03 mRNA levels elevated significantly in liver, kidney, muscle, and gills, whereas the cmgs02 mRNA level increased considerably in the brain after 14 days of exposure to HEA. These increases in mRNA levels were associated with a significant rise in cmGS01 and cmGS03 proteins in liver, kidney, muscle, and gills, and the cmGS02 protein in the brain after 14 days of exposure to HEA. Therefore, it can be concluded that the unique differential expression of three gs genes and their induction under high ammonia level probably helps in detoxification of ammonia to glutamine and further to urea via the ornithine-urea cycle in ureogenic as well as non-ureogenic tissues of these magur catfish. Copyright © 2017. Published by Elsevier B.V.
Teste, Marie-Ange; Duquenne, Manon; François, Jean M; Parrou, Jean-Luc
2009-01-01
Background Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. Results From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. Conclusion In this work, we provided a set of genes that are suitable reference genes for quantitative gene expression analysis by real-time RT-PCR in yeast biological samples covering a large panel of physiological states. In contrast, we invalidated and discourage the use of ACT1 as well as other commonly used reference genes (PDA1, TDH3, RDN18, etc) as internal controls for quantitative gene expression analysis in yeast. PMID:19874630
Teste, Marie-Ange; Duquenne, Manon; François, Jean M; Parrou, Jean-Luc
2009-10-30
Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. In this work, we provided a set of genes that are suitable reference genes for quantitative gene expression analysis by real-time RT-PCR in yeast biological samples covering a large panel of physiological states. In contrast, we invalidated and discourage the use of ACT1 as well as other commonly used reference genes (PDA1, TDH3, RDN18, etc) as internal controls for quantitative gene expression analysis in yeast.
Transcriptional Activation by Heat and Cold of a Thiol Protease Gene in Tomato
Schaffer, Mark A.; Fischer, Robert L.
1990-01-01
We previously determined that low temperature induces the accumulation in tomato (Lycopersicon esculentum) fruit of a cloned mRNA, designated C14, encoding a polypeptide related to thiol proteases (MA Schaffer, RL Fischer [1988] Plant Physiol 87: 431-436). We now demonstrate that C14 mRNA accumulation is a response common to both high (40°C) and low (4°C) temperature stresses. Exposure of tomato fruit to 40°C results in the accumulation of C14 mRNA, by 8 hours. This response is more rapid than that to 4°C, but slower than the induction of many heat shock messages by 40°C, and therefore unique. We have also studied the mechanism by which heat and cold exposure activate C14 gene expression. Both high and low temperature regulate protease gene expression through transcriptional induction of a single C14 gene. A hypothesis for the function of C14 thiol protease gene expression in response to heat and cold is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667644
NASA Astrophysics Data System (ADS)
Ohnishi, T.; Yasumoto, J.; Takahashi, A.; Ohnishi, K.
To clarify the biological effects of low-dose rate radiation on human health for long-term stay in space, we analyzed the induction of apoptosis and apoptosis-related gene expression after irradiation with different dose-rate in human lymphoblastoid TK-6 cells harboring wild-type p53 gene. We irradiated TK-6 cells by X-ray at 1.5 Gy (1 Gy/min) and then sampled at 25 hr after culturing. We also irradiated by gamma-ray at 1.5 Gy (1 mGy/min) and then sampled immediately or 25 hr after irradiation. For DNA ladder analysis, we extracted DNA from these samples and electrophoresed with 2% agarose gel. In addition, we extracted mRNA from these samples for DNA-array analysis. mRNA from non-irradiated cells was used as a control. After labeling the cDNA against mRNA with [α -33P]-dCTP and hybridizing onto DNA array (Human Apoptosis Expression Array, R&D Systems), we scanned the profiles of the spots by a phosphorimager (BAS5000, FUJI FILM) and calculated using a NIH Image program. The data of each DNA-array were normalized with eight kinds of house keeping genes. We analyzed the expression level of apoptosis-related genes such as p53-related, Bcl-2 family, Caspase family and Fas-related genes. DNA ladders were obviously detected in the cells exposed to a high dose-rate radiation. We detected the induction of the gene expression of apoptosis-promotive genes. In contrast, almost no apoptosis was observed in the cells exposed to the chronic radiation at a low dose-rate. In addition, we detected the induction of the gene expression of apoptosis-suppressive genes as compared with apoptosis promotive-genes immediately after chronic irradiation. These results lead the importance of biological meaning of exposure to radiation at low dose-rate from an aspect of carcinogenesis. Finally, the effects of chronic irradiation become a highly important issue in space radiation biology for human health.
Choi, Yeong Min; An, Sungkwan; Lee, Junwoo; Lee, Jae Ho; Lee, Jae Nam; Kim, Young Sam; Ahn, Kyu Joong; An, In-Sook; Bae, Seunghee
2017-12-01
Dermal papilla (DP) is a pivotal part of hair follicle, and the smaller size of the DP is related with the hair loss. In this study, we investigated the effect of titrated extract of Centella asiatica (TECA) on hair growth inductive property on 3D spheroid cultured human DP cells (HDP cells). Significantly increased effect of TECA on cell viability was only shown in 3D sphered HPD cells, not in 2D cultured HDP cells. Also, TECA treatment increased the sphere size of HDP cells. The luciferase activity of STAT reporter genes and the expression of STAT-targeted genes, SOCS1 and SOCS3, were significantly decreased. Also, TECA treatment increased the expression of the hair growth-related signature genes in 3D sphered HDP cells. Furthermore, TECA led to downregulation of the level of phosphorylated STAT proteins in 3D sphered HDP cells. Overall, TECA activates the potential of hair inductive capacity in HDP cells.
Sin, Onsam; Mabiala, Prudence; Liu, Ye; Sun, Ying; Hu, Tao; Liu, Qingzhen; Guo, Deyin
2012-02-01
Artificial microRNA (miRNA) expression vectors have been developed and used for RNA interference. The secondary structure of artificial miRNA is important for RNA interference efficacy. We designed two groups of six artificial splicing miRNA 155-based miRNAs (SM155-based miRNAs) with the same target in the coding region or 3' UTR of a target gene and studied their RNA silencing efficiency and interferon β (IFN-β) induction effects. SM155-based miRNA with a mismatch at the +1 position and a bulge at the +11, +12 positions in a miRNA precursor stem-loop structure showed the highest gene silencing efficiency and lowest IFN-β induction effect (increased IFN-β mRNA level by 10% in both target cases), regardless of the specificity of the target sequence, suggesting that pSM155-based miRNA with this design could be a valuable miRNA expression vector.
NASA Technical Reports Server (NTRS)
Nolo, R.; Abbott, L. A.; Bellen, H. J.
2000-01-01
The senseless (sens) gene is required for proper development of most cell types of the embryonic and adult peripheral nervous system (PNS) of Drosophila. Sens is a nuclear protein with four Zn fingers that is expressed and required in the sensory organ precursors (SOP) for proper proneural gene expression. Ectopic expression of Sens in many ectodermal cells causes induction of PNS external sensory organ formation and is able to recreate an ectopic proneural field. Hence, sens is both necessary and sufficient for PNS development. Our data indicate that proneural genes activate sens expression. Sens is then in turn required to further activate and maintain proneural gene expression. This feedback mechanism is essential for selective enhancement and maintenance of proneural gene expression in the SOPs.
ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...
Zhang, Wen; Yin, Gang; Dai, Jianguo; Sun, Y U; Hoffman, Robert M; Yang, Zhijian; Fan, Yuan
2017-08-01
The aim of this study was to investigate the effects of the flavonoid quercetin on chemoprevention of oral squamous cell carcinoma (OSCC). The study involved molecular signaling pathways in 7,12-dimethylbenz(a) anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. DMBA (0.5%) was painted at the right buccal pouches of hamsters for 14 weeks to induce carcinoma. DMBA-treated hamsters received simultaneous doses of quercetin. Animals without DMBA induction were used as normal controls. The incidence of OSCC and the severity of pre-malignant lesions were determined histologically. Apoptosis in the pouch tissue was determined by TUNEL staining. The mRNA and protein expression of NF-κB p50 and p65, as well as Bcl-2 and Bax genes were analyzed using RT-PCR and Western blotting, respectively. Quercetin, at various doses, significantly reduced OSCC incidence and severity of hyperplasia and dysplasia compared to the DMBA-induction-only group (p<0.01). Apoptosis was induced by quercetin treatment compared to the DMBA-induction-only group (p<0.01). mRNA and protein expression of NF-κB p50, p65 as well as Bcl-2 genes were significantly suppressed by quercetin at high doses compared to DMBA induction only (p<0.05). However, mRNA and protein expression of the Bax gene was increased by quercetin treatment at medium and high doses, compared to the DMBA-induction-only group (p<0.05). Quercetin significantly reduced body-weight loss compared to the DMBA-induction-only group (p<0.05). Quercetin reduced tumor incidence and induced apoptosis through modulation of NF-κB signaling and its target genes Bcl-2 and Bax in the DMBA-induced carcigenesis hamster model, suggesting the potential of quercetin as a candidate for OSCC chemoprevention. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S; Bilalis, Dimitrios
2016-04-20
Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha(-1)) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance.
Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S.; Bilalis, Dimitrios
2016-01-01
Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha−1) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532
Georg, Birgitte; Falktoft, Birgitte; Fahrenkrug, Jan
2016-12-01
The neuropeptide PACAP is expressed throughout the central and peripheral nervous system where it modulates diverse physiological functions including neuropeptide gene expression. We here report that in human neuroblastoma NB-1 cells PACAP transiently induces its own expression. Maximal PACAP mRNA expression was found after stimulation with PACAP for 3h. PACAP auto-regulation was found to be mediated by activation of PACAP specific PAC 1 Rs as PACAP had >100-fold higher efficacy than VIP, and the PAC 1 R selective agonist Maxadilan potently induced PACAP gene expression. Experiments with pharmacological kinase inhibitors revealed that both PKA and novel but not conventional PKC isozymes were involved in the PACAP auto-regulation. Inhibition of MAPK/ERK kinase (MEK) also impeded the induction, and we found that PKA, novel PKC and ERK acted in parallel and were thus not part of the same pathways. The expression of the transcription factor EGR1 previously ascribed as target of PACAP signalling was found to be transiently induced by PACAP and pharmacological inhibition of either PKC or MEK1/2 abolished PACAP mediated EGR1 induction. In contrast, inhibition of PKA mediated increased PACAP mediated EGR1 induction. Experiments using siRNA against EGR1 to lower the expression did however not affect the PACAP auto-regulation indicating that this immediate early gene product is not part of PACAP auto-regulation in NB-1 cells. We here reveal that in NB-1 neuroblastoma cells, PACAP induces its own expression by activation of PAC 1 R, and that the signalling is different from the PAC 1 R signalling mediating induction of VIP in the same cells. PACAP auto-regulation depends on parallel activation of PKA, novel PKC isoforms, and ERK, while EGR1 does not seem to be part of the PACAP auto-regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fister, Andrew S; Mejia, Luis C; Zhang, Yufan; Herre, Edward Allen; Maximova, Siela N; Guiltinan, Mark J
2016-05-17
The pathogenesis-related (PR) group of proteins are operationally defined as polypeptides that increase in concentration in plant tissues upon contact with a pathogen. To date, 17 classes of highly divergent proteins have been described that act through multiple mechanisms of pathogen resistance. Characterizing these families in cacao, an economically important tree crop, and comparing the families to those in other species, is an important step in understanding cacao's immune response. Using publically available resources, all members of the 17 recognized pathogenesis-related gene families in the genome of Theobroma cacao were identified and annotated resulting in a set of ~350 members in both published cacao genomes. Approximately 50 % of these genes are organized in tandem arrays scattered throughout the genome. This feature was observed in five additional plant taxa (three dicots and two monocots), suggesting that tandem duplication has played an important role in the evolution of the PR genes in higher plants. Expression profiling captured the dynamics and complexity of PR genes expression at basal levels and after induction by two cacao pathogens (the oomycete, Phytophthora palmivora, and the fungus, Colletotrichum theobromicola), identifying specific genes within families that are more responsive to pathogen challenge. Subsequent qRT-PCR validated the induction of several PR-1, PR-3, PR-4, and PR-10 family members, with greater than 1000 fold induction detected for specific genes. We describe candidate genes that are likely to be involved in cacao's defense against Phytophthora and Colletotrichum infection and could be potentially useful for marker-assisted selection for breeding of disease resistant cacao varieties. The data presented here, along with existing cacao-omics resources, will enable targeted functional genetic screening of defense genes likely to play critical functions in cacao's defense against its pathogens.
Jani, Niketa M; Lopes, John M
2008-12-01
In Saccharomyces cerevisiae, transcription of most of the phospholipid biosynthetic genes (e.g. INO1, CHO1, CHO2 and OPI3) is repressed by growth in the presence of inositol and choline and derepressed in their absence. This regulation requires the Ino2p and Ino4p activators and the Opi1p repressor. The PIS1 structural gene is required for the synthesis of the essential lipid phosphatidylinositol. Previous reports show that PIS1 expression is uncoupled from inositol/choline regulation, but is regulated by carbon source, hypoxia and zinc. However, in this study we found that the expression of PIS1 is induced twofold by inositol. This regulation did not require Ino2p and Ino4p, although Ino4p was required for full expression. Ino4p is a basic helix-loop-helix protein that requires a binding partner. Curiously, none of the other basic helix-loop-helix proteins affected PIS1 expression. Inositol induction did require another general regulator of phospholipid biosynthesis, Ume6p. Ume6p was found to be a positive regulator of PIS1 gene expression. Ume6p, and several associated factors, were required for inositol-mediated induction and chromatin immunoprecipitation analysis showed that Ume6p directly regulates PIS1 expression. Thus, we demonstrate novel regulation of the PIS1 gene by Ume6p.
Liu, Ying; Jiang, Yu-xin; Li, Chao-pin
2011-12-01
To clone tenecin gene, an antibacterial peptide gene, from Tenebrio molitor for its prokaryotic expression and explore the molecular mechanism for regulating the expression of antibacterial peptide in Tenebrio molitor larvae. The antibacterial peptide was induced from the larvae of Tenebrio molitor by intraperitoneal injection of Escherichia coli DH-5α (1×10(8)/ml). RT-PCR was performed 72 h after the injection to clone Tenecin gene followed by sequencing and bioinformatic analysis. The recombinant expression vector pET-28a(+)-Tenecin was constructed and transformed into E. coli BL21(DE3) cells and the expression of tenecin protein was observed after IPTG induction. Tenecin expression was detected in transformed E.coli using SDS-PAGE after 1 mmol/L IPTG induction. Tenecin gene, which was about 255 bp in length, encoded Tenecin protein with a relative molecular mass of 9 kD. Incubation of E.coli with 80, 60, 40, and 20 µg/ml tenecin for 18 h resulted in a diameter of the inhibition zone of 25.1∓0.03, 20.7∓0.06, 17.2∓0.11 and 9.3∓0.04 mm, respectively. Tenecin protein possesses strong antibacterial activity against E. coli DH-5α, which warrants further study of this protein for its potential as an antibacterial agent in clinical application.
Igielski, Rafał
2017-01-01
Gibberellins (GAs) are involved in the regulation of numerous developmental processes in plants including zygotic embryogenesis, but their biosynthesis and role during somatic embryogenesis (SE) is mostly unknown. In this study we show that during three week- long induction phase, when cells of leaf explants from non-embryogenic genotype (M9) and embryogenic variant (M9-10a) were forming the callus, all the bioactive gibberellins from non-13-hydroxylation (GA4, GA7) and 13-hydroxylation (GA1, GA5, GA3, GA6) pathways were present, but the contents of only a few of them differed between the tested lines. The GA53 and GA19 substrates synthesized by the 13-hydroxylation pathway accumulated specifically in the M9-10a line after the first week of induction; subsequently, among the bioactive gibberellins detected, only the content of GA3 increased and appeared to be connected with acquisition of embryogenic competence. We fully annotated 20 Medicago truncatula orthologous genes coding the enzymes which catalyze all the known reactions of gibberellin biosynthesis. Our results indicate that, within all the genes tested, expression of only three: MtCPS, MtGA3ox1 and MtGA3ox2, was specific to embryogenic explants and reflected the changes observed in GA53, GA19 and GA3 contents. Moreover, by analyzing expression of MtBBM, SE marker gene, we confirmed the inhibitory effect of manipulation in GAs metabolism, applying exogenous GA3, which not only impaired the production of somatic embryos, but also significantly decreased expression of this gene. PMID:28750086
Franz, Marcus; Grün, Katja; Betge, Stefan; Rohm, Ilonka; Ndongson-Dongmo, Bernadin; Bauer, Reinhard; Schulze, P Christian; Lichtenauer, Michael; Petersen, Iver; Neri, Dario; Berndt, Alexander; Jung, Christian
2016-12-06
Pulmonary hypertension (PH) is associated with vasoconstriction and remodelling. We studied lung tissue remodelling in a rat model of PH with special focus on histology and extracellular matrix (ECM) remodelling. After induction of PH by monocrotaline, lung tissue was analysed histologically, by gene expression analysis and immunofluorescence labelling of ED-A domain containing fibronectin (ED-A+ Fn), B domain containing tenascin-C (B+ Tn-C) as well as alpha-smooth muscle actin (α-SMA). Serum concentrations of ED-A+ Fn were determined by ELISA. Systolic right ventricular pressure (RVPsys) values were significantly elevated in PH (n = 18; 75 ± 26.4 mmHg) compared to controls (n = 10; 29 ± 19.3 mmHg; p = 0.015). The histological sum-score was significantly increased in PH (8.0 ± 2.2) compared to controls (2.5 ± 1.6; p < 0.001). Gene expression analysis revealed relevant induction of several key genes of extracellular matrix remodelling. Increased protein deposition of ED-A+ Fn but not of B+ Tn-C and α-SMA in lung tissue was found in PH (2.88 ± 3.19 area%) compared to controls (1.32 ± 0.16 area%; p = 0.030). Serum levels of ED-A+ Fn were significantly higher in PH (p = 0.007) positively correlating with RVPsys (r = 0.618, p = 0.019). We here present a novel histological scoring system to assess lung tissue remodelling in PH. Gene expression analysis revealed induction of candidate genes involved in collagen matrix turnover, fibrosis and vascular remodelling. The stable increased tissue deposition of ED-A+ Fn in PH as well as its dynamics in serum suggests a role as a promising novel biomarker and potential therapeutic target.
Frappier, Lori
2013-01-01
The reactivation of Epstein-Barr virus (EBV) from latent to lytic infection begins with the expression of the viral BZLF1 gene, leading to a subsequent cascade of viral gene expression and amplification of the EBV genome. Using RNA interference, we show that nucleosome assembly proteins NAP1 and TAF-I positively contribute to EBV reactivation in epithelial cells through the induction of BZLF1 expression. In addition, overexpression of NAP1 or the β isoform of TAF-I (TAF-Iβ) in AGS cells latently infected with EBV was sufficient to induce BZLF1 expression. Chromatin immunoprecipitation experiments performed in AGS-EBV cells showed that TAF-I associated with the BZLF1 promoter upon lytic induction and affected local histone modifications by increasing H3K4 dimethylation and H4K8 acetylation. MLL1, the host protein known to dimethylate H3K4, was found to associate with the BZLF1 promoter upon lytic induction in a TAF-I-dependent manner, and MLL1 depletion decreased BZLF1 expression, confirming its contribution to lytic reactivation. The results indicate that TAF-Iβ promotes BZLF1 expression and subsequent lytic infection by affecting chromatin at the BZLF1 promoter. PMID:23691099
Mansouri, Sheila; Wang, Shan; Frappier, Lori
2013-01-01
The reactivation of Epstein-Barr virus (EBV) from latent to lytic infection begins with the expression of the viral BZLF1 gene, leading to a subsequent cascade of viral gene expression and amplification of the EBV genome. Using RNA interference, we show that nucleosome assembly proteins NAP1 and TAF-I positively contribute to EBV reactivation in epithelial cells through the induction of BZLF1 expression. In addition, overexpression of NAP1 or the β isoform of TAF-I (TAF-Iβ) in AGS cells latently infected with EBV was sufficient to induce BZLF1 expression. Chromatin immunoprecipitation experiments performed in AGS-EBV cells showed that TAF-I associated with the BZLF1 promoter upon lytic induction and affected local histone modifications by increasing H3K4 dimethylation and H4K8 acetylation. MLL1, the host protein known to dimethylate H3K4, was found to associate with the BZLF1 promoter upon lytic induction in a TAF-I-dependent manner, and MLL1 depletion decreased BZLF1 expression, confirming its contribution to lytic reactivation. The results indicate that TAF-Iβ promotes BZLF1 expression and subsequent lytic infection by affecting chromatin at the BZLF1 promoter.
Modulation of heterologous expression from PBAD promoter in Escherichia coli production strains.
Széliová, Diana; Krahulec, Ján; Šafránek, Martin; Lišková, Veronika; Turňa, Ján
2016-10-20
Promoter PBAD is frequently used for heterologous gene expression due to several advantages, such as moderately high expression levels, induction by an inexpensive and non-toxic monosaccharide L-arabinose and tight regulation of transcription, which is particularly important for expression of toxic proteins. A drawback of this promoter is all-or-none induction that occurs at subsaturating inducer concentrations. Although the overall expression level of the cell culture seems to correlate with increasing arabinose concentrations, the population is a mixture of induced and uninduced cells and with increasing arabinose concentrations, only the fraction of induced cells increases. This phenomenon is caused by autocatalytic gene expression - the expression of the arabinose transporter AraE is induced by the transported molecule. In this work the promoter PE, controlling the expression of araE, was exchanged for the stronger PBAD promoter in two Escherichia coli strains commonly used for heterologous protein production. This modification should increase a basal number of arabinose transporters in the cell wall and reduce the threshold concentration required for induction and thus reduce heterogeneity of cell population. Heterogeneity and level of expression in individual cells were analysed by flow cytometry using gfp as a reporter gene. In the strain BL21ai, the promoter exchange increased the number of induced cells at subsaturating arabinose concentrations as well as a yield of protein at saturating inducer concentration. In contrast, the modification did not improve these characteristics in RV308ai. In both strains it was possible to modulate the expression level in induced cells 3-6-fold even at subsaturating arabinose concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.
Gallo-Ebert, Christina; Donigan, Melissa; Liu, Hsing-Yin; Pascual, Florencia; Manners, Melissa; Pandya, Devanshi; Swanson, Robert; Gallagher, Denise; Chen, WeiWei; Carman, George M.; Nickels, Joseph T.
2013-01-01
Saccharomyces cerevisiae ergosterol biosynthesis, like cholesterol biosynthesis in mammals, is regulated at the transcriptional level by a sterol feedback mechanism. Yeast studies defined a 7-bp consensus sterol-response element (SRE) common to genes involved in sterol biosynthesis and two transcription factors, Upc2 and Ecm22, which direct transcription of sterol biosynthetic genes. The 7-bp consensus SRE is identical to the anaerobic response element, AR1c. Data indicate that Upc2 and Ecm22 function through binding to this SRE site. We now show that it is two novel anaerobic AR1b elements in the UPC2 promoter that direct global ERG gene expression in response to a block in de novo ergosterol biosynthesis, brought about by antifungal drug treatment. The AR1b elements are absolutely required for auto-induction of UPC2 gene expression and protein and require Upc2 and Ecm22 for function. We further demonstrate the direct binding of recombinant expressed S. cerevisiae ScUpc2 and pathogenic Candida albicans CaUpc2 and Candida glabrata CgUpc2 to AR1b and SRE/AR1c elements. Recombinant endogenous promoter studies show that the UPC2 anaerobic AR1b elements act in trans to regulate ergosterol gene expression. Our results indicate that Upc2 must occupy UPC2 AR1b elements in order for ERG gene expression induction to take place. Thus, the two UPC2-AR1b elements drive expression of all ERG genes necessary for maintaining normal antifungal susceptibility, as wild type cells lacking these elements have increased susceptibility to azole antifungal drugs. Therefore, targeting these specific sites for antifungal therapy represents a novel approach to treat systemic fungal infections. PMID:24163365
[Induction and regulation of cellulase expression in filamentous fungi: a review].
Zhang, Fei; Bai, Fengwu; Zhao, Xinqing
2016-11-25
Production of bioenergy and bio-based chemicals by using fermentable sugars released from low-cost renewable lignocellulosic biomass has received great attention. Efficient cellulolytic enzymes are crucial for lignocellulose bioconversion, but high cellulase production cost is limiting the bioconversion efficiency of cellulosic biomass and industrial applications of lignocellulose biorefinery. Studies on induction and regulation of cellulase in filamentous fungi will help to further develop superior fungal strains for efficient cellulase production and reduce cellulase production cost. With the advances in high-throughput sequencing and gene manipulation technology using fungal strains, an in-depth understanding of cellulase induction and regulation mechanisms of enzyme expression has been achieved. We reviewed recent progresses in the induction and regulation of cellulase expression in several model filamentous fungi, emphasizing sugar transporters, transcription factors and chromatin remodeling. Future prospects in application of artificial zinc finger proteins for cellulase induction and regulation in filamentous fungi were discussed.
Wang, Shan-Zheng; Chang, Qing; Kong, Xiang-Fei; Wang, Chen
2015-01-01
The interests in platelet-rich plasma (PRP) and their application in stem cell therapy have contributed to a better understanding of the basic biology of the prochondrogenesis effect on bone marrow-derived stem cells (BMSCs). We aimed at comparing the effect of autologous PRP with common chondrogenic induction agents (CCIAs) on the chondrogenic differentiation of BMSCs. Rabbit BMSCs were isolated and characterized by flow cytometry and differentiated towards adipocytes and osteoblasts. The chondrogenic response of BMSCs to autologous PRP and CCIAs which included transforming growth factor-β1 (TGF-β1), dexamethasone (DEX), and vitamin C (Vc) was examined by cell pellet culture. The isolated BMSCs after two passages highly expressed CD29 and CD44 but minimally expressed CD45. The osteogenic and adipogenic differentiation potentials of the isolated BMSCs were also confirmed. Compared with common CCIAs, autologous PRP significantly upregulated the chondrogenic related gene expression, including Col-2, AGC, and Sox-9. Osteogenic related gene expression, including Col-1 and OCN, was not of statistical significance between these two groups. Thus, our data shows that, compared with common chondrogenic induction agents, autologous PRP can be more effective in promoting the chondrogenesis of BMSCs.
Espina, Agueda G; Méndez-Vidal, Cristina; Moreno-Mateos, Miguel A; Sáez, Carmen; Romero-Franco, Ana; Japón, Miguel A; Pintor-Toro, José A
2009-07-01
Pituitary tumor-transforming gene-1 (PTTG1) is an oncogene highly expressed in a variety of endocrine, as well as nonendocrine-related cancers. Several tumorigenic mechanisms for PTTG1 have been proposed, one of the best characterized being its capacity to act as a transcriptional activator. To identify novel downstream target genes, we have established cell lines with inducible expression of PTTG1 and a differential display approach to analyze gene expression changes after PTTG1 induction. We identified dlk1 (also known as pref-1) as one of the most abundantly expressed PTTG1 targets. Dlk1 is known to participate in several differentiation processes, including adipogenesis, adrenal gland development, and wound healing. Dlk1 is also highly expressed in neuroendocrine tumors. Here, we show that PTTG1 overexpression inhibits adipogenesis in 3T3-L1 cells and that this effect is accomplished by promoting the stability and accumulation of Dlk1 mRNA, supporting a role for PTTG1 in posttranscriptional regulation. Moreover, both pttg1 and dlk1 genes show concomitant expression in fetal liver and placenta, as well as in pituitary adenomas, breast adenocarcinomas, and neuroblastomas, suggesting that PTTG1 and DLK1 are involved in cell differentiation and transformation.
Espina, Águeda G.; Méndez-Vidal, Cristina; Moreno-Mateos, Miguel A.; Sáez, Carmen; Romero-Franco, Ana; Japón, Miguel A.
2009-01-01
Pituitary tumor-transforming gene-1 (PTTG1) is an oncogene highly expressed in a variety of endocrine, as well as nonendocrine-related cancers. Several tumorigenic mechanisms for PTTG1 have been proposed, one of the best characterized being its capacity to act as a transcriptional activator. To identify novel downstream target genes, we have established cell lines with inducible expression of PTTG1 and a differential display approach to analyze gene expression changes after PTTG1 induction. We identified dlk1 (also known as pref-1) as one of the most abundantly expressed PTTG1 targets. Dlk1 is known to participate in several differentiation processes, including adipogenesis, adrenal gland development, and wound healing. Dlk1 is also highly expressed in neuroendocrine tumors. Here, we show that PTTG1 overexpression inhibits adipogenesis in 3T3-L1 cells and that this effect is accomplished by promoting the stability and accumulation of Dlk1 mRNA, supporting a role for PTTG1 in posttranscriptional regulation. Moreover, both pttg1 and dlk1 genes show concomitant expression in fetal liver and placenta, as well as in pituitary adenomas, breast adenocarcinomas, and neuroblastomas, suggesting that PTTG1 and DLK1 are involved in cell differentiation and transformation. PMID:19477929
VÊNCIO, ENEIDA F.; PASCAL, LAURA E.; PAGE, LAURA S.; DENYER, GARETH; WANG, AMY J.; RUOHOLA-BAKER, HANNELE; ZHANG, SHILE; WANG, KAI; GALAS, DAVID J.; LIU, ALVIN Y.
2014-01-01
The prostate stromal mesenchyme controls organ-specific development. In cancer, the stromal compartment shows altered gene expression compared to non-cancer. The lineage relationship between cancer-associated stromal cells and normal tissue stromal cells is not known. Nor is the cause underlying the expression difference. Previously, the embryonal carcinoma (EC) cell line, NCCIT, was used by us to study the stromal induction property. In the current study, stromal cells from non-cancer (NP) and cancer (CP) were isolated from tissue specimens and co-cultured with NCCIT cells in a trans-well format to preclude heterotypic cell contact. After 3 days, the stromal cells were analyzed by gene arrays for microRNA (miRNA) and mRNA expression. In co-culture, NCCIT cells were found to alter the miRNA and mRNA expression of NP stromal cells to one like that of CP stromal cells. In contrast, NCCIT had no significant effect on the gene expression of CP stromal cells. We conclude that the gene expression changes in stromal cells can be induced by diffusible factors synthesized by EC cells, and suggest that cancer-associated stromal cells represent a more primitive or less differentiated stromal cell type. PMID:20945389
Regulation of Bacteria-Induced Intercellular Adhesion Molecule-1 by CCAAT/Enhancer Binding Proteins
Manzel, Lori J.; Chin, Cecilia L.; Behlke, Mark A.; Look, Dwight C.
2009-01-01
Direct interaction between bacteria and epithelial cells may initiate or amplify the airway response through induction of epithelial defense gene expression by nuclear factor-κB (NF-κB). However, multiple signaling pathways modify NF-κB effects to modulate gene expression. In this study, the effects of CCAAT/enhancer binding protein (C/EBP) family members on induction of the leukocyte adhesion glycoprotein intercellular adhesion molecule-1 (ICAM-1) was examined in primary cultures of human tracheobronchial epithelial cells incubated with nontypeable Haemophilus influenzae. Increased ICAM-1 gene transcription in response to H. influenzae required gene sequences located at −200 to −135 in the 5′-flanking region that contain a C/EBP-binding sequence immediately upstream of the NF-κB enhancer site. Constitutive C/EBPβ was found to have an important role in epithelial cell ICAM-1 regulation, while the adjacent NF-κB sequence binds the RelA/p65 and NF-κB1/p50 members of the NF-κB family to induce ICAM-1 expression in response to H. influenzae. The expression of C/EBP proteins is not regulated by p38 mitogen-activated protein kinase activation, but p38 affects gene transcription by increasing the binding of TATA-binding protein to TATA-box–containing gene sequences. Epithelial cell ICAM-1 expression in response to H. influenzae was decreased by expressing dominant-negative protein or RNA interference against C/EBPβ, confirming its role in ICAM-1 regulation. Although airway epithelial cells express multiple constitutive and inducible C/EBP family members that bind C/EBP sequences, the results indicate that C/EBPβ plays a central role in modulation of NF-κB–dependent defense gene expression in human airway epithelial cells after exposure to H. influenzae. PMID:18703796
USDA-ARS?s Scientific Manuscript database
Potato tuber (Solanum tuberosum L.) wounds incurred at harvest and upon seed cutting require rapid suberization as a major part of the healing process to prevent infection and desiccation. However, little is known about the induction and expression of genes that are essential for these processes an...
Chun, Hyun Jin; Park, Hyeong Cheol; Koo, Sung Cheol; Lee, Ju Huck; Park, Chan Young; Choi, Man Soo; Kang, Chang Ho; Baek, Dongwon; Cheong, Yong Hwa; Yun, Dae-Jin; Chung, Woo Sik; Cho, Moo Je; Kim, Min Chul
2012-01-01
Nitric oxide (NO) is known for its role in the activation of plant defense responses. To examine the involvement and mode of action of NO in plant defense responses, we introduced calmodulin-dependent mammalian neuronal nitric oxide synthase (nNOS), which controls the CaMV35S promoter, into wild-type and NahG tobacco plants. Constitutive expression of nNOS led to NO production and triggered spontaneous induction of leaf lesions. Transgenic plants accumulated high amounts of H2O2, with catalase activity lower than that in the wild type. nNOS transgenic plants contained high levels of salicylic acid (SA), and they induced an array of SA-, jasmonic acid (JA)-, and/or ethylene (ET)-related genes. Consequently, NahG co-expression blocked the induction of systemic acquired resistance (SAR)-associated genes in transgenic plants, implying SA is involved in NO-mediated induction of SAR genes. The transgenic plants exhibited enhanced resistance to a spectrum of pathogens, including bacteria, fungi, and viruses. Our results suggest a highly ranked regulatory role for NO in SA-, JA-, and/or ET-dependent pathways that lead to disease resistance. PMID:23124383
Singh, Rajesh K.; Ali, Sharique A.; Nath, Pravendra; Sane, Vidhu A.
2011-01-01
Mango is characterized by high tocopherol and carotenoid content during ripening. From a cDNA screen of differentially expressing genes during mango ripening, a full-length p-hydroxyphenylpyruvate dioxygenase (MiHPPD) gene homologue was isolated that encodes a key enzyme in the biosynthesis of tocopherols. The gene encoded a 432-amino-acid protein. Transcript analysis during different stages of ripening revealed that the gene is ripening related and rapidly induced by ethylene. The increase in MiHPPD transcript accumulation was followed by an increase in tocopherol levels during ripening. The ripening-related increase in MiHPPD expression was also seen in response to abscisic acid and to alesser extent to indole-3-acetic acid. The expression of MiHPPD was not restricted to fruits but was also seen in other tissues such as leaves particularly during senescence. The strong ethylene induction of MiHPPD was also seen in young leaves indicating that ethylene induction of MiHPPD is tissue independent. Promoter analysis of MiHPPD gene in tomato discs and leaves of stable transgenic lines of Arabidopsis showed that the cis elements for ripening-related, ethylene-responsive, and senescence-related expression resided within the 1590 nt region upstream of the ATG codon. Functionality of the gene was demonstrated by the ability of the expressed protein in bacteria to convert p-hydroxyphenylpyruvate to homogentisate. These results provide the first evidence for HPPD expression during ripening of a climacteric fruit. PMID:21430290
Cho, Il Je; Kim, Young Woo; Han, Chang Yeob; Kim, Eun Hyun; Anderson, Richard A.; Lee, Young Sok; Lee, Chang Ho; Hwang, Se Jin; Kim, Sang Geon
2011-01-01
Cadherins mediate cell-cell adhesion and catenin (ctn)-related signaling pathways. Liver fibrosis is accompanied by the loss of E-cadherin (ECAD), which promotes the process of epithelial-mesenchymal transition. Currently, no information is available about the inhibitory role of ECAD in hepatic stellate cell activation. Because of ECAD’s potential for inhibiting the induction of transforming growth factor β1 (TGFβ1), we investigated whether ECAD overexpression prevents TGFβ1 gene induction; we also examined what the molecular basis could be. Forced expression of ECAD decreased α-smooth muscle actin and vimentin levels and caused decreases in the constitutive and inducible expression of the TGFβ1 gene and its downstream genes. ECAD overexpression decreased Smad3 phosphorylation, weakly decreased Smad2 phosphorylation, and thus inhibited Smad reporter activity induced by either treatment with TGFβ1 or Smad3 overexpression. Overexpression of a dominant negative mutant of ras homolog gene family A (RhoA) diminished the ability of TGFβ1 to elicit its own gene induction. Consistently, transfection with a constitutively active mutant of RhoA reversed the inhibition of TGFβ1-inducible or Smad3-inducible reporter activity by ECAD. Studies using the mutant constructs of ECAD revealed that the p120-ctn binding domain of ECAD was responsible for TGFβ1 repression. Consistently, ECAD was capable of binding p120-ctn, which recruited RhoA; this prevented TGFβ1 from increasing RhoA-mediated Smad3 phosphorylation. In the liver samples of patients with mild or severe fibrosis, ECAD expression reciprocally correlated with the severity of fibrosis. Conclusion Our results demonstrate that ECAD inhibits Smad3/2 phosphorylation by recruiting RhoA to p120-ctn at the p120-ctn binding domain, whereas the loss of ECAD due to cadherin switching promotes the up-regulation of TGFβ1 and its target genes, and facilitates liver fibrosis. PMID:20890948
Cho, Il Je; Kim, Young Woo; Han, Chang Yeob; Kim, Eun Hyun; Anderson, Richard A; Lee, Young Sok; Lee, Chang Ho; Hwang, Se Jin; Kim, Sang Geon
2010-12-01
Cadherins mediate cell-cell adhesion and catenin (ctn)-related signaling pathways. Liver fibrosis is accompanied by the loss of E-cadherin (ECAD), which promotes the process of epithelial-mesenchymal transition. Currently, no information is available about the inhibitory role of ECAD in hepatic stellate cell activation. Because of ECAD's potential for inhibiting the induction of transforming growth factor β1 (TGFβ1), we investigated whether ECAD overexpression prevents TGFβ1 gene induction; we also examined what the molecular basis could be. Forced expression of ECAD decreased α-smooth muscle actin and vimentin levels and caused decreases in the constitutive and inducible expression of the TGFβ1 gene and its downstream genes. ECAD overexpression decreased Smad3 phosphorylation, weakly decreased Smad2 phosphorylation, and thus inhibited Smad reporter activity induced by either treatment with TGFβ1 or Smad3 overexpression. Overexpression of a dominant negative mutant of ras homolog gene family A (RhoA) diminished the ability of TGFβ1 to elicit its own gene induction. Consistently, transfection with a constitutively active mutant of RhoA reversed the inhibition of TGFβ1-inducible or Smad3-inducible reporter activity by ECAD. Studies using the mutant constructs of ECAD revealed that the p120-ctn binding domain of ECAD was responsible for TGFβ1 repression. Consistently, ECAD was capable of binding p120-ctn, which recruited RhoA; this prevented TGFβ1 from increasing RhoA-mediated Smad3 phosphorylation. In the liver samples of patients with mild or severe fibrosis, ECAD expression reciprocally correlated with the severity of fibrosis. Our results demonstrate that ECAD inhibits Smad3/2 phosphorylation by recruiting RhoA to p120-ctn at the p120-ctn binding domain, whereas the loss of ECAD due to cadherin switching promotes the up-regulation of TGFβ1 and its target genes, and facilitates liver fibrosis. Copyright © 2010 American Association for the Study of Liver Diseases.
Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli
Nakashima, Nobutaka; Tamura, Tomohiro; Good, Liam
2006-01-01
Reliable methods for conditional gene silencing in bacteria have been elusive. To improve silencing by expressed antisense RNAs (asRNAs), we systematically altered several design parameters and targeted multiple reporter and essential genes in Escherichia coli. A paired termini (PT) design, where flanking inverted repeats create paired dsRNA termini, proved effective. PTasRNAs targeted against the ackA gene within the acetate kinase-phosphotransacetylase operon (ackA-pta) triggered target mRNA decay and a 78% reduction in AckA activity with high genetic penetrance. PTasRNAs are abundant and stable and function through an RNase III independent mechanism that requires a large stoichiometric excess of asRNA. Conditional ackA silencing reduced carbon flux to acetate and increased heterologous gene expression. The PT design also improved silencing of the essential fabI gene. Full anti-fabI PTasRNA induction prevented growth and partial induction sensitized cells to a FabI inhibitor. PTasRNAs have potential for functional genomics, antimicrobial discovery and metabolic flux control. PMID:17062631
Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli.
Nakashima, Nobutaka; Tamura, Tomohiro; Good, Liam
2006-01-01
Reliable methods for conditional gene silencing in bacteria have been elusive. To improve silencing by expressed antisense RNAs (asRNAs), we systematically altered several design parameters and targeted multiple reporter and essential genes in Escherichia coli. A paired termini (PT) design, where flanking inverted repeats create paired dsRNA termini, proved effective. PTasRNAs targeted against the ackA gene within the acetate kinase-phosphotransacetylase operon (ackA-pta) triggered target mRNA decay and a 78% reduction in AckA activity with high genetic penetrance. PTasRNAs are abundant and stable and function through an RNase III independent mechanism that requires a large stoichiometric excess of asRNA. Conditional ackA silencing reduced carbon flux to acetate and increased heterologous gene expression. The PT design also improved silencing of the essential fabI gene. Full anti-fabI PTasRNA induction prevented growth and partial induction sensitized cells to a FabI inhibitor. PTasRNAs have potential for functional genomics, antimicrobial discovery and metabolic flux control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu-Ching; Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; Ho, Heng-Chien
2012-07-15
The purpose of this study was to identify the genes induced early in murine oral carcinogenesis. Murine tongue tumors induced by the carcinogen, 4-nitroquinoline 1-oxide (4-NQO), and paired non-tumor tissues were subjected to microarray analysis. Hierarchical clustering of upregulated genes in the tumor tissues revealed an association of induced genes with inflammation. Cytokines/cytokine receptors induced early were subsequently identified, clearly indicating their involvement in oral carcinogenesis. Hierarchical clustering also showed that cytokine-mediated inflammation was possibly linked with Mapk6. Cox2 exhibited the greatest extent (9–18 fold) of induction in the microarray data, and its early induction was observed in a 2more » h painting experiment by RT-PCR. MetaCore analysis showed that overexpressed Cox2 may interact with p53 and transcriptionally inhibit expression of several downstream genes. A painting experiment in transgenic mice also demonstrated that NF-κB activates early independently of Cox2 induction. MetaCore analysis revealed the most striking metabolic alterations in tumor tissues, especially in lipid metabolism resulting from the reduction of Pparα and Rxrg. Reduced expression of Mapk12 was noted, and MetaCore analysis established its relationship with decreased efficiency of Pparα phosphorylation. In conclusion, in addition to cytokines/cytokine receptors, the early induction of Cox2 and NF-κB activation is involved in murine oral carcinogenesis.« less
Alien/CSN2 gene expression is regulated by thyroid hormone in rat brain.
Tenbaum, Stephan P; Juenemann, Stefan; Schlitt, Thomas; Bernal, Juan; Renkawitz, Rainer; Muñoz, Alberto; Baniahmad, Aria
2003-02-01
Alien has been described as a corepressor for the thyroid hormone receptor (TR). Corepressors are coregulators that mediate gene silencing of DNA-bound transcriptional repressors. We describe here that Alien gene expression in vivo is regulated by thyroid hormone both in the rat brain and in cultured cells. In situ hybridization revealed that Alien is widely expressed in the mouse embryo and also throughout the rat brain. Hypothyroid animals exhibit lower expression of both Alien mRNAs and protein levels as compared with normal animals. Accordingly, we show that Alien gene is inducible after thyroid hormone treatment both in vivo and in cell culture. In cultured cells, the hormonal induction is mediated by either TRalpha or TRbeta, while cells lacking detectable amounts of functional TR lack hormonal induction of Alien. We have detected two Alien-specific mRNAs by Northern experiments and two Alien-specific proteins in vivo and in cell lines by Western analysis, one of the two forms representing the CSN2 subunit of the COP9 signalosome. Interestingly, both Alien mRNAs and both detected proteins are regulated by thyroid hormone in vivo and in cell lines. Furthermore, we provide evidence for the existence of at least two Alien genes in rodents. Taken together, we conclude that Alien gene expression is under control of TR and thyroid hormone. This suggests a negative feedback mechanism between TR and its own corepressor. Thus, the reduction of corepressor levels may represent a control mechanism of TR-mediated gene silencing.
Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao
2015-01-01
Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. PMID:26400395
Berry, S A; Bergad, P L; Stolz, A M; Towle, H C; Schwarzenberg, S J
1999-06-01
The rat serine protease inhibitor (Spi) 2 gene family includes both positive (Spi 2.2) and negative (Spi 2.1) acute phase reactants, facilitating modeling of regulation of hepatic acute phase response (APR). To examine the role of signal transducer and activation of transcription (STAT) proteins in the divergent regulation of these model genes after induction of APR, we evaluated the proximal promoters of the genes, focusing on STAT binding sites contained in these promoter elements. Induction of APR by turpentine injection includes activation of a STAT3 complex that can bind to a gamma-activated sequence (GAS) in the Spi 2.2 gene promoter, although the Spi 2.2 GAS site can bind STAT1 or STAT5 as well. To create an in vitro model of APR, primary hepatocytes were treated with combinations of cytokines and hormones to mimic the hormonal milieu of the whole animal after APR induction. Incubation of primary rat hepatocytes with interleukin (IL)-6, a critical APR cytokine, leads to activation of STAT3 and a 28-fold induction of a chloramphenicol acetyltransferase reporter construct containing the -319 to +85 region of the Spi 2.2 promoter. This suggests the turpentine-induced increase of Spi 2.2 is mediated primarily by IL-6. In contrast, although turpentine treatment reduces Spi 2.1 mRNA in vivo and IL-6 does not increase Spi 2.1 mRNA in primary rat hepatocytes, treatment of hepatocytes with IL-6 results in a 5. 4-fold induction of Spi 2.1 promoter activity mediated through the paired GAS elements in this promoter. Differential regulation of Spi 2.1 and 2.2 genes is due in part to differences in the promoters of these genes at the GAS sites. IL-6 alone fails to reproduce the pattern of rat Spi 2 gene expression that results from turpentine-induced inflammation.
