Science.gov

Sample records for gene expression modulation

  1. Discovering modulators of gene expression

    PubMed Central

    Babur, Özgün; Demir, Emek; Gönen, Mithat; Sander, Chris; Dogrusoz, Ugur

    2010-01-01

    Proteins that modulate the activity of transcription factors, often called modulators, play a critical role in creating tissue- and context-specific gene expression responses to the signals cells receive. GEM (Gene Expression Modulation) is a probabilistic framework that predicts modulators, their affected targets and mode of action by combining gene expression profiles, protein–protein interactions and transcription factor–target relationships. Using GEM, we correctly predicted a significant number of androgen receptor modulators and observed that most modulators can both act as co-activators and co-repressors for different target genes. PMID:20466809

  2. Modulation and Expression of Tumor Suppressor Genes by Environmental Agents.

    DTIC Science & Technology

    1996-12-01

    MAMA produced other tumors in medaka (e.g. liver) and Rb expression is altered in many human tumors , the capability of examining the pathology of all...AD GRANT NUMBER DAMDI7-93-J-3011 TITLE: Modulation and Expression of Tumor Suppressor Genes by Environmental Agents PRINCIPAL INVESTIGATOR: Gary K...SUBTITLE 5. FUNDING NUMBERS Modulation and Expression of Tumor Suppressor Genes by Environmental Agents DAMDl7-93- J-3011 6. AUTHOR(S) Gary K

  3. Sleep and wakefulness modulate gene expression in Drosophila.

    PubMed

    Cirelli, Chiara; LaVaute, Timothy M; Tononi, Giulio

    2005-09-01

    In the mammalian brain, sleep and wakefulness are associated with widespread changes in gene expression. Sleep in fruit flies shares many features with mammalian sleep, but it is currently unknown to what extent behavioral states affect gene expression in Drosophila. To find out, we performed a comprehensive microarray analysis of gene expression in spontaneously awake, sleep-deprived and sleeping flies. Fly heads were collected at 4 am, after 8 h of spontaneous sleep or sleep deprivation, and at 4 pm, after 8 h of spontaneous wakefulness. As in rats, we found that behavioral state and time of day affect Drosophila gene expression to a comparable extent. As in rats, transcripts with higher expression in wakefulness and in sleep belong to different functional categories, and in several cases these groups overlap with those previously identified in rats. Wakefulness-related genes code for transcription factors and for proteins involved in the stress response, immune response, glutamatergic transmission, and carbohydrate metabolism. Sleep-related transcripts include the glial gene anachronism and several genes involved in lipid metabolism. Finally, the expression of many wakefulness-related and sleep-related Drosophila transcripts is also modulated by the time of day, suggesting an interaction at the molecular level between circadian and homeostatic mechanism of sleep regulation.

  4. Androgen deprivation modulates gene expression profile along prostate cancer progression.

    PubMed

    Volante, Marco; Tota, Daniele; Giorcelli, Jessica; Bollito, Enrico; Napoli, Francesca; Vatrano, Simona; Buttigliero, Consuelo; Molinaro, Luca; Gontero, Paolo; Porpiglia, Francesco; Tucci, Marcello; Papotti, Mauro; Berruti, Alfredo; Rapa, Ida

    2016-10-01

    Androgen deprivation therapy (ADT) is the standard of care for metastatic prostate cancer and initially induces tumor regression, but invariably results in castration-resistant prostate cancer through various mechanisms, incompletely discovered. Our aim was to analyze the dynamic modulation, determined by ADT, of the expression of selected genes involved in the pathogenesis and progression of prostate cancer (TMPRSS2:ERG, WNT11, SPINK1, CHGA, AR, and SPDEF) using real-time polymerase chain reaction in a series of 59 surgical samples of prostate carcinomas, including 37 cases preoperatively treated with ADT and 22 untreated cases, and in 43 corresponding biopsies. The same genes were analyzed in androgen-deprived and control LNCaP cells. Three genes were significantly up-modulated (WNT11 and AR) or down-modulated (SPDEF) in patients treated with ADT versus untreated cases, as well as in androgen-deprived LNCaP cells. The effect of ADT on CHGA gene up-modulation was almost exclusively detected in cases positive for the TMPRSS2:ERG fusion. The correlation between biopsy and surgical samples was poor for most of the tested genes. Gene expression analysis of separate tumor areas from the same patient showed an extremely heterogeneous profile in the 6 tested cases (all untreated). In conclusion, our results strengthened the implication of ADT in promoting a prostate cancer aggressive phenotype and identified potential biomarkers, with special reference to the TMPRSS2:ERG fusion, which might favor the development of neuroendocrine differentiation in hormone-treated patients. However, intratumoral heterogeneity limits the use of gene expression analysis as a potential prognostic or predictive biomarker in patients treated with ADT.

  5. Viscumins functionally modulate cell motility-associated gene expression.

    PubMed

    Schötterl, Sonja; Hübner, Miriam; Armento, Angela; Veninga, Vivien; Wirsik, Naita Maren; Bernatz, Simon; Lentzen, Hans; Mittelbronn, Michel; Naumann, Ulrike

    2017-02-01

    In Europe extracts from Viscum album L., the European white-berry mistletoe, are widely used as a complementary cancer therapy. Viscumins (mistletoe lectins, ML) have been scrutinized as important active components of mistletoe and exhibit a variety of anticancer effects such as stimulation of the immune system, induction of cytotoxicity, reduction of tumor cell motility as well as changes in the expression of genes associated with cancer development and progression. By microarray expression analysis, quantitative RT-PCR and RT-PCR based validation of microarray data we demonstrate for the Viscum album extract Iscador Qu and for the lectins Aviscumine and ML-1 that in glioma cells these drugs differentially modulate the expression of genes involved in the regulation of cell migration and invasion, including processes modulating cell architecture and cell adhesion. A variety of differentially expressed genes in ML treated cells are associated with the transforming growth factor (TGF)-β signaling pathway or are targets of TGF-β. ML treatment downregulated the expression of TGF-β itself, of the TGF-β receptor II (TGFBR2), of the TGF-β intracellular signal transducer protein SMAD2, and of matrix-metalloproteinases (MMP) MMP-2 and MMP-14. Even if the changes in gene expression differ between Aviscumine, Iscador Qu and ML-1, the overall regulation of motility associated gene expression by all drugs showed functional effects since tumor cell motility was reduced in a ML-dependent manner. Therefore, ML containing compounds might provide clinical benefit as adjuvant therapeutics in the treatment of patients with invasively growing tumors such as glioblastomas.

  6. Modes and Modulations of Antibiotic Resistance Gene Expression

    PubMed Central

    Depardieu, Florence; Podglajen, Isabelle; Leclercq, Roland; Collatz, Ekkehard; Courvalin, Patrice

    2007-01-01

    Since antibiotic resistance usually affords a gain of function, there is an associated biological cost resulting in a loss of fitness of the bacterial host. Considering that antibiotic resistance is most often only transiently advantageous to bacteria, an efficient and elegant way for them to escape the lethal action of drugs is the alteration of resistance gene expression. It appears that expression of bacterial resistance to antibiotics is frequently regulated, which indicates that modulation of gene expression probably reflects a good compromise between energy saving and adjustment to a rapidly evolving environment. Modulation of gene expression can occur at the transcriptional or translational level following mutations or the movement of mobile genetic elements and may involve induction by the antibiotic. In the latter case, the antibiotic can have a triple activity: as an antibacterial agent, as an inducer of resistance to itself, and as an inducer of the dissemination of resistance determinants. We will review certain mechanisms, all reversible, that bacteria have elaborated to achieve antibiotic resistance by the fine-tuning of the expression of genetic information. PMID:17223624

  7. Symbiont modulates expression of specific gene categories in Angomonas deanei

    PubMed Central

    Penha, Luciana Loureiro; Hoffmann, Luísa; de Souza, Silvanna Sant’Anna; Martins, Allan Cézar de Azevedo; Bottaro, Thayane; Prosdocimi, Francisco; Faffe, Débora Souza; Motta, Maria Cristina Machado; Ürményi, Turán Péter; Silva, Rosane

    2016-01-01

    Trypanosomatids are parasites that cause disease in humans, animals, and plants. Most are non-pathogenic and some harbor a symbiotic bacterium. Endosymbiosis is part of the evolutionary process of vital cell functions such as respiration and photosynthesis. Angomonas deanei is an example of a symbiont-containing trypanosomatid. In this paper, we sought to investigate how symbionts influence host cells by characterising and comparing the transcriptomes of the symbiont-containing A. deanei (wild type) and the symbiont-free aposymbiotic strains. The comparison revealed that the presence of the symbiont modulates several differentially expressed genes. Empirical analysis of differential gene expression showed that 216 of the 7625 modulated genes were significantly changed. Finally, gene set enrichment analysis revealed that the largest categories of genes that downregulated in the absence of the symbiont were those involved in oxidation-reduction process, ATP hydrolysis coupled proton transport and glycolysis. In contrast, among the upregulated gene categories were those involved in proteolysis, microtubule-based movement, and cellular metabolic process. Our results provide valuable information for dissecting the mechanism of endosymbiosis in A. deanei. PMID:27706380

  8. Sarcoptes scabiei mites modulate gene expression in human skin equivalents.

    PubMed

    Morgan, Marjorie S; Arlian, Larry G; Markey, Michael P

    2013-01-01

    The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin's protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host's protective response allowing these mites to survive in the skin.

  9. Quantitative assessment of gene expression network module-validation methods.

    PubMed

    Li, Bing; Zhang, Yingying; Yu, Yanan; Wang, Pengqian; Wang, Yongcheng; Wang, Zhong; Wang, Yongyan

    2015-10-16

    Validation of pluripotent modules in diverse networks holds enormous potential for systems biology and network pharmacology. An arising challenge is how to assess the accuracy of discovering all potential modules from multi-omic networks and validating their architectural characteristics based on innovative computational methods beyond function enrichment and biological validation. To display the framework progress in this domain, we systematically divided the existing Computational Validation Approaches based on Modular Architecture (CVAMA) into topology-based approaches (TBA) and statistics-based approaches (SBA). We compared the available module validation methods based on 11 gene expression datasets, and partially consistent results in the form of homogeneous models were obtained with each individual approach, whereas discrepant contradictory results were found between TBA and SBA. The TBA of the Zsummary value had a higher Validation Success Ratio (VSR) (51%) and a higher Fluctuation Ratio (FR) (80.92%), whereas the SBA of the approximately unbiased (AU) p-value had a lower VSR (12.3%) and a lower FR (45.84%). The Gray area simulated study revealed a consistent result for these two models and indicated a lower Variation Ratio (VR) (8.10%) of TBA at 6 simulated levels. Despite facing many novel challenges and evidence limitations, CVAMA may offer novel insights into modular networks.

  10. Modulation of Gene Expression using Electrospun Scaffolds with Templated Architecture

    PubMed Central

    Wang, Y-N; Sanders, J.E.

    2012-01-01

    The fabrication of biomimetic scaffolds is a critical component to fulfill the promise of functional tissue engineered materials. We describe herein a simple technique, based on printed circuit board manufacturing, to produce novel templates for electrospinning scaffolds for tissue engineering applications. This technique facilitates fabrication of electrospun scaffolds with templated architecture, which we defined as a scaffold's bulk mechanical properties being driven by its fiber architecture. Electrospun scaffolds with templated architectures were characterized with regard to fiber alignment and mechanical properties. Fast Fourier transform analysis revealed a high degree of fiber alignment along the conducting traces of the templates. Mechanical testing showed that scaffolds demonstrated tunable mechanical properties as a function of templated architecture. Fibroblast seeded scaffolds were subjected to a peak strain of 3% or 10% at 0.5 Hz for 1 hour. Exposing seeded scaffolds to the low strain magnitude (3%) significantly increased collagen I gene expression compared to the high strain magnitude (10%) in a scaffold architecture dependent manner. These experiments indicate that scaffolds with templated architectures can be produced and modulation of gene expression is possible with templated architectures. This technology holds promise for the long term goal of creating tissue engineered replacements with the biomechanical and biochemical make-up of native tissues. PMID:22447576

  11. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    DTIC Science & Technology

    2014-09-16

    Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules Gregory J. Tawa1*, Mohamed Diwan M. AbdulHameed1, Xueping Yu1...Abstract Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due...identify groups of co-expressed genes (modules) specific to injury endpoints in the liver . We identified 78 such gene co-expression modules associated

  12. Modulation of R-gene expression across environments

    PubMed Central

    MacQueen, Alice; Bergelson, Joy

    2016-01-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription–PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment—be it a change in biotic or abiotic conditions—led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  13. Modulation of R-gene expression across environments.

    PubMed

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments.

  14. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  15. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    PubMed Central

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  16. Reconstructing differentially co-expressed gene modules and regulatory networks of soybean cells

    PubMed Central

    2012-01-01

    Background Current experimental evidence indicates that functionally related genes show coordinated expression in order to perform their cellular functions. In this way, the cell transcriptional machinery can respond optimally to internal or external stimuli. This provides a research opportunity to identify and study co-expressed gene modules whose transcription is controlled by shared gene regulatory networks. Results We developed and integrated a set of computational methods of differential gene expression analysis, gene clustering, gene network inference, gene function prediction, and DNA motif identification to automatically identify differentially co-expressed gene modules, reconstruct their regulatory networks, and validate their correctness. We tested the methods using microarray data derived from soybean cells grown under various stress conditions. Our methods were able to identify 42 coherent gene modules within which average gene expression correlation coefficients are greater than 0.8 and reconstruct their putative regulatory networks. A total of 32 modules and their regulatory networks were further validated by the coherence of predicted gene functions and the consistency of putative transcription factor binding motifs. Approximately half of the 32 modules were partially supported by the literature, which demonstrates that the bioinformatic methods used can help elucidate the molecular responses of soybean cells upon various environmental stresses. Conclusions The bioinformatics methods and genome-wide data sources for gene expression, clustering, regulation, and function analysis were integrated seamlessly into one modular protocol to systematically analyze and infer modules and networks from only differential expression genes in soybean cells grown under stress conditions. Our approach appears to effectively reduce the complexity of the problem, and is sufficiently robust and accurate to generate a rather complete and detailed view of putative soybean

  17. Gene co-expression modules as clinically relevant hallmarks of breast cancer diversity.

    PubMed

    Wolf, Denise M; Lenburg, Marc E; Yau, Christina; Boudreau, Aaron; van 't Veer, Laura J

    2014-01-01

    Co-expression modules are groups of genes with highly correlated expression patterns. In cancer, differences in module activity potentially represent the heterogeneity of phenotypes important in carcinogenesis, progression, or treatment response. To find gene expression modules active in breast cancer subpopulations, we assembled 72 breast cancer-related gene expression datasets containing ∼5,700 samples altogether. Per dataset, we identified genes with bimodal expression and used mixture-model clustering to ultimately define 11 modules of genes that are consistently co-regulated across multiple datasets. Functionally, these modules reflected estrogen signaling, development/differentiation, immune signaling, histone modification, ERBB2 signaling, the extracellular matrix (ECM) and stroma, and cell proliferation. The Tcell/Bcell immune modules appeared tumor-extrinsic, with coherent expression in tumors but not cell lines; whereas most other modules, interferon and ECM included, appeared intrinsic. Only four of the eleven modules were represented in the PAM50 intrinsic subtype classifier and other well-established prognostic signatures; although the immune modules were highly correlated to previously published immune signatures. As expected, the proliferation module was highly associated with decreased recurrence-free survival (RFS). Interestingly, the immune modules appeared associated with RFS even after adjustment for receptor subtype and proliferation; and in a multivariate analysis, the combination of Tcell/Bcell immune module down-regulation and proliferation module upregulation strongly associated with decreased RFS. Immune modules are unusual in that their upregulation is associated with a good prognosis without chemotherapy and a good response to chemotherapy, suggesting the paradox of high immune patients who respond to chemotherapy but would do well without it. Other findings concern the ECM/stromal modules, which despite common themes were associated

  18. Gene expression profile of androgen modulated genes in the murine fetal developing lung

    PubMed Central

    2010-01-01

    Background Accumulating evidences suggest that sex affects lung development. Indeed, a higher incidence of respiratory distress syndrome is observed in male compared to female preterm neonates at comparable developmental stage and experimental studies demonstrated an androgen-related delay in male lung maturation. However, the precise mechanisms underlying these deleterious effects of androgens in lung maturation are only partially understood. Methods To build up a better understanding of the effect of androgens on lung development, we analyzed by microarrays the expression of genes showing a sexual difference and those modulated by androgens. Lungs of murine fetuses resulting from a timely mating window of 1 hour were studied at gestational day 17 (GD17) and GD18, corresponding to the period of surge of surfactant production. Using injections of the antiandrogen flutamide to pregnant mice, we hunted for genes in fetal lungs which are transcriptionally modulated by androgens. Results Results revealed that 1844 genes were expressed with a sexual difference at GD17 and 833 at GD18. Many genes were significantly modulated by flutamide: 1597 at GD17 and 1775 at GD18. Datasets were analyzed by using in silico tools for reconstruction of cellular pathways. Between GD17 and GD18, male lungs showed an intensive transcriptional activity of proliferative pathways along with the onset of lung differentiation. Among the genes showing a sex difference or an antiandrogen modulation of their expression, we specifically identified androgen receptor interacting genes, surfactant related genes in particularly those involved in the pathway leading to phospholipid synthesis, and several genes of lung development regulator pathways. Among these latter, some genes related to Shh, FGF, TGF-beta, BMP, and Wnt signaling are modulated by sex and/or antiandrogen treatment. Conclusion Our results show clearly that there is a real delay in lung maturation between male and female in this period

  19. Development of a synthetic gene network to modulate gene expression by mechanical forces

    PubMed Central

    Kis, Zoltán; Rodin, Tania; Zafar, Asma; Lai, Zhangxing; Freke, Grace; Fleck, Oliver; Del Rio Hernandez, Armando; Towhidi, Leila; Pedrigi, Ryan M.; Homma, Takayuki; Krams, Rob

    2016-01-01

    The majority of (mammalian) cells in our body are sensitive to mechanical forces, but little work has been done to develop assays to monitor mechanosensor activity. Furthermore, it is currently impossible to use mechanosensor activity to drive gene expression. To address these needs, we developed the first mammalian mechanosensitive synthetic gene network to monitor endothelial cell shear stress levels and directly modulate expression of an atheroprotective transcription factor by shear stress. The technique is highly modular, easily scalable and allows graded control of gene expression by mechanical stimuli in hard-to-transfect mammalian cells. We call this new approach mechanosyngenetics. To insert the gene network into a high proportion of cells, a hybrid transfection procedure was developed that involves electroporation, plasmids replication in mammalian cells, mammalian antibiotic selection, a second electroporation and gene network activation. This procedure takes 1 week and yielded over 60% of cells with a functional gene network. To test gene network functionality, we developed a flow setup that exposes cells to linearly increasing shear stress along the length of the flow channel floor. Activation of the gene network varied logarithmically as a function of shear stress magnitude. PMID:27404994

  20. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression

    PubMed Central

    Amador, Ariadna; Wang, Yongjun; Banerjee, Subhashis; Kameneka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2016-01-01

    The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal roles in the regulation of the circadian rhythm and various metabolic processes. The circadian rhythm is an endogenous mechanism, which generates entrainable biological changes that follow a 24-hour period. It regulates a number of physiological processes, including sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-specific small molecules affect sleep and anxiety. The orexinergic system also plays a significant role in mammalian physiology and behavior, including the regulation of sleep and food intake. Importantly, orexin genes are expressed in a circadian manner. Given these overlaps in function and circadian expression, we wanted to determine whether the REV-ERBs might regulate orexin. We found that acute in vivo modulation of REV-ERB activity, with the REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expression in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic transcripts. These data suggest that the REV-ERBs may be involved in the repression of orexinergic gene expression. PMID:26963516

  1. Light Controlled Modulation of Gene Expression by Chemical Optoepigenetic Probes

    PubMed Central

    Reis, Surya A.; Ghosh, Balaram; Hendricks, J. Adam; Szantai-Kis, D. Miklos; Törk, Lisa; Ross, Kenneth N.; Lamb, Justin; Read-Button, Willis; Zheng, Baixue; Wang, Hongtao; Salthouse, Christopher; Haggarty, Stephen J.; Mazitschek, Ralph

    2016-01-01

    Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecules is often insufficient to manipulate epigenetic processes with high spatio-temporal control. Here, we present a novel and generalizable approach, referred to as ‘Chemo-Optical Modulation of Epigenetically-regulated Transcription’ (COMET), enabling high-resolution, optical control of epigenetic mechanisms based on photochromic inhibitors of human histone deacetylases using visible light. COMET probes may translate into novel therapeutic strategies for diseases where conditional and selective epigenome modulation is required. PMID:26974814

  2. Dexpanthenol modulates gene expression in skin wound healing in vivo.

    PubMed

    Heise, R; Skazik, C; Marquardt, Y; Czaja, K; Sebastian, K; Kurschat, P; Gan, L; Denecke, B; Ekanayake-Bohlig, S; Wilhelm, K-P; Merk, H F; Baron, J M

    2012-01-01

    Topical application of dexpanthenol is widely used in clinical practice for the improvement of wound healing. Previous in vitro experiments identified a stimulatory effect of pantothenate on migration, proliferation and gene regulation in cultured human dermal fibroblasts. To correlate these in vitro findings with the more complex in vivo situation of wound healing, a clinical trial was performed in which the dexpanthenol-induced gene expression profile in punch biopsies of previously injured and dexpanthenol-treated skin in comparison to placebo-treated skin was analyzed at the molecular level by Affymetrix® GeneChip analysis. Upregulation of IL-6, IL-1β, CYP1B1, CXCL1, CCL18 and KAP 4-2 gene expression and downregulation of psorasin mRNA and protein expression were identified in samples treated topically with dexpanthenol. This in vivo study might provide new insight into the molecular mechanisms responsible for the effect of dexpanthenol in wound healing and shows strong correlations to previous in vitro data using cultured dermal fibroblasts.

  3. Genomic modulators of gene expression in human neutrophils

    PubMed Central

    Naranbhai, Vivek; Fairfax, Benjamin P.; Makino, Seiko; Humburg, Peter; Wong, Daniel; Ng, Esther; Hill, Adrian V. S.; Knight, Julian C.

    2015-01-01

    Neutrophils form the most abundant leukocyte subset and are central to many disease processes. Technical challenges in transcriptomic profiling have prohibited genomic approaches to date. Here we map expression quantitative trait loci (eQTL) in peripheral blood CD16+ neutrophils from 101 healthy European adults. We identify cis-eQTL for 3281 neutrophil-expressed genes including many implicated in neutrophil function, with 450 of these not previously observed in myeloid or lymphoid cells. Paired comparison with monocyte eQTL demonstrates nuanced conditioning of genetic regulation of gene expression by cellular context, which relates to cell-type-specific DNA methylation and histone modifications. Neutrophil eQTL are markedly enriched for trait-associated variants particularly autoimmune, allergy and infectious disease. We further demonstrate how eQTL in PADI4 and NOD2 delineate risk variant function in rheumatoid arthritis, leprosy and Crohn's disease. Taken together, these data help advance understanding of the genetics of gene expression, neutrophil biology and immune-related diseases. PMID:26151758

  4. A light-switchable bidirectional expression module allowing simultaneous regulation of multiple genes.

    PubMed

    Chen, Xianjun; Li, Ting; Wang, Xue; Yang, Yi

    2015-10-02

    Several light-regulated genetic circuits have been applied to spatiotemporally control transgene expression in mammalian cells. However, simultaneous regulation of multiple genes using one genetic device by light has not yet been reported. In this study, we engineered a bidirectional expression module based on LightOn system. Our data showed that both reporter genes could be regulated at defined and quantitative levels. Simultaneous regulation of four genes was further achieved in cultured cells and mice. Additionally, we successfully utilized the bidirectional expression module to monitor the expression of a suicide gene, showing potential for photodynamic gene therapy. Collectively, we provide a robust and useful tool to simultaneously control multiple genes expression by light, which will be widely used in biomedical research and biotechnology.

  5. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    PubMed Central

    Tawa, Gregory J.; AbdulHameed, Mohamed Diwan M.; Yu, Xueping; Kumar, Kamal; Ippolito, Danielle L.; Lewis, John A.; Stallings, Jonathan D.; Wallqvist, Anders

    2014-01-01

    Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules) specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1) known biochemical pathways associated with liver injuries and 2) clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20%) genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects. PMID:25226513

  6. Calcium pantothenate modulates gene expression in proliferating human dermal fibroblasts.

    PubMed

    Wiederholt, Tonio; Heise, Ruth; Skazik, Claudia; Marquardt, Yvonne; Joussen, Sylvia; Erdmann, Kati; Schröder, Henning; Merk, Hans F; Baron, Jens Malte

    2009-11-01

    Topical application of pantothenate is widely used in clinical practice for wound healing. Previous studies identified a positive effect of pantothenate on migration and proliferation of cultured fibroblasts. However, these studies were mainly descriptive with no molecular data supporting a possible model of its action. In this study, we first established conditions for an in vitro model of pantothenate wound healing and then analysed the molecular effects of pantothenate. To test the functional effect of pantothenate on dermal fibroblasts, cells were cultured and in vitro proliferation tests were performed using a standardized scratch test procedure. For all three donors analysed, a strong stimulatory effect of pantothenate at a concentration of 20 microg/ml on the proliferation of cultivated dermal fibroblasts was observed. To study the molecular mechanisms resulting in the proliferative effect of pantothenate, gene expression was analysed in dermal fibroblasts cultivated with 20 microg/ml of pantothenate compared with untreated cells using the GeneChip Human Exon 1.0 ST Array. A number of significantly regulated genes were identified including genes coding for interleukin (IL)-6, IL-8, Id1, HMOX-1, HspB7, CYP1B1 and MARCH-II. Regulation of these genes was subsequently verified by quantitative real-time polymerase chain reaction analysis. Induction of HMOX-1 expression by pantothenol and pantothenic acid in dermal cells was confirmed on the protein level using immunoblots. Functional studies revealed the enhanced suppression of free radical formation in skin fibroblasts cultured with panthenol. In conclusion, these studies provided new insight in the molecular mechanisms linked to the stimulatory effect of pantothenate and panthenol on the proliferation of dermal fibroblasts.

  7. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    NASA Astrophysics Data System (ADS)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  8. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  9. Gene Co-Expression Modules as Clinically Relevant Hallmarks of Breast Cancer Diversity

    PubMed Central

    Yau, Christina; Boudreau, Aaron; van ‘t Veer, Laura J.

    2014-01-01

    Co-expression modules are groups of genes with highly correlated expression patterns. In cancer, differences in module activity potentially represent the heterogeneity of phenotypes important in carcinogenesis, progression, or treatment response. To find gene expression modules active in breast cancer subpopulations, we assembled 72 breast cancer-related gene expression datasets containing ∼5,700 samples altogether. Per dataset, we identified genes with bimodal expression and used mixture-model clustering to ultimately define 11 modules of genes that are consistently co-regulated across multiple datasets. Functionally, these modules reflected estrogen signaling, development/differentiation, immune signaling, histone modification, ERBB2 signaling, the extracellular matrix (ECM) and stroma, and cell proliferation. The Tcell/Bcell immune modules appeared tumor-extrinsic, with coherent expression in tumors but not cell lines; whereas most other modules, interferon and ECM included, appeared intrinsic. Only four of the eleven modules were represented in the PAM50 intrinsic subtype classifier and other well-established prognostic signatures; although the immune modules were highly correlated to previously published immune signatures. As expected, the proliferation module was highly associated with decreased recurrence-free survival (RFS). Interestingly, the immune modules appeared associated with RFS even after adjustment for receptor subtype and proliferation; and in a multivariate analysis, the combination of Tcell/Bcell immune module down-regulation and proliferation module upregulation strongly associated with decreased RFS. Immune modules are unusual in that their upregulation is associated with a good prognosis without chemotherapy and a good response to chemotherapy, suggesting the paradox of high immune patients who respond to chemotherapy but would do well without it. Other findings concern the ECM/stromal modules, which despite common themes were associated

  10. Modulation of fibronectin gene expression in human mononuclear phagocytes.

    PubMed Central

    Yamauchi, K; Martinet, Y; Crystal, R G

    1987-01-01

    Under some conditions, mononuclear phagocytes spontaneously synthesize and release fibronectin, an extracellular matrix glycoprotein with versatile effects on cell-matrix interactions. To gain insight into the processes that modulate the level of fibronectin secretion by these cells, we used monocytes, in vitro matured monocytes and alveolar macrophages as models to compare fibronectin mRNA levels and fibronectin secretion in a variety of circumstances. Using Northern analysis and dot-blot analysis with a 32P-labeled human fibronectin cDNA probe, we evaluated steady-state mRNA levels and a human fibronectin-specific ELISA was used to evaluate fibronectin secretion. In all cases the amounts of fibronectin secreted paralleled fibronectin mRNA levels. Specifically (a) when fibronectin mRNA was undetectable, as in the case of normal blood monocytes, no fibronectin was secreted, but whenever fibronectin mRNA was present, as in normal alveolar macrophages, fibronectin was secreted by the cells; (b) as monocytes matured into macrophages in vitro, the cells began to express fibronectin mRNA and the cells secreted fibronectin; (c) when alveolar macrophages were activated with surface stimuli such as lipopolysaccharide (LPS) or immune complexes, fibronectin mRNA levels decreased and in parallel, the cells secreted less fibronectin; (d) in idiopathic pulmonary fibrosis (IPF), alveolar macrophages contained severalfold more fibronectin mRNA transcripts that normal and the cells spontaneously secreted severalfold more fibronectin than normal; and (e) when IPF alveolar macrophages were placed in culture the fibronectin mRNA levels in the cells decreased with time, and concurrently the amounts of fibronectin produced per unit time continually decreased. The observation of a strict concordance of fibronectin mRNA levels and fibronectin release by mononuclear phagocytes suggests that, at least in many circumstances, fibronectin secretion by mononuclear phagocytes is controlled by

  11. High-performance gene expression module analysis tool and its application to chemical toxicity data.

    PubMed

    Fujibuchi, Wataru; Kim, Hyeryung; Okada, Yoshifumi; Taniguchi, Takeaki; Sone, Hideko

    2009-01-01

    Gene clustering is one of the main themes of data mining approaches in bioinformatics. Although it has the power to analyze gene function, interpretation of the results becomes increasingly difficult when the number of experiments (samples) exceeds hundreds or more. A new type of clustering called "biclustering," where genes and experiments are coclustered in a large-scale of gene expression data, has been extensively studied in the last decade. We have developed "SAMURAI," an original program that detects all the biclusters or "gene modules" whose genes have similar expression patterns to query profile using the ultrafast data mining algorithm called Linear-time Closed itemset Miner (LCM). Using chemical toxicity dataset from J&J rat liver experiments, we compiled an exhaustive dictionary of gene modules by searching datasets of gene modules with each chemical exposure experiment as query. Through the module analysis, we found that our program can detect up/down-regulated gene sets that significantly represent particular GO functions or KEGG pathways, thereby unraveling reactions and mechanisms common to different toxicochemical treatments of hepatocytes.

  12. Antisense oligonucleotides delivered to the amniotic cavity in utero modulate gene expression in the postnatal mouse

    PubMed Central

    Depreux, Frederic F.; Wang, Lingyan; Jiang, Han; Jodelka, Francine M.; Rosencrans, Robert F.; Rigo, Frank; Lentz, Jennifer J.; Brigande, John V.; Hastings, Michelle L.

    2016-01-01

    Congenital diseases account for a large portion of pediatric illness. Prenatal screening and diagnosis permit early detection of many genetic diseases. Fetal therapeutic strategies to manage disease processes in utero represent a powerful new approach for clinical care. A safe and effective fetal pharmacotherapy designed to modulate gene expression ideally would avoid direct mechanical engagement of the fetus and present an external reservoir of drug. The amniotic cavity surrounding the fetus could serve as an ideal drug reservoir. Antisense oligonucleotides (ASOs) are an established tool for the therapeutic modulation of gene expression. We hypothesize that ASOs administered to the amniotic cavity will gain entry to the fetus and modulate gene expression. Here, we show that an ASO targeting MALAT1 RNA, delivered by transuterine microinjection into the mouse amniotic cavity at embryonic day 13-13.5, reduces target RNA expression for up to 4 weeks after birth. A similarly delivered ASO targeting a causal splice site mutation for Usher syndrome corrects gene expression in the inner ear, a therapeutically relevant target tissue. We conclude that intra-amniotic delivery of ASOs is well tolerated and produces a sustained effect on postnatal gene expression. Transuterine delivery of ASOs is an innovative platform for developing fetal therapeutics to efficaciously treat congenital disease. PMID:27683224

  13. Molecular Profiling: Catecholamine Modulation of Gene Expression in Enteropathogenic Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigations of the enteric pathogens Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium and Vibrio parahaemolyticus have demonstrated that these bacteria can respond to the presence of catecholamines, including norepinephrine and/or epinephrine, in their environment by modulating g...

  14. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation.

    PubMed

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.

  15. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation

    PubMed Central

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer. PMID:28123849

  16. Differential modulation of gene expression in the NMDA postsynaptic density of schizophrenic and control smokers.

    PubMed

    Mexal, S; Frank, M; Berger, R; Adams, C E; Ross, R G; Freedman, R; Leonard, S

    2005-10-03

    Nicotine is known to induce the release of multiple neurotransmitters, including glutamate and dopamine, through activation of nicotinic receptors. Gene expression in the N-methyl-d-aspartate postsynaptic density (NMDA-PSD), as well as other functional groups, was compared in postmortem hippocampus of schizophrenic and nonmentally ill smokers and nonsmokers utilizing a microarray and quantitative RT-PCR approach. The expression of 277 genes was significantly changed between all smokers and nonsmokers. Specific gene groups, most notably genes expressed in the NMDA-PSD, were prevalent among these transcripts. Analysis of the interaction between smoking and schizophrenia identified several genes in the NMDA-PSD that were differentially affected by smoking in patients. The present findings suggest that smoking may differentially modulate glutamatergic function in schizophrenic patients and control subjects. The biological mechanisms underlying chronic tobacco use are likely to differ substantially between these two groups.

  17. Levels of Lycopene β-Cyclase 1 Modulate Carotenoid Gene Expression and Accumulation in Daucus carota

    PubMed Central

    Moreno, Juan Camilo; Pizarro, Lorena; Fuentes, Paulina; Handford, Michael; Cifuentes, Victor; Stange, Claudia

    2013-01-01

    Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of lycopene. Carotenoids are produced in both carrot (Daucus carota) leaves and reserve roots, and high amounts of α-carotene and β-carotene accumulate in the latter. In some plant models, the presence of different isoforms of carotenogenic genes is associated with an organ-specific function. D. carota harbors two Lcyb genes, of which DcLcyb1 is expressed in leaves and storage roots during carrot development, correlating with an increase in carotenoid levels. In this work, we show that DcLCYB1 is localized in the plastid and that it is a functional enzyme, as demonstrated by heterologous complementation in Escherichia coli and over expression and post transcriptional gene silencing in carrot. Transgenic plants with higher or reduced levels of DcLcyb1 had incremented or reduced levels of chlorophyll, total carotenoids and β-carotene in leaves and in the storage roots, respectively. In addition, changes in the expression of DcLcyb1 are accompanied by a modulation in the expression of key endogenous carotenogenic genes. Our results indicate that DcLcyb1 does not possess an organ specific function and modulate carotenoid gene expression and accumulation in carrot leaves and storage roots. PMID:23555569

  18. Levels of lycopene β-cyclase 1 modulate carotenoid gene expression and accumulation in Daucus carota.

    PubMed

    Moreno, Juan Camilo; Pizarro, Lorena; Fuentes, Paulina; Handford, Michael; Cifuentes, Victor; Stange, Claudia

    2013-01-01

    Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of lycopene. Carotenoids are produced in both carrot (Daucus carota) leaves and reserve roots, and high amounts of α-carotene and β-carotene accumulate in the latter. In some plant models, the presence of different isoforms of carotenogenic genes is associated with an organ-specific function. D. carota harbors two Lcyb genes, of which DcLcyb1 is expressed in leaves and storage roots during carrot development, correlating with an increase in carotenoid levels. In this work, we show that DcLCYB1 is localized in the plastid and that it is a functional enzyme, as demonstrated by heterologous complementation in Escherichia coli and over expression and post transcriptional gene silencing in carrot. Transgenic plants with higher or reduced levels of DcLcyb1 had incremented or reduced levels of chlorophyll, total carotenoids and β-carotene in leaves and in the storage roots, respectively. In addition, changes in the expression of DcLcyb1 are accompanied by a modulation in the expression of key endogenous carotenogenic genes. Our results indicate that DcLcyb1 does not possess an organ specific function and modulate carotenoid gene expression and accumulation in carrot leaves and storage roots.

  19. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes

    PubMed Central

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined DNA sequences are uniquely suited to answer such questions and could provide potent (bio)medical tools. Toward the goal of gene-specific GEM by overwriting epigenetic marks (Epigenetic Editing, EGE), instructive epigenetic marks need to be identified and their writers/erasers should then be fused to gene-specific DNA binding domains. The appropriate epigenetic mark(s) to change in order to efficiently modulate gene expression might have to be validated for any given chromatin context and should be (mitotically) stable. Various insights in such issues have been obtained by sequence-specific targeting of epigenetic enzymes, as is presented in this review. Features of such studies provide critical aspects for further improving EGE. An example of this is the direct effect of the edited mark versus the indirect effect of recruited secondary proteins by targeting epigenetic enzymes (or their domains). Proof-of-concept of expression modulation of an endogenous target gene is emerging from the few EGE studies reported. Apart from its promise in correcting disease-associated epi-mutations, EGE represents a powerful tool to address fundamental epigenetic questions. PMID:23002135

  20. CT gene modulate differential expression of chitinase gene under variant habitats in Vibrio cholerae

    PubMed Central

    Verma, Yogendra Kumar; Verma, Mahendra Kumar

    2013-01-01

    Objective To investigate the interrelation of cholera toxin gene (CT gene) in expression of chitinase gene under different pH conditions among pathogenic and Non-pathogenic strains of Vibrio cholera (V. cholera). Methods The chitinase assay well diffusion method and calorimetric chitinase assay were performed. Further, time depended chitinase activity among pathogenic and nonpathogenic strain was evaluated with control as Escherichia coli. The expressed protein in variant environment was purified by cascade of chromatographic techniques. The partially purified protein was analyzed by SDS-PAGE in both the strain of V. cholera. Results The results have shown differential expression of chitinase gene among vibrio in time depended chitinase activity, purification of expressed protein and SDS-PAGE analysis. Conclusions From the current study, two conclusions came in picture, habitat is prime factor that regulation of chitin gene expression among many bacterial strains, second, moreover among the vibrio pathogenic strains (CT+) expression of chitinase gene is more precisely regulated by CT gene rather than external environments while in non-pathogenic strain ( CT-) completely absent.

  1. The novel C. elegans gene sop-3 modulates Wnt signaling to regulate Hox gene expression.

    PubMed

    Zhang, H; Emmons, S W

    2001-03-01

    We describe the properties of a new gene, sop-3, that is required for the regulated expression of a C. elegans Hox gene, egl-5, in a postembryonic neuroectodermal cell lineage. Regulated expression of egl-5 in this cell lineage is necessary for development of the sensory rays of the male tail. sop-3 encodes a predicted novel protein of 1475 amino acids without clear homologs in other organisms. However, the sequence contains motifs consisting of homopolymeric runs of amino acids found in several other transcriptional regulators, some of which also act in Hox gene regulatory pathways. The genetic properties of sop-3 are very similar to those of sop-1, which encodes a component of the transcriptional Mediator complex, and mutations in the two genes are synthetic lethal. This suggests that SOP-3 may act at the level of the Mediator complex in regulating transcription initiation. In a sop-3 loss-of-function background, egl-5 is expressed ectopically in lineage branches that normally do not express this gene. Such expression is dependent on the Hox gene mab-5, as it is in branches where egl-5 is normally expressed. Ectopic egl-5 expression is also dependent on the Wnt pathway. Thus, sop-3 contributes to the combinatorial control of egl-5 by blocking egl-5 activation by MAB-5 and the Wnt pathway in inappropriate lineage branches.

  2. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus)

    PubMed Central

    2011-01-01

    Background Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals. Results We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3), which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways. Conclusions Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments. PMID:21453527

  3. Expression profile of genes modulated by Aloe emodin in human U87 glioblastoma cells.

    PubMed

    Haris, Khalilah; Ismail, Samhani; Idris, Zamzuri; Abdullah, Jafri Malin; Yusoff, Abdul Aziz Mohamed

    2014-01-01

    Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence, approaches have been intensively investigated to targeti specific molecular pathways involved in glioblastoma development and progression. Aloe emodin is believed to modulate the expression of several genes in cancer cells. We aimed to understand the molecular mechanisms underlying the therapeutic effect of Aloe emodin on gene expression profiles in the human U87 glioblastoma cell line utilizing microarray technology. The gene expression analysis revealed that a total of 8,226 gene alterations out of 28,869 genes were detected after treatment with 58.6 μg/ml for 24 hours. Out of this total, 34 genes demonstrated statistically significant change (p<0.05) ranging from 1.07 to 1.87 fold. The results revealed that 22 genes were up-regulated and 12 genes were down-regulated in response to Aloe emodin treatment. These genes were then grouped into several clusters based on their biological functions, revealing induction of expression of genes involved in apoptosis (programmed cell death) and tissue remodelling in U87 cells (p<0.01). Several genes with significant changes of the expression level e.g. SHARPIN, BCAP31, FIS1, RAC1 and TGM2 from the apoptotic cluster were confirmed by quantitative real-time PCR (qRT-PCR). These results could serve as guidance for further studies in order to discover molecular targets for the cancer therapy based on Aloe emodin treatment.

  4. Global variability in gene expression and alternative splicing is modulated by mitochondrial content.

    PubMed

    Guantes, Raul; Rastrojo, Alberto; Neves, Ricardo; Lima, Ana; Aguado, Begoña; Iborra, Francisco J

    2015-05-01

    Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype.

  5. Global variability in gene expression and alternative splicing is modulated by mitochondrial content

    PubMed Central

    Guantes, Raul; Rastrojo, Alberto; Neves, Ricardo; Lima, Ana; Aguado, Begoña; Iborra, Francisco J.

    2015-01-01

    Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype. PMID:25800673

  6. Tat is a multifunctional viral protein that modulates cellular gene expression and functions.

    PubMed

    Clark, Evan; Nava, Brenda; Caputi, Massimo

    2017-02-07

    The human immunodeficiency virus type I (HIV-1) has developed several strategies to condition the host environment to promote viral replication and spread. Viral proteins have evolved to perform multiple functions, aiding in the replication of the viral genome and modulating the cellular response to the infection. Tat is a small, versatile, viral protein that controls transcription of the HIV genome, regulates cellular gene expression and generates a permissive environment for viral replication by altering the immune response and facilitating viral spread to multiple tissues. Studies carried out utilizing biochemical, cellular, and genomic approaches show that the expression and activity of hundreds of genes and multiple molecular networks are modulated by Tat via multiple mechanisms.

  7. Estrogen-related receptor alpha modulates the expression of adipogenesis-related genes during adipocyte differentiation.

    PubMed

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi

    2007-07-06

    Estrogen-related receptor alpha (ERRalpha) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERRalpha in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERRalpha and ERRalpha-related transcriptional coactivators, peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) and PGC-1beta, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERRalpha-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPARgamma, and PGC-1alpha in 3T3-L1 cells in the adipogenesis medium. ERRalpha and PGC-1beta mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERRalpha in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERRalpha may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  8. Genetic Background Modulates Gene Expression Profile Induced by Skin Irradiation in Ptch1 Mice

    SciTech Connect

    Galvan, Antonella; Noci, Sara; Mancuso, Mariateresa; Pazzaglia, Simonetta; Saran, Anna; Dragani, Tommaso A.

    2008-12-01

    Purpose: Ptch1 germ-line mutations in mice predispose to radiation-induced basal cell carcinoma of the skin, with tumor incidence modulated by the genetic background. Here, we examined the possible mechanisms underlying skin response to radiation in F1 progeny of Ptch1{sup neo67/+} mice crossed with either skin tumor-susceptible (Car-S) or -resistant (Car-R) mice and X-irradiated (3 Gy) at 2 days of age or left untreated. Methods and Materials: We conducted a gene expression profile analysis in mRNA samples extracted from the skin of irradiated or control mice, using Affymetrix whole mouse genome expression array. Confirmation of the results was done using real-time reverse-transcriptase polymerase chain reaction. Results: Analysis of the gene expression profile of normal skin of F1 mice at 4 weeks of age revealed a similar basal profile in the nonirradiated mice, but alterations in levels of 71 transcripts in irradiated Ptch1{sup neo67/+} mice of the Car-R cross and modulation of only eight genes in irradiated Ptch1{sup neo67/+} mice of the Car-S cross. Conclusions: These results indicate that neonatal irradiation causes a persistent change in the gene expression profile of the skin. The tendency of mice genetically resistant to skin tumorigenesis to show a more complex pattern of transcriptional response to radiation than do genetically susceptible mice suggests a role for this response in genetic resistance to basal cell tumorigenesis.

  9. Modulation of mgrB gene expression as a source of colistin resistance in Klebsiella oxytoca.

    PubMed

    Jayol, Aurélie; Poirel, Laurent; Villegas, Maria-Virginia; Nordmann, Patrice

    2015-07-01

    Gene modifications in the PmrAB and PhoPQ two-component regulatory systems, as well as inactivation of the mgrB gene, are known to be causes of colistin resistance in Klebsiella pneumoniae. The objective of this study was to characterise the mechanism involved in colistin resistance in a Klebsiella oxytoca isolate. A K. oxytoca clinical isolate showing resistance to colistin was recovered in Cali, Colombia. The pmrA, pmrB, phoP, phoQ and mgrB genes were amplified and sequenced. Wild-type mgrB genes from K. pneumoniae and K. oxytoca were cloned, and corresponding recombinant plasmids were used for complementation assays. By analysing the mgrB gene of the K. oxytoca isolate and its flanking sequences, an insertion sequence (IS) of 1196bp was identified in its promoter region. The insertion was located between nucleotides -39 and -38 when referring to the start codon of the mgrB gene, thus negatively interfering with expression of the mgrB gene by modifying its promoter structure. This IS was very similar to ISKpn26 (99% nucleotide identity) belonging to the IS5 family. Complementation assays with mgrB genes from wild-type K. pneumoniae or K. oxytoca restored full susceptibility to colistin. In conclusion, here we identified the mechanism involved in colistin resistance in a K. oxytoca isolate. Modulation of mgrB gene expression was the key factor for this acquired resistance to colistin.

  10. Gut symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and vitellogenin gene expression.

    PubMed

    Lee, Jun Beom; Park, Kyoung-Eun; Lee, Seung Ah; Jang, Seong Han; Eo, Ho Jeong; Jang, Ho Am; Kim, Chan-Hee; Ohbayashi, Tsubasa; Matsuura, Yu; Kikuchi, Yoshitomo; Futahashi, Ryo; Fukatsu, Takema; Lee, Bok Luel

    2017-04-01

    Recent studies have suggested that gut symbionts modulate insect development and reproduction. However, the mechanisms by which gut symbionts modulate host physiologies and the molecules involved in these changes are unclear. To address these questions, we prepared three different groups of the insect Riptortus pedestris: Burkholderia gut symbiont-colonized (Sym) insects, Burkholderia-non-colonized (Apo) insects, and Burkholderia-depleted (Sym(Burk-)) insects, which were fed tetracycline. When the hemolymph proteins of three insects were analyzed by SDS-PAGE, the hexamerin-α, hexamerin-β and vitellogenin-1 proteins of Sym-adults were highly expressed compared to those of Apo- and Sym(Burk-)-insects. To investigate the expression patterns of these three genes during insect development, we measured the transcriptional levels of these genes. The hexamerin-β gene was specifically expressed at all nymphal stages, and its expression was detected 4-5 days earlier in Sym-insect nymphs than that in Apo- and Sym(Burk-)-insects. However, the hexamerin-α and vitellogenin-1 genes were only expressed in adult females, and they were also detected 6-7 days earlier and were 2-fold higher in Sym-adult females than those in the other insects. Depletion of hexamerin-β by RNA interference in 2nd instar Sym-nymphs delayed adult emergence, whereas hexamerin-α and vitellogenin-1 RNA interference in 5th instar nymphs caused loss of color of the eggs of Sym-insects. These results demonstrate that the Burkholderia gut symbiont modulates host development and egg production by regulating production of these three hemolymph storage proteins.

  11. Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress.

    PubMed

    Feliciello, Isidoro; Akrap, Ivana; Ugarković, Đurđica

    2015-08-01

    Non-coding repetitive DNAs have been proposed to perform a gene regulatory role, however for tandemly repeated satellite DNA no such role was defined until now. Here we provide the first evidence for a role of satellite DNA in the modulation of gene expression under specific environmental conditions. The major satellite DNA TCAST1 in the beetle Tribolium castaneum is preferentially located within pericentromeric heterochromatin but is also dispersed as single repeats or short arrays in the vicinity of protein-coding genes within euchromatin. Our results show enhanced suppression of activity of TCAST1-associated genes and slower recovery of their activity after long-term heat stress relative to the same genes without associated TCAST1 satellite DNA elements. The level of gene suppression is not influenced by the distance of TCAST1 elements from the associated genes up to 40 kb from the genes' transcription start sites, but it does depend on the copy number of TCAST1 repeats within an element, being stronger for the higher number of copies. The enhanced gene suppression correlates with the enrichment of the repressive histone marks H3K9me2/3 at dispersed TCAST1 elements and their flanking regions as well as with increased expression of TCAST1 satellite DNA. The results reveal transient, RNAi based heterochromatin formation at dispersed TCAST1 repeats and their proximal regions as a mechanism responsible for enhanced silencing of TCAST1-associated genes. Differences in the pattern of distribution of TCAST1 elements contribute to gene expression diversity among T. castaneum strains after long-term heat stress and might have an impact on adaptation to different environmental conditions.

  12. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    PubMed Central

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-01-01

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein. PMID:27827994

  13. Manipulation of colony environment modulates honey bee aggression and brain gene expression

    PubMed Central

    Rittschof, Clare C.; Robinson, Gene E.

    2013-01-01

    The social environment plays an essential role in shaping behavior for most animals. Social effects on behavior are often linked to changes in brain gene expression (Robinson et al., 2008). In the honey bee (Apis mellifera L.), social modulation of individual aggression allows colonies to adjust the intensity with which they defend their hive in response to predation threat (Alaux & Robinson, 2007, Couvillon et al., 2008, Hunt et al., 2003). Previous research has demonstrated social effects on both aggression and aggression-related brain gene expression in honey bees, caused by alarm pheromone and unknown factors related to colony genotype (Alaux et al., 2009b). For example, some bees from less aggressive genetic stock reared in colonies with genetic predispositions toward increased aggression show both increased aggression and more aggressive-like brain gene expression profiles (Alaux et al., 2009b, Guzmán-Novoa et al., 2004). We tested the hypothesis that exposure to a colony environment influenced by high levels of predation threat results in increased aggression and aggressive-like gene expression patterns in individual bees. We assessed gene expression using four marker genes. Experimentally induced predation threats modified behavior, but the effect was opposite of our predictions: disturbed colonies showed decreased aggression. Disturbed colonies also decreased foraging activity, suggesting that they did not habituate to threats; other explanations for this finding are discussed. Bees in disturbed colonies also showed changes in brain gene expression, some of which paralleled behavioral findings. These results demonstrate that bee aggression, and associated molecular processes, are subject to complex social influences. PMID:24034579

  14. Modulation of myelin basic protein gene expression by acetyl-L-carnitine.

    PubMed

    Traina, Giovanna; Federighi, Giuseppe; Macchi, Monica; Bernardi, Rodolfo; Durante, Mauro; Brunelli, Marcello

    2011-08-01

    Acetyl-L-carnitine (ALC), the acetyl ester of L-carnitine, is a naturally occurring molecule which plays an essential role in intermediary and mitochondrial metabolism. It has also neurotrophic and antioxidant actions, demonstrating efficacy and high tolerability in the treatment of neuropathies of various etiologies. ALC is a molecule of considerable interest for its clinical application in various neural disorders, although little is known regarding its effects on gene expression. Suppression subtractive hybridization methodology was used for the generation of subtracted complementary DNA libraries and the subsequent identification of differentially expressed transcripts in the rat brain after chronic ALC treatments. We provided evidence for a downregulation of the expression of all of the isoforms of myelin basic protein gene following prolonged ALC treatment, indicating a possible role in the modulation of myelin basic protein turnover, stabilizing and maintaining myelin integrity.