Huang, Meixian; Miyake, Kunio; Kagami, Keiko; Abe, Masako; Shinohara, Tamao; Watanabe, Atsushi; Somazu, Shinpei; Oshiro, Hiroko; Goi, Kumiko; Goto, Hiroaki; Minegishi, Masayoshi; Iwamoto, Shotaro; Kiyokawa, Nobutaka; Sugita, Kanji; Inukai, Takeshi
2017-09-01
A deletion polymorphism in the BIM gene was identified as an intrinsic mechanism for resistance to tyrosine kinase inhibitor in chronic myeloid leukemia patients in East Asia. BIM is also involved in the responses to glucocorticoid and chemotherapy in acute lymphoblastic leukemia (ALL), suggesting a possible association between deletion polymorphism of BIM and the chemosensitivity of ALL. Thus, we analyzed 72 B-cell precursor (BCP)-ALL cell lines established from Japanese patients. Indeed, higher BIM gene expression was associated with good in vitro sensitivities to glucocorticoid and chemotherapeutic agents used in induction therapy. We also analyzed the methylation status of the BIM gene promoter by next generation sequencing of genome bisulfite PCR products, since genetic polymorphism could be insignificant when epigenetically inactivated. Hypermethylation of the BIM gene promoter was associated with lower BIM gene expression and poorer sensitivity to vincristine. Of note, however, the prevalence of a deletion polymorphism was not associated with the BIM gene expression level or drug sensitivities in BCP-ALL cell lines, in which the BIM gene was unmethylated. These observations suggest that an association of a deletion polymorphism of BIM and the response to induction therapy in BCP-ALL may be clinically minimal. Copyright © 2017. Published by Elsevier Ltd.
Lousa, Diana; M. Soares, Cláudio; Santos Macedo, Elisete; Arnholdt-Schmitt, Birgit
2018-01-01
Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar ”Galega vulgar”. The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars. PMID:29462998
Jue, Dengwei; Sang, Xuelian; Liu, Liqin; Shu, Bo; Wang, Yicheng; Xie, Jianghui; Liu, Chengming; Shi, Shengyou
2018-03-15
Ubiquitin-conjugating enzymes (E2s or UBC enzymes) play vital roles in plant development and combat various biotic and abiotic stresses. Longan ( Dimocarpus longan Lour.) is an important fruit tree in the subtropical region of Southeast Asia and Australia; however the characteristics of the UBC gene family in longan remain unknown. In this study, 40 D. longan UBC genes ( DlUBCs ), which were classified into 15 groups, were identified in the longan genome. An RNA-seq based analysis showed that DlUBCs showed distinct expression in nine longan tissues. Genome-wide RNA-seq and qRT-PCR based gene expression analysis revealed that 11 DlUBCs were up- or down-regualted in the cultivar "Sijimi" (SJ), suggesting that these genes may be important for flower induction. Finally, qRT-PCR analysis showed that the mRNA levels of 13 DlUBCs under SA (salicylic acid) treatment, seven under methyl jasmonate (MeJA) treatment, 27 under heat treatment, and 16 under cold treatment were up- or down-regulated, respectively. These results indicated that the DlUBCs may play important roles in responses to abiotic stresses. Taken together, our results provide a comprehensive insight into the organization, phylogeny, and expression patterns of the longan UBC genes, and therefore contribute to the greater understanding of their biological roles in longan.
Zhao, Junliang; Zhang, Shaohong; Yang, Tifeng; Zeng, Zichong; Huang, Zhanghui; Liu, Qing; Wang, Xiaofei; Leach, Jan; Leung, Hei; Liu, Bin
2015-07-01
Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype. © 2014 Scandinavian Plant Physiology Society.
Li, Cuiling; Li, Yi-Ping; Fu, Xin-Yuan; Deng, Chu-Xia
2010-09-27
SMAD4 serves as a common mediator for signaling of TGF-β superfamily. Previous studies illustrated that SMAD4-null mice die at embryonic day 6.5 (E6.5) due to failure of mesoderm induction and extraembryonic defects; however, functions of SMAD4 in each germ layer remain elusive. To investigate this, we disrupted SMAD4 in the visceral endoderm and epiblast, respectively, using a Cre-loxP mediated approach. We showed that mutant embryos lack of SMAD4 in the visceral endoderm (Smad4(Co/Co);TTR-Cre) died at E7.5-E9.5 without head-fold and anterior embryonic structures. We demonstrated that TGF-β regulates expression of several genes, such as Hex1, Cer1, and Lim1, in the anterior visceral endoderm (AVE), and the failure of anterior embryonic development in Smad4(Co/Co);TTR-Cre embryos is accompanied by diminished expression of these genes. Consistent with this finding, SMAD4-deficient embryoid bodies showed impaired responsiveness to TGF-β-induced gene expression and morphological changes. On the other hand, embryos carrying Cre-loxP mediated disruption of SMAD4 in the epiblasts exhibited relatively normal mesoderm and head-fold induction although they all displayed profound patterning defects in the later stages of gastrulation. Cumulatively, our data indicate that SMAD4 signaling in the epiblasts is dispensable for mesoderm induction although it remains critical for head patterning, which is significantly different from SMAD4 signaling in the AVE, where it specifies anterior embryonic patterning and head induction.
Li, Cuiling; Li, Yi-Ping; Fu, Xin-Yuan; Deng, Chu-Xia
2010-01-01
SMAD4 serves as a common mediator for signaling of TGF-β superfamily. Previous studies illustrated that SMAD4-null mice die at embryonic day 6.5 (E6.5) due to failure of mesoderm induction and extraembryonic defects; however, functions of SMAD4 in each germ layer remain elusive. To investigate this, we disrupted SMAD4 in the visceral endoderm and epiblast, respectively, using a Cre-loxP mediated approach. We showed that mutant embryos lack of SMAD4 in the visceral endoderm (Smad4Co/Co;TTR-Cre) died at E7.5-E9.5 without head-fold and anterior embryonic structures. We demonstrated that TGF-β regulates expression of several genes, such as Hex1, Cer1, and Lim1, in the anterior visceral endoderm (AVE), and the failure of anterior embryonic development in Smad4Co/Co;TTR-Cre embryos is accompanied by diminished expression of these genes. Consistent with this finding, SMAD4-deficient embryoid bodies showed impaired responsiveness to TGF-β-induced gene expression and morphological changes. On the other hand, embryos carrying Cre-loxP mediated disruption of SMAD4 in the epiblasts exhibited relatively normal mesoderm and head-fold induction although they all displayed profound patterning defects in the later stages of gastrulation. Cumulatively, our data indicate that SMAD4 signaling in the epiblasts is dispensable for mesoderm induction although it remains critical for head patterning, which is significantly different from SMAD4 signaling in the AVE, where it specifies anterior embryonic patterning and head induction. PMID:20941375
Induction of Virulence Gene Expression in Staphylococcus aureus by Pulmonary Surfactant
Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi
2014-01-01
We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal. PMID:24452679
Lerdrup, Mads; Gomes, Ana-Luisa; Kryh, Hanna; Spigolon, Giada; Caboche, Jocelyne; Fisone, Gilberto; Hansen, Klaus
2014-01-01
Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq) in combination with expression analysis by RNA-sequencing (RNA-seq) showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease. PMID:25254549
Akimenko, M A; Johnson, S L; Westerfield, M; Ekker, M
1995-02-01
To study the genetic regulation of growth control and pattern formation during fin development and regeneration, we have analysed the expression of four homeobox genes, msxA, msxB, msxC and msxD in zebrafish fins. The median fin fold, which gives rise to the unpaired fins, expresses these four msx genes during development. Transcripts of the genes are also present in cells of the presumptive pectoral fin buds. The most distal cells, the apical ectodermal ridge of the paired fins and the cleft and flanking cells of the median fin fold express all these msx genes with the exception of msxC. Mesenchymal cells underlying the most distal cells express all four genes. Expression of the msx genes in the fin fold and fin buds is transient and, by 3 days after fertilization, msx expression in the median fin fold falls below levels detectable by in situ hybridization. Although the fins of adult zebrafish normally have levels of msx transcripts undetectable by in situ hybridization, expression of all four genes is strongly reinduced during regeneration of both paired and unpaired fins. Induction of msx gene expression in regenerating caudal fins occurs as early as 30 hours postamputation. As the blastema forms, the levels of expression increase and reach a maximum between the third and fifth days. Then, msx expression progressively declines and disappears by day 12 when the caudal fin has grown back to its normal size. In the regenerating fin, the blastema cells that develop at the tip of each fin ray express msxB and msxC. Cells of the overlying epithelium express msxA and msxD, but do not express msxB or msxC. Amputations at various levels along the proximodistal axis of the fin suggest that msxB expression depends upon the position of the blastema, with cells of the rapidly proliferating proximal blastema expressing higher levels than the cells of the less rapidly proliferating distal blastema. Expression of msxC and msxD is independent of the position of the blastema cell along this axis. Our results suggest distinct roles for each of the four msx genes during fin development and regeneration and differential regulation of their expression.
Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction
Goldfless, Stephen J.; Wagner, Jeffrey C.; Niles, Jacquin C.
2014-01-01
The available tools for conditional gene expression in Plasmodium falciparum are limited. Here, to enable reliable control of target gene expression, we build a system to efficiently modulate translation. We overcame several problems associated with other approaches for regulating gene expression in P. falciparum. Specifically, our system functions predictably across several native and engineered promoter contexts, and affords control over reporter and native parasite proteins irrespective of their subcellular compartmentalization. Induction and repression of gene expression are rapid, homogeneous, and stable over prolonged periods. To demonstrate practical application of our system, we used it to reveal direct links between antimalarial drugs and their native parasite molecular target. This is an important out come given the rapid spread of resistance, and intensified efforts to efficiently discover and optimize new antimalarial drugs. Overall, the studies presented highlight the utility of our system for broadly controlling gene expression and performing functional genetics in P. falciparum. PMID:25370483
Prabhu, Varun V; Lulla, Amriti R; Madhukar, Neel S; Ralff, Marie D; Zhao, Dan; Kline, Christina Leah B; Van den Heuvel, A Pieter J; Lev, Avital; Garnett, Mathew J; McDermott, Ultan; Benes, Cyril H; Batchelor, Tracy T; Chi, Andrew S; Elemento, Olivier; Allen, Joshua E; El-Deiry, Wafik S
2017-01-01
Cancer stem cells (CSCs) correlate with recurrence, metastasis and poor survival in clinical studies. Encouraging results from clinical trials of CSC inhibitors have further validated CSCs as therapeutic targets. ONC201 is a first-in-class small molecule imipridone in Phase I/II clinical trials for advanced cancer. We have previously shown that ONC201 targets self-renewing, chemotherapy-resistant colorectal CSCs via Akt/ERK inhibition and DR5/TRAIL induction. In this study, we demonstrate that the anti-CSC effects of ONC201 involve early changes in stem cell-related gene expression prior to tumor cell death induction. A targeted network analysis of gene expression profiles in colorectal cancer cells revealed that ONC201 downregulates stem cell pathways such as Wnt signaling and modulates genes (ID1, ID2, ID3 and ALDH7A1) known to regulate self-renewal in colorectal, prostate cancer and glioblastoma. ONC201-mediated changes in CSC-related gene expression were validated at the RNA and protein level for each tumor type. Accordingly, we observed inhibition of self-renewal and CSC markers in prostate cancer cell lines and patient-derived glioblastoma cells upon ONC201 treatment. Interestingly, ONC201-mediated CSC depletion does not occur in colorectal cancer cells with acquired resistance to ONC201. Finally, we observed that basal expression of CSC-related genes (ID1, CD44, HES7 and TCF3) significantly correlate with ONC201 efficacy in >1000 cancer cell lines and combining the expression of multiple genes leads to a stronger overall prediction. These proof-of-concept studies provide a rationale for testing CSC expression at the RNA and protein level as a predictive and pharmacodynamic biomarker of ONC201 response in ongoing clinical studies.
Zhao, Dan; Kline, Christina Leah B.; Van den Heuvel, A. Pieter J.; Lev, Avital; Garnett, Mathew J.; McDermott, Ultan; Benes, Cyril H.; Batchelor, Tracy T.; Chi, Andrew S.; Elemento, Olivier; Allen, Joshua E.
2017-01-01
Cancer stem cells (CSCs) correlate with recurrence, metastasis and poor survival in clinical studies. Encouraging results from clinical trials of CSC inhibitors have further validated CSCs as therapeutic targets. ONC201 is a first-in-class small molecule imipridone in Phase I/II clinical trials for advanced cancer. We have previously shown that ONC201 targets self-renewing, chemotherapy-resistant colorectal CSCs via Akt/ERK inhibition and DR5/TRAIL induction. In this study, we demonstrate that the anti-CSC effects of ONC201 involve early changes in stem cell-related gene expression prior to tumor cell death induction. A targeted network analysis of gene expression profiles in colorectal cancer cells revealed that ONC201 downregulates stem cell pathways such as Wnt signaling and modulates genes (ID1, ID2, ID3 and ALDH7A1) known to regulate self-renewal in colorectal, prostate cancer and glioblastoma. ONC201-mediated changes in CSC-related gene expression were validated at the RNA and protein level for each tumor type. Accordingly, we observed inhibition of self-renewal and CSC markers in prostate cancer cell lines and patient-derived glioblastoma cells upon ONC201 treatment. Interestingly, ONC201-mediated CSC depletion does not occur in colorectal cancer cells with acquired resistance to ONC201. Finally, we observed that basal expression of CSC-related genes (ID1, CD44, HES7 and TCF3) significantly correlate with ONC201 efficacy in >1000 cancer cell lines and combining the expression of multiple genes leads to a stronger overall prediction. These proof-of-concept studies provide a rationale for testing CSC expression at the RNA and protein level as a predictive and pharmacodynamic biomarker of ONC201 response in ongoing clinical studies. PMID:28767654
Utsumi, Yoshinori; Utsumi, Chikako; Tanaka, Maho; Ha, Vu The; Matsui, Akihiro; Takahashi, Satoshi; Seki, Motoaki
2017-01-01
Agrobacterium-mediated transformation is an important research tool for the genetic improvement of cassava. The induction of friable embryogenic callus (FEC) is considered as a key step in cassava transformation. In the present study, the media composition was optimized for enhancing the FEC induction, and the effect of the optimized medium on gene expression was evaluated. In relative comparison to MS medium, results demonstrated that using a medium with reducing nutrition (a 10-fold less concentration of nitrogen, potassium, and phosphate), the increased amount of vitamin B1 (10 mg/L) and the use of picrolam led to reprogram non-FEC to FEC. Gene expression analyses revealed that FEC on modified media increased the expression of genes related to the regulation of polysaccharide biosynthesis and breakdown of cell wall components in comparison to FEC on normal CIM media, whereas the gene expression associated with energy flux was not dramatically altered. It is hypothesized that we reprogram non-FEC to FEC under low nitrogen, potassium and phosphate and high vitamin B1. These findings were more effective in inducing FEC formation than the previous protocol. It might contribute to development of an efficient transformation strategy in cassava. PMID:28806727
A Plant Gene Up-Regulated at Rust Infection Sites
Ayliffe, Michael A.; Roberts, James K.; Mitchell, Heidi J.; Zhang, Ren; Lawrence, Gregory J.; Ellis, Jeffrey G.; Pryor, Tony J.
2002-01-01
Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a β-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf mesophyll cells within and immediately surrounding rust infection sites. The level of induction reflects the extent of fungal growth. In a strong resistance reaction, such as the hypersensitive fleck mediated by the L6 resistance gene, there is very little fungal growth and a microscopic level of GUS expression. Partially resistant flax leaves show levels of GUS expression that were intermediate to the level observed in the fully susceptible infection. Sequence and deletion analysis using both transient Agrobacterium tumefaciens expression and stable transformation assays have shown that the rust-inducible fis1 promoter is contained within a 580-bp fragment. Homologs of fis1 were identified in expressed sequence tag databases of a range of plant species including dicots, monocots, and a gymnosperm. Homologous genes isolated from maize (Zea mays; mis1), barley (Hordeum vulgare; bis1), wheat (Triticum aestivum; wis1), and Arabidopsis encode proteins that are highly similar (76%–82%) to the FIS1 protein. The Arabidopsis homologue has been reported to encode a Δ1-pyrroline-5-carboxylate dehydrogenase that is involved in the catabolism of proline to glutamate. RNA-blot analysis showed that mis1 in maize and the bis1 homolog in barley are both up-regulated by a compatible infection with the corresponding species-specific rust. The rust-induced genes homologous to fis1 are present in many plants. The promoters of these genes have potential roles for the engineering of synthetic rust resistance genes by targeting transgene expression to the sites of rust infection. PMID:12011348
A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.
Mikkelsen, Michael D; Thomashow, Michael F
2009-10-01
The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold- and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome.
Calabrese, Silvia; Kohler, Annegret; Niehl, Annette; Veneault-Fourrey, Claire; Boller, Thomas; Courty, Pierre-Emmanuel
2017-06-01
Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Scherer, Christina A.; Magness, Charles L.; Steiger, Kathryn V.; Poitinger, Nicholas D.; Caputo, Christine M.; Miner, Douglas G.; Winokur, Patricia L.; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A.; Gillham, Martha H.; Haulman, N. Jean; Stapleton, Jack T.; Iadonato, Shawn P.
2007-01-01
Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents. PMID:17651872
Ikeda, Yasutoshi; Sakaue, Morito; Chijimatsu, Ryota; Hart, David A; Otsubo, Hidenori; Shimomura, Kazunori; Madry, Henning; Suzuki, Tomoyuki; Yoshikawa, Hideki; Yamashita, Toshihiko; Nakamura, Norimasa
2017-01-01
Mesenchymal stem cell- (MSC-) based therapy is a promising treatment for cartilage. However, repair tissue in general fails to regenerate an original hyaline-like tissue. In this study, we focused on increasing the expression levels for insulin-like growth factor-1 (IGF-1) to improve repair tissue quality. The IGF-1 gene was introduced into human synovial MSCs with a lentiviral vector and examined the levels of gene expression and morphological status of MSCs under chondrogenic differentiation condition using pellet cultures. The size of the pellets derived from IGF-1-MSCs were significantly larger than those of the control group. The abundance of glycosaminoglycan (GAG) was also significantly higher in the IGF-1-MSC group. The histology of the IGF-1-induced pellets demonstrated similarities to hyaline cartilage without exhibiting features of a hypertrophic chondrocyte phenotype. Expression levels for the Col2A1 gene and protein were significantly higher in the IGF-1 pellets than in the control pellets, but expression levels for Col10, MMP-13, ALP, and Osterix were not higher. Thus, IGF-1 gene transfer to human synovial MSCs led to an improved chondrogenic differentiation capacity without the detectable induction of a hypertrophic or osteogenic phenotype.
The transcriptional response of Escherichia coli to recombinant protein insolubility.
Smith, Harold E
2007-03-01
Bacterial production of recombinant proteins offers several advantages over alternative expression methods and remains the system of choice for many structural genomics projects. However, a large percentage of targets accumulate as insoluble inclusion bodies rather than soluble protein, creating a significant bottleneck in the protein production pipeline. Numerous strategies have been reported that can improve in vivo protein solubility, but most do not scale easily for high-throughput expression screening. To understand better the host cell response to the accumulation of insoluble protein, we determined genome-wide changes in bacterial gene expression upon induction of either soluble or insoluble target proteins. By comparing transcriptional profiles for multiple examples from the soluble or insoluble class, we identified a pattern of gene expression that correlates strongly with protein solubility. Direct targets of the sigma32 heat shock sigma factor, which includes genes involved in protein folding and degradation, were highly expressed in response to induction of insoluble protein. This same group of genes was also upregulated by insoluble protein accumulation under a different growth regime, indicating that sigma32-mediated gene expression is a general response to protein insolubility. This knowledge provides a starting point for the rational design of growth parameters and host strains with improved protein solubility characteristics. Summary Problems with protein solubility are frequently encountered when recombinant proteins are expressed in E. coli. The bacterial host responds to this problem by increasing expression of the protein folding machinery via the heat shock sigma factor sigma32. Manipulation of the sigma32 regulon might provide a general mechanism for improving recombinant protein solubility.
NASA Technical Reports Server (NTRS)
Balcer-Kubiczek, E. K.; Zhang, X. F.; Harrison, G. H.; Zhou, X. J.; Vigneulle, R. M.; Ove, R.; McCready, W. A.; Xu, J. F.
1999-01-01
PURPOSE: Differences in gene expression underlie the phenotypic differences between irradiated and unirradiated cells. The goal was to identify late-transcribed genes following irradiations differing in quality, and to determine the RBE of 1 GeV/n Fe ions. MATERIALS AND METHODS: Clonogenic assay was used to determine the RBE of Fe ions. Differential hybridization to cDNA target clones was used to detect differences in expression of corresponding genes in mRNA samples isolated from MCF7 cells irradiated with iso-survival doses of Fe ions (0 or 2.5 Gy) or fission neutrons (0 or 1.2 Gy) 7 days earlier. Northern analysis was used to confirm differential expression of cDNA-specific mRNA and to examine expression kinetics up to 2 weeks after irradiation. RESULTS: Fe ion RBE values were between 2.2 and 2.6 in the lines examined. Two of 17 differentially expressed cDNA clones were characterized. hpS2 mRNA was elevated from 1 to 14 days after irradiation, whereas CIP1/WAF1/SDI1 remained elevated from 3 h to 14 days after irradiation. Induction of hpS2 mRNA by irradiation was independent of p53, whereas induction of CIP1/WAF1/SDI1 was observed only in wild-type p53 lines. CONCLUSIONS: A set of coordinately regulated genes, some of which are independent of p53, is associated with change in gene expression during the first 2 weeks post-irradiation.
Weeds Induce Permanent Changes in Expression of Photosynthetic Genes of Corn
USDA-ARS?s Scientific Manuscript database
Regulation of bud dormancy is important for perennial plant survival. DORMANCY-ASSOCIATED MADS-BOX (DAM) genes have been implicated in regulating both dormancy induction and release in multiple plant systems. DAM genes are similar to SHORT VEGETATIVE PHASE (SVP) of arabidopsis. In arabidopsis, SVP i...
Strong Magnetic Field Induced Changes of Gene Expression in Arabidopsis
NASA Astrophysics Data System (ADS)
Paul, A.-L.; Ferl, R. J.; Klingenberg, B.; Brooks, J. S.; Morgan, A. N.; Yowtak, J.; Meisel, M. W.
2005-07-01
We review our studies of the biological impact of magnetic field strengths of up to 30 T on transgenic arabidopsis plants engineered with a stress response gene consisting of the alcohol dehydrogenase (Adh) gene promoter driving the β-glucuronidase (GUS) gene reporter. Field strengths in excess of 15 T induce expression of the Adh/GUS transgene in the roots and leaves. Microarray analyses indicate that such field strengths have a far reaching effect on the genome. Wide spread induction of stress-related genes and transcription factors, and a depression of genes associated with cell wall metabolism are prominent examples.
Norman, C; Vidal, S; Palva, E T
1999-07-01
Identification of Arabidopsis thaliana genes responsive to plant cell-wall-degrading enzymes of Erwinia carotovora subsp. carotovora led to the isolation of a cDNA clone with high sequence homology to the gene for allene oxide synthase, an enzyme involved in the biosynthesis of jasmonates. Expression of the corresponding gene was induced by the extracellular enzymes from this pathogen as well as by treatment with methyl jasmonate and short oligogalacturonides (OGAs). This suggests that OGAs are involved in the induction of the jasmonate pathway during plant defense response to E. carotovora subsp. carotovora attack.
Induction of the early-late Ddc gene during Drosophila metamorphosis by the ecdysone receptor.
Chen, Li; Reece, Christian; O'Keefe, Sandra L; Hawryluk, Gregory W L; Engstrom, Monica M; Hodgetts, Ross B
2002-06-01
During Drosophila metamorphosis, the 'early-late' genes constitute a unique class regulated by the steroid hormone 20-hydroxyecdysone. Their induction is comprised of both a primary and a secondary response to ecdysone. Previous work has suggested that the epidermal expression of the dopa decarboxylase gene (Ddc) is likely that of a typical early-late gene. Accumulation of the Ddc transcript is rapidly initiated in the absence of protein synthesis, which implies that the ecdysone receptor plays a direct role in induction. However, full Ddc expression requires the participation of one of the transcription factors encoded by the Broad-Complex. In this paper, we characterize an ecdysone response element (EcRE) that contributes to the primary response. Using gel mobility shift assays and transgenic assays, we identified a single functional EcRE, located at position -97 to -83 bp relative to the transcription initiation site. This is the first report of an EcRE associated with an early-late gene in Drosophila. Competition experiments indicated that the affinity of the Ddc EcRE for the ecdysone receptor complex was at least four-fold less than that of the canonical EcRE of the hsp27 gene. Using in vitro mutagenesis, we determined that the reduced affinity of the EcRE resided at two positions where the nucleotides differed from those found in the canonical sequence. The ecdysone receptor, acting through this EcRE, releases Ddc from a silencing mechanism, whose cis-acting domain we have mapped to the 5'-upstream region between -2067 and -1427 bp. Deletion of this repressive element resulted in precocious expression of Ddc in both epidermis and imaginal discs. Thus, epidermal Ddc induction at pupariation is under the control of an extended genomic region that contains both positive and negative regulatory elements. Copyright 2002 Elsevier Science Ireland Ltd.
Yoon, J. Cliff; Chickering, Troy W.; Rosen, Evan D.; Dussault, Barry; Qin, Yubin; Soukas, Alexander; Friedman, Jeffrey M.; Holmes, William E.; Spiegelman, Bruce M.
2000-01-01
The nuclear receptor peroxisome proliferator-activated receptor γ regulates adipose differentiation and systemic insulin signaling via ligand-dependent transcriptional activation of target genes. However, the identities of the biologically relevant target genes are largely unknown. Here we describe the isolation and characterization of a novel target gene induced by PPARγ ligands, termed PGAR (for PPARγ angiopoietin related), which encodes a novel member of the angiopoietin family of secreted proteins. The transcriptional induction of PGAR follows a rapid time course typical of immediate-early genes and occurs in the absence of protein synthesis. The expression of PGAR is predominantly localized to adipose tissues and placenta and is consistently elevated in genetic models of obesity. Hormone-dependent adipocyte differentiation coincides with a dramatic early induction of the PGAR transcript. Alterations in nutrition and leptin administration are found to modulate the PGAR expression in vivo. Taken together, these data suggest a possible role for PGAR in the regulation of systemic lipid metabolism or glucose homeostasis. PMID:10866690
Ayil-Gutiérrez, Benajmín; Galaz-Ávalos, Rosa María; Peña-Cabrera, Eduardo; Loyola-Vargas, Victor Manuel
2013-01-01
Most of the somatic embryogenesis (SE) process requires the presence, either before or during the embryogenic process, of at least one exogenous auxin. This exogenous auxin induces the presence of endogenous auxins, which appears to be essential for SE induction. We found that during the preincubation period of SE in Coffea canephora, there is an important increase in both free and conjugated indole-3-acetic acid (IAA), as well as indole-3-butyric acid. This increase is accompanied by an increase in the expression of YUCCA (CcYUC), TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (CcTAA1), and GRETCHEN HAGEN 3 (GH3) genes. On the other hand, most of the IAA compounds decreased during the induction of SE. The results presented in this research suggest that a balance between free IAA and its amide conjugates is necessary to allow the expression of SE-related genes. PMID:24299659
Msx homeobox gene family and craniofacial development.
Alappat, Sylvia; Zhang, Zun Yi; Chen, Yi Ping
2003-12-01
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangwala, Shamina M.; Li, Xiaoyan; Lindsley, Loren
2007-05-25
Estrogen-related receptor {alpha} (ERR{alpha}) is an important mediator of mitochondrial biogenesis and function. To investigate the transcriptional network controlling these phenomena, we investigated mitochondrial gene expression in embryonic fibroblasts isolated from ERR{alpha} null mice. Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) stimulated mitochondrial gene expression program in control cells, but not in the ERR{alpha} null cells. Interestingly, the induction of levels of mitochondrial oxidative stress protection genes in response to increased PGC-1{alpha} levels was dependent on ERR{alpha}. Furthermore, we found that the PGC-1{alpha}-mediated induction of estrogen-related receptor {gamma} and nuclear respiratory factor 2 (NRF-2), was dependent on the presence of ERR{alpha}.more » Basal levels of NRF-2 were decreased in the absence of ERR{alpha}. The absence of ERR{alpha} resulted in a decrease in citrate synthase enzyme activity in response to PGC-1{alpha} overexpression. Our results indicate an essential role for ERR{alpha} as a key regulator of oxidative metabolism.« less
Chen, Fei; Chen, Xiu-Zhen; Su, Xiao-Yun; Qin, Li-Na; Huang, Zhen-Bang; Tao, Yong; Dong, Zhi-Yang
2015-10-01
Eukaryotic mitogen-activated protein kinases (MAPKs) play crucial roles in transducing environmental and developmental signals inside the cell and regulating gene expression, however, the roles of MAPKs remain largely unknown in Trichoderma reesei. T. reesei ime2 (TrIme2) encodes an Ime2-like MAPK in T. reesei. The deletion of the TrIme2 gene led to 90% increase in cellulase activity against filter paper during earlier period time of cellulase induction as well as the extracellular protein production. Compared to the parent strain, the transcriptional levels of the three major cellulase genes cbh1,cbh2, egl1 were increased by about 9 times, 4 times, 2 times, respectively, at 8 h after cellulase induction in the ΔTrIme2 mutant. In addition, the disruption of TrIme2 caused over 50% reduction of the transcript levels of cellulase transcriptional regulators cre1 and xyr1. TrIme2 functions in regulation of the expression of cellulase gene in T.reesei, and is a good candidate for genetically engineering of T. reesei for higher cellulase production.
Semi-supervised prediction of gene regulatory networks using machine learning algorithms.
Patel, Nihir; Wang, Jason T L
2015-10-01
Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we propose semi-supervised methods for GRN prediction by utilizing two machine learning algorithms, namely, support vector machines (SVM) and random forests (RF). The semi-supervised methods make use of unlabelled data for training. We investigated inductive and transductive learning approaches, both of which adopt an iterative procedure to obtain reliable negative training data from the unlabelled data. We then applied our semi-supervised methods to gene expression data of Escherichia coli and Saccharomyces cerevisiae, and evaluated the performance of our methods using the expression data. Our analysis indicated that the transductive learning approach outperformed the inductive learning approach for both organisms. However, there was no conclusive difference identified in the performance of SVM and RF. Experimental results also showed that the proposed semi-supervised methods performed better than existing supervised methods for both organisms.
Transcriptome analysis provides insights into the delayed sticky disease symptoms in Carica papaya.
Madroñero, Johana; Rodrigues, Silas P; Antunes, Tathiana F S; Abreu, Paolla M V; Ventura, José A; Fernandes, A Alberto R; Fernandes, Patricia Machado Bueno
2018-03-21
Global gene expression analysis indicates host stress responses, mainly those mediated by SA, associated to the tolerance to sticky disease symptoms at pre-flowering stage in Carica papaya. Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance.
Fox, T C; Mujer, C V; Andrews, D L; Williams, A S; Cobb, B G; Kennedy, R A; Rumpho, M E
1995-01-01
Enolase (2-phospho-D-glycerate hydrolase, EC 4.2.1.11) has been identified as an anaerobic stress protein in Echinochloa oryzoides based on the homology of its internal amino acid sequence with those of enolases from other organisms, by immunological reactivity, and induction of catalytic activity during anaerobic stress. Enolase activity was induced 5-fold in anoxically treated seedlings of three flood-tolerant species (E. oryzoides, Echinochloa phyllopogon, and rice [Oryza sativa L.]) but not in the flood-intolerant species (Echinochloa crus-pavonis). A 540-bp fragment of the enolase gene was amplified by polymerase chain reaction from cDNAs of E. phyllopogon and maize (Zea mays L.) and used to estimate the number of enolase genes and to study the expression of enolase transcripts in E. phyllopogon, E. crus-pavonis, and maize. Southern blot analysis indicated that only one enolase gene is present in either E. phyllopogon or E. crus-pavonis. Three patterns of enolase gene expression were observed in the three species studied. In E. phyllopogon, enolase induction at both the mRNA and enzyme activity levels was sustained at all times with a further induction after 48 h of anoxia. In contrast, enolase was induced in hypoxically treated maize root tips only at the mRNA level. In E. crus-pavonis, enolase mRNA and enzyme activity were induced during hypoxia, but activity was only transiently elevated. These results suggest that enolase expression in maize and E. crus-pavonis during anoxia are similarly regulated at the transcriptional level but differ in posttranslational regulation, whereas enolase is fully induced in E. phyllopogon during anaerobiosis. PMID:7480340
C-fos mediates antipsychotic-induced neurotensin gene expression in the rodent striatum.
Robertson, G S; Tetzlaff, W; Bedard, A; St-Jean, M; Wigle, N
1995-07-01
The ubiquitous inducibility of the immediate-early gene c-fos in the central nervous system has led to the search for downstream genes which are regulated by its product, Fos. Recent evidence suggests that c-fos induction by a single injection of the classical antipsychotic haloperidol may contribute to the subsequent increase in neurotensin gene expression in the rodent striatum. Consistent with this proposal, in the present study haloperidol-induced Fos-like immunoreactivity and neurotensin/neuromedin N messenger RNA were found to be expressed by the same population of striatal neurons. Moreover, inhibition of haloperidol-induced c-fos expression by intrastriatal injection of antisense phosphorothioate oligodeoxynucleotides complimentary either to bases 109-126 or 127-144 of c-fos attenuated the subsequent increase in neurotensin/neuromedin N messenger RNA. However, injection of a sense phosphorothioate oligodeoxynucleotide corresponding to bases 127-144 of c-fos did not reduce haloperidol-induced c-fos or neurotensin/neuromedin N expression. Furthermore, constitutive expression of Jun-like immunoreactivity in the striatum was not reduced by either the sense or antisense phosphorothioate oligodeoxynucleotides. Similarly, the sense and antisense phosphorothioate oligodeoxynucleotide failed to reduce proenkephalin messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA, which is located in the same striatal neurons that express haloperidol-induced neurotensin/neuromedin N messenger RNA. Lastly, haloperidol-induced increases in nerve growth factor I-A-, JunB- and FosB-like immunoreactivity and fosB messenger RNA were not decreased by intrastriatal injection of either the sense or antisense phosphorothioate oligodeoxynucleotides. These results indicate that the antisense phosphorothioate oligodeoxynucleotides attenuated haloperidol-induced neurotensin/neuromedin N expression by selectively reducing c-fos expression and emphasize the potential importance of immediate-early gene induction in the mechanism of action of this antipsychotic drug.
Nakagawa, C W; Yamada, K; Mutoh, N
2000-02-01
We examined the induction of the catalase gene (ctt1(+)) of fission yeast Schizosaccharomyces pombe in response to several stresses by using mutants of transcription factors (Atf1 and Pap1) and a series of deletion mutants of the ctt1(+) promoter region. A transcription factor, Atf1, and its binding site are necessary for the induction of ctt1(+) by osmotic stress, UV irradiation, and heat shock. Induction by menadione treatment, which produces superoxide anion, required element A, the region from -111 to -90 (numbered with the transcription start site as +1). The factor responsible for the induction of the gene by oxidative stress via element A was identified as the transcription factor Pap1. We also found that Atf1 is activated by menadione treatment in pap1 mutant cells, although it is not activated by menadione treatment in pap1(+) cells. The activity of catalase is not increased in pap1 cells by several stresses, despite mRNA induction, suggesting that Pap1 plays some role in the expression of catalase activity.
Liu, Yi-Ping; Rajamanikham, Victoria; Baron, Marissa; Patel, Sagar; Mathur, Sameer K.; Schwantes, Elizabeth A.; Ober, Carole; Jackson, Daniel J.; Gern, James E.; Lemanske, Robert F.; Smith, Judith A
2017-01-01
Background Children with risk alleles at the 17q21 genetic locus who wheeze during rhinovirus illnesses have a greatly increased likelihood of developing childhood asthma. In mice, overexpression of the 17q21 gene ORMDL3 leads to airway remodeling and hyper-responsiveness. However, the mechanisms by which ORMDL3 predisposes to asthma are unclear. Previous studies have suggested that ORMDL3 induces endoplasmic reticulum (ER) stress and production of the type I interferon (IFN) regulated chemokine CXCL10. Objective The purpose of this study was to determine the relationship between ORMDL3 and rhinovirus-induced ER stress and type I IFN in human leukocytes. Methods ER stress was monitored by measuring HSPA5, CHOP and spliced XBP1 gene expression, and type I IFN by measuring IFNB1 (IFN-β) and CXCL10 expression in human cell lines and primary leukocytes following treatment with rhinovirus. Requirements for cell contact and specific cell type in ORMDL3 induction were examined by transwell assay and depletion experiments, respectively. Finally, the effects of 17q21 genotype on the expression of ORMDL3, IFNB1, and ER stress genes were assessed. Results THP-1 monocytes overexpressing ORMDL3 responded to rhinovirus with increased IFNB1 and HSPA5. Rhinovirus-induced ORMDL3 expression in primary leukocytes required cell-cell contact, and induction was abrogated by plasmacytoid dendritic cell depletion. The degree of rhinovirus induced ORMDL3, HSPA5, and IFNB1 expression varied by leukocyte type and 17q21 genotype, with the highest expression of these genes in the asthma-associated genotype. Conclusions & Clinical Relevance Multiple lines of evidence support an association between higher ORMDL3 and increased rhinovirus-induced HSPA5 and type I IFN gene expression. These associations with ORMDL3 are cell-type specific, with the most significant 17q21 genotype effects on ORMDL3 expression and HSPA5 induction evident in B cells. Together, these findings have implications for how the interaction of increased ORMDL3 and rhinovirus may predispose to asthma. PMID:28192616
Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival
Liu, Xiao-ming; Peyton, Kelly J.; Shebib, Ahmad R.; Wang, Hong; Korthuis, Ronald J.
2011-01-01
The present study determined whether AMP-activated protein kinase (AMPK) regulates heme oxygenase (HO)-1 gene expression in endothelial cells (ECs) and if HO-1 contributes to the biological actions of this kinase. Treatment of human ECs with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) stimulated a concentration- and time-dependent increase in HO-1 protein and mRNA expression that was associated with a prominent increase in nuclear factor-erythroid 2-related factor 2 (Nrf2) protein. Induction of HO-1 was also observed in rat carotid arteries after the in vivo application of AICAR. Induction of HO-1 by AICAR was blocked by the AMPK inhibitor compound C, the adenosine kinase inhibitor 5′-iodotubercidin, and by silencing AMPK-α1/2 and was mimicked by the AMPK activator A-769662 and by infecting ECs with an adenovirus expressing constitutively active AMPK-α1. AICAR also induced a significant rise in HO-1 promoter activity that was abolished by mutating the antioxidant responsive elements of the HO-1 promoter or by the overexpression of dominant negative Nrf2. Finally, activation of AMPK inhibited cytokine-mediated EC death, and this was prevented by the HO inhibitor tin protoporphyrin-IX or by silencing HO-1 expression. In conclusion, AMPK stimulates HO-1 gene expression in human ECs via the Nrf2/antioxidant responsive element signaling pathway. The induction of HO-1 mediates the antiapoptotic effect of AMPK, and this may provide an important adaptive response to preserve EC viability during periods of metabolic stress. PMID:21037234
Kompisch, Kai Michael; Lange, Claudia; Steinemann, Doris; Skawran, Britta; Schlegelberger, Brigitte; Müller, Reinhard; Schumacher, Udo
2010-11-01
Adipose-derived stem cells (ASCs) are reported to display multilineage differentiation potential, including neuroectodermal pathways. The aim of the present study was to critically re-evaluate the potential neurogenic (trans-)differentiation capacity of ASCs using a neurogenic induction protocol based on the combination of isobutylmethylxanthine (IBMX), indomethacin and insulin. ASCs isolated from lipo-aspirate samples of five healthy female donors were characterized and potential neurogenic (trans-)differentiation was assessed by means of immunohistochemistry and gene expression analyses. Cell proliferation and cell cycle alterations were studied, and the expression of CREB/ATF transcription factors was analyzed. ASCs expressed CD59, CD90 and CD105, and were tested negative for CD34 and CD45. Under neurogenic induction, ASCs adopted a characteristic morphology comparable to neur(on)al progenitors and expressed musashi1, β-III-tubulin and nestin. Gene expression analyses revealed an increased expression of β-III-tubulin, GFAP, vimentin and BDNF, as well as SOX4 in induced ASCs. Cell proliferation was significantly reduced under neurogenic induction; cell cycle analyses showed a G2-cell cycle arrest accompanied by differential expression of key regulators of cell cycle progression. Differential expression of CREB/ATF transcription factors could be observed on neurogenic induction, pointing to a decisive role of the cAMP-CREB/ATF system. Our findings may point to a potential neurogenic (trans-)differentiation of ASCs into early neur(on)al progenitors, but do not present definite evidence for it. Especially, the adoption of a neural progenitor cell-like morphology must not automatically be misinterpreted as a specific characteristic of a respective (trans-)differentiation process, as this may as well be caused by alterations of cell cycle progression.
Rodríguez-Fuentes, Gabriela; Luna-Ramírez, Karen S; Soto, Mélina; Richardson, Kristine L
2012-04-01
Karstic areas in Yucatan are very permeable, which allows contaminants to move rapidly into the aquifer. In the present study, we evaluated gene expression of vitellogenin (VTG) and cytochrome P-450 1A (CYP1A) in caged juvenile zebrafish deployed for 15 days in 13 different water bodies, cenotes and aguadas, throughout karstic region of the Yucatan peninsula. Gene expression was evaluated using qRT-PCR. Results indicated induction of VTG in 7 water bodies with respect to reference cage. The highest relative VTG expression, about 3000 times higher than reference cage, was found in an aguada close to a cattle farm. CYP1A induction with respect to reference cage was observed in 3 water bodies, all of them located near villages or used for tourist activities. Pollutants and biomarkers of effect should be monitored in these water bodies in order to have a better understanding of the actual levels of pollutants that are present at Yucatan's aquifer and the potential risk to human and environmental health. Copyright © 2011 Elsevier Ltd. All rights reserved.
Epigenetic Induction of EGR-1 Expression by the Amyloid Precursor Protein during Exposure to Novelty
Hendrickx, Aurélie; Pierrot, Nathalie; Tasiaux, Bernadette; Schakman, Olivier; Brion, Jean-Pierre; Kienlen-Campard, Pascal; De Smet, Charles; Octave, Jean-Noël
2013-01-01
Following transcriptome comparison of primary cultures isolated from brain of mice expressing or not the amyloid precursor protein APP, we found transcription of the EGR-1 gene to be regulated by APP. In primary cultures of cortical neurons, APP significantly down regulated EGR-1 expression at both mRNA and protein levels in a γ-secretase independent manner. The intracellular domain of APP did not interact with EGR-1 gene promoter, but enrichment of acetylated histone H4 at the EGR-1 promoter region was measured in APP-/- neurons, as well as in brain of APP-/- mice, in which increase in EGR-1 expression was also measured. These results argue for an important function of APP in the epigenetic regulation of EGR-1 gene transcription both in vitro and in vivo. In APP-/- mice, constitutive overexpression of EGR-1 in brain impaired epigenetic induction of this early transcriptional regulator during exposure to novelty. Altogether, these results indicate an important function of APP in the epigenetic regulation of the transcription of EGR-1, known to be important for memory formation. PMID:24066134
Zess, Erin K; Begemann, Matthew B; Pfleger, Brian F
2016-02-01
Predictive control of gene expression is an essential tool for developing synthetic biological systems. The current toolbox for controlling gene expression in cyanobacteria is a barrier to more in-depth genetic analysis and manipulation. Towards relieving this bottleneck, this work describes the use of synthetic biology to construct an anhydrotetracycline-based induction system and adapt a trans-acting small RNA (sRNA) system for use in the cyanobacterium Synechococcus sp. strain PCC 7002. An anhydrotetracycline-inducible promoter was developed to maximize intrinsic strength and dynamic range. The resulting construct, PEZtet , exhibited tight repression and a maximum 32-fold induction upon addition of anhydrotetracycline. Additionally, a sRNA system based on the Escherichia coli IS10 RNA-IN/OUT regulator was adapted for use in Synechococcus sp. strain PCC 7002. This system exhibited 70% attenuation of target gene expression, providing a demonstration of the use of sRNAs for differential gene expression in cyanobacteria. These systems were combined to produce an inducible sRNA system, which demonstrated 59% attenuation of target gene expression. Lastly, the role of Hfq, a critical component of sRNA systems in E. coli, was investigated. Genetic studies showed that the Hfq homolog in Synechococcus sp. strain PCC 7002 did not impact repression by the engineered sRNA system. In summary, this work describes new synthetic biology tools that can be applied to physiological studies, metabolic engineering, or sRNA platforms in Synechococcus sp. strain PCC 7002. © 2015 Wiley Periodicals, Inc.
Nayak, G; Cooper, G M
2012-10-11
The phosphatidylinositol (PI) 3-kinase/Akt signaling pathway has a prominent role in cell survival and proliferation, in part, by regulating gene expression at the transcriptional level. Previous work using global expression profiling identified FOXOs and the E-box-binding transcription factors MITF and USF1 as key targets of PI 3-kinase signaling that lead to the induction of proapoptotic and cell cycle arrest genes in response to inhibition of PI 3-kinase. In this study, we investigated the role of p53 downstream of PI 3-kinase signaling by analyzing the effects of inhibition of PI 3-kinase in Rat-1 cells, which have wild-type p53, compared with Rat-1 cells expressing a dominant-negative p53 mutant. Expression of dominant-negative p53 conferred partial resistance to apoptosis induced by inhibition of PI 3-kinase. Global gene expression profiling combined with computational and experimental analysis of transcription factor binding sites demonstrated that p53, along with FOXO, MITF and USF1, contributed to gene induction in response to PI 3-kinase inhibition. Activation of p53 was mediated by phosphorylation of the histone acetyltransferase Tip60 by glycogen synthase kinase (GSK) 3, leading to activation of p53 by acetylation. Many of the genes targeted by p53 were also targeted by FOXO and E-box-binding transcription factors, indicating that p53 functions coordinately with these factors to regulate gene expression downstream of PI 3-kinase/Akt/GSK3 signaling.
Zarka, Daniel G.; Vogel, Jonathan T.; Cook, Daniel; Thomashow, Michael F.
2003-01-01
The Arabidopsis CBF1, 2, and 3 genes (also known as DREB1b, c, and a, respectively) encode transcriptional activators that have a central role in cold tolerance. CBF1-3 are rapidly induced upon exposing plants to low temperature, followed by expression of CBF-targeted genes, the CBF regulon, resulting in an increase in plant freezing tolerance. At present, little is known about the cold-sensing mechanism that controls CBF expression. Results presented here indicate that this mechanism does not require a cold shock to bring about the accumulation of CBF transcripts, but instead, absolute temperature is monitored with a greater degree of input, i.e. lower temperature, resulting in a greater output, i.e. higher levels of CBF transcripts. Temperature-shift experiments also indicate that the cold-sensing mechanism becomes desensitized to a given low temperature, such as 4°C, and that resensitization to that temperature requires between 8 and 24 h at warm temperature. Gene fusion experiments identified a 125-bp section of the CBF2 promoter that is sufficient to impart cold-responsive gene expression. Mutational analysis of this cold-responsive region identified two promoter segments that work in concert to impart robust cold-regulated gene expression. These sequences, designated ICEr1 and ICEr2 (induction of CBF expression region 1 or 2), were also shown to stimulate transcription in response to mechanical agitation and the protein synthesis inhibitor, cycloheximide. PMID:14500791
Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent
2013-04-01
Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.
2013-01-01
Background Among the many commercial opportunities afforded by somatic embryogenesis (SE), it is the ability to clonally propagate individual plants with rare or elite traits that has some of the most significant implications. This is particularly true for many long-lived species, such as conifers, but whose long generation times pose substantive challenges, including increased recalcitrance for SE as plants age. Identification of a clonal line of somatic embryo-derived trees whose shoot primordia have remained responsive to SE induction for over a decade, provided a unique opportunity to examine the molecular aspects underpinning SE within shoot tissues of adult white spruce trees. Results Microarray analysis was used to conduct transcriptome-wide expression profiling of shoot explants taken from this responsive genotype following one week of SE induction, which when compared with that of a nonresponsive genotype, led to the identification of four of the most differentially expressed genes within each genotype. Using absolute qPCR to expand the analysis to three weeks of induction revealed that differential expression of all eight candidate genes was maintained to the end of the induction treatment, albeit to differing degrees. Most striking was that both the magnitude and duration of candidate gene expression within the nonresponsive genotype was indicative of an intense physiological response. Examining their putative identities further revealed that all four encoded for proteins with similarity to angiosperm proteins known to play prominent roles in biotic defense, and that their high-level induction over an extended period is consistent with activation of a biotic defense response. In contrast, the more temperate response within the responsive genotype, including induction of a conifer-specific dehydrin, is more consistent with elicitation of an adaptive stress response. Conclusions While additional evidence is required to definitively establish an association between SE responsiveness and a specific physiological response, these results suggest that biotic defense activation may be antagonistic, likely related to the massive transcriptional and metabolic reprogramming that it elicits. A major issue for future work will be to determine how and if suppressing biotic defense activation could be used to promote a physiological state more conducive to SE induction. PMID:23937238
Kunigal, Sateesh; Ponnusamy, Moorthy P; Momi, Navneet; Batra, Surinder K; Chellappan, Srikumar P
2012-04-26
The membrane-bound mucins are thought to play an important biological role in cell-cell and cell-matrix interactions, in cell signaling and in modulating biological properties of cancer cell. MUC4, a transmembrane mucin is overexpressed in pancreatic tumors, while remaining undetectable in the normal pancreas, thus indicating a potential role in pancreatic cancer pathogenesis. The molecular mechanisms involved in the regulation of MUC4 gene are not yet fully understood. Smoking is strongly correlated with pancreatic cancer and in the present study; we elucidate the molecular mechanisms by which nicotine as well as agents like retinoic acid (RA) and interferon-γ (IFN-γ) induce the expression of MUC4 in pancreatic cancer cell lines CD18, CAPAN2, AsPC1 and BxPC3. Chromatin immunoprecipitation assays and real-time PCR showed that transcription factors E2F1 and STAT1 can positively regulate MUC4 expression at the transcriptional level. IFN-γ and RA could collaborate with nicotine in elevating the expression of MUC4, utilizing E2F1 and STAT1 transcription factors. Depletion of STAT1 or E2F1 abrogated the induction of MUC4; nicotine-mediated induction of MUC4 appeared to require α7-nicotinic acetylcholine receptor subunit. Further, Src and ERK family kinases also mediated the induction of MUC4, since inhibiting these signaling molecules prevented the induction of MUC4. MUC4 was also found to be necessary for the nicotine-mediated invasion of pancreatic cancer cells, suggesting that induction of MUC4 by nicotine and other agents might contribute to the genesis and progression of pancreatic cancer. Our studies show that agents that can promote the growth and invasion of pancreatic cancer cells induce the MUC4 gene through multiple pathways and this induction requires the transcriptional activity of E2F1 and STAT1. Further, the Src as well as ERK signaling pathways appear to be involved in the induction of this gene. It appears that targeting these signaling pathways might inhibit the expression of MUC4 and prevent the proliferation and invasion of pancreatic cancer cells.
2012-01-01
Background The membrane-bound mucins are thought to play an important biological role in cell–cell and cell–matrix interactions, in cell signaling and in modulating biological properties of cancer cell. MUC4, a transmembrane mucin is overexpressed in pancreatic tumors, while remaining undetectable in the normal pancreas, thus indicating a potential role in pancreatic cancer pathogenesis. The molecular mechanisms involved in the regulation of MUC4 gene are not yet fully understood. Smoking is strongly correlated with pancreatic cancer and in the present study; we elucidate the molecular mechanisms by which nicotine as well as agents like retinoic acid (RA) and interferon-γ (IFN-γ) induce the expression of MUC4 in pancreatic cancer cell lines CD18, CAPAN2, AsPC1 and BxPC3. Results Chromatin immunoprecipitation assays and real-time PCR showed that transcription factors E2F1 and STAT1 can positively regulate MUC4 expression at the transcriptional level. IFN-γ and RA could collaborate with nicotine in elevating the expression of MUC4, utilizing E2F1 and STAT1 transcription factors. Depletion of STAT1 or E2F1 abrogated the induction of MUC4; nicotine-mediated induction of MUC4 appeared to require α7-nicotinic acetylcholine receptor subunit. Further, Src and ERK family kinases also mediated the induction of MUC4, since inhibiting these signaling molecules prevented the induction of MUC4. MUC4 was also found to be necessary for the nicotine-mediated invasion of pancreatic cancer cells, suggesting that induction of MUC4 by nicotine and other agents might contribute to the genesis and progression of pancreatic cancer. Conclusions Our studies show that agents that can promote the growth and invasion of pancreatic cancer cells induce the MUC4 gene through multiple pathways and this induction requires the transcriptional activity of E2F1 and STAT1. Further, the Src as well as ERK signaling pathways appear to be involved in the induction of this gene. It appears that targeting these signaling pathways might inhibit the expression of MUC4 and prevent the proliferation and invasion of pancreatic cancer cells. PMID:22537161
Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe
2015-01-01
Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. PMID:25398875
Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe
2015-01-09
Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Yoda, Emiko; Paszek, Miles; Konopnicki, Camille; Fujiwara, Ryoichi; Chen, Shujuan; Tukey, Robert H
2017-04-19
Isothiocyanates, such as phenethyl isothiocyanate (PEITC), are formed following the consumption of cruciferous vegetables and generate reactive oxygen species (ROS) that lead to the induction of cytoprotective genes such as the UDP-glucuronosyltransferases (UGTs). The induction of ROS activates the Nrf2-Keap 1 pathway leading to the induction of genes through antioxidant response elements (AREs). UGT1A1, the sole enzyme responsible for the metabolism of bilirubin, can be induced following activation of Nrf2. When neonatal humanized UGT1 (hUGT1) mice, which exhibit severe levels of total serum bilirubin (TSB) because of a developmental delay in expression of the UGT1A1 gene, were treated with PEITC, TSB levels were reduced. Liver and intestinal UGT1A1 were induced, along with murine CYP2B10, a consensus CAR target gene. In both neonatal and adult hUGT1/Car -/- mice, PEITC was unable to induce CYP2B10. A similar result was observed following analysis of UGT1A1 expression in liver. However, TSB levels were still reduced in hUGT1/Car -/- neonatal mice because of ROS induction of intestinal UGT1A1. When oxidative stress was blocked by exposing mice to N-acetylcysteine, induction of liver UGT1A1 and CYP2B10 by PEITC was prevented. Thus, new findings in this report link an important role in CAR activation that is dependent upon oxidative stress.
Hu, Guo-Bin; Lou, Hui-Min; Dong, Xian-Zhi; Liu, Qiu-Ming; Zhang, Shi-Cui
2012-10-01
Interferon regulatory factor 5 (IRF5) has been identified as a key transcriptional mediator regulating expression of both type I interferons (IFNs) and proinflammatory cytokines. In this study, the cDNA and genomic sequences of IRF5 were isolated from Japanese flounder, Paralichthys olivaceus. The gene of Japanese flounder (Jf)IRF5 is 7326 bp long, contains 9 exons and 8 introns and encodes a putative protein of 472 amino acids. The predicted protein sequence shares 61.1-81.9% identity to fish IRF5 and possesses a DNA-binding domain (DBD), a middle region (MR), an IRF association domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) conserved in all known IRF5s. Phylogenetic analysis clustered it into the teleost IRF5 subgroup within vertebrate IRF5 group. JfIRF5 mRNA was constitutively expressed in all tissues examined, with higher levels observed in the gills and head kidney. Gene expression of JfIRF5 was analyzed over a 7-day time course in the gills, head kidney, spleen and muscle of Japanese flounders challenged with lymphocystis disease virus (LCDV) and polyinosinic:polycytidylic acid (poly I:C). The data showed that JfIRF5 expression was slightly up-regulated by LCDV, but its induction time was clearly moved up; in contrast, the induction upon poly I:C challenge started not earlier than day 2 post-injection and was stronger and more persistent with a later peak time in all four organs. The late and long-lasting inductive expression of JfIRF5 following poly I:C challenge suggests that it might be an interferon stimulated gene (ISG), the induction of which is driven by poly I:C-induced type I IFNs. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehmeyer, B.; Cashmore, A.R.; Schaefer, E.
Phytochrome and the blue ultraviolet-A photoreceptor control light-induced expression of genes encoding the chlorophyll a/b binding protein of photosystem II and photosystem I and the genes for the small subunit of the ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (tomato) and Nicotiana tabacum (tobacco). A high irradiance response also controls the induction of these genes. Genes encoding photosystem II- and I-associated chlorophyll a/b binding proteins both exhibit a transient rapid increase in expression in response to light pulse or to continuous irradiation. In contrast, genes encoding the small subunit exhibit a continuous increase in expression in response to light.more » These distinct expression characteristics are shown to reflect differences at the level of transcription.« less
Kovalev, Grigoriy; Duus, Karen; Wang, Liping; Lee, Robert; Bonyhadi, Mark; Ho, David; McCune, Joseph M.; Kaneshima, Hideto; Su, Lishan
2015-01-01
The SCID-hu Thy/Liv mouse and human fetal thymic organ culture (HF-TOC) models have been used to explore the pathophysiologic mechanisms of HIV-1 infection in the thymus. We report here that HIV-1 infection of the SCID-hu Thy/Liv mouse leads to the induction of MHC class I (MHCI) expression on CD4+CD8+ (DP) thymocytes, which normally express low levels of MHCI. Induction of MHCI on DP thymocytes in HIV-1-infected Thy/Liv organs precedes their depletion and correlates with the pathogenic activity of the HIV-1 isolates. Both MHCI protein and mRNA are induced in thymocytes from HIV-1-infected Thy/Liv organs, indicating induction of MHCI gene expression. Indirect mechanisms are involved, because only a fraction (<10%) of the DP thymocytes were directly infected by HIV-1, although the majority of DP thymocytes are induced to express high levels of MHCI. We further demonstrate that IL-10 is induced in HIV-1-infected thymus organs. Similar HIV-1-mediated induction of MHCI expression was observed in HF-TOC assays. Exogenous IL-10 in HF-TOC induces MHCI expression on DP thymocytes. Therefore, HIV-1 infection of the thymus organ leads to induction of MHCI expression on immature thymocytes via indirect mechanisms involving IL-10. Overexpression of MHCI on DP thymocytes can interfere with thymocyte maturation and may contribute to HIV-1-induced thymocyte depletion. PMID:10358212
Sun, Guoqiang; Yu, Ruth T; Evans, Ronald M; Shi, Yanhong
2007-09-25
TLX is a transcription factor that is essential for neural stem cell proliferation and self-renewal. However, the molecular mechanism of TLX-mediated neural stem cell proliferation and self-renewal is largely unknown. We show here that TLX recruits histone deacetylases (HDACs) to its downstream target genes to repress their transcription, which in turn regulates neural stem cell proliferation. TLX interacts with HDAC3 and HDAC5 in neural stem cells. The HDAC5-interaction domain was mapped to TLX residues 359-385, which contains a conserved nuclear receptor-coregulator interaction motif IXXLL. Both HDAC3 and HDAC5 have been shown to be recruited to the promoters of TLX target genes along with TLX in neural stem cells. Recruitment of HDACs led to transcriptional repression of TLX target genes, the cyclin-dependent kinase inhibitor, p21(CIP1/WAF1)(p21), and the tumor suppressor gene, pten. Either inhibition of HDAC activity or knockdown of HDAC expression led to marked induction of p21 and pten gene expression and dramatically reduced neural stem cell proliferation, suggesting that the TLX-interacting HDACs play an important role in neural stem cell proliferation. Moreover, expression of a TLX peptide containing the minimal HDAC5 interaction domain disrupted the TLX-HDAC5 interaction. Disruption of this interaction led to significant induction of p21 and pten gene expression and to dramatic inhibition of neural stem cell proliferation. Taken together, these findings demonstrate a mechanism for neural stem cell proliferation through transcriptional repression of p21 and pten gene expression by TLX-HDAC interactions.
Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Sang-Hee; Kwon, Daeho; Shin, Ho-Joon
2012-08-01
Naegleria fowleri is a pathogenic free-living amoeba which causes primary amoebic meningoencephalitis in humans and experimental animals. To investigate the mechanisms of such inflammatory diseases, potential chemokine gene activation in human astroglial cells was investigated following treatment with N. fowleri lysates. We demonstrated that N. fowleri are potent inducers for the expression of interleukin-8 (IL-8) genes in human astroglial cells which was preceded by activation of extracellular signal-regulated kinase (ERK). In addition, N. fowleri lysates induces the DNA binding activity of activator protein-1 (AP-1), an important transcription factor for IL-8 induction. The specific mitogen-activated protein kinase kinase/ERK inhibitor, U0126, blocks N. fowleri-mediated AP-1 activation and subsequent IL-8 induction. N. fowleri-induced IL-8 expression requires activation of ERK in human astroglial cells. These findings indicate that treatment of N. fowleri on human astroglial cells leads to the activation of AP-1 and subsequent expression of IL-8 which are dependent on ERK activation. These results may help understand the N. fowleri-mediated upregulation of chemokine and cytokine expression in the astroglial cells.
Scherer, Christina A; Magness, Charles L; Steiger, Kathryn V; Poitinger, Nicholas D; Caputo, Christine M; Miner, Douglas G; Winokur, Patricia L; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A; Gillham, Martha H; Haulman, N Jean; Stapleton, Jack T; Iadonato, Shawn P
2007-08-29
Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents.
Apple juice intervention modulates expression of ARE-dependent genes in rat colon and liver.
Soyalan, Bülent; Minn, Jutta; Schmitz, Hans J; Schrenk, Dieter; Will, Frank; Dietrich, Helmut; Baum, Matthias; Eisenbrand, Gerhard; Janzowski, Christine
2011-03-01
The risk of cancer and other degenerative diseases is inversely correlated with consumption of fruits and vegetables. This beneficial effect is mainly attributed to secondary plant constituents such as polyphenols, supposed to play a major role in protection against ROS (reactive oxygen species)-associated toxicity. To elucidate the potential of differently manufactured apple juices (clear AJ/cloudy AJ/smoothie, in comparison with a polyphenol-free control juice) to modulate expression of ARE-dependent genes. In male Sprague-Dawley rats (n = 8/group; 10d juice intervention, 4d wash-out; 4 treatment cycles), expression of target genes (superoxide dismutase, SOD1/SOD2; glutathione peroxidase, GPX1/GPX2; γ-glutamylcysteine ligase, GCLC/GCLM; glutathione reductase, GSR; catalase, CAT; NAD(P)H:quinone oxidoreductase-1, NQO1 and transcription factor erythroid-derived 2-like-2, Nrf2) was quantified with duplex RT-PCR, using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as control. In colon and liver of rats consuming polyphenol-free control juice, rather similar basic expressions were observed (relative GAPDH ratios ranging from 2 to 0.7 and 2.5-0.3, respectively). In the distal colon, apple juice intervention slightly but significantly induced most genes (e.g. GPX2, GSR, CAT, Nrf2; p < 0.001), whereas in the liver only GPX1 and NQO1 mRNA were up-regulated; other hepatic target genes were not affected or down-regulated (SOD1, SOD2, GCLC/M, GSR), concomitant with the absence of Nrf2 induction. Induction of antioxidant gene expression differed with juice type (cloudy AJ > clear AJ ~ smoothie). Taken together, the results underline the potential of polyphenol-rich apple juice to increase the expression of ARE-dependent antioxidant genes.
Lösing, Pascal; Niturad, Cristina Elena; Harrer, Merle; Reckendorf, Christopher Meyer Zu; Schatz, Theresa; Sinske, Daniela; Lerche, Holger; Maljevic, Snezana; Knöll, Bernd
2017-07-17
A hallmark of temporal lobe epilepsy (TLE) is hippocampal neuronal demise and aberrant mossy fiber sprouting. In addition, unrestrained neuronal activity in TLE patients induces gene expression including immediate early genes (IEGs) such as Fos and Egr1.We employed the mouse pilocarpine model to analyze the transcription factor (TF) serum response factor (SRF) in epileptogenesis, seizure induced histopathology and IEG induction. SRF is a neuronal activity regulated TF stimulating IEG expression as well as nerve fiber growth and guidance. Adult conditional SRF deficient mice (Srf CaMKCreERT2 ) were more refractory to initial status epilepticus (SE) acquisition. Further, SRF deficient mice developed more spontaneous recurrent seizures (SRS). Genome-wide transcriptomic analysis uncovered a requirement of SRF for SE and SRS induced IEG induction (e.g. Fos, Egr1, Arc, Npas4, Btg2, Atf3). SRF was required for epilepsy associated neurodegeneration, mossy fiber sprouting and inflammation. We uncovered MAP kinase signaling as SRF target during epilepsy. Upon SRF ablation, seizure evoked induction of dual specific phosphatases (Dusp5 and Dusp6) was reduced. Lower expression of these negative ERK kinase regulators correlated with altered P-ERK levels in epileptic Srf mutant animals.Overall, this study uncovered an SRF contribution to several processes of epileptogenesis in the pilocarpine model.
Matschegewski, Claudia; Zetzsche, Holger; Hasan, Yaser; Leibeguth, Lena; Briggs, William; Ordon, Frank; Uptmoor, Ralf
2015-01-01
Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature-dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r2 = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature-regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars. PMID:26442034
Kok, Tineke; Wolters, Henk; Bloks, Vincent W; Havinga, Rick; Jansen, Peter L M; Staels, Bart; Kuipers, Folkert
2003-01-01
Fatty acids are natural ligands of the peroxisome proliferator-activated receptor alpha (PPARalpha). Synthetic ligands of this nuclear receptor, i.e., fibrates, induce the hepatic expression of the multidrug resistance 2 gene (Mdr2), encoding the canalicular phospholipid translocator, and affect hepatobiliary lipid transport. We tested whether fasting-associated fatty acid release from adipose tissues alters hepatic transporter expression and bile formation in a PPARalpha-dependent manner. A 24-hour fasting/48-hour refeeding schedule was used in wild-type and Pparalpha((-/-)) mice. Expression of genes involved in the control of bile formation was determined and related to secretion rates of biliary components. Expression of Pparalpha, farnesoid X receptor, and liver X receptor alpha genes encoding nuclear receptors that control hepatic bile salt and sterol metabolism was induced on fasting in wild-type mice only. The expression of Mdr2 was 5-fold increased in fasted wild-type mice and increased only marginally in Pparalpha((-/-)) mice, and it normalized on refeeding. Mdr2 protein levels and maximal biliary phospholipid secretion rates were clearly increased in fasted wild-type mice. Hepatic expression of the liver X receptor target genes ATP binding cassette transporter a1 (Abca1), Abcg5, and Abcg8, implicated in hepatobiliary cholesterol transport, was induced in fasted wild-type mice only. However, the maximal biliary cholesterol secretion rate was reduced by approximately 50%. Induction of Mdr2 expression and function is part of the PPARalpha-mediated fasting response in mice. Fasting also induces expression of the putative hepatobiliary cholesterol transport genes Abca1, Abcg5, and Abcg8, but, nonetheless, maximal biliary cholesterol excretion is decreased after fasting.
Time-Dependent Effects of Localized Inflammation on Peripheral Clock Gene Expression in Rats
Westfall, Susan; Aguilar-Valles, Argel; Mongrain, Valérie; Luheshi, Giamal N.; Cermakian, Nicolas
2013-01-01
Many aspects of the immune system, including circulating cytokine levels as well as counts and function of various immune cell types, present circadian rhythms. Notably, the mortality rate of animals subjected to high doses of lipopolysaccharide is dependent on the time of treatment. In addition, the severity of symptoms of various inflammatory conditions follows a daily rhythmic pattern. The mechanisms behind the crosstalk between the circadian and immune systems remain elusive. Here we demonstrate that localized inflammation induced by turpentine oil (TURP) causes a time-dependent induction of interleukin (IL)-6 and has time-, gene- and tissue-specific effects on clock gene expression. More precisely, TURP blunts the peak of Per1 and Per2 expression in the liver while in other tissues, the expression nadir is elevated. In contrast, Rev-erbα expression remains relatively unaffected by TURP treatment. Co-treatment with the anti-inflammatory agent IL-1 receptor antagonist (IL-1Ra) did not alter the response of Per2 to TURP treatment in liver, despite the reduced induction of fever and IL-6 serum levels. This indicates that the TURP-mediated changes of Per2 in the liver might be due to factors other than systemic IL-6 and fever. Accordingly, IL-6 treatment had no effect on clock gene expression in HepG2 liver carcinoma cells. Altogether, we show that localized inflammation causes significant time-dependent changes in peripheral circadian clock gene expression, via a mechanism likely involving mediators independent from IL-6 and fever. PMID:23527270
Requirement for STAT1 in LPS-induced gene expression in macrophages.
Ohmori, Y; Hamilton, T A
2001-04-01
This study examines the role of the signal transducer and activator of transcription 1 (STAT1) in induction of lipopolysaccharide (LPS)-stimulated gene expression both in vitro and in vivo. LPS-induced expression of an interferon (IFN)-inducible 10-kDa protein (IP-10), IFN regulatory factor-1 (IRF-1), and inducible nitric oxide synthase (iNOS) mRNAs was severely impaired in macrophages prepared from Stat1-/- mice, whereas levels of tumor necrosis factor alpha and KC (a C-X-C chemokine) mRNA in LPS-treated cell cultures were unaffected. A similar deficiency in LPS-induced gene expression was observed in livers and spleens from Stat1-/- mice. The reduced LPS-stimulated gene expression seen in Stat1-/- macrophages was not the result of reduced activation of nuclear factor kappaB. LPS stimulated the delayed activation of both IFN-stimulated response element and IFN-gamma-activated sequence binding activity in macrophages from wild-type mice. Activation of these STAT1-containing transcription factors was mediated by the intermediate induction of type I IFNs, since the LPS-induced IP-10, IRF-1, and iNOS mRNA expression was markedly reduced in macrophages from IFN-alpha/betaR-/- mice and blocked by cotreatment with antibodies against type I IFN. These results indicate that indirect activation of STAT1 by LPS-induced type I IFN participates in promoting optimal expression of LPS-inducible genes, and they suggest that STAT1 may play a critical role in innate immunity against gram-negative bacterial infection.
Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea
2017-08-01
Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent copper accumulation in the cytoplasm and the nucleus. Modulation of gene expression by CuO NP appeared to be primarily oxidative stress-related and was more pronounced in redox-sensitive BEAS-2B cells. Regarding CuCl 2 , relevant modulations of gene expression were restricted to cytotoxic concentrations provoking impaired copper homoeostasis.
Lin, Liangcai; Chen, Yong; Li, Jingen; Wang, Shanshan; Sun, Wenliang; Tian, Chaoguang
2017-04-01
To elucidate the mechanism of cellulase signal transduction in filamentous fungi including the components of the cellulase induction pathway. Neurospora crassa ncw-1 encodes a non-anchored cell wall protein. The absence of ncw-1 increased cellulase gene expression and this is not due to relieving carbon catabolite repression mediated by the cre-1 pathway. A mutant lacking genes encoding both three major β-glucosidase enzymes and NCW-1 (Δ3βGΔncw-1) was constructed. Transcriptome analysis of the quadruple mutant demonstrated enhanced expression of cellodextrin transporters after ncw-1 deletion, indicating that ncw-1 affects cellulase expression and production by inhibiting the uptake of the cellodextrin. NCW-1 is a novel component that plays a critical role in the cellulase induction signaling pathway.
Preston, Jill C; Jorgensen, Stacy A; Jha, Suryatapa G
2014-01-01
Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene Suppressor Of Overexpression of Constans 1 (SOC1) in the short-lived perennial Petunia hybrida (petunia, Solanaceae). Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes Unshaven (UNS) and Floral Binding Protein 21 (FBP21), but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods.
Preston, Jill C.; Jorgensen, Stacy A.; Jha, Suryatapa G.
2014-01-01
Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in the short-lived perennial Petunia hybrida (petunia, Solanaceae). Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes UNSHAVEN (UNS) and FLORAL BINDING PROTEIN 21 (FBP21), but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods. PMID:24787903
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collart, F.R.; Horio, M.; Huberman, E.
1995-05-01
We investigated the role of reactive oxygen intermediates and protein kinase C in the induction of expression of the c-jun gene in human ML-2 leukemic cells and normal human DET-551 fibroblasts by comparing the effects of exposure to either ionizing radiation or H{sub 2}O{sub 2} in the presence or absence of appropriate inhibitors. In these cell types, the radiation-and H{sub 2}O{sub 2}-mediated increase in c-jun mRNA levels could be prevented by pretreatment of the cells with N-acetylcysteine, and antioxidant, or H7, an inhibitor of protein kinase C and protein kinase A, but not by HA1004, a specific inhibitor of proteinmore » kinase A and G. These results suggest a role for protein kinase C and reactive oxygen intermediates in the induction of c-jun gene expression in both normal and tumor cells. We also investigated potential differences in c-jun gene expression induced by radiation or H{sub 2}O{sub 2} in normal and tumor cells by examining steady-state c-jun mRNA levels in a number of human fibroblast, leukemia, melanoma, sarcoma and carcinoma cell types. We observed heterogeneity in the steady-state level of c-jun mRNA in both the untreated normal and tumor cells and in such cells exposed to ionizing radiation or to H{sub 2}O{sub 2}. Exposure to radiation produced a varied response which ranged from little or no induction to an increase in the steady-state level of the c-jun mRNA of more than two orders of magnitude. Exposure to H{sub 2}O{sub 2} gave a pattern similar to that of ionizing radiation. The basis for the differential induction in response to these agents may be attributable to either cell lineage or genetic heterogeneity or a combination of these two parameters. 30 refs., 7 figs., 1 tab.« less
Parathyroid hormone induces the Nrna family of nuclear orphan receptors in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirih, Flavia Q.; Aghaloo, Tara L.; Bezouglaia, Olga
2005-07-01
Parathyroid hormone (PTH) has both anabolic and catabolic effects on bone metabolism, although the molecular mechanisms mediating these effects are largely unknown. Among the transcription factors induced by Pth in osteoblasts are the nerve growth factor-inducible factor B (NR4A; NGFI-B) family of orphan nuclear receptors: Nurr1, Nur77, and NOR-1. PTH induces NR4A members through the cAMP-protein kinase A (PKA) pathway in vitro. We report here that PTH rapidly and transiently induced expression of all three NR4A genes in PTH-target tissues in vivo. In calvaria, long bones, and kidneys, NR4A induction was maximal 0.5-1 h after a single intraperitoneal (i.p.) injectionmore » of 80 {mu}g/kg PTH. Nur77 demonstrated the highest expression, followed, in order, by Nurr1 and NOR-1. In calvaria and long bone, PTH-induced expression of each NR4A gene was detectable at 10 {mu}g/kg i.p. with maximum induction at 40-80 {mu}g/kg. PTH (3-34) did not induce NR4A mRNA levels in calvaria, long bone, and kidney in vivo, confirming our in vitro results that NR4A genes are induced primarily through the cAMP-PKA pathway. The magnitude of PTH-induced NR4A expression was comparable in vivo and in vitro. However, NR4A mRNA levels peaked and returned to baseline faster in vivo. Both in vivo and in vitro, PTH induced NR4A pre-mRNA levels suggesting that induction of these genes is, at least in part, through activation of mRNA synthesis. The in vivo induction of the NR4A family members by PTH suggests their involvement in, at least some, PTH-induced changes in bone metabolism.« less
Zhou, Qingxin; Xu, Jintao; Kou, Yanbo; Lv, Xinxing; Zhang, Xi; Zhao, Guolei; Zhang, Weixin; Chen, Guanjun
2012-01-01
Appropriate perception of cellulose outside the cell by transforming it into an intracellular signal ensures the rapid production of cellulases by cellulolytic Hypocrea jecorina. The major extracellular β-glucosidase BglI (CEL3a) has been shown to contribute to the efficient induction of cellulase genes. Multiple β-glucosidases belonging to glycosyl hydrolase (GH) family 3 and 1, however, exist in H. jecorina. Here we demonstrated that CEL1b, like CEL1a, was an intracellular β-glucosidase displaying in vitro transglycosylation activity. We then found evidence that these two major intracellular β-glucosidases were involved in the rapid induction of cellulase genes by insoluble cellulose. Deletion of cel1a and cel1b significantly compromised the efficient gene expression of the major cellulase gene, cbh1. Simultaneous absence of BglI, CEL1a, and CEL1b caused the induction of the cellulase gene by cellulose to further deteriorate. The induction defect, however, was not observed with cellobiose. The absence of the three β-glucosidases, rather, facilitated the induced synthesis of cellulase on cellobiose. Furthermore, addition of cellobiose restored the productive induction on cellulose in the deletion strains. The results indicate that the three β-glucosidases may not participate in transforming cellobiose beyond hydrolysis to provoke cellulase formation in H. jecorina. They may otherwise contribute to the accumulation of cellobiose from cellulose as inducing signals. PMID:23002106
Harjes, Ulrike; Bridges, Esther; McIntyre, Alan; Fielding, Barbara A.; Harris, Adrian L.
2014-01-01
Fatty acid-binding protein 4 (FABP4) is an adipogenic protein and is implicated in atherosclerosis, insulin resistance, and cancer. In endothelial cells, FABP4 is induced by VEGFA, and inhibition of FABP4 blocks most of the VEGFA effects. We investigated the DLL4-NOTCH-dependent regulation of FABP4 in human umbilical vein endothelial cells by gene/protein expression and interaction analyses following inhibitor treatment and RNA interference. We found that FABP4 is directly induced by NOTCH. Stimulation of NOTCH signaling with human recombinant DLL4 led to FABP4 induction, independently of VEGFA. FABP4 induction by VEGFA was reduced by blockade of DLL4 binding to NOTCH or inhibition of NOTCH signal transduction. Chromatin immunoprecipitation of the NOTCH intracellular domain showed increased binding to two specific regions in the FABP4 promoter. The induction of FABP4 gene expression was dependent on the transcription factor FOXO1, which was essential for basal expression of FABP4, and FABP4 up-regulation following stimulation of the VEGFA and/or the NOTCH pathway. Thus, we show that the DLL4-NOTCH pathway mediates endothelial FABP4 expression. This indicates that induction of the angiogenesis-restricting DLL4-NOTCH can have pro-angiogenic effects via this pathway. It also provides a link between DLL4-NOTCH and FOXO1-mediated regulation of endothelial gene transcription, and it shows that DLL4-NOTCH is a nodal point in the integration of pro-angiogenic and metabolic signaling in endothelial cells. This may be crucial for angiogenesis in the tumor environment. PMID:24939870
Identification of Primary Transcriptional Regulation of Cell Cycle-Regulated Genes upon DNA Damage
Zhou, Tong; Chou, Jeff; Mullen, Thomas E.; Elkon, Rani; Zhou, Yingchun; Simpson, Dennis A.; Bushel, Pierre R.; Paules, Richard S.; Lobenhofer, Edward K.; Hurban, Patrick; Kaufmann, William K.
2007-01-01
The changes in global gene expression in response to DNA damage may derive from either direct induction or repression by transcriptional regulation or indirectly by synchronization of cells to specific cell cycle phases, such as G1 or G2. We developed a model that successfully estimated the expression levels of >400 cell cycle-regulated genes in normal human fibroblasts based on the proportions of cells in each phase of the cell cycle. By isolating effects on the gene expression associated with the cell cycle phase redistribution after genotoxin treatment, the direct transcriptional target genes were distinguished from genes for which expression changed secondary to cell synchronization. Application of this model to ionizing radiation (IR)-treated normal human fibroblasts identified 150 of 406 cycle-regulated genes as putative direct transcriptional targets of IR-induced DNA damage. Changes in expression of these genes after IR treatment derived from both direct transcriptional regulation and cell cycle synchronization. PMID:17404513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin-Sun; Kim, Hee-Sun, E-mail: hskimp@ewha.ac.kr
2014-05-16
Highlights: • tBHQ increased HO-1 mRNA and protein levels in rat primary astrocytes. • tBHQ enhanced HO-1 gene transcription in an ARE-dependent manner. • tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. • Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. • Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction. - Abstract: Hemeoxygenase-1 (HO-1) is a phase II antioxidant enzyme that is primarily involved in detoxification and cytoprotection in a variety of tissues. However, the mechanism underlying HO-1 gene expression remains unclear. In the present study, we investigatedmore » the regulation of HO-1 expression in primary cultured astrocytes by using the natural antioxidant compound tertiary butylhydroquinone (tBHQ). We found that tBHQ increased HO-1 mRNA and protein levels. Promoter analysis revealed that tBHQ enhanced HO-1 gene transcription in an antioxidant response element (ARE)-dependent manner. In addition, tBHQ increased the nuclear translocation and DNA binding of Nrf2 and c-Jun to ARE. Small interfering RNA (siRNA) experiments demonstrated that Nrf2 and c-Jun are involved in the differential modulation of HO-1 expression. Thus, Nrf2 knockdown reduced the basal level of HO-1 expression but did not affect the fold induction by tBHQ. On the other hand, knockdown of c-Jun diminished tBHQ-mediated induction of HO-1 without affecting basal expression. The data suggest that Nrf2 generally modulates the basal expression of HO-1, while c-Jun mediates HO-1 induction in response to tBHQ. The results of co-immunoprecipitation assays demonstrated a physical interaction between Nrf2 and c-Jun in tBHQ-treated astrocytes. The results suggest that Nrf2 and c-Jun regulate HO-1 expression via their coordinated interaction in tBHQ-treated rat primary astrocytes.« less
A transcription activator-like effector (TALE) induction system mediated by proteolysis.
Copeland, Matthew F; Politz, Mark C; Johnson, Charles B; Markley, Andrew L; Pfleger, Brian F
2016-04-01
Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic.
A transcription activator-like effector induction system mediated by proteolysis
Copeland, Matthew F.; Politz, Mark C.; Johnson, Charles B.; Markley, Andrew L.; Pfleger, Brian F.
2016-01-01
Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications due to their customizable DNA binding specificity. In this work we expand the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded following the induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator agnostic. PMID:26854666
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at; Fullar, Alexandra, E-mail: fullarsz@gmail.com; 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest
2011-09-10
Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated withmore » IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the presence of SCC-25 tumor cells. IL1-{beta} receptor expression in fibroblasts, especially in CAFs represents a major option in coordination of fibroblast and tumor behavior. A key event in IL1-{beta} signaling, the phosphorylation of IRAK1, occurred in co-cultured fibroblasts, which has lead to nuclear translocation of NF{kappa}B{alpha}, and finally to induction of several genes, including BDNF, IRF1, IL-6 and COX-2. The most enhanced induction was found for IL-6 and COX-2.« less
INDUCTION OF CYTOCHROME P450 ISOFORMS IN RAT LIVER BY TWO CONAZOLES, TRIADIMEFON AND MYCLOBUTANIL
1. This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague-Dawley rats. Rats were dosed by gavage for 1...
Modulation and Expression of Tumor Suppressor Genes by Environmental Agents.
1996-12-01
were developed to evaluate alterations in the retinoblastoma gene in retinoblastoma and hepatocarcinomas following induction with known environmental...Tumors (3) Hepatocarcinomas (4) MRb-1 + + + + MRb-2 + + MRb-3 + + + + MRb-4 + + MRb-5 + + MRb-6 + + + + ** Studies in progress Figure 25. Screening of
Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes.
Stoney, Patrick N; Helfer, Gisela; Rodrigues, Diana; Morgan, Peter J; McCaffery, Peter
2016-03-01
Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)-synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA-responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1-expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus. © 2015 Wiley Periodicals, Inc.
Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik
2017-01-01
Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907
Tron, Kyrylo; Samoylenko, Anatoly; Musikowski, Gernot; Kobe, Fritz; Immenschuh, Stephan; Schaper, Fred; Ramadori, Giuliano; Kietzmann, Thomas
2006-07-01
Heme oxygenase-1 (HO-1) can be induced by various stimuli, one of which is interleukin-6 (IL-6). Therefore, the aim of this study was to elucidate the molecular mechanisms responsible for IL-6-dependent HO-1 induction in the liver. The IL-6-dependent HO-1 regulation in rat primary hepatocytes and HepG2 hepatoma cells was studied by Northern and Western blot analyses, HO-1 promoter reporter gene assays and EMSA. The HO-1 expression was transcriptionally induced by IL-6 in a time- and dose-dependent manner. Activation of signal transducers and activators of transcription (STAT) factors by the IL-6 receptor was crucial for HO-1 induction. By contrast, negative regulation of HO-1 expression appeared to be mediated through the SH2-domain-containing tyrosine phosphatase-2 (SHP2)/ suppressors of cytokine signaling-3 (SOCS3) binding site within the gp130 IL-6 receptor subunit. Among the three putative STAT binding elements (SBE) in the HO-1 promoter, only the distal one was functional and when deleted, the remaining Luc induction was completely obliterated by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. The HO-1 SBE3 mediates HO-1 gene induction by IL-6 mainly via activation of the Jak/STAT pathway.
Cloning of soybean genes induced during hypersensitive cell death caused by syringolide elicitor.
Hagihara, Takuya; Hashi, Masaru; Takeuchi, Yoji; Yamaoka, Naoto
2004-02-01
Syringolide elicitors produced by bacteria expressing Pseudomonas syringae pv. glycinea avirulence gene D (avrD) induce hypersensitive cell death (HCD) only in soybean (Glycine max [L.] Merr.) plants carrying the Rpg4 disease resistance gene. Employing a differential display method, we isolated 13 gene fragments induced in cultured cells of a soybean cultivar Harosoy (Rpg4) treated with syringolides. Several genes for isolated fragments were induced by syringolides in an rpg4 cultivar Acme as well as in Harosoy; however, the genes for seven fragments designated as SIH (for syringolide-induced/ HCD associated) were induced exclusively or strongly in Harosoy. cDNA clones for SIH genes were obtained from a cDNA library of Harosoy treated with syringolide. Several sequences are homologous to proteins associated with plant defense responses. The SIH genes did not respond to a non-specific beta-glucan elicitor, which induces phytoalexin accumulation but not HCD, suggesting that the induction of the SIH genes is specific for the syringolide-Harosoy interaction. HCD and the induction of SIH genes by syringolides were independent of H(2)O(2). On the other hand, Ca(2+) was required for HCD and the induction of some SIH genes. These results suggest that the induction of SIH genes by syringolides could be activated through the syringolide-specific signaling pathway and the SIH gene products may play an important role(s) in the processes of HCD induced by syringolides.
Schuster, Martin; Greenberg, E Peter
2007-08-22
Quorum-sensing regulation of gene expression in Pseudomonas aeruginosa is complex. Two interconnected acyl-homoserine lactone (acyl-HSL) signal-receptor pairs, 3-oxo-dodecanoyl-HSL-LasR and butanoyl-HSL-RhlR, regulate more than 300 genes. The induction of most of the genes is delayed during growth of P. aeruginosa in complex medium, cannot be advanced by addition of exogenous signal, and requires additional regulatory components. Many of these late genes can be induced by addition of signals early by using specific media conditions. While several factors super-regulate the quorum receptors, others may co-regulate target promoters or may affect expression posttranscriptionally. To better understand the contributions of super-regulation and co-regulation to quorum-sensing gene expression, and to better understand the general structure of the quorum sensing network, we ectopically expressed the two receptors (in the presence of their cognate signals) and another component that affects quorum sensing, the stationary phase sigma factor RpoS, early in growth. We determined the effect on target gene expression by microarray and real-time PCR analysis. Our results show that many target genes (e.g. lasB and hcnABC) are directly responsive to receptor protein levels. Most genes (e.g. lasA, lecA, and phnAB), however, are not significantly affected, although at least some of these genes are directly regulated by quorum sensing. The majority of promoters advanced by RhlR appeared to be regulated directly, which allowed us to build a RhlR consensus sequence. The direct responsiveness of many quorum sensing target genes to receptor protein levels early in growth confirms the role of super-regulation in quorum sensing gene expression. The observation that the induction of most target genes is not affected by signal or receptor protein levels indicates that either target promoters are co-regulated by other transcription factors, or that expression is controlled posttranscriptionally. This architecture permits the integration of multiple signaling pathways resulting in quorum responses that require a "quorum" but are otherwise highly adaptable and receptive to environmental conditions.
Yang, Jie; Lin, Qi; Lin, Juan; Ye, Xiuyun
2016-01-01
With its ability to produce ligninolytic enzymes such as laccases, white-rot basidiomycete Cerrena unicolor, a medicinal mushroom, has great potential in biotechnology. Elucidation of the expression profiles of genes encoding ligninolytic enzymes are important for increasing their production. Quantitative real-time polymerase chain reaction (qPCR) is a powerful tool to study transcriptional regulation of genes of interest. To ensure accuracy and reliability of qPCR analysis of C. unicolor, expression levels of seven candidate reference genes were studied at different growth phases, under various induction conditions, and with a range of carbon/nitrogen ratios and carbon and nitrogen sources. The stability of the genes were analyzed with five statistical approaches, namely geNorm, NormFinder, BestKeeper, the ΔCt method, and RefFinder. Our results indicated that the selection of reference genes varied with sample sets. A combination of four reference genes (Cyt-c, ATP6, TEF1, and β-tubulin) were recommended for normalizing gene expression at different growth phases. GAPDH and Cyt-c were the appropriate reference genes under different induction conditions. ATP6 and TEF1 were most stable in fermentation media with various carbon/nitrogen ratios. In the fermentation media with various carbon or nitrogen sources, 18S rRNA and GAPDH were the references of choice. The present study represents the first validation analysis of reference genes in C. unicolor and serves as a foundation for its qPCR analysis.