  15. Computational Model of the Modulation of Gene Expression Following DNA Damage

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Dicello, J. F.; Nikjoo, H.; Cherubini, R.

    2002-01-01

    High linear energy transfer (LET) radiation, such as heavy ions or neutrons, has an increased biological effectiveness compared to X rays for gene mutation, genomic instability, and carcinogenesis. In the traditional paradigm, mutations or chromosomal aberrations are causative of late effects. However, in recent years experimental evidence has demonstrated the important role of the description of the modification of gene expression by radiation in understanding the mechanisms of radiation action. In this report, approaches are discussed to the mathematical description of mRNA and protein expression kinetics following DNA damage. Several hypotheses for models of radiation modulation of protein expression are discussed including possible non-linear processes that evolve from the linear dose responses that follow the initial DNA damage produced by radiation.

  16. Modulation of activation-associated host cell gene expression by the apicomplexan parasite Theileria annulata

    PubMed Central

    Durrani, Zeeshan; Weir, William; Pillai, Sreerekha; Kinnaird, Jane; Shiels, Brian

    2012-01-01

    Summary Infection of bovine leucocytes by Theileria annulata results in establishment of transformed, infected cells. Infection of the host cell is known to promote constitutive activation of pro-inflammatory transcription factors that have the potential to be beneficial or detrimental. In this study we have compared the effect of LPS activation on uninfected bovine leucocytes (BL20 cells) and their Theileria-infected counterpart (TBL20). Gene expression profiles representing activated uninfected BL20 relative to TBL20 cells were also compared. The results show that while prolonged stimulation with LPS induces cell death and activation of NF-κB in BL20 cells, the viability of Theileria-infected cells was unaffected. Analysis of gene expression networks provided evidence that the parasite establishes tight control over pathways associated with cellular activation by modulating reception of extrinsic stimuli and by significantly altering the expression outcome of genes targeted by infection-activated transcription factors. Pathway analysis of the data set identified novel candidate genes involved in manipulation of cellular functions associated with the infected transformed cell. The data indicate that the T. annulata parasite can irreversibly reconfigure host cell gene expression networks associated with development of inflammatory disease and cancer to generate an outcome thatis beneficial to survival and propagation of the infected leucocyte. PMID:22533473

  17. Statistical Approaches for Gene Selection, Hub Gene Identification and Module Interaction in Gene Co-Expression Network Analysis: An Application to Aluminum Stress in Soybean (Glycine max L.)

    PubMed Central

    Das, Samarendra; Meher, Prabina Kumar; Bhar, Lal Mohan; Mandal, Baidya Nath

    2017-01-01

    Selection of informative genes is an important problem in gene expression studies. The small sample size and the large number of genes in gene expression data make the selection process complex. Further, the selected informative genes may act as a vital input for gene co-expression network analysis. Moreover, the identification of hub genes and module interactions in gene co-expression networks is yet to be fully explored. This paper presents a statistically sound gene selection technique based on support vector machine algorithm for selecting informative genes from high dimensional gene expression data. Also, an attempt has been made to develop a statistical approach for identification of hub genes in the gene co-expression network. Besides, a differential hub gene analysis approach has also been developed to group the identified hub genes into various groups based on their gene connectivity in a case vs. control study. Based on this proposed approach, an R package, i.e., dhga (https://cran.r-project.org/web/packages/dhga) has been developed. The comparative performance of the proposed gene selection technique as well as hub gene identification approach was evaluated on three different crop microarray datasets. The proposed gene selection technique outperformed most of the existing techniques for selecting robust set of informative genes. Based on the proposed hub gene identification approach, a few number of hub genes were identified as compared to the existing approach, which is in accordance with the principle of scale free property of real networks. In this study, some key genes along with their Arabidopsis orthologs has been reported, which can be used for Aluminum toxic stress response engineering in soybean. The functional analysis of various selected key genes revealed the underlying molecular mechanisms of Aluminum toxic stress response in soybean. PMID:28056073

  18. Coordinative modulation of human zinc transporter 2 gene expression through active and suppressive regulators.

    PubMed

    Lu, Yu-Ju; Liu, Ya-Chuan; Lin, Meng-Chieh; Chen, Yi-Ting; Lin, Lih-Yuan

    2015-04-01

    Zinc transporter 2 (ZnT2) is one of the cellular factors responsible for Zn homeostasis. Upon Zn overload, ZnT2 reduces cellular Zn by transporting it into excretory vesicles. We investigated the molecular mechanism that regulates human ZnT2 (hZnT2) gene expression. Zn induces hZnT2 expression in dose- and time-dependent manners. Overexpression of metal-responsive transcription factor 1 (MTF-1) increases hZnT2 transcription, whereas depletion of MTF-1 reduces hZnT2 expression. There are five putative metal response elements (MREs) within 1kb upstream of the hZnT2 gene. A serial deletion of the hZnT2 promoter region (from 5' to 3') shows that the two MREs proximal to the gene are essential for Zn-induced promoter activity. Further mutation analysis concludes that the penultimate MRE (MREb) supports the metal-induced promoter activity. The hZnT2 promoter has also a zinc finger E-box binding homeobox (ZEB) binding element. Mutation or deletion of this ZEB binding element elevates the basal and Zn-induced hZnT2 promoter activities. Knockdown of ZEB1 mRNA enhances the hZnT2 transcript level in HEK-293 cells. In MCF-7 (ZEB-deficient) cells, expression of ZEB proteins attenuates the Zn-induced hZnT2 expression. However, expressions of MTF-1 target genes such as human ZnT1 and metallothionein IIA were not affected. Our study shows the expression of the hZnT2 gene is coordinately regulated via active and suppressive modulators.

  19. Bisphenol A modulates expression of sex differentiation genes in the self-fertilizing fish, Kryptolebias marmoratus.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Lee, Chang Joo; Yoon, Yong-Dal; Lee, Young-Mi; Lee, Jae-Seong

    2011-08-01

    Endocrine disrupting chemicals (EDCs) have been a major concern in the normal reproduction and development of aquatic organisms. In the teleost, steroid hormones are synthesized via the steroidogenesis pathway, and play a key physiological role in the regulation of gonadal sex differentiation. The protogynous hermaphroditic fish, Kryptolebias marmoratus is the only vertebrate capable of reproducing through internal self-fertilization. To uncover the effect of bisphenol A (BPA) on sex differentiation genes on transcription, we investigated the expression patterns of several sex differentiation-related genes such as dax1, dmrt1, mis, sf1, figlα, StAR and wt1 after BPA exposure with controls (E2 and TMX). In response to 17β-estradiol (E2) exposure, a testis-specific gene, dmrt1 mRNA was down-regulated in the gonad of the secondary male but the expression of the female-specific gene, dax1 mRNA was significantly elevated in the brain and gonad. A high level of StAR mRNA was detected in the brain and gonad of both hermaphrodite and secondary males, suggesting that the elevated expression of dax1 and StAR genes would be involved in E2 exposure. As expected, upon BPA exposure, the dmrt1 and MIS mRNA level decreased in both hermaphrodite and secondary males, while the female-specific gene, figlα mRNA level increased in the gonad of both genders. BPA showed an opposite mode of action on the expression of dax1 (induction, P>0.05) and sf1 mRNA (inhibition, P>0.05) in the brain and gonad against both genders. The sensitivity of dax1 to BPA on expression was relatively high in the secondary male. The wt1 mRNA was up-regulated in most tissues except in the liver of BPA-exposed secondary males. Regarding the time course study, the figlα mRNA level increased at 6 h after BPA exposure. In addition, BPA elevated the expression of StAR, dax1, and wt1 mRNA but repressed sf1 mRNA. In this paper, we demonstrated that BPA may modulate the expression of sex differentiation and

  20. Redox modulation of the expression of bacterial genes encoding cysteine-rich proteins in plant protoplasts.

    PubMed Central

    Piñeiro, M; García-Olmedo, F; Diaz, I

    1994-01-01

    Activity of neomycin phosphotransferase II (NPTII; gene, neo; five cysteines) in tobacco protoplasts transfected with fusions of the octopine TR2' or cauliflower mosaic virus 35S promoter and the neo gene, with or without a signal peptide, increased up to 8-fold in response to externally added dithiothreitol at concentrations that did not affect protoplast viability (up to 2.5 mM). Activity of phosphinothricin acetyltransferase (PAT; gene, bar; one cysteine) expressed under control of the TR1' or 35S promoter was not similarly affected, thus excluding a redox modulation of transcription as the mechanism of NPTII activation by dithiothreitol. Western-blot analyses showed an increase in the amount of protein in response to dithiothreitol, whereas neither the steady-state level of NPTII mRNA nor the specific activity of the purified enzyme was affected. The same type of modulation was observed for transiently expressed beta-glucuronidase (nine cysteines) produced from a fusion with the 35S promoter, with or without a signal peptide. Limitation of cotranslational and/or early posttranslational steps by excessively oxidizing sulfhydryl/disulfide redox potentials is postulated to explain the low net accumulation of cysteine-rich proteins of bacterial origin (i.e., NPTII and beta-glucuronidase) when expressed in plant protoplasts, and the marked increase in such proteins in response to externally added dithiothreitol. Images PMID:8171004

  1. Expression profiling of genes modulated by minocycline in a rat model of neuropathic pain

    PubMed Central

    2014-01-01

    Background The molecular mechanisms underlying neuropathic pain are constantly being studied to create new opportunities to prevent or alleviate neuropathic pain. The aim of our study was to determine the gene expression changes induced by sciatic nerve chronic constriction injury (CCI) that are modulated by minocycline, which can effectively diminish neuropathic pain in animal studies. The genes associated with minocycline efficacy in neuropathic pain should provide insight into the etiology of neuropathic pain and identify novel therapeutic targets. Results We screened the ipsilateral dorsal part of the lumbar spinal cord of the rat CCI model for differentially expressed genes. Out of 22,500 studied transcripts, the abundance levels of 93 transcripts were altered following sciatic nerve ligation. Percentage analysis revealed that 54 transcripts were not affected by the repeated administration of minocycline (30 mg/kg, i.p.), but the levels of 39 transcripts were modulated following minocycline treatment. We then selected two gene expression patterns, B1 and B2. The first transcription pattern, B1, consisted of 10 mRNA transcripts that increased in abundance after injury, and minocycline treatment reversed or inhibited the effect of the injury; the B2 transcription pattern consisted of 7 mRNA transcripts whose abundance decreased following sciatic nerve ligation, and minocycline treatment reversed the effect of the injury. Based on the literature, we selected seven genes for further analysis: Cd40, Clec7a, Apobec3b, Slc7a7, and Fam22f from pattern B1 and Rwdd3 and Gimap5 from pattern B2. Additionally, these genes were analyzed using quantitative PCR to determine the transcriptional changes strongly related to the development of neuropathic pain; the ipsilateral DRGs (L4-L6) were also collected and analyzed in these rats using qPCR. Conclusion In this work, we confirmed gene expression alterations previously identified by microarray analysis in the spinal cord and

  2. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    SciTech Connect

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V. . E-mail: reddysv@musc.edu

    2007-01-01

    in the absence of RANKL. Taken together, our results suggest that RANKL signals through TRAF6 and that NFATc1 is a downstream effector of RANKL signaling to modulate MMP-9 gene expression during osteoclast differentiation.

  3. Frequency modulation of stochastic gene expression bursts by strongly interacting small RNAs.

    PubMed

    Kumar, Niraj; Jia, Tao; Zarringhalam, Kourosh; Kulkarni, Rahul V

    2016-10-01

    The sporadic nature of gene expression at the single-cell level-long periods of inactivity punctuated by bursts of mRNA or protein production-plays a critical role in diverse cellular processes. To elucidate the cellular role of bursting in gene expression, synthetic biology approaches have been used to design simple genetic circuits with bursty mRNA or protein production. Understanding how such genetic circuits can be designed with the ability to control burst-related parameters requires the development of quantitative stochastic models of gene expression. In this work, we analyze stochastic models for the regulation of gene expression bursts by strongly interacting small RNAs. For the parameter range considered, results based on mean-field approaches are significantly inaccurate and alternative analytical approaches are needed. Using simplifying approximations, we obtain analytical results for the corresponding steady-state distributions that are in agreement with results from stochastic simulations. These results indicate that regulation by small RNAs, in the strong interaction limit, can be used to effectively modulate the frequency of bursting. We explore the consequences of such regulation for simple genetic circuits involving feedback effects and switching between promoter states.

  4. Frequency modulation of stochastic gene expression bursts by strongly interacting small RNAs

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Jia, Tao; Zarringhalam, Kourosh; Kulkarni, Rahul V.

    2016-10-01

    The sporadic nature of gene expression at the single-cell level—long periods of inactivity punctuated by bursts of mRNA or protein production—plays a critical role in diverse cellular processes. To elucidate the cellular role of bursting in gene expression, synthetic biology approaches have been used to design simple genetic circuits with bursty mRNA or protein production. Understanding how such genetic circuits can be designed with the ability to control burst-related parameters requires the development of quantitative stochastic models of gene expression. In this work, we analyze stochastic models for the regulation of gene expression bursts by strongly interacting small RNAs. For the parameter range considered, results based on mean-field approaches are significantly inaccurate and alternative analytical approaches are needed. Using simplifying approximations, we obtain analytical results for the corresponding steady-state distributions that are in agreement with results from stochastic simulations. These results indicate that regulation by small RNAs, in the strong interaction limit, can be used to effectively modulate the frequency of bursting. We explore the consequences of such regulation for simple genetic circuits involving feedback effects and switching between promoter states.

  5. Systems Toxicology of Chemically Induced Liver and Kidney Injuries: Histopathology-Associated Gene Co-Expression Modules

    DTIC Science & Technology

    2016-01-04

    well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link...modules to different types of cellular and tissue damage caused by different classes of toxicants. In our previous work, wewere able to conceptually... connect mo- lecular toxicity pathways to co-expressed gene modules and link these pathways to specific injuries in the liver with the objective of

  6. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states

    PubMed Central

    Furman, David; Chang, Junlei; Lartigue, Lydia; Bolen, Christopher R; Haddad, François; Gaudilliere, Brice; Ganio, Edward A; Fragiadakis, Gabriela K; Spitzer, Matthew H; Douchet, Isabelle; Daburon, Sophie; Moreau, Jean-François; Nolan, Garry P; Blanco, Patrick; Déchanet-Merville, Julie; Dekker, Cornelia L; Jojic, Vladimir; Kuo, Calvin J; Davis, Mark M; Faustin, Benjamin

    2017-01-01

    Low-grade, chronic inflammation has been associated with many diseases of aging, but the mechanisms responsible for producing this inflammation remain unclear. Inflammasomes can drive chronic inflammation in the context of an infectious disease or cellular stress, and they trigger the maturation of interleukin-1β (IL-1β). Here we find that the expression of specific inflammasome gene modules stratifies older individuals into two extremes: those with constitutive expression of IL-1β, nucleotide metabolism dysfunction, elevated oxidative stress, high rates of hypertension and arterial stiffness; and those without constitutive expression of IL-1β, who lack these characteristics. Adenine and N4-acetylcytidine, nucleotide-derived metabolites that are detectable in the blood of the former group, prime and activate the NLRC4 inflammasome, induce the production of IL-1β, activate platelets and neutrophils and elevate blood pressure in mice. In individuals over 85 years of age, the elevated expression of inflammasome gene modules was associated with all-cause mortality. Thus, targeting inflammasome components may ameliorate chronic inflammation and various other age-associated conditions. PMID:28092664

  7. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states.

    PubMed

    Furman, David; Chang, Junlei; Lartigue, Lydia; Bolen, Christopher R; Haddad, François; Gaudilliere, Brice; Ganio, Edward A; Fragiadakis, Gabriela K; Spitzer, Matthew H; Douchet, Isabelle; Daburon, Sophie; Moreau, Jean-François; Nolan, Garry P; Blanco, Patrick; Déchanet-Merville, Julie; Dekker, Cornelia L; Jojic, Vladimir; Kuo, Calvin J; Davis, Mark M; Faustin, Benjamin

    2017-02-01

    Low-grade, chronic inflammation has been associated with many diseases of aging, but the mechanisms responsible for producing this inflammation remain unclear. Inflammasomes can drive chronic inflammation in the context of an infectious disease or cellular stress, and they trigger the maturation of interleukin-1β (IL-1β). Here we find that the expression of specific inflammasome gene modules stratifies older individuals into two extremes: those with constitutive expression of IL-1β, nucleotide metabolism dysfunction, elevated oxidative stress, high rates of hypertension and arterial stiffness; and those without constitutive expression of IL-1β, who lack these characteristics. Adenine and N(4)-acetylcytidine, nucleotide-derived metabolites that are detectable in the blood of the former group, prime and activate the NLRC4 inflammasome, induce the production of IL-1β, activate platelets and neutrophils and elevate blood pressure in mice. In individuals over 85 years of age, the elevated expression of inflammasome gene modules was associated with all-cause mortality. Thus, targeting inflammasome components may ameliorate chronic inflammation and various other age-associated conditions.

  8. Strategies for precision modulation of gene expression by epigenome editing: an overview.

    PubMed

    Laufer, Benjamin I; Singh, Shiva M

    2015-01-01

    Genome editing technology has evolved rather quickly and become accessible to most researchers. It has resulted in far reaching implications and a number of novel designer systems including epigenome editing. Epigenome editing utilizes a combination of nuclease-null genome editing systems and effector domains to modulate gene expression. In particular, Zinc Finger, Transcription-Activator-Like Effector, and CRISPR/Cas9 have emerged as modular systems that can be modified to allow for precision manipulation of epigenetic marks without altering underlying DNA sequence. This review contains a comprehensive catalog of effector domains that can be used with components of genome editing systems to achieve epigenome editing. Ultimately, the evidence-based design of epigenome editing offers a novel improvement to the limited attenuation strategies. There is much potential for editing and/or correcting gene expression in somatic cells toward a new era of functional genomics and personalized medicine.

  9. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  10. A fungal symbiont of plant-roots modulates mycotoxin gene expression in the pathogen Fusarium sambucinum.

    PubMed

    Ismail, Youssef; McCormick, Susan; Hijri, Mohamed

    2011-03-24

    Fusarium trichothecenes are fungal toxins that cause disease on infected plants and, more importantly, health problems for humans and animals that consume infected fruits or vegetables. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens. In this study, we isolated and characterized sixteen Fusarium strains from naturally infected potato plants in the field. Pathogenicity tests were carried out in the greenhouse to evaluate the virulence of the strains on potato plants as well as their trichothecene production capacity, and the most aggressive strain was selected for further studies. This strain, identified as F. sambucinum, was used to determine if trichothecene gene expression was affected by the symbiotic Arbuscular mycorrhizal fungus (AMF) Glomus irregulare. AMF form symbioses with plant roots, in particular by improving their mineral nutrient uptake and protecting plants against soil-borne pathogens. We found that that G. irregulare significantly inhibits F. sambucinum growth. We also found, using RT-PCR assays to assess the relative expression of trichothecene genes, that in the presence of the AMF G. irregulare, F. sambucinum genes TRI5 and TRI6 were up-regulated, while TRI4, TRI13 and TRI101 were down-regulated. We conclude that AMF can modulate mycotoxin gene expression by a plant fungal pathogen. This previously undescribed effect may be an important mechanism for biological control and has fascinating implications for advancing our knowledge of plant-microbe interactions and controlling plant pathogens.

  11. Modulations of gene expression induced by daily ultraviolet light can be prevented by a broad spectrum sunscreen.

    PubMed

    Marionnet, Claire; Pierrard, Cécile; Lejeune, François; Bernerd, Françoise

    2012-11-05

    Realistic non-zenithal solar ultraviolet (UV) exposure, obtained using standard ultraviolet daylight spectrum (DUVR), has deleterious impact on epidermal and dermal compartments of human skin. The present study was designed to assess gene expression in human reconstructed skin following exposure to DUVR and the protective effect of a broad spectrum sunscreen. Reconstructed skins were exposed to a realistic daily UV dose of 12 J/cm(2) DUVR in the presence of a sunscreen product (Sun(burn) Protection Factor (SPF)=13 and UVA protection factor UVAPF (PPD) 10.5) or its vehicle. Six hours post exposure, gene expression was investigated in fibroblasts (225 genes) and keratinocytes (244 genes) separately using quantitative PCR arrays. DUVR exposure led to significant modulation of 35 and 66 genes in fibroblasts and keratinocytes, respectively. These genes were involved in extracellular matrix homeostasis, oxidative stress response, cell growth, inflammation and epidermal differentiation. Sunscreen use significantly reduced DUVR-induced gene modulation. Hierarchical clustering showed that gene expression profiles in protected and DUVR-exposed samples were very close to those of unexposed samples. The number of DUVR-modulated genes was significantly decreased by tested sunscreen (zero and four modulated genes in fibroblasts and keratinocytes, respectively). Our results demonstrate that a broad-spectrum sunscreen product is highly effective in protecting reconstructed human skin against DUVR-induced changes in gene expression.

  12. Membrane-targeted HrpNEa can modulate apple defense gene expression.

    PubMed

    Vergne, E; de Bernonville, T Dugé; Dupuis, F; Sourice, S; Cournol, R; Berthelot, P; Barny, M A; Brisset, M N; Chevreau, E

    2014-02-01

    Fire blight caused by Erwinia amylovora is the major bacterial disease of tribe Maleae, including apple. Among the proteins secreted by this bacterium, HrpNEa, also called harpin, is known to induce hypersensitive response in nonhost plants and to form amyloid oligomers leading to pore opening in the plasma membrane and alteration of membrane homeostasis. To better understand the physiological effects of HrpNEa in the host plant, we produced transgenic apple plants expressing HrpNEa with or without a secretion signal peptide (SP). HrpNEa expressed with a SP was found to be associated within the membrane fraction, in accordance with amyloidogenic properties and the presence of transmembrane domains revealed by in silico analysis. Expression analysis of 28 apple defense-related genes revealed gene modulations in the transgenic line expressing membrane-targeted HrpNEa. While apple transgenic trees displaying a high constitutive expression level of SP-HrpNEa showed a slight reduction of infection frequency after E. amylovora inoculation, there was no decrease in the disease severity. Thus HrpNEa seems to act as an elicitor of host defenses, when localized in the host membrane.

  13. A gene expression biomarker identifies in vitro and in vivo ERα modulators in a human gene expression compendium

    EPA Science Inventory

    We propose the use of gene expression profiling to complement the chemical characterization currently based on HTS assay data and present a case study relevant to the Endocrine Disruptor Screening Program. We have developed computational methods to identify estrogen receptor &alp...

  14. Gene expression patterns of invertase gene families and modulation of the inhibitor gene in tomato sucrose metabolism.

    PubMed

    Zhang, Y L; Zhang, A H; Jiang, J

    2013-01-24

    Patterns of gene expression in the different types of sucrose metabolism in the tomato are highly variable and heritable. This genetic variation causes considerable functional differences. We examined the patterns of expression of invertase (Inv) gene families and an invertase inhibitor (INH) gene involved in elongating roots, hypocotyls, and fruit of the tomato (Lycopersicon esculentum cv. Micro-Tom and L. chmielewskii) through a real-time quantitative PCR analysis. We found that the Lin6 gene plays an important role in the vegetative growth stage. Lin5 and Lin7 did not express in Micro-Tom, but did express in L. chmielewskii. Overall relative expression levels of sucrose Inv gene families were significantly lower in L. chmielewskii during the reproductive growth stage than in Micro-Tom, being up to hundreds of times lower. It was not expressed in the dissepiment in L. chmielewskii. We suggest that differences in sucrose accumulation in tomato fruit is mainly due to differentially expressed invertase gene families at the later fruit growth stages.

  15. Inhibitors of angiotensin-converting enzyme modulate mitosis and gene expression in pancreatic cancer cells

    SciTech Connect

    Reddy, M.K.; Baskaran, K.; Molteni, A.

    1995-12-01

    The angiotensin-converting enzyme (ACE) inhibitor captopril inhibits mitosis in several cell types that contain ACE and renin activity. In the present study, we evaluated the effect of the ACE inhibitors captopril and CGS 13945 (10{sup {minus}8} to 10{sup {minus}2}M) on proliferation and gene expression in hamster pancreatic duct carcinoma cells in culture. These cells lack renin and ACE activity. Both ACE inhibitors produced a dose-dependent reduction in tumor cell proliferation within 24 hr. Captopril at a concentration of 0.36 mM and CGS 13945 at 150 {mu}M decreased cellular growth rate to approximately half that of the control. Neither drug influenced the viability or the cell cycle distribution of the tumor cells. Slot blot analysis of mRNA for four genes, proliferation associated cell nuclear antigen (PCNA), K-ras, protein kinase C-{Beta} (PKC-{Beta}) and carbonic anhydrase II (CA II) was performed. Both ACE inhibitors increased K-ras expression by a factor of 2, and had no effect on CA II mRNA levels. Captopril also lowered PCNA by 40% and CGS 13945 lowered PKC-{Beta} gene expression to 30% of the control level. The data demonstrate that ACE inhibitors exhibit antimitotic activity and differential gene modulation in hamster pancreatic duct carcinoma cells. The absence of renin and ACE activity in these cells suggests that the antimitotic action of captopril and CGS 13945 is independent of renin-angiotensin regulation. The growth inhibition may occur through downregulation of growth-related gene expression. 27 refs., 5 figs.

  16. Identification of regulatory modules in time series gene expression data using a linear time biclustering algorithm.

    PubMed

    Madeira, Sara C; Teixeira, Miguel C; Sá-Correia, Isabel; Oliveira, Arlindo L

    2010-01-01

    Although most biclustering formulations are NP-hard, in time series expression data analysis, it is reasonable to restrict the problem to the identification of maximal biclusters with contiguous columns, which correspond to coherent expression patterns shared by a group of genes in consecutive time points. This restriction leads to a tractable problem. We propose an algorithm that finds and reports all maximal contiguous column coherent biclusters in time linear in the size of the expression matrix. The linear time complexity of CCC-Biclustering relies on the use of a discretized matrix and efficient string processing techniques based on suffix trees. We also propose a method for ranking biclusters based on their statistical significance and a methodology for filtering highly overlapping and, therefore, redundant biclusters. We report results in synthetic and real data showing the effectiveness of the approach and its relevance in the discovery of regulatory modules. Results obtained using the transcriptomic expression patterns occurring in Saccharomyces cerevisiae in response to heat stress show not only the ability of the proposed methodology to extract relevant information compatible with documented biological knowledge but also the utility of using this algorithm in the study of other environmental stresses and of regulatory modules in general.

  17. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis

    PubMed Central

    Kalyna, Maria; Simpson, Craig G.; Syed, Naeem H.; Lewandowska, Dominika; Marquez, Yamile; Kusenda, Branislav; Marshall, Jacqueline; Fuller, John; Cardle, Linda; McNicol, Jim; Dinh, Huy Q.; Barta, Andrea; Brown, John W. S.

    2012-01-01

    Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT–PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts) on the panel, 102 transcripts from 97 genes (32%) were identified as NMD targets. Extrapolating from these data around 13% of intron-containing genes in the Arabidopsis genome are potentially regulated by AS/NMD. This cohort of naturally occurring NMD-sensitive AS transcripts also allowed the analysis of the signals for NMD in plants. We show the importance of AS in introns in 5′ or 3′UTRs in modulating NMD-sensitivity of mRNA transcripts. In particular, we identified upstream open reading frames overlapping the main start codon as a new trigger for NMD in plants and determined that NMD is induced if 3′-UTRs were >350 nt. Unexpectedly, although many intron retention transcripts possess NMD features, they are not sensitive to NMD. Finally, we have shown that AS/NMD regulates the abundance of transcripts of many genes important for plant development and adaptation including transcription factors, RNA processing factors and stress response genes. PMID:22127866

  18. Ocean acidification modulates expression of genes and physiological performance of a marine diatom

    PubMed Central

    Li, Yahe; Zhuang, Shufang; Wu, Yaping; Ren, Honglin; Chen, Fangyi; Lin, Xin; Wang, Kejian; Beardall, John; Gao, Kunshan

    2017-01-01

    Ocean Acidification (OA) is known to affect various aspects of physiological performances of diatoms, but little is known about the underlining molecular mechanisms involved. Here, we show that in the model diatom Phaeodactylum tricornutum, the expression of key genes associated with photosynthetic light harvesting as well as those encoding Rubisco, carbonic anhydrase, NADH dehydrogenase and nitrite reductase, are modulated by OA (1000 μatm, pHnbs 7.83). Growth and photosynthetic carbon fixation were enhanced by elevated CO2. OA treatment decreased the expression of β-carbonic anhydrase (β-ca), which functions in balancing intracellular carbonate chemistry and the CO2 concentrating mechanism (CCM). The expression of the genes encoding fucoxanthin chlorophyll a/c protein (lhcf type (fcp)), mitochondrial ATP synthase (mtATP), ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit gene (rbcl) and NADH dehydrogenase subunit 2 (ndh2), were down-regulated during the first four days (< 8 generations) after the cells were transferred from LC (cells grown under ambient air condition; 390 μatm; pHnbs 8.19) to OA conditions, with no significant difference between LC and HC treatments with the time elapsed. The expression of nitrite reductase (nir) was up-regulated by the OA treatment. Additionally, the genes for these proteins (NiR, FCP, mtATP synthase, β-CA) showed diel expression patterns. It appeared that the enhanced photosynthetic and growth rates under OA could be attributed to stimulated nitrogen assimilation, increased CO2 availability or saved energy from down-regulation of the CCM and consequently lowered cost of protein synthesis versus that of non-nitrogenous cell components. PMID:28192486

  19. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei

    PubMed Central

    Zhang, Jiwei; Zhang, Yanmei; Zhong, Yaohua; Qu, Yinbo; Wang, Tianhong

    2012-01-01

    Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the

  20. Classical and Novel TSPO Ligands for the Mitochondrial TSPO Can Modulate Nuclear Gene Expression: Implications for Mitochondrial Retrograde Signaling.

    PubMed

    Yasin, Nasra; Veenman, Leo; Singh, Sukhdev; Azrad, Maya; Bode, Julia; Vainshtein, Alex; Caballero, Beatriz; Marek, Ilan; Gavish, Moshe

    2017-04-07

    It is known that knockdown of the mitochondrial 18 kDa translocator protein (TSPO) as well as TSPO ligands modulate various functions, including functions related to cancer. To study the ability of TSPO to regulate gene expression regarding such functions, we applied microarray analysis of gene expression to U118MG glioblastoma cells. Within 15 min, the classical TSPO ligand PK 11195 induced changes in expression of immediate early genes and transcription factors. These changes also included gene products that are part of the canonical pathway serving to modulate general gene expression. These changes are in accord with real-time, reverse transcriptase (RT) PCR. At the time points of 15, 30, 45, and 60 min, as well as 3 and 24 h of PK 11195 exposure, the functions associated with the changes in gene expression in these glioblastoma cells covered well known TSPO functions. These functions included cell viability, proliferation, differentiation, adhesion, migration, tumorigenesis, and angiogenesis. This was corroborated microscopically for cell migration, cell accumulation, adhesion, and neuronal differentiation. Changes in gene expression at 24 h of PK 11195 exposure were related to downregulation of tumorigenesis and upregulation of programmed cell death. In the vehicle treated as well as PK 11195 exposed cell cultures, our triple labeling showed intense TSPO labeling in the mitochondria but no TSPO signal in the cell nuclei. Thus, mitochondrial TSPO appears to be part of the mitochondria-to-nucleus signaling pathway for modulation of nuclear gene expression. The novel TSPO ligand 2-Cl-MGV-1 appeared to be very specific regarding modulation of gene expression of immediate early genes and transcription factors.

  1. Precision Modulation of Neurodegenerative Disease-Related Gene Expression in Human iPSC-Derived Neurons

    PubMed Central

    Heman-Ackah, Sabrina Mahalia; Bassett, Andrew Roger; Wood, Matthew John Andrew

    2016-01-01

    The ability to reprogram adult somatic cells into induced pluripotent stem cells (iPSCs) and the subsequent development of protocols for their differentiation into disease-relevant cell types have enabled in-depth molecular analyses of multiple disease states as hitherto impossible. Neurons differentiated from patient-specific iPSCs provide a means to recapitulate molecular phenotypes of neurodegenerative diseases in vitro. However, it remains challenging to conduct precise manipulations of gene expression in iPSC-derived neurons towards modeling complex human neurological diseases. The application of CRISPR/Cas9 to mammalian systems is revolutionizing the utilization of genome editing technologies in the study of molecular contributors to the pathogenesis of numerous diseases. Here, we demonstrate that CRISPRa and CRISPRi can be used to exert precise modulations of endogenous gene expression in fate-committed iPSC-derived neurons. This highlights CRISPRa/i as a major technical advancement in accessible tools for evaluating the specific contributions of critical neurodegenerative disease-related genes to neuropathogenesis. PMID:27341390

  2. Modulation of mouse RANKL gene expression by Runx2 and vitamin D3.

    PubMed

    Kitazawa, Riko; Mori, Kiyoshi; Yamaguchi, Akira; Kondo, Takeshi; Kitazawa, Sohei

    2008-12-01

    The expression of receptor activator of nuclear factor-kappaB ligand (RANKL) is regulated by bone-seeking hormones such as PTH and 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3). Runx2, a master gene for osteoblastic differentiation, also modulates osteoclastogenesis by regulating the RANKL gene. To elucidate the mechanism whereby runx2 and 1,25(OH)2D3 regulate RANKL expression, we studied the function of runx2 on the chromatin structure and on the proximal binding sites using osteoblastic cell lines derived from normal (ST2) and runx2-deficient mice (RD-C6). Although the expression of RANKL in the steady-state was higher in RD-C6 than in ST2, 1,25(OH)2D3-treatment of the cells increased it 20-fold in ST2 but only 1.8-fold in RD-C6. Transient transfection studies with proximal RANKL 2kb promoter, runx2 knock-down in ST2, and forced expression of runx2 in RD-C6 all confirmed that runx2 set the steady-state expression of the RANKL gene at a low level, but exerted a positive effect on enhanced transcriptional activity in response to 1,25(OH)2D3. Also, assessment of the acetylation status of the area spanning 40 kb upstream of the basic promoter in ST2 and RD-C6 by ChIP assay revealed that whereas H3 and H4 histone acetylation was detected even in the steady-state in RD-C6, it was detected only with 1,25(OH)2D3 in ST2. In the steady-state, runx2 may suppress RANKL gene by condensing the chromatin structure; however, it exerts a positive effect on 1,25(OH)2D3-induced RANKL transcription when the proximal runx2 sites are accessible. Thus, RANKL expression in stromal/osteoblastic cells is keenly regulated by 1,25(OH)2D3 which transactivates the gene at two different levels

  3. Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum

    PubMed Central

    2010-01-01

    Background The extracellular promastigote and the intracellular amastigote stages alternate in the digenetic life cycle of the trypanosomatid parasite Leishmania. Amastigotes develop inside parasitophorous vacuoles of mammalian phagocytes, where they tolerate extreme environmental conditions. Temperature increase and pH decrease are crucial factors in the multifactorial differentiation process of promastigotes to amastigotes. Although expression profiling approaches for axenic, cell culture- and lesion-derived amastigotes have already been reported, the specific influence of temperature increase and acidification of the environment on developmental regulation of genes has not been previously studied. For the first time, we have used custom L. infantum genomic DNA microarrays to compare the isolated and the combined effects of both factors on the transcriptome. Results Immunofluorescence analysis of promastigote-specific glycoprotein gp46 and expression modulation analysis of the amastigote-specific A2 gene have revealed that concomitant exposure to temperature increase and acidification leads to amastigote-like forms. The temperature-induced gene expression profile in the absence of pH variation resembles the profile obtained under combined exposure to both factors unlike that obtained for exposure to acidification alone. In fact, the subsequent fold change-based global iterative hierarchical clustering analysis supports these findings. Conclusions The specific influence of temperature and pH on the differential regulation of genes described in this study and the evidence provided by clustering analysis is consistent with the predominant role of temperature increase over extracellular pH decrease in the amastigote differentiation process, which provides new insights into Leishmania physiology. PMID:20074347

  4. Artificial zinc finger DNA binding domains: versatile tools for genome engineering and modulation of gene expression.

    PubMed

    Hossain, Mir A; Barrow, Joeva J; Shen, Yong; Haq, Md Imdadul; Bungert, Jörg

    2015-11-01

    Genome editing and alteration of gene expression by synthetic DNA binding activities gained a lot of momentum over the last decade. This is due to the development of new DNA binding molecules with enhanced binding specificity. The most commonly used DNA binding modules are zinc fingers (ZFs), TALE-domains, and the RNA component of the CRISPR/Cas9 system. These binding modules are fused or linked to either nucleases that cut the DNA and induce DNA repair processes, or to protein domains that activate or repress transcription of genes close to the targeted site in the genome. This review focuses on the structure, design, and applications of ZF DNA binding domains (ZFDBDs). ZFDBDs are relatively small and have been shown to penetrate the cell membrane without additional tags suggesting that they could be delivered to cells without a DNA or RNA intermediate. Advanced algorithms that are based on extensive knowledge of the mode of ZF/DNA interactions are used to design the amino acid composition of ZFDBDs so that they bind to unique sites in the genome. Off-target binding has been a concern for all synthetic DNA binding molecules. Thus, increasing the specificity and affinity of ZFDBDs will have a significant impact on their use in analytical or therapeutic settings.

  5. Modulation of Cholesterol-Related Gene Expression by Dietary Fiber Fractions from Edible Mushrooms.

    PubMed

    Caz, Víctor; Gil-Ramírez, Alicia; Largo, Carlota; Tabernero, María; Santamaría, Mónica; Martín-Hernández, Roberto; Marín, Francisco R; Reglero, Guillermo; Soler-Rivas, Cristina

    2015-08-26

    Mushrooms are a source of dietary fiber (DF) with a cholesterol-lowering effect. However, their underlying mechanisms are poorly understood. The effect of DF-enriched fractions from three mushrooms species on cholesterol-related expression was studied in vitro. The Pleurotus ostreatus DF fraction (PDF) was used in mice models to assess its potential palliative or preventive effect against hypercholesterolemia. PDF induced a transcriptional response in Caco-2 cells, suggesting a possible cholesterol-lowering effect. In the palliative setting, PDF reduced hepatic triglyceride likely because Dgat1 was downregulated. However, cholesterol-related biochemical data showed no changes and no relation with the observed transcriptional modulation. In the preventive setting, PDF modulated cholesterol-related genes expression in a manner similar to that of simvastatin and ezetimibe in the liver, although no changes in plasma and liver biochemical data were induced. Therefore, PDF may be useful reducing hepatic triglyceride accumulation. Because it induced a molecular response similar to hypocholesterolemic drugs in liver, further dose-dependent studies should be carried out.

  6. Store-operated Ca2+ Entry Modulates the Expression of Enamel Genes.

    PubMed

    Nurbaeva, M K; Eckstein, M; Snead, M L; Feske, S; Lacruz, R S

    2015-10-01

    Dental enamel formation is an intricate process tightly regulated by ameloblast cells. The correct spatiotemporal patterning of enamel matrix protein (EMP) expression is fundamental to orchestrate the formation of enamel crystals, which depend on a robust supply of Ca2+. In the extracellular milieu, Ca2+ -EMP interactions occur at different levels. Despite its recognized role in enamel development, the molecular machinery involved in Ca2+ homeostasis in ameloblasts remains poorly understood. A common mechanism for Ca2+ influx is store-operated Ca2+ entry (SOCE). We evaluated the possibility that Ca2+ influx in enamel cells might be mediated by SOCE and the Ca2+ release-activated Ca2+ (CRAC) channel, the prototypical SOCE channel. Using ameloblast-like LS8 cells, we demonstrate that these cells express Ca2+ -handling molecules and mediate Ca2+ influx through SOCE. As a rise in the cytosolic Ca2+ concentration is a versatile signal that can modulate gene expression, we assessed whether SOCE in enamel cells had any effect on the expression of EMPs. Our results demonstrate that stimulating LS8 cells or murine primary enamel organ cells with thapsigargin to activate SOCE leads to increased expression of Amelx, Ambn, Enam, Mmp20. This effect is reversed when cells are treated with a CRAC channel inhibitor. These data indicate that Ca2+ influx in LS8 cells and enamel organ cells is mediated by CRAC channels and that Ca2+ signals enhance the expression of EMPs. Ca2+ plays an important role not only in mineralizing dental enamel but also in regulating the expression of EMPs.

  7. Store-operated Ca2+ Entry Modulates the Expression of Enamel Genes

    PubMed Central

    Nurbaeva, M.K.; Eckstein, M.; Snead, M.L.; Feske, S.; Lacruz, R.S.

    2015-01-01

    Dental enamel formation is an intricate process tightly regulated by ameloblast cells. The correct spatiotemporal patterning of enamel matrix protein (EMP) expression is fundamental to orchestrate the formation of enamel crystals, which depend on a robust supply of Ca2+. In the extracellular milieu, Ca2+-EMP interactions occur at different levels. Despite its recognized role in enamel development, the molecular machinery involved in Ca2+ homeostasis in ameloblasts remains poorly understood. A common mechanism for Ca2+ influx is store-operated Ca2+ entry (SOCE). We evaluated the possibility that Ca2+ influx in enamel cells might be mediated by SOCE and the Ca2+ release-activated Ca2+ (CRAC) channel, the prototypical SOCE channel. Using ameloblast-like LS8 cells, we demonstrate that these cells express Ca2+-handling molecules and mediate Ca2+ influx through SOCE. As a rise in the cytosolic Ca2+ concentration is a versatile signal that can modulate gene expression, we assessed whether SOCE in enamel cells had any effect on the expression of EMPs. Our results demonstrate that stimulating LS8 cells or murine primary enamel organ cells with thapsigargin to activate SOCE leads to increased expression of Amelx, Ambn, Enam, Mmp20. This effect is reversed when cells are treated with a CRAC channel inhibitor. These data indicate that Ca2+ influx in LS8 cells and enamel organ cells is mediated by CRAC channels and that Ca2+ signals enhance the expression of EMPs. Ca2+ plays an important role not only in mineralizing dental enamel but also in regulating the expression of EMPs. PMID:26232387

  8. Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression

    PubMed Central

    Mozhui, Khyobeni; Ciobanu, Daniel C.; Schikorski, Thomas; Wang, Xusheng; Lu, Lu; Williams, Robert W.

    2008-01-01

    A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21–q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of ∼20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes. PMID:19008955

  9. Modulation of human c-mpl gene expression by thrombopoietin through protein kinase C.

    PubMed

    Sunohara, M; Morikawa, S; Sato, T; Sato, I; Sato, T; Fuse, A

    2003-01-01

    The c-Mpl, thrombopoietin (TPO) receptor specificially controls megakaryocytic growth and differentiation. TPO increased the c-mpl promoter activity determined by a transient expression system using a vector containing the luciferase gene as a reporter in the human megakaryoblastic cell line CMK. The maximal promoter activity of c-mpl was obtained 24 hr after pretreatment with TPO for 3 hr and then declined with time. This increase was completely abolished by protein kinase C (PKC) inhibitors (GF109203, calphostin C and H7). Phorbol 12-myristate 13-acetate (PMA) treatment led to an increase in c-mpl promoter activity. These results demonstrate that the promoter activity of c-mpl is modulated by transcription through a PKC-dependent pathway.

  10. Voluntary wheel running modulates glutamate receptor subunit gene expression and stress hormone release in Lewis rats.

    PubMed

    Makatsori, A; Duncko, R; Schwendt, M; Moncek, F; Johansson, B B; Jezova, D

    2003-07-01

    Lewis rats that are known to be addiction-prone, develop compulsive running if they have access to running wheels. The present experiments were aimed 1) to evaluate the activation of stress systems following chronic and acute voluntary wheel running in Lewis rats by measurement of hormone release and gene expression of neuropeptides related to hypothalamic-pituitary-adrenocortical (HPA) axis activity and 2) to test the hypothesis that wheel running as a combined model of addictive behavior and stress exposure is associated with modulation of ionotropic glutamate receptor subunits in the ventral tegmental area. Voluntary running for three weeks but not for one night resulted in a rise in plasma corticosterone and adrenocorticotropic hormone (ACTH) levels (p<0.05) compared to those in control rats. Principal component analysis revealed the relation between POMC gene expression in the intermediate pituitary and running rate. Acute exposure of animals to voluntary wheel running induced a significant decrease in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor GluR1 subunit mRNA levels (p<0.01), while repeated voluntary physical activity increased levels of GluR1 mRNA in the ventral tegmentum (p<0.05). Neither acute nor chronic wheel running influenced N-methyl-D-aspartate (NMDA) receptor subunit NR1 mRNA levels in the ventral tegmental area. Thus, the present study revealed changes in AMPA receptor subunit gene expression in a reward-related brain structure as well as an activation of HPA axis in response to compulsive wheel running in Lewis rats. It may be suggested that hormones of HPA axis and glutamate receptors belong to the factors that substantiate higher vulnerability to addictive behavior.

  11. Current European Labyrinthula zosterae Are Not Virulent and Modulate Seagrass (Zostera marina) Defense Gene Expression

    PubMed Central

    Brakel, Janina; Werner, Franziska Julie; Tams, Verena; Reusch, Thorsten B. H.; Bockelmann, Anna-Christina

    2014-01-01

    Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930's, while showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype×genotype interactions of host and pathogen from different regions (10–100 km-scale) through reciprocal infection. Although the endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae. Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no interaction of protist×eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong immune modulation of the host's defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the level of infection. There was no change in expression in a general stress indicator gene (HSP70). Mean L. zosterae abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L. zosterae infection in the study region is not associated with substantial virulence. PMID:24691450

  12. RNA-Eluting Surfaces for the Modulation of Gene Expression as A Novel Stent Concept

    PubMed Central

    Koenig, Olivia; Zengerle, Diane; Perle, Nadja; Hossfeld, Susanne; Neumann, Bernd; Behring, Andreas; Avci-Adali, Meltem; Walker, Tobias; Schlensak, Christian; Wendel, Hans Peter; Nolte, Andrea

    2017-01-01

    Presently, a new era of drug-eluting stents is continuing to improve late adverse effects such as thrombosis after coronary stent implantation in atherosclerotic vessels. The application of gene expression–modulating stents releasing specific small interfering RNAs (siRNAs) or messenger RNAs (mRNAs) to the vascular wall might have the potential to improve the regeneration of the vessel wall and to inhibit adverse effects as a new promising therapeutic strategy. Different poly (lactic-co-glycolic acid) (PLGA) resomers for their ability as an siRNA delivery carrier against intercellular adhesion molecule (ICAM)-1 with a depot effect were tested. Biodegradability, hemocompatibility, and high cell viability were found in all PLGAs. We generated PLGA coatings with incorporated siRNA that were able to transfect EA.hy926 and human vascular endothelial cells. Transfected EA.hy926 showed significant siICAM-1 knockdown. Furthermore, co-transfection of siRNA and enhanced green fluorescent protein (eGFP) mRNA led to the expression of eGFP as well as to the siRNA transfection. Using our PLGA and siRNA multilayers, we reached high transfection efficiencies in EA.hy926 cells until day six and long-lasting transfection until day 20. Our results indicate that siRNA and mRNA nanoparticles incorporated in PLGA films have the potential for the modulation of gene expression after stent implantation to achieve accelerated regeneration of endothelial cells and to reduce the risk of restenosis. PMID:28208634

  13. Estrogen modulates developmentally regulated gene expression in the fetal baboon liver.

    PubMed

    Rosenthal, Miriam D; Albrecht, Eugene D; Pepe, Gerald J

    2004-01-01

    Although estrogen plays a central integrative role in regulating key aspects of placental and fetal endocrine development in the primate, our understanding of the regulation of maturation of the fetal liver is incomplete. In adults, estrogen modulates several aspects of hepatic function. Therefore, the current study determined whether fetal hepatic gene expression development was modulated by estrogen. mRNA differential display was used to identify genes whose expression was altered in fetal livers obtained on d 165 of gestation (term = d 184) from baboons that were untreated or treated on d 60-164 with the aromatase inhibitor CGS 20267 (2 mg/d; sc), which suppressed estrogen levels in the fetus by >95% (p < 0.01). As confirmed by Northern blot, the mRNA levels (ratio to 18s RNA) of metallothionein I (MT-I), porphobilinogen deaminase (PBG-D), and cytochrome P450 2C8 (CYP 2C8) in the livers of estrogen-deprived fetuses were 5-, 12-, and 3-fold higher (p < 0.05) than respective values of untreated fetuses. Moreover, mRNA levels of MT-I and PBG-D, expressed as a ratio to 18s RNA, were 3-fold and 26-fold higher (p < 0.05) on d 60-100 of gestation than on d 165 and in the adult. In contrast, CYP 2C8 mRNA increased 10-fold between d 100 and 165 and was not further altered in adult liver. Immunohistochemistry confirmed expression of MT-I in hepatocytes. Erythropoietic cells, normally present in the fetal baboon liver on d 100 but not on d 165, were also detected on d 165 in animals treated with the aromatase inhibitor. Thus, upregulation of PBG-D mRNA in estrogen-deprived baboons may reflect prolongation of the erythropoietic role of the fetal liver. In summary, these results indicate that the normal developmental change in MT-I, PBG-D, and CYP 2C8 mRNA expression in baboon fetal liver with advancing gestation are dependent on increased secretion of estrogen into the fetus. We suggest, therefore, that estrogen regulates normal development of the primate fetal liver.

  14. Changes in gravity affect gene expression, protein modulation and metabolite pools of arabidopsis

    NASA Astrophysics Data System (ADS)

    Hampp, R.; Martzivanou, M.; Maier, R. M.; Magel, E.

    ), we investigated samples from sounding rocket experiments (5 min μ g) and show increased transcript levels for signalling proteins. By means of 2-dimensional SDS polyacrylamide gelelectrophoresis, coupled to spot identification after tryptic digest (MALDI-TOF), we further show that metabolic short-term responses can be adjusted by protein phosphorylation/dephosphorylation. Changes in gene expression / protein modulation are mirrored by respective alterations in metabolite pools. (Supported by a grant from the Deutsches Zentrum für Luft- und Raumfahrt (DLR, 50WB0143)).

  15. Toxicological implications of modulation of gene expression by microRNAs.

    PubMed

    Yokoi, Tsuyoshi; Nakajima, Miki

    2011-09-01

    MicroRNAs (miRNAs) are a large family of non-coding RNAs that are evolutionarily conserved, endogenous, and 21-23 nucleotides in length. miRNAs regulate gene expression by targeting messenger RNAs (mRNAs) by binding to complementary regions of transcripts to repress their translation or mRNA degradation. miRNAs are encoded by the genome, and more than 1000 human miRNAs have been identified so far. miRNAs are predicted to target ∼60% of human mRNAs and are expressed in all animal cells and have fundamental roles in cellular responses to xenobiotic stresses, which affect a large range of physiological processes such as development, immune responses, metabolism, tumor formation as well as toxicological outcomes. Recently, many reports concerning miRNAs related to cancer have been published; however, the miRNA research in the metabolism of xenobiotics and endobiotics and in toxicology has only recently been established. This review describes the current knowledge on the miRNA-dependent regulation of drug-metabolizing enzymes and nuclear receptors and its potential toxicological implications. In this review, miRNAs with reference to target prediction, potential modulation of toxicology-related changes of miRNA expression, role of miRNA in immune-mediated drug-induced liver injury, miRNA in plasma as potential toxicological biomarkers, and relevance of miRNA-related genetic polymorphisms are discussed.