Vivar, Juan C.; Knight, Megan S.; Pointer, Mildred A.; Gwathmey, Judith K.; Ghosh, Sujoy
2014-01-01
The essential branched-chain amino acids (BCAA), leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2) and branched-chain alpha keto acid dehydrogenase (Bckdha) was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4) compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our understanding of the transcriptomic response of this pathway to variations in nutrient availability. PMID:25050624
Wang, Judy; Chen, Paul; Mrkobrada, Marko; Hu, Meiduo; Vallis, Katherine A; Reilly, Raymond M
2003-09-01
Molecular imaging of the expression of key genes which determine the response to DNA damage following cancer treatment may predict the effectiveness of a particular treatment strategy. A prominent early response gene for DNA damage is the gene encoding p21(WAF-1/CIP-1), a cyclin-dependent kinase inhibitor that regulates progression through the cell cycle. In this study, we explored the feasibility of imaging p21(WAF-1/CIP-1) gene expression at the mRNA level using an 18-mer phosphorothioated antisense oligodeoxynucleotide (ODN) labeled with (111)In. The known induction of the p21(WAF-1/CIP-1) gene in MDA-MB-468 human breast cancer cells following exposure to epidermal growth factor (EGF) was used as an experimental tool. Treatment of MDA-MB-468 cells in vitro with EGF (20 n M) increased the ratio of p21(WAF-1/CIP-1) mRNA/beta-actin mRNA threefold within 2 h as measured by the reverse transcription polymerase chain reaction (RT-PCR). A concentration-dependent inhibition of EGF-induced p21(WAF-1/CIP-1) protein expression was achieved in MDA-MB-468 cells by treatment with antisense ODNs with up to a tenfold decrease observed at 1 microM. There was a fourfold lower inhibition of p21(WAF-1/CIP-1) protein expression by control sense or random sequence ODNs. Intratumoral injections of EGF (15 microg/dayx3 days) were employed to induce p21(WAF-1/CIP-1) gene expression in MDA-MB-468 xenografts implanted subcutaneously into athymic mice. RT-PCR of explanted tumors showed a threefold increased level of p21(WAF-1/CIP-1) mRNA compared with normal saline-treated tumors. Successful imaging of EGF-induced p21(WAF-1/CIP-1) gene expression in MDA-MB-468 xenografts was achieved at 48 h post injection of (111)In-labeled antisense ODNs (3.7 MBq; 2 microg). Tumors displaying basal levels of p21(WAF-1/CIP-1) gene expression in the absence of EGF treatment could not be visualized. Biodistribution studies showed a significantly higher tumor accumulation of (111)In-labeled antisense ODNs in the presence of EGF induction of the p21(WAF-1/CIP-1) gene (0.32%+/-0.06% injected dose/g) compared with normal saline-treated control mice (0.11%+/-0.07% injected dose/g). The tumor/blood ratio for antisense ODNs in the presence of EGF induction of the p21(WAF-1/CIP-1) gene (4.87+/-0.87) was also significantly higher than for control random sequence ODNs (2.14+/-0.69) or for mice receiving antisense ODNs but not treated with EGF (2.07+/-0.37). We conclude that antisense imaging of upregulated p21(WAF-1/CIP-1) gene expression is feasible and could represent a promising new molecular imaging strategy for monitoring tumor response in cancer patients. To our knowledge, this study also describes the first report of molecular imaging of the upregulated expression of a downstream gene target of the EGFR, a transmembrane tyrosine kinase receptor.
Escobar, Matthew A.; Franklin, Keara A.; Svensson, Å. Staffan; Salter, Michael G.; Whitelam, Garry C.; Rasmusson, Allan G.
2004-01-01
Controlled oxidation reactions catalyzed by the large, proton-pumping complexes of the respiratory chain generate an electrochemical gradient across the mitochondrial inner membrane that is harnessed for ATP production. However, several alternative respiratory pathways in plants allow the maintenance of substrate oxidation while minimizing the production of ATP. We have investigated the role of light in the regulation of these energy-dissipating pathways by transcriptional profiling of the alternative oxidase, uncoupling protein, and type II NAD(P)H dehydrogenase gene families in etiolated Arabidopsis seedlings. Expression of the nda1 and ndc1 NAD(P)H dehydrogenase genes was rapidly up-regulated by a broad range of light intensities and qualities. For both genes, light induction appears to be a direct transcriptional effect that is independent of carbon status. Mutant analyses demonstrated the involvement of two separate photoreceptor families in nda1 and ndc1 light regulation: the phytochromes (phyA and phyB) and an undetermined blue light photoreceptor. In the case of the nda1 gene, the different photoreceptor systems generate distinct kinetic induction profiles that are integrated in white light response. Primary transcriptional control of light response was localized to a 99-bp region of the nda1 promoter, which contains an I-box flanked by two GT-1 elements, an arrangement prevalent in the promoters of photosynthesis-associated genes. Light induction was specific to nda1 and ndc1. The only other substantial light effect observed was a decrease in aox2 expression. Overall, these results suggest that light directly influences the respiratory electron transport chain via photoreceptor-mediated transcriptional control, likely for supporting photosynthetic metabolism. PMID:15333756
Dobias, S L; Ma, L; Wu, H; Bell, J R; Maxson, R
1997-01-01
Msx- class homeobox genes, characterized by a distinct and highly conserved homeodomain, have been identified in a wide variety of metazoans from vertebrates to coelenterates. Although there is evidence that they participate in inductive tissue interactions that underlie vertebrate organogenesis, including those that pattern the neural crest, there is little information about their function in simple deuterostomes. Both to learn more about the ancient function of Msx genes, and to shed light on the evolution of developmental mechanisms within the lineage that gave rise to vertebrates, we have isolated and characterized Msx genes from ascidians and echinoderms. Here we describe the sequence and expression of a sea urchin (Strongylocentrotus purpouratus) Msx gene whose homeodomain is very similar to that of vertebrate Msx2. This gene, designated SpMsx, is first expressed in blastula stage embryos, apparently in a non-localized manner. Subsequently, during the early phases of gastrulation, SpMsx transcripts are expressed intensely in the invaginating archenteron and secondary mesenchyme, and at reduced levels in the ectoderm. In the latter part of gastrulation, SpMsx transcripts are concentrated in the oral ectoderm and gut, and continue to be expressed at those sites through the remainder of embryonic development. That vertebrate Msx genes are regulated by inductive tissue interactions and growth factors suggested to us that the restriction of SpMsx gene expression to the oral ectoderm and derivatives of the vegetal plate might similarly be regulated by the series of signaling events that pattern these embryonic territories. As a first test of this hypothesis, we examined the influence of exogastrulation and cell-dissociation on SpMsx gene expression. In experimentally-induced exogastrulae, SpMsx transcripts were distributed normally in the oral ectoderm, evaginated gut, and secondary mesenchyme. However, when embryos were dissociated into their component cells, SpMsx transcripts failed to accumulate. These data show that the localization of SpMsx transcripts in gastrulae does not depend on interactions between germ layers, yet the activation and maintenance of SpMsx expression does require cell-cell or cell-matrix interactions.
Submergence Confers Immunity Mediated by the WRKY22 Transcription Factor in Arabidopsis[W
Hsu, Fu-Chiun; Chou, Mei-Yi; Chou, Shu-Jen; Li, Ya-Ru; Peng, Hsiao-Ping; Shih, Ming-Che
2013-01-01
Transcriptional control plays an important role in regulating submergence responses in plants. Although numerous genes are highly induced during hypoxia, their individual roles in hypoxic responses are still poorly understood. Here, we found that expression of genes that encode members of the WRKY transcription factor family was rapidly and strongly induced upon submergence in Arabidopsis thaliana, and this induction correlated with induction of a large portion of innate immunity marker genes. Furthermore, prior submergence treatment conferred higher resistance to the bacterial pathogen Pseudomonas syringae in Arabidopsis. Among the WRKY genes tested, WRKY22 had the highest level of induction during the early stages of submergence. Compared with the wild type, WRKY22 T-DNA insertion mutants wrky22-1 and wrky22-2 had lower disease resistance and lower induction of innate immunity markers, such as FLG22-INDUCED RECEPTOR-LIKE KINASE1 (FRK1) and WRKY53, after submergence. Furthermore, transcriptomic analyses of wrky22-2 and chromatin immunoprecipitation identified several potential targets of WRKY22, which included genes encoding a TIR domain–containing protein, a plant peptide hormone, and many OLIGO PEPTIDE TRANSPORTER genes, all of which may lead to induction of innate immunity. In conclusion, we propose that submergence triggers innate immunity in Arabidopsis via WRKY22, a response that may protect against a higher probability of pathogen infection either during or after flooding. PMID:23897923
Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher
2013-12-23
Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the initiation of ripening might lead to an increased production of IAA, suggesting a complex involvement of this auxin and its conjugates in grape berry ripening.
2013-01-01
Background Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Results Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. Conclusions In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the initiation of ripening might lead to an increased production of IAA, suggesting a complex involvement of this auxin and its conjugates in grape berry ripening. PMID:24364881
Magnetic field-controlled gene expression in encapsulated cells
Ortner, Viktoria; Kaspar, Cornelius; Halter, Christian; Töllner, Lars; Mykhaylyk, Olga; Walzer, Johann; Günzburg, Walter H.; Dangerfield, John A.; Hohenadl, Christine; Czerny, Thomas
2012-01-01
Cell and gene therapies have an enormous range of potential applications, but as for most other therapies, dosing is a critical issue, which makes regulated gene expression a prerequisite for advanced strategies. Several inducible expression systems have been established, which mainly rely on small molecules as inducers, such as hormones or antibiotics. The application of these inducers is difficult to control and the effects on gene regulation are slow. Here we describe a novel system for induction of gene expression in encapsulated cells. This involves the modification of cells to express potential therapeutic genes under the control of a heat inducible promoter and the co-encapsulation of these cells with magnetic nanoparticles. These nanoparticles produce heat when subjected to an alternating magnetic field; the elevated temperatures in the capsules then induce gene expression. In the present study we define the parameters of such systems and provide proof-of-principle using reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic field allows regulation of gene expression from the outside over a broad range and within short time. Such a system has great potential for advancement of cell and gene therapy approaches. PMID:22197778
Transversal inducing differentiation of human amniotic epithelial cells into hepatocyte-like cells.
Luo, Hongwu; Huang, Xiangjun; Huang, Feizhou; Liu, Xunyang
2011-06-01
To evaluate the in vitro differentiation of human amniotic epithelial cells (hAECs ) into hepatocyte-like cells. Combined approach of dexamethasone, HGF, IGF and other cytokines were used to induce the differentiation of hAECs into hepatocyte-like cells. The induction lasted 2 weeks. During the induction, the expression of albumin ALB, CYP1A1, CYP1A2, IGFR, c-met and key functional genes related to liver cells as well as transcription factors HNF3, HNF4 and C/EBPa were monitored by RT-PCR. Time dependent changes of the surface marker colony ALB, AFP and CK18 were analyzed by cell flow cytometry. After the 2 week induction, the expressions of liver hepatocyte-like cell functional genes such as albumin, CYP1A1, CYP1A2, c-met, and transcription factors such as HNF3, HNF4, C/EBPa and HNF1 were observed. Six days after the induction, hAECs mainly were stained AFP+, and the positive rate was (15.1 ± 2.1)%. While 10 days after the induction, part of the hAECs showed AFP+/ALB+ (6.5 ± 1.4)%; and on 14th day, hAECs only showed ALB+, and the rate was (13.9 ± 2.3)%. ALB+ cell increase indicated a gradual functional maturation from the hAECs to hepatocyte-like cells. Similaritly, the number of CK18+ cells in the whole population was also increased: On 10th day, the rate was (16.1 ± 1.2)%; on 14th day, that was (21.3 ± 4.6)%, which proved the above hypothesis of the trandifferentiation. By extending the induction time, the expression of functional genes increased gradually, and a maturing process of hAECs was detected by cell surface markers. The differentiation of hAECs induced in vitro has the characteristics of hepatocyte-like cells.
Notarnicola, Maria; Tutino, Valeria; De Nunzio, Valentina; Dituri, Francesco; Caruso, Maria Gabriella; Giannelli, Gianluigi
2017-01-01
Mediterranean diet components, such as olive oil and ω-3 polyunsaturated fatty acids (ω-3 PUFAs), can arrest cell growth and promote cell apoptosis. Recently, olive oil has been demonstrated to modulate type-1 cannabinoid (CB1) receptor gene expression in both human colon cancer cells and rat colon. The aim of this study was to investigate a possible link between olive oil and ω-3 PUFAs effects and CB1 receptor expression in both intestinal and adipose tissue of ApcMin/+ mice. To confirm the role for the CB1 receptor as a negative modulator of cell proliferation in human colon cancer, CB1 receptor gene expression was also detected in tumor tissue and in surrounding normal mucosa of patients with colorectal cancer (CRC). Dietary ω-3 PUFAs significantly inhibited intestinal polyp growth in mice, correlating with CB1 receptor gene and protein expression induction. CB1 receptor gene up-regulation was also detected in adipose tissue, suggesting a close communication between cancer cells and the surrounding environment. Tissue CB1 receptor induction was associated with a concurrent inactivation of the Wnt/β-catenin pathway. Moreover, there was a significant reduction in CB1 receptor gene expression levels in cancer tissue compared to normal surrounding mucosa of patients with CRC, confirming that in cancer the “protective” action of the CB1 receptor is lost. PMID:28245562
Yuan, Hong-Xia; Xu, Xu; Sima, Yang-Hu; Xu, Shi-Qing
2013-09-01
4-Nonylphenol (4-NP) a known endocrine disrupting chemical is a persistent environmental contaminant. However, the mechanism of reproductive toxicity caused by 4-NP is still largely unresolved in invertebrates. In this study, Bombyx mori larvae were constantly fed 4-NP at concentrations ranging from 0.05 to 0.4gkg(-1), reproductive toxicity and induction of vitellogenin gene (Vg) expression were investigated in this organism which is an ideal lepidopteran model insect. The results showed that gonad development was retarded and maturity was decreased in both male and female pupae, while the sex ratio was unaffected by 4-NP exposure. In the 4-NP exposed animals, the corresponding egg yolk protein, vitellin, involved in energy reserves for embryonic development in oviparous animals, was present in the testis of male pupae, and the mRNA transcript of the Vg gene was detected in the fat body, a specific organ of Vg synthesis, which is normally silent in males. In addition, expression of the Vg gene was up-regulated in the fat body of female pupae and adults, while the protein was decreased in developing eggs. Furthermore, expression of the ecdysone receptor gene (EcR) in the ovaries of pupae was down-regulated, suggested that the transport of Vg from the fat body to developing oocytes was disturbed by 4-NP due to interference in the expression of EcR related to ecdysone activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins
Bernasconi, Michele; Remppis, Andrew; Fredericks, William J.; Rauscher, Frank J.; Schäfer, Beat W.
1996-01-01
The expression of a number of human paired box-containing (PAX) genes has been correlated with various types of tumors. Novel fusion genes encoding chimeric fusion proteins have been found in the pediatric malignant tumor alveolar rhabdomyosarcoma (RMS). They are generated by two chromosomal translocations t(2;13) and t(1;13) juxtaposing PAX3 or PAX7, respectively, with a forkhead domain gene FKHR. Here we describe that specific down-regulation of the t(2;13) translocation product in alveolar RMS cells by antisense oligonucleotides results in reduced cellular viability. Cells of embryonal RMS, the other major histiotype of this tumor, were found to express either wild type PAX3 or PAX7 at elevated levels when compared with primary human myoblasts. Treatment of corresponding embryonal RMS cells with antisense olignucleotides directed against the mRNA translational start site of either one of these two transcription factors similarly triggers cell death, which is most likely due to induction of apoptosis. Retroviral mediated ectopic expression of mouse Pax3 in a PAX7 expressing embryonal RMS cell line could partially rescue antisense induced apoptosis. These data suggest that the PAX3/FKHR fusion gene and wild-type PAX genes play a causative role in the formation of RMS and presumably other tumor types, possibly by suppressing the apoptotic program that would normally eliminate these cells. PMID:8917562
Dual Roles for Ikaros in Regulation of Macrophage Chromatin State and Inflammatory Gene Expression.
Oh, Kyu-Seon; Gottschalk, Rachel A; Lounsbury, Nicolas W; Sun, Jing; Dorrington, Michael G; Baek, Songjoon; Sun, Guangping; Wang, Ze; Krauss, Kathleen S; Milner, Joshua D; Dutta, Bhaskar; Hager, Gordon L; Sung, Myong-Hee; Fraser, Iain D C
2018-06-13
Macrophage activation by bacterial LPS leads to induction of a complex inflammatory gene program dependent on numerous transcription factor families. The transcription factor Ikaros has been shown to play a critical role in lymphoid cell development and differentiation; however, its function in myeloid cells and innate immune responses is less appreciated. Using comprehensive genomic analysis of Ikaros-dependent transcription, DNA binding, and chromatin accessibility, we describe unexpected dual repressor and activator functions for Ikaros in the LPS response of murine macrophages. Consistent with the described function of Ikaros as transcriptional repressor, Ikzf1 -/- macrophages showed enhanced induction for select responses. In contrast, we observed a dramatic defect in expression of many delayed LPS response genes, and chromatin immunoprecipitation sequencing analyses support a key role for Ikaros in sustained NF-κB chromatin binding. Decreased Ikaros expression in Ikzf1 +/- mice and human cells dampens these Ikaros-enhanced inflammatory responses, highlighting the importance of quantitative control of Ikaros protein level for its activator function. In the absence of Ikaros, a constitutively open chromatin state was coincident with dysregulation of LPS-induced chromatin remodeling, gene expression, and cytokine responses. Together, our data suggest a central role for Ikaros in coordinating the complex macrophage transcriptional program in response to pathogen challenge.
Achary, Bhavana G; Campbell, Katie M; Co, Ivy S; Gilmour, David S
2014-05-01
The transcription regulation of the Drosophila hsp70 gene is a complex process that involves the regulation of multiple steps, including the establishment of paused Pol II and release of Pol II into elongation upon heat shock activation. While the major players involved in the regulation of gene expression have been studied in detail, additional factors involved in this process continue to be discovered. To identify factors involved in hsp70 expression, we developed a screen that capitalizes on a visual assessment of heat shock activation using a hsp70-beta galactosidase reporter and publicly available RNAi fly lines to deplete candidate proteins. We validated the screen by showing that the depletion of HSF, CycT, Cdk9, Nurf 301, or ELL prevented the full induction of hsp70 by heat shock. Our screen also identified the histone deacetylase HDAC3 and its associated protein SMRTER as positive regulators of hsp70 activation. Additionally, we show that HDAC3 and SMRTER contribute to hsp70 gene expression at a step subsequent to HSF-mediated activation and release of the paused Pol II that resides at the promoter prior to heat shock induction. Copyright © 2014 Elsevier B.V. All rights reserved.
Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah
2017-11-14
Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E
1996-02-01
IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.
Bonner, Caroline; Bacon, Siobhán; Concannon, Caoimhín G.; Rizvi, Syed R.; Baquié, Mathurin; Farrelly, Angela M.; Kilbride, Seán M.; Dussmann, Heiko; Ward, Manus W.; Boulanger, Chantal M.; Wollheim, Claes B.; Graf, Rolf; Byrne, Maria M.; Prehn, Jochen H.M.
2010-01-01
OBJECTIVE In diabetes, β-cell mass is not static but in a constant process of cell death and renewal. Inactivating mutations in transcription factor 1 (tcf-1)/hepatocyte nuclear factor1a (hnf1a) result in decreased β-cell mass and HNF1A–maturity onset diabetes of the young (HNF1A-MODY). Here, we investigated the effect of a dominant-negative HNF1A mutant (DN-HNF1A) induced apoptosis on the regenerative capacity of INS-1 cells. RESEARCH DESIGN AND METHODS DN-HNF1A was expressed in INS-1 cells using a reverse tetracycline-dependent transactivator system. Gene(s)/protein(s) involved in β-cell regeneration were investigated by real-time quantitative RT-PCR, Western blotting, and immunohistochemistry. Pancreatic stone protein/regenerating protein (PSP/reg) serum levels in human subjects were detected by enzyme-linked immunosorbent assay. RESULTS We detected a prominent induction of PSP/reg at the gene and protein level during DN-HNF1A–induced apoptosis. Elevated PSP/reg levels were also detected in islets of transgenic HNF1A-MODY mice and in the serum of HNF1A-MODY patients. The induction of PSP/reg was glucose dependent and mediated by caspase activation during apoptosis. Interestingly, the supernatant from DN-HNF1A–expressing cells, but not DN-HNF1A–expressing cells treated with zVAD.fmk, was sufficient to induce PSP/reg gene expression and increase cell proliferation in naïve, untreated INS-1 cells. Further experiments demonstrated that annexin-V–positive microparticles originating from apoptosing INS-1 cells mediated the induction of PSP/reg. Treatment with recombinant PSP/reg reversed the phenotype of DN-HNF1A–induced cells by stimulating cell proliferation and increasing insulin gene expression. CONCLUSIONS Our results suggest that apoptosing INS-1 cells shed microparticles that may stimulate PSP/reg induction in neighboring cells, a mechanism that may facilitate the recovery of β-cell mass in HNF1A-MODY. PMID:20682686
Marks, Virginia D.; Ho Sui, Shannan J.; Erasmus, Daniel; van der Merwe, George K.; Brumm, Jochen; Wasserman, Wyeth W.; Bryan, Jennifer; van Vuuren, Hennie J. J.
2016-01-01
In this study, genome-wide expression analyses were used to study the response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation. Forty per cent of the yeast genome significantly changed expression levels to mediate long-term adaptation to fermenting grape must. Among the genes that changed expression levels, a group of 223 genes was identified, which was designated as fermentation stress response (FSR) genes that were dramatically induced at various points during fermentation. FSR genes sustain high levels of induction up to the final time point and exhibited changes in expression levels ranging from four- to 80-fold. The FSR is novel; 62% of the genes involved have not been implicated in global stress responses and 28% of the FSR genes have no functional annotation. Genes involved in respiratory metabolism and gluconeogenesis were expressed during fermentation despite the presence of high concentrations of glucose. Ethanol, rather than nutrient depletion, seems to be responsible for entry of yeast cells into the stationary phase. PMID:18215224
Hallahan, D E; Virudachalam, S; Kuchibhotla, J; Kufe, D W; Weichselbaum, R R
1994-01-01
Cells adapt to adverse environmental conditions through a wide range of responses that are conserved throughout evolution. Physical agents such as ionizing radiation are known to initiate a stress response that is triggered by the recognition of DNA damage. We have identified a signaling pathway involving the activation of phospholipase A2 and protein kinase C in human cells that confers x-ray induction of the tumor necrosis factor alpha gene. Treatment of human cells with ionizing radiation or H2O2 was associated with the production of arachidonic acid. Inhibition of phospholipase A2 abolished radiation-mediated arachidonate production as well as the subsequent activation of protein kinase C and tumor necrosis factor alpha gene expression. These findings demonstrate that ionizing radiation-mediated gene expression in human cells is regulated in part by extranuclear signal transduction. One practical application of phospholipase A2 inhibitors is to ameliorate the adverse effects of radiotherapy associated with tumor necrosis factor alpha production. Images PMID:8197153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deeb, Dorrah; Gao, Xiaohua; Liu, Yongbo
2012-06-15
Highlights: Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT gene expression. Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT protein expression. Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT telomerase activity. Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT regulatory proteins. -- Abstract: Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a multifunctional oleanane synthetic triterpenoid with potent anti-inflammatory and antitumorigenic properties. The mechanisms of the antisurvival and apoptosis-inducing activities of CDDO-Me and related derivatives of oleanolic acid have been defined; however, to date, no study has been carried out on the effect of CDDOs on human telomerase reverse transcriptase (hTERT) gene or telomerase activity. Here we report for the first time that inhibition of cell proliferation and induction of apoptosismore » by CDDO-Me in pancreatic cancer cell lines is associated with the inhibition of hTERT gene expression, hTERT telomerase activity and a number of proteins that regulate hTERT expression and activity. Furthermore, abrogation or overexpression of hTERT protein altered the susceptibility of tumor cells to CDDO-Me. These findings suggest that telomerase (hTERT) is a relevant target of CDDO-Me in pancreatic cancer cells.« less
Kimsa-Dudek, Magdalena; Synowiec-Wojtarowicz, Agnieszka; Derewniuk, Małgorzata; Gawron, Stanisław; Paul-Samojedny, Monika; Kruszniewska-Rajs, Celina; Pawłowska-Góral, Katarzyna
2018-05-01
Fluoride cytotoxicity has been associated with apoptosis, oxidative stress, general changes in DNA and RNA and protein biosynthesis, whereas the results of studies on the effect of SMF on antioxidant activity of cells are contradictory. Therefore, the aim of our study was to evaluate the simultaneous exposure of human cells to fluoride SMF that are generated by permanent magnets on the expression profile of the genes that are associated with the antioxidant defense system. Control fibroblasts and fibroblasts that had been treated with fluoride were subjected to the influence of SMF with a moderate induction. In order to achieve our aims, we applied modern molecular biology techniques such as the oligonucleotide microarray. Among the antioxidant defense genes, five (SOD1, PLK3, CLN8, XPA, HAO1), whose expression was significantly altered by the action of fluoride ions and the exposure to SMF were normalized their expression was identified. We showed that fluoride ions cause oxidative stress, whereas exposure to SMF with a moderate induction can suppress their effects by normalizing the expression of the genes that are altered by fluoride. Our research may explain the molecular mechanisms of the influence of fluoride and SMF that are generated by permanent magnets on cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Trithorax complex component Menin controls differentiation and maintenance of T helper 17 cells
Watanabe, Yukiko; Onodera, Atsushi; Kanai, Urara; Ichikawa, Tomomi; Obata-Ninomiya, Kazushige; Wada, Tomoko; Kiuchi, Masahiro; Iwamura, Chiaki; Tumes, Damon J.; Shinoda, Kenta; Yagi, Ryoji; Motohashi, Shinichiro; Hirahara, Kiyoshi; Nakayama, Toshinori
2014-01-01
Epigenetic modifications, such as posttranslational modifications of histones, play an important role in gene expression and regulation. These modifications are in part mediated by the Trithorax group (TrxG) complex and the Polycomb group (PcG) complex, which activate and repress transcription, respectively. We herein investigate the role of Menin, a component of the TrxG complex in T helper (Th) cell differentiation and show a critical role for Menin in differentiation and maintenance of Th17 cells. Menin−/− T cells do not efficiently differentiate into Th17 cells, leaving Th1 and Th2 cell differentiation intact in in vitro cultures. Menin deficiency resulted in the attenuation of Th17-induced airway inflammation. In differentiating Th17 cells, Menin directly bound to the Il17a gene locus and was required for the deposition of permissive histone modifications and recruitment of the RNA polymerase II transcriptional complex. Interestingly, although Menin bound to the Rorc locus, Menin was dispensable for the induction of Rorc expression and permissive histone modifications in differentiating Th17 cells. In contrast, Menin was required to maintain expression of Rorc in differentiated Th17 cells, indicating that Menin is essential to stabilize expression of the Rorc gene. Thus, Menin orchestrates Th17 cell differentiation and function by regulating both the induction and maintenance of target gene expression. PMID:25136117
Solomon, Lauren A; Podder, Shreya; He, Jessica; Jackson-Chornenki, Nicholas L; Gibson, Kristen; Ziliotto, Rachel G; Rhee, Jess; DeKoter, Rodney P
2017-05-15
During macrophage development, myeloid progenitor cells undergo terminal differentiation coordinated with reduced cell cycle progression. Differentiation of macrophages from myeloid progenitors is accompanied by increased expression of the E26 transformation-specific transcription factor PU.1. Reduced PU.1 expression leads to increased proliferation and impaired differentiation of myeloid progenitor cells. It is not understood how PU.1 coordinates macrophage differentiation with reduced cell cycle progression. In this study, we utilized cultured PU.1-inducible myeloid cells to perform genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis coupled with gene expression analysis to determine targets of PU.1 that may be involved in regulating cell cycle progression. We found that genes encoding cell cycle regulators and enzymes involved in lipid anabolism were directly and inducibly bound by PU.1 although their steady-state mRNA transcript levels were reduced. Inhibition of lipid anabolism was sufficient to reduce cell cycle progression in these cells. Induction of PU.1 reduced expression of E2f1 , an important activator of genes involved in cell cycle and lipid anabolism, indirectly through microRNA 223. Next-generation sequencing identified microRNAs validated as targeting cell cycle and lipid anabolism for downregulation. These results suggest that PU.1 coordinates cell cycle progression with differentiation through induction of microRNAs targeting cell cycle regulators and lipid anabolism. Copyright © 2017 American Society for Microbiology.
Marui, N; Offermann, M K; Swerlick, R; Kunsch, C; Rosen, C A; Ahmad, M; Alexander, R W; Medford, R M
1993-01-01
Oxidative stress and expression of the vascular cell adhesion molecule-1 (VCAM-1) on vascular endothelial cells are early features in the pathogenesis of atherosclerosis and other inflammatory diseases. Regulation of VCAM-1 gene expression may be coupled to oxidative stress through specific reduction-oxidation (redox) sensitive transcriptional or posttranscriptional regulatory factors. In cultured human umbilical vein endothelial (HUVE) cells, the cytokine interleukin 1 beta (IL-1 beta) activated VCAM-1 gene expression through a mechanism that was repressed approximately 90% by the antioxidants pyrrolidine dithiocarbamate (PDTC) and N-acetylcysteine (NAC). Furthermore, PDTC selectively inhibited the induction of VCAM-1, but not intercellular adhesion molecule-1 (ICAM-1), mRNA and protein accumulation by the cytokine tumor necrosis factor-alpha (TNF alpha) as well as the noncytokines bacterial endotoxin lipopolysaccharide (LPS) and double-stranded RNA, poly(I:C) (PIC). PDTC also markedly attenuated TNF alpha induction of VCAM-1-mediated cellular adhesion. In a distinct pattern, PDTC partially inhibited E-selectin gene expression in response to TNF alpha but not to LPS, IL-1 beta, or PIC. TNF alpha and LPS-mediated transcriptional activation of the human VCAM-1 promoter through NF-kappa B-like DNA enhancer elements and associated NF-kappa B-like DNA binding proteins was inhibited by PDTC. These studies suggest a molecular linkage between an antioxidant sensitive transcriptional regulatory mechanism and VCAM-1 gene expression that expands on the notion of oxidative stress as an important regulatory signal in the pathogenesis of atherosclerosis. Images PMID:7691889
Perot, Brieuc P; Boussier, Jeremy; Yatim, Nader; Rossman, Jeremy S; Ingersoll, Molly A; Albert, Matthew L
2018-05-10
Influenza A virus (IAV) infection perturbs metabolic pathways such as autophagy, a stress-induced catabolic pathway that crosstalks with cellular inflammatory responses. However, the impact of autophagy perturbation on IAV gene expression or host cell responses remains disputed. Discrepant results may be a reflection of in vivo studies using cell-specific autophagy-related (Atg) gene-deficient mouse strains, which do not delineate modification of developmental programmes from more proximal effects on inflammatory response. In vitro experiments can be confounded by gene expression divergence in wild-type cultivated cell lines, as compared to those experiencing long-term absence of autophagy. With the goal to investigate cellular processes within cells that are competent or incompetent for autophagy, we generated a novel experimental cell line in which autophagy can be restored by ATG5 protein stabilization in an otherwise Atg5-deficient background. We confirmed that IAV induced autophagosome formation and p62 accumulation in infected cells and demonstrated that perturbation of autophagy did not impact viral infection or replication in ATG5-stablized cells. Notably, the induction of interferon-stimulated genes (ISGs) by IAV was diminished when cells were autophagy competent. We further demonstrated that, in the absence of ATG5, IAV-induced interferon-β (IFN-β) expression was increased as compared to levels in autophagy-competent lines, a mechanism that was independent of IAV non-structural protein 1. In sum, we report that induction of autophagy by IAV infection reduces ISG expression in infected cells by limiting IFN-β expression, which may benefit viral replication and spread.
Tallafuss, A; Wilm, T P; Crozatier, M; Pfeffer, P; Wassef, M; Bally-Cuif, L
2001-10-01
Little is known about the factors that control the specification of the mid-hindbrain domain (MHD) within the vertebrate embryonic neural plate. Because the head-trunk junction of the Drosophila embryo and the MHD have patterning similarities, we have searched for vertebrate genes related to the Drosophila head gap gene buttonhead (btd), which in the fly specifies the head-trunk junction. We report here the identification of a zebrafish gene which, like btd, encodes a zinc-finger transcriptional activator of the Sp-1 family (hence its name, bts1 for btd/Sp-related-1) and shows a restricted expression in the head. During zebrafish gastrulation, bts1 is transcribed in the posterior epiblast including the presumptive MHD, and precedes in this area the expression of other MHD markers such as her5, pax2.1 and wnt1. Ectopic expression of bts1 combined to knock-down experiments demonstrate that Bts1 is both necessary and sufficient for the induction of pax2.1 within the anterior neural plate, but is not involved in regulating her5, wnt1 or fgf8 expression. Our results confirm that early MHD development involves several genetic cascades that independently lead to the induction of MHD markers, and identify Bts1 as a crucial upstream component of the pathway selectively leading to pax2.1 induction. In addition, they imply that flies and vertebrates, to control the development of a boundary embryonic region, have probably co-opted a similar strategy: the restriction to this territory of the expression of a Btd/Sp-like factor.
Lai, Ketong; Jia, Siyuan; Yu, Shanjuan; Luo, Jianming; He, Yunyan
2017-07-25
The implications of lncRNAs regarding fetal hemoglobin (HbF) induction in hemoglobin disorders remain poorly understood. In this study, microarray analysis was performed to profile lncRNAs, miRNAs and mRNAs in individuals with hereditary persistence of fetal hemoglobin (HPFH), β-thalassemia carriers with high HbF levels and healthy controls. The results show aberrant expression of 862 lncRNAs, 568 mRNAs and 63 miRNAs in the high-HbF group compared with the control group. Altered NR_001589, NR_120526, T315543, miR-486-3p, miR-19b-1-5p and miR-20a-3p expression was confirmed by quantitative reverse transcription-polymerase chain reaction, and Spearman correlation coefficients revealed significant positive correlations with HbF. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed the hematopoietic cell lineage and apoptosis to be most significantly dysregulated in HbF induction. We analyzed coding genes near the lncRNAs and constructed a coding-noncoding co-expression network. Based on the results, lncRNAs likely contribute to increased HbF levels by activating expression of HBE1 and hematopoietic cell lineage-inducible molecules and by inhibiting that of apoptosis-inducible molecules. Finally, through construction of a competing endogenous RNA network, we found that 6 lncRNAs could bind competitively with miR-486-3p, resulting in increased HbF levels. Taken together, our findings provide new insights into the mechanisms of HbF induction and potentially provide new targets for the treatment of β-thalassemia major.
Yu, Shanjuan; Luo, Jianming; He, Yunyan
2017-01-01
The implications of lncRNAs regarding fetal hemoglobin (HbF) induction in hemoglobin disorders remain poorly understood. In this study, microarray analysis was performed to profile lncRNAs, miRNAs and mRNAs in individuals with hereditary persistence of fetal hemoglobin (HPFH), β-thalassemia carriers with high HbF levels and healthy controls. The results show aberrant expression of 862 lncRNAs, 568 mRNAs and 63 miRNAs in the high-HbF group compared with the control group. Altered NR_001589, NR_120526, T315543, miR-486-3p, miR-19b-1-5p and miR-20a-3p expression was confirmed by quantitative reverse transcription-polymerase chain reaction, and Spearman correlation coefficients revealed significant positive correlations with HbF. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed the hematopoietic cell lineage and apoptosis to be most significantly dysregulated in HbF induction. We analyzed coding genes near the lncRNAs and constructed a coding-noncoding co-expression network. Based on the results, lncRNAs likely contribute to increased HbF levels by activating expression of HBE1 and hematopoietic cell lineage-inducible molecules and by inhibiting that of apoptosis-inducible molecules. Finally, through construction of a competing endogenous RNA network, we found that 6 lncRNAs could bind competitively with miR-486-3p, resulting in increased HbF levels. Taken together, our findings provide new insights into the mechanisms of HbF induction and potentially provide new targets for the treatment of β-thalassemia major. PMID:28624809
Delgado Sandoval, Silvia del Carmen; Abraham Juárez, María Jazmín; Simpson, June
2012-03-01
Agave tequilana is a monocarpic perennial species that flowers after 5-8 years of vegetative growth signaling the end of the plant's life cycle. When fertilization is unsuccessful, vegetative bulbils are induced on the umbels of the inflorescence near the bracteoles from newly formed meristems. Although the regulation of inflorescence and flower development has been described in detail for monocarpic annuals and polycarpic species, little is known at the molecular level for these processes in monocarpic perennials, and few studies have been carried out on bulbils. Histological samples revealed the early induction of umbel meristems soon after the initiation of the vegetative to inflorescence transition in A. tequilana. To identify candidate genes involved in the regulation of floral induction, a search for MADS-box transcription factor ESTs was conducted using an A. tequilana transcriptome database. Seven different MIKC MADS genes classified into 6 different types were identified based on previously characterized A. thaliana and O. sativa MADS genes and sequences from non-grass monocotyledons. Quantitative real-time PCR analysis of the seven candidate MADS genes in vegetative, inflorescence, bulbil and floral tissues uncovered novel patterns of expression for some of the genes in comparison with orthologous genes characterized in other species. In situ hybridization studies using two different genes showed expression in specific tissues of vegetative meristems and floral buds. Distinct MADS gene regulatory patterns in A. tequilana may be related to the specific reproductive strategies employed by this species.
Heo, W D; Lee, S H; Kim, M C; Kim, J C; Chung, W S; Chun, H J; Lee, K J; Park, C Y; Park, H C; Choi, J Y; Cho, M J
1999-01-19
The Ca2+ signal is essential for the activation of plant defense responses, but downstream components of the signaling pathway are still poorly defined. Here we demonstrate that specific calmodulin (CaM) isoforms are activated by infection or pathogen-derived elicitors and participate in Ca2+-mediated induction of plant disease resistance responses. Soybean CaM (SCaM)-4 and SCaM-5 genes, which encode for divergent CaM isoforms, were induced within 30 min by a fungal elicitor or pathogen, whereas other SCaM genes encoding highly conserved CaM isoforms did not show such response. This pathogen-triggered induction of these genes specifically depended on the increase of intracellular Ca2+ level. Constitutive expression of SCaM-4 and SCaM-5 in transgenic tobacco plants triggered spontaneous induction of lesions and induces an array of systemic acquired resistance (SAR)-associated genes. Surprisingly, these transgenic plants have normal levels of endogenous salicylic acid (SA). Furthermore, coexpression of nahG gene did not block the induction of SAR-associated genes in these transgenic plants, indicating that SA is not involved in the SAR gene induction mediated by SCaM-4 or SCaM-5. The transgenic plants exhibit enhanced resistance to a wide spectrum of virulent and avirulent pathogens, including bacteria, fungi, and virus. These results suggest that specific CaM isoforms are components of a SA-independent signal transduction chain leading to disease resistance.
Orphan nuclear receptor ERRγ is a key regulator of human fibrinogen gene expression
Zhang, Yaochen; Kim, Don-Kyu; Lu, Yan; Jung, Yoon Seok; Lee, Ji-min; Kim, Young-Hoon; Lee, Yong Soo; Kim, Jina; Dewidar, Bedair; Jeong, Won-IL; Lee, In-Kyu; Cho, Sung Jin; Dooley, Steven; Lee, Chul-Ho; Li, Xiaoying
2017-01-01
Fibrinogen, 1 of 13 coagulation factors responsible for normal blood clotting, is synthesized by hepatocytes. Detailed roles of the orphan nuclear receptors regulating fibrinogen gene expression have not yet been fully elucidated. Here, we identified estrogen-related receptor gamma (ERRγ) as a novel transcriptional regulator of human fibrinogen gene expression. Overexpression of ERRγ specially increased fibrinogen expression in human hepatoma cell line. Cannabinoid receptor types 1(CB1R) agonist arachidonyl-2'-chloroethylamide (ACEA) up-regulated transcription of fibrinogen via induction of ERRγ, whereas knockdown of ERRγ attenuated fibrinogen expression. Deletion analyses of the fibrinogen γ (FGG) gene promoter and ChIP assays revealed binding sites of ERRγ on human fibrinogen γ gene promoter. Moreover, overexpression of ERRγ was sufficient to increase fibrinogen gene expression, whereas treatment with GSK5182, a selective inverse agonist of ERRγ led to its attenuation in cell culture. Finally, fibrinogen and ERRγ gene expression were elevated in liver tissue of obese patients suggesting a conservation of this mechanism. Overall, this study elucidates a molecular mechanism linking CB1R signaling, ERRγ expression and fibrinogen gene transcription. GSK5182 may have therapeutic potential to treat hyperfibrinogenemia. PMID:28750085
Jiao, Jing; Ishikawa, Tomo-o; Dumlao, Darren S.; Norris, Paul C.; Magyar, Clara E.; Mikulec, Carol; Catapang, Art; Dennis, Edward A.; Fischer, Susan M.; Herschman, Harvey R.
2014-01-01
Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX2) plays a critical role in DMBA/TPA-induced skin tumor induction. While many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell-type specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared to littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2 expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell-type specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biological responses. PMID:25063587
Hansdottir, Sif; Monick, Martha M; Hinde, Sara L; Lovan, Nina; Look, Dwight C; Hunninghake, Gary W
2008-11-15
The role of vitamin D in innate immunity is increasingly recognized. Recent work has identified a number of tissues that express the enzyme 1alpha-hydroxylase and are able to activate vitamin D. This locally produced vitamin D is believed to have important immunomodulatory effects. In this paper, we show that primary lung epithelial cells express high baseline levels of activating 1alpha-hydroxylase and low levels of inactivating 24-hydroxylase. The result of this enzyme expression is that airway epithelial cells constitutively convert inactive 25-dihydroxyvitamin D(3) to the active 1,25-dihydroxyvitamin D(3). Active vitamin D that is generated by lung epithelium leads to increased expression of vitamin D-regulated genes with important innate immune functions. These include the cathelicidin antimicrobial peptide gene and the TLR coreceptor CD14. dsRNA increases the expression of 1alpha-hydroxylase, augments the production of active vitamin D, and synergizes with vitamin D to increase expression of cathelicidin. In contrast to induction of the antimicrobial peptide, vitamin D attenuates dsRNA-induced expression of the NF-kappaB-driven gene IL-8. We conclude that primary epithelial cells generate active vitamin D, which then influences the expression of vitamin D-driven genes that play a major role in host defense. Furthermore, the presence of vitamin D alters induction of antimicrobial peptides and inflammatory cytokines in response to viruses. These observations suggest a novel mechanism by which local conversion of inactive to active vitamin D alters immune function in the lung.
NASA Astrophysics Data System (ADS)
UŻarowska, E.; Czajkowski, Rafał; Konopka, W.
2014-11-01
We aim to create a set of genetic tools where permanent opsin expression (ChR or NpHR) is precisely limited to the population of neurons that express immediate early gene c-fos during a specific temporal window of behavioral training. Since the c-fos gene is only expressed in neurons that form experience-dependent ensemble, this approach will result in specific labeling of a small subset of cells that create memory trace for the learned behavior. To this end we employ two alternative inducible gene expression systems: Tet Expression System and Cre/lox System. In both cases, the temporal window for opsin induction is controlled pharmacologically, by doxycycline or tamoxifen, respectively. Both systems will be used for creating lines of transgenic animals.
Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo
2015-12-01
Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
A reporter gene assay in a cultured rainbow trout cell line was used to determine the influence of temperature on the expression of an estrogen-responsive gene. Rainbow trout hepatoma cells (RTH 149) incubated at 11 or 18 degrees C were co-transfected with an estrogen-responsive ...
Hepatic gene expression profiling of 5'-AMP-induced hypometabolism in mice.
Zhao, Zhaoyang; Miki, Takao; Van Oort-Jansen, Anita; Matsumoto, Tomoko; Loose, David S; Lee, Cheng Chi
2011-04-12
There is currently much interest in clinical applications of therapeutic hypothermia. Hypothermia can be a consequence of hypometabolism. We have recently established a procedure for the induction of a reversible deep hypometabolic state in mice using 5'-adenosine monophosphate (5'-AMP) in conjunction with moderate ambient temperature. The current study aims at investigating the impact of this technology at the gene expression level in a major metabolic organ, the liver. Our findings reveal that expression levels of the majority of genes in liver are not significantly altered by deep hypometabolism. However, among those affected by hypometabolism, more genes are differentially upregulated than downregulated both in a deep hypometabolic state and in the early arousal state. These altered gene expression levels during 5'-AMP induced hypometabolism are largely restored to normal levels within 2 days of the treatment. Our data also suggest that temporal control of circadian genes is largely stalled during deep hypometabolism.
Shim, Jae-Kyoung; Ha, Dae-Myung; Nho, Si-Kab; Song, Kyung-Sik; Lee, Kyeong-Yeoll
2008-03-01
Effect of envenomation of ectoparasitoid Bracon hebetor was determined on the heart rate and the expression of shsp, hsc70 and hsp90 of the lepidopteran host Plodia interpunctella. Envenomated host larvae were promptly immobilized but heart rate was not changed until 4 days after envenomation. Northern hybridization showed that each hsp gene was differentially influenced by envenomation: continued high induction of shsp, gradual strong induction of hsc70, but no induction of hsp90. Our results suggest that upregulation of both shsp and hsc70 may produce potent factors that have important roles in the mechanism of host-parasitoid relationship.
2014-01-01
Background c-Jun NH2-terminal kinases (JNKs) are strongly activated by a stressful cellular environment, such as chemotherapy and oxidative stress. Autophagy is a protein-degradation system in which double-membrane vacuoles called autophagosomes are formed. The autophagy-related gene Beclin 1 plays a key role in this process. We previously found that autophagy was induced by dihydroartemisinin (DHA) in pancreatic cancer cells. However, little is known about the complex relationship between ROS, JNK activation, autophagy induction, and Beclin 1 expression. Methods Cell viability and CCK-8 assays were carried out to determine the cell proliferation; small interfering RNAs (siRNAs) were used to knockdown c-Jun NH2-terminal kinases (JNK1/2) genes; western blot was performed to detect the protein expression of LC3, JNK, Beclin 1, caspase 3 and β-actin; production of intracellular ROS was analyzed using FACS flow cytometry; autophagy induction was confirmed by electron microscopy. Results In the present study, we explored the role of DHA and Beclin 1 expression in autophagy. DHA-treated cells showed autophagy characteristics, and DHA also activated the JNK pathway and up-regulated the expression of Beclin 1. Conversely, blocking JNK signaling inhibited Beclin 1 up-regulation. JNK activation was found to primarily depend on reactive oxygen species (ROS) resulting from the DHA treatment. Moreover, JNK pathway inhibition and Beclin 1 silencing prevented the induction of DHA-induced autophagy. Conclusions These results suggest that the induction of autophagy by DHA is required for JNK-mediated Beclin 1 expression. PMID:24438216
Puzzles in modern biology. V. Why are genomes overwired?
Frank, Steven A
2017-01-01
Many factors affect eukaryotic gene expression. Transcription factors, histone codes, DNA folding, and noncoding RNA modulate expression. Those factors interact in large, broadly connected regulatory control networks. An engineer following classical principles of control theory would design a simpler regulatory network. Why are genomes overwired? Neutrality or enhanced robustness may lead to the accumulation of additional factors that complicate network architecture. Dynamics progresses like a ratchet. New factors get added. Genomes adapt to the additional complexity. The newly added factors can no longer be removed without significant loss of fitness. Alternatively, highly wired genomes may be more malleable. In large networks, most genomic variants tend to have a relatively small effect on gene expression and trait values. Many small effects lead to a smooth gradient, in which traits may change steadily with respect to underlying regulatory changes. A smooth gradient may provide a continuous path from a starting point up to the highest peak of performance. A potential path of increasing performance promotes adaptability and learning. Genomes gain by the inductive process of natural selection, a trial and error learning algorithm that discovers general solutions for adapting to environmental challenge. Similarly, deeply and densely connected computational networks gain by various inductive trial and error learning procedures, in which the networks learn to reduce the errors in sequential trials. Overwiring alters the geometry of induction by smoothing the gradient along the inductive pathways of improving performance. Those overwiring benefits for induction apply to both natural biological networks and artificial deep learning networks.
Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V.S.; Fletcher, Helen A.
2015-01-01
Introduction The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. Methods We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Results Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. Conclusions These results represent novel insights into the immune repertoires involved in malaria vaccination. PMID:26256523
Jiao, Jing; Ishikawa, Tomo-O; Dumlao, Darren S; Norris, Paul C; Magyar, Clara E; Mikulec, Carol; Catapang, Art; Dennis, Edward A; Fischer, Susan M; Herschman, Harvey R
2014-11-01
Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX-2) plays a critical role in DMBA/TPA-induced skin tumor induction. Although many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell type-specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared with littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2-expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell type-specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biologic responses. Cox-2 gene deletion demonstrates that intrinsic COX-2 expression in initiated keratinocytes is a principal driver of skin carcinogenesis; lipidomic analysis identifies likely prostanoid effectors. ©2014 American Association for Cancer Research.
Sun, GuoQiang; Yu, Ruth T.; Evans, Ronald M.; Shi, Yanhong
2007-01-01
TLX is a transcription factor that is essential for neural stem cell proliferation and self-renewal. However, the molecular mechanism of TLX-mediated neural stem cell proliferation and self-renewal is largely unknown. We show here that TLX recruits histone deacetylases (HDACs) to its downstream target genes to repress their transcription, which in turn regulates neural stem cell proliferation. TLX interacts with HDAC3 and HDAC5 in neural stem cells. The HDAC5-interaction domain was mapped to TLX residues 359–385, which contains a conserved nuclear receptor–coregulator interaction motif IXXLL. Both HDAC3 and HDAC5 have been shown to be recruited to the promoters of TLX target genes along with TLX in neural stem cells. Recruitment of HDACs led to transcriptional repression of TLX target genes, the cyclin-dependent kinase inhibitor, p21CIP1/WAF1(p21), and the tumor suppressor gene, pten. Either inhibition of HDAC activity or knockdown of HDAC expression led to marked induction of p21 and pten gene expression and dramatically reduced neural stem cell proliferation, suggesting that the TLX-interacting HDACs play an important role in neural stem cell proliferation. Moreover, expression of a TLX peptide containing the minimal HDAC5 interaction domain disrupted the TLX–HDAC5 interaction. Disruption of this interaction led to significant induction of p21 and pten gene expression and to dramatic inhibition of neural stem cell proliferation. Taken together, these findings demonstrate a mechanism for neural stem cell proliferation through transcriptional repression of p21 and pten gene expression by TLX–HDAC interactions. PMID:17873065
Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V S; Fletcher, Helen A
2015-09-29
The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. These results represent novel insights into the immune repertoires involved in malaria vaccination. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Muñoz-Fambuena, Natalia; Mesejo, Carlos; González-Mas, M. Carmen; Primo-Millo, Eduardo; Agustí, Manuel; Iglesias, Domingo J.
2012-01-01
Background and Aims Gene determination of flowering is the result of complex interactions involving both promoters and inhibitors. In this study, the expression of flowering-related genes at the meristem level in alternate-bearing citrus trees is analysed, together with the interplay between buds and leaves in the determination of flowering. Methods First defruiting experiments were performed to manipulate blossoming intensity in ‘Moncada’ mandarin, Citrus clementina. Further defoliation was performed to elucidate the role leaves play in the flowering process. In both cases, the activity of flowering-related genes was investigated at the flower induction (November) and differentiation (February) stages. Key Results Study of the expression pattern of flowering-genes in buds from on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (CiFT), TWIN SISTER OF FT (TSF), APETALA1 (CsAP1) and LEAFY (CsLFY) were negatively affected by fruit load. CiFT and TSF activities showed a marked increase in buds from off trees through the study period (ten-fold in November). By contrast, expression of the homologues of the flowering inhibitors of TERMINAL FLOWER 1 (CsTFL), TERMINAL FLOWER 2 (TFL2) and FLOWERING LOCUS C (FLC) was generally lower in off trees. Regarding floral identity genes, the increase in CsAP1 expression in off trees was much greater in buds than in leaves, and significant variations in CsLFY expression (approx. 20 %) were found only in February. Defoliation experiments further revealed that the absence of leaves completely abolished blossoming and severely affected the expression of most of the flowering-related genes, particularly decreasing the activity of floral promoters and of CsAP1 at the induction stage. Conclusions These results suggest that the presence of fruit affects flowering by greatly altering gene-expression not only at the leaf but also at the meristem level. Although leaves are required for flowering to occur, their absence strongly affects the activity of floral promoters and identity genes. PMID:22915579
Buckley, B A; Owen, M E; Hofmann, G E
2001-10-01
Spatio-temporal variation in heat-shock gene expression gives organisms the ability to respond to changing thermal environments. The temperature at which heat-shock genes are induced, the threshold induction temperature, varies as a function of the recent thermal history of an organism. To elucidate the mechanism by which this plasticity in gene expression is achieved, we determined heat-shock protein (Hsp) induction threshold temperatures in the intertidal mussel Mytilus trossulus collected from the field in February and again in August. In a separate experiment, threshold induction temperatures, endogenous levels of both the constitutive and inducible isoforms of Hsps from the 70 kDa family and the quantity of ubiquitinated proteins (a measure of cellular protein denaturation) were measured in M. trossulus after either 6 weeks of cold acclimation in the laboratory or acclimatization to warm, summer temperatures in the field over the same period. In addition, we quantified levels of activated heat-shock transcription factor 1 (HSF1) in both groups of mussels (HSF1 inducibly transactivates all classes of Hsp genes). Lastly, we compared the temperature of HSF1 activation with the induction threshold temperature in the congeneric M. californianus. It was found that the threshold induction temperature in M. trossulus was 23 degrees C in February and 28 degrees C in August. This agreed with the acclimation/acclimatization experiment, in which mussels acclimated in seawater tables to a constant temperature of 10-11 degrees C for 6 weeks displayed a threshold induction temperature of 20-23 degrees C compared with 26-29 degrees C for individuals that were experiencing considerably warmer body temperatures in the intertidal zone over the same period. This coincided with a significant increase in the inducible isoform of Hsp70 in warm-acclimatized individuals but no increase in the constitutive isoform or in HSF1. Levels of ubiquitin-conjugated protein were significantly higher in the field mussels than in the laboratory-acclimated individuals. Finally, the temperature of HSF1 activation in M. californianus was found to be approximately 9 degrees C lower than the induction threshold for this species.
Hogan, Natacha S; Wartman, Cheryl A; Finley, Megan A; van der Lee, Jennifer G; van den Heuvel, Michael R
2008-12-11
A method to evaluate the expression of three hormone responsive genes, vitellogenin (estrogens), spiggin (androgens), and an androgen receptor (ARbeta) using real-time PCR in threespine stickleback is presented. Primers were designed from previously characterised spiggin and ARbeta sequences, while a homology cloning strategy was used to isolate a partial gene sequence for stickleback vitellogenin (Vtg). Spiggin mRNA was significantly higher in kidneys of field-caught males compared to females by greater than five orders of magnitude while ARbeta levels were only 1.4-fold higher in males. Female fish had four order of magnitude higher liver Vtg expression than wild-captured males. To determine the sensitivity of these genes to induction by hormones, male and female sticklebacks were exposed to 1, 10 and 100 ng/L of methyltestosterone (MT) or estradiol (E2) in a flow-through exposure system for 7 days. Spiggin induction in females, and Vtg induction in males were both detectable at 10 ng/L of MT and E2, respectively. MT exposure did not induce ARbeta expression in the kidneys of female stickleback. In vitro gonadal steroid hormones production was measured in testes and ovaries of exposed stickleback to compare gene expression endpoints to an endpoint of hormonal reproductive alteration. Reduction in testosterone production in ovaries at all three MT exposure concentrations, and ovarian estradiol synthesis at the 100 ng/L exposure were the only effects observed in the in vitro steroidogenesis for either hormone exposure. Application of these methods to assess both androgenic, estrogenic, and anti-steroidogenic properties of environmental contaminants in a single fish species will be a valuable tool for identifying compounds causing reproductive dysfunction in fishes.
Nakano, Yoshihiro; Higuchi, Yohei; Yoshida, Yuichi; Hisamatsu, Tamotsu
2015-04-01
Flowering time control is important for fruit production in Fragaria × ananassa. The flowering inhibition pathway has been extensively elucidated in the woodland strawberry, Fragaria vesca, whereas the factors involved in its promotion remain unclear. In this study, we investigated the environmental responses of F. × ananassa FT and TFL1-like genes, which are considered key floral promoters and repressors in many plants, respectively. A putative floral promoter, FaFT3, was up-regulated in the shoot tip under short-day and/or low growth temperature, in accordance with the result that these treatments promoted flowering. FaFT3 mRNA accumulated before induction of a floral meristem identity gene, FaAP1. FaFT2, a counterpart of FvFT2, expressed in the flower bud of F. vesca, was not induced in the shoot tip differentiating sepal or stamen, suggesting that this gene works at a later stage than stamen formation. In F. vesca, FvFT1 transmits the long-day signal perceived in the leaves to the shoot tip, and induces the potent floral inhibitor FvTFL1. FaFT1 was expressed in the leaves under long-day conditions in F. × ananassa. Expression of FaTFL1 was higher in the shoot tip under long-day than short-day conditions. Independent of day-length, FaTFL1 expression was higher under high temperature than low temperature conditions. These results suggest that FaFT3 induction by short-day or low temperature stimuli is a key step for flowering initiation. As in F. vesca, F. × ananassa floral inhibition pathways depend on FaTFL1 regulation by day-length via FaFT1, and by temperature. Copyright © 2015 Elsevier GmbH. All rights reserved.
Chee Wei, T; Nurul Wahida, A G; Shaharum, S
2014-12-01
Malaysia first reported H5N1 poultry case in 2004 and subsequently outbreak in poultry population in 2007. Here, a recombinant gene encoding of peptide epitopes, consisting fragments of HA1, HA2 and a polybasic cleavage site of H5N1 strain Malaysia, was amplified and cloned into pET-47b(+) bacterial expression vector. DNA sequencing and alignment analysis confirmed that the gene had no alteration and in-frame to the vector. Then, His-tagged truncated HA protein was expressed in Escherichia coli BL21 (DE3) under 1 mM IPTG induction. The protein expression was optimized under a time-course induction study and further purified using Ni-NTA agarose under reducing condition. Migration size of protein was detected at 15 kDa by Western blot using anti-His tag monoclonal antibody and demonstrated no discrepancy compared to its calculated molecular weight.
Freeman, J; Baglino, S; Friborg, J; Kraft, Z; Gray, T; Hill, M; McPhee, F; Hillson, J; Lopez-Talavera, J C; Wind-Rotolo, M
2014-06-01
Pegylated interferon-lambda-1a (Lambda), a type III interferon (IFN) in clinical development for the treatment of chronic HCV infection, has shown comparable efficacy and an improved safety profile to a regimen based on pegylated IFN alfa-2a (alfa). To establish a mechanistic context for this improved profile, we investigated the ex vivo effects of Lambda and alfa on cytokine and chemokine release, and on expression of IFN-stimulated genes (ISGs) in primary human hepatocytes and peripheral blood mononuclear cells (PBMCs) from healthy subjects. Our findings were further compared with changes observed in blood analysed from HCV-infected patients treated with Lambda or alfa in clinical studies. mRNA transcript and protein expression of the IFN-λ-limiting receptor subunit was lower compared with IFN-α receptor subunits in all cell types. Upon stimulation, alfa and Lambda induced ISG expression in hepatocytes and PBMCs, although in PBMCs Lambda-induced ISG expression was modest. Furthermore, alfa and Lambda induced release of cytokines and chemokines from hepatocytes and PBMCs, although differences in their kinetics of induction were observed. In HCV-infected patients, alfa treatment induced ISG expression in whole blood after single and repeat dosing. Lambda treatment induced modest ISG expression after single dosing and showed no induction after repeat dosing. Alfa and Lambda treatment increased IP-10, iTAC, IL-6, MCP-1 and MIP-1β levels in serum, with alfa inducing higher levels of all mediators compared with Lambda. Overall, ex vivo and in vivo induction profiles reported in this analysis strongly correlate with clinical observations of fewer related adverse events for Lambda vs those typically associated with alfa. © 2014 John Wiley & Sons Ltd.
Neuroimmune Basis of Alcoholic Brain Damage
Crews, Fulton T.; Vetreno, Ryan P.
2017-01-01
Alcohol-induced brain damage likely contributes to the dysfunctional poor decisions associated with alcohol dependence. Human alcoholics have a global loss of brain volume that is most severe in the frontal cortex. Neuroimmune gene induction by binge drinking increases neurodegeneration through increased oxidative stress, particularly NADPH oxidase-induced oxidative stress. In addition, HMGB1-TLR4 and innate immune NF-κB target genes are increased leading to persistent and sensitized neuroimmune responses to ethanol and other agents that release HMGB1 or directly stimulate TLR receptors and/or NMDA receptors. Neuroimmune signaling and glutamate excitotoxicity are linked to alcoholic neurodegeneration. Models of adolescent alcohol abuse lead to significant frontal cortical degeneration and show the most severe loss of hippocampal neurogenesis. Adolescence is a period of high risk for ethanol-induced neurodegeneration and alterations in brain structure, gene expression, and maturation of adult phenotypes. Together, these findings support the hypothesis that adolescence is a period of risk for persistent and long-lasting increases in brain neuroimmune gene expression that promote persistent and long-term increases in alcohol consumption, neuroimmune gene induction, and neurodegeneration that we find associated with alcohol use disorders. PMID:25175868
Cannas, Valeria; Daino, Gian Luca; Corona, Angela; Esposito, Francesca; Tramontano, Enzo
2015-10-01
During Ebola virus (EBOV) infection, the type I interferon α/β (IFN-α/β) innate immune response is suppressed by EBOV viral protein 35 (VP35), a validated drug target. Identification of EBOV VP35 inhibitors requires a cellular system able to assess the VP35-based inhibitory functions of viral double-stranded RNA (dsRNA) IFN-β induction. We established a miniaturized luciferase gene reporter assay in A549 cells that measures IFN-β induction by viral dsRNA and is dose-dependently inhibited by VP35 expression. When compared to influenza A virus NS1 protein, EBOV VP35 showed improved inhibition of viral dsRNA-based IFN-β induction. This assay can be used to screen for EBOV VP35 inhibitors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5.
Inagawa, Kohei; Miyamoto, Kazutaka; Yamakawa, Hiroyuki; Muraoka, Naoto; Sadahiro, Taketaro; Umei, Tomohiko; Wada, Rie; Katsumata, Yoshinori; Kaneda, Ruri; Nakade, Koji; Kurihara, Chitose; Obata, Yuichi; Miyake, Koichi; Fukuda, Keiichi; Ieda, Masaki
2012-10-12
After myocardial infarction (MI), massive cell death in the myocardium initiates fibrosis and scar formation, leading to heart failure. We recently found that a combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), reprograms fibroblasts directly into functional cardiomyocytes in vitro. To investigate whether viral gene transfer of GMT into infarcted hearts induces cardiomyocyte generation. Coronary artery ligation was used to generate MI in the mouse. In vitro transduction of GMT retrovirus converted cardiac fibroblasts from the infarct region into cardiomyocyte-like cells with cardiac-specific gene expression and sarcomeric structures. Injection of the green fluorescent protein (GFP) retrovirus into mouse hearts, immediately after MI, infected only proliferating noncardiomyocytes, mainly fibroblasts, in the infarct region. The GFP expression diminished after 2 weeks in immunocompetent mice but remained stable for 3 months in immunosuppressed mice, in which cardiac induction did not occur. In contrast, injection of GMT retrovirus into α-myosin heavy chain (αMHC)-GFP transgenic mouse hearts induced the expression of αMHC-GFP, a marker of cardiomyocytes, in 3% of virus-infected cells after 1 week. A pooled GMT injection into the immunosuppressed mouse hearts induced cardiac marker expression in retrovirus-infected cells within 2 weeks, although few cells showed striated muscle structures. To transduce GMT efficiently in vivo, we generated a polycistronic retrovirus expressing GMT separated by 2A "self-cleaving" peptides (3F2A). The 3F2A-induced cardiomyocyte-like cells in fibrotic tissue expressed sarcomeric α-actinin and cardiac troponin T and had clear cross striations. Quantitative RT-PCR also demonstrated that FACS-sorted 3F2A-transduced cells expressed cardiac-specific genes. GMT gene transfer induced cardiomyocyte-like cells in infarcted hearts.
2012-01-01
Background Fusarium head blight (FHB) caused by Fusarium species like F. graminearum is a devastating disease of wheat (Triticum aestivum) worldwide. Mycotoxins such as deoxynivalenol produced by the fungus affect plant and animal health, and cause significant reductions of grain yield and quality. Resistant varieties are the only effective way to control this disease, but the molecular events leading to FHB resistance are still poorly understood. Transcriptional profiling was conducted for the winter wheat cultivars Dream (moderately resistant) and Lynx (susceptible). The gene expressions at 32 and 72 h after inoculation with Fusarium were used to trace possible defence mechanisms and associated genes. A comparative qPCR was carried out for selected genes to analyse the respective expression patterns in the resistant cultivars Dream and Sumai 3 (Chinese spring wheat). Results Among 2,169 differentially expressed genes, two putative main defence mechanisms were found in the FHB-resistant Dream cultivar. Both are defined base on their specific mode of resistance. A non-specific mechanism was based on several defence genes probably induced by jasmonate and ethylene signalling, including lipid-transfer protein, thionin, defensin and GDSL-like lipase genes. Additionally, defence-related genes encoding jasmonate-regulated proteins were up-regulated in response to FHB. Another mechanism based on the targeted suppression of essential Fusarium virulence factors comprising proteases and mycotoxins was found to be an essential, induced defence of general relevance in wheat. Moreover, similar inductions upon fungal infection were frequently observed among FHB-responsive genes of both mechanisms in the cultivars Dream and Sumai 3. Conclusions Especially ABC transporter, UDP-glucosyltransferase, protease and protease inhibitor genes associated with the defence mechanism against fungal virulence factors are apparently active in different resistant genetic backgrounds, according to reports on other wheat cultivars and barley. This was further supported in our qPCR experiments on seven genes originating from this mechanism which revealed similar activities in the resistant cultivars Dream and Sumai 3. Finally, the combination of early-stage and steady-state induction was associated with resistance, while transcript induction generally occurred later and temporarily in the susceptible cultivars. The respective mechanisms are attractive for advanced studies aiming at new resistance and toxin management strategies. PMID:22857656
Li, Shili; Choi, Hwa Y.; Fang, Fei; Fukasawa, Masashi; Uyeda, Kosaku; Hammer, Robert E.; Horton, Jay D.; Engelking, Luke J.; Liang, Guosheng
2018-01-01
Lipogenesis in liver is highest in the postprandial state; insulin activates SREBP-1c, which transcriptionally activates genes involved in FA synthesis, whereas glucose activates carbohydrate-responsive element-binding protein (ChREBP), which activates both glycolysis and FA synthesis. Whether SREBP-1c and ChREBP act independently of one another is unknown. Here, we characterized mice with liver-specific deletion of ChREBP (L-Chrebp−/− mice). Hepatic ChREBP deficiency resulted in reduced mRNA levels of glycolytic and lipogenic enzymes, particularly in response to sucrose refeeding following fasting, a dietary regimen that elicits maximal lipogenesis. mRNA and protein levels of SREBP-1c, a master transcriptional regulator of lipogenesis, were also reduced in L-Chrebp−/− livers. Adeno-associated virus-mediated restoration of nuclear SREBP-1c in L-Chrebp−/− mice normalized expression of a subset of lipogenic genes, while not affecting glycolytic genes. Conversely, ChREBP overexpression alone failed to support expression of lipogenic genes in the livers of mice lacking active SREBPs as a result of Scap deficiency. Together, these data show that SREBP-1c and ChREBP are both required for coordinated induction of glycolytic and lipogenic mRNAs. Whereas SREBP-1c mediates insulin’s induction of lipogenic genes, ChREBP mediates glucose’s induction of both glycolytic and lipogenic genes. These overlapping, but distinct, actions ensure that the liver synthesizes FAs only when insulin and carbohydrates are both present. PMID:29335275
Dynamics of the Saccharomyces cerevisiae transcriptome during bread dough fermentation.
Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie; Courtin, Christophe M; Verstrepen, Kevin J
2013-12-01
The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation.
Xiao, Fangming; Mark Goodwin, S; Xiao, Yanmei; Sun, Zhaoyu; Baker, Douglas; Tang, Xiaoyan; Jenks, Matthew A; Zhou, Jian-Min
2004-01-01
Pseudomonas syringae relies on type III secretion system to deliver effector proteins into the host cell for parasitism. Type III genes are induced in planta, but host factors affecting the induction are poorly understood. Here we report on the identification of an Arabidopsis mutant, att1 (for aberrant induction of type three genes), that greatly enhances the expression of bacterial type III genes avrPto and hrpL. att1 plants display enhanced disease severity to a virulent strain of P. syringae, suggesting a role of ATT1 in disease resistance. ATT1 encodes CYP86A2, a cytochrome P450 monooxygenase catalyzing fatty acid oxidation. The cutin content is reduced to 30% in att1, indicating that CYP86A2 plays a major role in the biosynthesis of extracellular lipids. att1 has a loose cuticle membrane ultrastructure and shows increased permeability to water vapor, demonstrating the importance of the cuticle membrane in controlling water loss. The enhanced avrPto-luc expression is specific to att1, but not another cuticle mutant, wax2. The results suggest that certain cutin-related fatty acids synthesized by CYP86A2 may repress bacterial type III gene expression in the intercellular spaces. PMID:15241470
Bolen, Christopher R; Ding, Siyuan; Robek, Michael D; Kleinstein, Steven H
2014-04-01
Despite activating similar signaling cascades, the type I and type III interferons (IFNs) differ in their ability to antagonize virus replication. However, it is not clear whether these cytokines induce unique antiviral states, particularly in the liver, where the clinically important hepatitis B and C viruses cause persistent infection. Here, clustering and promoter analyses of microarray-based gene expression profiling were combined with mechanistic studies of signaling pathways to dynamically characterize the transcriptional responses induced by these cytokines in Huh7 hepatoma cells and primary human hepatocytes. Type I and III IFNs differed greatly in their level of interferon-stimulated gene (ISG) induction with a clearly detectable hierarchy (IFN-β > IFN-α > IFN-λ3 > IFN-λ1 > IFN-λ2). Notably, although the hierarchy identified varying numbers of differentially expressed genes when quantified using common statistical thresholds, further analysis of gene expression over multiple timepoints indicated that the individual IFNs do not in fact regulate unique sets of genes. The kinetic profiles of IFN-induced gene expression were also qualitatively similar with the important exception of IFN-α. While stimulation with either IFN-β or IFN-λs resulted in a similar long-lasting ISG induction, IFN-α signaling peaked early after stimulation then declined due to a negative feedback mechanism. The quantitative expression hierarchy and unique kinetics of IFN-α reveal potential specific roles for individual IFNs in the immune response, and elucidate the mechanism behind previously observed differences in IFN antiviral activity. While current clinical trials are focused on IFN-λ1 as a potential antiviral therapy, the finding that IFN-λ3 invariably possesses the highest activity among type III IFNs suggests that this cytokine may have superior clinical activity. © 2014 by the American Association for the Study of Liver Diseases.
Hasegawa, Daigo; Ochiai-Shino, Hiromi; Onodera, Shoko; Nakamura, Takashi; Saito, Akiko; Onda, Takeshi; Watanabe, Katsuhito; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Kosaki, Kenjiro; Yamaguchi, Akira; Shibahara, Takahiko; Azuma, Toshifumi
2017-01-01
Gorlin syndrome is an autosomal dominant inherited syndrome that predisposes a patient to the formation of basal cell carcinomas, odontogenic keratocysts, and skeletal anomalies. Causative mutations in several genes associated with the sonic hedgehog (SHH) signaling pathway, including PTCH1, have been identified in Gorlin syndrome patients. However, no definitive genotype-phenotype correlations are evident in these patients, and their clinical presentation varies greatly, often leading to delayed diagnosis and treatment. We generated iPSCs from four unrelated Gorlin syndrome patients with loss-of-function mutations in PTCH1 using the Sendai virus vector (SeVdp(KOSM)302). The patient-derived iPSCs exhibited basic iPSC features, including stem cell marker expression, totipotency, and the ability to form teratomas. GLI1 expression levels were greater in fibroblasts and patient-derived iPSCs than in the corresponding control cells. Patient-derived iPSCs expressed lower basal levels than control iPSCs of the genes encoding the Hh ligands Indian Hedgehog (IHH) and SHH, the Hh acetyltransferase HHAT, Wnt proteins, BMP4, and BMP6. Most of these genes were upregulated in patient-derived iPSCs grown in osteoblast differentiation medium (OBM) and downregulated in control iPSCs cultured in OBM. The expression of GLI1 and GLI2 substantially decreased in both control and patient-derived iPSCs cultured in OBM, whereas GLI3, SHH, and IHH were upregulated in patient-derived iPSCs and downregulated in control iPSCs grown in OBM. Activation of Smoothened by SAG in cells grown in OBM significantly enhanced alkaline phosphatase activity in patient-derived iPSCs compared with control iPSC lines. In summary, patient-derived iPSCs expressed lower basal levels than the control iPSCs of the genes encoding Hh, Wnt, and bone morphogenetic proteins, but their expression of these genes strongly increased under osteogenic conditions. These findings indicate that patient-derived iPSCs are hypersensitive to osteogenic induction. We propose that Hh signaling is constituently active in iPSCs from Gorlin syndrome patients, enhancing their response to osteogenic induction and contributing to disease-associated abnormalities.
L'Espérance, Sylvain; Bachvarova, Magdalena; Tetu, Bernard; Mes-Masson, Anne-Marie; Bachvarov, Dimcho
2008-02-26
Chemotherapy (CT) resistance in ovarian cancer (OC) is broad and encompasses diverse unrelated drugs, suggesting more than one mechanism of resistance. To better understand the molecular mechanisms controlling the immediate response of OC cells to CT exposure, we have performed gene expression profiling in spheroid cultures derived from six OC cell lines (OVCAR3, SKOV3, TOV-112, TOV-21, OV-90 and TOV-155), following treatment with 10,0 microM cisplatin, 2,5 microM paclitaxel or 5,0 microM topotecan for 72 hours. Exposure of OC spheroids to these CT drugs resulted in differential expression of genes associated with cell growth and proliferation, cellular assembly and organization, cell death, cell cycle control and cell signaling. Genes, functionally involved in DNA repair, DNA replication and cell cycle arrest were mostly overexpressed, while genes implicated in metabolism (especially lipid metabolism), signal transduction, immune and inflammatory response, transport, transcription regulation and protein biosynthesis, were commonly suppressed following all treatments. Cisplatin and topotecan treatments triggered similar alterations in gene and pathway expression patterns, while paclitaxel action was mainly associated with induction of genes and pathways linked to cellular assembly and organization (including numerous tubulin genes), cell death and protein synthesis. The microarray data were further confirmed by pathway and network analyses. Most alterations in gene expression were directly related to mechanisms of the cytotoxics actions in OC spheroids. However, the induction of genes linked to mechanisms of DNA replication and repair in cisplatin- and topotecan-treated OC spheroids could be associated with immediate adaptive response to treatment. Similarly, overexpression of different tubulin genes upon exposure to paclitaxel could represent an early compensatory effect to this drug action. Finally, multicellular growth conditions that are known to alter gene expression (including cell adhesion and cytoskeleton organization), could substantially contribute in reducing the initial effectiveness of CT drugs in OC spheroids. Results described in this study underscore the potential of the microarray technology for unraveling the complex mechanisms of CT drugs actions in OC spheroids and early cellular response to treatment.
Guruge, Keerthi S.; Yamanaka, Noriko; Sonobe, Miyuki; Fujizono, Wataru; Yoshioka, Miyako; Akiba, Masato; Yamamoto, Takehisa; Joshua, Derrick I.; Balakrishna, Keshava; Yamashita, Nobuyoshi; Kannan, Kurunthachalam; Tsutsui, Toshiyuki
2015-01-01
Extracts of wastewater collected from 4 sewage treatment plants (STPs) receiving effluents from different sources in South India were investigated for their levels of transcription factor-mediated gene induction in primary cultured rat hepatocytes. In addition, the relation between gene induction levels and the prevalence of antimicrobial-resistant Escherichia coli (E. coli) in wastewater was examined. STP-3, which treats only hospital wastewater, exhibited significantly greater induction potency of all 6 drug metabolizing cytochrome P450 (CYP) genes examined, CYP1A1, 1A2, 1B1, 2B15, 3A1, and 3A2, whereas the wastewater at STP-1, which exclusively receives domestic sewage, showed significantly diminished levels of induction of 3 CYP genes when compared to the levels of CYP induction at STP-2, which receives mixed wastewater. Samples collected during the monsoon season showed a significantly altered gene induction capacity compared to that of samples from the pre-monsoon period. The data suggest that the toxicity of wastewater in STPs was not significantly diminished during the treatment process. The chemical-gene interaction data predicted that a vast number of chemicals present in the wastewater would stimulate the genes studied in the rat hepatocytes. The multivariable logistic regression analysis demonstrated that the prevalence of isolates resistant to cefotaxime, imipenem and streptomycin was significantly correlated with the levels of induction of at least three CYP-isozymes in STP wastewater. In addition, the resistance of isolates in treatment plants was not altered by the treatment steps, whereas the sampling season did have an impact on the resistance to specific antimicrobials. The identification of receptor-mediated gene regulation capacities offers important data not limited to the (synergistic) physiological role of chemicals in biological systems but may provide new insight into the link between the effects of known/unknown drugs and prevalence of antimicrobial-resistant bacteria in wastewater. PMID:26381891
Clement, Christian; Bhattacharjee, Partha S.; Kumar, Manish; Foster, Timothy P.; Thompson, Hilary W.
2011-01-01
Purpose. To determine host response by gene expression in HSV-1 latent trigeminal ganglia (TG) after sodium butyrate (NaBu) treatment. Methods. Corneas of 6-week-old female BALB/c mice were scarified and inoculated with HSV-1 17Syn+ (high phenotypic reactivator) or its mutant 17ΔPst(LAT−) (low phenotypic reactivator) at 104 plaque-forming units/eye. NaBu-induced viral reactivation was by intraperitoneal (IP) administration at postinfection (PI) day 28, followed by euthanasia after 1 hour. NaBu-treated, uninfected mice served as the control. The resultant labeled cRNA from TG isolated total RNA was hybridized to gene microarray chips containing 14,000 mouse genes. Quantitative real-time PCR was performed to confirm gene expression. Results. Differential induction of gene expression between 17Syn+ and its mutant 17ΔPst(LAT−) was designated as NaBu-induced gene expression and yielded significant upregulation of 2- to 16-fold of 0.4% (56/14,000) host genes probed, comprising mainly nucleosome assembly and binding, central nervous system structural activity, hormonal activity, and signaling activity. Approximately 0.2% (24/14,000) of the host genes, mainly of the same functional categories were downregulated 3- to 11-fold. Immune activity was minor in comparison to our reports on gene expression during latency and heat stress induction. Euchromatin analysis revealed that the LAT-ICP0 locus is amenable to the effects of NaBu. Histone activity was detected by early transcription of histone cluster 2 H2be (Hist2h2be). Conclusions. NaBu-induced reactivation of HSV-1 is twofold: drug action involving significant moderation of specific host epigenetic changes and failure to elicit or suppress immune activity at the early time point of 1 hour. PMID:20881297
Goerke, Christiane; Köller, Johanna; Wolz, Christiane
2006-01-01
In Staphylococcus aureus strains of human origin, phages which integrate into the chromosomal gene coding for β-hemolysin (hlb) are widely distributed. Most of them encode accessory virulence determinants such as staphylokinase (sak) or enterotoxins. Here, we analyzed the effects of ciprofloxacin and trimethoprim on phage induction and expression of phage-encoded virulence factors by using isolates from patients with cystic fibrosis for which the induction of hlb-converting phages was demonstrated in vivo (C. Goerke, S. Matias y Papenberg, S. Dasbach, K. Dietz, R. Ziebach, B. C. Kahl, and C. Wolz, J. Infect. Dis. 189:724-734, 2004) as well as a φ13 lysogen of phage-cured strain 8325-4. Treatment of lysogens with subinhibitory concentrations of either antibiotic resulted in (i) delysogenization of strains resembling the isolates picked up after chronic lung infection and (ii) replication of phages in the bacterial host in a dose-dependent manner. Ciprofloxacin treatment resulted in enhanced recA transcription, indicating involvement of the SOS response in phage mobilization. Induction of φ13 was linked to elevated expression of the phage-encoded virulence gene sak, chiefly due to the activation of latent phage promoters. In summary, we could show the induction of hlb-converting phages and a subsequent virulence modulation of the host bacterium by ciprofloxacin and trimethoprim. PMID:16377683
Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun
2015-01-01
Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI. PMID:26265775
Commonly dysregulated genes in murine APL cells
Yuan, Wenlin; Payton, Jacqueline E.; Holt, Matthew S.; Link, Daniel C.; Watson, Mark A.; DiPersio, John F.; Ley, Timothy J.
2007-01-01
To identify genes that are commonly dysregulated in a murine model of acute promyelocytic leukemia (APL), we first defined gene expression patterns during normal murine myeloid development; serial gene expression profiling studies were performed with primary murine hematopoietic progenitors that were induced to undergo myeloid maturation in vitro with G-CSF. Many genes were reproducibly expressed in restricted developmental “windows,” suggesting a structured hierarchy of expression that is relevant for the induction of developmental fates and/or differentiated cell functions. We compared the normal myeloid developmental transcriptome with that of APL cells derived from mice expressing PML-RARα under control of the murine cathepsin G locus. While many promyelocyte-specific genes were highly expressed in all APL samples, 116 genes were reproducibly dysregulated in many independent APL samples, including Fos, Jun, Egr1, Tnf, and Vcam1. However, this set of commonly dysregulated genes was expressed normally in preleukemic, early myeloid cells from the same mouse model, suggesting that dysregulation occurs as a “downstream” event during disease progression. These studies suggest that the genetic events that lead to APL progression may converge on common pathways that are important for leukemia pathogenesis. PMID:17008535
Brough, Rachel; Papanastasiou, Antigoni M; Porter, Andrew CG
2007-01-01
Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support optimal regulatory characteristics. Rht14-10 and similar HT1080-derived clones can now be used in conjunction with a convenient delivery vector (pIN2-neoMCS), in a simple 3-step protocol leading to stringent and reproducible transgene regulation. This approach will be particularly useful for transgenes whose products are very active at low concentrations and/or for comparisons of multiple related transgenes. PMID:17493262
Perera, Pin-Yu; Qureshi, Nilofer; Christ, William J.; Stütz, Peter; Vogel, Stefanie N.
1998-01-01
Monocytes/macrophages play a central role in mediating the effects of lipopolysaccharide (LPS) derived from gram-negative bacteria by the production of proinflammatory mediators. Recently, it was shown that the expression of cytokine genes for tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interferon-inducible protein-10 (IP-10) by murine macrophages in response to low concentrations of LPS is entirely CD14 dependent. In this report, we show that murine macrophages respond to low concentrations of LPS (≤2 ng/ml) in the complete absence of serum, leading to the induction of TNF-α and IL-1β genes. In contrast to the TNF-α and IL-1β genes, the IP-10 gene is poorly induced in the absence of serum. The addition of recombinant human soluble CD14 (rsCD14) had very little effect on the levels of serum-free, LPS-induced TNF-α, IL-1β, and IP-10 genes. In contrast, the addition of recombinant human LPS-binding protein (rLBP) had opposing effects on the LPS-induced TNF-α or IL-1β and IP-10 genes. rLBP inhibited LPS-induced TNF-α and IL-1β genes, while it reconstituted IP-10 gene expression to levels induced in the presence of serum. These results provide further evidence that the induction of TNF-α or IL-1β genes occurs via a pathway that is distinct from one that leads to the induction of the IP-10 gene and that the pathways diverge at the level of the initial interaction between LPS and cellular CD14. Additionally, the results presented here indicate that LPS structural analog antagonists Rhodobacter sphaeroides diphosphoryl lipid A and SDZ 880.431 are able to inhibit LPS-induced TNF-α and IL-1β in the absence of serum, while a synthetic analog of Rhodobacter capsulatus lipid A (B 975) requires both rsCD14 and rLBP to function as an inhibitor. PMID:9596717
Expression and Activity Analysis of Fructosyltransferase from Aspergillus oryzae.
Guan, Lihong; Chen, Liping; Chen, Yongsen; Zhang, Nu; Han, Yawei
2017-08-01
The fructosyltransferase gene was isolated and cloned from Aspergillus oryzae. The gene was 1368 bp, which encoded a protein of 455 amino acids. To analyze the activity of the expressed fructosyltransferase, the pET32a-fructosyltransferase recombined plasmid was transformed into Escherichia coli BL21. The fructosyltransferase gene was successfully expressed by Isopropyl-β-d-thiogalactoside (IPTG) induction. The molecular weight of the expression protein was about 45 kDa. The optimal conditions of protein expression were 25 °C, 0.1 mM IPTG, and 8 h of inducing time. The optimal concentration of urea dealing with inclusion body was 2.5 M. The expressed protein exhibited a strong fructosyl transfer activity. These results showed that the expressed fructosyltransferas owned transferase activity, and could catalyze the synthesis of sucrose-6-acetate.
Dynamic interplay and function of multiple noncoding genes governing X chromosome inactivation
Yue, Minghui; Richard, John Lalith Charles
2015-01-01
There is increasing evidence for the emergence of long noncoding RNAs (IncRNAs) as important components, especially in the regulation of gene expression. In the event of X chromosome inactivation, robust epigenetic marks are established in a long noncoding Xist RNA-dependent manner, giving rise to a distinct epigenetic landscape on the inactive X chromosome (Xi). The X inactivation center (Xic is essential for induction of X chromosome inactivation and harbors two topologically associated domains (TADs) to regulate monoallelic Xist expression: one at the noncoding Xist gene and its upstream region, and the other at the antisense Tsix and its upstream region. The monoallelic expression of Xist is tightly regulated by these two functionally distinct TADs as well as their constituting IncRNAs and proteins. In this review, we summarize recent updates in our knowledge of IncRNAs found at the Xic and discuss their overall mechanisms of action. We also discuss our current understanding of the molecular mechanism behind Xist RNA-mediated induction of the repressive epigenetic landscape at the Xi. PMID:26260844
Gizard, Florence; Heywood, Elizabeth B.; Findeisen, Hannes M.; Zhao, Yue; Jones, Karrie L.; Cudejko, Cèline; Post, Ginell R.; Staels, Bart; Bruemmer, Dennis
2010-01-01
Objective Telomerase serves as a critical regulator of tissue renewal. Although telomerase activity is inducible in response to various environmental cues, it remains unknown whether telomerase is activated during the inflammatory remodeling underlying atherosclerosis formation. To address this question, we investigated in the present study the regulation of telomerase in macrophages and during atherosclerosis development in LDL-receptor-deficient mice. Methods and Results We demonstrate that inflammatory stimuli activate telomerase in macrophages by inducing the expression of the catalytic subunit telomerase reverse transcriptase (TERT). Reporter and chromatin immunoprecipitation assays identified a previously unrecognized NF-κB response element in the TERT promoter, to which NF-κB is recruited during inflammation. Inhibition of NF-κB signaling completely abolished the induction of TERT expression, characterizing TERT as a bona fide NF-κB target gene. Furthermore, functional experiments revealed that TERT-deficiency results in a senescent cell phenotype. Finally, we demonstrate high levels of TERT expression in macrophages of human atherosclerotic lesions and establish that telomerase is activated during atherosclerosis development in LDL-receptor-deficient mice. Conclusion These results characterize TERT as a previously unrecognized NF-κB target gene in macrophages and demonstrate that telomerase is activated during atherosclerosis. This induction of TERT expression prevents macrophage senescence and may have important implications for the development of atherosclerosis. PMID:21106948
Haberman, Amnon; Bakhshian, Ortal; Cerezo-Medina, Sergio; Paltiel, Judith; Adler, Chen; Ben-Ari, Giora; Mercado, Jose Angel; Pliego-Alfaro, Fernando; Lavee, Shimon; Samach, Alon
2017-08-01
Olive (Olea europaea L.) inflorescences, formed in lateral buds, flower in spring. However, there is some debate regarding time of flower induction and inflorescence initiation. Olive juvenility and seasonality of flowering were altered by overexpressing genes encoding flowering locus T (FT). OeFT1 and OeFT2 caused early flowering under short days when expressed in Arabidopsis. Expression of OeFT1/2 in olive leaves and OeFT2 in buds increased in winter, while initiation of inflorescences occurred i n late winter. Trees exposed to an artificial warm winter expressed low levels of OeFT1/2 in leaves and did not flower. Olive flower induction thus seems to be mediated by an increase in FT levels in response to cold winters. Olive flowering is dependent on additional internal factors. It was severely reduced in trees that carried a heavy fruit load the previous season (harvested in November) and in trees without fruit to which cold temperatures were artificially applied in summer. Expression analysis suggested that these internal factors work either by reducing the increase in OeFT1/2 expression or through putative flowering repressors such as TFL1. With expected warmer winters, future consumption of olive oil, as part of a healthy Mediterranean diet, should benefit from better understanding these factors. © 2017 John Wiley & Sons Ltd.
CMV induces HERV-K and HERV-W expression in kidney transplant recipients.
Bergallo, Massimiliano; Galliano, Ilaria; Montanari, Paola; Gambarino, Stefano; Mareschi, Katia; Ferro, Francesca; Fagioli, Franca; Tovo, Pier-Angelo; Ravanini, Paolo
2015-07-01
Human endogenous retrovirus (HERVs) constitute approximately 8% of the human genome. Induction of HERV transcription is possible under certain circumstances, and may have a possible role in some pathological conditions. The aim of this study was to evaluate HERV-K and -W pol gene expression in kidney transplant recipients and to investigate the possible relationship between HERVs gene expression and CMV infection in these patients. Thirty-three samples of kidney transplant patients and twenty healthy blood donors were used to analyze, HERV-K and -W pol gene RNA expression by relative quantitative relative Real-Time PCR. We demonstrated that HERVs pol gene expression levels were higher in kidney transplant recipients than in healthy subjects. Moreover, HERV-K and -W pol gene expression was significantly higher in the group of kidney transplant recipients with high CMV viral load than in the groups with no or moderate CMV viral load. Our data suggest that CMV may facilitate in vivo HERV activation. Published by Elsevier B.V.