  16. The ATP-Dependent RNA Helicase DDX3X Modulates Herpes Simplex Virus 1 Gene Expression.

    PubMed

    Khadivjam, Bita; Stegen, Camille; Hogue-Racine, Marc-Aurèle; El Bilali, Nabil; Döhner, Katinka; Sodeik, Beate; Lippé, Roger

    2017-04-15

    The human protein DDX3X is a DEAD box ATP-dependent RNA helicase that regulates transcription, mRNA maturation, and mRNA export and translation. DDX3X concomitantly modulates the replication of several RNA viruses and promotes innate immunity. We previously showed that herpes simplex virus 1 (HSV-1), a human DNA virus, incorporates DDX3X into its mature particles and that DDX3X is required for optimal HSV-1 infectivity. Here, we show that viral gene expression, replication, and propagation depend on optimal DDX3X protein levels. Surprisingly, DDX3X from incoming viral particles was not required for the early stages of the HSV-1 infection, but, rather, the protein controlled the assembly of new viral particles. This was independent of the previously reported ability of DDX3X to stimulate interferon type I production. Instead, both the lack and overexpression of DDX3X disturbed viral gene transcription and thus subsequent genome replication. This suggests that in addition to its effect on RNA viruses, DDX3X impacts DNA viruses such as HSV-1 by an interferon-independent pathway.IMPORTANCE Viruses interact with a variety of cellular proteins to complete their life cycle. Among them is DDX3X, an RNA helicase that participates in most aspects of RNA biology, including transcription, splicing, nuclear export, and translation. Several RNA viruses and a limited number of DNA viruses are known to manipulate DDX3X for their own benefit. In contrast, DDX3X is also known to promote interferon production to limit viral propagation. Here, we show that DDX3X, which we previously identified in mature HSV-1 virions, stimulates HSV-1 gene expression and, consequently, virion assembly by a process that is independent of its ability to promote the interferon pathway.

  17. Cannabidiol Modulates the Expression of Alzheimer’s Disease-Related Genes in Mesenchymal Stem Cells

    PubMed Central

    Libro, Rosaliana; Diomede, Francesca; Scionti, Domenico; Piattelli, Adriano; Grassi, Gianpaolo; Pollastro, Federica; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-01-01

    Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of several neurodegenerative disorders, including Alzheimer’s disease (AD). The main neuropathological hallmarks of AD are senile plaques, composed of amyloid beta (Aβ), and neurofibrillary tangles, formed by hyperphosphorylated tau. However, current therapies for AD have shown limited efficacy. In this study, we evaluated whether pre-treatment with cannabidiol (CBD), at 5 μM concentration, modulated the transcriptional profile of MSCs derived from gingiva (GMSCs) in order to improve their therapeutic potential, by performing a transcriptomic analysis by the next-generation sequencing (NGS) platform. By comparing the expression profiles between GMSCs treated with CBD (CBD-GMSCs) and control GMSCs (CTR-GMSCs), we found that CBD led to the downregulation of genes linked to AD, including genes coding for the kinases responsible of tau phosphorylation and for the secretases involved in Aβ generation. In parallel, immunocytochemistry analysis has shown that CBD inhibited the expression of GSK3β, a central player in AD pathogenesis, by promoting PI3K/Akt signalling. In order to understand through which receptor CBD exerted these effects, we have performed pre-treatments with receptor antagonists for the cannabinoid receptors (SR141716A and AM630) or for the vanilloid receptor 1 (TRPVI). Here, we have proved that TRPV1 was able to mediate the modulatory effect of CBD on the PI3K/Akt/GSK3β axis. In conclusion, we have found that pre-treatment with CBD prevented the expression of proteins potentially involved in tau phosphorylation and Aβ production in GMSCs. Therefore, we suggested that GMSCs preconditioned with CBD possess a molecular profile that might be more beneficial for the treatment of AD. PMID:28025562

  18. Cannabidiol Modulates the Expression of Alzheimer's Disease-Related Genes in Mesenchymal Stem Cells.

    PubMed

    Libro, Rosaliana; Diomede, Francesca; Scionti, Domenico; Piattelli, Adriano; Grassi, Gianpaolo; Pollastro, Federica; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-12-23

    Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of several neurodegenerative disorders, including Alzheimer's disease (AD). The main neuropathological hallmarks of AD are senile plaques, composed of amyloid beta (Aβ), and neurofibrillary tangles, formed by hyperphosphorylated tau. However, current therapies for AD have shown limited efficacy. In this study, we evaluated whether pre-treatment with cannabidiol (CBD), at 5 μM concentration, modulated the transcriptional profile of MSCs derived from gingiva (GMSCs) in order to improve their therapeutic potential, by performing a transcriptomic analysis by the next-generation sequencing (NGS) platform. By comparing the expression profiles between GMSCs treated with CBD (CBD-GMSCs) and control GMSCs (CTR-GMSCs), we found that CBD led to the downregulation of genes linked to AD, including genes coding for the kinases responsible of tau phosphorylation and for the secretases involved in Aβ generation. In parallel, immunocytochemistry analysis has shown that CBD inhibited the expression of GSK3β, a central player in AD pathogenesis, by promoting PI3K/Akt signalling. In order to understand through which receptor CBD exerted these effects, we have performed pre-treatments with receptor antagonists for the cannabinoid receptors (SR141716A and AM630) or for the vanilloid receptor 1 (TRPVI). Here, we have proved that TRPV1 was able to mediate the modulatory effect of CBD on the PI3K/Akt/GSK3β axis. In conclusion, we have found that pre-treatment with CBD prevented the expression of proteins potentially involved in tau phosphorylation and Aβ production in GMSCs. Therefore, we suggested that GMSCs preconditioned with CBD possess a molecular profile that might be more beneficial for the treatment of AD.

  19. C. albicans growth, transition, biofilm formation, and gene expression modulation by antimicrobial decapeptide KSL-W

    PubMed Central

    2013-01-01

    Background Antimicrobial peptides have been the focus of much research over the last decade because of their effectiveness and broad-spectrum activity against microbial pathogens. These peptides also participate in inflammation and the innate host defense system by modulating the immune function that promotes immune cell adhesion and migration as well as the respiratory burst, which makes them even more attractive as therapeutic agents. This has led to the synthesis of various antimicrobial peptides, including KSL-W (KKVVFWVKFK-NH2), for potential clinical use. Because this peptide displays antimicrobial activity against bacteria, we sought to determine its antifungal effect on C. albicans. Growth, hyphal form, biofilm formation, and degradation were thus examined along with EFG1, NRG1, EAP1, HWP1, and SAP 2-4-5-6 gene expression by quantitative RT-PCR. Results This study demonstrates that KSL-W markedly reduced C. albicans growth at both early and late incubation times. The significant effect of KSL-W on C. albicans growth was observed beginning at 10 μg/ml after 5 h of contact by reducing C. albicans transition and at 25 μg/ml by completely inhibiting C. albicans transition. Cultured C. albicans under biofilm-inducing conditions revealed that both KSL-W and amphotericin B significantly decreased biofilm formation at 2, 4, and 6 days of culture. KSL-W also disrupted mature C. albicans biofilms. The effect of KSL-W on C. albicans growth, transition, and biofilm formation/disruption may thus occur through gene modulation, as the expression of various genes involved in C. albicans growth, transition and biofilm formation were all downregulated when C. albicans was treated with KSL-W. The effect was greater when C. albicans was cultured under hyphae-inducing conditions. Conclusions These data provide new insight into the efficacy of KSL-W against C. albicans and its potential use as an antifungal therapy. PMID:24195531

  20. Modulation of Gene Expression by Polymer Nanocapsule Delivery of DNA Cassettes Encoding Small RNAs.

    PubMed

    Yan, Ming; Wen, Jing; Liang, Min; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2015-01-01

    Small RNAs, including siRNAs, gRNAs and miRNAs, modulate gene expression and serve as potential therapies for human diseases. Delivery to target cells remains the fundamental limitation for use of these RNAs in humans. To address this challenge, we have developed a nanocapsule delivery technology that encapsulates small DNA molecules encoding RNAs into a small (30 nm) polymer nanocapsule. For proof of concept, we transduced DNA expression cassettes for three small RNAs. In one application, the DNA cassette encodes an shRNA transcriptional unit that downregulates CCR5 and protects from HIV-1 infection. The DNA cassette nanocapsules were further engineered for timed release of the DNA cargo for prolonged knockdown of CCR5. Secondly, the nanocapsules provide an efficient means for delivery of gRNAs in the CRISPR/Cas9 system to mutate integrated HIV-1. Finally, delivery of microRNA-125b to mobilized human CD34+ cells enhances survival and expansion of the CD34+ cells in culture.

  1. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress

    PubMed Central

    Bharti, Nidhi; Pandey, Shiv Shanker; Barnawal, Deepti; Patel, Vikas Kumar; Kalra, Alok

    2016-01-01

    Plant growth promoting rhizobacteria (PGPR) hold promising future for sustainable agriculture. Here, we demonstrate a carotenoid producing halotolerant PGPR Dietzia natronolimnaea STR1 protecting wheat plants from salt stress by modulating the transcriptional machinery responsible for salinity tolerance in plants. The expression studies confirmed the involvement of ABA-signalling cascade, as TaABARE and TaOPR1 were upregulated in PGPR inoculated plants leading to induction of TaMYB and TaWRKY expression followed by stimulation of expression of a plethora of stress related genes. Enhanced expression of TaST, a salt stress-induced gene, associated with promoting salinity tolerance was observed in PGPR inoculated plants in comparison to uninoculated control plants. Expression of SOS pathway related genes (SOS1 and SOS4) was modulated in PGPR-applied wheat shoots and root systems. Tissue-specific responses of ion transporters TaNHX1, TaHAK, and TaHKT1, were observed in PGPR-inoculated plants. The enhanced gene expression of various antioxidant enzymes such as APX, MnSOD, CAT, POD, GPX and GR and higher proline content in PGPR-inoculated wheat plants contributed to increased tolerance to salinity stress. Overall, these results indicate that halotolerant PGPR-mediated salinity tolerance is a complex phenomenon that involves modulation of ABA-signalling, SOS pathway, ion transporters and antioxidant machinery. PMID:27708387

  2. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-10-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.

  3. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    PubMed Central

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-01-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases. PMID:27703186

  4. Molecular profiling: Catecholamine modulation of gene expression in Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigations of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium have demonstrated that these bacterial pathogens can respond to the presence of catecholamines including norepinephrine and/or epinephrine in their environment by modulating gene expression and exhibiting various ...

  5. An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression.

    PubMed

    Scott, M G; Rosenberger, C M; Gold, M R; Finlay, B B; Hancock, R E

    2000-09-15

    Certain cationic antimicrobial peptides block the binding of LPS to LPS-binding protein and reduce the ability of LPS to induce the production of inflammatory mediators by macrophages. To gain a more complete understanding of how LPS activates macrophages and how cationic peptides influence this process, we have used gene array technology to profile gene expression patterns in macrophages treated with LPS in the presence or the absence of the insect-derived cationic antimicrobial peptide CEMA (cecropin-melittin hybrid). We found that CEMA selectively blocked LPS-induced gene expression in the RAW 264.7 macrophage cell line. The ability of LPS to induce the expression of >40 genes was strongly inhibited by CEMA, while LPS-induced expression of another 16 genes was relatively unaffected. In addition, CEMA itself induced the expression of a distinct set of 35 genes, including genes involved in cell adhesion and apoptosis. Thus, CEMA, a synthetic alpha-helical peptide, selectively modulates the transcriptional response of macrophages to LPS and can alter gene expression in macrophages.

  6. bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses

    PubMed Central

    Jézéquel, Pascal; Frénel, Jean-Sébastien; Campion, Loïc; Guérin-Charbonnel, Catherine; Gouraud, Wilfried; Ricolleau, Gabriel; Campone, Mario

    2013-01-01

    We recently developed a user-friendly web-based application called bc-GenExMiner (http://bcgenex.centregauducheau.fr), which offered the possibility to evaluate prognostic informativity of genes in breast cancer by means of a ‘prognostic module’. In this study, we develop a new module called ‘correlation module’, which includes three kinds of gene expression correlation analyses. The first one computes correlation coefficient between 2 or more (up to 10) chosen genes. The second one produces two lists of genes that are most correlated (positively and negatively) to a ‘tested’ gene. A gene ontology (GO) mining function is also proposed to explore GO ‘biological process’, ‘molecular function’ and ‘cellular component’ terms enrichment for the output lists of most correlated genes. The third one explores gene expression correlation between the 15 telomeric and 15 centromeric genes surrounding a ‘tested’ gene. These correlation analyses can be performed in different groups of patients: all patients (without any subtyping), in molecular subtypes (basal-like, HER2+, luminal A and luminal B) and according to oestrogen receptor status. Validation tests based on published data showed that these automatized analyses lead to results consistent with studies’ conclusions. In brief, this new module has been developed to help basic researchers explore molecular mechanisms of breast cancer. Database URL: http://bcgenex.centregauducheau.fr PMID:23325629

  7. Characterization of human septic sera induced gene expression modulation in human myocytes

    PubMed Central

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886

  8. Gene expression signature of DMBA-induced hamster buccal pouch carcinomas: modulation by chlorophyllin and ellagic acid.

    PubMed

    Vidya Priyadarsini, Ramamurthi; Kumar, Neeraj; Khan, Imran; Thiyagarajan, Paranthaman; Kondaiah, Paturu; Nagini, Siddavaram

    2012-01-01

    Chlorophyllin (CHL), a water-soluble, semi-synthetic derivative of chlorophyll and ellagic acid (EA), a naturally occurring polyphenolic compound in berries, grapes, and nuts have been reported to exert anticancer effects in various human cancer cell lines and in animal tumour models. The present study was undertaken to examine the mechanism underlying chemoprevention and changes in gene expression pattern induced by dietary supplementation of chlorophyllin and ellagic acid in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by whole genome profiling using pangenomic microarrays. In hamsters painted with DMBA, the expression of 1,700 genes was found to be altered significantly relative to control. Dietary supplementation of chlorophyllin and ellagic acid modulated the expression profiles of 104 and 37 genes respectively. Microarray analysis also revealed changes in the expression of TGFβ receptors, NF-κB, cyclin D1, and matrix metalloproteinases (MMPs) that may play a crucial role in the transformation of the normal buccal pouch to a malignant phenotype. This gene expression signature was altered on treatment with chlorophyllin and ellagic acid. Our study has also revealed patterns of gene expression signature specific for chlorophyllin and ellagic acid exposure. Thus dietary chlorophyllin and ellagic acid that can reverse gene expression signature associated with carcinogenesis are novel candidates for cancer prevention and therapy.

  9. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data

    PubMed Central

    2012-01-01

    Background Identification of protein complexes and functional modules from protein-protein interaction (PPI) networks is crucial to understanding the principles of cellular organization and predicting protein functions. In the past few years, many computational methods have been proposed. However, most of them considered the PPI networks as static graphs and overlooked the dynamics inherent within these networks. Moreover, few of them can distinguish between protein complexes and functional modules. Results In this paper, a new framework is proposed to distinguish between protein complexes and functional modules by integrating gene expression data into protein-protein interaction (PPI) data. A series of time-sequenced subnetworks (TSNs) is constructed according to the time that the interactions were activated. The algorithm TSN-PCD was then developed to identify protein complexes from these TSNs. As protein complexes are significantly related to functional modules, a new algorithm DFM-CIN is proposed to discover functional modules based on the identified complexes. The experimental results show that the combination of temporal gene expression data with PPI data contributes to identifying protein complexes more precisely. A quantitative comparison based on f-measure reveals that our algorithm TSN-PCD outperforms the other previous protein complex discovery algorithms. Furthermore, we evaluate the identified functional modules by using “Biological Process” annotated in GO (Gene Ontology). The validation shows that the identified functional modules are statistically significant in terms of “Biological Process”. More importantly, the relationship between protein complexes and functional modules are studied. Conclusions The proposed framework based on the integration of PPI data and gene expression data makes it possible to identify protein complexes and functional modules more effectively. Moveover, the proposed new framework and algorithms can distinguish

  10. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    SciTech Connect

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  11. Vaccine-induced modulation of gene expression in turbot peritoneal cells. A microarray approach.

    PubMed

    Fontenla, Francisco; Blanco-Abad, Verónica; Pardo, Belén G; Folgueira, Iria; Noia, Manuel; Gómez-Tato, Antonio; Martínez, Paulino; Leiro, José M; Lamas, Jesús

    2016-07-01

    We used a microarray approach to examine changes in gene expression in turbot peritoneal cells after injection of the fish with vaccines containing the ciliate parasite Philasterides dicentrarchi as antigen and one of the following adjuvants: chitosan-PVMMA microspheres, Freund́s complete adjuvant, aluminium hydroxide gel or Matrix-Q (Isconova, Sweden). We identified 374 genes that were differentially expressed in all groups of fish. Forty-two genes related to tight junctions and focal adhesions and/or actin cytoskeleton were differentially expressed in free peritoneal cells. The profound changes in gene expression related to cell adherence and cytoskeleton may be associated with cell migration and also with the formation of cell-vaccine masses and their attachment to the peritoneal wall. Thirty-five genes related to apoptosis were differentially expressed. Although most of the proteins coded by these genes have a proapoptotic effect, others are antiapoptotic, indicating that both types of signals occur in peritoneal leukocytes of vaccinated fish. Interestingly, many of the genes related to lymphocytes and lymphocyte activity were downregulated in the groups injected with vaccine. We also observed decreased expression of genes related to antigen presentation, suggesting that macrophages (which were abundant in the peritoneal cavity after vaccination) did not express these during the early inflammatory response in the peritoneal cavity. Finally, several genes that participate in the inflammatory response were differentially expressed, and most participated in resolution of inflammation, indicating that an M2 macrophage response is generated in the peritoneal cavity of fish one day post vaccination.

  12. The absence of pleiotrophin modulates gene expression in the hippocampus in vivo and in cerebellar granule cells in vitro.

    PubMed

    González-Castillo, Celia; Ortuño-Sahagún, Daniel; Guzmán-Brambila, Carolina; Márquez-Aguirre, Ana Laura; Raisman-Vozari, Rita; Pallás, Mercé; Rojas-Mayorquín, Argelia E

    2016-09-01

    Pleiotrophin (PTN) is a secreted growth factor recently proposed to act as a neuromodulatory peptide in the Central Nervous System. PTN appears to be involved in neurodegenerative diseases and neural disorders, and it has also been implicated in learning and memory. Specifically, PTN-deficient mice exhibit a lower threshold for LTP induction in the hippocampus, which is attenuated in mice overexpressing PTN. However, there is little information about the signaling systems recruited by PTN to modulate neural activity. To address this issue, the gene expression profile in hippocampus of mice lacking PTN was analyzed using microarrays of 22,000 genes. In addition, we corroborated the effect of the absence of PTN on the expression of these genes by silencing this growth factor in primary neuronal cultures in vitro. The microarray analysis identified 102 genes that are differentially expressed (z-score>3.0) in PTN null mice, and the expression of eight of those modified in the hippocampus of KO mice was also modified in vitro after silencing PTN in cultured neurons with siRNAs. The data obtained indicate that the absence of PTN affects AKT pathway response and modulates the expression of genes related with neuroprotection (Mgst3 and Estrogen receptor 1, Ers 1) and cell differentiation (Caspase 6, Nestin, and Odz4), both in vivo and in vitro.

  13. The alternative sigma factor B modulates virulence gene expression in a murine Staphylococcus aureus infection model but does not influence kidney gene expression pattern of the host.

    PubMed

    Depke, Maren; Burian, Marc; Schäfer, Tina; Bröker, Barbara M; Ohlsen, Knut; Völker, Uwe

    2012-01-01

    Infections caused by Staphylococcus aureus are associated with significant morbidity and mortality and are an increasing threat not only in hospital settings. The expression of the staphylococcal virulence factor repertoire is known to be affected by the alternative sigma factor B (SigB). However, its impact during infection still is a matter of debate. Kidney tissues of controls or mice infected with S. aureus HG001 or its isogenic sigB mutant were analyzed by transcriptome profiling to monitor the host response, and additionally expression of selected S. aureus genes was monitored by RT-qPCR. Direct transcript analysis by RT-qPCR revealed significant SigB activity in all mice infected with the wild-type strain, but not in its isogenic sigB mutant (p<0.0001). Despite a clear-cut difference in the SigB-dependent transcription pattern of virulence genes (clfA, aur, and hla), the host reaction to infection (either wild type or sigB mutant) was almost identical. Despite its significant activity in vivo, loss of SigB did neither have an effect on the outcome of infection nor on murine kidney gene expression pattern. Thus, these data support the role of SigB as virulence modulator rather than being a virulence determinant by itself.

  14. Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes

    PubMed Central

    Riquelme Medina, Ignacio; Lubovac-Pilav, Zelmina

    2016-01-01

    Type 1 diabetes (T1D) is a complex disease, caused by the autoimmune destruction of the insulin producing pancreatic beta cells, resulting in the body’s inability to produce insulin. While great efforts have been put into understanding the genetic and environmental factors that contribute to the etiology of the disease, the exact molecular mechanisms are still largely unknown. T1D is a heterogeneous disease, and previous research in this field is mainly focused on the analysis of single genes, or using traditional gene expression profiling, which generally does not reveal the functional context of a gene associated with a complex disorder. However, network-based analysis does take into account the interactions between the diabetes specific genes or proteins and contributes to new knowledge about disease modules, which in turn can be used for identification of potential new biomarkers for T1D. In this study, we analyzed public microarray data of T1D patients and healthy controls by applying a systems biology approach that combines network-based Weighted Gene Co-Expression Network Analysis (WGCNA) with functional enrichment analysis. Novel co-expression gene network modules associated with T1D were elucidated, which in turn provided a basis for the identification of potential pathways and biomarker genes that may be involved in development of T1D. PMID:27257970

  15. Cytosolic T3-binding protein modulates dynamic alteration of T3-mediated gene expression in cells.

    PubMed

    Takeshige, Keiko; Sekido, Takashi; Kitahara, Jun-ichirou; Ohkubo, Yousuke; Hiwatashi, Dai; Ishii, Hiroaki; Nishio, Shin-ichi; Takeda, Teiji; Komatsu, Mitsuhisa; Suzuki, Satoru

    2014-01-01

    μ-Crystallin (CRYM) is also known as NADPH-dependent cytosolic T3-binding protein. A study using CRYM-null mice suggested that CRYM stores triiodothyronine (T3) in tissues. We previously established CRYM-expressing cells derived from parental GH3 cells. To examine the precise regulation of T3-responsive genes in the presence of CRYM, we evaluated serial alterations of T3-responsive gene expression by changing pericellular T3 concentrations in the media. We estimated the constitutive expression of three T3-responsive genes, growth hormone (GH), deiodinase 1 (Dio1), and deiodinase 2 (Dio2), in two cell lines. Subsequently, we measured the responsiveness of these three genes at 4, 8, 16, and 24 h after adding various concentrations of T3. We also estimated the levels of these mRNAs 24 and 48 h after removing T3. The levels of constitutive expression of GH and Dio1 were low and high in C8 cells, respectively, while Dio2 expression was not significantly different between GH3 and C8 cells. When treated with T3, Dio2 expression was significantly enhanced in C8 cells, while there were no differences in GH or Dio1 expression between GH3 and C8 cell lines. In contrast, removal of T3 retained the mRNA expression of GH and Dio2 in C8 cells. These results suggest that CRYM expression increases and sustains the T3 responsiveness of genes in cells, especially with alteration of the pericellular T3 concentration. The heterogeneity of T3-related gene expression is dependent on cellular CRYM expression in cases of dynamic changes in pericellular T3 concentration.

  16. Equine Chorionic Gonadotropin Modulates the Expression of Genes Related to the Structure and Function of the Bovine Corpus Luteum

    PubMed Central

    Mendes, Gabriela Pacheco; Campos, Danila Barreiro; Baruselli, Pietro Sampaio; Papa, Paula de Carvalho

    2016-01-01

    We hypothesized that stimulatory and superovulatory treatments, using equine chorionic gonadotropin (eCG), modulate the expression of genes related to insulin, cellular modelling and angiogenesis signaling pathways in the bovine corpus luteum (CL). Therefore, we investigated: 1—the effect of these treatments on circulating insulin and somatomedin C concentrations and on gene and protein expression of INSR, IGF1 and IGFR1, as well as other insulin signaling molecules; 2—the effects of eCG on gene and protein expression of INSR, IGF1, GLUT4 and NFKB1A in bovine luteal cells; and 3—the effect of stimulatory and superovulatory treatments on gene and protein expression of ANG, ANGPT1, NOS2, ADM, PRSS2, MMP9 and PLAU. Serum insulin did not differ among groups (P = 0.96). However, serum somatomedin C levels were higher in both stimulated and superovulated groups compared to the control (P = 0.01). In stimulated cows, lower expression of INSR mRNA and higher expression of NFKB1A mRNA and IGF1 protein were observed. In superovulated cows, lower INSR mRNA expression, but higher INSR protein expression and higher IGF1, IGFR1 and NFKB1A gene and protein expression were observed. Expression of angiogenesis and cellular modelling pathway-related factors were as follows: ANGPT1 and PLAU protein expression were higher and MMP9 gene and protein expression were lower in stimulated animals. In superovulated cows, ANGPT1 mRNA expression was higher and ANG mRNA expression was lower. PRSS2 gene and protein expression were lower in both stimulated and superovulated animals related to the control. In vitro, eCG stimulated luteal cells P4 production as well as INSR and GLUT4 protein expression. In summary, our results suggest that superovulatory treatment induced ovarian proliferative changes accompanied by increased expression of genes providing the CL more energy substrate, whereas stimulatory treatment increased lipogenic activity, angiogenesis and plasticity of the extracellular

  17. Myocardial Gene Transfer: Routes and Devices for Regulation of Transgene Expression by Modulation of Cellular Permeability

    PubMed Central

    Katz, Michael G.; Bridges, Charles R.

    2013-01-01

    Abstract Heart diseases are major causes of morbidity and mortality in Western society. Gene therapy approaches are becoming promising therapeutic modalities to improve underlying molecular processes affecting failing cardiomyocytes. Numerous cardiac clinical gene therapy trials have yet to demonstrate strong positive results and advantages over current pharmacotherapy. The success of gene therapy depends largely on the creation of a reliable and efficient delivery method. The establishment of such a system is determined by its ability to overcome the existing biological barriers, including cellular uptake and intracellular trafficking as well as modulation of cellular permeability. In this article, we describe a variety of physical and mechanical methods, based on the transient disruption of the cell membrane, which are applied in nonviral gene transfer. In addition, we focus on the use of different physiological techniques and devices and pharmacological agents to enhance endothelial permeability. Development of these methods will undoubtedly help solve major problems facing gene therapy. PMID:23427834

  18. Alcohol consumption modulates host defense in rhesus macaques by altering gene expression in circulating leukocytes

    PubMed Central

    Barr, Tasha; Girke, Thomas; Sureshchandra, Suhas; Nguyen, Christina; Grant, Kathleen; Messaoudi, Ilhem

    2015-01-01

    Several lines of evidence indicate that chronic alcohol use disorder leads to increased susceptibility to several viral and bacterial infections whereas moderate alcohol consumption decreases incidence of colds and improves immune responses to some pathogens. In line with these observations, we recently showed that heavy ethanol intake (average blood ethanol concentrations (BECs) >80 mg/dl) suppressed, whereas moderate alcohol consumption (BEC <50 mg/dl) enhanced T and B-cell responses to Modified Vaccinia Ankara (MVA) vaccination in a nonhuman primate model of voluntary ethanol consumption. To uncover the molecular basis for impaired immunity with heavy alcohol consumption and enhanced immune response with moderate alcohol consumption, we performed a transcriptome analysis using PBMCs isolated on day 7 post-MVA vaccination, the earliest time point at which we detected differences in T-cell and antibody responses. Overall, chronic heavy alcohol consumption reduced expression of immune genes involved in response to infection and wound healing, and increased expression of genes associated with the development of lung inflammatory disease and cancer. In contrast, chronic moderate alcohol consumption upregulated expression of genes involved in immune response and reduced expression of genes involved in cancer. In order to uncover mechanisms underlying the alterations in PBMC transcriptomes, we profiled the expression of microRNAs within the same samples. Chronic heavy ethanol consumption altered the levels of several microRNAs involved in cancer and immunity and known to regulate expression of mRNAs differentially expressed in our dataset. PMID:26621857

  19. Alcohol Consumption Modulates Host Defense in Rhesus Macaques by Altering Gene Expression in Circulating Leukocytes.

    PubMed

    Barr, Tasha; Girke, Thomas; Sureshchandra, Suhas; Nguyen, Christina; Grant, Kathleen; Messaoudi, Ilhem

    2016-01-01

    Several lines of evidence indicate that chronic alcohol use disorder leads to increased susceptibility to several viral and bacterial infections, whereas moderate alcohol consumption decreases the incidence of colds and improves immune responses to some pathogens. In line with these observations, we recently showed that heavy ethanol intake (average blood ethanol concentrations > 80 mg/dl) suppressed, whereas moderate alcohol consumption (blood ethanol concentrations < 50 mg/dl) enhanced, T and B cell responses to modified vaccinia Ankara vaccination in a nonhuman primate model of voluntary ethanol consumption. To uncover the molecular basis for impaired immunity with heavy alcohol consumption and enhanced immune response with moderate alcohol consumption, we performed a transcriptome analysis using PBMCs isolated on day 7 post-modified vaccinia Ankara vaccination, the earliest time point at which we detected differences in T cell and Ab responses. Overall, chronic heavy alcohol consumption reduced the expression of immune genes involved in response to infection and wound healing and increased the expression of genes associated with the development of lung inflammatory disease and cancer. In contrast, chronic moderate alcohol consumption upregulated the expression of genes involved in immune response and reduced the expression of genes involved in cancer. To uncover mechanisms underlying the alterations in PBMC transcriptomes, we profiled the expression of microRNAs within the same samples. Chronic heavy ethanol consumption altered the levels of several microRNAs involved in cancer and immunity and known to regulate the expression of mRNAs differentially expressed in our data set.

  20. Resveratrol and fenofibrate ameliorate fructose-induced nonalcoholic steatohepatitis by modulation of genes expression

    PubMed Central

    Abd El-Haleim, Enas A; Bahgat, Ashraf K; Saleh, Samira

    2016-01-01

    AIM: To evaluate the effect of resveratrol, alone and in combination with fenofibrate, on fructose-induced metabolic genes abnormalities in rats. METHODS: Giving a fructose-enriched diet (FED) to rats for 12 wk was used as a model for inducing hepatic dyslipidemia and insulin resistance. Adult male albino rats (150-200 g) were divided into a control group and a FED group which was subdivided into 4 groups, a control FED, fenofibrate (FENO) (100 mg/kg), resveratrol (RES) (70 mg/kg) and combined treatment (FENO + RES) (half the doses). All treatments were given orally from the 9th week till the end of experimental period. Body weight, oral glucose tolerance test (OGTT), liver index, glucose, insulin, insulin resistance (HOMA), serum and liver triglycerides (TGs), oxidative stress (liver MDA, GSH and SOD), serum AST, ALT, AST/ALT ratio and tumor necrosis factor-α (TNF-α) were measured. Additionally, hepatic gene expression of suppressor of cytokine signaling-3 (SOCS-3), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), malonyl CoA decarboxylase (MCD), transforming growth factor-β1 (TGF-β1) and adipose tissue genes expression of leptin and adiponectin were investigated. Liver sections were taken for histopathological examination and steatosis area were determined. RESULTS: Rats fed FED showed damaged liver, impairment of glucose tolerance, insulin resistance, oxidative stress and dyslipidemia. As for gene expression, there was a change in favor of dyslipidemia and nonalcoholic steatohepatitis (NASH) development. All treatment regimens showed some benefit in reversing the described deviations. Fructose caused deterioration in hepatic gene expression of SOCS-3, SREBP-1c, FAS, MDA and TGF-β1 and in adipose tissue gene expression of leptin and adiponectin. Fructose showed also an increase in body weight, insulin resistance (OGTT, HOMA), serum and liver TGs, hepatic MDA, serum AST, AST/ALT ratio and TNF-α compared to control. All

  1. A gene-expression-based neural code for food abundance that modulates lifespan

    PubMed Central

    Entchev, Eugeni V; Patel, Dhaval S; Zhan, Mei; Steele, Andrew J; Lu, Hang; Ch'ng, QueeLim

    2015-01-01

    How the nervous system internally represents environmental food availability is poorly understood. Here, we show that quantitative information about food abundance is encoded by combinatorial neuron-specific gene-expression of conserved TGFβ and serotonin pathway components in Caenorhabditis elegans. Crosstalk and auto-regulation between these pathways alters the shape, dynamic range, and population variance of the gene-expression responses of daf-7 (TGFβ) and tph-1 (tryptophan hydroxylase) to food availability. These intricate regulatory features provide distinct mechanisms for TGFβ and serotonin signaling to tune the accuracy of this multi-neuron code: daf-7 primarily regulates gene-expression variability, while tph-1 primarily regulates the dynamic range of gene-expression responses. This code is functional because daf-7 and tph-1 mutations bidirectionally attenuate food level-dependent changes in lifespan. Our results reveal a neural code for food abundance and demonstrate that gene expression serves as an additional layer of information processing in the nervous system to control long-term physiology. DOI: http://dx.doi.org/10.7554/eLife.06259.001 PMID:25962853

  2. A gene-expression-based neural code for food abundance that modulates lifespan.

    PubMed

    Entchev, Eugeni V; Patel, Dhaval S; Zhan, Mei; Steele, Andrew J; Lu, Hang; Ch'ng, QueeLim

    2015-05-12

    How the nervous system internally represents environmental food availability is poorly understood. Here, we show that quantitative information about food abundance is encoded by combinatorial neuron-specific gene-expression of conserved TGFβ and serotonin pathway components in Caenorhabditis elegans. Crosstalk and auto-regulation between these pathways alters the shape, dynamic range, and population variance of the gene-expression responses of daf-7 (TGFβ) and tph-1 (tryptophan hydroxylase) to food availability. These intricate regulatory features provide distinct mechanisms for TGFβ and serotonin signaling to tune the accuracy of this multi-neuron code: daf-7 primarily regulates gene-expression variability, while tph-1 primarily regulates the dynamic range of gene-expression responses. This code is functional because daf-7 and tph-1 mutations bidirectionally attenuate food level-dependent changes in lifespan. Our results reveal a neural code for food abundance and demonstrate that gene expression serves as an additional layer of information processing in the nervous system to control long-term physiology.

  3. Systems toxicology of chemically induced liver and kidney injuries: histopathology‐associated gene co‐expression modules

    PubMed Central

    Te, Jerez A.; AbdulHameed, Mohamed Diwan M.

    2016-01-01

    Abstract Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non‐invasive diagnostic tests. Mapping chemical injuries to organ‐specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co‐expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project‐Genomics Assisted Toxicity Evaluation System (TG‐GATEs) – a toxicogenomics database containing organ‐specific gene expression data matched to dose‐ and time‐dependent chemical exposures and adverse histopathology assessments in Sprague–Dawley rats. We proposed a protocol for selecting gene modules associated with chemical‐induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose‐dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical‐time‐dose combination, correlated with the severity of histopathological damage in a dose‐dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:26725466

  4. Systems toxicology of chemically induced liver and kidney injuries: histopathology-associated gene co-expression modules.

    PubMed

    Te, Jerez A; AbdulHameed, Mohamed Diwan M; Wallqvist, Anders

    2016-09-01

    Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co-expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATEs) - a toxicogenomics database containing organ-specific gene expression data matched to dose- and time-dependent chemical exposures and adverse histopathology assessments in Sprague-Dawley rats. We proposed a protocol for selecting gene modules associated with chemical-induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose-dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical-time-dose combination, correlated with the severity of histopathological damage in a dose-dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.

  5. Modulation of mitochondrial gene expression in pulmonary epithelial cells exposed to oxidants.

    PubMed Central

    Janssen, Y M; Driscoll, K E; Timblin, C R; Hassenbein, D; Mossman, B T

    1998-01-01

    Oxidants are important in the regulation of signal transduction and gene expression. Multiple classes of genes are transcriptionally activated by oxidants and are implicated in different phenotypic responses. In the present study, we performed differential mRNA display to elucidate genes that are induced or repressed after exposure of rat lung epithelial (RLE) cells to H2O2 or crocidolite asbestos, a pathogenic mineral that generates oxidants. After 8 or 24 hr of exposure, RNA was extracted, reverse transcribed, and amplified by polymerase chain reaction with degenerate primers to visualize alterations in gene expression. The seven clones obtained were sequenced and encoded the mitochondrial genes, NADH dehydrogenase subunits ND5 and ND6, and 16S ribosomal RNA. Evaluation of their expression by Northern blot analysis revealed increased expression of 16S rRNA after 1 or 2 hr of exposure to H2O2. At later time periods (4 and 24 hr), mRNA levels of 16S rRNA and NADH dehydrogenase were decreased in H2O2-treated RLE cells when compared to sham controls. Crocidolite asbestos caused increases in 16S rRNA levels after 8 hr of exposure, whereas after 24 hr of exposure to asbestos, 16S rRNA levels were decreased in comparison to sham controls. In addition to these oxidants, the nitric oxide generator spermine NONOate caused similar decreases in NADH dehydrogenase mRNA levels after 4 hr of exposure. The present data and previous studies demonstrated that all oxidants examined resulted in apoptosis in RLE cells during the time frame where alterations of mitochondrial gene expression were observed. As the mitochondrion is a major organelle that controls apoptosis, alterations in expression of mitochondrial genes may be involved in the regulation of apoptosis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9788897

  6. Ionic modulation of QPX stability as a nano-switch regulating gene expression in neurons

    NASA Astrophysics Data System (ADS)

    Baghaee Ravari, Soodeh

    G-quadruplexes (G-QPX) have been the subject of intense research due to their unique structural configuration and potential applications, particularly their functionality in biological process as a novel type of nano--switch. They have been found in critical regions of the human genome such as telomeres, promoter regions, and untranslated regions of RNA. About 50% of human DNA in promoters has G-rich regions with the potential to form G-QPX structures. A G-QPX might act mechanistically as an ON/OFF switch, regulating gene expression, meaning that the formation of G-QPX in a single strand of DNA disrupts double stranded DNA, prevents the binding of transcription factors (TF) to their recognition sites, resulting in gene down-regulation. Although there are numerous studies on biological roles of G-QPXs in oncogenes, their potential formation in neuronal cells, in particular upstream of transcription start sites, is poorly investigated. The main focus of this research is to identify stable G-QPXs in the 97bp active promoter region of the choline acetyltransferase (ChAT) gene, the terminal enzyme involved in synthesis of the neurotransmitter acetylcholine, and to clarify ionic modulation of G-QPX nanostructures through the mechanism of neural action potentials. Different bioinformatics analyses (in silico), including the QGRS, quadparser and G4-Calculator programs, have been used to predict stable G-QPX in the active promoter region of the human ChAT gene, located 1000bp upstream from the TATA box. The results of computational studies (using those three different algorithms) led to the identification of three consecutive intramolecular G-QPX structures in the negative strand (ChAT G17-2, ChAT G17, and ChAT G29) and one intramolecular G-QPX structure in the positive strand (ChAT G30). Also, the results suggest the possibility that nearby G-runs in opposed DNA strands with a short distance of each other may be able to form a stable intermolecular G-QPX involving two DNA

  7. Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression

    PubMed Central

    Kim, Hyunmi; Lee, Kyeyoon; Hwang, Hyunsik; Kim, Beom-Gi

    2014-01-01

    Abscisic acid (ABA) is a phytohormone that plays important roles in the regulation of seed dormancy and adaptation to abiotic stresses. Previous work identified OsPYL/RCARs as functional ABA receptors regulating ABA-dependent gene expression in Oryza sativa. OsPYL/RCARs thus are considered to be good candidate genes for improvement of abiotic stress tolerance in crops. This work demonstrates that the cytosolic ABA receptor OsPYL/RCAR5 in O. sativa functions as a positive regulator of abiotic stress-responsive gene expression. The constitutive expression of OsPYL/RCAR5 in rice driven by the Zea mays ubiquitin promoter induced the expression of many stress-responsive genes even under normal growth conditions and resulted in improved drought and salt stress tolerance in rice. However, it slightly reduced plant height under paddy field conditions and severely reduced total seed yield. This suggests that, although exogenous expression of OsPYL/RCAR5 is able to improve abiotic stress tolerance in rice, fine regulation of its expression will be required to avoid deleterious effects on agricultural traits. PMID:24474809

  8. Delivery of RNA-based molecules to human hematopoietic stem and progenitor cells for modulation of gene expression.

    PubMed

    Diener, Yvonne; Bosio, Andreas; Bissels, Ute

    2016-11-01

    Gene modulation of human hematopoietic stem and progenitor cells (HSPCs) harbors great potential for therapeutic application of these cells and presents a versatile tool in basic research to enhance our understanding of HSPC biology. However, stable genetic modification might be adverse, particularly in clinical settings. Here, we review a broad range of approaches to transient, nonviral modulation of protein expression with a focus on RNA-based methods. We compare different delivery methods and describe the usefulness of RNA molecules for overexpression as well as downregulation of proteins in HSPCs.

  9. Dietary Zinc Oxide Modulates Antioxidant Capacity, Small Intestine Development, and Jejunal Gene Expression in Weaned Piglets.

    PubMed

    Zhu, Cui; Lv, Hang; Chen, Zhuang; Wang, Li; Wu, Xiuju; Chen, Zhongjian; Zhang, Weina; Liang, Rui; Jiang, Zongyong

    2017-02-01

    The current study was conducted to investigate the effects of dietary zinc oxide (ZnO) on the antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Ninety-six 21-day-old piglets were randomly assigned to three dietary treatments. Each treatment had eight replicates with four piglets per replicate. The piglets were fed either control diet (control) or control diet supplemented with in-feed antibiotics (300 mg/kg chlortetracycline and 60 mg/kg colistin sulfate) or pharmacological doses of ZnO (3000 mg/kg). The experiment lasted 4 weeks. Blood samples were collected at days 14 and 28, while intestinal samples were harvested at day 28 of the experiment. Dietary high doses of ZnO supplementation significantly increased the body weight (BW) at day 14 and average daily gain (ADG) of days 1 to 14 in weaned piglets, when compared to control group (P < 0.05). The incidence of diarrhea of piglets fed ZnO-supplemented diets, at either days 1 to 14, days 14 to 28, or the overall experimental period, was significantly decreased in comparison with those in other groups (P < 0.05). Supplementation with ZnO increased the villus height of the duodenum and ileum in weaned piglets and decreased the crypt depth of the duodenum, when compared to the other groups (P < 0.05). Dietary ZnO supplementation decreased the malondialdehyde (MDA) concentration at either day 14 or day 28, but increased total superoxide dismutase (T-SOD) at day 14, when compared to that in the control (P < 0.05). ZnO supplementation upregulated the messenger RNA (mRNA) expression of zonula occludens-1 (ZO-1) and occludin in the jejunum mucosa of weaned piglets, compared to those in the control (P < 0.05). The pro-inflammatory cytokine interleukin-lβ (IL-1β) mRNA expression in the jejunum mucosa was downregulated in the ZnO-supplemented group, compared with the control (P < 0.05). Both in-feed antibiotics and ZnO supplementation decreased the m

  10. Modulation of Gene Expression in Contextual Fear Conditioning in the Rat

    PubMed Central

    Macchi, Monica; Ciampini, Cristina; Bernardi, Rodolfo; Baldi, Elisabetta; Bucherelli, Corrado; Brunelli, Marcello; Scuri, Rossana

    2013-01-01

    In contextual fear conditioning (CFC) a single training leads to long-term memory of context-aversive electrical foot-shocks association. Mid-temporal regions of the brain of trained and naive rats were obtained 2 days after conditioning and screened by two-directional suppression subtractive hybridization. A pool of differentially expressed genes was identified and some of them were randomly selected and confirmed with qRT-PCR assay. These transcripts showed high homology for rat gene sequences coding for proteins involved in different cellular processes. The expression of the selected transcripts was also tested in rats which had freely explored the experimental apparatus (exploration) and in rats to which the same number of aversive shocks had been administered in the same apparatus, but temporally compressed so as to make the association between painful stimuli and the apparatus difficult (shock-only). Some genes resulted differentially expressed only in the rats subjected to CFC, others only in exploration or shock-only rats, whereas the gene coding for translocase of outer mitochondrial membrane 20 protein and nardilysin were differentially expressed in both CFC and exploration rats. For example, the expression of stathmin 1 whose transcripts resulted up regulated was also tested to evaluate the transduction and protein localization after conditioning. PMID:24278235

  11. (Homo)glutathione depletion modulates host gene expression during the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti.

    PubMed

    Pucciariello, Chiara; Innocenti, Gilles; Van de Velde, Willem; Lambert, Annie; Hopkins, Julie; Clément, Mathilde; Ponchet, Michel; Pauly, Nicolas; Goormachtig, Sofie; Holsters, Marcelle; Puppo, Alain; Frendo, Pierre

    2009-11-01

    Under nitrogen-limiting conditions, legumes interact with symbiotic rhizobia to produce nitrogen-fixing root nodules. We have previously shown that glutathione and homoglutathione [(h)GSH] deficiencies impaired Medicago truncatula symbiosis efficiency, showing the importance of the low M(r) thiols during the nodulation process in the model legume M. truncatula. In this study, the plant transcriptomic response to Sinorhizobium meliloti infection under (h)GSH depletion was investigated using cDNA-amplified fragment length polymorphism analysis. Among 6,149 expression tags monitored, 181 genes displayed significant differential expression between inoculated control and inoculated (h)GSH depleted roots. Quantitative reverse transcription polymerase chain reaction analysis confirmed the changes in mRNA levels. This transcriptomic analysis shows a down-regulation of genes involved in meristem formation and a modulation of the expression of stress-related genes in (h)GSH-depleted plants. Promoter-beta-glucuronidase histochemical analysis showed that the putative MtPIP2 aquaporin might be up-regulated during nodule meristem formation and that this up-regulation is inhibited under (h)GSH depletion. (h)GSH depletion enhances the expression of salicylic acid (SA)-regulated genes after S. meliloti infection and the expression of SA-regulated genes after exogenous SA treatment. Modification of water transport and SA signaling pathway observed under (h)GSH deficiency contribute to explain how (h)GSH depletion alters the proper development of the symbiotic interaction.

  12. Modulation of Estrogen Response Element-Driven Gene Expressions and Cellular Proliferation with Polar Directions by Designer Transcription Regulators

    PubMed Central

    Muyan, Mesut; Güpür, Gizem; Yaşar, Pelin; Ayaz, Gamze; User, Sırma Damla; Kazan, Hasan Hüseyin; Huang, Yanfang

    2015-01-01

    Estrogen receptor α (ERα), as a ligand-dependent transcription factor, mediates 17β-estradiol (E2) effects. ERα is a modular protein containing a DNA binding domain (DBD) and transcription activation domains (AD) located at the amino- and carboxyl-termini. The interaction of the E2-activated ERα dimer with estrogen response elements (EREs) of genes constitutes the initial step in the ERE-dependent signaling pathway necessary for alterations of cellular features. We previously constructed monomeric transcription activators, or monotransactivators, assembled from an engineered ERE-binding module (EBM) using the ERα-DBD and constitutively active ADs from other transcription factors. Monotransactivators modulated cell proliferation by activating and repressing ERE-driven gene expressions that simulate responses observed with E2-ERα. We reasoned here that integration of potent heterologous repression domains (RDs) into EBM could generate monotransrepressors that alter ERE-bearing gene expressions and cellular proliferation in directions opposite to those observed with E2-ERα or monotransactivators. Consistent with this, monotransrepressors suppressed reporter gene expressions that emulate the ERE-dependent signaling pathway. Moreover, a model monotransrepressor regulated DNA synthesis, cell cycle progression and proliferation of recombinant adenovirus infected ER-negative cells through decreasing as well as increasing gene expressions with polar directions compared with E2-ERα or monotransactivator. Our results indicate that an ‘activator’ or a ‘repressor’ possesses both transcription activating/enhancing and repressing/decreasing abilities within a chromatin context. Offering a protein engineering platform to alter signal pathway-specific gene expressions and cell growth, our approach could also be used for the development of tools for epigenetic modifications and for clinical interventions wherein multigenic de-regulations are an issue. PMID:26295471

  13. Mitomycin C modulates the circadian oscillation of clock gene period 2 expression through attenuating the glucocorticoid signaling in mouse fibroblasts.

    PubMed

    Kusunose, Naoki; Matsunaga, Naoya; Kimoto, Kenichi; Akamine, Takahiro; Hamamura, Kengo; Koyanagi, Satoru; Ohdo, Shigehiro; Kubota, Toshiaki

    2015-11-06

    Clock gene regulates the circadian rhythm of various physiological functions. The expression of clock gene has been shown to be attenuated by certain drugs, resulting in a rhythm disorder. Mitomycin C (MMC) is often used in combination with ophthalmic surgery, especially in trabeculectomy, a glaucoma surgical procedure. The purpose of this study was to investigate the influence of MMC on clock gene expression in fibroblasts, the target cells of MMC. Following MMC treatment, Bmal1 mRNA levels was significantly decreased, whereas Dbp, Per1, and Rev-erbα mRNA levels were significantly increased in the mouse fibroblast cell line NIH3T3 cells. Microarray analysis was performed to explore of the gene(s) responsible for MMC-induced alteration of clock gene expression, and identified Nr3c1 gene encoding glucocorticoid receptor (GR) as a candidate. MMC suppressed the induction of Per1 mRNA by dexamethasone (DEX), ligand of GR, in NIH3T3 cells. MMC also modulated the DEX-driven circadian oscillations of Per2::Luciferase bioluminescence in mouse-derived ocular fibroblasts. Our results demonstrate a previously unknown effect of MMC in GR signaling and the circadian clock system. The present findings suggest that MMC combined with trabeculectomy could increase the risk for a local circadian rhythm-disorder at the ocular surface.

  14. Modulation of blood cell gene expression by DHA supplementation in hypertriglyceridemic men

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our previous study with docosahexaenoic acid (DHA) supplementation to hypertriglyceridemic men showed that DHA reduced several risk factors for CVD, including the plasma concentration of inflammatory markers. To determine the effect of DHA supplementation on the global gene expression pattern, we pe...

  15. Hormonal Modulation of Breast Cancer Gene Expression: Implications for Intrinsic Subtyping in Premenopausal Women

    PubMed Central

    Bernhardt, Sarah M.; Dasari, Pallave; Walsh, David; Townsend, Amanda R.; Price, Timothy J.; Ingman, Wendy V.