2003-01-01
Immunodeficiency Virus Type-1 (HIV-1) Envelope Genes beyond brief excerpts is with permission of the copyright owner, and will save and hold harmless the...VEE) REPLICON SYSTEM, EXPRESSING HUMAN IMMUNODEFICIENCY VIRUS TYPE 1 (HIV-1) ENVELOPE GENES 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...release, distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Human immunodeficiency virus type 1 (HIV-1) is the lentivirus responsible for the
Li, Guojing; Meng, Xiangzong; Wang, Ruigang; Mao, Guohong; Han, Ling; Liu, Yidong; Zhang, Shuqun
2012-06-01
Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.
Wang, Ning; Whang, Ilson; Lee, Jae-Seong; Lee, Jehee
2011-06-01
Heat shock protein 90s (hsp90s) are chaperones that contribute to the proper folding of cellular proteins and help animals cope with the cellular protein damages in stress conditions. In this study, an hsp90 gene was isolated from disc abalone (Haliotis discus). The complete nucleotide sequence of the hsp90 gene contains an open reading frame of 2,184 base pairs, encoding an 84 kDa protein. Disk abalone hsp90 shares high sequence similarity with other hsp90 family proteins. Although the phylogenetic analysis did not classify it into the hsp90α group, the inductivity of this gene was confirmed by heat shock and lipopolysaccharide (LPS) challenge test. Disk abalone hsp90 gene displayed a rapid and reversible induction response to both an exposure of typical heat shock and the LPS challenge. Once given the sublethal heat shock treatment, the transcription of disk abalone hsp90 gene was significantly up-regulated. With a recovery of 12 h, the transcription of disk abalone hsp90 gene gradually attenuated to the control level. These observations reflected the feedback regulation of abalone heat shock responses faithfully. In response to LPS challenge, the transcription of disk abalone hsp90 gene was significantly increased within 2 h and it approached maximum induction at 4 h later and recovered finally the reference level in 24 h. Take all together, the cloning and expression analysis of disk abalone hsp90 gene provided useful molecular information of abalone responses in stress conditions and potential ways to monitor the chronic stressors in abalone culture environments and diagnose the animal health status.
IAA8 expression during vascular cell differentiation
Andrew T. Groover; Amy Pattishall; Alan M. Jones
2003-01-01
We report the characterization of a member of the auxin-induced IAA gene family from zinnia, designated zIAA8, which is expressed by mesophyll cells differentiating as tracheary elements in vitro. Transcription of zIAA8 is upregulated within 3 h after cell isolation in inductive medium,...
Lambert, W. Marcus; Xu, Chong-Feng; Neubert, Thomas A.; Chao, Moses V.
2013-01-01
Abnormal glucocorticoid and neurotrophin signaling has been implicated in numerous psychiatric disorders. However, the impact of neurotrophic signaling on glucocorticoid receptor (GR)-dependent gene expression is not understood. We therefore examined the impact of brain-derived neurotrophic factor (BDNF) signaling on GR transcriptional regulatory function by gene expression profiling in primary rat cortical neurons stimulated with the selective GR agonist dexamethasone (Dex) and BDNF, alone or in combination. Simultaneous treatment with BDNF and Dex elicited a unique set of GR-responsive genes associated with neuronal growth and differentiation and also enhanced the induction of a large number of Dex-sensitive genes. BDNF via its receptor TrkB enhanced the transcriptional activity of a synthetic GR reporter, suggesting a direct effect of BDNF signaling on GR function. Indeed, BDNF treatment induces the phosphorylation of GR at serine 155 (S155) and serine 287 (S287). Expression of a nonphosphorylatable mutant (GR S155A/S287A) impaired the induction of a subset of BDNF- and Dex-regulated genes. Mechanistically, BDNF-induced GR phosphorylation increased GR occupancy and cofactor recruitment at the promoter of a BDNF-enhanced gene. GR phosphorylation in vivo is sensitive to changes in the levels of BDNF and TrkB as well as stress. Therefore, BDNF signaling specifies and amplifies the GR transcriptome through a coordinated GR phosphorylation-dependent detection mechanism. PMID:23878391
Pandian, Ganesh N; Ohtsuki, Akimichi; Bando, Toshikazu; Sato, Shinsuke; Hashiya, Kaori; Sugiyama, Hiroshi
2012-04-15
Epigenetic modifications that govern the gene expression are often overlooked with the design of artificial genetic switches. N-Methylpyrrole-N-methylimidazole (PI) hairpin polyamides are programmable small DNA binding molecules that have been studied in the context of gene regulation. Recently, we synthesized a library of compounds by conjugating PI polyamides with SAHA, a chromatin-modifier. Among these novel compounds, PI polyamide-SAHA conjugate 1 was shown to epigenetically activate pluripotency genes in mouse embryonic fibroblasts. Here, we report the synthesis of the derivatives of conjugate 1 and demonstrate that these epigenetically active molecules could be developed to improve the induction of pluripotency factors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Endocrine disrupting chemicals have been shown to be present in surface waters, sediments and sludge, and are known to induce vitellogenin gene liver transcripts in male fathead minnows. The purpose of our study was to establish the lowest concentrations of estrogenic chemicals ...
SUV39H1 interacts with HTLV-1 Tax and abrogates Tax transactivation of HTLV-1 LTR
Kamoi, Koju; Yamamoto, Keiyu; Misawa, Aya; Miyake, Ariko; Ishida, Takaomi; Tanaka, Yuetsu; Mochizuki, Manabu; Watanabe, Toshiki
2006-01-01
Background Tax is the oncoprotein of HTLV-1 which deregulates signal transduction pathways, transcription of genes and cell cycle regulation of host cells. Transacting function of Tax is mainly mediated by its protein-protein interactions with host cellular factors. As to Tax-mediated regulation of gene expression of HTLV-1 and cellular genes, Tax was shown to regulate histone acetylation through its physical interaction with histone acetylases and deacetylases. However, functional interaction of Tax with histone methyltransferases (HMTase) has not been studied. Here we examined the ability of Tax to interact with a histone methyltransferase SUV39H1 that methylates histone H3 lysine 9 (H3K9) and represses transcription of genes, and studied the functional effects of the interaction on HTLV-1 gene expression. Results Tax was shown to interact with SUV39H1 in vitro, and the interaction is largely dependent on the C-terminal half of SUV39H1 containing the SET domain. Tax does not affect the methyltransferase activity of SUV39H1 but tethers SUV39H1 to a Tax containing complex in the nuclei. In reporter gene assays, co-expression of SUV39H1 represses Tax transactivation of HTLV-1 LTR promoter activity, which was dependent on the methyltransferase activity of SUV39H1. Furthermore, SUV39H1 expression is induced along with Tax in JPX9 cells. Chromatin immunoprecipitation (ChIP) analysis shows localization of SUV39H1 on the LTR after Tax induction, but not in the absence of Tax induction, in JPX9 transformants retaining HTLV-1-Luc plasmid. Immunoblotting shows higher levels of SUV39H1 expression in HTLV-1 transformed and latently infected cell lines. Conclusion Our study revealed for the first time the interaction between Tax and SUV39H1 and apparent tethering of SUV39H1 by Tax to the HTLV-1 LTR. It is speculated that Tax-mediated tethering of SUV39H1 to the LTR and induction of the repressive histone modification on the chromatin through H3 K9 methylation may be the basis for the dose-dependent repression of Tax transactivation of LTR by SUV39H1. Tax-induced SUV39H1 expression, Tax-SUV39H1 interaction and tethering to the LTR may provide a support for an idea that the above sequence of events may form a negative feedback loop that self-limits HTLV-1 viral gene expression in infected cells. PMID:16409643
Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling.
Grimmig, Bernhard; Gonzalez-Perez, Maria N; Leubner-Metzger, Gerhard; Vögeli-Lange, Regina; Meins, Fred; Hain, Rüdiger; Penuelas, Josep; Heidenreich, Bernd; Langebartels, Christian; Ernst, Dieter; Sandermann, Heinrich
2003-03-01
Recent studies suggest that ethylene is involved in signalling ozone-induced gene expression. We show here that application of ozone increased glucuronidase (GUS) expression of chimeric reporter genes regulated by the promoters of the tobacco class I beta-1,3-glucanases (GLB and Gln2) and the grapevine resveratrol synthase (Vst1) genes in transgenic tobacco leaves. 5'-deletion analysis of the class I beta-1,3-glucanase promoter revealed that ozone-induced gene regulation is mainly mediated by the distal enhancer region containing the positively acting ethylene-responsive element (ERE). In addition, application of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, blocked ozone-induced class I beta-1,3-glucanase promoter activity. Enhancer activity and ethylene-responsiveness depended on the integrity of the GCC boxes, cis-acting elements present in the ERE of the class I beta-1,3-glucanase and the basic-type pathogenesis-related PR-1 protein (PRB-1b) gene promoters. The minimal PRB-1b promoter containing only the ERE with intact GCC boxes, was sufficient to confer 10-fold ozone inducibility to a GUS-reporter gene, while a substitution mutation in the GCC box abolished ozone responsiveness. The ERE region of the class I beta-1,3-glucanase promoter containing two intact GCC boxes confered strong ozone inducibility to a minimal cauliflower mosaic virus (CaMV) 35S RNA promoter, whereas two single-base substitution in the GCC boxes resulted in a complete loss of ozone inducibility. Taken together, these datastrongly suggest that ethylene is signalling ozone-induced expression of class I beta-l,3-glucanase and PRB-1b genes. Promoter analysis of the stilbene synthase Vst1 gene unravelled different regions for ozone and ethylene-responsiveness. Application of 1-MCP blocked ethylene-induced Vst1 induction, but ozone induction was not affected. This shows that ozone-induced gene expression occurs via at least two different signalling mechanisms and suggests an additional ethylene independent signalling pathway for ozone-induced expression of genes involved in phytoalexin biosynthesis.
Ko, Jae-Heung; Han, Kyung-Hwan; Park, Sunchung; Yang, Jaemo
2004-06-01
Wood is an important raw material and environmentally cost-effective renewable source of energy. However, the molecular biology of wood formation (i.e. secondary growth) is surprisingly understudied. A novel experimental system was employed to study the molecular regulation of secondary xylem formation in Arabidopsis. First, we demonstrate that the weight carried by the stem is a primary signal for the induction of cambium differentiation and the plant hormone, auxin, is a downstream carrier of the signal for this process. We used Arabidopsis whole-transcriptome (23 K) GeneChip analysis to examine gene expression profile changes in the inflorescent stems treated for wood formation by cultural manipulation or artificial weight application. Many of the genes up-regulated in wood-forming stems had auxin responsive cis-acting elements in their promoter region, indicating auxin-mediated regulation of secondary growth. We identified 700 genes that were differentially expressed during the transition from primary growth to secondary growth. More than 40% of the genes that were up-regulated (>5x) were associated with signal transduction and transcriptional regulation. Biological significance of these regulatory genes is discussed in light of the induction and development of secondary xylem.
Transcriptomic responses to wounding: meta-analysis of gene expression microarray data.
Sass, Piotr Andrzej; Dąbrowski, Michał; Charzyńska, Agata; Sachadyn, Paweł
2017-11-07
A vast amount of microarray data on transcriptomic response to injury has been collected so far. We designed the analysis in order to identify the genes displaying significant changes in expression after wounding in different organisms and tissues. This meta-analysis is the first study to compare gene expression profiles in response to wounding in as different tissues as heart, liver, skin, bones, and spinal cord, and species, including rat, mouse and human. We collected available microarray transcriptomic profiles obtained from different tissue injury experiments and selected the genes showing a minimum twofold change in expression in response to wounding in prevailing number of experiments for each of five wound healing stages we distinguished: haemostasis & early inflammation, inflammation, early repair, late repair and remodelling. During the initial phases after wounding, haemostasis & early inflammation and inflammation, the transcriptomic responses showed little consistency between different tissues and experiments. For the later phases, wound repair and remodelling, we identified a number of genes displaying similar transcriptional responses in all examined tissues. As revealed by ontological analyses, activation of certain pathways was rather specific for selected phases of wound healing, such as e.g. responses to vitamin D pronounced during inflammation. Conversely, we observed induction of genes encoding inflammatory agents and extracellular matrix proteins in all wound healing phases. Further, we selected several genes differentially upregulated throughout different stages of wound response, including established factors of wound healing in addition to those previously unreported in this context such as PTPRC and AQP4. We found that transcriptomic responses to wounding showed similar traits in a diverse selection of tissues including skin, muscles, internal organs and nervous system. Notably, we distinguished transcriptional induction of inflammatory genes not only in the initial response to wounding, but also later, during wound repair and tissue remodelling.
Starrett, D. A.; Laties, G. G.
1993-01-01
Whereas intact postharvest avocado (Persea americana Mill.) fruit may take 1 or more weeks to ripen, ripening is hastened by pulsing fruit for 24 h with ethylene or propylene and is initiated promptly by cutting slices, or discs, of mesocarp tissue. Because the preclimacteric lag period constitutes the extended and variable component of the ripening syndrome, we postulated that selective gene expression during the lag period leads to the triggering of the climacteric. Accordingly, we sought to identify genes that are expressed gradually in the course of the lag period in intact fruit, are turned on sooner in response to a pulse, and are induced promptly in response to wounding (i.e. slicing). To this end, a mixed cDNA library was constructed from mRNA from untreated fruit, pulsed fruit, and aged slices, and the library was screened for genes induced by wounding or by pulsing and/or wounding. The time course of induction of genes encoding selected clones was established by probing northern blots of mRNA from tissues variously treated over a period of time. Four previously identified ripening-associated genes encoding cellulase, polygalacturonase (PG), cytochrome P-450 oxidase (P-450), and ethylene-forming enzyme (EFE, or 1-aminocyclopropane-1-carboxylic acid synthase), respectively, were studied in the same way. Whereas cellulase, PG, and EFE were ruled out as having a role in the initiation of the climacteric, the time course of P-450 induction, as well as the response of same to pulsing and wounding met the criteria[mdash]together with several clones from the mixed library[mdash]for a gene potentially involved in preclimacteric events leading to the onset of the climacteric. Further, it was established that the continuous presence of ethylene is required for persisting induction, and it is suggested that in selected cases wounding may exert a synergistic effect on ethylene action. PMID:12231929
On the functional significance of c-fos induction during the sleep-waking cycle.
Cirelli, C; Tononi, G
2000-06-15
A striking finding in recent years has been that the transition from sleep to waking is accompanied in many brain regions by a widespread activation of c-fos and other immediate-early genes (IEGs). IEGs are induced by various electrical or chemical signals to which neural cells are exposed and their protein products act as transcription factors to regulate the expression of other genes. After a few hours of sleep, the expression of these transcription factors in the brain is absent or restricted to very few cells. However, after a few hours of spontaneous waking or sleep deprivation, the expression of c-fos and other IEGs is high in cerebral cortex, hypothalamus, septum, and several thalamic and brainstem nuclei. While cells expressing c-fos during waking are widely distributed, they represent only a subset of all neurons in any given area. These observations raise several questions: Why is c-fos expressed during waking and not during sleep? Is waking always accompanied by c-fos induction? Which subset of cells express c-fos during waking and why only a subset? Once c-fos has been induced, what are the functional consequences of its activation? In this review, we summarize our current understanding of the meaning of c-fos activation in the brain in relation to the sleep-waking cycle and suggest that c-fos induction in the cerebral cortex during waking might be related to the occurrence of plastic phenomena.
Foxp3 Expression is Required for the Induction of Therapeutic Tissue Tolerance1
Regateiro, Frederico S.; Chen, Ye; Kendal, Adrian R.; Hilbrands, Robert; Adams, Elizabeth; Cobbold, Stephen P.; Ma, Jianbo; Andersen, Kristian G.; Betz, Alexander G.; Zhang, Mindy; Madhiwalla, Shruti; Roberts, Bruce; Waldmann, Herman; Nolan, Kathleen F.; Howie, Duncan
2012-01-01
CD4+Foxp3+ Treg are essential for immune homeostasis and maintenance of self-tolerance. They are produced in the thymus and also generated de novo in the periphery in a TGFβ dependent manner. Foxp3+ Treg are also required to achieve tolerance to transplanted tissues when induced by co receptor or co stimulation blockade. Using TCR transgenic mice to avoid issues of autoimmune pathology, we show that Foxp3 expression is both necessary and sufficient for tissue tolerance by coreceptor blockade. Moreover, the known need in tolerance induction for TGFβ signalling to T cells can wholly be explained by its role in induction of Foxp3, as such signalling proved dispensable for the suppressive process. We analysed the relative contribution of TGFβ and Foxp3 to the transcriptome of TGFβ-induced Treg and showed that TGFβ elicited a large set of down-regulated signature genes. The number of genes uniquely modulated due to the influence of Foxp3 alone was surprisingly limited. Thus, despite the large genetic influence of TGFβ exposure on iTreg, the crucial Foxp3-influenced signature independent of TGFβ is small. Retroviral mediated conditional nuclear expression of Foxp3 proved sufficient to confer transplant-suppressive potency on CD4+ T cells, and was lost once nuclear Foxp3 expression was extinguished. These data support a dual role for TGFβ and Foxp3 in induced tolerance, where TGFβ stimulates Foxp3 expression, whose sustained expression is then associated with acquisition of tolerance. PMID:22988034
van Marle, Guido; Antony, Joseph; Ostermann, Heather; Dunham, Christopher; Hunt, Tracey; Halliday, William; Maingat, Ferdinand; Urbanowski, Matt D.; Hobman, Tom; Peeling, James; Power, Christopher
2007-01-01
West Nile virus (WNV) infection causes neurological disease at all levels of the neural axis, accompanied by neuroinflammation and neuronal loss, although the underlying mechanisms remain uncertain. Given the substantial activation of neuroinflammatory pathways observed in WNV infection, we hypothesized that WNV-mediated neuroinflammation and cell death occurred through WNV infection of both glia and neurons, which was driven in part by WNV capsid protein expression. Analysis of autopsied neural tissues from humans with WNV encephalomyelitis (WNVE) revealed WNV infection of both neurons and glia. Upregulation of proinflammatory genes, CXCL10, interleukin-1β, and indolamine-2′,3′-deoxygenase with concurrent suppression of the protective astrocyte-specific endoplasmic reticulum stress sensor gene, OASIS (for old astrocyte specifically induced substance), was evident in WNVE patients compared to non-WNVE controls. These findings were supported by increased ex vivo expression of these proinflammatory genes in glia infected by WNV-NY99. WNV infection caused endoplasmic reticulum stress gene induction and apoptosis in neurons but did not affect glial viability. WNV-infected astrocytic cells secreted cytotoxic factors, which caused neuronal apoptosis. The expression of the WNV-NY99 capsid protein in neurons and glia by a Sindbis virus-derived vector (SINrep5-WNVc) caused neuronal death and the release of neurotoxic factors by infected astrocytes, coupled with proinflammatory gene induction and suppression of OASIS. Striatal implantation of SINrep5-WNVC induced neuroinflammation in rats, together with the induction of CXCL10 and diminished OASIS expression, compared to controls. Moreover, magnetic resonance neuroimaging showed edema and tissue injury in the vicinity of the SINrep5-WNVc implantation site compared to controls, which was complemented by neurobehavioral abnormalities in the SINrep5-WNVc-implanted animals. These studies underscore the important interactions between the WNV capsid protein and neuroinflammation in the pathogenesis of WNV-induced neurological disorders. PMID:17670819
Triazophos up-regulated gene expression in the female brown planthopper, Nilaparvata lugens.
Bao, Yan-Yuan; Li, Bao-Ling; Liu, Zhao-Bu; Xue, Jian; Zhu, Zeng-Rong; Cheng, Jia-An; Zhang, Chuan-Xi
2010-09-01
The widespread use of insecticides has caused the resurgence of the brown planthopper, Nilaparvata lugens, in Asia. In this study, we investigated an organo-phosphorous insecticide, triazophos, and its ability to induce gene expression variation in female N. lugens nymphs just before emergence. By using the suppression subtractive hybridization method, a triazophos-induced cDNA library was constructed. In total, 402 differentially expressed cDNA clones were obtained. Real-time qPCR analysis confirmed that triazophos up-regulated the expression of six candidate genes at the transcript level in nymphs on day 3 of the 5th instar. These genes encode N. lugens vitellogenin, bystin, multidrug resistance protein (MRP), purine nucleoside phosphorylase (PNP), pyrroline-5-carboxylate reductase (P5CR) and carboxylesterase. Our results imply that the up-regulation of these genes may be involved in the induction of N. lugens female reproduction or resistance to insecticides.
Diallo, Amadou; Kane, Ndjido; Agharbaoui, Zahra; Badawi, Mohamed; Sarhan, Fathey
2010-01-13
The vernalization gene 2 (VRN2), is a major flowering repressor in temperate cereals that is regulated by low temperature and photoperiod. Here we show that the gene from Triticum aestivum (TaVRN2) is also regulated by salt, heat shock, dehydration, wounding and abscissic acid. Promoter analysis indicates that TaVRN2 regulatory region possesses all the specific responsive elements to these stresses. This suggests pleiotropic effects of TaVRN2 in wheat development and adaptability to the environment. To test if TaVRN2 can act as a flowering repressor in species different from the temperate cereals, the gene was ectopically expressed in the model plant Arabidopsis. Transgenic plants showed no alteration in morphology, but their flowering time was significantly delayed compared to controls plants, indicating that TaVRN2, although having no ortholog in Brassicaceae, can act as a flowering repressor in these species. To identify the possible mechanism by which TaVRN2 gene delays flowering in Arabidopsis, the expression level of several genes involved in flowering time regulation was determined. The analysis indicates that the late flowering of the 35S::TaVRN2 plants was associated with a complex pattern of expression of the major flowering control genes, FCA, FLC, FT, FVE and SOC1. This suggests that heterologous expression of TaVRN2 in Arabidopsis can delay flowering by modulating several floral inductive pathways. Furthermore, transgenic plants showed higher freezing tolerance, likely due to the accumulation of CBF2, CBF3 and the COR genes. Overall, our data suggests that TaVRN2 gene could modulate a common regulator of the two interacting pathways that regulate flowering time and the induction of cold tolerance. The results also demonstrate that TaVRN2 could be used to manipulate flowering time and improve cold tolerance in other species.
Gene expression in cerebral ischemia: a new approach for neuroprotection.
Millán, Mónica; Arenillas, Juan
2006-01-01
Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials. Copyright 2006 S. Karger AG, Basel.
Dental Pulp Stem Cell-Derived, Scaffold-Free Constructs for Bone Regeneration.
Tatsuhiro, Fukushima; Seiko, Tatehara; Yusuke, Takebe; Reiko, Tokuyama-Toda; Kazuhito, Satomura
2018-06-22
In the present study, a scaffold-free tissue construct was developed as an approach for the regeneration of tissue defects, which produced good outcomes. We fabricated a scaffold-free tissue construct from human dental pulp stem cells (hDPSCs construct), and examined the characteristics of the construct. For its fabrication, basal sheets prepared by 4-week hDPSCs culturing were subjected to 1-week three-dimensional culture, with or without osteogenic induction, whereas hDPSC sheets (control) were fabricated by 1-week culturing of basal sheets on monolayer culture. The hDPSC constructs formed a spherical structure and calcified matrix that are absent in the control. The expression levels for bone-related genes in the hDPSC constructs were significantly upregulated compared with those in the control. Moreover, the hDPSC constructs with osteogenic induction had a higher degree of calcified matrix formation, and higher expression levels for bone-related genes, than those for the hDPSC constructs without osteogenic induction. These results suggest that the hDPSC constructs with osteogenic induction are composed of cells and extracellular and calcified matrices, and that they can be a possible scaffold-free material for bone regeneration.
Changes in the regulation of heat shock gene expression in neuronal cell differentiation.
Oza, Jay; Yang, Jingxian; Chen, Kuang Yu; Liu, Alice Y-C
2008-01-01
Neuronal differentiation of the NG108-15 neuroblastoma-glioma hybrid cells is accompanied by a marked attenuation in the heat shock induction of the Hsp70-firefly luciferase reporter gene activity. Analysis of the amount and activation of heat shock factor 1, induction of mRNA(hsp), and the synthesis and accumulation of heat shock proteins (HSPs) in the undifferentiated and differentiated cells suggest a transcriptional mechanism for this attenuation. Concomitant with a decreased induction of the 72-kDa Hsp70 protein in the differentiated cells, there is an increased abundance of the constitutive 73-kDa Hsc70, a protein known to function in vesicle trafficking. Assessment of sensitivity of the undifferentiated and differentiated cells against stress-induced cell death reveals a significantly greater vulnerability of the differentiated cells toward the cytotoxic effects of arsenite and glutamate/glycine. This study shows that changes in regulation of the HSP and HSC proteins are components of the neuronal cell differentiation program and that the attenuated induction of HSPs likely contributes to neuronal vulnerability whereas the increased expression of Hsc70 likely has a role in neural-specific functions.
Yang, L-C; Tsai, C-H; Huang, F-M; Su, Y-F; Lai, C-C; Liu, C-M; Chang, Y-C
2004-09-01
To investigate the effect of black-pigmented Bacteroides on the expression of vascular endothelial growth factor (VEGF) gene in human pulp fibroblasts. The supernatants of Porphyromonas endodontalis, Porphyromonas gingivalis and Prevotella intermedia were used to evaluate VEGF gene expression in human pulp fibroblasts. The levels of mRNAs were measured by the quantitative reverse-transcriptase polymerase chain reaction analysis. Black-pigmented Bacteroides induced significantly high levels of VEGF mRNA gene expression in human pulp fibroblasts (P < 0.05). In addition, the expression of VEGF depended on the bacteria tested. Black-pigmented Bacteroides may be involved in developing pulpal disease through the stimulation of VEGF production that would lead to the expansion of the vascular network coincident to progression of the inflammation.
Liu, W M; Chu, W M; Choudary, P V; Schmid, C W
1995-01-01
The abundance of Alu RNA is transiently increased by heat shock in human cell lines. This effect is specific to Alu repeats among Pol III transcribed genes, since the abundance of 7SL, 7SK, 5S and U6 RNAs is essentially unaffected by heat shock. The rapid induction of Alu expression precedes the heat shock induction of mRNAs for the ubiquitin and HSP 70 heat shock genes. Heat shock mimetics also transiently induce Alu expression indicating that increased Alu expression is a general cell-stress response. Cycloheximide treatment rapidly and transiently increases the abundance of Alu RNA. Again, compared with other genes transcribed by Pol III, this increase is specific to Alu. However, as distinguished from the cell stress response, cycloheximide does not induce expression of HSP 70 and ubiquitin mRNAs. Puromycin also increases Alu expression, suggesting that this response is generally caused by translational inhibition. The response of mammalian SINEs to cell stress and translational inhibition is not limited to SINEs which are Alu homologues. Heat shock and cycloheximide each transiently induce Pol III directed expression of B1 and B2 RNAs in mouse cells and C-element RNA in rabbit cells. Together, these three species exemplify the known SINE composition of placental mammals, suggesting that mammalian SINEs are similarly regulated and may serve a common function. Images PMID:7784180
[Effect of EMP-1 gene on human esophageal cancer cell line].
Wang, Hai-tao; Liu, Zhi-hua; Wang, Xiu-qin; Wu, Min
2002-03-01
EMP-1 was selected from a series of differential expressed genes obtained from cDNA microarray in the authors' lab. Epithelial membrane pnteiu-1 gene (EMP-1) was expressed 6 fold lower in esophageal cancer than in normal tissue. The authors further designed the experiment to study the effect of human EMP-1 gene on human esophageal cancer cell line in order to explain the function of this gene on the carcinogensis and progression esophageal cancer. EMP-1 gene was cloned into eukaryotic vector and transfected into the human esophageal cancer cell line. The transfection effect was qualified by Western blot and RT-PCR method. The cell growth curve was observed and the cell cycle was checked by FACS method. EMP-1 was transfected into EC9706 cell line and its expression was up-regulated. The cell growth is accelerated and expression of EMP-1 is linked to induction of S phase arrest. EMP-1 gene has some relationship with carcinogenesis of esophagus.
Fairley, D J; Wang, G; Rensing, C; Pepper, I L; Larkin, M J
2006-12-01
Gentisate-1,2-dioxygenase genes (gdoA), with homology to a number of bacterial dioxygenases, and genes encoding a putative coenzyme A (CoA)-synthetase subunit (acdB) and a CoA-thioesterase (tieA) were identified in two haloarchaeal isolates. In Haloarcula sp. D1, gdoA was expressed during growth on 4-hydroxybenzoate but not benzoate, and acdB and tieA were not expressed during growth on any of the aromatic substrates tested. In contrast, gdoA was expressed in Haloferax sp. D1227 during growth on benzoate, 3-hydroxybenzoate, cinnamate and phenylpropionate, and both acdB and tieA were expressed during growth on benzoate, cinnamate and phenylpropionate, but not on 3-hydroxybenzoate. This pattern of induction is consistent with these genes encoding steps in a CoA-mediated benzoate pathway in this strain.
Autophagy Contributes to the Induction of Anti-TNF Induced Macrophages
Levin, Alon D.; Koelink, Pim J.; Bloemendaal, Felicia M.; Vos, Anne Christine W.; D’Haens, Geert R.; van den Brink, Gijs R.
2016-01-01
Background and Aims: Anti-tumour necrosis factor [TNF] antibodies induce regulatory macrophages which display a phenotype resembling M2 type macrophages. Anti-TNF induced macrophages [Mϕind] have immunosuppressive and wound healing properties. The factors that contribute to the induction of Mϕind remain to be explored. Autophagy has been described as a factor that is important for the induction and function of M2 type macrophages. We studied the contribution of autophagy to the induction of Mϕind. Methods: We studied the effect of autophagy on Mϕind in vitro using peripheral blood mononuclear cells. Interferon gamma [IFN-γ] induced macrophages [Mφ1] were generated by culturing monocytes in the presence of IFN-γ. Mϕind were generated by performing mixed lymphocyte reactions [MLR] in the presence of anti-TNF antibodies; 28 healthy donors were genotyped for rs_2241880 [ATG16L1]. Cells were analysed by autophagy gene array, immunofluorescence, western blot, flowcytometry, 3H-thymidine incorporation and MTS assay. Results: Mϕind had a different expression profile of autophagy related transcripts with increased expression of 33/40 altered genes compared with Mφ1. In addition, autophagic activity was increased in Mϕind compared with Mφ1. Induction of Mϕind was positively correlated to the number of wild-type alleles for the ATG16L1 T300A risk allele present in the culture. Finally, the autophagy-related protein cathepsin S was highly expressed in Mφind and inhibition resulted in decreased viability as well as decreased expression of CD206. Conclusions: Mϕind have increased levels of autophagy compared with inflammatory Mφ1, and the induction of these macrophages is impaired in donors carrying the T300A risk allele for the ATG16L1. Given the association between Mϕind and clinical response, this suggests that an intact autophagy pathway may be important for an optimal response to anti-TNF therapy in inflammatory bowel disease. PMID:26417049
Börgeling, Yvonne; Schmolke, Mirco; Viemann, Dorothee; Nordhoff, Carolin; Roth, Johannes; Ludwig, Stephan
2014-01-03
Highly pathogenic avian influenza viruses (HPAIV) induce severe inflammation in poultry and men. One characteristic of HPAIV infections is the induction of a cytokine burst that strongly contributes to viral pathogenicity. This cell-intrinsic hypercytokinemia seems to involve hyperinduction of p38 mitogen-activated protein kinase. Here we investigate the role of p38 MAPK signaling in the antiviral response against HPAIV in mice as well as in human endothelial cells, the latter being a primary source of cytokines during systemic infections. Global gene expression profiling of HPAIV-infected endothelial cells in the presence of the p38-specific inhibitor SB 202190 revealed that inhibition of p38 MAPK leads to reduced expression of IFNβ and other cytokines after H5N1 and H7N7 infection. More than 90% of all virus-induced genes were either partially or fully dependent on p38 signaling. Moreover, promoter analysis confirmed a direct impact of p38 on the IFNβ promoter activity. Furthermore, upon treatment with IFN or conditioned media from HPAIV-infected cells, p38 controls interferon-stimulated gene expression by coregulating STAT1 by phosphorylation at serine 727. In vivo inhibition of p38 MAPK greatly diminishes virus-induced cytokine expression concomitant with reduced viral titers, thereby protecting mice from lethal infection. These observations show that p38 MAPK acts on two levels of the antiviral IFN response. Initially the kinase regulates IFN induction and, at a later stage, p38 controls IFN signaling and thereby expression of IFN-stimulated genes. Thus, inhibition of MAP kinase p38 may be an antiviral strategy that protects mice from lethal influenza by suppressing excessive cytokine expression.
A Systematic Survey of Expression and Function of Zebrafish frizzled Genes
Nikaido, Masataka; Law, Edward W. P.; Kelsh, Robert N.
2013-01-01
Wnt signaling is crucial for the regulation of numerous processes in development. Consistent with this, the gene families for both the ligands (Wnts) and receptors (Frizzleds) are very large. Surprisingly, while we have a reasonable understanding of the Wnt ligands likely to mediate specific Wnt-dependent processes, the corresponding receptors usually remain to be elucidated. Taking advantage of the zebrafish model's excellent genomic and genetic properties, we undertook a comprehensive analysis of the expression patterns of frizzled (fzd) genes in zebrafish. To explore their functions, we focused on testing their requirement in several developmental events known to be regulated by Wnt signaling, convergent extension movements of gastrulation, neural crest induction, and melanocyte specification. We found fourteen distinct fzd genes in the zebrafish genome. Systematic analysis of their expression patterns between 1-somite and 30 hours post-fertilization revealed complex, dynamic and overlapping expression patterns. This analysis demonstrated that only fzd3a, fzd9b, and fzd10 are expressed in the dorsal neural tube at stages corresponding to the timing of melanocyte specification. Surprisingly, however, morpholino knockdown of these, alone or in combination, gave no indication of reduction of melanocytes, suggesting the important involvement of untested fzds or another type of Wnt receptor in this process. Likewise, we found only fzd7b and fzd10 expressed at the border of the neural plate at stages appropriate for neural crest induction. However, neural crest markers were not reduced by knockdown of these receptors. Instead, these morpholino knockdown studies showed that fzd7a and fzd7b work co-operatively to regulate convergent extension movement during gastrulation. Furthermore, we show that the two fzd7 genes function together with fzd10 to regulate epiboly movements and mesoderm differentiation. PMID:23349976
The acute and temporary modulation of PERIOD genes by hydrocortisone in healthy subjects.
Yurtsever, Türkan; Schilling, Thomas M; Kölsch, Monika; Turner, Jonathan D; Meyer, Jobst; Schächinger, Hartmut; Schote, Andrea B
2016-01-01
The physiological stress system and the circadian clock system communicate with each other at different signaling levels. The steroid hormone cortisol, the end-effector of the hypothalamus-pituitary-adrenal axis, is released in response to stress and acts as a mediator in circadian rhythms. We determined the effect of escalating cortisol doses on the expression of PERIOD genes (PER1, PER2 and PER3) in healthy subjects and analyzed whether the glucocorticoid receptor (GR) is involved in the cortisol-mediated PERIOD gene expression. Forty participants (50% males and 50% females) were randomly assigned to groups receiving a saline placebo solution or 3 mg, 6 mg, 12 mg and 24 mg of hydrocortisone. Blood was drawn every 15 min to measure quantitative gene expression of PER1, PER2 and PER3. A potential role of the GR was determined by an ex vivo study stimulating whole blood with hydrocortisone and RU486 (a GR antagonist). As a result, moderate doses of hydrocortisone produced an acute and temporary induction of PER1 and PER3 mRNA levels, whereas PER2 was not responsive to the hormone administration. The cortisol-dependent induction of PER1 was blocked by the GR antagonist in whole blood after treatment with hydrocortisone and RU486 ex vivo. In conclusion, acute pharmacological stress modulated the expression of PER1 and PER3 in whole blood temporarily in our short-term sampling design, suggesting that these circadian genes mediate stable molecular mechanisms in the periphery.
Induction of CYP2E1 in non-alcoholic fatty liver diseases
Aljomah, Ghanim; Baker, Susan S.; Liu, Wensheng; Kozielski, Rafal; Oluwole, Janet; Lupu, Benita; Baker, Robert D.; Zhu, Lixin
2015-01-01
Mounting evidence supports a contribution of endogenous alcohol metabolism in the pathogenesis of non-alcoholic steatohepatitis (NASH). However, it is not known whether the expression of alcohol metabolism genes is altered in the livers of simple steatosis. There is also a current debate on whether fatty acids induce CYP2E1 in fatty livers. In this study, expression of alcohol metabolizing genes in the liver biopsies of simple steatosis patients was examined by quantitative real-time PCR (qRT-PCR), in comparison to biopsies of NASH livers and normal controls. Induction of alcohol metabolizing genes was also examined in cultured HepG2 cells treated with ethanol or oleic acid, by qRT-PCR and Western blots. We found that the mRNA expression of alcohol metabolizing genes including ADH1C, ADH4, ADH6, catalase and CYP2E1 were elevated in the livers of simple steatosis, to similar levels found in NASH livers. In cultured HepG2 cells, ethanol induced the expression of CYP2E1 mRNA and protein, but not ADH4 or ADH6; oleic acid did not induce any of these genes. These results suggest that elevated alcohol metabolism may contribute to the pathogenesis of NAFLD at the stage of simple steatosis as well as more severe stages. Our in vitro data support that CYP2E1 is induced by endogenous alcohol but not by fatty acids. PMID:26551085
Dynamic gene expression changes precede dioxin-induced liver pathogenesis in medaka fish.
Volz, David C; Hinton, David E; Law, J McHugh; Kullman, Seth W
2006-02-01
A major challenge for environmental genomics is linking gene expression to cellular toxicity and morphological alteration. Herein, we address complexities related to hepatic gene expression responses after a single injection of the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) and illustrate an initial stress response followed by cytologic and adaptive changes in the teleost fish medaka. Using a custom 175-gene array, we find that overall hepatic gene expression and histological changes are strongly dependent on dose and time. The most pronounced dioxin-induced gene expression changes occurred early and preceded morphologic alteration in the liver. Following a systematic search for putative Ah response elements (AHREs) (5'-CACGCA-3') within 2000 bp upstream of the predicted transcriptional start site, the majority (87%) of genes screened in this study did not contain an AHRE, suggesting that gene expression was not solely dependent on AHRE-mediated transcription. Moreover, in the highest dosage, we observed gene expression changes associated with adaptation that persisted for almost two weeks, including induction of a gene putatively identified as ependymin that may function in hepatic injury repair. These data suggest that the cellular response to dioxin involves both AHRE- and non-AHRE-mediated transcription, and that coupling gene expression profiling with analysis of morphologic pathogenesis is essential for establishing temporal relationships between transcriptional changes, toxicity, and adaptation to hepatic injury.
NASA Technical Reports Server (NTRS)
Chen, Y.; Hughes-Fulford, M.
2000-01-01
Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.
Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.
Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping
2015-02-01
Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.
ALIZADEH, ASH A.; BOHEN, SEAN P.; LOSSOS, CHEN; MARTINEZ-CLIMENT, JOSE A.; RAMOS, JUAN CARLOS; CUBEDO-GIL, ELENA; HARRINGTON, WILLIAM J.; LOSSOS, IZIDORE S.
2014-01-01
Adult T-cell leukemia–lymphoma (ATLL) is an HTLV-1-associated lymphoproliferative malignancy that is frequently fatal. We compared gene expression profiles (GEPs) of leukemic specimens from nine patients with ATLL at the time of diagnosis and immediately after combination therapy with zidovudine (AZT) and interferon α (IFNα). GEPs were also related to genetic aberrations determined by comparative genomic hybridization. We identified several genes anomalously over-expressed in the ATLL leukemic cells at the mRNA level, including LYN, CSPG2, and LMO2, and confirmed LMO2 expression in ATLL cells at the protein level. In vivo AZT–IFNα therapy evoked a marked induction of interferon-induced genes accompanied by repression of cell-cycle regulated genes, including those encoding ribosomal proteins. Remarkably, patients not responding to AZT–IFNα differed most from responding patients in lower expression of these same IFN-responsive genes, as well as components of the antigen processing and presentation apparatus. Demonstration of specific gene expression signatures associated with response to AZT–IFNα therapy may provide novel insights into the mechanisms of action in ATLL. PMID:20370541
Le Goffic, Ronan; Bouguyon, Edwige; Chevalier, Christophe; Vidic, Jasmina; Da Costa, Bruno; Leymarie, Olivier; Bourdieu, Christiane; Decamps, Laure; Dhorne-Pollet, Sophie; Delmas, Bernard
2010-10-15
The PB1-F2 protein of the influenza A virus (IAV) contributes to viral pathogenesis by a mechanism that is not well understood. PB1-F2 was shown to modulate apoptosis and to be targeted by the CD8(+) T cell response. In this study, we examined the downstream effects of PB1-F2 protein during IAV infection by measuring expression of the cellular genes in response to infection with wild-type WSN/33 and PB1-F2 knockout viruses in human lung epithelial cells. Wild-type virus infection resulted in a significant induction of genes involved in innate immunity. Knocking out the PB1-F2 gene strongly decreased the magnitude of expression of cellular genes implicated in antiviral response and MHC class I Ag presentation, suggesting that PB1-F2 exacerbates innate immune response. Biological network analysis revealed the IFN pathway as a link between PB1-F2 and deregulated genes. Using quantitative RT-PCR and IFN-β gene reporter assay, we determined that PB1-F2 mediates an upregulation of IFN-β expression that is dependent on NF-κB but not on AP-1 and IFN regulatory factor-3 transcription factors. Recombinant viruses knocked out for the PB1-F2 and/or the nonstructural viral protein 1 (the viral antagonist of the IFN response) genes provide further evidence that PB1-F2 increases IFN-β expression and that nonstructural viral protein 1 strongly antagonizes the effect of PB1-F2 on the innate response. Finally, we compared the effect of PB1-F2 variants taken from several IAV strains on IFN-β expression and found that PB1-F2-mediated IFN-β induction is significantly influenced by its amino acid sequence, demonstrating its importance in the host cell response triggered by IAV infection.
Beumer, Wouter; Welzen-Coppens, Jojanneke M. C.; van Helden-Meeuwsen, Cornelia G.; Gibney, Sinead M.; Drexhage, Hemmo A.; Versnel, Marjan A.
2014-01-01
Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α− DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α− DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α− DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α− DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α− DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α− DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS. PMID:25166904
Luo, Zhao-Qing; Farrand, Stephen K.