    2016-01-01

    Clinics are increasingly adopting gene-expression profiling to diagnose breast cancer subtype, providing an intrinsic, molecular portrait of the tumor. For example, the PAM50-based Prosigna test quantifies expression of 50 key genes to classify breast cancer subtype, and this method of classification has been demonstrated to be superior over traditional immunohistochemical methods that detect proteins, to predict risk of disease recurrence. However, these tests were largely developed and validated using breast cancer samples from postmenopausal women. Thus, the accuracy of such tests has not been explored in the context of the hormonal fluctuations in estrogen and progesterone that occur during the menstrual cycle in premenopausal women. Concordance between traditional methods of subtyping and the new tests in premenopausal women is likely to depend on the stage of the menstrual cycle at which the tissue sample is taken and the relative effect of hormones on expression of genes versus proteins. The lack of knowledge around the effect of fluctuating estrogen and progesterone on gene expression in breast cancer patients raises serious concerns for intrinsic subtyping in premenopausal women, which comprise about 25% of breast cancer diagnoses. Further research on the impact of the menstrual cycle on intrinsic breast cancer profiling is required if premenopausal women are to benefit from the new technology of intrinsic subtyping. PMID:27896218

  16. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera

    PubMed Central

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    ABSTRACT Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality. PMID:26507253

  17. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera.

    PubMed

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality.

  18. Preimplantation embryo-secreted factors modulate maternal gene expression in rat uterus.

    PubMed

    Yamagami, Kazuki; Islam, M Rashedul; Yoshii, Yuka; Mori, Kazuki; Tashiro, Kosuke; Yamauchi, Nobuhiko

    2016-05-01

    In mammalian reproduction, embryo implantation into the uterus is spatiotemporally regulated by a complex process triggered by a number of factors. Although previous studies have suggested that uterine receptivity is mediated by blastocyst-derived factors, specific functions of embryos remain to be defined during preimplantation. Therefore, the present study was conducted to identify the maternal genes regulated by embryo-secreted factors in the rat uterus. RNA-sequencing (RNA-seq) data revealed that 10 genes are up-regulated in the delayed implantation uterus compared with the pseudopregnancy uterus. The RNA-seq results were further verified by real-time quantitative polymerase chain reaction. Sulf1 expression is significantly (P < 0.05) induced in the delayed implantation uterus, although Areg, Calca, Fxyd4 and Lamc3 show a definite but non-statistically significant increase in their expression levels. During early pregnancy, the levels of Areg, Calca, Fxyd4, Lamc3 and Sulf1 expression at 3.5 days post coitus (dpc) are significantly (P < 0.05) higher than those at 1.5 dpc. Treatment with embryo-conditioned media revealed that Lamc3 and Sulf1 are up-regulated compared with the other genes studied. Thus, embryo-derived factors regulate maternal gene expression, with Lamc3 and Sulf1 possibly being suitable markers for a response study of embryo-secreted factors to improve our understanding of embryo-maternal communication.

  19. Estrogenic status modulates aryl hydrocarbon receptor - mediated hepatic gene expression and carcinogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogenic status is thought to influence the cancer risk in women and has been reported to affect toxicity of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in animals. The objective of this study was to examine the influence of estradiol (E2) on hepatic gene expression changes mediated by 7,...

  20. Anti-tumor necrosis factor modulates anti-CD3-triggered T cell cytokine gene expression in vivo.

    PubMed Central

    Ferran, C; Dautry, F; Mérite, S; Sheehan, K; Schreiber, R; Grau, G; Bach, J F; Chatenoud, L

    1994-01-01

    De novo expression of TNF, IFN gamma, IL-3, IL-4, and IL-6 genes was initiated rapidly by treatment of mice with anti-CD3. A specific feature of this reaction was that TNF was derived exclusively from T cells. TNF was produced both as a mature soluble trimeric protein and as a 26-kD anti-TNF-reactive protein compatible with membrane-anchored TNF. Pretreatment with anti-TNF did not affect anti-CD3-triggered TNF mRNA expression in T cells. In contrast, in vivo and in vitro anti-TNF treatment upregulated anti-CD3-induced IFN gamma mRNA expression and inhibited IL-4 mRNA expression. These latter effects were not dependent on TNF neutralization: pretreatment with soluble recombinant 55-kD TNF receptor (TBPI) as an alternative TNF-neutralizing agent did not modify the anti-CD3-induced cytokine profile. These results suggest that a direct interaction between anti-TNF and T cell membrane-anchored TNF could account for the observed modulation of cytokine gene expression. The increased expression of INF gamma mRNA observed in anti-TNF-treated animals correlated with a decrease in IL-3 and IL-6 mRNA expression. Conversely, IFN gamma blockade by a neutralizing anti-IFN gamma mAb led to a substantial increase in both IL-3 and IL-6 gene expression induced by anti-CD3. Taken together, these results strongly argue for the existence, in the anti-CD3-induced cytokine cascade, of IFN gamma-dependent regulation of IL-3 production, which in turn modulates IL-6 production. Images PMID:8182150

  1. Dynamic Modulation of Thymidylate Synthase Gene Expression and Fluorouracil Sensitivity in Human Colorectal Cancer Cells

    PubMed Central

    Wakasa, Kentaro; Kawabata, Rumi; Nakao, Seiki; Hattori, Hiroyoshi; Taguchi, Kenichi; Uchida, Junji; Yamanaka, Takeharu; Maehara, Yoshihiko; Fukushima, Masakazu; Oda, Shinya

    2015-01-01

    Biomarkers have revolutionized cancer chemotherapy. However, many biomarker candidates are still in debate. In addition to clinical studies, a priori experimental approaches are needed. Thymidylate synthase (TS) expression is a long-standing candidate as a biomarker for 5-fluorouracil (5-FU) treatment of cancer patients. Using the Tet-OFF system and a human colorectal cancer cell line, DLD-1, we first constructed an in vitro system in which TS expression is dynamically controllable. Quantitative assays have elucidated that TS expression in the transformant was widely modulated, and that the dynamic range covered 15-fold of the basal level. 5-FU sensitivity of the transformant cells significantly increased in response to downregulated TS expression, although being not examined in the full dynamic range because of the doxycycline toxicity. Intriguingly, our in vitro data suggest that there is a linear relationship between TS expression and the 5-FU sensitivity in cells. Data obtained in a mouse model using transformant xenografts were highly parallel to those obtained in vitro. Thus, our in vitro and in vivo observations suggest that TS expression is a determinant of 5-FU sensitivity in cells, at least in this specific genetic background, and, therefore, support the possibility of TS expression as a biomarker for 5-FU-based cancer chemotherapy. PMID:25881233

  2. Modulation of gene expression in endothelial cells in response to high LET nickel ion irradiation.

    PubMed

    Beck, Michaël; Rombouts, Charlotte; Moreels, Marjan; Aerts, An; Quintens, Roel; Tabury, Kevin; Michaux, Arlette; Janssen, Ann; Neefs, Mieke; Ernst, Eric; Dieriks, Birger; Lee, Ryonfa; De Vos, Winnok H; Lambert, Charles; Van Oostveldt, Patrick; Baatout, Sarah

    2014-10-01

    Ionizing radiation can elicit harmful effects on the cardiovascular system at high doses. Endothelial cells are critical targets in radiation-induced cardiovascular damage. Astronauts performing a long-term deep space mission are exposed to consistently higher fluences of ionizing radiation that may accumulate to reach high effective doses. In addition, cosmic radiation contains high linear energy transfer (LET) radiation that is known to produce high values of relative biological effectiveness (RBE). The aim of this study was to broaden the understanding of the molecular response to high LET radiation by investigating the changes in gene expression in endothelial cells. For this purpose, a human endothelial cell line (EA.hy926) was irradiated with accelerated nickel ions (Ni) (LET, 183 keV/µm) at doses of 0.5, 2 and 5 Gy. DNA damage was measured 2 and 24 h following irradiation by γ-H2AX foci detection by fluorescence microscopy and gene expression changes were measured by microarrays at 8 and 24 h following irradiation. We found that exposure to accelerated nickel particles induced a persistent DNA damage response up to 24 h after treatment. This was accompanied by a downregulation in the expression of a multitude of genes involved in the regulation of the cell cycle and an upregulation in the expression of genes involved in cell cycle checkpoints. In addition, genes involved in DNA damage response, oxidative stress, apoptosis and cell-cell signaling (cytokines) were found to be upregulated. An in silico analysis of the involved genes suggested that the transcription factors, E2F and nuclear factor (NF)-κB, may be involved in these cellular responses.

  3. TR4 orphan nuclear receptor functions as an apoptosis modulator via regulation of Bcl-2 gene expression

    SciTech Connect

    Kim, Eungseok; Ma, Wen-Lung; Lin, Din-Lii; Inui, Shigeki; Chen, Yuh-Ling; Chang, Chawnshang . E-mail: chang@urmc.rochester.edu

    2007-09-21

    While Bcl-2 plays an important role in cell apoptosis, its relationship to the orphan nuclear receptors remains unclear. Here we report that mouse embryonic fibroblast (MEF) cells prepared from TR4-deficient (TR4{sup -} {sup /-}) mice are more susceptible to UV-irradiation mediated apoptosis compared to TR4-Wildtype (TR4 {sup +/+}) littermates. Substantial increasing TR4{sup -} {sup /-} MEF apoptosis to UV-irradiation was correlated to the down-regulation of Bcl-2 RNA and protein expression and collaterally increased caspase-3 activity. Furthermore, this TR4-induced Bcl-2 gene expression can be suppressed by co-transfection with TR4 coregulators, such as androgen receptor (AR) and receptor-interacting protein 140 (RIP140) in a dose-dependent manner. Together, our results demonstrate that TR4 might function as an apoptosis modulator through induction of Bcl-2 gene expression.

  4. LIN28A Modulates Splicing and Gene Expression Programs in Breast Cancer Cells.

    PubMed

    Yang, Jun; Bennett, Brian D; Luo, Shujun; Inoue, Kaoru; Grimm, Sara A; Schroth, Gary P; Bushel, Pierre R; Kinyamu, H Karimi; Archer, Trevor K

    2015-09-01

    LIN28 is an evolutionarily conserved RNA-binding protein with critical functions in developmental timing and cancer. However, the molecular mechanisms underlying LIN28's oncogenic properties are yet to be described. RNA-protein immunoprecipitation coupled with genome-wide sequencing (RIP-Seq) analysis revealed significant LIN28 binding within 843 mRNAs in breast cancer cells. Many of the LIN28-bound mRNAs are implicated in the regulation of RNA and cell metabolism. We identify heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a protein with multiple roles in mRNA metabolism, as a LIN28-interacting partner. Subsequently, we used a custom computational method to identify differentially spliced gene isoforms in LIN28 and hnRNP A1 small interfering RNA (siRNA)-treated cells. The results reveal that these proteins regulate alternative splicing and steady-state mRNA expression of genes implicated in aspects of breast cancer biology. Notably, cells lacking LIN28 undergo significant isoform switching of the ENAH gene, resulting in a decrease in the expression of the ENAH exon 11a isoform. The expression of ENAH isoform 11a has been shown to be elevated in breast cancers that express HER2. Intriguingly, analysis of publicly available array data from the Cancer Genome Atlas (TCGA) reveals that LIN28 expression in the HER2 subtype is significantly different from that in other breast cancer subtypes. Collectively, our data suggest that LIN28 may regulate splicing and gene expression programs that drive breast cancer subtype phenotypes.

  5. Light-controlled modulation of gene expression by chemical optoepigenetic probes.

    PubMed

    Reis, Surya A; Ghosh, Balaram; Hendricks, J Adam; Szantai-Kis, D Miklos; Törk, Lisa; Ross, Kenneth N; Lamb, Justin; Read-Button, Willis; Zheng, Baixue; Wang, Hongtao; Salthouse, Christopher; Haggarty, Stephen J; Mazitschek, Ralph

    2016-05-01

    Epigenetic gene regulation is a dynamic process orchestrated by chromatin-modifying enzymes. Many of these master regulators exert their function through covalent modification of DNA and histone proteins. Aberrant epigenetic processes have been implicated in the pathophysiology of multiple human diseases. Small-molecule inhibitors have been essential to advancing our understanding of the underlying molecular mechanisms of epigenetic processes. However, the resolution offered by small molecules is often insufficient to manipulate epigenetic processes with high spatiotemporal control. Here we present a generalizable approach, referred to as 'chemo-optical modulation of epigenetically regulated transcription' (COMET), enabling high-resolution, optical control of epigenetic mechanisms based on photochromic inhibitors of human histone deacetylases using visible light. COMET probes may be translated into new therapeutic strategies for diseases where conditional and selective epigenome modulation is required.

  6. Primate Lentiviruses Modulate NF-κB Activity by Multiple Mechanisms to Fine-Tune Viral and Cellular Gene Expression

    PubMed Central

    Heusinger, Elena; Kirchhoff, Frank

    2017-01-01

    The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a complex role during the replication of primate lentiviruses. On the one hand, NF-κB is essential for induction of efficient proviral gene expression. On the other hand, this transcription factor contributes to the innate immune response and induces expression of numerous cellular antiviral genes. Recent data suggest that primate lentiviruses cope with this challenge by boosting NF-κB activity early during the replication cycle to initiate Tat-driven viral transcription and suppressing it at later stages to minimize antiviral gene expression. Human and simian immunodeficiency viruses (HIV and SIV, respectively) initially exploit their accessory Nef protein to increase the responsiveness of infected CD4+ T cells to stimulation. Increased NF-κB activity initiates Tat expression and productive replication. These events happen quickly after infection since Nef is rapidly expressed at high levels. Later during infection, Nef proteins of HIV-2 and most SIVs exert a very different effect: by down-modulating the CD3 receptor, an essential factor for T cell receptor (TCR) signaling, they prevent stimulation of CD4+ T cells via antigen-presenting cells and hence suppress further induction of NF-κB and an effective antiviral immune response. Efficient LTR-driven viral transcription is maintained because it is largely independent of NF-κB in the presence of Tat. In contrast, human immunodeficiency virus type 1 (HIV-1) and its simian precursors have lost the CD3 down-modulation function of Nef and use the late viral protein U (Vpu) to inhibit NF-κB activity by suppressing its nuclear translocation. In this review, we discuss how HIV-1 and other primate lentiviruses might balance viral and antiviral gene expression through a tight temporal regulation of NF-κB activity throughout their replication cycle. PMID:28261165

  7. Vitamin D Metabolites Inhibit Hepatitis C Virus and Modulate Cellular Gene Expression

    PubMed Central

    Gutierrez, Julio A.; Jones, Krysten A.; Flores, Roxana; Singhania, Akul; Woelk, Christopher H.; Schooley, Robert T.; Wyles, David L.

    2015-01-01

    Background and Aims Previous studies suggest that low serum 25-hydroxyvitamin D [25(OH) D] levels are associated with reduced responsiveness to interferon and ribavirin therapy. We investigated the impact of vitamin D metabolites on HCV and cellular gene expression in cultured hepatoma cells. Methods HCV Replicon cell lines stably expressing luciferase reporter constructs (genotype 1b and 2a replicon) or JC1-Luc2a were incubated in the presence of vitamin D2, vitamin D3 or 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Presence of HCV was quantified by a luciferase reporter assay and immunoblot of the Core protein. Synergy of interferon-alpha A/D (IFN-α) and 1,25(OH)2D3 was evaluated using the Chou-Talalay method. Cellular gene expression by microarray analysis using Illumina Bead Chips and real-time quantitative PCR. Results Vitamin D2, D3 and 1,25(OH)2D3 each demonstrated anti-HCV activity at low micro molar concentrations. In vitro conversion from D3 to 25(OH)D3 was shown by LC/MS/MS. Combination indices of 1,25(OH)2D3 and IFN-α demonstrated a synergistic effect (0.23-0.46) and significantly reduced core expression by immunoblot. Differentially expressed genes were identified between Huh7.5.1 cells in the presence and absence of 1,25(OH)2D3 and HCV. Genes involved with classical effects of vitamin D metabolism and excretion were activated, along with genes linked to autophagy such as G-protein coupled receptor 37 (GPR37) and Hypoxia-inducible factor 1-alpha (HIF1a). Additionally, additive effects of 1,25(OH)2D3 and IFN-α were seen on mRNA expression of chemokine motif ligand 20 (CCL20). Conclusions This study shows that vitamin D reduces HCV protein production in cell culture synergistically with IFN-α. Vitamin D also activates gene expression independently and additively with IFN-α and this may explain its ability to aid in the clearance of HCV in vivo. PMID:26594646

  8. Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation.

    PubMed

    Reynard, Louise N; Bui, Catherine; Canty-Laird, Elizabeth G; Young, David A; Loughlin, John

    2011-09-01

    GDF5 is involved in synovial joint development, maintenance and repair, and the rs143383 C/T single nucleotide polymorphism (SNP) located in the 5'UTR of GDF5 is associated, at the genome-wide significance level, with osteoarthritis susceptibility, and with other musculoskeletal phenotypes including height, congenital hip dysplasia and Achilles tendinopathy. There is a significant reduction in the expression of the disease-associated T allele relative to the C allele in synovial joint tissues, an effect influenced by a second SNP (rs143384, C/T) also within the 5'UTR. The differential allelic expression (DAE) imbalance of the C and T alleles of rs143383 varies intra- and inter-individually, suggesting that DAE may be modulated epigenetically. The C alleles of both SNPs form CpG dinucleotides that are potentially amenable to regulation by methylation. Here, we have examined whether DNA methylation regulates GDF5 expression and the allelic imbalance caused by rs143383. We observed methylation of the GDF5 promoter and 5'UTR in cell lines and joint tissues, with demethylation correlating with increased GDF5 expression. The CpG sites created by the C alleles at rs143383 and rs143384 were variably methylated, and treatment of a heterozygous cell line with a demethylating agent further increased the allelic expression imbalance between the C and T alleles. This demonstrates that the genetic effect of the rs143383 SNP on GDF5 expression is modulated epigenetically by DNA methylation. The variability in DAE of rs143383 is therefore partly accounted for by differences in DNA methylation that could influence the penetrance of this allele in susceptibility to common musculoskeletal diseases.

  9. Sesamin modulates gene expression without corresponding effects on fatty acids in Atlantic salmon (Salmo salar L.).

    PubMed

    Schiller Vestergren, A; Wagner, L; Pickova, J; Rosenlund, G; Kamal-Eldin, A; Trattner, S

    2012-09-01

    This study examined the effects of sesamin inclusion in vegetable oil-based diets fed to Atlantic salmon (Salmo salar L.). The diets used differed in n-6/n-3 fatty acid (FA) ratio (0.5 and 1) and sesamin content (high 5.8 g/kg, low 1.16 g/kg and no sesamin). The oils used in the feeds were a mixture of rapeseed, linseed and palm oil. Fish were fed for 4 months. Fatty acids and expression of hepatic genes involved in transcription, lipid uptake, desaturation, elongation and β-oxidation were measured. No major effects on the percentage of DHA in white muscle, liver triacylglycerol and phospholipid fraction were detected. Genes involved in β-oxidation, elongation and desaturation were affected by sesamin addition. Limited effects were seen on any of the transcription factors tested and no effect was seen on the expression of peroxisome proliferator-activated receptors (PPAR). Expression of both SREBP-1 and SREBP-2 increased with sesamin addition. It was concluded that supplementation of fish feed with a high level of sesamin had a negative effect on the growth rate and live weight and did not alter the proportions of DHA in tissues even though gene expression was affected. Thus, more studies are needed to formulate a diet that would increase the percentage of DHA in fish without negative effects on fish growth.

  10. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice.

    PubMed

    Asare, Nana; Duale, Nur; Slagsvold, Hege H; Lindeman, Birgitte; Olsen, Ann Karin; Gromadzka-Ostrowska, Joanna; Meczynska-Wielgosz, Sylwia; Kruszewski, Marcin; Brunborg, Gunnar; Instanes, Christine

    2016-01-01

    Recently, we showed that silver nanoparticles (AgNPs) caused apoptosis, necrosis and DNA strand breaks in different cell models in vitro. These findings warranted analyses of their relevance in vivo. We investigated the genotoxic potential and gene expression profiles of silver particles of nano- (Ag20, 20 nm) and submicron- (Ag200, 200 nm) size and titanium dioxide nanoparticles (TiO2-NPs, 21 nm) in selected tissues from exposed male mice including the gonades. A single dose of 5 mg/kg bw nanoparticles was administered intravenously to male mice derived from C57BL6 (WT) and 8-oxoguanine DNA glycosylase knock-out (Ogg1(-/-) KO). Testis, lung and liver were harvested one and seven days post-exposure and analyzed for DNA strand breaks and oxidized purines employing the Comet assay with Formamidopyrimidine DNA glycosylase (Fpg) treatment, and sperm DNA fragmentation by the sperm chromatin structure assay (SCSA). Based on an initial screening of a panel of 21 genes, seven genes were selected and their expression levels were analyzed in all lung and testis tissues sampled from all animals (n = 6 mice/treatment group) using qPCR. AgNPs, in particular Ag200, caused significantly increased levels of DNA strand breaks and alkali labile sites in lung, seven days post-exposure. Fpg-sensitive lesions were significantly induced in both testis and lung. The transcript level of some key genes; Atm, Rad51, Sod1, Fos and Mmp3, were significantly induced compared to controls, particularly in lung samples from Ag200-exposed KO mice. We conclude that the Ag200 causes genotoxicity and distinct gene expression patterns in selected DNA damage response and repair related genes.

  11. Concordant effects of aromatase inhibitors on gene expression in ER+ Rat and human mammary cancers and modulation of the proteins coded by these genes.

    PubMed

    Lu, Yan; You, Ming; Ghazoui, Zara; Liu, Pengyuan; Vedell, Peter T; Wen, Weidong; Bode, Ann M; Grubbs, Clinton J; Lubet, Ronald A

    2013-11-01

    Aromatase inhibitors are effective in therapy/prevention of estrogen receptor-positive (ER⁺) breast cancers. Rats bearing methylnitrosourea (MNU)-induced ER⁺ mammary cancers were treated with the aromatase inhibitor vorozole (1.25 mg/kg BW/day) for five days. RNA expression showed 162 downregulated and 180 upregulated (P < 0.05 and fold change >1.5) genes. Genes modulated by vorozole were compared with published data from four clinical neoadjuvant trials using aromatase inhibitors (anastrozole or letrozole). More than 30 genes and multiple pathways exhibited synchronous changes in animal and human datasets. Cell-cycle genes related to chromosome condensation in prometaphase [anaphase-prometaphase complex (APC) pathway, including Aurora-A kinase, BUBR1B, TOP2, cyclin A, cyclin B CDC2, and TPX-2)] were downregulated in animal and human studies reflecting the strong antiproliferative effects of aromatase inhibitors. Comparisons of rat arrays with a cell culture study where estrogen was removed from MCF-7 cells showed decreased expression of E2F1-modulated genes as a major altered pathway. Alterations of the cell cycle and E2F-related genes were confirmed in a large independent set of human samples (81 pairs baseline and two weeks anastrozole treatment). Decreases in proliferation-related genes were confirmed at the protein level for cyclin A2, BuRB1, cdc2, Pttg, and TPX-2. Interestingly, the proteins downregulated in tumors were similarly downregulated in vorozole-treated normal rat mammary epithelium. Finally, decreased expression of known estrogen-responsive genes (including TFF, 1,3, progesterone receptor, etc.) were decreased in the animal model. These studies demonstrate that gene expression changes (pathways and individual genes) are similar in humans and the rat model.

  12. Reduced expression of CTR1 gene modulated by mitochondria causes enhanced ethylene response in cytoplasmic male-sterile Brassica juncea.

    PubMed

    Liu, Xunyan; Yang, Xiaodong; Zhao, Xuan; Yang, Jinghua; Zhang, Mingfang

    2012-06-01

    We studied how mitochondria affect ethylene response via modulation of CTR1 expression in cytoplasmic male-sterile (CMS) Brassica juncea. The expression of CTR1 gene was reduced in CMS compared with male-fertile (MF) lines. We observed that hypocotyl and root lengths were shorter than in the MF line during germination in the dark. An enhanced ethylene response was observed in CMS plants as shown by the CMS and maintainer line phenotypes treated with 1-aminocyclopropane-1-carboxylic acid. The phenotype in CMS plants could be recovered to the maintainer line when treated with Ag(+) . One ethylene response gene, plant defensin gene, was detected to be induced in CMS. The behavior of this phenotype could be mimicked by treating the maintainer line with antimycin A that disturbs mitochondrial function, which showed reduced length of hypocotyl and roots, and resulted in similar expression patterns of ethylene-related genes as in CMS. The reduced length of hypocotyl and roots could be recovered to the maintainer line by treatment with gibberellic acid (GA(3) ). In addition, the GA(3) content was reduced in CMS plants and in the MF line treated with antimycin A. Ethylene treatment markedly affects GA(3) content; however, GA(3) did not significantly affect ethylene-related gene expression in regards to regulation of hypocotyl and root length, which suggests that ethylene acts upstream via gibberellin to regulate hypocotyls and root development. Taken together, our results suggest a link between mitochondrial modulation of the ethylene and gibberellin pathway that regulates the development of hypocotyl and roots.

  13. Module Anchored Network Inference: A Sequential Module-Based Approach to Novel Gene Network Construction from Genomic Expression Data on Human Disease Mechanism

    PubMed Central

    Keller, Susanna R.; Lee, Jae K.

    2017-01-01

    Different computational approaches have been examined and compared for inferring network relationships from time-series genomic data on human disease mechanisms under the recent Dialogue on Reverse Engineering Assessment and Methods (DREAM) challenge. Many of these approaches infer all possible relationships among all candidate genes, often resulting in extremely crowded candidate network relationships with many more False Positives than True Positives. To overcome this limitation, we introduce a novel approach, Module Anchored Network Inference (MANI), that constructs networks by analyzing sequentially small adjacent building blocks (modules). Using MANI, we inferred a 7-gene adipogenesis network based on time-series gene expression data during adipocyte differentiation. MANI was also applied to infer two 10-gene networks based on time-course perturbation datasets from DREAM3 and DREAM4 challenges. MANI well inferred and distinguished serial, parallel, and time-dependent gene interactions and network cascades in these applications showing a superior performance to other in silico network inference techniques for discovering and reconstructing gene network relationships. PMID:28197408

  14. Sensitization to the conditioned rewarding effects of morphine modulates gene expression in rat hippocampus.

    PubMed

    Marie-Claire, Cynthia; Courtin, Cindie; Robert, Amelie; Gidrol, Xavier; Roques, Bernard P; Noble, Florence

    2007-02-01

    Opiates addiction is characterized by its long-term persistence. In order to study the enduring changes in long-term memory in hippocampus, a pivotal region for this process, we used suppression subtractive hybridization to compare hippocampal gene expression in morphine and saline-treated rats. Animals were subjected to an extended place preference paradigm consisting of four conditioning phases. Sensitization to the reinforcing effects of the drug occurred after three conditioning phases. After 25 days of treatment rats were euthanized and the complementary DNA (cDNA) from the hippocampus of morphine-dependent and saline-treated animals were then screened for differentially expressed cDNAs. The selected 177 clones were then subjected to a microarray procedure and 20 clones were found differentially regulated. The pattern of regulated genes suggests impairments in neurotransmitter release and the activation of neuroprotective pathways.

  15. Aryl Hydrocarbon Receptor Activation by TCDD Modulates Expression of Extracellular Matrix Remodeling Genes during Experimental Liver Fibrosis

    PubMed Central

    Lamb, Cheri L.; Cholico, Giovan N.; Perkins, Daniel E.; Fewkes, Michael T.; Oxford, Julia Thom; Lujan, Trevor J.; Morrill, Erica E.

    2016-01-01

    The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence implicates the AhR in regulating extracellular matrix (ECM) homeostasis. We recently reported that TCDD increased necroinflammation and myofibroblast activation during liver injury elicited by carbon tetrachloride (CCl4). However, TCDD did not increase collagen deposition or exacerbate fibrosis in CCl4-treated mice, which raises the possibility that TCDD may enhance ECM turnover. The goal of this study was to determine how TCDD impacts ECM remodeling gene expression in the liver. Male C57BL/6 mice were treated for 8 weeks with 0.5 mL/kg CCl4, and TCDD (20 μg/kg) was administered during the last two weeks. Results indicate that TCDD increased mRNA levels of procollagen types I, III, IV, and VI and the collagen processing molecules HSP47 and lysyl oxidase. TCDD also increased gelatinase activity and mRNA levels of matrix metalloproteinase- (MMP-) 3, MMP-8, MMP-9, and MMP-13. Furthermore, TCDD modulated expression of genes in the plasminogen activator/plasmin system, which regulates MMP activation, and it also increased TIMP1 gene expression. These findings support the notion that AhR activation by TCDD dysregulates ECM remodeling gene expression and may facilitate ECM metabolism despite increased liver injury. PMID:27672655

  16. Cultivar-specific gene modulation in Vitis vinifera: analysis of the promoters regulating the expression of WOX transcription factors.

    PubMed

    Boccacci, Paolo; Mela, Anita; Pavez Mina, Catalina; Chitarra, Walter; Perrone, Irene; Gribaudo, Ivana; Gambino, Giorgio

    2017-03-30

    The family of Wuschel-related Homeobox (WOX) genes is a class of transcription factors involved in the early stages of embryogenesis and organ development in plants. Some of these genes have shown different transcription levels in embryogenic tissues and mature organs in two different cultivars of Vitis vinifera: 'Chardonnay' (CH) and 'Cabernet Sauvignon' (CS). Therefore, we investigated the genetic basis responsible for these differences by cloning and sequencing in both the cultivars the promoter regions (~2000 bp) proximal to the transcription start site of five VvWOX genes. We then introduced these promoters into Arabidopsis thaliana for expression pattern characterisation using the GUS reporter gene. In the transgenic Arabidopsis, two promoters isolated from CS (pVvWOX13C_CS and pVvWOX6_CS) induced increased expression compared to the sequence isolated in CH, confirming the data obtained in grapevine tissues. These results were corroborated by transient expression assays using the agroinfiltration approach in grapevine somatic embryos. Truncated versions of pVvWOX13C demonstrated that few nucleotide differences between the sequences isolated from CH and CS are pivotal for the transcriptional regulation of VvWOX13C. Analysis of promoters using heterologous and homologous systems appear to be effective for exploring gene modulation linked with intervarietal sequence variation in grapevine.

  17. Cultivar-specific gene modulation in Vitis vinifera: analysis of the promoters regulating the expression of WOX transcription factors

    PubMed Central

    Boccacci, Paolo; Mela, Anita; Pavez Mina, Catalina; Chitarra, Walter; Perrone, Irene; Gribaudo, Ivana; Gambino, Giorgio

    2017-01-01

    The family of Wuschel-related Homeobox (WOX) genes is a class of transcription factors involved in the early stages of embryogenesis and organ development in plants. Some of these genes have shown different transcription levels in embryogenic tissues and mature organs in two different cultivars of Vitis vinifera: ‘Chardonnay’ (CH) and ‘Cabernet Sauvignon’ (CS). Therefore, we investigated the genetic basis responsible for these differences by cloning and sequencing in both the cultivars the promoter regions (~2000 bp) proximal to the transcription start site of five VvWOX genes. We then introduced these promoters into Arabidopsis thaliana for expression pattern characterisation using the GUS reporter gene. In the transgenic Arabidopsis, two promoters isolated from CS (pVvWOX13C_CS and pVvWOX6_CS) induced increased expression compared to the sequence isolated in CH, confirming the data obtained in grapevine tissues. These results were corroborated by transient expression assays using the agroinfiltration approach in grapevine somatic embryos. Truncated versions of pVvWOX13C demonstrated that few nucleotide differences between the sequences isolated from CH and CS are pivotal for the transcriptional regulation of VvWOX13C. Analysis of promoters using heterologous and homologous systems appear to be effective for exploring gene modulation linked with intervarietal sequence variation in grapevine. PMID:28358354

  18. Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression.

    PubMed

    Anderson, Danielle E; von Messling, Veronika

    2008-11-01

    Morbilliviruses, including measles and canine distemper virus (CDV), are nonsegmented, negative-stranded RNA viruses that cause severe diseases in humans and animals. The transcriptional units in their genomes are separated by untranslated regions (UTRs), which contain essential transcription and translation signals. Due to its increased length, the region between the matrix (M) protein and fusion (F) protein open reading frames is of particular interest. In measles virus, the entire F 5' region is untranslated, while several start codons are found in most other morbilliviruses, resulting in a long F protein signal peptide (Fsp). To characterize the role of this region in morbillivirus pathogenesis, we constructed recombinant CDVs, in which either the M-F UTR was replaced with that between the nucleocapsid (N) and phosphoprotein (P) genes, or 106 Fsp residues were deleted. The Fsp deletion alone had no effect in vitro and in vivo. In contrast, substitution of the UTR was associated with a slight increase in F gene and protein expression. Animals infected with this virus either recovered completely or experienced prolonged disease and death due to neuroinvasion. The combination of both changes resulted in a virus with strongly increased F gene and protein expression and complete attenuation. Taken together, our results provide evidence that the region between the morbillivirus M and F genes modulates virulence through transcriptional control of the F gene expression.

  19. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression.

    PubMed

    Soldner, Frank; Stelzer, Yonatan; Shivalila, Chikdu S; Abraham, Brian J; Latourelle, Jeanne C; Barrasa, M Inmaculada; Goldmann, Johanna; Myers, Richard H; Young, Richard A; Jaenisch, Rudolf

    2016-05-05

    Genome-wide association studies (GWAS) have identified numerous genetic variants associated with complex diseases, but mechanistic insights are impeded by a lack of understanding of how specific risk variants functionally contribute to the underlying pathogenesis. It has been proposed that cis-acting effects of non-coding risk variants on gene expression are a major factor for phenotypic variation of complex traits and disease susceptibility. Recent genome-scale epigenetic studies have highlighted the enrichment of GWAS-identified variants in regulatory DNA elements of disease-relevant cell types. Furthermore, single nucleotide polymorphism (SNP)-specific changes in transcription factor binding are correlated with heritable alterations in chromatin state and considered a major mediator of sequence-dependent regulation of gene expression. Here we describe a novel strategy to functionally dissect the cis-acting effect of genetic risk variants in regulatory elements on gene expression by combining genome-wide epigenetic information with clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in human pluripotent stem cells. By generating a genetically precisely controlled experimental system, we identify a common Parkinson's disease associated risk variant in a non-coding distal enhancer element that regulates the expression of α-synuclein (SNCA), a key gene implicated in the pathogenesis of Parkinson's disease. Our data suggest that the transcriptional deregulation of SNCA is associated with sequence-dependent binding of the brain-specific transcription factors EMX2 and NKX6-1. This work establishes an experimental paradigm to functionally connect genetic variation with disease-relevant phenotypes.

  20. Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral Acropora millepora.

    PubMed

    Brady, Aisling K; Willis, Bette L; Harder, Lawrence D; Vize, Peter D

    2016-04-01

    Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks.

  1. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ.

    PubMed

    Jones, Eleanor R; Jones, Gavin C; Legerlotz, Kirsten; Riley, Graham P

    2013-12-01

    Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1Hz for 48h. TGFβ1 and TGFβRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFβ protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFβ stimulation alone. We have also demonstrated that the inhibition of the TGFβ signalling pathway abrogated the strain induced changes in mRNA and that TGFβ activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFβ activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy.

  2. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis

    SciTech Connect

    Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha; Conboy, John G.

    2009-02-03

    Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.

  3. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  4. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium.

    PubMed

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R; Aleksunes, Lauren M; Thomas, Russell S; Applegate, Dawn; Klaassen, Curtis D; Corton, J Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher's algorithm (p-value ≤ 10(-4))) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  5. Expression of antimicrobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and development.

    PubMed

    Wu, Shan; Zhang, Xiaofeng; He, Yongqiang; Shuai, Jiangbing; Chen, Xiaomei; Ling, Erjun

    2010-11-01

    Although Bombyx mori systematic immunity is extensively studied, little is known about the silkworm's intestine-specific responses to bacterial infection. Antimicrobial peptides (AMPs) gene expression analysis of B. mori intestinal tissue to oral infection with the Gram-positive (Staphylococcus aureus) and -negative (Escherichia coli) bacteria revealed that there is specificity in the interaction between host immune responses and parasite types. Neither Att1 nor Leb could be stimulated by S. aureus and E. coli. However, CecA1, Glo1, Glo2, Glo3, Glo4 and Lys, could only be trigged by S. aureus. On the contrary, E. coli stimulation caused the decrease in the expression of CecA1, Glo3 and Glo4 in some time points. Interestingly, there is regional specificity in the silkworm local gut immunity. During the immune response, the increase in Def, Hem and LLP3 was only detected in the foregut and midgut. For CecB1, CecD, LLP2 and Mor, after orally administered with E. coli, the up-regulation was only limited in the midgut and hindgut. CecE was the only AMP that positively responses to the both bacteria in all the testing situations. With development, the expression levels of the AMPs were also changed dramatically. That is, at spinning and prepupa stages, a large increase in the expression of CecA1, CecB1, CecD, CecE, Glo1, Glo2, Glo3, Glo4, Leb, Def, Hem, Mor and Lys was detected in the gut. Unexpectedly, in addition to the IMD pathway genes, the Toll and JAK/STAT pathway genes in the silkworm gut can also be activated by microbial oral infection. But in the developmental course, corresponding to the increase in expression of AMPs at spinning and prepupa stages, only the Toll pathway genes in the gut exhibit the similar increasing trend. Our results imply that the immune responses in the silkworm gut are synergistically regulated by the Toll, JAK/STAT and IMD pathways. However, as the time for approaching pupation, the Toll pathway may play a role in the AMPs expression.

  6. Physiological oxygen tensions modulate expression of the mdr1b multidrug-resistance gene in primary rat hepatocyte cultures.

    PubMed Central

    Hirsch-Ernst, K I; Kietzmann, T; Ziemann, C; Jungermann, K; Kahl, G F

    2000-01-01

    P-Glycoprotein transporters encoded by mdr1 (multidrug resistance) genes mediate extrusion of an array of lipophilic xenobiotics from the cell. In rat liver, mdr transcripts have been shown to be expressed mainly in hepatocytes of the periportal region. Since gradients in oxygen tension (pO(2)) may contribute towards zonated gene expression, the influence of arterial and venous pO(2) on mRNA expression of the mdr1b isoform was examined in primary rat hepatocytes cultured for up to 3 days. Maximal mdr1b mRNA levels (100%) were observed under arterial pO(2) after 72 h, whereas less than half-maximal mRNA levels (40%) were attained under venous pO(2). Accordingly, expression of mdr protein and extrusion of the mdr1 substrate rhodamine 123 were maximal under arterial pO(2) and reduced under venous pO(2). Oxygen-dependent modulation of mdr1b mRNA expression was prevented by actinomycin D, indicating transcriptional regulation. Inhibition of haem synthesis by 25 microM CoCl(2) blocked mdr1b mRNA expression under both oxygen tensions, whereas 80 microM desferrioxamine abolished modulation by O(2). Haem (10 microM) increased mdr1b mRNA levels under arterial and venous pO(2). In hepatocytes treated with 50 microM H(2)O(2), mdr1b mRNA expression was elevated by about 1.6-fold at venous pO(2) and 1.5-fold at arterial pO(2). These results support the conclusion that haem proteins are crucial for modulation of mdr1b mRNA expression by O(2) in hepatocyte cultures and that reactive oxygen species may participate in O(2)-dependent signal transduction. Furthermore, the present study suggests that oxygen might be a critical modulator for zonated secretion of mdr1 substrates into the bile. PMID:10947958

  7. Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression

    SciTech Connect

    Ivanov, Vladimir N. Partridge, Michael A.; Johnson, Geoffrey E.; Huang, Sarah X.L.; Zhou, Hongning; Hei, Tom K.

    2008-03-10

    Although many human melanomas express the death receptors TRAIL-R2/DR5 or TRAIL-R1/DR4 on cell surface, they often exhibit resistance to exogenous TRAIL. One of the main contributors to TRAIL-resistance of melanoma cells is upregulation of transcription factors STAT3 and NF-{kappa}B that control the expression of antiapoptotic genes, including cFLIP and Bcl-xL. On the other hand, the JNK-cJun pathway is involved in the negative regulation of cFLIP (a caspase-8 inhibitor) expression. Our observations indicated that resveratrol, a polyphenolic phytoalexin, decreased STAT3 and NF-{kappa}B activation, while activating JNK-cJun that finally suppressed expression of cFLIP and Bcl-xL proteins and increased sensitivity to exogenous TRAIL in DR5-positive melanomas. Interestingly, resveratrol did not increase surface expression of DR5 in human melanomas, while {gamma}-irradiation or sodium arsenite treatment substantially upregulated DR5 expression. Hence, an initial increase in DR5 surface expression (either by {gamma}-irradiation or arsenite), and subsequent downregulation of antiapoptotic cFLIP and Bcl-xL (by resveratrol), appear to constitute an efficient approach to reactivate apoptotic death pathways in TRAIL-resistant human melanomas. In spite of partial suppression of mitochondrial function and the mitochondrial death pathway, melanoma cells still retain the potential to undergo the DR5-mediated, caspase-8-dependent death pathway that could be accelerated by either an increase in DR5 surface expression or suppression of cFLIP. Taken together, these results suggest that resveratrol, in combination with TRAIL, may have a significant efficacy in the treatment of human melanomas.

  8. Chronic vortioxetine treatment in rodents modulates gene expression of neurodevelopmental and plasticity markers.

    PubMed

    Waller, Jessica A; Tamm, Joseph A; Abdourahman, Aicha; Pehrson, Alan L; Li, Yan; Cajina, Manuel; Sánchez, Connie

    2017-02-01

    The multimodal antidepressant vortioxetine displays an antidepressant profile distinct from those of conventional selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) and possesses cognitive-enhancing properties in preclinical and clinical studies. Recent studies have begun to investigate molecular mechanisms that may differentiate vortioxetine from other antidepressants. Acute studies in adult rats and chronic studies in a middle-aged mouse model reveal upregulation of several markers that play a central role in synaptic plasticity. However, the effect of chronic vortioxetine treatment on expression of neuroplasticity and neurodevelopmental biomarkers in naïve rats has not been evaluated. In the present study, we demonstrate that vortioxetine at a range of doses regulates expression of genes associated with plasticity in the frontal cortex, hippocampus, region encompassing the amygdala, as well as in blood, and displays similar effects relative to the SSRI fluoxetine in adult naïve rats. These genes encode immediate early genes (IEGs), translational regulators, and the neurodevelopmental marker Sema4g. Similar findings detected in brain regions and in blood provide a potential translational impact, and vortioxetine appears to consistently regulate signaling in these networks of neuroplasticity and developmental markers.

  9. Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new beta-tubulin gene, and expression of genes encoding cell wall proteins.

    PubMed

    Creelman, R A; Mullet, J E

    1991-10-01

    Transfer of soybean seedlings to low-water-potential vermiculite (psi w = -0.3 MPa) results in a reversible decrease in hypocotyl growth and modulation of several polysomal mRNAs (Plant Physiol 92: 205-214). We report here the isolation of two cDNA clones (pGE16 and pGE95) which correspond to genes whose mRNA levels are increased, and one cDNA clone (pGE23) which corresponds to a gene whose mRNA level is decreased in the hypocotyl zone of cell elongation by water deficit. In well-watered seedlings mRNAs hybridizing to pGE16 and pGE95 are most abundant in mature regions of the seedling, but in water-deficient seedlings mRNA levels are reduced in mature regions and enhanced in elongating regions. RNA corresponding to soybean proline-rich protein 1 (sbPRP1) shows a similar tissue distribution and response to water deficit. In contrast, in well-watered seedlings, the gene corresponding to pGE23 was highly expressed in the hypocotyl and root growing zones. Transfer of seedlings to low-water-potential vermiculite caused a rapid decrease in mRNA hybridizing to pGE23. Sequence analysis revealed that pGE23 has high homology with beta-tubulin. Water deficit also reduced the level of mRNA hybridizing to JCW1, an auxin-modulated gene, although with different kinetics. Furthermore, mRNA encoding actin, glycine-rich proteins (GRPs), and hydroxyproline-rich glycoproteins (HRGPs) were down-regulated in the hypocotyl zone of elongation of seedlings exposed to water deficit. No effect of water deficit was observed on the expression of chalcone synthase. Decreased expression of beta-tubulin, actin, JCW1, HRGP and GRP and increased expression of sbPRP1, pGE95 and pGE16 in the hypocotyl zone of cell elongation could participate in the reversible growth inhibition observed in water-deficient soybean seedlings.

  10. Protein arginine Methyltransferase 8 gene is expressed in pluripotent stem cells and its expression is modulated by the transcription factor Sox2.

    PubMed

    Solari, Claudia; Echegaray, Camila Vázquez; Luzzani, Carlos; Cosentino, María Soledad; Waisman, Ariel; Petrone, María Victoria; Francia, Marcos; Sassone, Alina; Canizo, Jésica; Sevlever, Gustavo; Barañao, Lino; Miriuka, Santiago; Guberman, Alejandra

    2016-04-22

    Addition of methyl groups to arginine residues is catalyzed by a group of enzymes called Protein Arginine Methyltransferases (Prmt). Although Prmt1 is essential in development, its paralogue Prmt8 has been poorly studied. This gene was reported to be expressed in nervous system and involved in neurogenesis. In this work, we found that Prmt8 is expressed in mouse embryonic stem cells (ESC) and in induced pluripotent stem cells, and modulated along differentiation to neural precursor cells. We found that Prmt8 promoter activity is induced by the pluripotency transcription factors Oct4, Sox2 and Nanog. Moreover, endogenous Prmt8 mRNA levels were reduced in ESC transfected with Sox2 shRNA vector. As a whole, our results indicate that Prmt8 is expressed in pluripotent stem cells and its transcription is modulated by pluripotency transcription factors. These findings suggest that besides its known function in nervous system, Prmt8 could play a role in pluripotent stem cells.

  11. Candidate tumor suppressor LUCA-15/RBM5/H37 modulates expression of apoptosis and cell cycle genes

    SciTech Connect

    Mourtada-Maarabouni, Mirna . E-mail: bia19@biol.keele.ac.uk; Keen, Jennifer; Clark, Jeremy; Cooper, Colin S.; Williams, Gwyn T. . E-mail: g.t.williams@keele.ac.uk

    2006-06-10

    RBM5 (RNA-binding motif protein 5/LUCA-15/H37) is encoded at the lung cancer tumor suppressor locus 3p21.3 and itself has several important characteristics of a tumor suppressor, including both potentiation of apoptosis and inhibition of the cell cycle. Here, we report the effects of both upregulation and downregulation of LUCA-15/RBM5 on gene expression monitored using cDNA microarrays. Many of the genes modulated by LUCA-15/RBM5 are involved in the control of apoptosis, the cell cycle, or both. These effects were confirmed for the most significant genes using real-time RT-PCR and/or Western blotting. In particular, LUCA-15/RBM5 increased the expression of Stat5b and BMP5 and decreased the expression of AIB1 (Amplified In Breast Cancer 1), proto-oncogene Pim-1, caspase antagonist BIRC3 (cIAP-2, MIHC), and CDK2 (cyclin-dependent kinase 2). These effects on multiple genes controlling both apoptosis and proliferation are in line with the functional effects of LUCA-15/RBM5 and indicate that it plays a central role in regulating cell fate consistent with its tumor suppressor activity.

  12. The expression of an immune-related phenoloxidase gene is modulated in Ciona intestinalis ovary, test cells, embryos and larva.

    PubMed

    Parrinello, Daniela; Sanfratello, Maria A; Vizzini, Aiti; Cammarata, Matteo

    2015-03-01

    Two distinct Ciona intestinalis phenoloxidases (CinPO1, 2) had previously been cloned and sequenced. The CinPO2 is involved in innate immunity and is expressed by inflammatory hemocytes that populate the tunic and pharynx vessels as a response to LPS inoculation. In situ hybridization and immunohistochemistry assays on histological section, showed that the expression of this gene and the produced protein are shared with oogenesis, embryogenesis and larval morphogenesis. Intriguingly, upregulation of gene transcription was found in the test cell layer that envelopes the ovary follicle, ovulated egg, and gastrula, as well as it was modulated in the zygotic nucleus of outer balstomers of 32-cell embryo, neurula presumptive epidermis tissue and larval mesenchyme. The anti-CinPO2 antibodies, specific for adult inflammatory cells, recognize epitopes in the cytoplasm of ovarian oocytes, ovulated eggs, development stages and larval mesenchyme. The overall findings disclose the precocious activation of the CinPO2 immunity-related gene, and show a developmentally programmed expression of this phenoloxidase. Furthermore, these findings support the multifunctional roles of immunity-related genes and allows us to explore new perspectives on ascidian development and immunity.

  13. Cortical bitufted, horizontal, and Martinotti cells preferentially express and secrete reelin into perineuronal nets, nonsynaptically modulating gene expression

    PubMed Central

    Pesold, Christine; Liu, Wen Sheng; Guidotti, Alessandro; Costa, Erminio; Caruncho, Hector J.

    1999-01-01

    Reelin (Reln) is a protein with some structural analogies with other extracellular matrix proteins that functions in the regulation of neuronal migration during the development of cortical laminated structures. In the cortex of adult animals, Reln is expressed primarily in γ-aminobutyric acid (GABA)ergic neurons and is secreted into perineuronal nets. However, only 50–60% of GABAergic interneurons express Reln. We have characterized this subpopulation of cortical GABAergic neurons that expresses Reln by using two strategies: (i) a double immunolabeling procedure to determine the colocalization of Reln with neuropeptides and Ca2+-binding proteins and (ii) a combination of Golgi staining and Reln immunolabeling to determine the morphology of the rat cortical cells that store Reln. Many interneurons that express Neuropeptide Y (NPY) or somatostatin (but none of those that express parvalbumin) are Reln-immunopositive. A small population of calbindin-positive interneurons and very few calretinin-positive cells express Reln immunopositivity. Golgi staining revealed that layer I horizontal cells, layer II–V bitufted neurons, and some deep cortical layer Martinotti cells express Reln. Basket and chandelier cells are often immunopositive to parvalbumin, but never to Reln. Although Reln is secreted by GABAergic neurons, its target are not the GABA receptors, but rather may be extrasynaptically located in perineuronal nets and concerned with the modulation of neuronal plasticity. Dab1, the target adapter protein that presumably mediates transcription regulation via the extrasynaptic actions of Reln, is expressed predominantly in pyramidal neurons, but it can also be detected in a small population of GABAergic neurons that are neither horizontal nor bitufted neurons. PMID:10077664

  14. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression.

    PubMed

    Creelman, R A; Tierney, M L; Mullet, J E

    1992-06-01

    Jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are plant lipid derivatives that resemble mammalian eicosanoids in structure and biosynthesis. These compounds are proposed to play a role in plant wound and pathogen responses. Here we report the quantitative determination of JA/MeJA in planta by a procedure based on the use of [13C,2H3]MeJA as an internal standard. Wounded soybean (Glycine max [L] Merr. cv. Williams) stems rapidly accumulated MeJA and JA. Addition of MeJA to soybean suspension cultures also increased mRNA levels for three wound-responsive genes (chalcone synthase, vegetative storage protein, and proline-rich cell wall protein) suggesting a role for MeJA/JA in the mediation of several changes in gene expression associated with the plants' response to wounding.

  15. Neural Androgen Receptors Modulate Gene Expression and Social Recognition But Not Social Investigation

    PubMed Central

    Karlsson, Sara A.; Studer, Erik; Kettunen, Petronella; Westberg, Lars

    2016-01-01

    The role of sex and androgen receptors (ARs) for social preference and social memory is rather unknown. In this study of mice we compared males, females and males lacking ARs specifically in the nervous system, ARNesDel, with respect to social preference, assessed with the three-chambered apparatus test, and social recognition, assessed with the social discrimination procedure. In the social discrimination test we also evaluated the tentative importance of the sex of the stimulus animal. Novel object recognition and olfaction were investigated to complement the results from the social tests. Gene expression analysis was performed to reveal molecules involved in the effects of sex and androgens on social behaviors. All three test groups showed social preference in the three-chambered apparatus test. In both social tests an AR-independent sexual dimorphism was seen in the persistence of social investigation of female conspecifics, whereas the social interest toward male stimuli mice was similar in all groups. Male and female controls recognized conspecifics independent of their sex, whereas ARNesDel males recognized female but not male stimuli mice. Moreover, the non-social behaviors were not affected by AR deficiency. The gene expression analyses of hypothalamus and amygdala indicated that Oxtr, Cd38, Esr1, Cyp19a1, Ucn3, Crh, and Gtf2i were differentially expressed between the three groups. In conclusion, our results suggest that ARs are required for recognition of male but not female conspecifics, while being dispensable for social investigation toward both sexes. In addition, the AR seems to regulate genes related to oxytocin, estrogen and William’s syndrome. PMID:27014003

  16. GEM2Net: from gene expression modeling to -omics networks, a new CATdb module to investigate Arabidopsis thaliana genes involved in stress response.

    PubMed

    Zaag, Rim; Tamby, Jean Philippe; Guichard, Cécile; Tariq, Zakia; Rigaill, Guillem; Delannoy, Etienne; Renou, Jean-Pierre; Balzergue, Sandrine; Mary-Huard, Tristan; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Brunaud, Véronique

    2015-01-01

    CATdb (http://urgv.evry.inra.fr/CATdb) is a database providing a public access to a large collection of transcriptomic data, mainly for Arabidopsis but also for other plants. This resource has the rare advantage to contain several thousands of microarray experiments obtained with the same technical protocol and analyzed by the same statistical pipelines. In this paper, we present GEM2Net, a new module of CATdb that takes advantage of this homogeneous dataset to mine co-expression units and decipher Arabidopsis gene functions. GEM2Net explores 387 stress conditions organized into 18 biotic and abiotic stress categories. For each one, a model-based clustering is applied on expression differences to identify clusters of co-expressed genes. To characterize functions associated with these clusters, various resources are analyzed and integrated: Gene Ontology, subcellular localization of proteins, Hormone Families, Transcription Factor Families and a refined stress-related gene list associated to publications. Exploiting protein-protein interactions and transcription factors-targets interactions enables to display gene networks. GEM2Net presents the analysis of the 18 stress categories, in which 17,264 genes are involved and organized within 681 co-expression clusters. The meta-data analyses were stored and organized to compose a dynamic Web resource.

  17. Rosiglitazone modulates pigeon atherosclerotic lipid accumulation and gene expression in vitro.

    PubMed

    Anderson, J L; Keeley, M C; Smith, S C; Smith, E C; Taylor, R L

    2014-06-01

    Atherosclerosis is a major contributor to the overall United States mortality rate, primarily in the form of heart attacks and stroke. Unlike the human disease, which is believed to be multifactorial, pigeon atherosclerosis is due to a single gene autosomal recessive trait. The White Carneau (WC-As) strain develops atherosclerotic plaques without the presence of known environmental risk factors such as diet and classic predictors such as blood pressure or blood cholesterol levels. With similar parameters, the Show Racer (SR-Ar) is resistant to plaque development. Thiazolidinediones, including rosiglitazone, activate the peroxisome proliferator-activated receptor gamma (PPARγ) raising cellular sensitivity to insulin. The effect of rosiglitazone was evaluated in aortic smooth muscle cells (SMC) from these 2 pigeon breeds. Primary SMC cultures were prepared from WC-As and SR-Ar squabs. Cell monolayers, which achieved confluence in 7 d, were treated with 0 or 4 µM rosiglitazone for 24 h. Cellular lipid accumulation was evaluated by oil red O staining. Control WC-As cells had significantly higher vacuole scores and lipid content than did the SR-Ar control cells. Rosiglitazone treatment decreased WC-As lipid vacuoles significantly compared with the control cells. On the other hand, lipid vacuoles in the treated and untreated SR-Ar cells did not differ significantly. The effect of rosiglitazone on WC-As SMC gene expression was compared with control SMC using representational difference analysis. Significant transcript increases were found for caveolin and RNA binding motif in the control cells compared with the rosiglitazone-treated cells as well as cytochrome p450 family 17 subfamily A polypeptide 1 (CYP171A) in the rosiglitazone-treated cells compared with the control cells. Although rosiglitazone was selected for these experiments because of its role as a PPARγ agonist, it appears that the drug also tempers c-myc expression, as genes related to this second

  18. KV7 channels in the human detrusor: channel modulator effects and gene and protein expression.

    PubMed

    Bientinesi, Riccardo; Mancuso, Cesare; Martire, Maria; Bassi, Pier Francesco; Sacco, Emilio; Currò, Diego

    2017-02-01

    Voltage-gated type 7 K(+) (KV7 or KCNQ) channels regulate the contractility of various smooth muscles. With this study, we aimed to assess the role of KV7 channels in the regulation of human detrusor contractility, as well as the gene and protein expression of KV7 channels in this tissue. For these purposes, the isolated organ technique, RT-qPCR, and Western blot were used, respectively. XE-991, a selective KV7 channel blocker, concentration-dependently contracted the human detrusor; mean EC50 and Emax of XE-991-induced concentration-response curve were 14.1 μM and 28.8 % of the maximal bethanechol-induced contraction, respectively. Flupirtine and retigabine, selective KV7.2-7.5 channel activators, induced concentration-dependent relaxations of bethanechol-precontracted strips, with maximal relaxations of 51.6 and 51.8 % of the precontraction, respectively. XE-991 blocked the relaxations induced by flupirtine and retigabine. All five KCNQ genes were found to be expressed in the detrusor with KCNQ4 being the most expressed among them. Different bands, having sizes similar to some of reported KV7.1, 7.4, and 7.5 channel subunit isoforms, were detected in the detrusor by Western blot with the KV7.4 band being the most intense among them. In conclusion, KV7 channels contribute to set the basal tone of the human detrusor. In addition, KV7 channel activators significantly relax the detrusor. The KV7.4 channels are probably the most important KV7 channels expressed in the human detrusor. These data suggest that selective KV7.4 channel activators might represent new pharmacological tools for inducing therapeutic relaxation of the detrusor.

  19. Hexosamine template. A platform for modulating gene expression and for sugar-based drug discovery.

    PubMed

    Elmouelhi, Noha; Aich, Udayanath; Paruchuri, Venkata D P; Meledeo, M Adam; Campbell, Christopher T; Wang, Jean J; Srinivas, Raja; Khanna, Hargun S; Yarema, Kevin J

    2009-04-23

    This study investigates the breadth of cellular responses engendered by short chain fatty acid (SCFA)-hexosamine hybrid molecules, a class of compounds long used in "metabolic glycoengineering" that are now emerging as drug candidates. First, a "mix and match" strategy showed that different SCFA (n-butyrate and acetate) appended to the same core sugar altered biological activity, complementing previous results [Campbell et al. J. Med. Chem. 2008, 51, 8135-8147] where a single type of SCFA elicited distinct responses. Microarray profiling then compared transcriptional responses engendered by regioisomerically modified ManNAc, GlcNAc, and GalNAc analogues in MDA-MB-231 cells. These data, which were validated by qRT-PCR or Western analysis for ID1, TP53, HPSE, NQO1, EGR1, and VEGFA, showed a two-pronged response where a core set of genes was coordinately regulated by all analogues while each analogue simultaneously uniquely regulated a larger number of genes. Finally, AutoDock modeling supported a mechanism where the analogues directly interact with elements of the NF-kappaB pathway. Together, these results establish the SCFA-hexosamine template as a versatile platform for modulating biological activity and developing new therapeutics.

  20. Reprogramming of gene expression during compression wood formation in pine: Coordinated modulation of S-adenosylmethionine, lignin and lignan related genes

    PubMed Central

    2012-01-01

    Background Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified. Results By combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait.) that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood). Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. Conclusions The comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes involved in biosynthesis of

  1. Induction of erythroid differentiation and modulation of gene expression by tiazofurin in K-562 leukemia cells.

    PubMed Central

    Olah, E; Natsumeda, Y; Ikegami, T; Kote, Z; Horanyi, M; Szelenyi, J; Paulik, E; Kremmer, T; Hollan, S R; Sugar, J

    1988-01-01

    Tiazofurin (2-beta-D-ribofuranosyl-4-thiazole-carboxamide; NSC 286193), an antitumor carbon-linked nucleoside that inhibits IMP dehydrogenase (IMP:NAD+ oxidoreductase; EC 1.1.1.205) and depletes guanylate levels, can activate the erythroid differentiation program of K-562 human leukemia cells. Tiazofurin-mediated cell differentiation is a multistep process. The inducer initiates early (less than 6 hr) metabolic changes that precede commitment to differentiation; among these early changes are decreases in IMP dehydrogenase activity and in GTP concentration, as well as alterations in the expression of certain protooncogenes (c-Ki-ras). K-562 cells do express commitment-i.e., cells exhibit differentiation without tiazofurin. Guanosine was effective in preventing the action of tiazofurin, thus providing evidence that the guanine nucleotides are critically involved in tiazofurin-initiated differentiation. Activation of transcription of the erythroid-specific gene that encodes A gamma-globin is a late (48 hr) but striking effect of tiazofurin. Down-regulation of the c-ras gene appears to be part of the complex process associated with tiazofurin-induced erythroid differentiation and relates to the perturbations of GTP metabolism. Images PMID:2901100

  2. 17β-estradiol modulates gene expression in the female mouse cerebral cortex.

    PubMed

    Humphreys, Gwendolyn I; Ziegler, Yvonne S; Nardulli, Ann M

    2014-01-01

    17β-estradiol (E2) plays critical roles in a number of target tissues including the mammary gland, reproductive tract, bone, and brain. Although it is clear that E2 reduces inflammation and ischemia-induced damage in the cerebral cortex, the molecular mechanisms mediating the effects of E2 in this brain region are lacking. Thus, we examined the cortical transcriptome using a mouse model system. Female adult mice were ovariectomized and implanted with silastic tubing containing oil or E2. After 7 days, the cerebral cortices were dissected and RNA was isolated and analyzed using RNA-sequencing. Analysis of the transcriptomes of control and E2-treated animals revealed that E2 treatment significantly altered the transcript levels of 88 genes. These genes were associated with long term synaptic potentiation, myelination, phosphoprotein phosphatase activity, mitogen activated protein kinase, and phosphatidylinositol 3-kinase signaling. E2 also altered the expression of genes linked to lipid synthesis and metabolism, vasoconstriction and vasodilation, cell-cell communication, and histone modification. These results demonstrate the far-reaching and diverse effects of E2 in the cerebral cortex and provide valuable insight to begin to understand cortical processes that may fluctuate in a dynamic hormonal environment.

  3. Growth-Phase-Specific Modulation of Cell Morphology and Gene Expression by an Archaeal Histone Protein

    PubMed Central

    Dulmage, Keely A.; Todor, Horia

    2015-01-01

    ABSTRACT In all three domains of life, organisms use nonspecific DNA-binding proteins to compact and organize the genome as well as to regulate transcription on a global scale. Histone is the primary eukaryotic nucleoprotein, and its evolutionary roots can be traced to the archaea. However, not all archaea use this protein as the primary DNA-packaging component, raising questions regarding the role of histones in archaeal chromatin function. Here, quantitative phenotyping, transcriptomic, and proteomic assays were performed on deletion and overexpression mutants of the sole histone protein of the hypersaline-adapted haloarchaeal model organism Halobacterium salinarum. This protein is highly conserved among all sequenced haloarchaeal species and maintains hallmark residues required for eukaryotic histone functions. Surprisingly, despite this conservation at the sequence level, unlike in other archaea or eukaryotes, H. salinarum histone is required to regulate cell shape but is not necessary for survival. Genome-wide expression changes in histone deletion strains were global, significant but subtle in terms of fold change, bidirectional, and growth phase dependent. Mass spectrometric proteomic identification of proteins from chromatin enrichments yielded levels of histone and putative nucleoid-associated proteins similar to those of transcription factors, consistent with an open and transcriptionally active genome. Taken together, these data suggest that histone in H. salinarum plays a minor role in DNA compaction but important roles in growth-phase-dependent gene expression and regulation of cell shape. Histone function in haloarchaea more closely resembles a regulator of gene expression than a chromatin-organizing protein like canonical eukaryotic histone. PMID:26350964

  4. Plasma Triglyceride Levels May Be Modulated by Gene Expression of IQCJ, NXPH1, PHF17 and MYB in Humans

    PubMed Central

    Vallée Marcotte, Bastien; Guénard, Frédéric; Cormier, Hubert; Lemieux, Simone; Couture, Patrick; Rudkowska, Iwona; Vohl, Marie-Claude

    2017-01-01

    A genome-wide association study (GWAS) by our group identified loci associated with the plasma triglyceride (TG) response to ω-3 fatty acid (FA) supplementation in IQCJ, NXPH1, PHF17 and MYB. Our aim is to investigate potential mechanisms underlying the associations between single nucleotide polymorphisms (SNPs) in the four genes and TG levels following ω-3 FA supplementation. 208 subjects received 3 g/day of ω-3 FA (1.9–2.2 g of EPA and 1.1 g of docosahexaenoic acid (DHA)) for six weeks. Plasma TG were measured before and after the intervention. 67 SNPs were selected to increase the density of markers near GWAS hits. Genome-wide expression and methylation analyses were conducted on respectively 30 and 35 participants’ blood sample together with in silico analyses. Two SNPs of IQCJ showed different affinities to splice sites depending on alleles. Expression levels were influenced by genotype for one SNP in NXPH1 and one in MYB. Associations between 12 tagged SNPs of IQCJ, 26 of NXPH1, seven of PHF17 and four of MYB and gene-specific CpG site methylation levels were found. The response of plasma TG to ω-3 FA supplementation may be modulated by the effect of DNA methylation on expression levels of genes revealed by GWAS. PMID:28134766

  5. Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or {gamma}-rays

    SciTech Connect

    Woloschak, G.E.; Chang-Liu, Chin-Mei

    1994-05-01

    Previous work has shown that exposure of cells to ionizing radiations causes modulation of a variety of genes, including those encoding c-fos, interleukin-1, tumor necrosis factor, and cytoskeletal elements. The experiments reported herein were designed to examine the effects of either JANUS neutron or {gamma}-ray exposure on expression of genes encoding nucleus-associated proteins (H4-histone, c-jun, c-myc, Rb, and p53). Cycling Syrian hamster embryo cells were irradiated with varying doses and dose rates of either JANUS fission-spectrum neutrons or {gamma}-rays; after incubation of the cell cultures for 1 h following radiation exposure, mRNA was harvested and analyzed by Northern blot. Results revealed induction of transcripts for c-jun, H4-histone, and (to a lesser extent) Rb following {gamma}-ray but not following neutron exposure. Expression of p53 and c-myc genes was unaffected by radiation exposure. Radiations at different doses and dose rates were compared for each of the genes studied.

  6. Seasonal variations of gene expression biomarkers in Mytilus galloprovincialis cultured populations: temperature, oxidative stress and reproductive cycle as major modulators.

    PubMed

    Jarque, Sergio; Prats, Eva; Olivares, Alba; Casado, Marta; Ramón, Montserrat; Piña, Benjamin

    2014-11-15

    The blue mussel Mytilus galloprovincialis has been used as monitoring organism in many biomonitoring programs because of its broad distribution in South European sea waters and its physiological characteristics. Different pollution-stress biomarkers, including gene expression biomarkers, have been developed to determine its physiological response to the presence of different pollutants. However, the existing information about basal expression profiles is very limited, as very few biomarker-based studies were designed to reflect the natural seasonal variations. In the present study, we analyzed the natural expression patterns of several genes commonly used in biomonitoring, namely ferritin, metallothionein, cytochrome P450, glutathione S-transferase, heat shock protein and the kinase responsive to stress KRS, during an annual life cycle. Analysis of mantle-gonad samples of cultured populations of M. galloprovincialis from the Delta del Ebro (North East Spain) showed natural seasonal variability of these biomarkers, pointing to temperature and oxidative stress as major abiotic modulators. In turn, the reproductive cycle, a process that can be tracked by VCLM7 expression, and known to be influenced by temperature, seems to be the major biotic factor involved in seasonality. Our results illustrate the influence of environmental factors in the physiology of mussels through their annual cycle, a crucial information for the correct interpretation of responses under stress conditions.

  7. Essential Oils Modulate Gene Expression and Ochratoxin A Production in Aspergillus carbonarius

    PubMed Central

    El Khoury, Rachelle; Atoui, Ali; Verheecke, Carol; Maroun, Richard; El Khoury, Andre; Mathieu, Florence

    2016-01-01

    Ochratoxin A (OTA) is a mycotoxin, mainly produced on grapes by Aspergillus carbonarius, that causes massive health problems for humans. This study aims to reduce the occurrence of OTA by using the ten following essential oils (E.Os): fennel, cardamom, anise, chamomile, celery, cinnamon, thyme, taramira, oregano and rosemary at 1 µL/mL and 5 µL/mL for each E.O.As a matter of fact, their effects on the OTA production and the growth of A. carbonarius S402 cultures were evaluated, after four days at 28 °C on a Synthetic Grape Medium (SGM). Results showed that A. carbonarius growth was reduced up to 100%, when cultured with the E.Os of cinnamon, taramira, and oregano at both concentrations and the thyme at 5 µL/mL. As for the other six E.Os, their effect on A. carbonarius growth was insignificant, but highly important on the OTA production. Interestingly, the fennel E.O at 5 µL/mL reduced the OTA production up to 88.9% compared to the control, with only 13.8% of fungal growth reduction. We further investigated the effect of these E.Os on the expression levels of the genes responsible for the OTA biosynthesis (acOTApks and acOTAnrps along with the acpks gene) as well as the two regulatory genes laeA and vea, using the quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) method. The results revealed that these six E.Os reduced the expression of the five studied genes, where the ackps was downregulated by 99.2% (the highest downregulation in this study) with 5 µL/mL of fennel E.O.As for the acOTApks, acOTAnrps, veA and laeA, their reduction levels ranged between 10% and 96% depending on the nature of the E.O and its concentration in the medium. PMID:27548221

  8. Modulation of cytokine release and gene expression by the immunosuppressive domain of gp41 of HIV-1.

    PubMed

    Denner, Joachim; Eschricht, Magdalena; Lauck, Michael; Semaan, Marwan; Schlaermann, Philipp; Ryu, Hyunmi; Akyüz, Levent

    2013-01-01

    The transmembrane envelope protein gp41 of the human immunodeficiency virus HIV-1 plays an important role during infection allowing fusion of the viral and cellular membrane. In addition, there is increasing evidence that gp41 may contribute to the immunodeficiency induced by HIV-1. Recombinant gp41 and a synthetic peptide corresponding to a highly conserved domain in gp41, the immunosuppressive (isu) domain, have been shown to inhibit mitogen-induced activation of human peripheral blood mononuclear cells (PBMCs) and to increase release of IL-6 and IL-10 from these cells. We recently reported that a single mutation in the isu domain of gp41 abrogated the immunosuppressive properties and that HIV-1 sequences containing such abrogating mutations had never been isolated from infected individuals. Here, we studied the influence of the isu peptide on the release of 66 cytokines and the expression of 27,000 genes in PBMCs. Incubation of PBMCs with isu peptide homopolymers increased the expression of 16 cytokines among them IL-6 and IL-10, and decreased that of IL-2 and CXCL9. Interestingly, the extend of cytokine modulation was donor-dependent. Among the genes up-regulated were IL-6, IL-8, IL-10 but also MMP-1, TREM-1 and IL-1beta. Most importantly, genes involved in innate immunity such as FCN1 and SEPP1 were found down-regulated. Many changes in cytokine expression demonstrated in our experiments were also found in HIV-1 infected individuals. These data indicate that the isu domain of gp41 has a broad impact on gene expression and cytokine release and therefore may be involved in HIV-1 induced immunopathogenesis.

  9. Mechanisms of transcriptional modulation of the human anion exchanger SLC26A3 gene expression by IFN-γ

    PubMed Central

    Saksena, Seema; Singla, Amika; Goyal, Sonia; Katyal, Shivani; Bansal, Nikhil; Gill, Ravinder K.; Alrefai, Waddah A.; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K.

    2010-01-01

    Two members of the SLC26 gene family, SLC26A3 or DRA (downregulated in adenoma) and SLC26A6 (putative anion transporter 1, PAT1), are known to play a major role in apical Cl−/OH− (HCO3−) exchange process in the human intestine. We have previously shown the inhibitory effects of IFN-γ (30 ng/ml, 24 h) on both SLC26A3 and A6 expression and promoter activity. We also demonstrated that the effects of IFN-γ on SLC26A6 gene expression were mediated via IRF-1 transcription factor. However, the molecular mechanisms underlying the transcriptional modulation of SLC26A3 gene expression by IFN-γ in the intestine are not known. The present studies were, therefore, designed to elucidate the signaling mechanisms and transcription factor(s) involved in mediating the inhibitory effects of IFN-γ on DRA promoter (p-−1183/+114) activity. Deletion analysis indicated that the IFN-γ response element is located within the −1183 to −790 region, and sequence analysis of this region revealed the presence of potential γ-activated site (GAS), a binding site (−933/−925 bp) for signal transducer and activator of transcription factor 1 (STAT1). Mutations in the potential GAS element abrogated the inhibitory effects of IFN-γ. These studies provide evidence for the involvement of STAT1 in the inhibition of SLC26A3 gene expression by IFN-γ in the human intestine. PMID:19940027

  10. Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development.

    PubMed

    AlJabr, Ahmed Mohammed; Hussain, Abid; Rizwan-Ul-Haq, Muhammad; Al-Ayedh, Hassan

    2017-01-20

    This study aimed to explore the larvicidal and growth-inhibiting activities, and underlying detoxification mechanism of red palm weevil against phenylpropanoids, an important class of plant secondary metabolites. Toxicity of α-asarone, eugenol, isoeugenol, methyl eugenol, methyl isoeugenol, coumarin, coumarin 6, coniferyl aldehyde, diniconazole, ethyl cinnamate, and rosmarinic acid was evaluated by incorporation into the artificial diet. All of the phenylpropanoids exhibited dose- and time-dependent insecticidal activity. Among all the tested phenylpropanoids, coumarin exhibited the highest toxicity by revealing the least LD50 value (0.672 g/L). In addition, the most toxic compound (coumarin) observed in the current study, deteriorated the growth resulting tremendous reduction (78.39%) in efficacy of conversion of digested food (ECD), and (ECI) efficacy of conversion of ingested food (70.04%) of tenth-instar red palm weevil larvae. The energy-deficient red palm weevil larvae through their intrinsic abilities showed enhanced response to their digestibility resulting 27.78% increase in approximate digestibility (AD) compared to control larvae. The detoxification response of Rhynchophorus ferrugineus larvae determined by the quantitative expression of cytochrome P450, esterases, and glutathione S-transferase revealed enhanced expression among moderately toxic and ineffective compounds. These genes especially cytochrome P450 and GST detoxify the target compounds by enhancing their solubility that leads rapid excretion and degradation resulting low toxicity towards red palm weevil larvae. On the other hand, the most toxic (coumarin) silenced the genes involved in the red palm weevil detoxification mechanism. Based on the toxicity, growth retarding, and masking detoxification activities, coumarin could be a useful future natural red palm weevil-controlling agent.

  11. Polymorphism and DNA methylation in the promoter modulate KISS1 gene expression and are associated with litter size in goats.

    PubMed

    An, X P; Hou, J X; Lei, Y N; Gao, T Y; Cao, B Y

    2015-04-01

    Polymorphisms in the promoter region are likely to impact KISS1 gene transcription and reproductive traits. In this study, Guanzhong (GZ, n=350) and Boer (BE, n=196) goats were used to detect polymorphism in the promoter of the goat KISS1 gene by DNA sequencing. In the GZ goats, the g.1384G>A mutation was identified in the promoter of the goat KISS1 gene. Guanzhong goats were in Hardy-Weinberg disequilibrium at g.1384G>A locus (P<0.05). The 1384A allele was predicted to eliminate methylation, AHR-arnt heterodimers and AHR-related factors (AHRR) and myoblast determining factors (MYOD) transcription factor-binding sites. Statistical results indicated that the g.1384G>A SNP was associated with litter size in the GZ goats (P<0.05). Luciferase assay analysis suggested that the 1384A allele increased luciferase activity when compared to the 1384G allele. The RT-qPCR assay also demonstrated that the 1384A allele had greater amounts of KISS1 mRNA than the 1384G allele in homozygous individuals. Functional analysis suggested that this g.1384G>A SNP may be an important genetic regulator of KISS1 gene expression with effects on downstream processes that are modulated by KISS1 gene because of the changes of methylation and transcription factor-binding sites. Therefore, the current study provides evidence in goats for genetic markers that might be used in breeding programs.

  12. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines.

    PubMed

    Montazeri, Maryam; Sadeghizadeh, Majid; Pilehvar-Soltanahmadi, Yones; Zarghami, Faraz; Khodi, Samaneh; Mohaghegh, Mina; Sadeghzadeh, Hadi; Zarghami, Nosratollah

    2016-07-25

    The side-effects observed in conventional therapies have made them unpromising in curing Hepatocellular carcinoma; therefore, developing novel treatments can be an overwhelming significance. One of such novel agents is curcumin which can induce apoptosis in various cancerous cells, however, its poor solubility is restricted its application. To overcome this issue, this paper employed dendrosomal curcumin (DNC) was employed to in prevent hepatocarcinoma in both RNA and protein levels. Hepatocarcinoma cells, p53 wild-type HepG2 and p53 mutant Huh7, were treated with DNC and investigated for toxicity study using MTT assay. Cell cycle distribution and apoptosis were analyzed using Flow-cytometry and Annexin-V-FLUOS/PI staining. Real-time PCR and Western blot were employed to analyze p53, BAX, Bcl-2, p21 and Noxa in DNC-treated cells. DNC inhibited the growth in the form of time-dependent manner, while the carrier alone was not toxic to the cell. Flow-cytometry data showed the constant concentration of 20μM DNC during the time significantly increases cell population in SubG1 phase. Annexin-V-PI test showed curcumin-induced apoptosis was enhanced in Huh7 as well as HepG2, compared to untreated cells. Followed by treatment, mRNA expression of p21, BAX, and Noxa increased, while the expression of Bcl-2 decreased, and unlike HepG2, Huh7 showed down-regulation of p53. In summary, DNC-treated hepatocellular carcinoma cells undergo apoptosis by changing the expression of genes involved in the apoptosis and proliferation processes. These findings suggest that DNC, as a plant-originated therapeutic agent, could be applied in cancer treatment.

  13. Social Support Modulates Stress-Related Gene Expression in Various Brain Regions of Piglets

    PubMed Central

    Kanitz, Ellen; Hameister, Theresa; Tuchscherer, Armin; Tuchscherer, Margret; Puppe, Birger

    2016-01-01

    The presence of an affiliative conspecific may alleviate an individual’s stress response in threatening conditions. However, the mechanisms and neural circuitry underlying the process of social buffering have not yet been elucidated. Using the domestic pig as an animal model, we examined the effect of a 4-h maternal and littermate deprivation on stress hormones and on mRNA expression of the glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11ß-hydroxysteroid dehydrogenase (11ß-HSD) types 1 and 2 and the immediate early gene c-fos in various brain regions of 7-, 21- and 35-day old piglets. The deprivation occurred either alone or with a familiar or unfamiliar age-matched piglet. Compared to piglets deprived alone, the presence of a conspecific animal significantly reduced free plasma cortisol concentrations and altered the MR/GR balance and 11ß-HSD2 and c-fos mRNA expression in the prefrontal cortex (PFC), amygdala and hypothalamus, but not in the hippocampus. The alterations in brain mRNA expression were particularly found in 21- or 35-day old piglets, which may reflect the species-specific postnatal ontogeny of the investigated brain regions. The buffering effects of social support were most pronounced in the amygdala, indicating its significance both for the assessment of social conspecifics as biologically relevant stimuli and for the processing of emotional states. In conclusion, the present findings provide further evidence for the importance of the cortico-limbic network underlying the abilities of individuals to cope with social stress and strongly emphasize the benefits of social partners in livestock with respect to positive welfare and health. PMID:27965550

  14. Multiple 5'-flanking regions of the human alpha-skeletal actin gene synergistically modulate muscle-specific expression.

    PubMed

    Muscat, G E; Kedes, L

    1987-11-01

    Transfection into myogenic and nonmyogenic cell lines was used to investigate the transcriptional regulation of the human alpha-skeletal actin gene. We demonstrated that 1,300 base pairs of the 5'-flanking region directed high-level transient expression of the bacterial chloramphenicol acetyltransferase gene in differentiated mouse C2C12 and rat L8 myotubes but not in mouse nonmuscle L.TK- and HuT-12 cells. Unidirectional 5' deletion analysis and heterologous promoter stimulation experiments demonstrated that at least three transcription-regulating subdomains lie in this 1,300-base-pair region. A proximal cis-acting transcriptional element located between positions -153 and -87 relative to the start of transcription at +1 was both sufficient and necessary for muscle-specific expression and developmental regulation during myogenesis in the two myogenic cell systems. The region 3' of position -87 interacted with factors present in both myogenic and fibroblastic cells and appeared to define, or to be a major component of, the basal promoter. In C2C12 myotubes, but not in L8 myotubes, a distal sequence domain between positions -1300 and -626 and the proximal sequence domain between positions -153 and -87 each induced transcription about 10-fold and synergistically increased CAT expression 100-fold over levels achieved by the sequences 3' of position -87. Furthermore, these cis-acting elements independently and synergistically modulated an enhancerless, heterologous simian virus 40 promoter in a tissue-specific manner. DNA fragments which included the proximal domain displayed classical enhancerlike properties. The central region between positions -626 and -153, although required in neither cell line, had a positive, two- to threefold, additive role in augmenting expression in L8 cells but not in C2C12 cells. This suggests that certain elements between positions -1300 and -153 appear to be differentially utilized for maximal expression in different myogenic cells and

  15. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis.

    PubMed

    Zhou, Guo-An; Chang, Ru-Zhen; Qiu, Li-Juan

    2010-03-01

    Previous studies have shown that ubiquitination plays important roles in plant abiotic stress responses. In the present study, the ubiquitin-conjugating enzyme gene GmUBC2, a homologue of yeast RAD6, was cloned from soybean and functionally characterized. GmUBC2 was expressed in all tissues in soybean and was up-regulated by drought and salt stress. Arabidopsis plants overexpressing GmUBC2 were more tolerant to salinity and drought stresses compared with the control plants. Through expression analyses of putative downstream genes in the transgenic plants, we found that the expression levels of two ion antiporter genes AtNHX1 and AtCLCa, a key gene involved in the biosynthesis of proline, AtP5CS, and the copper chaperone for superoxide dismutase gene AtCCS, were all increased significantly in the transgenic plants. These results suggest that GmUBC2 is involved in the regulation of ion homeostasis, osmolyte synthesis, and oxidative stress responses. Our results also suggest that modulation of the ubiquitination pathway could be an effective means of improving salt and drought tolerance in plants through genetic engineering.

  16. Developmental Febrile Seizures Modulate Hippocampal Gene Expression of Hyperpolarization-Activated Channels in an Isoform- and Cell-Specific Manner

    PubMed Central

    Brewster, Amy; Bender, Roland A.; Chen, Yuncai; Dube, Celine; Eghbal-Ahmadi, Mariam; Baram, Tallie Z.

    2012-01-01

    Febrile seizures, in addition to being the most common seizure type of the developing human, may contribute to the generation of subsequent limbic epilepsy. Our previous work has demonstrated that prolonged experimental febrile seizures in the immature rat model increased hippocampal excitability long term, enhancing susceptibility to future seizures. The mechanisms for these profound proepileptogenic changes did not require cell death and were associated with long-term slowed kinetics of the hyperpolarization-activated depolarizing current (IH). Here we show that these seizures modulate the expression of genes encoding this current, the hyperpolarization-activated, cyclic nucleotide-gated channels (HCNs): In CA1 neurons expressing multiple HCN isoforms, the seizures induced a coordinated reduction of HCN1 mRNA and enhancement of HCN2 expression, thus altering the neuronal HCN phenotype. The seizure-induced augmentation of HCN2 expression involved CA3 in addition to CA1, whereas for HCN4, mRNA expression was not changed by the seizures in either hippocampal region. This isoform- and region-specific transcriptional regulation of the HCNs required neuronal activity rather than hyperthermia alone, correlated with seizure duration, and favored the formation of slow-kinetics HCN2-encoded channels. In summary, these data demonstrate a novel, activity-dependent transcriptional regulation of HCN molecules by developmental seizures. These changes result in long-lasting alteration of the HCN phenotype of specific hippocampal neuronal populations, with profound consequences on the excitability of the hippocampal network. PMID:12040066

  17. Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis.

    PubMed

    Fu, Zheng-Wei; Wang, Yan-Li; Lu, Ying-Tang; Yuan, Ting-Ting

    2016-11-01

    As sessile organisms, plants require many flexible strategies to adapt to the environment. Although some environmental signaling pathways regulating stomatal development have been identified, how stomatal regulators are modulated by internal and external signals to determine the final stomatal abundance requires further exploration. In our studies, we found that nitric oxide (NO) promotes stomatal development with increased stomatal index as well as the relative number of meristemoids and guard mother cells [%(M+GMC)] in NO-treated wild-type Arabidopsis plants; this role of NO was further verified in the nox1 mutant, which exhibits higher NO levels, and the noa1 mutant, which exhibits low NO accumulation. To gain insight into the molecular mechanisms underlying the effect of NO, we further assayed the expression of genes involved in stomatal development and found that NO induces the expression of the master regulators SPCH, MUTE and SCRM2 to initiate stomatal development. In addition, MPK6 is also involved in NO-promoted stomatal development, as MPK6 expression was repressed in nox1 and NO-treated plants, and transgenic plants overexpressing MPK6 were less sensitive to SNP treatment in terms of changes in the%(M+GMC). Thus, our study shows that NO promotes the production of stomata by up-regulating the expression of SPCH, MUTE and SCRM2 and down-regulating MPK6 expression.

  18. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner.

    PubMed

    Brewster, Amy; Bender, Roland A; Chen, Yuncai; Dube, Celine; Eghbal-Ahmadi, Mariam; Baram, Tallie Z

    2002-06-01

    Febrile seizures, in addition to being the most common seizure type of the developing human, may contribute to the generation of subsequent limbic epilepsy. Our previous work has demonstrated that prolonged experimental febrile seizures in the immature rat model increased hippocampal excitability long term, enhancing susceptibility to future seizures. The mechanisms for these profound proepileptogenic changes did not require cell death and were associated with long-term slowed kinetics of the hyperpolarization-activated depolarizing current (I(H)). Here we show that these seizures modulate the expression of genes encoding this current, the hyperpolarization-activated, cyclic nucleotide-gated channels (HCNs): In CA1 neurons expressing multiple HCN isoforms, the seizures induced a coordinated reduction of HCN1 mRNA and enhancement of HCN2 expression, thus altering the neuronal HCN phenotype. The seizure-induced augmentation of HCN2 expression involved CA3 in addition to CA1, whereas for HCN4, mRNA expression was not changed by the seizures in either hippocampal region. This isoform- and region-specific transcriptional regulation of the HCNs required neuronal activity rather than hyperthermia alone, correlated with seizure duration, and favored the formation of slow-kinetics HCN2-encoded channels. In summary, these data demonstrate a novel, activity-dependent transcriptional regulation of HCN molecules by developmental seizures. These changes result in long-lasting alteration of the HCN phenotype of specific hippocampal neuronal populations, with profound consequences on the excitability of the hippocampal network.

  19. Xanthohumol modulates the expression of osteoclast-specific genes during osteoclastogenesis in RAW264.7 cells.

    PubMed

    Suh, Kwang Sik; Rhee, Sang Youl; Kim, Young Seol; Lee, Young Soon; Choi, Eun Mi

    2013-12-01

    RANKL has been shown to play a critical role in osteoclast formation and bone resorption. Thus, agents that suppress RANKL signaling have a potential to suppress bone loss. In this study, we examined the ability of xanthohumol, a structurally simple prenylated chalcone, to suppress RANKL signaling during osteoclastogenesis in RAW264.7 cells. Xanthohumol markedly inhibited RANKL-induced TRAP activity, multinucleated osteoclasts formation, and resorption-pit formation. In experiments to elucidate its mechanism of action, xanthohumol was found to suppress RANKL-induced expression of TRAF6, GAB2, ERK, c-Src, PI3K, and Akt genes. Moreover, RANKL-induced expressions of c-Fos and NFATc1, which are crucial transcription factors for osteoclastogenesis, were reduced by treatment with xanthohumol. Xanthohumol also inhibited RANKL-induced expression of bone-resorption related osteoclast-specific genes (carbonic anhydrase II, TCIRG, CLCN7, OSTM1, cathepsin K, and MMP-9). These data demonstrate that xanthohumol inhibits osteoclastogenesis by modulating RANKL signaling and may be useful for the prevention of bone-destructive diseases such as osteoporosis, arthritis and periodontitis.

  20. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes

    PubMed Central

    Starkevič, Pavel; Paukštytė, Jurgita; Kazanavičiūtė, Vaiva; Denkovskienė, Erna; Stanys, Vidmantas; Bendokas, Vidmantas; Šikšnianas, Tadeušas; Ražanskienė, Aušra; Ražanskas, Raimundas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties. PMID:25978735

  1. Safety assessment considerations for food and feed derived from plants with genetic modifications that modulate endogenous gene expression and pathways.

    PubMed

    Kier, Larry D; Petrick, Jay S

    2008-08-01

    The current globally recognized comparative food and feed safety assessment paradigm for biotechnology-derived crops is a robust and comprehensive approach for evaluating the safety of both the inserted gene product and the resulting crop. Incorporating many basic concepts from food safety, toxicology, nutrition, molecular biology, and plant breeding, this approach has been used effectively by scientists and regulatory agencies for 10-15 years. Current and future challenges in agriculture include the need for improved yields, tolerance to biotic and abiotic stresses, and improved nutrition. The next generation of biotechnology-derived crops may utilize regulatory proteins, such as transcription factors that modulate gene expression and/or endogenous plant pathways. In this review, we discuss the applicability of the current safety assessment paradigm to biotechnology-derived crops developed using modifications involving regulatory proteins. The growing literature describing the molecular biology underlying plant domestication and conventional breeding demonstrates the naturally occurring genetic variation found in plants, including significant variation in the classes, expression, and activity of regulatory proteins. Specific examples of plant modifications involving insertion or altered expression of regulatory proteins are discussed as illustrative case studies supporting the conclusion that the current comparative safety assessment process is appropriate for these types of biotechnology-developed crops.

  2. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes.

    PubMed

    Starkevič, Pavel; Paukštytė, Jurgita; Kazanavičiūtė, Vaiva; Denkovskienė, Erna; Stanys, Vidmantas; Bendokas, Vidmantas; Šikšnianas, Tadeušas; Ražanskienė, Aušra; Ražanskas, Raimundas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties.

  3. Direct modulation of simian virus 40 late gene expression by thyroid hormone and its receptor.

    PubMed Central

    Zuo, F; Kraus, R J; Gulick, T; Moore, D D; Mertz, J E

    1997-01-01

    Transcription of the late genes of simian virus 40 (SV40) is repressed during the early phase of the lytic cycle of infection of primate cells by the binding of cellular factors, called IBP-s, to the SV40 late promoter; repression is relieved after the onset of viral DNA replication by titration of these repressors (S. R. Wiley, R. J. Kraus, F. R. Zuo, E. E. Murray, K. Loritz, and J. E. Mertz, Genes Dev. 7:2206-2219, 1993). Recently, we showed that IBP-s consists of several members of the steroid/thyroid hormone receptor superfamily (F. Zuo and J. E. Mertz, Proc. Natl. Acad. Sci. USA 92:8586-8590, 1995). Here, we show that the thyroid hormone receptor TRalpha1, in combination with retinoid X receptor alpha (RXRalpha), is specifically bound at the transcriptional initiation site of the major late promoter of SV40. This binding repressed transcription from the SV40 late promoter by preventing the formation of pre-initiation complexes. Addition of the thyroid hormone 3,5,3'-L-triiodothyronine (T3) resulted in reversal of this repression in cotransfected CV-1 cells. Interestingly, repression did not occur when this thyroid response element (TRE) was translocated to 50 bp upstream of the major late initiation site. Binding of TRalpha1/RXRalpha heterodimers to this TRE induced bending of the promoter DNA. We conclude that hormones and their receptors can directly affect the expression of SV40, probably by affecting protein-protein and protein-DNA interactions involved in the formation of functional preinitiation complexes. PMID:8985367

  4. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression.

    PubMed

    Alhaider, Abdulqader A; Korashy, Hesham M; Sayed-Ahmed, Mohamed M; Mobark, Mohammed; Kfoury, Hala; Mansour, Mahmoud A

    2011-07-15

    Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion and/or action. One of the most important complications of this metabolic disease is diabetic nephropathy. Hyperglycemia promotes oxidative stress and hence generation of reactive oxygen species (ROS), which is known to play a crucial role in the pathogenesis of diabetic nephropathy. Recent studies have established that metformin, an oral hypoglycemic drug, possesses antioxidant effects. However, whether metformin can protect against diabetic nephropathy has not been reported before. The overall objectives of the present study are to elucidate the potential nephroprotective effect of metformin in a rat diabetic nephropathy model and explore the exact underlying mechanism(s) involved. The effect of metformin on the biochemical changes associated with hyperglycemia induced by streptozotocin was investigated in rat kidney tissues. In addition, energy nucleotides (AMP and ATP), and Acetyl-CoA in the kidney homogenates and mitochondria, and the mRNA expression of oxidative stress and pro-inflammatory mediators were assessed. Our results showed that treatment of normoglycemic rats with metformin caused significant increase in ATP, Acetyl-CoA, and CoA-SH contents in kidney homogenates and mitochondria along with profound decrease in AMP level. On the other hand, treatment of diabetic nephropathy rats with metformin normalized all biochemical changes and the energy status in kidney tissues. At the transcriptional levels, metformin treatment caused significant restoration in diabetic nephropathy-induced oxidative stress mRNA levels, particularly GSTα, NQO1, and CAT genes, whereas inhibited TNF-α and IL-6 pro-inflammatory genes. Our data lend further credence for the contribution of metformin in the nephroprotective effect in addition to its well known hypoglycemic action.

  5. A seasonal switch in histone deacetylase gene expression in the hypothalamus and their capacity to modulate nuclear signaling pathways.

    PubMed

    Stoney, Patrick N; Rodrigues, Diana; Helfer, Gisela; Khatib, Thabat; Ashton, Anna; Hay, Elizabeth A; Starr, Robert; Kociszewska, Dagmara; Morgan, Peter; McCaffery, Peter

    2017-03-01

    Seasonal animals undergo changes in physiology and behavior between summer and winter conditions. These changes are in part driven by a switch in a series of hypothalamic genes under transcriptional control by hormones and, of recent interest, inflammatory factors. Crucial to the control of transcription are histone deacetylases (HDACs), generally acting to repress transcription by local histone modification. Seasonal changes in hypothalamic HDAC transcripts were investigated in photoperiod-sensitive F344 rats by altering the day-length (photoperiod). HDAC4, 6 and 9 were found to change in expression. The potential influence of HDACs on two hypothalamic signaling pathways that regulate transcription, inflammatory and nuclear receptor signaling, was investigated. For inflammatory signaling the focus was on NF-κB because of the novel finding made that its expression is seasonally regulated in the rat hypothalamus. For nuclear receptor signaling it was discovered that expression of retinoic acid receptor beta was regulated seasonally. HDAC modulation of NF-κB-induced pathways was examined in a hypothalamic neuronal cell line and primary hypothalamic tanycytes. HDAC4/5/6 inhibition altered the control of gene expression (Fos, Prkca, Prkcd and Ptp1b) by inducers of NF-κB that activate inflammation. These inhibitors also modified the action of nuclear receptor ligands thyroid hormone and retinoic acid. Thus seasonal changes in HDAC4 and 6 have the potential to epigenetically modify multiple gene regulatory pathways in the hypothalamus that could act to limit inflammatory pathways in the hypothalamus during long-day summer-like conditions.

  6. Modulation of the light-harvesting chlorophyll antenna size in Chlamydomonas reinhardtii by TLA1 gene over-expression and RNA interference.

    PubMed

    Mitra, Mautusi; Kirst, Henning; Dewez, David; Melis, Anastasios

    2012-12-19

    Truncated light-harvesting antenna 1 (TLA1) is a nuclear gene proposed to regulate the chlorophyll (Chl) antenna size in Chlamydomonas reinhardtii. The Chl antenna size of the photosystems and the chloroplast ultrastructure were manipulated upon TLA1 gene over-expression and RNAi downregulation. The TLA1 over-expressing lines possessed a larger chlorophyll antenna size for both photosystems and contained greater levels of Chl b per cell relative to the wild type. Conversely, TLA1 RNAi transformants had a smaller Chl antenna size for both photosystems and lower levels of Chl b per cell. Western blot analyses of the TLA1 over-expressing and RNAi transformants showed that modulation of TLA1 gene expression was paralleled by modulation in the expression of light-harvesting protein, reaction centre D1 and D2, and VIPP1 genes. Transmission electron microscopy showed that modulation of TLA1 gene expression impacts the organization of thylakoid membranes in the chloroplast. Over-expressing lines showed well-defined grana, whereas RNAi transformants possessed loosely held together and more stroma-exposed thylakoids. Cell fractionation suggested localization of the TLA1 protein in the inner chloroplast envelope and potentially in association with nascent thylakoid membranes, indicating a role in Chl antenna assembly and thylakoid membrane biogenesis. The results provide a mechanistic understanding of the Chl antenna size regulation by the TLA1 gene.

  7. Distinct promoter activation mechanisms modulate noise-driven HIV gene expression

    NASA Astrophysics Data System (ADS)

    Chavali, Arvind K.; Wong, Victor C.; Miller-Jensen, Kathryn

    2015-12-01

    Latent human immunodeficiency virus (HIV) infections occur when the virus occupies a transcriptionally silent but reversible state, presenting a major obstacle to cure. There is experimental evidence that random fluctuations in gene expression, when coupled to the strong positive feedback encoded by the HIV genetic circuit, act as a ‘molecular switch’ controlling cell fate, i.e., viral replication versus latency. Here, we implemented a stochastic computational modeling approach to explore how different promoter activation mechanisms in the presence of positive feedback would affect noise-driven activation from latency. We modeled the HIV promoter as existing in one, two, or three states that are representative of increasingly complex mechanisms of promoter repression underlying latency. We demonstrate that two-state and three-state models are associated with greater variability in noisy activation behaviors, and we find that Fano factor (defined as variance over mean) proves to be a useful noise metric to compare variability across model structures and parameter values. Finally, we show how three-state promoter models can be used to qualitatively describe complex reactivation phenotypes in response to therapeutic perturbations that we observe experimentally. Ultimately, our analysis suggests that multi-state models more accurately reflect observed heterogeneous reactivation and may be better suited to evaluate how noise affects viral clearance.

  8. Distinct promoter activation mechanisms modulate noise-driven HIV gene expression

    PubMed Central

    Chavali, Arvind K.; Wong, Victor C.; Miller-Jensen, Kathryn

    2015-01-01

    Latent human immunodeficiency virus (HIV) infections occur when the virus occupies a transcriptionally silent but reversible state, presenting a major obstacle to cure. There is experimental evidence that random fluctuations in gene expression, when coupled to the strong positive feedback encoded by the HIV genetic circuit, act as a ‘molecular switch’ controlling cell fate, i.e., viral replication versus latency. Here, we implemented a stochastic computational modeling approach to explore how different promoter activation mechanisms in the presence of positive feedback would affect noise-driven activation from latency. We modeled the HIV promoter as existing in one, two, or three states that are representative of increasingly complex mechanisms of promoter repression underlying latency. We demonstrate that two-state and three-state models are associated with greater variability in noisy activation behaviors, and we find that Fano factor (defined as variance over mean) proves to be a useful noise metric to compare variability across model structures and parameter values. Finally, we show how three-state promoter models can be used to qualitatively describe complex reactivation phenotypes in response to therapeutic perturbations that we observe experimentally. Ultimately, our analysis suggests that multi-state models more accurately reflect observed heterogeneous reactivation and may be better suited to evaluate how noise affects viral clearance. PMID:26666681

  9. Modulation of steroidogenic gene expression and hormone production of H295R cells by pharmaceuticals and other environmentally active compounds

    SciTech Connect

    Gracia, Tannia Hilscherova, Klara; Jones, Paul D.; Newsted, John L.; Higley, Eric B.; Zhang, Xiaowei; Hecker, Markus; Murphy, Margaret B.; Yu, Richard M.K.; Lam, Paul K.S.; Wu, Rudolf S.S.; Giesy, John P.

    2007-12-01

    The H295R cell bioassay was used to evaluate the potential endocrine disrupting effects of 18 of the most commonly used pharmaceuticals in the United States. Exposures for 48 h with single pharmaceuticals and binary mixtures were conducted; the expression of five steroidogenic genes, 3{beta}HSD2, CYP11{beta}1, CYP11{beta}2, CYP17 and CYP19, was quantified by Q-RT-PCR. Production of the steroid hormones estradiol (E2), testosterone (T) and progesterone (P) was also evaluated. Antibiotics were shown to modulate gene expression and hormone production. Amoxicillin up-regulated the expression of CYP11{beta}2 and CYP19 by more than 2-fold and induced estradiol production up to almost 3-fold. Erythromycin significantly increased CYP11{beta}2 expression and the production of P and E2 by 3.5- and 2.4-fold, respectively, while production of T was significantly decreased. The {beta}-blocker salbutamol caused the greatest induction of CYP17, more than 13-fold, and significantly decreased E2 production. The binary mixture of cyproterone and salbutamol significantly down-regulated expression of CYP19, while a mixture of ethynylestradiol and trenbolone, increased E2 production 3.7-fold. Estradiol production was significantly affected by changes in concentrations of trenbolone, cyproterone, and ethynylestradiol. Exposures with individual pharmaceuticals showed the possible secondary effects that drugs may exert on steroid production. Results from binary mixture exposures suggested the possible type of interactions that may occur between drugs and the joint effects product of such interactions. Dose-response results indicated that although two chemicals may share a common mechanism of action the concentration effects observed may be significantly different.

  10. [60]Fullerene derivative modulates adenosine and metabotropic glutamate receptors gene expression: a possible protective effect against hypoxia

    PubMed Central

    2014-01-01

    Background Glutamate, the main excitatory neurotransmitter, is involved in learning and memory processes but at higher concentration results excitotoxic causing degeneration and neuronal death. Adenosine is a nucleoside that exhibit neuroprotective effects by modulating of glutamate release. Hypoxic and related oxidative conditions, in which adenosine and metabotropic glutamate receptors are involved, have been demonstrated to contribute to neurodegenerative processes occurring in certain human pathologies. Results Human neuroblastoma cells (SH-SY5Y) were used to evaluate the long time (24, 48 and 72 hours) effects of a [60]fullerene hydrosoluble derivative (t3ss) as potential inhibitor of hypoxic insult. Low oxygen concentration (5% O2) caused cell death, which was avoided by t3ss exposure in a concentration dependent manner. In addition, gene expression analysis by real time PCR of adenosine A1, A2A and A2B and metabotropic glutamate 1 and 5 receptors revealed that t3ss significantly increased A1 and mGlu1 expression in hypoxic conditions. Moreover, t3ss prevented the hypoxia-induced increase in A2A mRNA expression. Conclusions As t3ss causes overexpression of adenosine A1 and metabotropic glutamate receptors which have been shown to be neuroprotective, our results point to a radical scavenger protective effect of t3ss through the enhancement of these neuroprotective receptors expression. Therefore, the utility of these nanoparticles as therapeutic target to avoid degeneration and cell death of neurodegenerative diseases is suggested. PMID:25123848

  11. Forced engagement of a RNA/protein complex by a chemical inducer of dimerization to modulate gene expression

    NASA Astrophysics Data System (ADS)

    Harvey, Isabelle; Garneau, Philippe; Pelletier, Jerry

    2002-02-01

    A general strategy is described for forcing the engagement of an RNA/protein complex by using small-molecule ligands. A bivalent molecule was created by linking a protein-binding ligand to an RNA-binding ligand. On presentation of the chemical inducer of dimerization to the RNA by the protein, cooperative binding ensued, resulting in higher-affinity complexes. When the chemical inducer of dimerization was used to target the protein to an mRNA template, the resulting RNA/protein complex was sufficiently stable to inhibit mRNA translation. This approach provides a logic to modulate gene expression by using small-molecule ligands to recruit protein surfaces to mRNAs.