2001-01-01
Conjugal transfer of Agrobacterium tumefaciens Ti plasmids is regulated by quorum sensing via TraR and its cognate autoinducer, N-(3-oxo-octanoyl)-l-homoserine lactone. We isolated four Tn5-induced mutants of A. tumefaciens C58 deficient in TraR-mediated activation of tra genes on pTiC58ΔaccR. These mutations also affected the growth of the bacterium but had no detectable influence on the expression of two tester gene systems that are not regulated by quorum sensing. In all four mutants Tn5 was inserted in a chromosomal open reading frame (ORF) coding for a product showing high similarity to RNase D, coded for by rnd of Escherichia coli, an RNase known to be involved in tRNA processing. The wild-type allele of the rnd homolog cloned from C58 restored the two phenotypes to each mutant. Several ORFs, including a homolog of cya2, surround A. tumefaciens rnd, but none of these genes exerted a detectable effect on the expression of the tra reporter. In the mutant, traR was expressed from the Ti plasmid at a level about twofold lower than that in NT1. The expression of tra, but not the growth rate, was partially restored by increasing the copy number of traR or by disrupting traM, a Ti plasmid gene coding for an antiactivator specific for TraR. The mutation in rnd also slightly reduced expression of two tested vir genes but had no detectable effect on tumor induction by this mutant. Our data suggest that the defect in tra gene induction in the mutants results from lowered levels of TraR. In turn, production of sufficient amounts of TraR apparently is sensitive to a cellular function requiring RNase D. PMID:11395455
Konishi, H; Ogawa, T; Nakagomi, S; Inoue, K; Tohyama, M; Kiyama, H
2010-09-15
In rats under continuous stress (CS) there is decreased hypothalamic dopaminergic innervation to the intermediate lobe (IL) of the pituitary gland, which causes hyperactivation and subsequent degeneration of melanotrophs in the IL. In this study, we investigated the molecular basis for the changes that occur in melanotrophs during CS. Using microarray analysis, we identified several genes differentially expressed in the IL under CS conditions. Among the genes up-regulated under CS conditions, we focused on the inhibitor of DNA binding/differentiation (Id) family of dominant negative basic helix-loop-helix (bHLH) transcription factors. RT-PCR, Western blotting and in situ hybridization confirmed the significant inductions of Id1, Id2 and Id3 in the IL of CS rats. Administration of the dopamine D2 receptor agonist bromocriptine prevented the inductions of Id1-3 in the IL of CS rats, whereas application of the dopamine D2 antagonist sulpiride induced significant expressions of Id1-3 in the IL of normal rats. Moreover, an in vitro study using primary cultured melanotrophs demonstrated a direct effect on Id1-3 inductions by dopamine suppression. These results suggest that the decreased dopamine levels in the IL during CS induce Id1-3 expressions in melanotrophs. Because Id family members inhibit various bHLH transcription factors, it is conceivable that the induced Id1-3 would cooperatively modulate gene expressions in melanotrophs under CS conditions to induce hormone secretion. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Gopinathan, Gokul; Kolokythas, Antonia
2013-01-01
Epigenetic mechanisms, such as histone modifications, play an active role in the differentiation and lineage commitment of mesenchymal stem cells. In the present study, epigenetic states and differentiation profiles of two odontogenic neural crest-derived intermediate progenitor populations were compared: dental pulp (DP) and dental follicle (DF). ChIP on chip assays revealed substantial H3K27me3-mediated repression of odontoblast lineage genes DSPP and dentin matrix protein 1 (DMP1) in DF cells, but not in DP cells. Mineralization inductive conditions caused steep increases of mineralization and patterning gene expression levels in DP cells when compared to DF cells. In contrast, mineralization induction resulted in a highly dynamic histone modification response in DF cells, while there was only a subdued effect in DP cells. Both DF and DP progenitors featured H3K4me3-active marks on the promoters of early mineralization genes RUNX2, MSX2, and DLX5, while OSX, IBSP, and BGLAP promoters were enriched for H3K9me3 or H3K27me3. Compared to DF cells, DP cells expressed higher levels of three pluripotency-associated genes, OCT4, NANOG, and SOX2. Finally, gene ontology comparison of bivalent marks unique for DP and DF cells highlighted cell–cell attachment genes in DP cells and neurogenesis genes in DF cells. In conclusion, the present study indicates that the DF intermediate odontogenic neural crest lineage is distinguished from its DP counterpart by epigenetic repression of DSPP and DMP1 genes and through dynamic histone enrichment responses to mineralization induction. Findings presented here highlight the crucial role of epigenetic regulatory mechanisms in the terminal differentiation of odontogenic neural crest lineages. PMID:23379639
Chan, Hsien W; Liu, Tianbing; Verdile, Giuseppe; Bishop, Glenda; Haasl, Ryan J; Smith, Mark A; Perry, George; Martins, Ralph N; Atwood, Craig S
2008-01-01
The basic mechanism(s) by which altered Cu homeostasis is toxic to hepatocytes and neurons, the two major cell types affected in copper storage diseases such as Wilson's disease (WD), remain unclear. Using human M17 neuroblastoma cells as a model to examine Cu toxicity, we found that there was a time- and concentration-dependent induction of neuronal death, such that at 24 h there was a approximately 50 % reduction in viability with 25 muM Cu-glycine(2). Cu-glycine(2) (25:50 muM) treatment for 24 h significantly altered the expression of 296 genes, including 8 genes involved with apoptosis (BCL2-associated athanogene 3, BCL2/adenovirus E1B 19kDa interacting protein caspase 5, regulator of Fas-induced apoptosis, V-jun sarcoma virus 17 oncogene homolog, claudin 5, prostaglandin E receptor 3 and protein tyrosine phosphatase, non-receptor type 6). Surprisingly, changes in the expression of more 'traditional' apoptotic genes (Bcl-2, Bax, Bak and Bad) did not vary more than 20 %. To test whether the induction of apoptosis in neuroblastoma cells was via post-translational mechanisms, we measured the protein expression of these apoptotic markers in M17 neuroblastoma cells treated with Cu-glycine(2) (0-100 muM) for 24-48 h. Compared with glycine treated cells, Cu-glycine(2) reduced Bcl-2 expression by 50 %, but increased Bax and Bak expression by 130% and 400 %, respectively. To assess whether Cu also induced apoptotic cell death in a mouse model of WD, we measured the expression of these apoptotic markers in the liver and brain of mice expressing an ATP7b gene mutation (tx(J) mice) at 10 months of age (near the end of their lives when overt liver pathology is displayed). Changes in the liver expression of these apoptotic markers in tx(J) mice compared to background mice mirrored those of Cu treated neuroblastoma cells. In contrast, few changes in apoptotic protein expression were detected in the brain between tx(J) and background mice, indicating the tx(J) mouse is a good model of hepatic, but not brain, Cu toxicity. Our results indicate that Cu-induction of neuronal apoptosis does not require de novo synthesis or degradation of apoptotic genes, and that Cu accumulation in the aged tx(J) mouse brain is insufficient to induce apoptosis.
Expression of Notch pathway genes in mammalian epidermis and modulation by beta-catenin.
Ambler, Carrie A; Watt, Fiona M
2007-06-01
The Notch pathway is required for hair follicle maintenance and is activated through beta-catenin induced transcription of the Notch ligand Jagged1. We show that hair follicles in the resting phase express low levels of Jagged1 and Hes1, and other Notch target genes are undetectable. In growing (anagen) follicles, Jagged1 and Hes1 expression increases, Hes5 and HeyL are expressed in distinct cell layers, and Hey2 is expressed in the dermal papilla. When beta-catenin is activated by means of an inducible transgene, Jagged1, Hes1, Hes5, HeyL, and Hey2 are up-regulated, the sites of expression being the same in beta-catenin induced ectopic follicles as in anagen follicles. beta-Catenin also induces Hey1 in dermal papilla cells. beta-Catenin-induced up-regulation of Jagged1 precedes induction of other Notch target genes. The different sites of expression of Hes and Hey genes suggest input from additional signaling pathways. Copyright 2007 Wiley-Liss, Inc.
Mycobacterium-Inducible Nramp in Striped Bass (Morone saxatilis)
Burge, E.J.; Gauthier, David T.; Ottinger, C.A.; Van Veld, P.A.
2004-01-01
In mammals, the natural resistance-associated macrophage protein 1 gene, Nramp1, plays a major role in resistance to mycobacterial infections. Chesapeake Bay striped bass (Morone saxatilis) is currently experiencing an epizootic of mycobacteriosis that threatens the health of this ecologically and economically important species. In the present study, we characterized an Nramp gene in this species and obtained evidence that there is induction following Mycobacterium exposure. The striped bass Nramp gene (MsNramp) and a 554-amino-acid sequence contain all the signal features of the Nramp family, including a topology of 12 transmembrane domains (TM), the transport protein-specific binding-protein-dependent transport system inner membrane component signature, three N-linked glycosylation sites between TM 7 and TM 8, sites of casein kinase and protein kinase C phosphorylation in the amino and carboxy termini, and a tyrosine kinase phosphorylation site between TM 6 and TM 7. Phylogenetic analysis most closely grouped MsNramp with other teleost Nramp genes and revealed high sequence similarity with mammalian Nramp2. MsNramp expression was present in all tissues assayed by reverse transcription-PCR. Within 1 day of injection of Mycobacterium marinum, MsNramp expression was highly induced (17-fold higher) in peritoneal exudate (PE) cells compared to the expression in controls. The levels of MsNramp were three- and sixfold higher on days 3 and 15, respectively. Injection of Mycobacterium shottsii resulted in two-, five-, and threefold increases in gene expression in PE cells over the time course. This report is the first report of induction of an Nramp gene by mycobacteria in a poikilothermic vertebrate.
Georgiadi, Anastasia; Lichtenstein, Laeticia; Degenhardt, Tatjana; Boekschoten, Mark V; van Bilsen, Marc; Desvergne, Beatrice; Müller, Michael; Kersten, Sander
2010-06-11
Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart. To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences. Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)beta/delta(-/-) and not PPARalpha(-/-) mice and was blunted on siRNA-mediated PPARbeta/delta knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARbeta/delta but not PPARalpha to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding. Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARbeta/delta is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid-induced oxidative stress.
Kortmann, Maike; Kuhl, Vanessa; Klaffl, Simon; Bott, Michael
2015-01-01
Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-d-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg−1. It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum. PMID:25488698
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, So Hee; Yang, Ji Hye; Shin, Bo Yeon
Liver X receptor-α (LXRα), a member of the nuclear receptor superfamily of ligand-activated transcription factors, regulates de novo fatty acid synthesis that leads to stimulate hepatic steatosis. Although, resveratrol has beneficial effects on metabolic disease, it is not known whether resveratrol affects LXRα-dependent lipogenic gene expression. This study investigated the effect of resveratrol in LXRα-mediated lipogenesis and the underlying molecular mechanism. Resveratrol inhibited the ability of LXRα to activate sterol regulatory element binding protein-1c (SREBP-1c) and thereby inhibited target gene expression in hepatocytes. Moreover, resveratrol decreased LXRα–RXRα DNA binding activity and LXRE-luciferase transactivation. Resveratrol is known to activate Sirtuin 1more » (Sirt1) and AMP-activated protein kinase (AMPK), although its precise mechanism of action remains controversial. We found that the ability of resveratrol to repress T0901317-induced SREBP-1c expression was not dependent on AMPK and Sirt1. It is well established that hepatic steatosis is associated with antioxidant and redox signaling. Our data showing that expression of Sestrin2 (Sesn2), which is a novel antioxidant gene, was significantly down-regulated in the livers of high-fat diet-fed mice. Moreover, resveratrol up-regulated Sesn2 expression, but not Sesn1 and Sesn3. Sesn2 overexpression repressed LXRα-activated SREBP-1c expression and LXRE-luciferase activity. Finally, Sesn2 knockdown using siRNA abolished the effect of resveratrol in LXRα-induced FAS luciferase gene transactivation. We conclude that resveratrol affects Sesn2 gene induction and contributes to the inhibition of LXRα-mediated hepatic lipogenesis. - Highlights: • We investigated the effect of resveratrol in LXRα-mediated lipogenesis. • Resveratrol attenuated the ability of the LXRα-mediated lipogenic gene expression. • Resveratrol’s effects on T090-induced lipogenesis is not dependent on Sirt1 or AMPK. • Sestrin2 induction by resveratrol contributes to the inhibition of the LXRα activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshigai, Emi; Ritsumeikan Global Innovation Research Organization; Machida, Toru
Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS),more » which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.« less
Kurat, Christoph F.; Lambert, Jean-Philippe; Petschnigg, Julia; Friesen, Helena; Pawson, Tony; Rosebrock, Adam; Gingras, Anne-Claude; Fillingham, Jeffrey; Andrews, Brenda
2014-01-01
DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase–specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APCCdh1) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation. PMID:25228766
Anterior-posterior regionalized gene expression in the Ciona notochord
Veeman, Michael
2014-01-01
Background In the simple ascidian chordate Ciona the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape and behavior vary consistently along the anterior-posterior (AP) axis. Results Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. Conclusions We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. PMID:24288133
Anterior-posterior regionalized gene expression in the Ciona notochord.
Reeves, Wendy; Thayer, Rachel; Veeman, Michael
2014-04-01
In the simple ascidian chordate Ciona, the signaling pathways and gene regulatory networks giving rise to initial notochord induction are largely understood and the mechanisms of notochord morphogenesis are being systematically elucidated. The notochord has generally been thought of as a non-compartmentalized or regionalized organ that is not finely patterned at the level of gene expression. Quantitative imaging methods have recently shown, however, that notochord cell size, shape, and behavior vary consistently along the anterior-posterior (AP) axis. Here we screen candidate genes by whole mount in situ hybridization for potential AP asymmetry. We identify 4 genes that show non-uniform expression in the notochord. Ezrin/radixin/moesin (ERM) is expressed more strongly in the secondary notochord lineage than the primary. CTGF is expressed stochastically in a subset of notochord cells. A novel calmodulin-like gene (BCamL) is expressed more strongly at both the anterior and posterior tips of the notochord. A TGF-β ortholog is expressed in a gradient from posterior to anterior. The asymmetries in ERM, BCamL, and TGF-β expression are evident even before the notochord cells have intercalated into a single-file column. We conclude that the Ciona notochord is not a homogeneous tissue but instead shows distinct patterns of regionalized gene expression. Copyright © 2013 Wiley Periodicals, Inc.
Pescatori, Mario; Broccolini, Aldobrando; Minetti, Carlo; Bertini, Enrico; Bruno, Claudio; D'amico, Adele; Bernardini, Camilla; Mirabella, Massimiliano; Silvestri, Gabriella; Giglio, Vincenzo; Modoni, Anna; Pedemonte, Marina; Tasca, Giorgio; Galluzzi, Giuliana; Mercuri, Eugenio; Tonali, Pietro A; Ricci, Enzo
2007-04-01
Genome-wide gene expression profiling of skeletal muscle from Duchenne muscular dystrophy (DMD) patients has been used to describe muscle tissue alterations in DMD children older than 5 years. By studying the expression profile of 19 patients younger than 2 years, we describe with high resolution the gene expression signature that characterizes DMD muscle during the initial or "presymptomatic" phase of the disease. We show that in the first 2 years of the disease, DMD muscle is already set to express a distinctive gene expression pattern considerably different from the one expressed by normal, age-matched muscle. This "dystrophic" molecular signature is characterized by a coordinate induction of genes involved in the inflammatory response, extracellular matrix (ECM) remodeling and muscle regeneration, and the reduced transcription of those involved in energy metabolism. Despite the lower degree of muscle dysfunction experienced, our younger patients showed abnormal expression of most of the genes reported as differentially expressed in more advanced stages of the disease. By analyzing our patients as a time series, we provide evidence that some genes, including members of three pathways involved in morphogenetic signaling-Wnt, Notch, and BMP-are progressively induced or repressed in the natural history of DMD.
Hashimoto, Hidehiko; Enomoto, Takashi; Enomoto, Atsushi; Kumano, Gaku; Nishida, Hiroki
2011-06-01
In embryos of the ascidian Halocynthia roretzi, the competence of isolated presumptive notochord blastomeres to respond to fibroblast growth factor (FGF) for induction of the primary notochord decays by 1 hour after cleavage from the 32- to 64-cell stage. This study analyzes the molecular mechanisms responsible for this loss of competence and provides evidence for a novel mechanism. A forkhead family transcription factor, FoxB, plays a role in competence decay by preventing the induction of notochord-specific Brachyury (Bra) gene expression by the FGF/MAPK signaling pathway. Unlike the mechanisms reported previously in other animals, no component in the FGF signal transduction cascade appeared to be lost or inactivated at the time of competence loss. Knockdown of FoxB functions allowed the isolated cells to retain their competence for a longer period, and to respond to FGF with expression of Bra beyond the stage at which competence was normally lost. FoxB acts as a transcription repressor by directly binding to the cis-regulatory element of the Bra gene. Our results suggest that FoxB prevents ectopic induction of the notochord fate within the cells that assume a default nerve cord fate, after the stage when notochord induction has been completed. The merit of this system is that embryos can use the same FGF signaling cascade again for another purpose in the same cell lineage at later stages by keeping the signaling cascade itself available. Temporally and spatially regulated FoxB expression in nerve cord cells was promoted by the ZicN transcription factor and absence of FGF/MAPK signaling.
20-Hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body.
Tian, Ling; Ma, Li; Guo, Enen; Deng, Xiaojuan; Ma, Sanyuan; Xia, Qingyou; Cao, Yang; Li, Sheng
2013-08-01
Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcR (DN) ) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body.
20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body
Tian, Ling; Ma, Li; Guo, Enen; Deng, Xiaojuan; Ma, Sanyuan; Xia, Qingyou; Cao, Yang; Li, Sheng
2013-01-01
Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcRDN) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body. PMID:23674061
Lee, Hyoung Yool; Byeon, Yeong; Tan, Dun-Xian; Reiter, Russel J; Back, Kyoungwhan
2015-04-01
Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in the melatonin biosynthesis pathway in plants. We examined the effects of SNAT gene inactivation in two Arabidopsis T-DNA insertion mutant lines. After inoculation with the avirulent pathogen Pseudomonas syringe pv. tomato DC3000 harboring the elicitor avrRpt2 (Pst-avrRpt2), melatonin levels in the snat knockout mutant lines were 50% less than in wild-type Arabidopsis Col-0 plants. The snat knockout mutant lines exhibited susceptibility to pathogen infection that coincided with decreased induction of defense genes including PR1, ICS1, and PDF1.2. Because melatonin acts upstream of salicylic acid (SA) synthesis, the reduced melatonin levels in the snat mutant lines led to decreased SA levels compared to wild-type, suggesting that the increased pathogen susceptibility of the snat mutant lines could be attributed to decreased SA levels and subsequent attenuation of defense gene induction. Exogenous melatonin treatment failed to induce defense gene expression in nahG Arabidopsis plants, but restored the induction of defense gene expression in the snat mutant lines. In addition, melatonin caused translocation of NPR1 (nonexpressor of PR1) protein from the cytoplasm into the nucleus indicating that melatonin-elicited pathogen resistance in response to avirulent pathogen attack is SA-dependent in Arabidopsis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Musarò, A; Rosenthal, N
1999-04-01
The molecular mechanisms underlying myogenic induction by insulin-like growth factor I (IGF-I) are distinct from its proliferative effects on myoblasts. To determine the postmitotic role of IGF-I on muscle cell differentiation, we derived L6E9 muscle cell lines carrying a stably transfected rat IGF-I gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC-IGF-I exclusively in differentiated L6E9 myotubes, which express the embryonic form of myosin heavy chain (MyHC) and no endogenous IGF-I, resulted in pronounced myotube hypertrophy, accompanied by activation of the neonatal MyHC isoform. The hypertrophic myotubes dramatically increased expression of myogenin, muscle creatine kinase, beta-enolase, and IGF binding protein 5 and activated the myocyte enhancer factor 2C gene which is normally silent in this cell line. MLC-IGF-I induction in differentiated L6E9 cells also increased the expression of a transiently transfected LacZ reporter driven by the myogenin promoter, demonstrating activation of the differentiation program at the transcriptional level. Nuclear reorganization, accumulation of skeletal actin protein, and an increased expression of beta1D integrin were also observed. Inhibition of the phosphatidyl inositol (PI) 3-kinase intermediate in IGF-I-mediated signal transduction confirmed that the PI 3-kinase pathway is required only at early stages for IGF-I-mediated hypertrophy and neonatal MyHC induction in these cells. Expression of IGF-I in postmitotic muscle may therefore play an important role in the maturation of the myogenic program.
Pradhan, Madhumita A.; Blackford, John A.; Devaiah, Ballachanda N.; Thompson, Petria S.; Chow, Carson C.; Singer, Dinah S.; Simons, S. Stoney
2016-01-01
Most of the steps in, and many of the factors contributing to, glucocorticoid receptor (GR)-regulated gene induction are currently unknown. A competition assay, based on a validated chemical kinetic model of steroid hormone action, is now used to identify two new factors (BRD4 and negative elongation factor (NELF)-E) and to define their sites and mechanisms of action. BRD4 is a kinase involved in numerous initial steps of gene induction. Consistent with its complicated biochemistry, BRD4 is shown to alter both the maximal activity (Amax) and the steroid concentration required for half-maximal induction (EC50) of GR-mediated gene expression by acting at a minimum of three different kinetically defined steps. The action at two of these steps is dependent on BRD4 concentration, whereas the third step requires the association of BRD4 with P-TEFb. BRD4 is also found to bind to NELF-E, a component of the NELF complex. Unexpectedly, NELF-E modifies GR induction in a manner that is independent of the NELF complex. Several of the kinetically defined steps of BRD4 in this study are proposed to be related to its known biochemical actions. However, novel actions of BRD4 and of NELF-E in GR-controlled gene induction have been uncovered. The model-based competition assay is also unique in being able to order, for the first time, the sites of action of the various reaction components: GR < Cdk9 < BRD4 ≤ induced gene < NELF-E. This ability to order factor actions will assist efforts to reduce the side effects of steroid treatments. PMID:26504077
Loss of ERβ expression as a common step in estrogen-dependent tumor progression
Bardin, Allison; Boulle, Nathalie; Lazennec, Gwendal; Vignon, Françoise; Pujol, Pascal
2004-01-01
The characterization of estrogen receptor beta (ERβ) brought new insight into the mechanisms underlying estrogen signaling. Estrogen induction of cell proliferation is a crucial step in carcinogenesis of gynecologic target tissues and the mitogenic effects of estrogen in these tissues (e.g. breast, endometrium and ovary) are well documented both in vitro and in vivo. There is also an emerging body of evidence that colon and prostate cancer growth is influenced by estrogens. In all of these tissues, most studies have shown decreased ERβ expression in cancer as compared to benign tumors or normal tissues, whereas ERα expression persists. The loss of ERβ expression in cancer cells could reflect tumor cell dedifferentiation but may also represent a critical stage in estrogen-dependent tumor progression. Modulation of the expression of ERα target genes by ERβ, or ERβ specific gene induction could indicate that ERβ has a differential effect on proliferation as compared to ERα. ERβ may exert a protective effect and thus constitute a new target for hormone therapy, e.g. via ligand specific activation. The potential distinct roles of ERα and ERβ expression in carcinogenesis, as suggested by experimental and clinical data, are discussed in this review. PMID:15369453
McIsaac, R. Scott; Silverman, Sanford J.; McClean, Megan N.; Gibney, Patrick A.; Macinskas, Joanna; Hickman, Mark J.; Petti, Allegra A.; Botstein, David
2011-01-01
We describe the development and characterization of a system that allows the rapid and specific induction of individual genes in the yeast Saccharomyces cerevisiae without changes in nutrients or temperature. The system is based on the chimeric transcriptional activator Gal4dbd.ER.VP16 (GEV). Upon addition of the hormone β-estradiol, cytoplasmic GEV localizes to the nucleus and binds to promoters containing Gal4p consensus binding sequences to activate transcription. With galactokinase Gal1p and transcriptional activator Gal4p absent, the system is fast-acting, resulting in readily detectable transcription within 5 min after addition of the inducer. β-Estradiol is nearly a gratuitous inducer, as indicated by genome-wide profiling that shows unintended induction (by GEV) of only a few dozen genes. Response to inducer is graded: intermediate concentrations of inducer result in production of intermediate levels of product protein in all cells. We present data illustrating several applications of this system, including a modification of the regulated degron method, which allows rapid and specific degradation of a specific protein upon addition of β-estradiol. These gene induction and protein degradation systems provide important tools for studying the dynamics and functional relationships of genes and their respective regulatory networks. PMID:21965290
Baharoglu, Zeynep; Babosan, Anamaria; Mazel, Didier
2014-01-01
Sub-inhibitory concentrations (sub-MIC) of antibiotics play a very important role in selection and development of resistances. Unlike Escherichia coli, Vibrio cholerae induces its SOS response in presence of sub-MIC aminoglycosides. A role for oxidized guanine residues was observed, but the mechanisms of this induction remained unclear. To select for V. cholerae mutants that do not induce low aminoglycoside-mediated SOS induction, we developed a genetic screen that renders induction of SOS lethal. We identified genes involved in this pathway using two strategies, inactivation by transposition and gene overexpression. Interestingly, we obtained mutants inactivated for the expression of proteins known to destabilize the RNA polymerase complex. Reconstruction of the corresponding mutants confirmed their specific involvement in induction of SOS by low aminoglycoside concentrations. We propose that DNA lesions formed on aminoglycoside treatment are repaired through the formation of single-stranded DNA intermediates, inducing SOS. Inactivation of functions that dislodge RNA polymerase leads to prolonged stalling on these lesions, which hampers SOS induction and repair and reduces viability under antibiotic stress. The importance of these mechanisms is illustrated by a reduction of aminoglycoside sub-MIC. Our results point to a central role for transcription blocking at DNA lesions in SOS induction, so far underestimated. PMID:24319148
Baharoglu, Zeynep; Babosan, Anamaria; Mazel, Didier
2014-02-01
Sub-inhibitory concentrations (sub-MIC) of antibiotics play a very important role in selection and development of resistances. Unlike Escherichia coli, Vibrio cholerae induces its SOS response in presence of sub-MIC aminoglycosides. A role for oxidized guanine residues was observed, but the mechanisms of this induction remained unclear. To select for V. cholerae mutants that do not induce low aminoglycoside-mediated SOS induction, we developed a genetic screen that renders induction of SOS lethal. We identified genes involved in this pathway using two strategies, inactivation by transposition and gene overexpression. Interestingly, we obtained mutants inactivated for the expression of proteins known to destabilize the RNA polymerase complex. Reconstruction of the corresponding mutants confirmed their specific involvement in induction of SOS by low aminoglycoside concentrations. We propose that DNA lesions formed on aminoglycoside treatment are repaired through the formation of single-stranded DNA intermediates, inducing SOS. Inactivation of functions that dislodge RNA polymerase leads to prolonged stalling on these lesions, which hampers SOS induction and repair and reduces viability under antibiotic stress. The importance of these mechanisms is illustrated by a reduction of aminoglycoside sub-MIC. Our results point to a central role for transcription blocking at DNA lesions in SOS induction, so far underestimated.
Identification of human cell responses to benzene and benzene metabolites.
Gillis, Bruce; Gavin, Igor M; Arbieva, Zarema; King, Stephen T; Jayaraman, Sundararajan; Prabhakar, Bellur S
2007-09-01
Benzene is a common air pollutant and confirmed carcinogen, especially in reference to the hematopoietic system. In the present study we analyzed cytokine/chemokine production by, and gene expression induction in, human peripheral blood mononuclear cells upon their exposure to the benzene metabolites catechol, hydroquinone, 1,2,4-benzenetriol, and p-benzoquinone. Protein profiling showed that benzene metabolites can stimulate the production of chemokines, the proinflammatory cytokines TNF-alpha and IL-6, and the Th2 cytokines IL-4 and IL-5. Activated cells showed concurrent suppression of anti-inflammatory cytokine IL-10 expression. We also identified changes in global gene expression patterns in response to benzene metabolite challenges by using high-density oligonucleotide microarrays. Treatment with 1,2,4-benzenetriol resulted in the suppression of genes related to the regulation of protein expression and a concomitant activation of genes that encode heat shock proteins and cytochrome P450 family members. Protein and gene expression profiling identified unique human cellular responses upon exposure to benzene and benzene metabolites.
Bae, Hanhong; Kim, Soo-Hyung; Kim, Moon S; Sicher, Richard C; Lary, David; Strem, Mary D; Natarajan, Savithiry; Bailey, Bryan A
2008-02-01
Drought can negatively impact pod production despite the fact that cacao production usually occurs in tropical areas having high rainfall. Polyamines (PAs) have been associated with the response of plants to drought in addition to their roles in responses to many other stresses. The constitutive and drought inducible expression patterns of genes encoding enzymes involved in PA biosynthesis were determined: an ornithine decarboxylase (TcODC), an arginine decarboxylase (TcADC), an S-adenosylmethionine decarboxylase (TcSAMDC), a spermidine synthase (TcSPDS), and a spermine synthase (TcSPMS). Expression analysis using quantitative real-time reverse transcription-PCR (QPCR) results showed that the PA biosynthesis genes were expressed in all plant tissues examined. Constitutive expression of PA biosynthesis genes was generally highest in mature leaves and open flowers. Expression of TcODC, TcADC, and TcSAMDC was induced with the onset of drought and correlated with changes in stomatal conductance, photosynthesis, photosystem II efficiency, leaf water potential and altered emission of blue-green fluorescence from cacao leaves. Induction of TcSAMDC in leaves was most closely correlated with changes in water potential. The earliest measured responses to drought were enhanced expression of TcADC and TcSAMDC in roots along with decreases in stomatal conductance, photosynthesis, and photosystem II efficiency. Elevated levels of putrescine, spermidine, and spermine were detected in cacao leaves 13days after the onset of drought. Expression of all five PA associated transcripts was enhanced (1.5-3-fold) in response to treatment with abscisic acid. TcODC and TcADC, were also responsive to mechanical wounding, infection by Phytophthora megakarya (a causal agent of black pod disease in cacao), the necrosis- and ethylene-inducing protein (Nep1) of Fusarium oxysporum, and flower abscission. TcSAMDC expression was responsive to all stresses except flower abscission. TcODC, although constitutively expressed at much lower levels than TcADC, TcSAMDC, TcSPDS, and TcSPMS, was highly inducible by the fungal protein Nep1 (135-fold) and the cacao pathogen Phytophthora megakarya (671-fold). The full length cDNA for ODC was cloned and characterized. Among the genes studied, TcODC, TcADC, and TcSAMDC were most sensitive to induction by drought in addition to other abiotic and biotic stresses. TcODC, TcADC, and TcSAMDC may share signal transduction pathways and/or the stress induced signal induction pathways may converge at these three genes leading to similar although not identical patterns of expression. It is possible altering PA levels in cacao will result in enhanced tolerance to multiple stresses including drought and disease as has been demonstrated in other crops.
Fan, Yu; Wang, Ye; Wang, Ke
2015-12-18
Cyclooxygenase-2-derived prostaglandin E2 (PGE2), a bioactive eicosanoid, has been implicated in many biological processes including reproduction, inflammation and tumor growth. We previously showed that PGE2 stimulated lung cancer cell growth and progression through PGE2 receptor EP2/EP4-mediated kinase signaling pathways. However, the role of PGE2 in controlling lung airway epithelial cell phenotype remains unknown. We evaluated the effects of c-Jun and 3-phosphoinositede dependent protein kinase-1 (PDK1) in mediating epithelial cell hyperplasia induced by PGE2. The bronchial epithelial cell lines BEAS-2B and HBEc14-KT were cultured and then treated with PGE2. PDK1 small interfering RNA (siRNA) and a PDK1 inhibitor, an antagonist of the PGE2 receptor subtype EP4 and EP4 siRNA, c-Jun siRNA, and overexpressions of c-Jun and PDK1 have been used to evaluate the effects on cell proliferation. We demonstrated that PGE2 increased normal bronchial epithelial cell proliferation through induction of PDK1, an ankyrin repeat-containing Ser/Thr kinase implicated in the induction of apoptosis and the suppression of tumor growth. PDK1 siRNA and a PDK1 inhibitor blocked the effects of PGE2 on normal cell growth. The PGE2-induced PDK1 expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. In addition, we showed that induction of PDK1 by PGE2 was associated with induction of the transcription factor, c-Jun protein. Silencing of c-Jun using siRNA and point mutations of c-Jun sites in the PDK1 gene promoter resulted in blockade of PDK1 expression and promoter activity induced by PGE2. In contrast, overexpression of c-Jun induced PDK1 gene promoter activity and expression followed increased cell proliferation. PGE2 increases normal bronchial epithelial cell proliferation through increased PDK1 gene expression that is dependent on EP4 and induction of c-Jun. Therewith, our data suggest a new role of c-Jun and PDK1 in mediating epithelial cell hyperplasia induced by PGE2.
Neuroimmune Function and the Consequences of Alcohol Exposure
Crews, Fulton T.; Sarkar, Dipak K.; Qin, Liya; Zou, Jian; Boyadjieva, Nadka; Vetreno, Ryan P.
2015-01-01
Induction of neuroimmune genes by binge drinking increases neuronal excitability and oxidative stress, contributing to the neurobiology of alcohol dependence and causing neurodegeneration. Ethanol exposure activates signaling pathways featuring high-mobility group box 1 and Toll-like receptor 4 (TLR4), resulting in induction of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells, which regulates expression of several cytokine genes involved in innate immunity, and its target genes. This leads to persistent neuroimmune responses to ethanol that stimulate TLRs and/or certain glutamate receptors (i.e., N-methyl-d-aspartate receptors). Alcohol also alters stress responses, causing elevation of peripheral cytokines, which further sensitize neuroimmune responses to ethanol. Neuroimmune signaling and glutamate excitotoxicity are linked to alcoholic neurodegeneration. Models of alcohol abuse have identified significant frontal cortical degeneration and loss of hippocampal neurogenesis, consistent with neuroimmune activation pathology contributing to these alcohol-induced, long-lasting changes in the brain. These alcohol-induced long-lasting increases in brain neuroimmune-gene expression also may contribute to the neurobiology of alcohol use disorder. PMID:26695754
Hubert, Olivier; Mbéguié-A-Mbéguié, Didier
2012-01-01
Background and aims Banana finger drop is defined as dislodgement of individual fruits from the hand at the pedicel rupture area. For some banana varieties, this is a major feature of the ripening process, in addition to ethylene production and sugar metabolism. The few studies devoted to assessing the physiological and molecular basis of this process revealed (i) the similarity between this process and softening, (ii) the early onset of related molecular events, between the first and fourth day after ripening induction, and (iii) the putative involvement of ethylene as a regulatory factor. This study was conducted with the aim of identifying, through a candidate gene approach, a quality-related marker that could be used as a tool in breeding programmes. Here we examined the relationship between ripening ethylene biosynthesis (EB) and finger drop in order to gain further insight into the upstream regulatory steps of the banana finger drop process and to identify putative related candidate genes. Methods Postharvest ripening of green banana fruit was induced by acetylene treatment and fruit taken at 1–4 days after ripening induction, and total RNA extracted from the median area [control zone (CZ)] and the pedicel rupture area [drop zone (DZ)] of peel tissue. Then the expression patterns of EB genes (MaACO1, MaACO2, MaACS1, MaACS2, MaACS3 and MaACS4) were comparatively examined in CZ and DZ via real-time quantitative polymerase chain reaction. Principal results Differential expression of EB gene was observed in CZ and DZ during the postharvest period examined in this study. MaACO1, MaACS2 and MaACS1 were more highly induced in DZ than in the control, while a slight induction of the MaACS4 gene was observed. No marked differences between the two zones were observed for the MaACO2 gene. Conclusions The finger drop process enhanced EB gene expression including developmental- and ripening-induced genes (MaACO1), specific ripening-induced genes (MaACS1) and wound-induced genes (MaACS2). Thus, this process might be associated with a specific ethylene production in DZ of the pedicel area and the result of crosstalk between developmental, ripening and wound regulatory pathways. MaACO1, MaACS1, MaACS2, and to a lesser extent MaACS4 genes, which are more highly induced in DZ than in CZ, could be considered as putative candidates of the finger drop process. PMID:23267429
Hepatic gene expression profiling of 5′-AMP-induced hypometabolism in mice
Miki, Takao; Van Oort-Jansen, Anita; Matsumoto, Tomoko; Loose, David S.; Lee, Cheng Chi
2011-01-01
There is currently much interest in clinical applications of therapeutic hypothermia. Hypothermia can be a consequence of hypometabolism. We have recently established a procedure for the induction of a reversible deep hypometabolic state in mice using 5′-adenosine monophosphate (5′-AMP) in conjunction with moderate ambient temperature. The current study aims at investigating the impact of this technology at the gene expression level in a major metabolic organ, the liver. Our findings reveal that expression levels of the majority of genes in liver are not significantly altered by deep hypometabolism. However, among those affected by hypometabolism, more genes are differentially upregulated than downregulated both in a deep hypometabolic state and in the early arousal state. These altered gene expression levels during 5′-AMP induced hypometabolism are largely restored to normal levels within 2 days of the treatment. Our data also suggest that temporal control of circadian genes is largely stalled during deep hypometabolism. PMID:21224422
NASA Astrophysics Data System (ADS)
Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.
2000-02-01
The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.
Moyano, Enriqueta; Portero-Robles, Ignacio; Medina-Escobar, Nieves; Valpuesta, Victoriano; Muñoz-Blanco, Juan; Luis Caballero, José
1998-01-01
A cDNA clone encoding a putative dihydroflavonol 4-reductase gene has been isolated from a strawberry (Fragaria × ananassa cv Chandler) DNA subtractive library. Northern analysis showed that the corresponding gene is predominantly expressed in fruit, where it is first detected during elongation (green stages) and then declines and sharply increases when the initial fruit ripening events occur, at the time of initiation of anthocyanin accumulation. The transcript can be induced in unripe green fruit by removing the achenes, and this induction can be partially inhibited by treatment of de-achened fruit with naphthylacetic acid, indicating that the expression of this gene is under hormonal control. We propose that the putative dihydroflavonol 4-reductase gene in strawberry plays a main role in the biosynthesis of anthocyanin during color development at the late stages of fruit ripening; during the first stages the expression of this gene could be related to the accumulation of condensed tannins. PMID:9625725
Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie
2008-07-01
Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.
Dynamics of the Saccharomyces cerevisiae Transcriptome during Bread Dough Fermentation
Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie
2013-01-01
The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation. PMID:24056467
Srivastava, Pragya; Paluch, Benjamin E.; Matsuzaki, Junko; James, Smitha R.; Collamat-Lai, Golda; Blagitko-Dorfs, Nadja; Ford, Laurie Ann; Naqash, Rafeh; Lübbert, Michael; Karpf, Adam R.; Nemeth, Michael J.; Griffiths, Elizabeth A.
2016-01-01
Cancer testis antigens (CTAs) are promising cancer associated antigens in solid tumors, but in acute myeloid leukemia, dense promoter methylation silences their expression. Leukemia cell lines exposed to HMAs induce expression of CTAs. We hypothesized that AML patients treated with standard of care decitabine (20mg/m2 per day for 10 days) would demonstrate induced expression of CTAs. Peripheral blood blasts serially isolated from AML patients treated with decitabine were evaluated for CTA gene expression and demethylation. Induction of NY-ESO-1 and MAGEA3/A6, were observed following decitabine. Re-expression of NY-ESO-1 and MAGEA3/A6 was associated with both promoter specific and global (LINE-1) hypomethylation. NY-ESO-1 and MAGEA3/A6 mRNA levels were increased irrespective of clinical response, suggesting that these antigens might be applicable even in patients who are not responsive to HMA therapy. Circulating blasts harvested after decitabine demonstrate induced NY-ESO-1 expression sufficient to activate NY-ESO-1 specific CD8+ T-cells. Induction of CTA expression sufficient for recognition by T-cells occurs in AML patients receiving decitabine. Vaccination against NY-ESO-1 in this patient population is feasible. PMID:26883197
Arsenic biotransformation and volatilization in transgenic rice
Meng, Xiang-Yan; Qin, Jie; Wang, Li-Hong; Duan, Gui-Lan; Sun, Guo-Xin; Wu, Hui-Lan; Chu, Cheng-Cai; Ling, Hong-Qing; Rosen, Barry P.; Zhu, Yong-Guan
2011-01-01
Summary Biotransformation of arsenic includes oxidation, reduction, methylation and conversion to more complex organic arsenicals. Members of the class of arsenite [As(III)] S-adenosylmethyltransferase enzymes catalyze As(III) methylation to a variety of mono-, di- and trimethylated species, some of which are less toxic than As(III) itself. However, no methyltransferase gene has been identified in plants. Here, an arsM gene from the soil bacterium Rhodopseudomonas palustris was expressed in Japonica rice (Oryza sativa L.) cultivar Nipponbare, and the transgenic rice produced methylated arsenic species, which were measured by inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). Both monomethylarsenate [MAs(V)] and dimethylarsenate [DMAs(V)] were detected in the root and shoot of transgenic rice. After 12-d exposure to As(III), the transgenic rice gave off 10-fold more volatile arsenicals. The present study demonstrates that expression of an arsM gene in rice induces arsenic methylation and volatilization, providing a potential stratagem for phytoremediation theoretically. PMID:21517874
Nallani, Srikanth C; Goodwin, Bryan; Maglich, Jodi M; Buckley, Donna J; Buckley, Arthur R; Desai, Pankaj B
2003-05-01
Paclitaxel, a taxane anti-microtubule agent, is known to induce CYP3A in rat and human hepatocytes. Recent studies suggest that a member of the nuclear receptor family, pregnane X Receptor (PXR), is a key regulator of the expression of CYP3A in different species. We investigated the role of PXR activation, in vitro and in vivo, in mediating Cyp3a induction by paclitaxel. Pregnenolone 16 alpha-carbonitrile (PCN), an antiglucocorticoid, was employed as a positive control for mouse PXR (mPXR) activation in vitro, and Cyp3a induction in vivo. In cell based reporter gene assays paclitaxel and PCN activated mPXR with an EC(50) of 5.6 and 0.27 microM, respectively. Employing PXR wild-type and transgenic mice lacking functional PXR (-/-), we evaluated the expression and activity of CYP3A following treatment with paclitaxel and PCN. Paclitaxel significantly induced CYP3A11 mRNA and immunoreactive CYP3A protein in PXR wild-type mice. Consistent with kinetics of CYP3A induction, the V(max) of testosterone 6 beta-hydroxylation in microsomal fraction increased 15- and 30-fold in paclitaxel- and PCN-treated mice, respectively. The Cyp3a induction response was completely abolished in paclitaxel- and PCN-treated PXR-null mice. This suggests that paclitaxel-mediated CYP3A induction in vivo requires an intact PXR-signaling mechanism. Our study validates the use of PXR activation assays in screening newer taxanes for potential drug interactions that may be related to PXR-target gene induction.
Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun
2015-09-01
Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI. © 2015 American Society of Plant Biologists. All Rights Reserved.
High density growth of T7 expression strains with auto-induction option
Studier, F. William
2013-03-19
A method for promoting and suppressing auto-induction of transcription of a cloned gene 1 of bacteriophage T7 in cultures of bacterial cells grown batchwise is disclosed. The transcription is under the control of a promoter whose activity can be induced by an exogenous inducer whose ability to induce said promoter is dependent on the metabolic state of said bacterial cells.
Halbleib, Jennifer M.; Sääf, Annika M.
2007-01-01
Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell–cell adhesion–initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes. PMID:17699590
Saunderson, Emily A.; Spiers, Helen; Gutierrez-Mecinas, Maria; Trollope, Alexandra F.; Shaikh, Abeera; Mill, Jonathan; Reul, Johannes M. H. M.
2016-01-01
Stressful events evoke long-term changes in behavioral responses; however, the underlying mechanisms in the brain are not well understood. Previous work has shown that epigenetic changes and immediate-early gene (IEG) induction in stress-activated dentate gyrus (DG) granule neurons play a crucial role in these behavioral responses. Here, we show that an acute stressful challenge [i.e., forced swimming (FS)] results in DNA demethylation at specific CpG (5′-cytosine–phosphate–guanine-3′) sites close to the c-Fos (FBJ murine osteosarcoma viral oncogene homolog) transcriptional start site and within the gene promoter region of Egr-1 (early growth response protein 1) specifically in the DG. Administration of the (endogenous) methyl donor S-adenosyl methionine (SAM) did not affect CpG methylation and IEG gene expression at baseline. However, administration of SAM before the FS challenge resulted in an enhanced CpG methylation at the IEG loci and suppression of IEG induction specifically in the DG and an impaired behavioral immobility response 24 h later. The stressor also specifically increased the expression of the de novo DNA methyltransferase Dnmt3a [DNA (cytosine-5-)-methyltransferase 3 alpha] in this hippocampus region. Moreover, stress resulted in an increased association of Dnmt3a enzyme with the affected CpG loci within the IEG genes. No effects of SAM were observed on stress-evoked histone modifications, including H3S10p-K14ac (histone H3, phosphorylated serine 10 and acetylated lysine-14), H3K4me3 (histone H3, trimethylated lysine-4), H3K9me3 (histone H3, trimethylated lysine-9), and H3K27me3 (histone H3, trimethylated lysine-27). We conclude that the DNA methylation status of IEGs plays a crucial role in FS-induced IEG induction in DG granule neurons and associated behavioral responses. In addition, the concentration of available methyl donor, possibly in conjunction with Dnmt3a, is critical for the responsiveness of dentate neurons to environmental stimuli in terms of gene expression and behavior. PMID:27078100
Chan, Wen-Chiao; Chien, Yi-Chih; Chien, Cheng-I
2015-03-01
Complex transcriptional profile of glutathione S-transferase Delta cluster genes occurred in the developmental process of the fruit fly Drosophila melanogaster. The purpose of this project was to quantify the expression levels of Gst Delta class genes altered by aniline exposure and to understand the relationship between aniline dosages and the variation of Gst Delta genes expressed in D. melanogaster. Using RT-PCR expression assays, the expression patterns of the transcript mRNAs of the glutathione S-transferase Delta genes were revealed and their expression levels were measured at eggs, larvae, pupae and adults. The adult stage was selected for further dose-response assays. After analysis, the results indicated that three Gst Delta genes (Gst D2, Gst D5 and Gst D6) were found to show a peak of up-regulated transcriptional response at 6-8h of exposure of aniline. Furthermore, the dose-response relationship of their induction levels within the dose regiments (from 1.2 to 2.0 μl/tube) had been measured. The expression patterns and annotations of these genes were discussed in the context. Copyright © 2015 Elsevier B.V. All rights reserved.
Hirasaki, Masataka; Hiraki-Kamon, Keiko; Kamon, Masayoshi; Suzuki, Ayumu; Katano, Miyuki; Nishimoto, Masazumi; Okuda, Akihiko
2013-01-01
Predominant transcriptional subnetworks called Core, Myc, and PRC modules have been shown to participate in preservation of the pluripotency and self-renewality of embryonic stem cells (ESCs). Epiblast stem cells (EpiSCs) are another cell type that possesses pluripotency and self-renewality. However, the roles of these modules in EpiSCs have not been systematically examined to date. Here, we compared the average expression levels of Core, Myc, and PRC module genes between ESCs and EpiSCs. EpiSCs showed substantially higher and lower expression levels of PRC and Core module genes, respectively, compared with those in ESCs, while Myc module members showed almost equivalent levels of average gene expression. Subsequent analyses revealed that the similarity in gene expression levels of the Myc module between these two cell types was not just overall, but striking similarities were evident even when comparing the expression of individual genes. We also observed equivalent levels of similarity in the expression of individual Myc module genes between induced pluripotent stem cells (iPSCs) and partial iPSCs that are an unwanted byproduct generated during iPSC induction. Moreover, our data demonstrate that partial iPSCs depend on a high level of c-Myc expression for their self-renewal properties. PMID:24386274
Hulit, J; Di Vizio, D; Pestell, R G
2001-01-01
Breast cancer arises from multiple genetic events that together contribute to the established, irreversible malignant phenotype. The development of inducible tissue-specific transgenics has allowed a careful dissection of the events required for induction and subsequent maintenance of tumorigenesis. Mammary gland targeted expression of oncogenic Ras or c-Myc is sufficient for the induction of mammary gland tumorigenesis in the rodent, and when overexpressed together the rate of tumor onset is substantially enhanced. In an exciting recent finding, D'Cruz et al discovered tetracycline-regulated c-Myc overexpression in the mammary gland induced invasive mammary tumors that regressed upon withdrawal of c-Myc expression. Almost one-half of the c-Myc-induced tumors harbored K-ras or N-ras gene point mutations, correlating with tumor persistence on withdrawal of c-Myc transgene expression. These findings suggest maintenance of tumorigenesis may involve a second mutation within the Ras pathway.