  12. Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain.

    PubMed

    Sosnik, Julian; Zheng, Likun; Rackauckas, Christopher V; Digman, Michelle; Gratton, Enrico; Nie, Qing; Schilling, Thomas F

    2016-04-12

    Morphogen gradients induce sharply defined domains of gene expression in a concentration-dependent manner, yet how cells interpret these signals in the face of spatial and temporal noise remains unclear. Using fluorescence lifetime imaging microscopy (FLIM) and phasor analysis to measure endogenous retinoic acid (RA) directly in vivo, we have investigated the amplitude of noise in RA signaling, and how modulation of this noise affects patterning of hindbrain segments (rhombomeres) in the zebrafish embryo. We demonstrate that RA forms a noisy gradient during critical stages of hindbrain patterning and that cells use distinct intracellular binding proteins to attenuate noise in RA levels. Increasing noise disrupts sharpening of rhombomere boundaries and proper patterning of the hindbrain. These findings reveal novel cellular mechanisms of noise regulation, which are likely to play important roles in other aspects of physiology and disease.

  13. Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain

    PubMed Central

    Sosnik, Julian; Zheng, Likun; Rackauckas, Christopher V; Digman, Michelle; Gratton, Enrico; Nie, Qing; Schilling, Thomas F

    2016-01-01

    Morphogen gradients induce sharply defined domains of gene expression in a concentration-dependent manner, yet how cells interpret these signals in the face of spatial and temporal noise remains unclear. Using fluorescence lifetime imaging microscopy (FLIM) and phasor analysis to measure endogenous retinoic acid (RA) directly in vivo, we have investigated the amplitude of noise in RA signaling, and how modulation of this noise affects patterning of hindbrain segments (rhombomeres) in the zebrafish embryo. We demonstrate that RA forms a noisy gradient during critical stages of hindbrain patterning and that cells use distinct intracellular binding proteins to attenuate noise in RA levels. Increasing noise disrupts sharpening of rhombomere boundaries and proper patterning of the hindbrain. These findings reveal novel cellular mechanisms of noise regulation, which are likely to play important roles in other aspects of physiology and disease. DOI: http://dx.doi.org/10.7554/eLife.14034.001 PMID:27067377

  14. Expression and Rhythmic Modulation of Circulating MicroRNAs Targeting the Clock Gene Bmal1 in Mice

    PubMed Central

    Shende, Vikram R.; Goldrick, Marianna M.; Ramani, Suchitra; Earnest, David J.

    2011-01-01

    MicroRNAs (miRNAs) interact with 3′ untranslated region (UTR) elements of target genes to regulate mRNA stability or translation and thus play a role in regulating many different biological processes, including circadian rhythms. However, specific miRNAs mediating the regulation of essential clock genes remain largely unknown. Because vesicles containing membrane-bound miRNAs are present in the circulatory system, we examined miRNAs predicted to target the clock gene, Bmal1, for evidence of rhythmic fluctuations in circulating levels and modulatory effects on the 3′ UTR activity of Bmal1. A number of miRNAs with Bmal1 as a predicted target were expressed in the serum of mice exposed to LD 12∶12 and of these miRNAs, miR-152 and miR-494 but not miR-142-3p were marked by diurnal oscillations with bimodal peaks in expression occurring near the middle of the day and 8 or 12 hr later during the night. Co-transfection of pre-miR over-expression constructs for miR-494 and miR-142-3p in HEK293 cells had significant effects in repressing luciferase-reported Bmal1 3′ UTR activity by as much as 60%, suggesting that these miRNAs may function as post-transcriptional modulators of Bmal1. In conjunction with previous studies implicating miRNAs as extracellular regulatory signals, our results suggest that circulating miRNAs may play a role in the regulation of the molecular clockworks in peripheral circadian oscillators. PMID:21799909

  15. EW_dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles

    PubMed Central

    Wang, Quan; Yu, Hui; Zhao, Zhongming; Jia, Peilin

    2015-01-01

    Summary: We previously developed dmGWAS to search for dense modules in a human protein–protein interaction (PPI) network; it has since become a popular tool for network-assisted analysis of genome-wide association studies (GWAS). dmGWAS weights nodes by using GWAS signals. Here, we introduce an upgraded algorithm, EW_dmGWAS, to boost GWAS signals in a node- and edge-weighted PPI network. In EW_dmGWAS, we utilize condition-specific gene expression profiles for edge weights. Specifically, differential gene co-expression is used to infer the edge weights. We applied EW_dmGWAS to two diseases and compared it with other relevant methods. The results suggest that EW_dmGWAS is more powerful in detecting disease-associated signals. Availability and implementation: The algorithm of EW_dmGWAS is implemented in the R package dmGWAS_3.0 and is available at http://bioinfo.mc.vanderbilt.edu/dmGWAS. Contact: zhongming.zhao@vanderbilt.edu or peilin.jia@vanderbilt.edu Supplementary information: Supplementary materials are available at Bioinformatics online. PMID:25805723

  16. Restricted Feeding Schedules Modulate in a Different Manner the Expression of Clock Genes in Rat Hypothalamic Nuclei

    PubMed Central

    De Araujo, Leonardo D.; Roa, Silvia L.; Bueno, Ana C.; Coeli-Lacchini, Fernanda B.; Martins, Clarissa S.; Uchoa, Ernane T.; Antunes-Rodrigues, Jose; Elias, Lucila L.; Elias, Paula C.; Moreira, Ayrton C.; De Castro, Margaret

    2016-01-01

    Food access restriction is associated to changes in gene expression of the circadian clock system. However, there are only a few studies investigating the effects of non-photic synchronizers, such as food entrainment, on the expression of clock genes in the central oscillators. We hypothesized that different feeding restriction patterns could modulate the expression of clock genes in the suprachiasmatic nucleus (SCN) “master” clock and in extra-SCN oscillators such as the paraventricular (PVN) and arcuate (ARC) hypothalamic nuclei. Wistar rats were divided into four groups: Control group (CG; food available ad libitum), Restricted night-fed (RF-n; food access during 2 h at night), Restricted day-fed (RF-d; food access during 2 h at daytime), Day-fed (DF; food access during 12 h at daytime). After 21 days, rats were decapitated between ZT2-ZT3 (0800–0900 h); ZT11-ZT12 (1700–1800 h), or ZT17-18 (2300–2400 h). Plasma corticosterone was measured by radioimmunoassay (RIA). The expression of Clock, Bmal1, Per1, Per2, Per3, Cry1, Cry2, Rev-erbα, and Rorα were assessed in SCN, PVN, and ARC hypothalamic nuclei by RT-PCR and calculated by the 2[−DeltaDeltaCT(Cyclethreshold)](2−ΔΔCT) method. Restricted food availability during few h led to decreased body weight in RF-n and RF-d groups compared to controls and DF group. We also observed an anticipatory corticosterone peak before food availability in RF-n and RF-d groups. Furthermore, the pattern of clock gene expression in response to RF-n, RF-d, and DF schedules was affected differently in the SCN, PVN, and ARC hypothalamic nuclei. In conclusion, the master oscillator in SCN as well as the oscillator in PVN and ARC, all brain areas involved in food intake, responds in a tissue-specific manner to feeding restriction. PMID:28003802

  17. Nuclear Localization and Gene Expression Modulation by a Fluorescent Sequence-Selective p-Anisyl-benzimidazolecarboxamido Imidazole-Pyrrole Polyamide.

    PubMed

    Kiakos, Konstantinos; Pett, Luke; Satam, Vijay; Patil, Pravin; Hochhauser, Daniel; Lee, Moses; Hartley, John A

    2015-07-23

    Synthetic pyrrole (P)-imidazole (I) containing polyamides can target predetermined DNA sequences and modulate gene expression by interfering with transcription factor binding. We have previously shown that rationally designed polyamides targeting the inverted CCAAT box 2 (ICB2) of the topoisomerase IIα (topo IIα) promoter can inhibit binding of transcription factor NF-Y, re-inducing expression of the enzyme in confluent cells. Here, the A/T recognizing fluorophore, p-anisylbenzimidazolecarboxamido (Hx) was incorporated into the hybrid polyamide HxIP, which fluoresces upon binding to DNA, providing an intrinsic probe to monitor cellular uptake. HxIP targets the 5'-TACGAT-3' sequence of the 5' flank of ICB2 with high affinity and sequence specificity, eliciting an ICB2-selective inhibition/displacement of NF-Y. HxIP is readily taken up by NIH3T3 and A549 cells, and detected in the nucleus within minutes. Exposure to the polyamide at confluence resulted in a dose-dependent upregulation of topo IIα expression and enhanced formation of etoposide-induced DNA strand breaks.

  18. Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes.

    PubMed

    Zhang, Qiongyi; Ramlee, Muhammad Khairul; Brunmeir, Reinhard; Villanueva, Claudio J; Halperin, Daniel; Xu, Feng

    2012-12-01

    Histone modifications and their modifying enzymes are fundamentally involved in the epigenetic regulation of adipogenesis. This study aimed to define the roles of various histone modifications and their "division of labor" in fat cell differentiation. To achieve these goals, we examined the distribution patterns of eight core histone modifications at five key adipogenic regulatory genes, Pref-1, C/EBPβ, C/EBPα, PPARγ2 and aP2, during the adipogenesis of C3H 10T1/2 mouse mesenchymal stem cells (MSCs) and 3T3-L1 preadipocytes. We found that the examined histone modifications are globally stable throughout adipogenesis but show distinct and highly dynamic distribution patterns at specific genes. For example, the Pref-1 gene has lower levels of active chromatin markers and significantly higher H3 K27 tri-methylation in MSCs compared with committed preadipocytes; the C/EBPβ gene is enriched in active chromatin markers at its 3'-UTR; the C/EBPα gene is predominantly marked by H3 K27 tri-methylation in adipogenic precursor cells, and this repressive marker decreases dramatically upon induction; the PPARγ2 and aP2 genes show increased histone acetylation on both H3 and H4 tails during adipogenesis. Further functional studies revealed that the decreased level of H3 K27 tri-methylation leads to de-repression of Pref-1 gene, while the increased level of histone acetylation activates the transcription of PPARγ2 and aP2 genes. Moreover, the active histone modification-marked 3'-UTR of C/EBPβ gene was demonstrated as a strong enhancer element by luciferase assay. Our results indicate that histone modifications are gene-specific at adipogenic regulator genes, and they play distinct roles in regulating the transcriptional network during adipogenesis.

  19. Strong Constraint on Human Genes Escaping X-Inactivation Is Modulated by their Expression Level and Breadth in Both Sexes.

    PubMed

    Slavney, Andrea; Arbiza, Leonardo; Clark, Andrew G; Keinan, Alon

    2016-02-01

    In eutherian mammals, X-linked gene expression is normalized between XX females and XY males through the process of X chromosome inactivation (XCI). XCI results in silencing of transcription from one ChrX homolog per female cell. However, approximately 25% of human ChrX genes escape XCI to some extent and exhibit biallelic expression in females. The evolutionary basis of this phenomenon is not entirely clear, but high sequence conservation of XCI escapers suggests that purifying selection may directly or indirectly drive XCI escape at these loci. One hypothesis is that this signal results from contributions to developmental and physiological sex differences, but presently there is limited evidence supporting this model in humans. Another potential driver of this signal is selection for high and/or broad gene expression in both sexes, which are strong predictors of reduced nucleotide substitution rates in mammalian genes. Here, we compared purifying selection and gene expression patterns of human XCI escapers with those of X-inactivated genes in both sexes. When we accounted for the functional status of each ChrX gene's Y-linked homolog (or "gametolog"), we observed that XCI escapers exhibit greater degrees of purifying selection in the human lineage than X-inactivated genes, as well as higher and broader gene expression than X-inactivated genes across tissues in both sexes. These results highlight a significant role for gene expression in both sexes in driving purifying selection on XCI escapers, and emphasize these genes' potential importance in human disease.

  20. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes.

    PubMed

    Zheng, Lei; Liu, Guifeng; Meng, Xiangnan; Liu, Yujia; Ji, Xiaoyu; Li, Yanbang; Nie, Xianguang; Wang, Yucheng

    2013-07-01

    WRKY transcription factors are involved in various biological processes, such as development, metabolism and responses to stress. However, their exact roles in abiotic stress tolerance are largely unknown. Here, we demonstrated a working model for the function of a WRKY gene (ThWRKY4) from Tamarix hispida in the stress response. ThWRKY4 is highly induced by abscisic acid (ABA), salt and drought in the early period of stress (stress for 3, 6, or 9 h), which can be regulated by ABF (ABRE binding factors) and Dof (DNA binding with one finger), and also can be crossregulated by other WRKYs and autoregulated as well. Overexpression of ThWRKY4 conferred tolerance to salt, oxidative and ABA treatment in transgenic plants. ThWRKY4 can improve the tolerance to salt and ABA treatment by improving activities of superoxide dismutase and peroxidase, decreasing levels of O2 (-) and H2O2, reducing electrolyte leakage, keeping the loss of chlorophyll, and protecting cells from death. Microarray analyses showed that overexpression of ThWRKY4 in Arabidopsis leads to 165 and 100 genes significantly up- and downregulated, respectively. Promoter scanning analysis revealed that ThWRKY4 regulates the gene expression via binding to W-box motifs present in their promoter regions. This study shows that ThWRKY4 functions as a transcription factor to positively modulate abiotic stress tolerances, and is involved in modulating reactive oxygen species.

  1. Researchers use Modified CRISPR Systems to Modulate Gene Expression on a Genomic Scale

    Cancer.gov

    Cancer Target Discovery and Development Network (CTD2) researchers at the University of California, San Francisco, developed a CRISPR system that can regulate both gene repression and activation with fewer off-target effects.

  2. C. albicans Growth, Transition, Biofilm Formation, and Gene Expression Modulation by Antimicrobial Decapeptide KSL-W

    DTIC Science & Technology

    2013-11-07

    is essential to biofilm formation [4]. The involvement of HWP1 in C. albicans adhesion is supported by the EAP1 gene which encodes a glucan -crosslinked...KSL-W. Furthermore, the EAP1 gene, which encodes a glycosylphosphatidylinositol- anchored, glucan -crosslinked cell wall protein in both ad- hesion and...control in agriculture. J Sci Food Agric 2013, 93:1525–1536. 27. Dhople V, Krukemeyer A, Ramamoorthy A: The human beta -defensin-3, an antibacterial

  3. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  4. Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C3 and C4 Plant Species[C][W][OPEN

    PubMed Central

    Külahoglu, Canan; Denton, Alisandra K.; Sommer, Manuel; Maß, Janina; Schliesky, Simon; Wrobel, Thomas J.; Berckmans, Barbara; Gongora-Castillo, Elsa; Buell, C. Robin; Simon, Rüdiger; De Veylder, Lieven; Bräutigam, Andrea; Weber, Andreas P.M.

    2014-01-01

    C4 photosynthesis outperforms the ancestral C3 state in a wide range of natural and agro-ecosystems by affording higher water-use and nitrogen-use efficiencies. It therefore represents a prime target for engineering novel, high-yielding crops by introducing the trait into C3 backgrounds. However, the genetic architecture of C4 photosynthesis remains largely unknown. To define the divergence in gene expression modules between C3 and C4 photosynthesis during leaf ontogeny, we generated comprehensive transcriptome atlases of two Cleomaceae species, Gynandropsis gynandra (C4) and Tarenaya hassleriana (C3), by RNA sequencing. Overall, the gene expression profiles appear remarkably similar between the C3 and C4 species. We found that known C4 genes were recruited to photosynthesis from different expression domains in C3, including typical housekeeping gene expression patterns in various tissues as well as individual heterotrophic tissues. Furthermore, we identified a structure-related module recruited from the C3 root. Comparison of gene expression patterns with anatomy during leaf ontogeny provided insight into genetic features of Kranz anatomy. Altered expression of developmental factors and cell cycle genes is associated with a higher degree of endoreduplication in enlarged C4 bundle sheath cells. A delay in mesophyll differentiation apparent both in the leaf anatomy and the transcriptome allows for extended vein formation in the C4 leaf. PMID:25122153

  5. PCA3 long noncoding RNA modulates the expression of key cancer-related genes in LNCaP prostate cancer cells.

    PubMed

    Lemos, Ana Emília Goulart; Ferreira, Luciana Bueno; Batoreu, Nadia Maria; de Freitas, Paula Priscilla; Bonamino, Martin Hernan; Gimba, Etel Rodrigues Pereira

    2016-08-01

    Prostate cancer antigen 3 (PCA3) is a prostate-specific long noncoding RNA (lncRNA) involved in the control of prostate cancer (PCa) cell survival, through modulating androgen receptor (AR) signaling. To further comprehend the mechanisms by which PCA3 modulates LNCaP cell survival, we characterized the expression patterns of several cancer-related genes, including those involved in epithelial-mesenchymal transition (EMT) and AR cofactors in response to PCA3 silencing. We also aimed to develop a strategy to stably silence PCA3. Small interfering RNA (siRNA) or short hairpin RNA (shRNA) was used to knock down PCA3 in LNCaP cells. The expression of 84 cancer-related genes, as well as those coding for AR cofactors and EMT markers, was analyzed by quantitative real-time PCR (qRT-PCR). LNCaP-PCA3 silenced cells differentially expressed 16 of the 84 cancer genes tested, mainly those involved in gene expression control and cell signaling. PCA3 knockdown also induced the upregulation of several transcripts coding for AR cofactors and modulated the expression of EMT markers. LNCaP cells transduced with lentivirus vectors carrying an shRNA sequence targeting PCA3 stably downregulated PCA3 expression, causing a significant drop (60 %) in the proportion of LNCaP cells expressing the transgene. In conclusion, our data provide evidence that PCA3 silencing modulates the expression of key cancer-related genes, including those coding for AR cofactors and EMT markers. Transducing LNCaP cells with an shRNA sequence targeting PCA3 led to loss of viability of the cells, supporting the proposal of PCA3 knockdown as a putative therapeutic approach to inhibit PCa growth.

  6. ESTROGENIC STATUS MODULATES DMBA-MEDIATED HEPATIC GENE EXPRESSION: MICROARRAY-BASED ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogenic status in women influences the metabolism and toxicity of polycyclic aromatic hydrocarbons (PAH). The objective of this study was to examine the influence of estradiol (E2) on 7,12 dimethylbenz(a)anthracene (DMBA), a ligand for aryl hydrocarbon receptor, mediated changes on gene expressio...

  7. Modulation of gene expression in bone cells during strain-adapted bone remodeling

    NASA Astrophysics Data System (ADS)

    Klein-Nulend, J.; Bacabac, R. G.; Vatsa, A.; Tan, S. D.; Smit, Th. H.; van Loon, J. J. W. A.

    2005-08-01

    Bone tissue can adapt to changing mechanical demands. The osteocytes are believed to play a role as the "professional" mechanosensory cells of bone, and the lacuno-canalicular network as the structure that mediates mechanosensing. Loading on bone produces flow of interstitial fluid in the lacunar-canalicular network along the surface of osteocytes, which is likely the physiological signal for bone cell adaptive responses in vivo. The alignment of secondary osteons along the dominant loading direction suggests that bone remodeling is guided by mechanical strain. We propose that alignment during remodeling occurs as a result of different canalicular flow patterns around cutting cone and reversal zone during loading.The response of osteocytes to fluid flow includes prostaglandin synthesis and expression of inducible cyclooxygenase-2, an enzyme that mediates mechanical loading-induced bone formation in vivo. The response of osteocytes to fluid flow also includes nitric oxide production, and expression of endothelial nitric oxide synthase. Nitric oxide has been shown to mediate the mechanical effects in bone, leading to enhanced prostaglandin E2 release. These studies have increased our understanding of the cell biology underlying Wolff's Law. This may lead to new strategies for combating disuse-related osteoporosis, such as occurs during long- mission spaceflights.

  8. Neuron type-specific miRNA represses two broadly expressed genes to modulate an avoidance behavior in C. elegans

    PubMed Central

    Drexel, Tanja; Mahofsky, Katharina; Latham, Richard; Zimmer, Manuel

    2016-01-01

    Two broad gene classes are distinguished within multicellular organisms: cell type-specific genes, which confer particular cellular properties, and ubiquitous genes that support general cellular functions. However, certain so-called ubiquitous genes show functionally relevant cell type-specific repression. How such repression is achieved is poorly understood. MicroRNAs (miRNAs) are repressors, many of which are expressed with high cell type specificity. Here we show that mir-791, expressed exclusively in the CO2-sensing neurons in Caenorhabditis elegans, represses two otherwise broadly expressed genes. This repression is necessary for normal neuronal function and behavior of the animals toward CO2. miRNA-mediated repression of broadly transcribed genes is a previously unappreciated strategy for cellular specialization. PMID:27688400

  9. Coordinate Control of Expression of Nrf2-Modulated Genes in the Human Small Airway Epithelium Is Highly Responsive to Cigarette Smoking

    PubMed Central

    Hübner, Ralf-Harto; Schwartz, Jamie D; De Bishnu, P; Ferris, Barbara; Omberg, Larsson; Mezey, Jason G; Hackett, Neil R; Crystal, Ronald G

    2009-01-01

    Nuclear factor erythroid 2–related factor 2 (Nrf2) is an oxidant-responsive transcription factor known to induce detoxifying and antioxidant genes. Cigarette smoke, with its large oxidant content, is a major stress on the cells of small airway epithelium, which are vulnerable to oxidant damage. We assessed the role of cigarette smoke in activation of Nrf2 in the human small airway epithelium in vivo. Fiberoptic bronchoscopy was used to sample the small airway epithelium in healthy-nonsmoker and healthy-smoker, and gene expression was assessed using microarrays. Relative to nonsmokers, Nrf2 protein in the small airway epithelium of smokers was activated and localized in the nucleus. The human homologs of 201 known murine Nrf2-modulated genes were identified, and 13 highly smoking-responsive Nrf2-modulated genes were identified. Construction of an Nrf2 index to assess the expression levels of these 13 genes in the airway epithelium of smokers showed coordinate control, an observation confirmed by quantitative PCR. This coordinate level of expression of the 13 Nrf2-modulated genes was independent of smoking history or demographic parameters. The Nrf2 index was used to identify two novel Nrf2-modulated, smoking-responsive genes, pirin (PIR) and UDP glucuronosyltransferase 1-family polypeptide A4 (UGT1A4). Both genes were demonstrated to contain functional antioxidant response elements in the promoter region. These observations suggest that Nrf2 plays an important role in regulating cellular defenses against smoking in the highly vulnerable small airway epithelium cells, and that there is variability within the human population in the Nrf2 responsiveness to oxidant burden. PMID:19593404

  10. In vivo tissue specific modulation of rat insulin receptor gene expression in an experimental model of mineralocorticoid excess.

    PubMed

    Campión, J; Lahera, V; Cachofeiro, V; Maestro, B; Dávila, N; Carranza, M C; Calle, C

    1998-08-01

    Insulin receptor (IR) gene expression at the mRNA level was investigated in hindlimb skeletal muscle, epididymal adipose tissue and in the liver of rats exposed to prolonged in vivo administration of deoxycorticosterone acetate (DOCA). Following treatment, plasma insulin levels were reduced while glucose levels increased compared to values in control rats. DOCA-treated animals showed an increase in blood pressure and a reduction in body weight. This treatment also induced hypokalemia and decreased plasma protein levels. Sodium levels were unaffected. Moreover, no differences in DNA and protein content or in the indicator of cell size (protein/DNA) were observed in the skeletal muscle or adipose tissue of animals. In contrast, there was a clear increase in the protein and DNA contents of the liver with no change in the indicator of cell size. Northern blot assays revealed 2 major IR mRNA species of approximately 9.5 and 7.5 Kb in the 3 tissues from control animals. DOCA treatment induced no change in the levels of either RNA species in skeletal muscle. However, a decrease of approximately 22% was detected in the levels of both species in adipose tissue whereas the liver showed an increase of 64%. These results provide the first evidence for an in vivo tissue-specific modulation of IR mRNA levels under experimental conditions of mineralocorticoid excess.

  11. Dietary açai modulates ROS production by neutrophils and gene expression of liver antioxidant enzymes in rats

    PubMed Central

    Guerra, Joyce Ferreira da Costa; Magalhães, Cíntia Lopes de Brito; Costa, Daniela Caldeira; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia

    2011-01-01

    Açai (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Because increased oxidative stress and impaired antioxidant defense mechanisms are important factors in the development of diabetic complications and many health claims have been reported for açai, the present study was undertaken to evaluate the possible protective effects of açai on the production of reactive oxygen species by neutrophils and on the liver antioxidant defense system in control and streptozotocin-induced diabetic rats. Diet supplementation with 2% açai was found to increase mRNA levels for gamma-glutamylcysteine synthetase and glutathione peroxidase in liver tissue and to decrease reactive oxygen species production by neutrophils. Compared to control animals, diabetic rats exhibited lower levels of mRNA coding for Zn-superoxide dismutase, glutathione peroxidase and gamma-glutamylcysteine synthetase and higher levels of reactive oxygen species production by neutrophils, thiobarbituric acid-reactive substances and carbonyl proteins in hepatic tissues. Although açai supplementation was not effective in restore gene expression of antioxidant enzymes in diabetic rats, it showed a protective effect, decreasing thiobarbituric acid-reactive substances levels and increasing reduced glutathione content in the liver. These findings suggest that açai can modulate reactive oxygen species production by neutrophils and that it has a significant favorable effect on the liver antioxidant defense system under fisiological conditions of oxidative stress and partially revert deleterious effects of diabetes in the liver. PMID:22128218

  12. Modulation of gene expression in small follicle porcine granulosa cells by human follicle stimulating hormone (hFSH)

    SciTech Connect

    Calvo, F.O.; Ryan, R.J.; Woloschak, G.E.

    1986-03-01

    Small follicle (1-3 mm) porcine granulosa cells (SFPGF) were isolated by puncture, aspiration and cultured under standard conditions in DMEM, HEPES, BSA, MIX. At the start of culture, cells were stimulated with 100ng hFSH/ml. At various times afterwards total cellular RNA was prepared using guanidine-hydrochloride solubilization, phenol extraction and precipitation from 3M NaOAc, pH 6.0. RNA was 5'-end labelled with /sup 32/P in a kinase reaction and hybridized to an excess of clone-specific DNA immobilized on nitrocellulose filters using stringent hybridization and wash conditions. After autoradiography the RNA hybridized to the DNA blot filter were quantitated by microdensitometry. Hybridization to parent plasmid was negative. RNA derived from control cultures showed patterns of hybridization similar to those obtained from freshly obtained cells. Results of these experiments demonstrate hFSh induction of RNA specific for transferrin receptor, ..cap alpha..-interferon, H-ras, and K-ras. Increased RNA levels were apparent within 10 min of treatment and had declined by 180 min. Expression of actin, p53 and for RNAs declined by 10 min of hFSH addition but was enhanced by 160 min. Levels of ..beta..-interferon, myc, mos, abl and yb RNAs were not detectable under these conditions. These results demonstrate specific gene modulation in SFPGC cultured with hFSH.

  13. Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus

    PubMed Central

    Biggar, Kyle K.; Wu, Cheng-Wei; Tessier, Shannon N.; Zhang, Jing; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B.

    2015-01-01

    A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been identified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus murinus). To explore the regulatory mechanisms that underlie daily torpor in a primate, we analyzed the expression of 28 selected genes that represent crucial survival pathways known to be involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene expression in control (aroused) versus torpid lemurs in five tissues including the liver, kidney, skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated gene expression of peroxisome proliferator activated receptor gamma (ppargc), ferritin (fth1), and protein chaperones during torpor. Overall, the data show that the expression of only a few genes changed during lemur daily torpor, as compared with the broader expression changes reported for hibernation in ground squirrels. These results provide an indication that the alterations in gene expression required for torpor in lemurs are not as extensive as those needed for winter hibernation in squirrel models. However, identification of crucial genes with altered expression that support lemur torpor provides key targets to be explored and manipulated toward a goal of translational applications of inducible torpor as a treatment option in human biomedicine. PMID:26093281

  14. Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus.

    PubMed

    Biggar, Kyle K; Wu, Cheng-Wei; Tessier, Shannon N; Zhang, Jing; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B

    2015-04-01

    A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been identified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus murinus). To explore the regulatory mechanisms that underlie daily torpor in a primate, we analyzed the expression of 28 selected genes that represent crucial survival pathways known to be involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene expression in control (aroused) versus torpid lemurs in five tissues including the liver, kidney, skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated gene expression of peroxisome proliferator activated receptor gamma (ppargc), ferritin (fth1), and protein chaperones during torpor. Overall, the data show that the expression of only a few genes changed during lemur daily torpor, as compared with the broader expression changes reported for hibernation in ground squirrels. These results provide an indication that the alterations in gene expression required for torpor in lemurs are not as extensive as those needed for winter hibernation in squirrel models. However, identification of crucial genes with altered expression that support lemur torpor provides key targets to be explored and manipulated toward a goal of translational applications of inducible torpor as a treatment option in human biomedicine.

  15. Fermented Barley Supplementation Modulates the Expression of Hypothalamic Genes and Reduces Energy Intake and Weight Gain in Rats.

    PubMed

    Pichiah, P B Tirupathi; Cho, Suk-Ho; Han, Seong-Kyu; Cha, Youn-Soo

    2016-04-01

    Dietary fiber and proteins are individually known to decrease feeding, but could result greater weight management benefit when both are combined. We hypothesized that supplementing the diet with fermented barley, being rich in both dietary fiber and proteins, could lower energy intake by modulating the mRNA expression level of hypothalamic genes associated with the regulation of feeding behavior and satiety; thereby decreasing body weight gain. To test our hypothesis, four groups of Sprague Dawley rats were arranged in a 2 × 2 factorial design (n = 6), low-fat diet with either guar gum (LFD-G) or fermented barley (LFD-FB) and high-fat diet with either guar gum (HFD-G) or fermented barley (HFD-FB). Using oral gavage, fermented barley was given at a dosage of 1500 mg/kg body weight and guar gum was supplemented in an equivalent quantity to that of the fiber in the fermented barley. After 19 weeks, the fermented barley-supplemented groups showed a significant reduction in energy intake, triglyceride, body weight gain, and serum leptin, compared to the guar gum-supplemented groups in both the low- and high-fat diet groups. Likewise, the anorexigenic gene proopiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART) mRNA level were significantly higher in the fermented barley-supplemented groups compared to the guar gum-supplemented groups in rats fed on both high- and low-fat diets. In conclusion, fermented barley supplementation upregulated hypothalamic POMC/CART, decreased energy intake in both low- and high-fat diet groups, and prevented excessive weight gain in rats.

  16. Osteopontin Modulates Inflammation, Mucin Production, and Gene Expression Signatures After Inhalation of Asbestos in a Murine Model of Fibrosis

    PubMed Central

    Sabo-Attwood, Tara; Ramos-Nino, Maria E.; Eugenia-Ariza, Maria; MacPherson, Maximilian B.; Butnor, Kelly J.; Vacek, Pamela C.; McGee, Sean P.; Clark, Jessica C.; Steele, Chad; Mossman, Brooke T.

    2011-01-01

    Inflammation and lung remodeling are hallmarks of asbestos-induced fibrosis, but the molecular mechanisms that control these events are unclear. Using laser capture microdissection (LCM) of distal bronchioles in a murine asbestos inhalation model, we show that osteopontin (OPN) is up-regulated by bronchiolar epithelial cells after chrysotile asbestos exposures. In contrast to OPN wild-type mice (OPN+/+) inhaling asbestos, OPN null mice (OPN−/−) exposed to asbestos showed less eosinophilia in bronchoalveolar lavage fluids, diminished lung inflammation, and decreased mucin production. Bronchoalveolar lavage fluid concentrations of inflammatory cytokines (IL-1β, IL-4, IL-6, IL-12 subunit p40, MIP1α, MIP1β, and eotaxin) also were significantly less in asbestos-exposed OPN−/− mice. Microarrays performed on lung tissues from asbestos-exposed OPN+/+ and OPN−/− mice showed that OPN modulated the expression of a number of genes (Col1a2, Timp1, Tnc, Eln, and Col3a1) linked to fibrosis via initiation and cross talk between IL-1β and epidermal growth factor receptor-related signaling pathways. Novel targets of OPN identified include genes involved in cell signaling, immune system/defense, extracellular matrix remodeling, and cell cycle regulation. Although it is unclear whether the present findings are specific to chrysotile asbestos or would be observed after inhalation of other fibers in general, these results highlight new potential mechanisms and therapeutic targets for asbestosis and other diseases (asthma, smoking-related interstitial lung diseases) linked to OPN overexpression. PMID:21514415

  17. Biofilm Formation-Gene Expression Relay System in Escherichia coli: Modulation of σS-Dependent Gene Expression by the CsgD Regulatory Protein via σS Protein Stabilization▿ †

    PubMed Central

    Gualdi, Luciana; Tagliabue, Letizia; Landini, Paolo

    2007-01-01

    Bacteria can switch from a single-cell (planktonic) mode to a multicellular community (biofilm) mode via production of cell-cell aggregation and surface adhesion factors. In this report, we present evidence that the CsgD protein, a transcription regulator involved in biofilm formation in Escherichia coli, modulates the expression of the rpoS (σS) regulon. Protein pattern analysis of E. coli cells in stationary phase shows that CsgD affects the expression of several proteins encoded by σS-dependent genes. CsgD regulation of σS-dependent genes takes place at gene transcription level, does not bypass the need for rpoS, and is abolished in an rpoS-null mutant. Consistent with these results, we find that CsgD expression leads to an increase in σS intracellular concentration. Increase in σS cellular amount is mediated by CsgD-dependent transcription activation of iraP, encoding a factor involved in σS protein stabilization. Our results strongly suggest that the CsgD regulatory protein plays a major role as a relay between adhesion factors production and σS-dependent gene expression via σS protein stabilization. Direct coordination between biofilm formation and expression of the rpoS regulon could positively impact important biological processes, such as host colonization or response to environmental stresses. PMID:17873038

  18. The arabidopsis polyamine transporter LHRI/AtPUT3 modulates heat responsive gene expression by regulating mRNA stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyamines (PA) involve in the gene regulation by interacting with various anionic macromolecules such as DNA, RNA and proteins and modulating their structure and function. Previous studies have showed that changing in polyamine biosynthesis alters plant response to different abiotic stresses. Here,...

  19. Normalized lmQCM: An Algorithm for Detecting Weak Quasi-Cliques in Weighted Graph with Applications in Gene Co-Expression Module Discovery in Cancers

    PubMed Central

    Zhang, Jie; Huang, Kun

    2014-01-01

    In this paper, we present a new approach for mining weighted networks to identify densely connected modules such as quasi-cliques. Quasi-cliques are densely connected subnetworks in a network. Detecting quasi-cliques is an important topic in data mining, with applications such as social network study and biomedicine. Our approach has two major improvements upon previous work. The first is the use of local maximum edges to initialize the search in order to avoid excessive overlaps among the modules, thereby greatly reducing the computing time. The second is the inclusion of a weight normalization procedure to enable discovery of “subtle” modules with more balanced sizes. We carried out careful tests on multiple parameters and settings using two large cancer datasets. This approach allowed us to identify a large number of gene modules enriched in both biological functions and chromosomal bands in cancer data, suggesting potential roles of copy number variations (CNVs) involved in the cancer development. We then tested the genes in selected modules with enriched chromosomal bands using The Cancer Genome Atlas data, and the results strongly support our hypothesis that the coexpression in these modules are associated with CNVs. While gene coexpression network analyses have been widely adopted in disease studies, most of them focus on the functional relationships of coexpressed genes. The relationship between coexpression gene modules and CNVs are much less investigated despite the potential advantage that we can infer from such relationship without genotyping data. Our new approach thus provides a means to carry out deep mining of the gene coexpression network to obtain both functional and genetic information from the expression data. PMID:27486298

  20. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression.

    PubMed

    Ihara, Motomasa; Meyer-Ficca, Mirella L; Leu, N Adrian; Rao, Shilpa; Li, Fan; Gregory, Brian D; Zalenskaya, Irina A; Schultz, Richard M; Meyer, Ralph G

    2014-05-01

    To achieve the extreme nuclear condensation necessary for sperm function, most histones are replaced with protamines during spermiogenesis in mammals. Mature sperm retain only a small fraction of nucleosomes, which are, in part, enriched on gene regulatory sequences, and recent findings suggest that these retained histones provide epigenetic information that regulates expression of a subset of genes involved in embryo development after fertilization. We addressed this tantalizing hypothesis by analyzing two mouse models exhibiting abnormal histone positioning in mature sperm due to impaired poly(ADP-ribose) (PAR) metabolism during spermiogenesis and identified altered sperm histone retention in specific gene loci genome-wide using MNase digestion-based enrichment of mononucleosomal DNA. We then set out to determine the extent to which expression of these genes was altered in embryos generated with these sperm. For control sperm, most genes showed some degree of histone association, unexpectedly suggesting that histone retention in sperm genes is not an all-or-none phenomenon and that a small number of histones may remain associated with genes throughout the genome. The amount of retained histones, however, was altered in many loci when PAR metabolism was impaired. To ascertain whether sperm histone association and embryonic gene expression are linked, the transcriptome of individual 2-cell embryos derived from such sperm was determined using microarrays and RNA sequencing. Strikingly, a moderate but statistically significant portion of the genes that were differentially expressed in these embryos also showed different histone retention in the corresponding gene loci in sperm of their fathers. These findings provide new evidence for the existence of a linkage between sperm histone retention and gene expression in the embryo.

  1. Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  2. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  3. Gene Expression Profiling in Peripheral Blood Mononuclear Cells of Patients with Common Variable Immunodeficiency: Modulation of Adaptive Immune Response following Intravenous Immunoglobulin Therapy

    PubMed Central

    Barbieri, Alessandro; Tinazzi, Elisa; Rizzi, Monica; Beri, Ruggero; Argentino, Giuseppe; Ottria, Andrea; Lunardi, Claudio; Puccetti, Antonio

    2014-01-01

    Background Regular intravenous immunoglobulin treatment is used to replace antibody deficiency in primary immunodeficiency diseases; however the therapeutic effect seems to be related not only to antibody replacement but also to an active role in the modulation of the immune response. Common variable immunodeficiency is the most frequent primary immunodeficiency seen in clinical practice. Methods We have studied the effect of intravenous immunoglobulin replacement in patients with common variable immunodeficiency by evaluating the gene-expression profiles from Affimetrix HG-U133A. Some of the gene array results were validated by real time RT-PCR and by the measurement of circulating cytokines and chemokines by ELISA. Moreover we performed FACS analysis of blood mononuclear cells from the patients enrolled in the study. Results A series of genes involved in innate and acquired immune responses were markedly up- or down-modulated before therapy. Such genes included CD14, CD36, LEPR, IRF-5, RGS-1, CD38, TNFRSF25, IL-4, CXCR4, CCR3, IL-8. Most of these modulated genes showed an expression similar to that of normal controls after immunoglobulin replacement. Real time RT-PCR of selected genes and serum levels of IL-4, CXCR4 before and after therapy changed accordingly to gene array results. Interestingly, serum levels of IL-8 remained unchanged, as the corresponding gene, before and after treatment. FACS analysis showed a marked decrease of CD8+T cells and an increase of CD4+T cells following treatment. Moreover we observed a marked increase of CD23−CD27−IgM−IgG− B cells (centrocytes). Conclusions Our results are in accordance with previous reports and provide further support to the hypothesis that the benefits of intravenous immunoglobulin therapy are not only related to antibody replacement but also to its ability to modulate the immune response in common variable immunodeficiency. PMID:24831519

  4. Early and sustained expression of latent and host modulating genes in coordinated transcriptional program of KSHV productive primary infection of human primary endothelial cells

    PubMed Central

    Yoo, Seung Min; Zhou, Fu-Chun; Ye, Feng-Chun; Pan, Hong-Yi; Gao, Shou-Jiang

    2009-01-01

    Coordinated expression of viral genes in primary infection is essential for successful infection of host cells. We examined the expression profiles of Kaposi’s sarcoma-associated herpesvirus (KSHV) transcripts in productive primary infection of primary human umbilical vein endothelial cells by whole-genome reverse-transcription real-time quantitative PCR. The latent transcripts were expressed early and sustained at high levels throughout the infection while the lytic transcripts were expressed in the order of immediate early, early, and lytic transcripts, all of which culminated before the production of infectious virions. Significantly, transcripts encoding genes with host modulating functions, including mitogenic and cell cycle-regulatory, immune-modulating, and anti-apoptotic genes, were expressed before those encoding viral structure and replication genes, and sustained at high levels throughout the infection, suggesting KSHV manipulation of host environment to facilitate infection. The KSHV transcriptional program in a primary infection defined in this study should provide a basis for further investigation of virus–cell interactions. PMID:16154170

  5. Maternal high-fat diet modulates hepatic glucose, lipid homeostasis and gene expression in the PPAR pathway in the early life of offspring.

    PubMed

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin

    2014-08-25

    Maternal dietary modifications determine the susceptibility to metabolic diseases in adult life. However, whether maternal high-fat feeding can modulate glucose and lipid metabolism in the early life of offspring is less understood. Furthermore, we explored the underlying mechanisms that influence the phenotype. Using C57BL/6J mice, we examined the effects on the offspring at weaning from dams fed with a high-fat diet or normal chow diet throughout pregnancy and lactation. Gene array experiments and quantitative real-time PCR were performed in the liver tissues of the offspring mice. The offspring of the dams fed the high-fat diet had a heavier body weight, impaired glucose tolerance, decreased insulin sensitivity, increased serum cholesterol and hepatic steatosis at weaning. Bioinformatic analyses indicated that all differentially expressed genes of the offspring between the two groups were mapped to nine pathways. Genes in the peroxisome proliferator-activated receptor (PPAR) signaling pathway were verified by quantitative real-time PCR and these genes were significantly up-regulated in the high-fat diet offspring. A maternal high-fat diet during pregnancy and lactation can modulate hepatic glucose, lipid homeostasis, and gene expression in the PPAR signaling in the early life of offspring, and our results suggested that potential mechanisms that influences this phenotype may be related partially to up-regulate some gene expression in the PPAR signalling pathway.

  6. Different circadian expression of major matrix-related genes in various types of cartilage: modulation by light-dark conditions.

    PubMed

    Honda, Kiyomasa K; Kawamoto, Takeshi; Ueda, Hiroki R; Nakashima, Ayumu; Ueshima, Taichi; Yamada, Rikuhiro G; Nishimura, Masahiro; Oda, Ryo; Nakamura, Shigeo; Kojima, Tomoko; Noshiro, Mitsuhide; Fujimoto, Katsumi; Hashimoto, Seiichi; Kato, Yukio

    2013-10-01

    We screened circadian-regulated genes in rat cartilage by using a DNA microarray analysis. In rib growth-plate cartilage, numerous genes showed statistically significant circadian mRNA expression under both 12:12 h light-dark and constant darkness conditions. Type II collagen and aggrecan genes--along with several genes essential for post-translational modifications of collagen and aggrecan, including prolyl 4-hydroxylase 1, lysyl oxidase, lysyl oxidase-like 2 and 3'-phosphoadenosine 5'-phosphosulphate synthase 2--showed the same circadian phase. In addition, the mRNA level of SOX9, a master transcription factor for the synthesis of type II collagen and aggrecan, has a similar phase of circadian rhythms. The circadian expression of the matrix-related genes may be critical in the development and the growth of various cartilages, because similar circadian expression of the matrix-related genes was observed in hip joint cartilage. However, the circadian phase of the major matrix-related genes in the rib permanent cartilage was almost the converse of that in the rib growth-plate cartilage under light-dark conditions. We also found that half of the oscillating genes had conserved clock-regulatory elements, indicating contribution of the elements to the clock outputs. These findings suggest that the synthesis of the cartilage matrix macromolecules is controlled by cell-autonomous clocks depending upon the in vivo location of cartilage.

  7. Dinitrophenol modulates gene expression levels of angiogenic, cell survival and cardiomyogenic factors in bone marrow derived mesenchymal stem cells.

    PubMed

    Ali, Anwar; Akhter, Muhammad Aleem; Haneef, Kanwal; Khan, Irfan; Naeem, Nadia; Habib, Rakhshinda; Kabir, Nurul; Salim, Asmat

    2015-01-25

    Various preconditioning strategies influence regeneration properties of stem cells. Preconditioned stem cells generally show better cell survival, increased differentiation, enhanced paracrine effects, and improved homing to the injury site by regulating the expression of tissue-protective cytokines and growth factors. In this study, we analyzed gene expression pattern of growth factors through RT-PCR after treatment of mesenchymal stem cells (MSCs) with a metabolic inhibitor, 2,4 dinitrophenol (DNP) and subsequent re-oxygenation for periods of 2, 6, 12 and 24h. These growth factors play important roles in cardiomyogenesis, angiogenesis and cell survival. Mixed pattern of gene expression was observed depending on the period of re-oxygenation. Of the 13 genes analyzed, ankyrin repeat domain 1 (Ankrd1) and GATA6 were downregulated after DNP treatment and subsequent re-oxygenations. Ankrd1 expression was, however, increased after 24h of re-oxygenation. Placental growth factor (Pgf), endoglin (Eng), neuropilin (Nrp1) and jagged 1 (Jag1) were up-regulated after DNP treatment. Gradual increase was observed as re-oxygenation advances and by the end of the re-oxygenation period the expression started to decrease and ultimately regained normal values. Epiregulin (Ereg) was not expressed in normal MSCs but its expression increased gradually from 2 to 24h after re-oxygenation. No change was observed in the expression level of connective tissue growth factor (Ctgf) at any time period after re-oxygenation. Kindlin3, kinase insert domain receptor (Kdr), myogenin (Myog), Tbx20 and endothelial tyrosine kinase (Tek) were not expressed either in normal cells or cells treated with DNP. It can be concluded from the present study that MSCs adjust their gene expression levels under the influence of DNP induced metabolic stress. Their levels of expression vary with varying re-oxygenation periods. Preconditioning of MSCs with DNP can be used for enhancing the potential of these cells for

  8. miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells

    SciTech Connect

    Gao, Fei; Zhao, Zun-Lan; Zhao, Wen-Tao; Fan, Quan-Rong; Wang, Sheng-Chun; Li, Jing; Zhang, Yu-Qing; Shi, Jun-Wen; Lin, Xiao-Lin; Yang, Sheng; Xie, Rao-Ying; Liu, Wei; Zhang, Ting-Ting; Sun, Yong-Liang; Xu, Kang; Yao, Kai-Tai; Xiao, Dong

    2013-02-15

    Highlights: ► miR-9 can negatively or positively modulate interferon-induced gene expression. ► miR-9 can up-regulate major histocompatibility complex class I molecule expression. ► miR-9 can down-regulate the expression of interleukin-related genes. -- Abstract: The functions of miR-9 in some cancers are recently implicated in regulating proliferation, epithelial–mesenchymal transition (EMT), invasion and metastasis, apoptosis, and tumor angiogenesis, etc. miR-9 is commonly down-regulated in nasopharyngeal carcinoma (NPC), but the exact roles of miR-9 dysregulation in the pathogenesis of NPC remains unclear. Therefore, we firstly used miR-9-expressing CNE2 cells to determine the effects of miR-9 overexpression on global gene expression profile by microarray analysis. Microarray-based gene expression data unexpectedly demonstrated a significant number of up- or down-regulated immune- and inflammation-related genes, including many well-known interferon (IFN)-induced genes (e.g., IFI44L, PSMB8, IRF5, PSMB10, IFI27, PSB9{sub H}UMAN, IFIT2, TRAIL, IFIT1, PSB8{sub H}UMAN, IRF1, B2M and GBP1), major histocompatibility complex (MHC) class I molecules (e.g., HLA-B, HLA-C, HLA-F and HLA-H) and interleukin (IL)-related genes (e.g., IL20RB, GALT, IL7, IL1B, IL11, IL1F8, IL1A, IL6 and IL7R), which was confirmed by qRT-PCR. Moreover, the overexpression of miR-9 with the miRNA mimics significantly up- or down-regulated the expression of above-mentioned IFN-inducible genes, MHC class I molecules and IL-related genes; on the contrary, miR-9 inhibition by anti-miR-9 inhibitor in CNE2 and 5–8F cells correspondingly decreased or increased the aforementioned immune- and inflammation-related genes. Taken together, these findings demonstrate, for the first time, that miR-9 can modulate the expression of IFN-induced genes and MHC class I molecules in human cancer cells, suggesting a novel role of miR-9 in linking inflammation and cancer, which remains to be fully characterized.

  9. Rab1b overexpression modifies Golgi size and gene expression in HeLa cells and modulates the thyrotrophin response in thyroid cells in culture.

    PubMed

    Romero, Nahuel; Dumur, Catherine I; Martinez, Hernán; García, Iris A; Monetta, Pablo; Slavin, Ileana; Sampieri, Luciana; Koritschoner, Nicolas; Mironov, Alexander A; De Matteis, Maria Antonietta; Alvarez, Cecilia

    2013-03-01

    Rab1b belongs to the Rab-GTPase family that regulates membrane trafficking and signal transduction systems able to control diverse cellular activities, including gene expression. Rab1b is essential for endoplasmic reticulum-Golgi transport. Although it is ubiquitously expressed, its mRNA levels vary among different tissues. This work aims to characterize the role of the high Rab1b levels detected in some secretory tissues. We report that, in HeLa cells, an increase in Rab1b levels induces changes in Golgi size and gene expression. Significantly, analyses applied to selected genes, KDELR3, GM130 (involved in membrane transport), and the proto-oncogene JUN, indicate that the Rab1b increase acts as a molecular switch to control the expression of these genes at the transcriptional level, resulting in changes at the protein level. These Rab1b-dependent changes require the activity of p38 mitogen-activated protein kinase and the cAMP-responsive element-binding protein consensus binding site in those target promoter regions. Moreover, our results reveal that, in a secretory thyroid cell line (FRTL5), Rab1b expression increases in response to thyroid-stimulating hormone (TSH). Additionally, changes in Rab1b expression in FRTL5 cells modify the specific TSH response. Our results show, for the first time, that changes in Rab1b levels modulate gene transcription and strongly suggest that a Rab1b increase is required to elicit a secretory response.

  10. Gene expression profiles modulated by the human carcinogen aristolochic acid I in human cancer cells and their dependence on TP53

    SciTech Connect

    Simoes, Maria L.; Hockley, Sarah L.; Schwerdtle, Tanja; Schmeiser, Heinz H.; Phillips, David H.; Arlt, Volker M.

    2008-10-01

    Aristolochic acid (AA) is the causative agent of urothelial tumours associated with aristolochic acid nephropathy. These tumours contain TP53 mutations and over-express TP53. We compared transcriptional and translational responses of two isogenic HCT116 cell lines, one expressing TP53 (p53-WT) and the other with this gene knocked out (p53-null), to treatment with aristolochic acid I (AAI) (50-100 {mu}M) for 6-48 h. Modulation of 118 genes was observed in p53-WT cells and 123 genes in p53-null cells. Some genes, including INSIG1, EGR1, CAV1, LCN2 and CCNG1, were differentially expressed in the two cell lines. CDKN1A was selectively up-regulated in p53-WT cells, leading to accumulation of TP53 and CDKN1A. Apoptotic signalling, measured by caspase-3 and -7 activity, was TP53-dependent. Both cell types accumulated in S phase, suggesting that AAI-DNA adducts interfere with DNA replication, independently of TP53 status. The oncogene MYC, frequently over-expressed in urothelial tumours, was up-regulated by AAI, whereas FOS was down-regulated. Observed modulation of genes involved in endocytosis, e.g. RAB5A, may be relevant to the known inhibition of receptor-mediated endocytosis, an early sign of AA-mediated proximal tubule injury. AAI-DNA adduct formation was significantly greater in p53-WT cells than in p53-null cells. Collectively, phenotypic anchoring of the AAI-induced expression profiles to DNA adduct formation, cell-cycle parameters, TP53 expression and apoptosis identified several genes linked to these biological outcomes, some of which are TP53-dependent. These results strengthen the importance of TP53 in AA-induced cancer, and indicate that other alterations, e.g. to MYC oncogenic pathways, may also contribute.

  11. Inhibition of LINE-1 retrotransposon-encoded reverse transcriptase modulates the expression of cell differentiation genes in breast cancer cells.

    PubMed

    Patnala, Radhika; Lee, Sung-Hun; Dahlstrom, Jane E; Ohms, Stephen; Chen, Long; Dheen, S Thameem; Rangasamy, Danny

    2014-01-01

    Long Interspersed Elements (L1 elements) are biologically active retrotransposons that are capable of autonomous replication using their own reverse transcriptase (RT) enzyme. Expression of the normally repressed RT has been implicated in cancer cell growth. However, at present, little is known about the expression of L1-encoded RT activity or the molecular changes that are associated with RT activity in the development of breast cancer. Here, we report that RT activity is widespread in breast cancer cells. The expression of RT protein decreased markedly in breast cancer cells after treatment with the antiretroviral drug, efavirenz. While the majority of cells showed a significant reduction in proliferation, inhibition of RT was also accompanied by cell-specific differences in morphology. MCF7 cells displayed elongated microtubule extensions that adhered tightly to their substrate, while a large fraction of the T47D cells that we studied formed long filopodia projections. These morphological changes were reversible upon cessation of RT inhibition, confirming their dependence on RT activity. We also carried out gene expression profiling with microarrays and determined the genes that were differentially expressed during the process of cellular differentiation. Genes involved in proliferation, cell migration, and invasive activity were repressed in RT-inhibited cells. Concomitantly, genes involved in cell projection, formation of vacuolar membranes, and cell-to-cell junctions were significantly upregulated in RT-inhibited cells. qRT-PCR examination of the mRNA expression of these genes in additional cell lines yielded close correlation between their differential expression and the degree of cellular differentiation. Our study demonstrates that the inhibition of L1-encoded RT can reduce the rate of proliferation and promote differentiation of breast cancer cells. Together, these results provide a direct functional link between the expression of L1 retrotransposons and

  12. Modulation of adrenocorticotrophin hormone (ACTH)-induced expression of stress-related genes by PUFA in inter-renal cells from European sea bass (Dicentrarchus labrax).

    PubMed

    Montero, Daniel; Terova, Genciana; Rimoldi, Simona; Tort, Lluis; Negrin, Davinia; Zamorano, María Jesús; Izquierdo, Marisol

    2015-01-01

    Dietary fatty acids have been shown to exert a clear effect on the stress response, modulating the release of cortisol. The role of fatty acids on the expression of steroidogenic genes has been described in mammals, but little is known in fish. The effect of different fatty acids on the release of cortisol and expression of stress-related genes of European sea bass (Dicentrarchus labrax) head kidney, induced by a pulse of adenocorticotrophin hormone (ACTH), was studied. Tissue was maintained in superfusion with 60 min of incubation with EPA, DHA, arachidonic acid (ARA), linoleic acid or α-linolenic acid (ALA) during 490 min. Cortisol was measured by RIA. The quantification of stress-related genes transcripts was conducted by One-Step TaqMan real-time RT-PCR. There was an effect of the type of fatty acid on the ACTH-induced release of cortisol, values from ALA treatment being elevated within all of the experimental period. The expression of some steroidogenic genes, such as the steroidogenic acute regulatory protein (StAR) and c-fos, were affected by fatty acids, ALA increasing the expression of StAR after 1 h of ACTH stimulation whereas DHA, ARA and ALA increased the expression of c-fos after 20 min. ARA increased expression of the 11β-hydroxylase gene. Expression of heat shock protein 70 (HSP70) was increased in all the experimental treatments except for ARA. Results corroborate previous studies of the effect of different fatty acids on the release of cortisol in marine fish and demonstrate that those effects are mediated by alteration of the expression of steroidogenic genes.

  13. Glucocorticoids promote development of the osteoblast phenotype by selectively modulating expression of cell growth and differentiation associated genes

    NASA Technical Reports Server (NTRS)

    Shalhoub, V.; Conlon, D.; Tassinari, M.; Quinn, C.; Partridge, N.; Stein, G. S.; Lian, J. B.

    1992-01-01

    To understand the mechanisms by which glucocorticoids promote differentiation of fetal rat calvaria derived osteoblasts to produce bone-like mineralized nodules in vitro, a panel of osteoblast growth and differentiation related genes that characterize development of the osteoblast phenotype has been quantitated in glucocorticoid-treated cultures. We compared the mRNA levels of osteoblast expressed genes in control cultures of subcultivated cells where nodule formation is diminished, to cells continuously (35 days) exposed to 10(-7) M dexamethasone, a synthetic glucocorticoid, which promotes nodule formation to levels usually the extent observed in primary cultures. Tritiated thymidine labelling revealed a selective inhibition of internodule cell proliferation and promotion of proliferation and differentiation of cells forming bone nodules. Fibronectin, osteopontin, and c-fos expression were increased in the nodule forming period. Alkaline phosphatase and type I collagen expression were initially inhibited in proliferating cells, then increased after nodule formation to support further growth and mineralization of the nodule. Expression of osteocalcin was 1,000-fold elevated in glucocorticoid-differentiated cultures in relation to nodule formation. Collagenase gene expression was also greater than controls (fivefold) with the highest levels observed in mature cultures (day 35). At this time, a rise in collagen and TGF beta was also observed suggesting turnover of the matrix. Short term (48 h) effects of glucocorticoid on histone H4 (reflecting cell proliferation), alkaline phosphatase, osteopontin, and osteocalcin mRNA levels reveal both up or down regulation as a function of the developmental stage of the osteoblast phenotype. A comparison of transcriptional levels of these genes by nuclear run-on assays to mRNA levels indicates that glucocorticoids exert both transcriptional and post-transcriptional effects. Further, the presence of glucocorticoids enhances the

  14. Regulation of postsynaptic plasticity genes' expression and topography by sustained dopamine perturbation and modulation by acute memantine: relevance to schizophrenia.

    PubMed

    Iasevoli, Felice; Buonaguro, Elisabetta F; Sarappa, Chiara; Marmo, Federica; Latte, Gianmarco; Rossi, Rodolfo; Eramo, Anna; Tomasetti, Carmine; de Bartolomeis, Andrea

    2014-10-03

    A relevant role for dopamine-glutamate interaction has been reported in the pathophysiology and treatment of psychoses. Dopamine and glutamate may interact at multiple levels, including the glutamatergic postsynaptic density (PSD), an electron-dense thickening that has gained recent attention as a switchboard of dopamine-glutamate interactions and for its role in synaptic plasticity. Recently, glutamate-based strategies, such as memantine add-on to antipsychotics, have been proposed for refractory symptoms of schizophrenia, e.g. cognitive impairment. Both antipsychotics and memantine regulate PSD transcripts but sparse information is available on memantine's effects under dopamine perturbation. We tested gene expression changes of the Homer1 and PSD-95 PSD proteins in models of sustained dopamine perturbation, i.e. subchronic treatment by: a) GBR-12909, a dopamine receptor indirect agonist; b) haloperidol, a D2R antagonist; c) SCH-23390, a dopamine D1 receptor (D1R) antagonist; and d) SCH-23390+haloperidol. On the last day of treatment, rats were acutely treated with vehicle or memantine. The Homer1a immediate-early gene was significantly induced by haloperidol and by haloperidol+SCH-23390. The gene was not induced by SCH-23390 per se or by GBR-12909. Expression of the constitutive genes Homer1b/c and PSD-95 was less affected by these dopaminergic paradigms. Acute memantine administration significantly increased Homer1a expression by the dopaminergic compounds used herein. Both haloperidol and haloperidol+SCH-23390 shifted Homer1a/Homer1b/c ratio of expression toward Homer1a. This pattern was sharpened by acute memantine. Dopaminergic compounds and acute memantine also differentially affected topographic distribution of gene expression and coordinated expression of Homer1a among cortical-subcortical regions. These results indicate that dopaminergic perturbations may affect glutamatergic signaling in different directions. Memantine may help partially revert dopamine

  15. Developmental regulation and modulation of apoptotic genes expression in sheep oocytes and embryos cultured in vitro with L-carnitine.

    PubMed

    Mishra, A; Reddy, I J; Gupta, Psp; Mondal, S

    2016-12-01

    The objective of this study was to find out the impact of L-carnitine (10 mM) on developmental regulation of preimplantation sheep embryos cultured in vitro when supplemented in maturation medium and post-fertilization medium separately. Subsequent objective was to observe the L-carnitine-mediated alteration in expression of apoptotic genes (Bcl2, Bax, Casp3 and PCNA) in sheep oocytes and developing embryos produced in vitro. Oocytes matured with L-carnitine showed significantly (p < .05) higher cleavage (67.23% vs 43.12%), morula (47.65% vs 28.58%) and blastocysts (32.12% vs 13.24%) percentage as compared to presumptive zygotes cultured with L-carnitine during post-fertilization period. So it is suggested to use L-carnitine during maturation than post-fertilization period. Antiapoptotic and proliferative effects of L-carnitine were confirmed by inducing culture medium with actinomycin D (apoptotic agent) and TNFα (antiproliferative agent), respectively, with and without L-carnitine. Oocytes and embryos cultured with actinomycin D and TNFα showed developmental arrest with significant (p < .05) decrease in morula and blastocysts percentage but supplementation of L-carnitine to actinomycin D and TNFα induced culture medium showed similar result as that of control. L-carnitine supplementation during IVM significantly (p < .05) upregulated the expression of Bcl2 and PCNA genes in majority of the developmental stages. Although L-carnitine upregulated the expression of Bax in initial developmental stages but downregulated at latter part, whereas the expression of Casp3 was upregulated upto 16-cell stage but after that there was no difference in expression. Expression of GAPDH gene was not affected by L-carnitine supplementation. In conclusion, L-carnitine acted as an antiapoptotic and proliferative compound during embryo development and supplementation of L-carnitine during IVM altered the expression of apoptotic genes in the developmental stages of embryos.

  16. Gene Expression Regulation by the Curli Activator CsgD Protein: Modulation of Cellulose Biosynthesis and Control of Negative Determinants for Microbial Adhesion

    PubMed Central

    Brombacher, Eva; Baratto, Andrea; Dorel, Corinne; Landini, Paolo

    2006-01-01

    Curli fibers, encoded by the csgBAC genes, promote biofilm formation in Escherichia coli and other enterobacteria. Curli production is dependent on the CsgD transcription activator, which also promotes cellulose biosynthesis. In this study, we investigated the effects of CsgD expression from a weak constitutive promoter in the biofilm formation-deficient PHL565 strain of E. coli. We found that despite its function as a transcription activator, the CsgD protein is localized in the cytoplasmic membrane. Constitutive CsgD expression promotes biofilm formation by PHL565 and activates transcription from the csgBAC promoter; however, csgBAC expression remains dependent on temperature and the growth medium. Constitutive expression of the CsgD protein results in altered transcription patterns for at least 24 novel genes, in addition to the previously identified CsgD-dependent genes. The cspA and fecR genes, encoding regulatory proteins responding to cold shock and to iron, respectively, and yoaD, encoding a putative negative regulator of cellulose biosynthesis, were found to be some of the novel CsgD-regulated genes. Consistent with the predicted functional role, increased expression of the yoaD gene negatively affects cell aggregation, while yoaD inactivation results in stimulation of cell aggregation and leads to increased cellulose production. Inactivation of fecR results in significant increases in both cell aggregation and biofilm formation, while the effects of cspA are not as strong in the conditions tested. Our results indicate that CsgD can modulate cellulose biosynthesis through activation of the yoaD gene. In addition, the positive effect of CsgD on biofilm formation might be enhanced by repression of the fecR gene. PMID:16513732

  17. Gene expression regulation by the Curli activator CsgD protein: modulation of cellulose biosynthesis and control of negative determinants for microbial adhesion.

    PubMed

    Brombacher, Eva; Baratto, Andrea; Dorel, Corinne; Landini, Paolo

    2006-03-01

    Curli fibers, encoded by the csgBAC genes, promote biofilm formation in Escherichia coli and other enterobacteria. Curli production is dependent on the CsgD transcription activator, which also promotes cellulose biosynthesis. In this study, we investigated the effects of CsgD expression from a weak constitutive promoter in the biofilm formation-deficient PHL565 strain of E. coli. We found that despite its function as a transcription activator, the CsgD protein is localized in the cytoplasmic membrane. Constitutive CsgD expression promotes biofilm formation by PHL565 and activates transcription from the csgBAC promoter; however, csgBAC expression remains dependent on temperature and the growth medium. Constitutive expression of the CsgD protein results in altered transcription patterns for at least 24 novel genes, in addition to the previously identified CsgD-dependent genes. The cspA and fecR genes, encoding regulatory proteins responding to cold shock and to iron, respectively, and yoaD, encoding a putative negative regulator of cellulose biosynthesis, were found to be some of the novel CsgD-regulated genes. Consistent with the predicted functional role, increased expression of the yoaD gene negatively affects cell aggregation, while yoaD inactivation results in stimulation of cell aggregation and leads to increased cellulose production. Inactivation of fecR results in significant increases in both cell aggregation and biofilm formation, while the effects of cspA are not as strong in the conditions tested. Our results indicate that CsgD can modulate cellulose biosynthesis through activation of the yoaD gene. In addition, the positive effect of CsgD on biofilm formation might be enhanced by repression of the fecR gene.

  18. Identification and validation of regulatory SNPs that modulate transcription factor chromatin binding and gene expression in prostate cancer

    PubMed Central

    Jin, Hong-Jian; Jung, Segun; DebRoy, Auditi R.; Davuluri, Ramana V.

    2016-01-01

    Prostate cancer (PCa) is the second most common solid tumor for cancer related deaths in American men. Genome wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with the increased risk of PCa. Because most of the susceptibility SNPs are located in noncoding regions, little is known about their functional mechanisms. We hypothesize that functional SNPs reside in cell type-specific regulatory elements that mediate the binding of critical transcription factors (TFs), which in turn result in changes in target gene expression. Using PCa-specific functional genomics data, here we identify 38 regulatory candidate SNPs and their target genes in PCa. Through risk analysis by incorporating gene expression and clinical data, we identify 6 target genes (ZG16B, ANKRD5, RERE, FAM96B, NAALADL2 and GTPBP10) as significant predictors of PCa biochemical recurrence. In addition, 5 SNPs (rs2659051, rs10936845, rs9925556, rs6057110 and rs2742624) are selected for experimental validation using Chromatin immunoprecipitation (ChIP), dual-luciferase reporter assay in LNCaP cells, showing allele-specific enhancer activity. Furthermore, we delete the rs2742624-containing region using CRISPR/Cas9 genome editing and observe the drastic downregulation of its target gene UPK3A. Taken together, our results illustrate that this new methodology can be applied to identify regulatory SNPs and their target genes that likely impact PCa risk. We suggest that similar studies can be performed to characterize regulatory variants in other diseases. PMID:27409348

  19. MMP-13 Regulates Growth of Wound Granulation Tissue and Modulates Gene Expression Signatures Involved in Inflammation, Proteolysis, and Cell Viability

    PubMed Central

    Toriseva, Mervi; Laato, Matti; Carpén, Olli; Ruohonen, Suvi T.; Savontaus, Eriika; Inada, Masaki; Krane, Stephen M.; Kähäri, Veli-Matti

    2012-01-01

    Proteinases play a pivotal role in wound healing by regulating cell-matrix interactions and availability of bioactive molecules. The role of matrix metalloproteinase-13 (MMP-13) in granulation tissue growth was studied in subcutaneously implanted viscose cellulose sponge in MMP-13 knockout (Mmp13−/−) and wild type (WT) mice. The tissue samples were harvested at time points day 7, 14 and 21 and subjected to histological analysis and gene expression profiling. Granulation tissue growth was significantly reduced (42%) at day 21 in Mmp13−/− mice. Granulation tissue in Mmp13−/− mice showed delayed organization of myofibroblasts, increased microvascular density at day 14, and virtual absence of large vessels at day 21. Gene expression profiling identified differentially expressed genes in Mmp13−/− mouse granulation tissue involved in biological functions including inflammatory response, angiogenesis, cellular movement, cellular growth and proliferation and proteolysis. Among genes linked to angiogenesis, Adamts4 and Npy were significantly upregulated in early granulation tissue in Mmp13−/− mice, and a set of genes involved in leukocyte motility including Il6 were systematically downregulated at day 14. The expression of Pdgfd was downregulated in Mmp13−/− granulation tissue in all time points. The expression of matrix metalloproteinases Mmp2, Mmp3, Mmp9 was also significantly downregulated in granulation tissue of Mmp13−/− mice compared to WT mice. Mmp13−/− mouse skin fibroblasts displayed altered cell morphology and impaired ability to contract collagen gel and decreased production of MMP-2. These results provide evidence for an important role for MMP-13 in wound healing by coordinating cellular activities important in the growth and maturation of granulation tissue, including myofibroblast function, inflammation, angiogenesis, and proteolysis. PMID:22880047

  20. β-ionone modulates the expression of miRNAs and genes involved in the metastatic phenotype of microdissected persistent preneoplastic lesions in rats submitted to hepatocarcinogenesis.

    PubMed

    Furtado, Kelly Silva; de Oliveira Andrade, Fábia; Campos, Adriana; Rosim, Mariana Papaléo; Vargas-Mendez, Ernesto; Henriques, Aline; De Conti, Aline; Scolastici, Clarissa; Barbisan, Luis Fernando; Carvalho, Robson Francisco; Moreno, Fernando Salvador

    2017-01-01

    MicroRNAs (miRNAs) are post-transcriptional gene expression regulators which expression is frequently altered in hepatocellular carcinoma (HCC). β-ionone (βI) is noted for its ability to inhibit persistent preneoplastic lesions (pPNLs) in liver rats. We evaluated the expression of miRNAs involved in carcinogenesis and possible targets modulated by βI, in pPNLs and surrounding of microdissected tissues. Rats subjected to resistant hepatocyte model were treated during promotion stage with βI (16 mg/100 g body weight) or corn oil (CO; 0.25 mL/100 g body weight; controls). Five animals receive no treatment (NT). In CO group, 38 and 29 miRNAs showed reduced expression relative to NT (P < 0.05) in pPNLs and surrounding, respectively. No miRNAs showed increased expression in surrounding of the CO compared to NT group; however, 30 miRNAs showed increased expression (P ≤ 0.05) in pPNLs of the CO group. There was no difference between βI and CO groups (P > 0.05) in the expression of miRNAs in surrounding. In pPNLs βI increased expression of miR-122 and miR-34a (P ≤ 0.05) and reduced of Igf2 (P ≤ 0.05), target of the latter, compared to CO. Additionally, βI decreased the expression of miR-181c and its target Gdf2 (P ≤ 0.05). βI reduced the expression of miR-181b and miR-708 (P ≤ 0.05) and increased the expression of their respective target mRNAs Timp3 and Mtss1 (P ≤ 0.05), relative to CO group. Modulation of miRNAs target genes by βI was confirmed in vitro. βI is a promising chemopreventive agent in the initial stages of hepatocarcinogenesis, as it modulates the expression of the miRNAs and target genes that can alter the metastatic phenotype of HCC. © 2016 Wiley Periodicals, Inc.

  1. Modulation of cytokine gene expression by selected Lactobacillus isolates in the ileum, caecal tonsils and spleen of Salmonella-challenged broilers.

    PubMed

    Hu, Jie-Lun; Yu, Hai; Kulkarni, Raveendra R; Sharif, Shayan; Cui, Steve W; Xie, Ming-Yong; Nie, Shao-Ping; Gong, Joshua

    2015-01-01

    Probiotics have been used to control Salmonella colonization in the chicken intestine. Recently, we demonstrated that certain selected Lactobacillus isolates were able to reduce Salmonella infection in the chicken spleen and liver as well as down-regulated Salmonella pathogenicity island 1 virulence gene expression in the chicken caecum. To further understand the mechanisms through which Lactobacillus protected chickens from Salmonella infection, the present study has investigated the Lactobacillus isolate(s)-induced host immune response of chickens to Salmonella enterica serovar Typhimurium infection. A thorough examination of cytokine gene expression in the ileum, caecal tonsils, and spleen on days 1 and 3 post-Salmonella infection showed a dynamic spatial and temporal response to Salmonella infection and Lactobacillus treatments. In most instances, it was evident that treatment of chickens with Lactobacillus isolates could significantly attenuate Salmonella-induced changes in the gene expression profile. These included the genes encoding pro-inflammatory cytokines [lipopolysaccharide-induced TNF factor, interleukin (IL)-6, and IL-8], T helper 1 cytokines [IL-12 and interferon (IFN)-γ], and T helper 2 cytokines (IL-4 and IL-10). Another important observation from the present investigation was that the response induced by a combination of Lactobacillus isolates was generally more effective than that induced by a single Lactobacillus isolate. Our results show that administration of certain selected Lactobacillus isolates can effectively modulate Salmonella-induced cytokine gene expression, and thus help reduce Salmonella infection in chickens.

  2. Microarray gene expression profiling of a human glioblastoma cell line exposed in vitro to a 1.9 GHz pulse-modulated radiofrequency field.

    PubMed

    Qutob, S S; Chauhan, V; Bellier, P V; Yauk, C L; Douglas, G R; Berndt, L; Williams, A; Gajda, G B; Lemay, E; Thansandote, A; McNamee, J P

    2006-06-01

    The widespread use of mobile phones has led to public concerns about the health effects associated with exposure to radiofrequency (RF) fields. The paramount concern of most persons relates to the potential of these fields to cause cancer. Unlike ionizing radiation, RF fields used for mobile telecommunications (800-1900 MHz) do not possess sufficient energy to directly damage DNA. Most rodent bioassay and in vitro genotoxicity/mutation studies have reported that RF fields at non-thermal levels have no direct mutagenic, genotoxic or carcinogenic effects. However, some evidence has suggested that RF fields may cause detectable postexposure changes in gene expression. Therefore, the purpose of this study was to assess the ability of exposure to a 1.9 GHz pulse-modulated RF field for 4 h at specific absorption rates (SARs) of 0.1, 1.0 and 10.0 W/kg to affect global gene expression in U87MG glioblastoma cells. We found no evidence that non-thermal RF fields can affect gene expression in cultured U87MG cells relative to the nonirradiated control groups, whereas exposure to heat shock at 43 degrees C for 1 h up-regulated a number of typical stress-responsive genes in the positive control group. Future studies will assess the effect of RF fields on other cell lines and on gene expression in the mouse brain after in vivo exposure.

  3. Expression of essential genes for biosynthesis of antimicrobial peptides of Bacillus is modulated by inactivated cells of target microorganisms.

    PubMed

    Leães, Fernanda Leal; Velho, Renata Voltolini; Caldas, Danielle Gregório Gomes; Ritter, Ana Carolina; Tsai, Siu Mui; Brandelli, Adriano

    2016-01-01

    Certain Bacillus strains are important producers of antimicrobial peptides with great potential for biological control. Antimicrobial peptide production by Bacillus amyloliquefaciens P11 was investigated in the presence of heat-inactivated cells of bacteria and fungi. B. amyloliquefaciens P11 exhibited higher antimicrobial activity in the presence of inactivated cells of Staphylococcus aureus and Aspergillus parasiticus compared to other conditions tested. Expression of essential genes related to biosynthesis of the antimicrobial peptides surfactin (sfp), iturin A (lpa-14 and ituD), subtilosin A (sboA) and fengycin (fenA) was investigated by quantitative real-time PCR (qRT-PCR). The genes lpa-14 and ituD were highly expressed in the presence of S. aureus (inactivated cells), indicating induction of iturin A production by B. amyloliquefaciens P11. The other inducing condition (inactivated cells of A. parasiticus) suppressed expression of lpa-14, but increased expression of ituD. A twofold increase in fenA expression was observed for both conditions, while strong suppression of sboA expression was observed in the presence of inactivated cells of S. aureus. An increase in antimicrobial activity was observed, indicating that synthesis of antimicrobial peptides may be induced by target microorganisms.

  4. Dioxin exposure of human CD34+ hemopoietic cells induces gene expression modulation that recapitulates its in vivo clinical and biological effects.

    PubMed

    Fracchiolla, Nicola Stefano; Todoerti, Katia; Bertazzi, Pier Alberto; Servida, Federica; Corradini, Paolo; Carniti, Cristiana; Colombi, Antonio; Cecilia Pesatori, Angela; Neri, Antonino; Deliliers, Giorgio Lambertenghi

    2011-04-28

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has a large number of biological effects, including skin, cardiovascular, neurologic diseases, diabetes, infertility, cancers and immunotoxicity. We analysed the in vitro TCDD effects on human CD34+ cells and tested the gene expression modulation by means of microarray analyses before and after TCDD exposure. We identified 257 differentially modulated probe sets, identifying 221 well characterized genes. A large part of these resulted associated to cell adhesion and/or angiogenesis and to transcription regulation. Synaptic transmission and visual perception functions, with the particular involvement of the GABAergic pathway were also significantly modulated. Numerous transcripts involved in cell cycle or cell proliferation, immune response, signal transduction, ion channel activity or calcium ion binding, tissue development and differentiation, female or male fertility or in several metabolic pathways were also affected after dioxin exposure. The transcriptional profile induced by TCDD treatment on human CD34+ cells strikingly reproduces the clinical and biological effects observed in individuals exposed to dioxin and in biological experimental systems. Our data support a role of dioxin in the neoplastic transformation of hemopoietic stem cells and in immune modulation processes after in vivo exposure, as indicated by the epidemiologic data in dioxin accidentally exposed populations, providing a molecular basis for it. In addition, TCDD alters genes associated to glucidic and lipidic metabolisms, to GABAergic transmission or involved in male and female fertility, thus providing a possible explanation of the diabetogenic, dyslipidemic, neurologic and fertility effects induced by TCDD in vivo exposure.

  5. Gene expression modulation in TGF-β3-mediated rabbit bone marrow stem cells using electrospun scaffolds of various stiffness

    PubMed Central

    Guo, Qianping; Liu, Chen; Li, Jun; Zhu, Caihong; Yang, Huilin; Li, Bin

    2015-01-01

    Tissue engineering has recently evolved into a promising approach for annulus fibrosus (AF) regeneration. However, selection of an ideal cell source, which can be readily differentiated into AF cells of various regions, remains challenging because of the heterogeneity of AF tissue. In this study, we set out to explore the feasibility of using transforming growth factor-β3-mediated bone marrow stem cells (tBMSCs) for AF tissue engineering. Since the differentiation of stem cells significantly relies on the stiffness of substrate, we fabricated nanofibrous scaffolds from a series of biodegradable poly(ether carbonate urethane)-urea (PECUU) materials whose elastic modulus approximated that of native AF tissue. We cultured tBMSCs on PECUU scaffolds and compared their gene expression profile to AF-derived stem cells (AFSCs), the newly identified AF tissue-specific stem cells. As predicted, the expression of collagen-I in both tBMSCs and AFSCs increased with scaffold stiffness, whereas the expression of collagen-II and aggrecan genes showed an opposite trend. Interestingly, the expression of collagen-I, collagen-II and aggrecan genes in tBMSCs on PECUU scaffolds were consistently higher than those in AFSCs regardless of scaffold stiffness. In addition, the cell traction forces (CTFs) of both tBMSCs and AFSCs gradually decreased with scaffold stiffness, which is similar to the CTF change of cells from inner to outer regions of native AF tissue. Together, findings from this study indicate that tBMSCs had strong tendency to differentiate into various types of AF cells and presented gene expression profiles similar to AFSCs, thereby establishing a rationale for the use of tBMSCs in AF tissue engineering. PMID:25752910

  6. Hormonal regulation of phosphoenolpyruvate carboxykinase gene expression is mediated through modulation of an already disrupted chromatin structure

    SciTech Connect

    Ip, Y.T.; Granner, D.K.; Chalkley, R. . School of Medicine)

    1989-03-01

    The authors used indirect end labeling to identify a series of five hypersensitive (HS) sites in the phosphoenolpyruvate carboxykinase (PEPCK) gene in H4IIE rat hepatoma cells. These sites were found at -4800 base pairs (bp) (site A), at -1300 bp (site B), over a broad domain between -400 and -30 bp (site C), at +4650 bp (site D), and at +6200 bp (site E). Sites A to D were detected only in cells capable of expressing the PEPCK gene, whereas site E was present in all of the cells examined thus far. The HS sites were present in H4IIE cells even when transcriptional activity was reduced to a minimum by treatment with insulin. Stimulation of transcription by a cyclic AMP analog to a 40-fold increase over the insulin-repressed level did not affect the main features of the HS sites. Furthermore, increased transcription did not disrupt the nucleosomal arrangement of the coding region of the gene, nor did it affect the immediate 5' region (site C), which is always nucleosome-free. In HTC cells, a rat hepatoma line that is hormonally responsive but unable to synthesize PEPCK mRNA, the four expression-specific HS sites were totally absent. The authors experimental results also showed that, although there is a general correlation between lack of DNA methylation and transcriptional competence of the PEPCK gene, the role, if any, of methylation in the regulation of PEPCK gene activity is likely to be exerted at very specific sites.

  7. Gene expression modulation in A549 human lung cells in response to combustion-generated nano-sized particles.

    PubMed

    Arenz, Andrea; Hellweg, Christine E; Stojicic, Nevena; Baumstark-Khan, Christa; Grotheer, Horst-Henning

    2006-12-01

    High levels of ambient air pollution are associated in humans with aggravation of asthma and of respiratory and cardiopulmonary morbidity; long-term exposures to particulate matter (PM) have been linked to possible increases in lung cancer risk, chronic respiratory disease, and increased death rates. The Biodiagnostics Group of the DLR Institute of Aerospace Medicine develops cellular test systems capable of monitoring the biological consequences of environmental conditions on humans already on cellular and molecular level. Such bioassays rely on the receptor-reporter principle, where cell lines are transfected with plasmids carrying a reporter gene under control of environment-dependent promoters (receptor), which play a key role in regulating gene expressions in response to extracellular signals. We developed the recombinant human lung epithelial cell line A549-NF-kappaB-EGFP/Neo carrying a genetically encoded fluorescent indicator for monitoring activation of the NF-kappaB signaling pathway in living cells in response to genotoxic and cytotoxic environmental influences. With this cell line we screened several candidate human radiation-responsive genes (GADD45beta, CDKN1A) and NF-kappaB-dependent genes (IL-6, NFkappaBIA, and pNF-kappaB-EGFP) for gene expression changes by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay, using cDNA obtained from total RNA isolated at various time points after exposure to combustion generated nano-sized particle samples.

  8. TCF7L1 Modulates Colorectal Cancer Growth by Inhibiting Expression of the Tumor-Suppressor Gene EPHB3

    PubMed Central

    Murphy, Matthew; Chatterjee, Sujash S.; Jain, Sidharth; Katari, Manpreet; DasGupta, Ramanuj

    2016-01-01

    Dysregulation of the Wnt pathway leading to accumulation of β-catenin (CTNNB1) is a hallmark of colorectal cancer (CRC). Nuclear CTNNB1 acts as a transcriptional coactivator with TCF/LEF transcription factors, promoting expression of a broad set of target genes, some of which promote tumor growth. However, it remains poorly understood how CTNNB1 interacts with different transcription factors in different contexts to promote different outcomes. While some CTNNB1 target genes are oncogenic, others regulate differentiation. Here, we found that TCF7L1, a Wnt pathway repressor, buffers CTNNB1/TCF target gene expression to promote CRC growth. Loss of TCF7L1 impaired growth and colony formation of HCT116 CRC cells and reduced tumor growth in a mouse xenograft model. We identified a group of CTNNB1/TCF target genes that are activated in the absence of TCF7L1, including EPHB3, a marker of Paneth cell differentiation that has also been implicated as a tumor suppressor in CRC. Knockdown of EPHB3 partially restores growth and normal cell cycle progression of TCF7L1-Null cells. These findings suggest that while CTNNB1 accumulation is critical for CRC progression, activation of specific Wnt target genes in certain contexts may in fact inhibit tumor growth. PMID:27333864

  9. Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways.

    PubMed

    Tuñón, M J; García-Mediavilla, M V; Sánchez-Campos, S; González-Gallego, J

    2009-03-01

    Flavonoids are a large class of naturally occurring compounds widely present in fruits, vegetables, and beverages derived from plants. Reports have suggested that these compounds might be useful for the prevention of a number of diseases, partly due to their anti-inflammatory properties. It has been demonstrated that flavonoids are able to inhibit expression of isoforms of inducible nitric oxide synthase, ciclooxygenase and lipooxygenase, which are responsible for the production of a great amount of nitric oxide, prostanoids and leukotrienes, as well as other mediators of the inflammatory process such as cytokines, chemokines or adhesion molecules. Modulation of the cascade of molecular events leading to the over-expression of those mediators include inhibition of transcription factors such as nuclear factor kappa B, activator protein 1, signal transducers and activators of transcription, CCAAT/enhancer binding protein and others. Effects on the binding capacity of transcription factors may be regulated through the inhibition of protein kinases involved in signal transduction, such as mitogen activated protein kinases. Although the numerous studies published with in vitro approaches allow identifying molecular mechanisms of flavonoid effects, the limited bioavailability of these molecules makes necessary validation in humans. Whatever the case, the data available make clear the potential utility of dietary flavonoids or new flavonoid-based agents for the possible treatment of inflammatory diseases. The present review summarizes recent research data focusing on the modulation of the expression of different inflammatory mediators by flavonoids and the effects on cell signaling pathways responsible for their anti-inflammatory activity.

  10. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics.

    PubMed

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-11-14

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms "probiotics" and "gene expression" combined with "intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins

  11. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics

    PubMed Central

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-01-01

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms “probiotics" and "gene expression" combined with “intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and

  12. Feeding State, Insulin and NPR-1 Modulate Chemoreceptor Gene Expression via Integration of Sensory and Circuit Inputs

    PubMed Central

    Gruner, Matthew; Nelson, Dru; Winbush, Ari; Hintz, Rebecca; Ryu, Leesun; Chung, Samuel H.; Kim, Kyuhyung; Gabel, Chrisopher V.; van der Linden, Alexander M.

    2014-01-01

    Feeding state and food availability can dramatically alter an animals' sensory response to chemicals in its environment. Dynamic changes in the expression of chemoreceptor genes may underlie some of these food and state-dependent changes in chemosensory behavior, but the mechanisms underlying these expression changes are unknown. Here, we identified a KIN-29 (SIK)-dependent chemoreceptor, srh-234, in C. elegans whose expression in the ADL sensory neuron type is regulated by integration of sensory and internal feeding state signals. We show that in addition to KIN-29, signaling is mediated by the DAF-2 insulin-like receptor, OCR-2 TRPV channel, and NPR-1 neuropeptide receptor. Cell-specific rescue experiments suggest that DAF-2 and OCR-2 act in ADL, while NPR-1 acts in the RMG interneurons. NPR-1-mediated regulation of srh-234 is dependent on gap-junctions, implying that circuit inputs regulate the expression of chemoreceptor genes in sensory neurons. Using physical and genetic manipulation of ADL neurons, we show that sensory inputs from food presence and ADL neural output regulate srh-234 expression. While KIN-29 and DAF-2 act primarily via the MEF-2 (MEF2) and DAF-16 (FOXO) transcription factors to regulate srh-234 expression in ADL neurons, OCR-2 and NPR-1 likely act via a calcium-dependent but MEF-2- and DAF-16-independent pathway. Together, our results suggest that sensory- and circuit-mediated regulation of chemoreceptor genes via multiple pathways may allow animals to precisely regulate and fine-tune their chemosensory responses as a function of internal and external conditions. PMID:25357003

  13. Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain

    PubMed Central

    Martins, Rute S. T.; Gomez, Ana; Zanuy, Silvia; Carrillo, Manuel; Canário, Adelino V. M.

    2015-01-01

    The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG) axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL) alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP) accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis. PMID:26641263

  14. Expression of Rice CYP450-Like Gene (Os08g01480) in Arabidopsis Modulates Regulatory Network Leading to Heavy Metal and Other Abiotic Stress Tolerance

    PubMed Central

    Rai, Arti; Singh, Ruchi; Shirke, Pramod Arvind; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2015-01-01

    Heavy metal (HM) toxicity has become a grave problem in the world since it leads to hazardous effects on living organisms. Transcriptomic/proteomic studies in plants have identified a large number of metal-responsive gene families. Of these, cytochrome-P450 (CYPs) family members are composed of enzymes carrying out detoxification of exogenous molecules. Here, we report a CYP-like protein encoded by Os08g01480 locus in rice that helps the plant to combat HM and other abiotic stresses. To functionally characterize CYP-like gene, cDNA and promoter were isolated from rice to develop Arabidopsis transgenic lines. Heterologous expression of Os08g01480 in Arabidopsis provided significant tolerance towards abiotic stresses. In silico analysis reveals that Os08g01480 might help plants to combat environmental stress via modulating auxin metabolism. Transgenic lines expressing reporter gene under control of Os08g01480 promoter demonstrated differential promoter activity in different tissues during environmental stresses. These studies indicated that differential expression of Os08g01480 might be modulating response of plants towards environmental stresses as well as in different developmental stages. PMID:26401987

  15. Macrophage Activation and Differentiation Signals Regulate Schlafen-4 Gene Expression: Evidence for Schlafen-4 as a Modulator of Myelopoiesis

    PubMed Central

    van Zuylen, Wendy J.; Garceau, Valerie; Idris, Adi; Schroder, Kate; Irvine, Katharine M.; Lattin, Jane E.; Ovchinnikov, Dmitry A.; Perkins, Andrew C.; Cook, Andrew D.; Hamilton, John A.; Hertzog, Paul J.; Stacey, Katryn J.; Kellie, Stuart; Hume, David A.; Sweet, Matthew J.

    2011-01-01

    Background The ten mouse and six human members of the Schlafen (Slfn) gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. Methodology/Principal Findings Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM) by the Toll-like Receptor (TLR)4 agonist lipopolysaccharide (LPS), the TLR3 agonist Poly(I∶C), and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN)-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1−/− BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1)-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. Conclusions Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the myeloid lineage in

  16. Apple flavonoids inhibit growth of HT29 human colon cancer cells and modulate expression of genes involved in the biotransformation of xenobiotics.

    PubMed

    Veeriah, Selvaraju; Kautenburger, Tanja; Habermann, Nina; Sauer, Julia; Dietrich, Helmut; Will, Frank; Pool-Zobel, Beatrice Louise

    2006-03-01

    Flavonoids from fruits and vegetables probably reduce risks of diseases associated with oxidative stress, including cancer. Apples contain significant amounts of flavonoids with antioxidative potential. The objectives of this study were to investigate such compounds for properties associated with reduction of cancer risks. We report herein that apple flavonoids from an apple extract (AE) inhibit colon cancer cell growth and significantly modulate expression of genes related to xenobiotic metabolism. HT29 cells were treated with AE at concentrations delivering 5-50 microM of one of the major ingredients, phloridzin ("phloridzin-equivalents," Ph.E), to the cell culture medium, with a synthetic flavonoid mixture mimicking the composition of the AE or with 5-100 microM individual flavonoids. HT29 cell growth was inhibited by the complex extract and by the mixture. HT29 cells were treated with nontoxic doses of the AE (30 microM, Ph.E) and after 24 h total RNA was isolated to elucidate patterns of gene expression using a human cDNA-microarray (SuperArray) spotted with 96 genes of drug metabolism. Treatment with AE resulted in an upregulation of several genes (GSTP1, GSSTT2, MGST2, CYCP4F3, CHST5, CHST6, and CHST7) and downregulation of EPHX1, in comparison to the medium controls. The enhanced transcriptional activity of GSTP1 and GSTT2 genes was confirmed with real-time qRT-PCR. On the basis of the pattern of differential gene expression found here, we conclude that apple flavonoids modulate toxicological defense against colon cancer risk factors. In addition to the inhibition of tumor cell proliferation, this could be a mechanism of cancer risk reduction.

  17. Cloning, sequencing, and expression of a Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) with novel carbohydrate-binding modules, and properties of Cel5A.

    PubMed

    Yoda, Kazutoyo; Toyoda, Atsushi; Mukoyama, Yoshihiro; Nakamura, Yutaka; Minato, Hajime

    2005-10-01

    A novel Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) was cloned and expressed in Escherichia coli, and its enzymatic properties were characterized. The cel5A gene consists of a 3,444-bp open reading frame and encodes a 1,148-amino-acid protein with a molecular mass of 127,047 Da. Cel5A is a modular enzyme consisting of an N-terminal signal peptide, two glycosyl hydrolase family 5 catalytic modules, two novel carbohydrate-binding modules (CBMs), two linker sequences, and a C-terminal sequence with an unknown function. The amino acid sequences of the two catalytic modules and the two CBMs are 94% and 73% identical to each other, respectively. Two regions that consisted of one CBM and one catalytic module were tandemly connected via a linker sequence. The CBMs did not exhibit significant sequence similarity with any other CBMs. Analyses of the hydrolytic activity of the recombinant Cel5A (rCel5A) comprising the CBMs and the catalytic modules showed that the enzyme is an endoglucanase with activities with carboxymethyl cellulose, lichenan, acid-swollen cellulose, and oat spelt xylan. To investigate the functions of the CBMs and the catalytic modules, truncated derivatives of rCel5A were constructed and characterized. There were no differences in the hydrolytic activities with various polysaccharides or in the hydrolytic products obtained from cellooligosaccharides between the two catalytic modules. Both CBMs had the same substrate affinity with intact rCel5A. Removal of the CBMs from rCel5A reduced the catalytic activities with various polysaccharides remarkably. These observations show that CBMs play an important role in the catalytic function of the enzyme.

  18. A TOMM40 poly-T variant modulates gene expression and is associated with vocabulary ability and decline in nonpathologic aging.

    PubMed

    Payton, A; Sindrewicz, P; Pessoa, V; Platt, H; Horan, M; Ollier, W; Bubb, V J; Pendleton, N; Quinn, J P

    2016-03-01

    The Translocase of Outer Mitochondrial Membrane 40 Homolog and Apolipoprotein E (TOMM40-APOE) locus has been associated with a number of age-related phenotypes in humans including nonpathologic cognitive aging, late-onset Alzheimer's disease, and longevity. Here, we investigate the influence of the TOMM40 intron 6 poly-T variant (rs10524523) on TOMM40 gene expression and cognitive abilities and decline in a cohort of 1613 community-dwelling elderly volunteers who had been followed for changes in cognitive functioning over a period of 14 years (range = 12-18 years). We showed that the shorter length poly-T variants were found to act as a repressor of luciferase gene expression in reporter gene constructs. Expression was reduced to approximately half of that observed for the very long variant. We further observed that the shorter poly-T variant was significantly associated with reduced vocabulary ability and a slower rate of vocabulary decline with age compared to the very long poly-T variants. No significant associations were observed for memory, fluid intelligence or processing speed, although the direction of effect, where the short variant was correlated with reduced ability and slower rate of decline was observed for all tests. Our results indicate that the poly-T variant has the ability to interact with transcription machinery and differentially modulate reporter gene expression and influence vocabulary ability and decline with age.

  19. Differential expression of a stress-modulating gene, BRE, in the adrenal gland, in adrenal neoplasia, and in abnormal adrenal tissues.

    PubMed

    Miao, J; Panesar, N S; Chan, K T; Lai, F M; Xia, N; Wang, Y; Johnson, P J; Chan, J Y

    2001-04-01

    Genes that modulate the action of hormones and cytokines play a critical role in stress response, survival, and in growth and differentiation of cells. Many of these biological response modifiers are responsible for various pathological conditions, including inflammation, infection, cachexia, aging, genetic disorders, and cancer. We have previously identified a new gene, BRE, that is responsive to DNA damage and retinoic acid. Using multiple-tissue dot-blotting and Northern blotting, BRE was recently found to be strongly expressed in adrenal cortex and medulla, in testis, and in pancreas, whereas low expression was found in the thyroid, thymus, small intestine and stomach. In situ hybridization and immunohistochemical staining indicated that BRE was strongly expressed in the zona glomerulosa of the adrenal cortex, which synthesizes and secretes the mineralocorticoid hormones. It is also highly expressed in the glial and neuronal cells of the brain and in the round spermatids, Sertoli cells, and Leydig cells of the testis, all of which are associated with steroid hormones and/or TNF synthesis. However, BRE expression was downregulated in human adrenal adenoma and pheochromocytoma, whereas its expression was enhanced in abnormal adrenal tissues of rats chronically treated with nitrate or nitrite. These data, taken together, indicate that the expression of BRE is apparently associated with steroids and/or TNF production and the regulation of endocrine functions. BRE may play an important role in the endocrine and immune system, such as the cytokine-endocrine interaction of the adrenal gland.

  20. A candidate transacting modulator of fetal hemoglobin gene expression in the Arab-Indian haplotype of sickle cell anemia.

    PubMed

    Vathipadiekal, Vinod; Farrell, John J; Wang, Shuai; Edward, Heather L; Shappell, Heather; Al-Rubaish, A M; Al-Muhanna, Fahad; Naserullah, Z; Alsuliman, A; Qutub, Hatem Othman; Simkin, Irene; Farrer, Lindsay A; Jiang, Zhihua; Luo, Hong-Yuan; Huang, Shengwen; Mostoslavsky, Gustavo; Murphy, George J; Patra, Pradeep K; Chui, David H K; Alsultan, Abdulrahman; Al-Ali, Amein K; Sebastiani, Paola; Steinberg, Martin H

    2016-11-01

    Fetal hemoglobin (HbF) levels are higher in the Arab-Indian (AI) β-globin gene haplotype of sickle cell anemia compared with African-origin haplotypes. To study genetic elements that effect HbF expression in the AI haplotype we completed whole genome sequencing in 14 Saudi AI haplotype sickle hemoglobin homozygotes-seven selected for low HbF (8.2% ± 1.3%) and seven selected for high HbF (23.5% ± 2.6%). An intronic single nucleotide polymorphism (SNP) in ANTXR1, an anthrax toxin receptor (chromosome 2p13), was associated with HbF. These results were replicated in two independent Saudi AI haplotype cohorts of 120 and 139 patients, but not in 76 Saudi Benin haplotype, 894 African origin haplotype and 44 AI haplotype patients of Indian origin, suggesting that this association is effective only in the Saudi AI haplotype background. ANTXR1 variants explained 10% of the HbF variability compared with 8% for BCL11A. These two genes had independent, additive effects on HbF and together explained about 15% of HbF variability in Saudi AI sickle cell anemia patients. ANTXR1 was expressed at mRNA and protein levels in erythroid progenitors derived from induced pluripotent stem cells (iPSCs) and CD34(+) cells. As CD34(+) cells matured and their HbF decreased ANTXR1 expression increased; as iPSCs differentiated and their HbF increased, ANTXR1 expression decreased. Along with elements in cis to the HbF genes, ANTXR1 contributes to the variation in HbF in Saudi AI haplotype sickle cell anemia and is the first gene in trans to HBB that is associated with HbF only in carriers of the Saudi AI haplotype. Am. J. Hematol. 91:1118-1122, 2016. © 2016 Wiley Periodicals, Inc.

  1. Modulation of the Expression of the Proinflammatory IL-8 Gene in Cystic Fibrosis Cells by Extracts Deriving from Olive Mill Waste Water

    PubMed Central

    Lampronti, Ilaria; Borgatti, Monica; Vertuani, Silvia; Manfredini, Stefano; Gambari, Roberto

    2013-01-01

    A persistent recruitment of neutrophils in the bronchi of cystic fibrosis (CF) patients contributes to aggravate the airway tissue damage, suggesting the importance of modulating the expression of chemokines, including IL-8 during the management of the CF patients. Polyphenols rich extracts derived from waste water from olive mill, obtained by a molecular imprinting approach, have been investigated in order to discover compounds able to reduce IL-8 expression in human bronchial epithelial cells (IB3-1 cells), derived from a CF patient with a ΔF508/W1282X mutant genotype and stimulated with TNF-alpha. Initially, electrophoretic mobility shift assays (EMSAs) were performed to determine whether the different active principles were able to inhibit the binding between transcription factor (TF) NF-kappaB and DNA consensus sequences. Among different representative active principles present in the extract, three compounds were selected, apigenin, oleuropein, and cyanidin chloride, which displayed remarkable activity in inhibiting NF-kappaB/DNA complexes. Utilizing TNF-alpha-treated IB3-1 cells as experimental model system, we demonstrated that apigenin and cyanidin chloride are able to modulate the expression of the NF-kappaB-regulated IL-8 gene, while oleuropein showed no effect in regulating the expression of the gene IL-8. PMID:23935691

  2. Cystatin D Locates in the Nucleus at Sites of Active Transcription and Modulates Gene and Protein Expression*

    PubMed Central

    Ferrer-Mayorga, Gemma; Alvarez-Díaz, Silvia; Valle, Noelia; De Las Rivas, Javier; Mendes, Marta; Barderas, Rodrigo; Canals, Francesc; Tapia, Olga; Casal, J. Ignacio; Lafarga, Miguel; Muñoz, Alberto

    2015-01-01

    Cystatin D is an inhibitor of lysosomal and secreted cysteine proteases. Strikingly, cystatin D has been found to inhibit proliferation, migration, and invasion of colon carcinoma cells indicating tumor suppressor activity that is unrelated to protease inhibition. Here, we demonstrate that a proportion of cystatin D locates within the cell nucleus at specific transcriptionally active chromatin sites. Consistently, transcriptomic analysis show that cystatin D alters gene expression, including that of genes encoding transcription factors such as RUNX1, RUNX2, and MEF2C in HCT116 cells. In concordance with transcriptomic data, quantitative proteomic analysis identified 292 proteins differentially expressed in cystatin D-expressing cells involved in cell adhesion, cytoskeleton, and RNA synthesis and processing. Furthermore, using cytokine arrays we found that cystatin D reduces the secretion of several protumor cytokines such as fibroblast growth factor-4, CX3CL1/fractalkine, neurotrophin 4 oncostatin-M, pulmonary and activation-regulated chemokine/CCL18, and transforming growth factor B3. These results support an unanticipated role of cystatin D in the cell nucleus, controlling the transcription of specific genes involved in crucial cellular functions, which may mediate its protective action in colon cancer. PMID:26364852

  3. Nitric oxide-induced murine hematopoietic stem cell fate involves multiple signaling proteins, gene expression, and redox modulation.