Fenina, Myriam; Simon-Chazottes, Dominique; Vandormael-Pournin, Sandrine; Soueid, Jihane; Langa, Francina; Cohen-Tannoudji, Michel; Bernard, Bruno A; Panthier, Jean-Jacques
2012-01-01
Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.
Yoon, K. S.; Strycharz, J. P.; Baek, J. H.; Sun, W.; Kim, J.H.; Kang, J.S.; Pittendrigh, B. R.; Lee, S. H.; Clark, J. M.
2011-01-01
Transcriptional profiling results, using our non-invasive induction assay [short exposure intervals (2–5 h) to sub-lethal amounts of insecticides (
Induction of neural differentiation by electrically stimulated gene expression of NeuroD2.
Mie, Masayasu; Endoh, Tamaki; Yanagida, Yasuko; Kobatake, Eiry; Aizawa, Masuo
2003-02-13
Regulation of cell differentiation is an important assignment for cellular engineering. One of the techniques for regulation is gene transfection into undifferentiated cells. Transient expression of NeuroD2, one of neural bHLH transcription factors, converted mouse N1E-115 neuroblastoma cells into differentiated neurons. The regulation of neural bHLH expression should be a novel strategy for cell differentiation. In this study, we tried to regulate neural differentiation by NeuroD2 gene inserted under the control of heat shock protein-70 (HSP) promoter, which can be activated by electrical stimulation. Mouse neuroblastoma cell line, N1E-115, was stably transfected with expression vector containing mouse NeuroD2 cDNA under HSP promoter. Transfected cells were cultured on the electrode surface and applied electrical stimulation. After stimulation, NeuroD2 expression was induced, and transfected cells adopt a neuronal morphology at 3 days after stimulation. These results suggest that neural differentiation can be induced by electrically stimulated gene expression of NeuroD2.
CRTAM determines the CD4+ cytotoxic T lymphocyte lineage
Takeuchi, Arata; Badr, Mohamed El Sherif Gadelhaq; Miyauchi, Kosuke; Ishihara, Chitose; Onishi, Reiko; Guo, Zijin; Sasaki, Yoshiteru; Ike, Hiroshi; Takumi, Akiko; Tsuji, Noriko M.; Murakami, Yoshinori; Katakai, Tomoya; Kubo, Masato
2016-01-01
Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene. PMID:26694968
Hypertrophic gene expression induced by chronic stretch of excised mouse heart muscle.
Raskin, Anna M; Hoshijima, Masahiko; Swanson, Eric; McCulloch, Andrew D; Omens, Jeffrey H
2009-09-01
Altered mechanical stress and strain in cardiac myocytes induce modifications in gene expression that affects cardiac remodeling and myocyte contractile function. To study the mechanisms of mechanotransduction in cardiomyocytes, probing alterations in mechanics and gene expression has been an effective strategy. However, previous studies are self-limited due to the general use of isolated neonatal rodent myocytes or intact animals. The main goal of this study was to develop a novel tissue culture chamber system for mouse myocardium that facilitates loading of cardiac tissue, while measuring tissue stress and deformation within a physiological environment. Intact mouse right ventricular papillary muscles were cultured in controlled conditions with superfusate at 95% O2/ 5% CO2, and 34 degrees C, such that cell to extracellular matrix adhesions as well as cell to cell adhesions were undisturbed and both passive and active mechanical properties were maintained without significant changes. The system was able to measure the induction of hypertrophic markers (BNP, ANP) in tissue after 2 hrs and 5 hrs of stretch. ANP induction was highly correlated with the diastolic load of the muscle but not with developed systolic load. Load induced ANP expression was blunted in muscles from muscle-LIM protein knockout mice, in which defective mechanotransduction pathways have been predicted.
Induction of AGAMOUS gene expression plays a key role in ripening of tomato sepals in vitro.
Ishida, B K; Jenkins, S M; Say, B
1998-03-01
In vitro culture of VFNT Cherry tomato sepals (calyx) at 16-21 degrees C results in developmental changes that are similar to those that occur in fruit tissue [10]. Sepals become swollen, red, and succulent, produce ethylene, and have increased levels of polygalacturonase RNA. They also produce many flavor volatiles characteristic of ripe tomato fruit and undergo similar changes in sugar content [11]. We examined the expression of the tomato AGAMOUS gene, TAG1, in ripening, in vitro sepal cultures and other tissues from the plant and found that TAG1 RNA accumulates to higher levels than expected from data from other plants. Contrary to reports on the absence of AGAMOUS in sepals, TAG1 RNA levels in green sepals from greenhouse-grown plants is detectable, its concentration increasing with in vitro ripening to levels that were even higher than in red, ripe fruit. Sepals of fruit on transgenic tomato plants that expressed TAG1 ectopically were induced by low temperature to ripen in vivo, producing lycopene and undergoing cell wall softening as is characteristic of pericarpic tissue. We therefore propose that the induction of elevated TAG1 gene expression plays a key role in developmental changes that result in sepal ripening.
Thayanithy, Venugopal; Park, ChangWon; Sarver, Aaron L.; Kartha, Reena V.; Korpela, Derek M.; Graef, Ashley J.; Steer, Clifford J.; Modiano, Jaime F.; Subramanian, Subbaya
2012-01-01
Downregulation of microRNAs (miRNAs) at the 14q32 locus stabilizes the expression of cMYC, thus significantly contributing to osteosarcoma (OS) pathobiology. Here, we show that downregulation of 14q32 miRNAs is epigenetically regulated. The predicted promoter regions of miRNA clusters at 14q32 locus showed no recurrent patterns of differential methylation, but Saos2 cells showed elevated histone deacetylase (HDAC) activity. Treatment with 4-phenylbutyrate increased acetylation of histones associated with 14q32 miRNAs, but interestingly, robust restoration of 14q32 miRNA expression, attenuation of cMYC expression, and induction of apoptosis required concomitant treatment with 5-Azacytidine, an inhibitor of DNA methylation. These events were associated with genome-wide gene expression changes including induction of pro-apoptotic genes and downregulation of cell cycle genes. Comparable effects were achieved in human and canine OS cells using the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA/Vorinostat) and the DNA methylation inhibitor Zebularine (Zeb), with significantly more pronounced cytotoxicity in cells whose molecular phenotypes were indicative of aggressive biological behavior. These results suggested that the combination of these chromatin-modifying drugs may be a useful adjuvant in the treatment of rapidly progressive OS. PMID:22957032
Michalowski, Christine B.; Olson, Steven W.; Piepenbrock, Mechtild; Schmitt, Jürgen M.; Bohnert, Hans J.
1989-01-01
In the facultative halophyte Mesembryanthemum crystallinum (common ice plant), irrigation with solutions containing NaCl induces an alternate mode of carbon dioxide fixation, Crassulacean acid metabolism (CAM). The salt stress protocol which we have established facilitates the study of CAM induction and the correlation of changes in metabolism and gene expression. We have studied the time course of mRNA induction for phosphoenolpyruvate carboxylase (PEPCase) (gene: ppc) and several other enzymes of carbon metabolism during stress. While CAM is not fully established for at least 10 days after the start of stress, mRNA amounts for PEPCase and for other CAM enzymes, such as Pyruvate orthophosphate dikinase, increase between day 2 and 3 after stress induction. Increases continue for at least 5 days. Concomitant with the increase of CAM transcripts, fluctuations in the mRNA amounts for genes rbcS and cab were observed. Transcript levels for these proteins decreased several-fold during a 3 to 4 day period. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16666626
Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β
Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu
2017-01-01
Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ. PMID:28404976
Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β.
Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu
2017-06-13
Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ.
Transient, Inducible, Placenta-Specific Gene Expression in Mice
Fan, Xiujun; Petitt, Matthew; Gamboa, Matthew; Huang, Mei; Dhal, Sabita; Druzin, Maurice L.; Wu, Joseph C.
2012-01-01
Molecular understanding of placental functions and pregnancy disorders is limited by the absence of methods for placenta-specific gene manipulation. Although persistent placenta-specific gene expression has been achieved by lentivirus-based gene delivery methods, developmentally and physiologically important placental genes have highly stage-specific functions, requiring controllable, transient expression systems for functional analysis. Here, we describe an inducible, placenta-specific gene expression system that enables high-level, transient transgene expression and monitoring of gene expression by live bioluminescence imaging in mouse placenta at different stages of pregnancy. We used the third generation tetracycline-responsive tranactivator protein Tet-On 3G, with 10- to 100-fold increased sensitivity to doxycycline (Dox) compared with previous versions, enabling unusually sensitive on-off control of gene expression in vivo. Transgenic mice expressing Tet-On 3G were created using a new integrase-based, site-specific approach, yielding high-level transgene expression driven by a ubiquitous promoter. Blastocysts from these mice were transduced with the Tet-On 3G-response element promoter-driving firefly luciferase using lentivirus-mediated placenta-specific gene delivery and transferred into wild-type pseudopregnant recipients for placenta-specific, Dox-inducible gene expression. Systemic Dox administration at various time points during pregnancy led to transient, placenta-specific firefly luciferase expression as early as d 5 of pregnancy in a Dox dose-dependent manner. This system enables, for the first time, reliable pregnancy stage-specific induction of gene expression in the placenta and live monitoring of gene expression during pregnancy. It will be widely applicable to studies of both placental development and pregnancy, and the site-specific Tet-On G3 mouse will be valuable for studies in a broad range of tissues. PMID:23011919
Milani, Cintia; Katayama, Maria Lucia Hirata; de Lyra, Eduardo Carneiro; Welsh, JoEllen; Campos, Laura Tojeiro; Brentani, M Mitzi; Maciel, Maria do Socorro; Roela, Rosimeire Aparecida; del Valle, Paulo Roberto; Góes, João Carlos Guedes Sampaio; Nonogaki, Suely; Tamura, Rodrigo Esaki; Folgueira, Maria Aparecida Azevedo Koike
2013-03-15
Vitamin D transcriptional effects were linked to tumor growth control, however, the hormone targets were determined in cell cultures exposed to supra physiological concentrations of 1,25(OH)(2)D(3) (50-100nM). Our aim was to evaluate the transcriptional effects of 1,25(OH)(2)D(3) in a more physiological model of breast cancer, consisting of fresh tumor slices exposed to 1,25(OH)(2)D(3) at concentrations that can be attained in vivo. Tumor samples from post-menopausal breast cancer patients were sliced and cultured for 24 hours with or without 1,25(OH)(2)D(3) 0.5nM or 100nM. Gene expression was analyzed by microarray (SAM paired analysis, FDR≤0.1) or RT-qPCR (p≤0.05, Friedman/Wilcoxon test). Expression of candidate genes was then evaluated in mammary epithelial/breast cancer lineages and cancer associated fibroblasts (CAFs), exposed or not to 1,25(OH)(2)D(3) 0.5nM, using RT-qPCR, western blot or immunocytochemistry. 1,25(OH)(2)D(3) 0.5nM or 100nM effects were evaluated in five tumor samples by microarray and seven and 136 genes, respectively, were up-regulated. There was an enrichment of genes containing transcription factor binding sites for the vitamin D receptor (VDR) in samples exposed to 1,25(OH)(2)D(3) near physiological concentration. Genes up-modulated by both 1,25(OH)(2)D(3) concentrations were CYP24A1, DPP4, CA2, EFTUD1, TKTL1, KCNK3. Expression of candidate genes was subsequently evaluated in another 16 samples by RT-qPCR and up-regulation of CYP24A1, DPP4 and CA2 by 1,25(OH)(2)D(3) was confirmed. To evaluate whether the transcripitonal targets of 1,25(OH)(2)D(3) 0.5nM were restricted to the epithelial or stromal compartments, gene expression was examined in HB4A, C5.4, SKBR3, MDA-MB231, MCF-7 lineages and CAFs, using RT-qPCR. In epithelial cells, there was a clear induction of CYP24A1, CA2, CD14 and IL1RL1. In fibroblasts, in addition to CYP24A1 induction, there was a trend towards up-regulation of CA2, IL1RL1, and DPP4. A higher protein expression of CD14 in epithelial cells and CA2 and DPP4 in CAFs exposed to 1,25(OH)(2)D(3) 0.5nM was detected. In breast cancer specimens a short period of 1,25(OH)(2)D(3) exposure at near physiological concentration modestly activates the hormone transcriptional pathway. Induction of CYP24A1, CA2, DPP4, IL1RL1 expression appears to reflect 1,25(OH)(2)D(3) effects in epithelial as well as stromal cells, however, induction of CD14 expression is likely restricted to the epithelial compartment.
2013-01-01
Background Vitamin D transcriptional effects were linked to tumor growth control, however, the hormone targets were determined in cell cultures exposed to supra physiological concentrations of 1,25(OH)2D3 (50-100nM). Our aim was to evaluate the transcriptional effects of 1,25(OH)2D3 in a more physiological model of breast cancer, consisting of fresh tumor slices exposed to 1,25(OH)2D3 at concentrations that can be attained in vivo. Methods Tumor samples from post-menopausal breast cancer patients were sliced and cultured for 24 hours with or without 1,25(OH)2D3 0.5nM or 100nM. Gene expression was analyzed by microarray (SAM paired analysis, FDR≤0.1) or RT-qPCR (p≤0.05, Friedman/Wilcoxon test). Expression of candidate genes was then evaluated in mammary epithelial/breast cancer lineages and cancer associated fibroblasts (CAFs), exposed or not to 1,25(OH)2D3 0.5nM, using RT-qPCR, western blot or immunocytochemistry. Results 1,25(OH)2D3 0.5nM or 100nM effects were evaluated in five tumor samples by microarray and seven and 136 genes, respectively, were up-regulated. There was an enrichment of genes containing transcription factor binding sites for the vitamin D receptor (VDR) in samples exposed to 1,25(OH)2D3 near physiological concentration. Genes up-modulated by both 1,25(OH)2D3 concentrations were CYP24A1, DPP4, CA2, EFTUD1, TKTL1, KCNK3. Expression of candidate genes was subsequently evaluated in another 16 samples by RT-qPCR and up-regulation of CYP24A1, DPP4 and CA2 by 1,25(OH)2D3 was confirmed. To evaluate whether the transcripitonal targets of 1,25(OH)2D3 0.5nM were restricted to the epithelial or stromal compartments, gene expression was examined in HB4A, C5.4, SKBR3, MDA-MB231, MCF-7 lineages and CAFs, using RT-qPCR. In epithelial cells, there was a clear induction of CYP24A1, CA2, CD14 and IL1RL1. In fibroblasts, in addition to CYP24A1 induction, there was a trend towards up-regulation of CA2, IL1RL1, and DPP4. A higher protein expression of CD14 in epithelial cells and CA2 and DPP4 in CAFs exposed to 1,25(OH)2D3 0.5nM was detected. Conclusions In breast cancer specimens a short period of 1,25(OH)2D3 exposure at near physiological concentration modestly activates the hormone transcriptional pathway. Induction of CYP24A1, CA2, DPP4, IL1RL1 expression appears to reflect 1,25(OH)2D3 effects in epithelial as well as stromal cells, however, induction of CD14 expression is likely restricted to the epithelial compartment. PMID:23497279
Weidenbusch, Marc; Rodler, Severin; Song, Shangqing; Romoli, Simone; Marschner, Julian A; Kraft, Franziska; Holderied, Alexander; Kumar, Santosh; Mulay, Shrikant R; Honarpisheh, Mohsen; Kumar Devarapu, Satish; Lech, Maciej; Anders, Hans-Joachim
2017-12-22
Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered. © 2017 The Author(s).
Xiao, J H; Feng, X; Di, W; Peng, Z H; Li, L A; Chambon, P; Voorhees, J J
1999-01-01
The role of retinoic acid receptors (RARs) in intercellular regulation of cell growth was assessed by targeting a dominant-negative RARalpha mutant (dnRARalpha) to differentiated suprabasal cells of mouse epidermis. dnRARalpha lacks transcriptional activation but not DNA-binding and receptor dimerization functions. Analysis of transgenic mice revealed that dnRARalpha dose-dependently impaired induction of basal cell proliferation and epidermal hyperplasia by all-trans RA (tRA). dnRARalpha formed heterodimers with endogenous retinoid X receptor-alpha (RXRalpha) over RA response elements in competition with remaining endogenous RARgamma-RXRalpha heterodimers, and dose-dependently impaired retinoid-dependent gene transcription. To identify genes regulated by retinoid receptors and involved in cell growth control, we analyzed the retinoid effects on expression of the epidermal growth factor (EGF) receptor, EGF, transforming growth factor-alpha, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin genes. In normal epidermis, tRA rapidly and selectively induced expression of HB-EGF but not the others. This induction occurred exclusively in suprabasal cells. In transgenic epidermis, dnRARalpha dose-dependently inhibited tRA induction of suprabasal HB-EGF and subsequent basal cell hyperproliferation. Together, our observations suggest that retinoid receptor heterodimers located in differentiated suprabasal cells mediate retinoid induction of HB-EGF, which in turn stimulates basal cell growth via intercellular signaling. These events may underlie retinoid action in epidermal regeneration during wound healing. PMID:10075925
Nepal, Saroj; Kim, Mi Jin; Hong, Jin Tae; Kim, Sang Hyun; Sohn, Dong-Hwan; Lee, Sung Hee; Song, Kyung; Choi, Dong Young; Lee, Eung Seok; Park, Pil-Hoon
2015-01-01
Leptin, a hormone mainly produced from adipose tissue, has been shown to induce proliferation of cancer cells. However, the molecular mechanisms underlying leptin-induced tumor progression have not been clearly elucidated. In the present study, we investigated the role of autophagy in leptin-induced cancer cell proliferation using human hepatoma (HepG2) and breast cancer cells (MCF-7), and tumor growth in a xenograft model. Herein, we showed that leptin treatment caused autophagy induction as assessed by increase in expression of autophagy-related genes, including beclin-1, Atg5 and LC3 II, further induction of autophagosome formation and autophagic flux. Interestingly, inhibition of autophagic process by treatment with inhibitors and LC3B gene silencing blocked leptin-induced increase in cell number and suppression of apoptosis, indicating a crucial role of autophagy in leptin-induced tumor progression. Moreover, gene silencing of p53 or FoxO3A prevented leptin-induced LC3 II protein expression, suggesting an involvement of p53/FoxO3A axis in leptin-induced autophagy activation. Leptin administration also accelerated tumor growth in BALB/c nude mice, which was found to be autophagy dependent. Taken together, our results demonstrate that leptin-induced tumor growth is mediated by autophagy induction and autophagic process would be a promising target to regulate development of cancer caused by leptin production. PMID:25704884
Adaptation of Candida albicans to Reactive Sulfur Species
Chebaro, Yasmin; Lorenz, Michael; Fa, Alice; Zheng, Rui; Gustin, Michael
2017-01-01
Candida albicans is an opportunistic fungal pathogen that is highly resistant to different oxidative stresses. How reactive sulfur species (RSS) such as sulfite regulate gene expression and the role of the transcription factor Zcf2 and the sulfite exporter Ssu1 in such responses are not known. Here, we show that C. albicans specifically adapts to sulfite stress and that Zcf2 is required for that response as well as induction of genes predicted to remove sulfite from cells and to increase the intracellular amount of a subset of nitrogen metabolites. Analysis of mutants in the sulfate assimilation pathway show that sulfite conversion to sulfide accounts for part of sulfite toxicity and that Zcf2-dependent expression of the SSU1 sulfite exporter is induced by both sulfite and sulfide. Mutations in the SSU1 promoter that selectively inhibit induction by the reactive nitrogen species (RNS) nitrite, a previously reported activator of SSU1, support a model for C. albicans in which Cta4-dependent RNS induction and Zcf2-dependent RSS induction are mediated by parallel pathways, different from S. cerevisiae in which the transcription factor Fzf1 mediates responses to both RNS and RSS. Lastly, we found that endogenous sulfite production leads to an increase in resistance to exogenously added sulfite. These results demonstrate that C. albicans has a unique response to sulfite that differs from the general oxidative stress response, and that adaptation to internal and external sulfite is largely mediated by one transcription factor and one effector gene. PMID:28235888
Iwasaki, T; Yamaguchi-Shinozaki, K; Shinozaki, K
1995-05-20
In Arabidopsis thaliana, the induction of a dehydration-responsive gene, rd22, is mediated by abscisic acid (ABA) but the gene does not include any sequence corresponding to the consensus ABA-responsive element (ABRE), RYACGTGGYR, in its promoter region. The cis-regulatory region of the rd22 promoter was identified by monitoring the expression of beta-glucuronidase (GUS) activity in leaves of transgenic tobacco plants transformed with chimeric gene fusions constructed between 5'-deleted promoters of rd22 and the coding region of the GUS reporter gene. A 67-bp nucleotide fragment corresponding to positions -207 to -141 of the rd22 promoter conferred responsiveness to dehydration and ABA on a non-responsive promoter. The 67-bp fragment contains the sequences of the recognition sites for some transcription factors, such as MYC, MYB, and GT-1. The fact that accumulation of rd22 mRNA requires protein synthesis raises the possibility that the expression of rd22 might be regulated by one of these trans-acting protein factors whose de novo synthesis is induced by dehydration or ABA. Although the structure of the RD22 protein is very similar to that of a non-storage seed protein, USP, of Vicia faba, the expression of the GUS gene driven by the rd22 promoter in non-stressed transgenic Arabidopsis plants was found mainly in flowers and bolted stems rather than in seeds.
CDDO-Im protects from acetaminophen hepatotoxicity through induction of Nrf2-dependent genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reisman, Scott A.; Buckley, David B.; Tanaka, Yuji
CDDO-Im is a synthetic triterpenoid recently shown to induce cytoprotective genes through the Nrf2-Keap1 pathway, an important mechanism for the induction of cytoprotective genes in response to oxidative stress. Upon oxidative or electrophilic insult, the transcription factor Nrf2 translocates to the nucleus, heterodimerizes with small Maf proteins, and binds to antioxidant response elements (AREs) in the upstream promoter regions of various cytoprotective genes. To further elucidate the hepatoprotective effects of CDDO-Im, wild-type and Nrf2-null mice were pretreated with CDDO-Im (1 mg/kg, i.p.) or vehicle (DMSO), and then administered acetaminophen (500 mg/kg, i.p.). Pretreatment of wild-type mice with CDDO-Im reduced livermore » injury caused by acetaminophen. In contrast, hepatoprotection by CDDO-Im was not observed in Nrf2-null mice. CDDO-Im increased Nrf2 protein expression and Nrf2-ARE binding in wild-type, but not Nrf2-null mice. Furthermore, CDDO-Im increased the mRNA expression of the Nrf2 target genes NAD(P)H: quinone oxidoreductase-1 (Nqo1); glutamate-cysteine ligase, catalytic subunit (Gclc); and heme-oxygenase-1 (Ho-1), in both a dose- and time-dependent manner. Conversely, CDDO-Im did not induce Nqo1, Gclc, and Ho-1 mRNA expression in Nrf2-null mice. Collectively, the present study shows that CDDO-Im pretreatment induces Nrf2-dependent cytoprotective genes and protects the liver from acetaminophen-induced hepatic injury.« less
I-SceI-Induced Gene Replacement at a Natural Locus in Embryonic Stem Cells
Cohen-Tannoudji, Michel; Robine, Sylvie; Choulika, André; Pinto, Daniel; El Marjou, Fatima; Babinet, Charles; Louvard, Daniel; Jaisser, Frédéric
1998-01-01
Gene targeting is a very powerful tool for studying mammalian development and physiology and for creating models of human diseases. In many instances, however, it is desirable to study different modifications of a target gene, but this is limited by the generally low frequency of homologous recombination in mammalian cells. We have developed a novel gene-targeting strategy in mouse embryonic stem cells that is based on the induction of endogenous gap repair processes at a defined location within the genome by induction of a double-strand break (DSB) in the gene to be mutated. This strategy was used to knock in an NH2-ezrin mutant in the villin gene, which encodes an actin-binding protein expressed in the brush border of the intestine and the kidney. To induce the DSB, an I-SceI yeast meganuclease restriction site was first introduced by gene targeting to the villin gene, followed by transient expression of I-SceI. The repair of the ensuing DSB was achieved with high efficiency (6 × 10−6) by a repair shuttle vector sharing only a 2.8-kb region of homology with the villin gene and no negative selection marker. Compared to conventional gene-targeting experiments at the villin locus, this represents a 100-fold stimulation of gene-targeting frequency, notwithstanding a much lower length of homology. This strategy will be very helpful in facilitating the targeted introduction of several types of mutations within a gene of interest. PMID:9488460
Yi, Xue; Cheng, Hui; Zou, Ping; Liu, Ling-Bo; Zhang, Ting; Yu, Dan; Zhu, Xiao-Ming; Zou, Liang
2010-10-01
The defect or block of apoptosis is an important factor involved in the drug resistance of tumor cells. Blm gene plays a great role in DNA damage and repair. This study was aimed to explore the relationship of blm gene expression with cell cycle and apoptosis after Jurkat DNA damage. The apoptosis rate and change of cell cycle were detected by flow cytometry, the expression level of blm mRNA in Jurkat cells was determined by semi-quantitative RT-PCR. The results indicated that after induction with 0.4 g/L of mitomycin C (MMC) for 24 hours the apoptosis rate of Jurkat cells were (11.42±0.013)%, and (66.08±1.60)% Jurkat cells were arrested in G2/M phase. After induction for 48 hours, the apoptosis rate of Jurkat cells declined from (11.42±0.013)% to (8.08±0.27)%, and cell count of Jurkat cells arrested in G2/M phase decreased from (66.08±1.60)% to (33.96±1.05)%. When induced with 0.4 g/L of MMC for 24 hours, the apoptosis rate of fibroblasts and the percentage of fibroblasts in G2/M, G0-G1 and S phase all showed no significant change until 48 hours. The range of apoptosis rate and the change of cell percentage in three phases were significantly different between Jurkat cells and fibroblasts (p<0.01). Expression level of blm mRNA in Jurkat cells was remarkably higher than that in normal fibroblasts (p<0.01), at 48 hours expression level of blm mRNA was remarkably higher than that at 24 hours. The 2 groups showed clear difference of blm mRNA expression after treated by MMC (p<0.01). It is concluded that the blm gene may play a significant role in repair of DNA damage of Jurkat cells after MMC induction. Abnormal expression of blm is correlated to the drug resistance of leukemia cells.
Identification and utility of innate immune system evasion mechanisms of ASFV.
Correia, Sílvia; Ventura, Sónia; Parkhouse, Robert Michael
2013-04-01
The interferon (IFN) system is an early innate anti-virus host defense mechanism that takes place shortly after entry of the pathogen and long before the onset of adaptive immunity. Thus, African swine fever virus (ASFV), as an acute and persistent virus in pigs, is predicted to have evolved multiple genes for the manipulation and evasion of interferon. Although, ASFV is known to interfere with signaling pathways controlling the transcription of cytokines, surprisingly no individual virus gene manipulating the induction or impact of IFN has been described. Since an initial bioinformatics search of the ASFV genome failed to identify potential antagonists of the IFN response, our strategy was to functionally screen early expressed, "unassigned" ASFV genes without existing homologies, particularly from MGFs 360 and 530, in luciferase reporter assays for their inhibition of the induction and impact of IFN. Specifically, we used reporter plasmids containing the luciferase gene under the control of: (1) the IFN-β promoter, to screen for inhibition of induction of type I IFN stimulated by the addition of Poly(I:C); (2) the ISRE DNA elements, to screen for the inhibition of the impact of type I IFN; and (3) the GAS DNA elements to screen for the inhibition of the impact of type II IFN. Our initial experiments revealed six ASFV genes inhibiting one or more of the three luciferase assays. From these, we have selected a total of 3 genes for presentation. The ASFV A276R gene from MGF360 inhibited the induction of IFN-β via both the TLR3 and the cytosolic pathways, targeting IRF3, but not IRF7 or NF-κB. The ASFV A528R inhibited the induction of both NF-κB and IRF3 branches of the type I IFN induction signaling pathway and the impact of IFN response via both IFN type I and type II stimulation. The ASFV I329L gene is a functional viral TLR3 homologue inhibiting the induction of IFN at the level of TRIF. Thus, these genes reduce the IFN response by targeting different intracellular signaling intermediates. Their deletion from wild type virus may strengthen the host interferon response and so provide an attenuated form with more restricted virus spread after the initial infection, perhaps "buying" sufficient time to allow the development of a protective adaptive immune response. The demonstration of multiple ASFV genes for the evasion of IFN responses will demand technology to construct viruses with multiple gene deletions. An alternative would be a multigene DNA vaccine. Finally, our work clearly demonstrates that unassigned viral genes may be viewed as a repository of host evasion strategies, only identifiable through functional assays. These may be considered to be "ready-made tools" for the experimental manipulation of cell biology and immune responses in health and disease and, as proof of concept, we have constructed a T-cell restricted transgenic mouse expressing the ASFV gene A238L, a dual inhibitor of NF-κB and NFAT activation. The resulting T cell restricted A238L transgenic mice developed a lymphoma with a phenotype reminiscent of some acute lymphoblastic lymphomas. In contrast, transgenic mice similarly expressing a mutant A238L solely inhibiting transcription mediated by NF-κB were indistinguishable from wild type mice, suggesting a transgene-NFAT-dependent transformation. Elucidation of the molecular events associated with the development of this virus host evasion molecule induced tumor may clarify some mechanisms of tumorigenesis in general, and in the development of T cell acute lymphoblastic leukemia in particular. Copyright © 2012 Elsevier B.V. All rights reserved.
Shore, David E.; Carr, Christopher E.; Ruvkun, Gary
2012-01-01
Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors. PMID:22829775
Zhou, Qian-Mei; Chen, Qi-Long; Du, Jia; Wang, Xiu-Feng; Lu, Yi-Yu; Zhang, Hui; Su, Shi-Bing
2014-01-01
In order to explore the synergistic mechanisms of combinatorial treatment using curcumin and mitomycin C (MMC) for breast cancer, MCF-7 breast cancer xenografts were conducted to observe the synergistic effect of combinatorial treatment using curcumin and MMC at various dosages. The synergistic mechanisms of combinatorial treatment using curcumin and MMC on the inhibition of tumor growth were explored by differential gene expression profile, gene ontology (GO), ingenuity pathway analysis (IPA) and Signal–Net network analysis. The expression levels of selected genes identified by cDNA microarray expression profiling were validated by quantitative RT-PCR (qRT-PCR) and Western blot analysis. Effect of combinatorial treatment on the inhibition of cell growth was observed by MTT assay. Apoptosis was detected by flow cytometric analysis and Hoechst 33258 staining. The combinatorial treatment of 100 mg/kg curcumin and 1.5 mg/kg MMC revealed synergistic inhibition on tumor growth. Among 1501 differentially expressed genes, the expression of 25 genes exhibited an obvious change and a significant difference in 27 signal pathways was observed (p < 0.05). In addition, Mapk1 (ERK) and Mapk14 (MAPK p38) had more cross-interactions with other genes and revealed an increase in expression by 8.14- and 11.84-fold, respectively during the combinatorial treatment by curcumin and MMC when compared with the control. Moreover, curcumin can synergistically improve tumoricidal effect of MMC in another human breast cancer MDA-MB-231 cells. Apoptosis was significantly induced by the combinatorial treatment (p < 0.05) and significantly inhibited by ERK inhibitor (PD98059) in MCF-7 cells (p < 0.05). The synergistic effect of combinatorial treatment by curcumin and MMC on the induction of apoptosis in breast cancer cells may be via the ERK pathway. PMID:25226537
Rohde, Kristian; Møller, Morten; Rath, Martin Fredensborg
2014-01-01
Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production.
Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator.
Huang, W; Pérez-García, P; Pokhilko, A; Millar, A J; Antoshechkin, I; Riechmann, J L; Mas, P
2012-04-06
In many organisms, the circadian clock is composed of functionally coupled morning and evening oscillators. In Arabidopsis, oscillator coupling relies on a core loop in which the evening oscillator component TIMING OF CAB EXPRESSION 1 (TOC1) was proposed to activate a subset of morning-expressed oscillator genes. Here, we show that TOC1 does not function as an activator but rather as a general repressor of oscillator gene expression. Repression occurs through TOC1 rhythmic association to the promoters of the oscillator genes. Hormone-dependent induction of TOC1 and analysis of RNA interference plants show that TOC1 prevents the activation of morning-expressed genes at night. Our study overturns the prevailing model of the Arabidopsis circadian clock, showing that the morning and evening oscillator loops are connected through the repressing activity of TOC1.
Rath, Martin Fredensborg
2014-01-01
Nocturnal synthesis of melatonin in the pineal gland is controlled by a circadian rhythm in arylalkylamine N-acetyltransferase (AANAT) enzyme activity. In the rodent, Aanat gene expression displays a marked circadian rhythm; release of norepinephrine in the gland at night causes a cAMP-based induction of Aanat transcription. However, additional transcriptional control mechanisms exist. Homeobox genes, which are generally known to encode transcription factors controlling developmental processes, are also expressed in the mature rodent pineal gland. Among these, the cone-rod homeobox (CRX) transcription factor is believed to control pineal-specific Aanat expression. Based on recent advances in our understanding of Crx in the rodent pineal gland, we here suggest that homeobox genes play a role in adult pineal physiology both by ensuring pineal-specific Aanat expression and by facilitating cAMP response element-based circadian melatonin production. PMID:24877149
2012-01-01
Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation. PMID:22537182
Ahmadi, Mahmoud Kamal; Pfeifer, Blaine A
2016-11-01
Biosynthesis of complex natural products like polyketides and nonribosomal peptides using Escherichia coli as a heterologous host provides an opportunity to access these molecules. The value in doing so stems from the fact that many compounds hold some therapeutic or other beneficial property and their original production hosts are intractable for a variety of reasons. In this work, metabolic engineering and induction variable optimization were used to increase production of the polyketide-nonribosomal peptide compound yersiniabactin, a siderophore that has been utilized to selectively remove metals from various solid and aqueous samples. Specifically, several precursor substrate support pathways were altered through gene expression and exogenous supplementation in order to boost production of the final compound. The gene expression induction process was also analyzed to identify the temperatures and inducer concentrations resulting in highest final production levels. When combined, yersiniabactin production was extended to ∼175 mg L -1 . © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1412-1417, 2016. © 2016 American Institute of Chemical Engineers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joensson, Maria E., E-mail: maria.jonsson@ebc.uu.se; Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543; Berg, Cecilia
2011-01-15
The Xenopus tropicalis genome shows a single gene in each of the four cytochrome P450 1 (CYP1) subfamilies that occur in vertebrates, designated as CYP1A, CYP1B1, CYP1C1, and CYP1D1. We cloned the cDNAs of these genes and examined their expression in untreated tadpoles and in tadpoles exposed to waterborne aryl hydrocarbon receptor agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB126), {beta}-naphthoflavone ({beta}NF), or indigo. We also examined the effects of PCB126 on expression of genes involved in stress response, cell proliferation, thyroid homeostasis, and prostaglandin synthesis. PCB126 induced CYP1A, CYP1B1, and CYP1C1 but had little effect on CYP1D1 (77-, 1.7-, 4.6- and 1.4-fold induction versusmore » the control, respectively). {beta}NF induced CYP1A and CYP1C1 (26- and 2.5-fold), while, under conditions used, indigo tended to induce only CYP1A (1.9-fold). The extent of CYP1 induction by PCB126 and {beta}NF was positively correlated to the number of putative dioxin response elements 0-20 kb upstream of the start codons. No morphological effect was observed in tadpoles exposed to 1 nM-10 {mu}M PCB126 at two days post-fertilization (dpf) and screened 20 days later. However, in 14-dpf tadpoles a slight up-regulation of the genes for PCNA, transthyretin, HSC70, Cu-Zn SOD, and Cox-2 was observed two days after exposure to 1 {mu}M PCB126. This study of the full suite of CYP1 genes in an amphibian species reveals gene- and AHR agonist-specific differences in response, as well as a much lower sensitivity to CYP1 induction and short-term toxicity by PCB126 compared with in fish larvae. The single genes in each CYP1 subfamily may make X. tropicalis a useful model for mechanistic studies of CYP1 functions.« less
Lukiw, Walter J.; Pogue, Aileen I.
2007-01-01
Iron- and aluminum-sulfate together, at nanomolar concentrations, trigger the production of reactive oxygen species (ROS) in cultures of human brain cells. Previous studies have shown that following ROS induction, a family of pathogenic brain genes that promote inflammatory signalling, cellular apoptosis and brain cell death is significantly over-expressed. Notably, iron- and aluminum-sulfate induce genes in cultured human brain cells that exhibit expression patterns similar to those observed to be up-regulated in moderate- to late-stage Alzheimer's disease (AD). In this study we have extended our investigations to analyze the expression of micro RNA (miRNA) populations in iron- and aluminum-sulfate treated human neural cells in primary culture. The main finding was that these ROS-generating neurotoxic metal sulfates also up-regulate a specific set of miRNAs that includes miR-9, miR-125b and miR-128. Notably, these same miRNAs are up-regulated in AD brain. These findings further support the idea that iron- and aluminum-sulfates induce genotoxicity via a ROS-mediated up-regulation of specific regulatory elements and pathogenic genes that redirect brain cell fate towards progressive dysfunction and apoptotic cell death. PMID:17629564
Sleiman, Sama F; Henry, Jeffrey; Al-Haddad, Rami; El Hayek, Lauretta; Abou Haidar, Edwina; Stringer, Thomas; Ulja, Devyani; Karuppagounder, Saravanan S; Holson, Edward B; Ratan, Rajiv R; Ninan, Ipe; Chao, Moses V
2016-06-02
Exercise induces beneficial responses in the brain, which is accompanied by an increase in BDNF, a trophic factor associated with cognitive improvement and the alleviation of depression and anxiety. However, the exact mechanisms whereby physical exercise produces an induction in brain Bdnf gene expression are not well understood. While pharmacological doses of HDAC inhibitors exert positive effects on Bdnf gene transcription, the inhibitors represent small molecules that do not occur in vivo. Here, we report that an endogenous molecule released after exercise is capable of inducing key promoters of the Mus musculus Bdnf gene. The metabolite β-hydroxybutyrate, which increases after prolonged exercise, induces the activities of Bdnf promoters, particularly promoter I, which is activity-dependent. We have discovered that the action of β-hydroxybutyrate is specifically upon HDAC2 and HDAC3, which act upon selective Bdnf promoters. Moreover, the effects upon hippocampal Bdnf expression were observed after direct ventricular application of β-hydroxybutyrate. Electrophysiological measurements indicate that β-hydroxybutyrate causes an increase in neurotransmitter release, which is dependent upon the TrkB receptor. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF.
Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle
Jones, G.; Meier, T.; Lichtsteiner, M.; Witzemann, V.; Sakmann, B.; Brenner, H. R.
1997-01-01
Two factors secreted from the nerve terminal, agrin and neuregulin, have been postulated to induce localization of the acetylcholine receptors (AChRs) to the subsynaptic membrane in skeletal muscle fibers. The principal function ascribed to neuregulin is induction of AChR subunit gene expression and to agrin is the aggregation of AChRs. Here we report that when myoblasts engineered to secrete an agrin fragment were placed into the nerve-free region of denervated rodent muscle, the host muscle fibers expressed AChR ɛ-subunit gene transcripts, characteristic of the neuromuscular synapse in adult muscle. Transcripts were colocalized with agrin deposits and AChR clusters that were resistant to electrical muscle activity. More directly, single innervated muscle fibers injected intracellularly with agrin expression plasmids in their extrasynaptic region developed a functional ectopic postsynaptic membrane with clusters of adult-type AChR channels and acetylcholinesterase and accumulation of myonuclei. The results demonstrate that agrin is the principal neural signal that induces the formation of the subsynaptic apparatus in the muscle fiber and controls locally, either indirectly or directly, the transcription of AChR subunit genes and the aggregation of AChRs. PMID:9122251
Genetic interactions underlying otic placode induction and formation.
Solomon, Keely S; Kwak, Su-Jin; Fritz, Andreas
2004-07-01
The formation of the otic placode is a complex process requiring multiple inductive signals. In zebrafish, fgf3 and fgf8, dlx3b and dlx4b, and foxi1 have been identified as the earliest-acting genes in this process. fgf3 and fgf8 are required as inductive signals, whereas dlx3b, dlx4b, and foxi1 appear to act directly within otic primordia. We have investigated potential interactions among these genes. Depletion of either dlx3b and dlx4b or foxi1 leads to a delay of pax2a expression in the otic primordia and reduction of the otic vesicle. Depletion of both foxi1 and dlx3b results in a complete ablation of otic placode formation. A strong synergistic interaction is also observed among foxi1, fgf3, and fgf8, and a weaker interaction among dlx3b, fgf3, and fgf8. Misexpression of foxi1 can induce expression of pax8, an early marker for the otic primordia, in embryos treated with an inhibitor of fibroblast growth factor (FGF) signaling. Conversely, morpholino knockdown of foxi1 blocks ectopic pax8 expression and otic vesicle formation induced by misexpression of fgf3 and/or fgf8. The observed genetic interactions suggest a model in which foxi1 and dlx3b/dlx4b act in independent pathways together with distinct phases of FGF signaling to promote otic placode induction and development. Copyright 2004 Wiley-Liss, Inc.
Serrano, Laetitia; Henry, Raymond P
2008-06-01
Two isoforms of the enzyme carbonic anhydrase (CA) from the gills of the euryhaline green crab were sequenced and identified; these were found to match the cytoplasmic (CAc) and membrane-associated (CAg) isoforms known from other species. The mRNA of the membrane-associated isoform is present in significantly higher levels of abundance in gills of crabs acclimated to 32 ppt, at which the crab is an osmotic and ionic conformer. Upon transfer to low salinity (15 ppt), in which the crab is an osmoregulator, however, the cytoplasmic isoform undergoes a rapid 100-fold increase in abundance in the posterior gills, becoming the dominant isoform. CAg increases 3-fold initially and then remains elevated through 14 days of low salinity acclimation. The induction of CAc mRNA is believed to be the molecular basis for the 20 fold increase in CA protein-specific activity during low salinity acclimation. The initial increase in CAc mRNA takes place at 6 h, and maximal levels of expression are achieved by 24 h; this precedes the induction of CA activity and is within the time in which hemolymph osmotic and ionic concentrations stabilize at new acclimated levels. The increase in expression of the CAg isoform is believed to be more closely related to changes in the population of branchial chloride cells. Changes in the relative abundance of mRNA for the alpha-subunit of the Na(+)/K(+)-ATPase were smaller in magnitude than those for CAc, but the timing was similar. There were no changes in expression of a control gene, arginine kinase (AK) in posterior gills, and there were no significant changes in expression in anterior gills for any of the genes measured here. These results support the use of a control tissue (anterior gills) in addition to a control gene for expression studies.
Wang, Weishan; Yang, Tongjian; Li, Yihong; Li, Shanshan; Yin, Shouliang; Styles, Kathryn; Corre, Christophe; Yang, Keqian
2016-07-15
Precise control of gene expression using exogenous factors is of great significance. To develop ideal inducible expression systems for streptomycetes, new genetic parts, oxytetracycline responsive repressor OtrR, operator otrO, and promoter otrBp from Streptomyces rimosus, were selected de novo and characterized in vivo and in vitro. OtrR showed strong affinity to otrO (KD = 1.7 × 10(-10) M) and oxytetracycline induced dissociation of the OtrR/DNA complex in a concentration-dependent manner. On the basis of these genetic parts, a synthetic inducible expression system Potr* was optimized. Induction of Potr* with 0.01-4 μM of oxytetracycline triggered a wide-range expression level of gfp reporter gene in different Streptomyces species. Benchmarking Potr* against the widely used constitutive promoters ermE* and kasOp* revealed greatly enhanced levels of expression when Potr* was fully induced. Finally, Potr* was used as a tool to activate and optimize the expression of the silent jadomycin biosynthetic gene cluster in Streptomyces venezuelae. Altogether, the synthetic Potr* presents a new versatile tool for fine-tuning gene expression in streptomycetes.
Liu, Y; Chatterjee, A; Chatterjee, A K
1994-12-01
In most soft-rotting Erwinia spp., including E. carotovora subsp. carotovora strain 71 (Ecc71), production of the plant cell wall degrading enzyme pectin lyase (Pnl) is activated by DNA-damaging agents such as mitomycin C (MC). Induction of Pnl production in Ecc71 requires a functional recA gene and the rdg locus. DNA sequencing and RNA analyses revealed that the rdg locus contains two regulatory genes, rdgA and rdgB, in separate transcriptional units. There is high homology between RdgA and repressors of lambdoid phages, specially phi 80. RdgB, however, has significant homology with transcriptional activators of Mu phage. Both RdgA and RdgB are also predicted to possess helix-turn-helix motifs. By replacing the rdgB promoter with the IPTG-inducible tac promoter, we have determined that rdgB by itself can activate Pnl production in Escherichia coli. However, deletion analysis of rdg+ DNA indicated that, when driven by their native promoters, functions of both rdgA and rdgB are required for the induction of pnlA expression by MC treatment. While rdgB transcription occurs only after MC treatment, a substantial level of rdgA mRNA is detected in the absence of MC treatment. Moreover, upon induction with MC, a new rdgA mRNA species, initiated from a different start site, is produced at a high level. Thus, the two closely linked rdgA and rdgB genes, required for the regulation of Pnl production, are expressed differently in Ecc71.