    PubMed

    Nogueira-Pedro, Amanda; Dias, Carolina C; Regina, Helena; Segreto, C; Addios, Priscilla C; Lungato, Lisandro; D'Almeida, Vania; Barros, Carlos C; Higa, Elisa M S; Buri, Marcus V; Ferreira, Alice T; Paredes-Gamero, Edgar Julian

    2014-11-01

    There are a growing number of reports showing the influence of redox modulation in cellular signaling. Although the regulation of hematopoiesis by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been described, their direct participation in the differentiation of hematopoietic stem cells (HSCs) remains unclear. In this work, the direct role of nitric oxide (NO(•)), a RNS, in the modulation of hematopoiesis was investigated using two sources of NO(•) , one produced by endothelial cells stimulated with carbachol in vitro and another using the NO(•)-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in vivo. Two main NO(•) effects were observed: proliferation of HSCs-especially of the short-term HSCs-and its commitment and terminal differentiation to the myeloid lineage. NO(•)-induced proliferation was characterized by the increase in the number of cycling HSCs and hematopoietic progenitor cells positive to BrdU and Ki-67, upregulation of Notch-1, Cx43, PECAM-1, CaR, ERK1/2, Akt, p38, PKC, and c-Myc. NO(•)-induced HSCs differentiation was characterized by the increase in granulocytic-macrophage progenitors, granulocyte-macrophage colony forming units, mature myeloid cells, upregulation of PU.1, and C/EBPα genes concomitantly to the downregulation of GATA-3 and Ikz-3 genes, activation of Stat5 and downregulation of the other analyzed proteins mentioned above. Also, redox status modulation differed between proliferation and differentiation responses, which is likely associated with the transition of the proliferative to differentiation status. Our findings provide evidence of the role of NO(•) in inducing HSCs proliferation and myeloid differentiation involving multiple signaling.

  4. SH2B1 modulates chromatin state and MyoD occupancy to enhance expressions of myogenic genes.

    PubMed

    Chen, Kuan-Wei; Chang, Yu-Jung; Yeh, Chia-Ming; Lian, Yen-Ling; Chan, Michael W Y; Kao, Cheng-Fu; Chen, Linyi

    2017-02-01

    As mesoderm-derived cell lineage commits to myogenesis, a spectrum of signaling molecules, including insulin growth factor (IGF), activate signaling pathways and ultimately instruct chromatin remodeling and the transcription of myogenic genes. MyoD is a key transcription factor during myogenesis. In this study, we have identified and characterized a novel myogenic regulator, SH2B1. Knocking down SH2B1 delays global chromatin condensation and decreases the formation of myotubes. SH2B1 interacts with histone H1 and is required for the removal of histone H1 from active transcription sites, allowing for the expressions of myogenic genes, IGF2 and MYOG. Chromatin immunoprecipitation assays suggest the requirement of SH2B1 for the induction of histone H3 lysine 4 trimethylation as well as the reduction of histone H3 lysine 9 trimethylation at the promoters and/or enhancers of IGF2 and MYOG genes during myogenesis. Furthermore, SH2B1 is required for the transcriptional activity of MyoD and MyoD occupancy at the enhancer/promoter regions of IGF2 and MYOG during myogenesis. Together, this study demonstrates that SH2B1 fine-tunes global-local chromatin states, expressions of myogenic genes and ultimately promotes myogenesis.

  5. Synergistic Stimulation with Different TLR7 Ligands Modulates Gene Expression Patterns in the Human Plasmacytoid Dendritic Cell Line CAL-1

    PubMed Central

    Hilbert, Tobias; Steinhagen, Folkert; Weisheit, Christina; Baumgarten, Georg; Hoeft, Andreas; Klaschik, Sven

    2015-01-01

    Objective. TLR7 ligation in plasmacytoid dendritic cells is promising for the treatment of cancer, allergy, and infectious diseases; however, high doses of ligands are required. We hypothesized that the combination of structurally different TLR7 ligands exponentiates the resulting immune response. Methods. CAL-1 (human pDC line) cells were incubated with the TLR7-specific adenine analog CL264 and single-stranded 9.2s RNA. Protein secretion was measured by ELISA. Microarray technique was used to detect modified gene expression patterns upon synergistic stimulation, revealing underlying functional groups and networks. Cell surface binding properties were studied using FACS analysis. Results. CL264 in combination with 9.2s RNA significantly enhanced cytokine and interferon secretion to supra-additive levels. This effect was due to a stronger stimulation of already regulated genes (by monostimulation) as well as to recruitment of thus far unregulated genes. Top scoring canonical pathways referred to immune-related processes. Network analysis revealed IL-1β, IL-6, TNF, and IFN-β as major regulatory nodes, while several minor regulatory nodes were also identified. Binding of CL264 to the cell surface was enhanced by 9.2s RNA. Conclusion. Structurally different TLR7 ligands act synergistically on gene expression patterns and on the resulting inflammatory response. These data could impact future strategies optimizing TLR7-targeted drug design. PMID:26770023

  6. CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression

    SciTech Connect

    Wu, Yongyan; Ai, Zhiying; Yao, Kezhen; Cao, Lixia; Du, Juan; Shi, Xiaoyan; Guo, Zekun; Zhang, Yong

    2013-10-15

    Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway by stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network. - Highlights: • Combined use of CHIR with LIF promotes self-renewal of J1 mESCs. • CHIR-regulated genes are involved in multiple pathways. • CHIR inhibits Nodal signaling and promotes Bmp4 expression to activate BMP signaling. • Expression of epigenetic regulatory genes and lincRNAs is altered by CHIR.

  7. Neuropeptide TLQP-21, a VGF internal fragment, modulates hormonal gene expression and secretion in GH3 cell line.

    PubMed

    Petrocchi Passeri, Pamela; Biondini, Laura; Mongiardi, Maria Patrizia; Mordini, Nadia; Quaresima, Stefania; Frank, Claudio; Baratta, Mario; Bartolomucci, Alessandro; Levi, Andrea; Severini, Cinzia; Possenti, Roberta

    2013-01-01

    In the present study we demonstrated that TLQP-21, a biologically active peptide derived from the processing of the larger pro-VGF granin, plays a role in mammotrophic cell differentiation. We used an established in vitro model, the GH3 cell line, which upon treatment with epidermal growth factor develops a mammotrophic phenotype consisting of induction of prolactin expression and secretion, and inhibition of growth hormone. Here we determined for the first time that during mammotrophic differentiation, epidermal growth factor also induces Vgf gene expression and increases VGF protein precursor processing and peptide secretion. After this initial observation we set out to determine the specific role of the VGF encoded TLQP-21 peptide on this model. TLQP-21 induced a trophic effect on GH3 cells and increased prolactin expression and its own gene transcription without affecting growth hormone expression. TLQP-21 was also able to induce a significant rise of cytoplasmic calcium, as measured by Fura2AM, due to the release from a thapsigargin-sensitive store. TLQP-21-dependent rise in cytoplasmic calcium was, at least in part, dependent on the activation of phospholipase followed by phosphorylation of PKC and ERK. Taken together, the present results demonstrate that TLQP-21 contributes to differentiation of the GH3 cell line toward a mammotrophic phenotype and suggest that it may exert a neuroendocrine role in vivo on lactotroph cells in the pituitary gland.

  8. Rab1b overexpression modifies Golgi size and gene expression in HeLa cells and modulates the thyrotrophin response in thyroid cells in culture

    PubMed Central

    Romero, Nahuel; Dumur, Catherine I.; Martinez, Hernán; García, Iris A.; Monetta, Pablo; Slavin, Ileana; Sampieri, Luciana; Koritschoner, Nicolas; Mironov, Alexander A.; De Matteis, Maria Antonietta; Alvarez, Cecilia

    2013-01-01

    Rab1b belongs to the Rab-GTPase family that regulates membrane trafficking and signal transduction systems able to control diverse cellular activities, including gene expression. Rab1b is essential for endoplasmic reticulum–Golgi transport. Although it is ubiquitously expressed, its mRNA levels vary among different tissues. This work aims to characterize the role of the high Rab1b levels detected in some secretory tissues. We report that, in HeLa cells, an increase in Rab1b levels induces changes in Golgi size and gene expression. Significantly, analyses applied to selected genes, KDELR3, GM130 (involved in membrane transport), and the proto-oncogene JUN, indicate that the Rab1b increase acts as a molecular switch to control the expression of these genes at the transcriptional level, resulting in changes at the protein level. These Rab1b-dependent changes require the activity of p38 mitogen-activated protein kinase and the cAMP-responsive element-binding protein consensus binding site in those target promoter regions. Moreover, our results reveal that, in a secretory thyroid cell line (FRTL5), Rab1b expression increases in response to thyroid-stimulating hormone (TSH). Additionally, changes in Rab1b expression in FRTL5 cells modify the specific TSH response. Our results show, for the first time, that changes in Rab1b levels modulate gene transcription and strongly suggest that a Rab1b increase is required to elicit a secretory response. PMID:23325787

  9. Peganum harmala L. differentially modulates cytochrome P450 gene expression in human hepatoma HepG2 cells.

    PubMed

    El Gendy, Mohamed A M; El-Kadi, Ayman O S

    2009-12-01

    Peganum harmala L. (Zygophyllaceae) is a common plant in Middle East and it is still used traditionally to treat several diseases. The effect of P. harmala extract on the expression of different cytochrome P450's (CYP) involved in drug metabolism was examined in human HepG2 cells. Therefore, HepG2 cells were incubated with increasing concentrations of plant extract and the CYP gene expression was determined by real-time PCR. Our results showed that P. harmala extract significantly increased the expression of CYP1A2, 2C19, and 3A4 whereas; CYP 2B6, 2D6 and 2E1 was significantly decreased. We concluded that care should be taken when P. harmala is co-administered with other drugs.

  10. In vitro modulation of inflammatory target gene expression by a polyphenol-enriched fraction of rose oil distillation waste water.

    PubMed

    Wedler, Jonas; Weston, Anna; Rausenberger, Julia; Butterweck, Veronika

    2016-10-01

    Classical production of rose oil is based on water steam distillation from the flowers of Rosa damascena. During this process, large quantities of waste water accrue which are discharged to the environment, causing severe pollution of both, groundwater and surface water due to a high content of polyphenols. We recently developed a strategy to purify the waste water into a polyphenol-depleted and a polyphenol-enriched fraction RF20-(SP-207). RF20-(SP-207) and sub-fraction F(IV) significantly inhibited cell proliferation and migration of HaCaT cells. Since there is a close interplay between these actions and inflammatory processes, here we focused on the fractions' influence on pro-inflammatory biomarkers. HaCaT keratinocytes were treated with RF20-(SP-207), F(IV) (both at 50μg/mL) and ellagic acid (10μM) for 24h under TNF-α (20ng/mL) stimulated and non-stimulated conditions. Gene expression of IL-1β, IL-6, IL-8, RANTES and MCP-1 was analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and cellular protein secretion of IL-8, RANTES and MCP-1 was determined by ELISA based assays. RF20-(SP-207) and F(IV) significantly decreased the expression and cellular protein secretion of IL-1β, IL-6, IL-8, RANTES and MCP-1. The diminishing effects on inflammatory target gene expression were slightly less pronounced under TNF-α stimulated conditions. In conclusion, the recovered polyphenol fraction RF20-(SP-207) from rose oil distillation waste water markedly modified inflammatory target gene expression in vitro, and, therefore, could be further developed as alternative treatment of acute and chronic inflammation.

  11. Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in psychrotolerant bacteria modulates ethylene metabolism and cold induced genes in tomato under chilling stress.

    PubMed

    Subramanian, Parthiban; Krishnamoorthy, Ramasamy; Chanratana, Mak; Kim, Kiyoon; Sa, Tongmin

    2015-04-01

    The role of stress induced ethylene under low temperature stress has been controversial and hitherto remains unclear. In the present study, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) gene, acdS expressing mutant strains were generated from ACCD negative psychrotolerant bacterial strains Flavobacterium sp. OR306 and Pseudomonas frederiksbergensis OS211, isolated from agricultural soil during late winter. After transformation with plasmid pRKACC which contained the acdS gene, both the strains were able to exhibit ACCD activity in vitro. The effect of this ACCD under chilling stress with regards to ethylene was studied in tomato plants inoculated with both acdS expressing and wild type bacteria. On exposing the plants to one week of chilling treatment at 12/10 °C, it was found that stress ethylene, ACC accumulation and ACO activity which are markers of ethylene stress, were significantly reduced in plants inoculated with the acdS gene transformed mutants. In case of plants inoculated with strain OS211-acdS, ethylene emission, ACC accumulation and ACO activity was significantly reduced by 52%, 75.9% and 23.2% respectively compared to uninoculated control plants. Moreover, expression of cold induced LeCBF1 and LeCBF3 genes showed that these genes were significantly induced by the acdS transformed mutants in addition to reduced expression of ethylene-responsive transcription factor 13 (ETF-13) and ACO genes. Induced expression of LeCBF1 and LeCBF3 in plants inoculated with acdS expressing mutants compared to wild type strains show that physiologically evolved stress ethylene and its transcription factors play a role in regulation of cold induced genes as reported earlier in the literature.

  12. Enhanced expression of trim14 gene suppressed Sindbis virus reproduction and modulated the transcription of a large number of genes of innate immunity.

    PubMed

    Nenasheva, V V; Kovaleva, G V; Uryvaev, L V; Ionova, K S; Dedova, A V; Vorkunova, G K; Chernyshenko, S V; Khaidarova, N V; Tarantul, V Z

    2015-07-01

    In the present research, we have studied an influence of enhanced expression TRIM14 on alphavirus Sindbis (SINV, Togaviridae family) infection. In the HEK293 cells transfected with human trim14 gene (HEK-trim14), SINV yield after infection was decreased 1000-10,000 times (3-4 lg of TCD50/ml) at 24 h p.i. and considerably less (1-2 lg of TCD50/ml) at 48 h p.i. Analysis of the expression of 43 genes directly or indirectly involved in innate immune machine in HEK-trim14 non-infected cells comparing with the control (non-transfected) HEK293 cells revealed that stable trim14 transfection in HEK293 cells caused increased transcription of 18 genes (ifna, il6 (ifnβ2), isg15, raf-1, NF-kB (nf-kb1, rela, nf-kb2, relb), grb2, grb3-3, traf3ip2, junB, c-myb, pu.1, akt1, tyk2, erk2, mek2) and lowered transcription of 3 genes (ifnγ, gata1, il-17a). The similar patterns of genes expression observe in SINV-infected non-transfected HEK293 cells. However, SINV infection of HEK-trim14 cells caused inhibition of the most interferon cascade genes as well as subunits of transcription factor NF-κB. Thus, stable enhanced expression of trim14 gene in cells activates the transcription of many immunity genes and suppresses the SINV reproduction, but SINV infection of HEK-trim14 cells promotes inhibition of some genes involved in innate immune system.

  13. Origanum Majoranum Extract Modulates Gene Expression, Hepatic and Renal Changes in a Rat Model of Type 2 Diabetes

    PubMed Central

    Soliman, Mohamed Mohamed; Abdo Nassan, Mohamed; Ismail, Tamer Ahmed

    2016-01-01

    The present study was conducted to test the effect of Origanum Majoranum Extract (OME) of leaves on alterations induced in a model of type 2 diabetic rats. Adult male Wistar rats were fed high fat diet for 3 weeks and injected a single dose of streptozotocin (35 mg/kg) intraperitoneally to induce type 2 diabetic rats. Diabetic rats were given aqueous extract of OME in a dose of 20 mg/kg orally for 3 weeks. Changes in lipid profiles, glucose, insulin, expression of some genes related to glucose metabolism and histopathological changes in liver and kidney were examined. Administration of OME improved and normalized dyslipidemia recorded in type 2 diabetic rats together with reduction in glucose and insulin levels. OME induced up-regulation in gene expression of glucose [adiponectin and glucose transporter-2 (GLUT-2)] and lipid metabolism [lipoprotein lipase (LPL)]. Moreover, OME normalized histopathological changes occurred in liver and kidney of diabetic rats. OME decreased lipids accumulation in liver and kidney and increased regeneration of hepatic parenchyma and restored normal renal architecture with disappearance of fat droplets. In conclusion, OME improved dyslipidemia associated with type 2 diabetes through regulation of genes related to glucose and lipid metabolism. PMID:28228803

  14. The Type Three Secretion System 2-Encoded Regulator EtrB Modulates Enterohemorrhagic Escherichia coli Virulence Gene Expression

    PubMed Central

    Luzader, Deborah H.; Willsey, Graham G.; Wargo, Matthew J.

    2016-01-01

    Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is a foodborne pathogen that causes bloody diarrhea and hemolytic uremic syndrome throughout the world. A defining feature of EHEC pathogenesis is the formation of attaching and effacing (AE) lesions on colonic epithelial cells. Most of the genes that code for AE lesion formation, including a type three secretion system (T3SS) and effectors, are carried within a chromosomal pathogenicity island called the locus of enterocyte effacement (LEE). In this study, we report that a putative regulator, which is encoded in the cryptic E. coli type three secretion system 2 (ETT2) locus and herein renamed EtrB, plays an important role in EHEC pathogenesis. The etrB gene is expressed as a monocistronic transcript, and EtrB autoregulates expression. We provide evidence that EtrB directly interacts with the ler regulatory region to activate LEE expression and promote AE lesion formation. Additionally, we mapped the EtrB regulatory circuit in EHEC to determine a global role for EtrB. EtrB is regulated by the transcription factor QseA, suggesting that these proteins comprise a regulatory circuit important for EHEC colonization of the gastrointestinal tract. PMID:27324484

  15. Effects of combined PPAR-γ and PPAR-α agonist therapy on fructose induced NASH in rats: Modulation of gene expression.

    PubMed

    Abd El-Haleim, Enas A; Bahgat, Ashraf K; Saleh, Samira

    2016-02-15

    Peroxisome proliferator-activated receptors (PPARs) gamma and alpha have been shown to play key roles in maintaining glucose and lipid homeostasis by acting as insulin sensitizers and lipid-lowering agents respectively, which would make them potential candidates for the treatment of non-alcoholic steatohepatitis (NASH) characterized by insulin resistance, hyperglycemia, and hypertriglyceridemia. The effects of pioglitazone, a PPAR-γ agonist, and fenofibrate, a PPAR-α agonist, as monotherapy and in combination on the expressions of key genes linked to the development of NASH were studied in rats with fructose-induced NASH. Fructose-enriched diet was given to rats for 12 weeks. Fenofibrate (100mg/kg), pioglitazone (4 mg/kg) and combined treatment with both in half doses were given. Body weight, liver index, insulin resistance indices, triglycerides, oxidative stress markers, AST/ALT ratio and TNF-α were measured. Additionally, hepatic genes expressions of SOCS-3, sterol regulatory element binding protein-1c, fatty acid synthase, malonyl CoA decarboxylase, TGF-β1, and adipose tissue genes expressions of leptin and adiponectin were investigated. The combination of both drugs, in half doses, improved NASH-related disturbances similar to, or even better than, a full dose of fenofibrate alone possibly due to attenuating effects of pioglitazone on expression of genes responsible for insulin resistance, fatty acid synthesis and fibrosis in addition to correcting the balance between leptin and adiponectin. Histopathology confirmed the ability of this combination to decrease steatosis area and to normalize hepatic tissue structure. In Conclusion, dual activation of PPAR-γ and PPAR-α has remarkable effect in ameliorating NASH by modulation of some hepatic and adipose tissue genes expressions.

  16. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  17. The potential of dietary polyunsaturated fatty acids to modulate eicosanoid synthesis and reproduction in Daphnia magna: a gene expression approach.

    PubMed

    Schlotz, Nina; Sørensen, Jesper Givskov; Martin-Creuzburg, Dominik

    2012-08-01

    Nutritional ecology of the aquatic model genus Daphnia has received much attention in past years in particular with regard to dietary polyunsaturated fatty acids (PUFAs) which are crucial for growth and reproduction. Besides their significant role as membrane components, C20 PUFAs serve as precursors for eicosanoids, hormone-like mediators of reproduction, immunity and ion transport physiology. In the present study we investigate transcriptomic changes in Daphnia magna in response to different algal food organisms substantially differing in their PUFA composition using quantitative real-time PCR and relate them to concomitantly documented life history data. The selection of target genes includes representatives that have previously been shown to be responsive to the eicosanoid biosynthesis inhibitor ibuprofen. The beneficial effect of C20 PUFA-rich food on reproduction and population growth rates was accompanied by an increased vitellogenin (DmagVtg1) gene expression in D. magna. Additionally, genes involved in eicosanoid signaling were particularly influenced by dietary C20 PUFA availability. For example, the cyclooxygenase gene (Cox), coding for a central enzyme in the eicosanoid pathway, was highly responsive to the food treatments. Our results suggest that dietary PUFAs are fundamental in D. magna physiology as substrate for eicosanoid synthesis and that these eicosanoids are important for D. magna reproduction.

  18. Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle.

    PubMed

    Haren, M T; Siddiqui, A M; Armbrecht, H J; Kevorkian, R T; Kim, M J; Haas, M J; Mazza, A; Kumar, Vijaya B; Green, M; Banks, W A; Morley, J E

    2011-02-01

    Testosterone regulates energy metabolism and skeletal muscle mass in males, but the molecular mechanisms are not fully understood. This study investigated the response of skeletal muscle to castration and testosterone replacement in 8-week-old male mice. Using microarray analyses of mRNA levels in gastrocnemius muscle, 91 genes were found to be negatively regulated by testosterone and 68 genes were positively regulated. The mRNA levels of the insulin signalling suppressor molecule Grb10 and the glycogen synthesis inhibitors, protein phosphatase inhibitor-1 and phosphorylase kinase-γ, were negatively regulated by testosterone. The insulin-sensitive glucose and amino acid transporters, Glut3 and SAT2, the lipodystrophy gene, Lpin1 and protein targeting to glycogen were positively regulated. These changes would be expected to increase nutrient availability and sensing within skeletal muscle, increase metabolic rate and carbohydrate utilization and promote glycogen accumulation. The observed positive regulation of atrogin-1 (Fbxo32) by testosterone could be explained by the phosphorylation of Akt and Foxo3a, as determined by Western blotting. Testosterone prevented the castration-induced increase in interleukin-1α, the decrease in interferon-γ and the atrophy of the levator ani muscle, which were all correlated with testosterone-regulated gene expression. These findings identify specific mechanisms by which testosterone may regulate skeletal muscle glucose and protein metabolism.

  19. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers

    PubMed Central

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7–0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on

  20. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    NASA Astrophysics Data System (ADS)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O’Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  1. In vivo oestrogenic modulation of Egr1 and Pitx1 gene expression in female rat pituitary gland.

    PubMed

    Gajewska, Alina; Herman, Andrzej P; Wolińska-Witort, Ewa; Kochman, Kazimierz; Zwierzchowski, Lech

    2014-12-01

    EGR1 and PITX1 are transcription factors required for gonadotroph cell Lhb promoter activation. To determine changes in Egr1 and Pitx1 mRNA levels in central and peripheral pituitary stimulations, an in vivo model based on i.c.v. pulsatile (1 pulse/0.5 h over 2 h) GnRH agonist (1.5 nM buserelin) or antagonist (2 nM antide) microinjections was used. The microinjections were given to ovariectomised and 17β-oestradiol (E2) (3×20 μg), ERA (ESR1) agonist propyl pyrazole triol (PPT) (3×0.5 mg), ERB (ESR2) agonist diarylpropionitrile (DPN) (3×0.5 mg) s.c. pre-treated rats 30 min after last pulse anterior pituitaries were excised. Relative mRNA expression was determined by quantitative RT-PCR (qRT-PCR). Results revealed a gene-specific response for GnRH and/or oestrogenic stimulations in vivo. Buserelin pulses enhanced Egr1 expression by 66% in ovariectomised rats, whereas the oestradiol-supplemented+i.c.v. NaCl-microinjected group showed a 50% increase in Egr1 mRNA expression. The oestrogenic signal was transmitted via ERA (ESR1) and ERB (ESR2) activation as administration of PPT and DPN resulted in 97 and 62%, respectively, elevation in Egr1 mRNA expression. A synergistic action of GnRH agonist and 17β-oestradiol (E2) stimulation of the Egr1 gene transcription in vivo were found. GnRHR activity did not affect Pitx1 mRNA expression; regardless of NaCl, buserelin or antide i.c.v. pulses, s.c. oestrogenic supplementation (with E2, PPT or DPN) consistently decreased (by -46, -48 and -41% respectively) the Pitx1 mRNA in the anterior pituitary gland. Orchestrated Egr1 and Pitx1 activities depending on specific central and peripheral regulatory inputs could be responsible for physiologically variable Lhb gene promoter activation in vivo.

  2. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation.

    PubMed

    Almenar-Queralt, Angels; Kim, Sonia N; Benner, Christopher; Herrera, Cheryl M; Kang, David E; Garcia-Bassets, Ivan; Goldstein, Lawrence S B

    2013-12-06

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.

  3. Low-frequency electro-acupuncture and physical exercise improve metabolic disturbances and modulate gene expression in adipose tissue in rats with dihydrotestosterone-induced polycystic ovary syndrome.

    PubMed

    Mannerås, Louise; Jonsdottir, Ingibjörg H; Holmäng, Agneta; Lönn, Malin; Stener-Victorin, Elisabet

    2008-07-01

    Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder associated with ovulatory dysfunction, hyperandrogenism, abdominal obesity, and insulin resistance. Pharmacotherapy is often unsatisfactory. This study evaluates the effects of low-frequency electro-acupuncture (EA) and physical exercise on metabolic disturbances and adipose tissue mRNA expression of selected genes in a rat PCOS model characterized by insulin resistance and adiposity. Dihydrotestosterone (inducing PCOS) or vehicle (control) was administrated continuously, beginning before puberty. At age 10 wk, PCOS rats were randomly divided into three groups; PCOS, PCOS EA, and PCOS exercise. PCOS EA rats received 2-Hz EA (evoking muscle twitches) three times/wk during 4-5 wk. PCOS exercise rats had free access to a running wheel for 4-5 wk. EA and exercise improved insulin sensitivity, measured by clamp, in PCOS rats. Exercise also reduced adiposity, visceral adipocyte size, and plasma leptin. EA increased plasma IGF-I. Real-time RT-PCR revealed increased expression of leptin and IL-6 and decreased expression of uncoupling protein 2 in visceral adipose tissue of PCOS rats compared with controls. EA restored the expression of leptin and uncoupling protein 2, whereas exercise normalized adipose tissue leptin and IL-6 expression in PCOS rats. Thus, EA and exercise ameliorate insulin resistance in rats with PCOS. This effect may involve regulation of adipose tissue metabolism and production because EA and exercise each partly restore divergent adipose tissue gene expression associated with insulin resistance, obesity, and inflammation. In contrast to exercise, EA improves insulin sensitivity and modulates adipose tissue gene expression without influencing adipose tissue mass and cellularity.

  4. The Hexosamine Template – A Platform for Modulating Gene Expression and for Sugar-based Drug Discovery

    PubMed Central

    Elmouelhi, Noha; Aich, Udayanath; Paruchuri, Venkata D.P.; Meledeo, M. Adam; Campbell, Christopher T.; Wang, Jean J.; Srinivas, Raja; Khanna, Hargun S.; Yarema, Kevin J.

    2009-01-01

    This study investigates the breadth of cellular responses engendered by short chain fatty acid (SCFA)-hexosamine hybrid molecules, a class of compounds long used in ‘metabolic glycoengineering’ that are now emerging as drug candidates. First, a ‘mix-and-match’ strategy showed that different SCFA (n-butyrate and acetate) appended to the same core sugar altered biological activity, complementing previous results [Campbell et al., (2008) J. Med. Chem. 51, 8135–8147] where a single type of SCFA elicited distinct responses. Microarray profiling then compared transcriptional responses engendered by regioisomerically-modified ManNAc, GlcNAc, and GalNAc analogs in MDA-MB-231 cells. These data – which were validated by qRT-PCR or Western analysis for ID1, TP53, HPSE, NQO1, EGR1 and VEGFA – showed a two-pronged response where a core set of genes was coordinately regulated by all analogs while each analog simultaneously uniquely regulated a larger number of genes. Finally, AutoDock modeling supported a mechanism where the analogs directly interact with elements of the NF-κB pathway. Together, these results establish the SCFA-hexosamine template as a versatile platform for modulating biological activity and developing new therapeutics. PMID:19326913

  5. Drinking-Water Arsenic Exposure Modulates Gene Expression in Human Lymphocytes from a U.S. Population

    PubMed Central

    Andrew, Angeline S.; Jewell, David A.; Mason, Rebecca A.; Whitfield, Michael L.; Moore, Jason H.; Karagas, Margaret R.

    2008-01-01

    Background Arsenic exposure impairs development and can lead to cancer, cardiovascular disease, and diabetes. The mechanism underlying these effects remains unknown. Primarily because of geologic sources of contamination, drinking-water arsenic levels are above the current recommended maximum contaminant level of 10 μg/L in the northeastern, western, and north central regions of the United States. Objectives We investigated the effects of arsenic exposure, defined by internal biomarkers at levels relevant to the United States and similarly exposed populations, on gene expression. Methods We conducted separate Affymetrix microarray-based genomewide analyses of expression patterns. Peripheral blood lymphocyte samples from 21 controls interviewed (1999–2002) as part of a case–control study in New Hampshire were selected based on high- versus low-level arsenic exposure levels. Results The biologic functions of the transcripts that showed statistically significant abundance differences between high- and low-arsenic exposure groups included an overrepresentation of genes involved in defense response, immune function, cell growth, apoptosis, regulation of cell cycle, T-cell receptor signaling pathway, and diabetes. Notably, the high-arsenic exposure group exhibited higher levels of several killer cell immunoglobulin-like receptors that inhibit natural killer cell activity. Conclusions These findings define biologic changes that occur with chronic arsenic exposure in humans and provide leads and potential targets for understanding and monitoring the pathogenesis of arsenic-induced diseases. PMID:18414638

  6. Daesiho-Tang Is an Effective Herbal Formulation in Attenuation of Obesity in Mice through Alteration of Gene Expression and Modulation of Intestinal Microbiota

    PubMed Central

    Hussain, Ahtesham; Yadav, Mukesh Kumar; Bose, Shambhunath; Wang, Jing-Hua; Lim, Dongwoo; Song, Yun-Kyung; Ko, Seong-Gyu

    2016-01-01

    Background Obesity has become a major global health challenge due to its increasing prevalence, and the associated health risk. It is the main cause of various metabolic diseases including diabetes, hypertension, cardiovascular disease, stroke and certain forms of cancer. Methods and Results In the present study we evaluated the anti-obesity property of Daesiho-tang (DSHT), an herbal medicine, using high fat diet (HFD)-induced obese mice as a model. Our results showed that DSHT ameliorated body weight gain, decreased total body fat, regulated expression of leptin and adiponectin genes of adipose tissue and exerted an anti-diabetic effect by attenuating fasting glucose level and serum insulin level in HFD-fed animals. In addition, DSHT-treatment significantly reduced total cholesterol (TC), triglycerides (TG) and increased high density lipoprotein-cholesterol (HDL), glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) levels in serum and reduced deposition of fat droplets in liver. DSHT treatment resulted in significantly increased relative abundance of bacteria including Bacteroidetes, Bacteroidetes/Firmicutes ratio, Akkermansia Bifidobacterium., Lactobacillus, and decreased the level of Firmicutes. Using RT2 profiler PCR array, 39 (46%) genes were found to be differentially expressed in HFD-fed mice compared to normal control. However, normal gene expressions were restored in 36 (92%) genes of HFD-fed mice, when co-exposed to DSHT. Conclusion/Major Findings The results of this study demonstrated that DSHT is an effective herbal formulation in attenuation of obesity in HFD-fed mice through alteration of gene expressions and modulation of intestinal microbiota. PMID:27812119

  7. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity

    PubMed Central

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  8. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    SciTech Connect

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata; Aumercier, Marc; Mukhopadhyay, Gauranga; Tyagi, Rakesh K.

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.

  9. Vigna unguiculata modulates cholesterol induced cardiac markers, genotoxicity and gene expressions profile in an experimental rabbit model.

    PubMed

    Janeesh, P A; Abraham, Annie

    2013-04-25

    Vigna unguiculata (VU) leaves are edible and used as a leafy vegetable in cuisine from traditional times in India. This study was designed to investigate the cardioprotective effect of VU in cholesterol fed rabbits. The animals were randomly divided into 4 groups of 6 animals each and the experimental period was 3 months. Group I-ND [normal diet 40 g feed], Group II-ND + FVU [flavanoid fraction of Vigna unguiculata (150 mg kg (-1) per body weight)], Group III-ND + CH [cholesterol (400 mg)] and Group IV-ND + CH (400 mg) +FVU (150 mg kg(-1) per body weight). After the experimental period, animals were sacrificed and the various parameters, such as cardiac markers, toxicity parameters, genotoxicity and gene expression, were investigated. Cholesterol feeding causes a significant increase in the levels of cardiac marker enzymes, namely lactate dehydrogenase (LDH) and creatine phospokinase (CPK), atherogenic index, toxicity parameters like serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) were elevated. Antioxidant enzyme levels were decreased, lipid peroxidation products in heart tissue and inflammatory markers, namely cyclooxygenase (COX2) and lipooxygenase (LOX15) in peripheral blood monocytes (PBMCs), were significantly increased. A genotoxicity study using a Comet assay and gene expression by reverse transcriptase-polymerase chain reaction (RT-PCR) of transforming growth factor-b1 (TGF-b1) and heme oxygenase-1 (HO-1) from heart tissue showed an altered expression in the disease group. The supplementation of the flavonoid fraction of Vigna unguiculata leaves (FVU) in the CH + FVU group caused the reversal of the above parameters and cardiotoxicity to near normal when compared with the CH group and FVU. This study revealed the cardioprotective nature of Vigna unguiculata in preventing cardiovascular diseases and this effect is attributed to the presence of antioxidants and the antihyperlipidemic properties of the

  10. Redox-related metabolites and gene expression modulated by sugar in sunflower leaves: similarities with Sunflower chlorotic mottle virus-induced symptom.

    PubMed

    Rodríguez, Marianela; Muñoz, Nacira; Lenardon, Sergio; Lascano, Ramiro

    2013-01-01

    Sugars are part of an integrated redox system, since they are key regulators of respiration and photosynthesis, and therefore of the levels of reducing power, ATP and ROS. These elements are major determinants of the cellular redox state, which is involved in the perception and regulation of many endogenous and environmental stimuli. Our previous findings suggested that early sugar increase produced during compatible Sunflower chlorotic mottle virus (SuCMoV) infection might modulate chlorotic symptom development through redox state alteration in sunflower. The purpose of this work was to characterize redox-related metabolites and gene expression changes associated with high sugar availability and symptom development induced by SuCMoV. The results show that sugar caused an increase in glutathione, ascorbate, pyridine nucleotides, and ATP. In addition, higher sugar availability reduced hydrogen peroxide and ΦPSII. This finding suggests that high sugar availability would be associated with cellular redox alteration and photoinhibitory process. The expression of the genes analyzed was also strongly affected by sugar, such as the down-regulation of psbA and up-regulation of psbO and cp29. The expression level of cytoplasmic (apx-1 and gr)- and chloroplastic (Fe-sod)-targeted genes was also significantly enhanced in sugar-treated leaves. Therefore, all these responses suggest that sugars induce chloroplastic redox state alteration with photoinhibition process that could be contributing to chlorotic symptom development during SuCMoV infection.

  11. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress.

    PubMed

    Nautiyal, Chandra Shekhar; Srivastava, Suchi; Chauhan, Puneet Singh; Seem, Karishma; Mishra, Aradhana; Sopory, Sudhir Kumar

    2013-05-01

    Growth and productivity of rice and soil inhabiting microbial population is negatively affected by soil salinity. However, some salt resistant, rhizosphere competent bacteria improve plant health in saline stress. Present study evaluated the effect of salt tolerant Bacillus amyloliquefaciens NBRISN13 (SN13) inoculation on rice plants in hydroponic and soil conditions exposed to salinity. SN13 increased plant growth and salt tolerance (NaCl 200 mM) and expression of at least 14 genes under hydroponic and soil conditions in rice. Among these 14 genes 4 (NADP-Me2, EREBP, SOSI, BADH and SERK1) were up-regulated and 2 (GIG and SAPK4) repressed under salt stress in hydroponic condition. In greenhouse experiment, salt stress resulted in accumulation of MAPK5 and down-regulation of the remaining 13 transcripts was observed. SN13 treatment, with or without salt gave similar expression for all tested genes as compared to control. Salt stress caused changes in the microbial diversity of the rice rhizosphere and stimulated population of betaine-, sucrose-, trehalose-, and glutamine-utilizing bacteria in salt-treated rice rhizosphere (SN13 + salt). The observations imply that SN13 confers salt tolerance in rice by modulating differential transcription in a set of at least 14 genes. Stimulation of osmoprotectant utilizing microbial population as a mechanism of inducing salt tolerance in rice is reported for the first time in this study to the best of our knowledge.

  12. Minocycline modulates cytokine and gene expression profiles in the brain after whole-body exposure to radiation.

    PubMed

    Mehrotra, Shalini; Pecaut, Michael J; Gridley, Daila S

    2014-01-01

    An effective countermeasure against radiation damage to normal tissues is urgently needed. The major goal of the present study was to determine if minocycline could modify the immunomodulatory effects of radiation on the brain. C57BL/6 mice were treated with minocycline intraperitoneally for 5 days beginning immediately before total-body exposure to 0, 1, 2 and 3 Gray (Gy) (60)Co γ-rays. Brains were collected on days 4 and 32 post-irradiation for cytokine and gene analyses. Minocycline treatment significantly increased the levels of interleukin (IL)-10, IL-15 and vascular endothelial growth factor (VEGF) in the brain on day 4 in one or more irradiated groups compared to radiation-alone (p<0.05). IL-10 is anti-inflammatory, IL-15 can prevent apoptosis and VEGF is nuroprotective. On day 32, the drug decreased IL-1β in the 2- Gy group (p<0.05 vs. 2-Gy alone); this cytokine is implicated in immune-related central nervous system pathologies. Microarray analysis of brains on day 32 showed that while radiation increased expression of inflammatory genes such as Il1f10, Il17, Tnfrsf11b, Tnfsf12, Il12b and Il1f8, these were no longer up-regulated in the minocycline-treated groups. Similarly, the pro-apoptotic gene Bik and nitric oxide synthase producer (Nostrin) were no longer up-regulated in the drug-treated groups. Pathway analysis based on gene data suggested that catenin-β1 and tumor suppressor-related transcription regulation were significantly activated by radiation and/or minocycline (activation z-score >2.0). Overall, the data warrant further testing of minocycline as a potential neuroprotectant against radiation-induced damage.

  13. Modulation of Intestinal Microbiota by the Probiotic VSL#3 Resets Brain Gene Expression and Ameliorates the Age-Related Deficit in LTP

    PubMed Central

    Distrutti, Eleonora; O’Reilly, Julie-Ann; McDonald, Claire; Cipriani, Sabrina; Renga, Barbara; Lynch, Marina A.; Fiorucci, Stefano

    2014-01-01

    The intestinal microbiota is increasingly recognized as a complex signaling network that impacts on many systems beyond the enteric system modulating, among others, cognitive functions including learning, memory and decision-making processes. This has led to the concept of a microbiota-driven gut–brain axis, reflecting a bidirectional interaction between the central nervous system and the intestine. A deficit in synaptic plasticity is one of the many changes that occurs with age. Specifically, the archetypal model of plasticity, long-term potentiation (LTP), is reduced in hippocampus of middle-aged and aged rats. Because the intestinal microbiota might change with age, we have investigated whether the age-related deficit in LTP might be attenuated by changing the composition of intestinal microbiota with VSL#3, a probiotic mixture comprising 8 Gram-positive bacterial strains. Here, we report that treatment of aged rats with VSL#3 induced a robust change in the composition of intestinal microbiota with an increase in the abundance of Actinobacteria and Bacterioidetes, which was reduced in control-treated aged rats. VSL#3 administration modulated the expression of a large group of genes in brain tissue as assessed by whole gene expression, with evidence of a change in genes that impact on inflammatory and neuronal plasticity processes. The age-related deficit in LTP was attenuated in VSL#3-treated aged rats and this was accompanied by a modest decrease in markers of microglial activation and an increase in expression of BDNF and synapsin. The data support the notion that intestinal microbiota can be manipulated to positively impact on neuronal function. PMID:25202975

  14. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP.

    PubMed

    Distrutti, Eleonora; O'Reilly, Julie-Ann; McDonald, Claire; Cipriani, Sabrina; Renga, Barbara; Lynch, Marina A; Fiorucci, Stefano

    2014-01-01

    The intestinal microbiota is increasingly recognized as a complex signaling network that impacts on many systems beyond the enteric system modulating, among others, cognitive functions including learning, memory and decision-making processes. This has led to the concept of a microbiota-driven gut-brain axis, reflecting a bidirectional interaction between the central nervous system and the intestine. A deficit in synaptic plasticity is one of the many changes that occurs with age. Specifically, the archetypal model of plasticity, long-term potentiation (LTP), is reduced in hippocampus of middle-aged and aged rats. Because the intestinal microbiota might change with age, we have investigated whether the age-related deficit in LTP might be attenuated by changing the composition of intestinal microbiota with VSL#3, a probiotic mixture comprising 8 Gram-positive bacterial strains. Here, we report that treatment of aged rats with VSL#3 induced a robust change in the composition of intestinal microbiota with an increase in the abundance of Actinobacteria and Bacterioidetes, which was reduced in control-treated aged rats. VSL#3 administration modulated the expression of a large group of genes in brain tissue as assessed by whole gene expression, with evidence of a change in genes that impact on inflammatory and neuronal plasticity processes. The age-related deficit in LTP was attenuated in VSL#3-treated aged rats and this was accompanied by a modest decrease in markers of microglial activation and an increase in expression of BDNF and synapsin. The data support the notion that intestinal microbiota can be manipulated to positively impact on neuronal function.

  15. Phenolic Compounds from Fermented Berry Beverages Modulated Gene and Protein Expression To Increase Insulin Secretion from Pancreatic β-Cells in Vitro.

    PubMed

    Johnson, Michelle H; de Mejia, Elvira Gonzalez

    2016-03-30

    Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry-50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p < 0.05) glucose-stimulated insulin secretion from pancreatic β-cells (iNS-1E) both when applied directly and following simulated absorption through Caco-2 cells (by 233 and 100 μIU insulin/mL, respectively). ANC 50%Blu-Bla and ANC 100%Bla upregulated the gene for incretin hormone GLP-1 (fold-change 3.0 ± 1.4 and 2.0 ± 0.3, respectively) and genes in the insulin secretory pathway including insulin-like growth factor 1 receptor (iGF1R, 2.3 ± 0.6 and 1.6 ± 0.3, respectively), and increased (p < 0.05) the protein expression of insulin-like growth factor 2 (IGF-II), insulin-like growth factor binding proteins (IGFBP-2 and 3), and vascular endothelial growth factor (VEGF) in iNS-1E cells. Taken together, anthocyanins, predominantly delphinidin-3-arabinoside, from fermented berry beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.

  16. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Thomas, Russell S.; Applegate, Dawn; Rosen, Mitch; Abbott, Barbara; Lau, Christopher; Guo, Grace; Aleksunes, Lauren M.; Klaassen, Curtis; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents increases liver cancer incidence, whereas suppression of PPARα activity leads to hepatocellular steatosis. Analytical approaches were developed to identify biosets (i.e., gene expression differences between two conditions) in a genomic database in which PPARα activity was altered. A gene expression signature of 131 PPARα-dependent genes was built using microarray profiles from the livers of wild-type and PPARα-null mice after exposure to three structurally diverse PPARα activators (WY-14,643, fenofibrate and perfluorohexane sulfonate). A fold-change rank-based test (Running Fisher’s test (p-value ≤ 10-4)) was used to evaluate the similarity between the PPARα signature and a test set of 48 and 31 biosets positive or negative, respectively for PPARα activation; the test resulted in a balanced accuracy of 98%. The signature was then used to identify factors that activate or suppress PPARα in an annotated mouse liver/primary hepatocyte gene expression compendium of ~1850 biosets. In addition to the expected activation of PPARα by fibrate drugs, di(2-ethylhexyl) phthalate, and perfluorinated compounds, PPARα was activated by benzofuran, galactosamine, and TCDD and suppressed by hepatotoxins acetaminophen, lipopolysaccharide, silicon dioxide nanoparticles, and trovafloxacin. Additional factors that activate (fasting, caloric restriction) or suppress (infections) PPARα were also identified. This study 1) developed methods useful for future screening of environmental chemicals, 2) identified chemicals that activate or suppress PPARα, and 3) identified factors including diets and infections that modulate PPARα activity and would be hypothesized to affect chemical-induced PPAR

  17. Epigenetic modulation of AR gene expression in prostate cancer DU145 cells with the combination of sodium butyrate and 5'-Aza-2'-deoxycytidine.

    PubMed

    Fialova, Barbora; Luzna, Petra; Gursky, Jan; Langova, Katerina; Kolar, Zdenek; Trtkova, Katerina Smesny

    2016-10-01

    The androgen receptor (AR) plays an essential role in the development and progression of prostate cancer. Castration-resistant prostate cancer (CRPC) is a consequence of androgen deprivation therapy. Unchecked CRPC followed by metastasis is lethal. Some CRPCs show decreased AR gene expression due to epigenetic mechanisms such as DNA methylation and histone deacetylation. The aim of this study was to epigenetically modulate the methylated state of the AR gene leading to targeted demethylation and AR gene expression in androgen-independent human prostate cancer DU145 cell line, representing the CRPC model with very low or undetectable AR levels. The cell treatment was based on single and combined applications of two epigenetic inhibitors, sodium butyrate (NaB) as histone deacetylases inhibitor and 5'-Aza-2'-deoxycytidine (Aza-dC) as DNA methyltransferases inhibitor. We found that the Aza-dC in combination with NaB may help reduce the toxicity of higher NaB concentrations in cancer cells. In normal RWPE-1 cells and even stronger in cancer DU145 cells, the combined treatment induced both AR gene expression on the mRNA level and increased histone H4 acetylation in AR gene promoter. Also activation and maintenance of G2/M cell cycle arrest and better survival in normal RWPE-1 cells compared to cancer DU145 cells were observed after the treatments. These results imply the selective toxicity effect of both inhibitors used and their potentially more effective combined use in the epigenetic therapy of prostate cancer patients.

  18. Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica

    NASA Astrophysics Data System (ADS)

    Procaccini, Gabriele; Ruocco, Miriam; Marín-Guirao, Lázaro; Dattolo, Emanuela; Brunet, Christophe; D’Esposito, Daniela; Lauritano, Chiara; Mazzuca, Silvia; Serra, Ilia Anna; Bernardo, Letizia; Piro, Amalia; Beer, Sven; Björk, Mats; Gullström, Martin; Buapet, Pimchanok; Rasmusson, Lina M.; Felisberto, Paulo; Gobert, Sylvie; Runcie, John W.; Silva, João; Olivé, Irene; Costa, Monya M.; Barrote, Isabel; Santos, Rui

    2017-02-01

    Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems.

  19. Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica

    PubMed Central

    Procaccini, Gabriele; Ruocco, Miriam; Marín-Guirao, Lázaro; Dattolo, Emanuela; Brunet, Christophe; D’Esposito, Daniela; Lauritano, Chiara; Mazzuca, Silvia; Serra, Ilia Anna; Bernardo, Letizia; Piro, Amalia; Beer, Sven; Björk, Mats; Gullström, Martin; Buapet, Pimchanok; Rasmusson, Lina M.; Felisberto, Paulo; Gobert, Sylvie; Runcie, John W.; Silva, João; Olivé, Irene; Costa, Monya M.; Barrote, Isabel; Santos, Rui

    2017-01-01

    Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems. PMID:28211527

  20. Vitamin D Impacts the Expression of Runx2 Target Genes and Modulates Inflammation, Oxidative Stress and Membrane Vesicle Biogenesis Gene Networks in 143B Osteosarcoma Cells

    PubMed Central

    Garimella, Rama; Tadikonda, Priyanka; Tawfik, Ossama; Gunewardena, Sumedha; Rowe, Peter; Van Veldhuizen, Peter

    2017-01-01

    Osteosarcoma (OS) is an aggressive malignancy of bone affecting children, adolescents and young adults. Understanding vitamin D metabolism and vitamin D regulated genes in OS is an important aspect of vitamin D/cancer paradigm, and in evaluating vitamin D as adjuvant therapy for human OS. Vitamin D treatment of 143B OS cells induced significant and novel changes in the expression of genes that regulate: (a) inflammation and immunity; (b) formation of reactive oxygen species, metabolism of cyclic nucleotides, sterols, vitamins and mineral (calcium), quantity of gap junctions and skeletogenesis; (c) bone mineral density; and (d) cell viability of skeletal cells, aggregation of bone cancer cells and exocytosis of secretory vesicles. Ingenuity pathway analysis revealed significant reduction in Runx2 target genes such as fibroblast growth factor -1, -12 (FGF1 and FGF12), bone morphogenetic factor-1 (BMP1), SWI/SNF related, matrix associated actin dependent regulator of chromatin subfamily a, member 4 (SMARCA4), Matrix extracellular phosphoglycoprotein (MEPE), Integrin, β4 (ITGBP4), Matrix Metalloproteinase -1, -28 (MMP1 and MMP28), and signal transducer and activator of transcription-4 (STAT4) in vitamin D treated 143B OS cells. These genes interact with the inflammation, oxidative stress and membrane vesicle biogenesis gene networks. Vitamin D not only inhibited the expression of Runx2 target genes MMP1, MMP28 and kallikrein related peptidase-7 (KLK7), but also migration and invasion of 143B OS cells. Vitamin D regulated Runx2 target genes or their products represent potential therapeutic targets and laboratory biomarkers for applications in translational oncology. PMID:28300755

  1. Characterization of tilapia (Oreochromis niloticus) viperin expression, and inhibition of bacterial growth and modulation of immune-related gene expression by electrotransfer of viperin DNA into zebrafish muscle.

    PubMed

    Lee, Shu-Hua; Peng, Kuan-Chieh; Lee, Lin-Han; Pan, Chieh-Yu; Hour, Ai-Ling; Her, Guor Mour; Hui, Cho-Fat; Chen, Jyh-Yih

    2013-02-15

    Viperin is an anti-viral protein, induced by viral infection. In this study, we examined whether over-expression of viperin in fish muscle could inhibit bacterial growth. We first obtained the cDNA sequence of tilapia viperin, through RT-PCR-mediated cloning and sequencing. The cDNA sequence was similar to those of several fish viperins in GenBank, and it was predicted to encode the conserved domain of radical S-adenosylmethionine superfamily proteins. Phylogenetic analysis revealed that tilapia viperin was most closely related to viperin of Sciaenops ocellatus, Coreoperca kawamebari, and C. whiteheadi. Expression of tilapia viperin was significantly up-regulated in the kidney, liver, spleen, and gills upon challenge with lipopolysaccharide (LPS) and poly(I:C) in a time- and dose-dependent manner. Injection of Vibrio vulnificus (204) and Streptococcus agalactiae (SA47) bacteria into tilapia resulted in significant induction of viperin expression in the whole body, kidney, liver, and spleen. Electrotransfer of a viperin-expressing plasmid into zebrafish muscles decreased bacterial numbers and altered expression of immune-related genes. These data indicate that such altered expression may account for the improvement in bacterial clearance following electroporation of viperin, suggesting that fish viperin has antiviral and antibacterial activities.

  2. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-x(L)

    NASA Technical Reports Server (NTRS)

    Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy; Chatterjee, A. (Principal Investigator)

    2002-01-01

    Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in DSB repair in human cells. However, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We demonstrated previously that overexpression of BCL-2 or BCL-x(L) enhanced the frequency of X-ray-induced TK1 mutations, including loss of heterozygosity events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells and to determine whether ectopic expression of BCL-x(L) affects HDR. Using TK6-neo cells, we find that a single DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold, demonstrating efficient DSB repair by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3-4-fold more frequent in TK6 cells that stably overexpress the antiapoptotic protein BCL-X(L). Thus, HDR plays an important role in maintaining genomic integrity in human cells, and ectopic expression of BCL-x(L) enhances HDR of DSBs. This is the first study to highlight a function for BCL-x(L) in modulating DSB repair in human cells.

  3. The matrix protein of rabies virus binds to RelAp43 to modulate NF-κB-dependent gene expression related to innate immunity

    PubMed Central

    Ben Khalifa, Youcef; Luco, Sophie; Besson, Benoit; Sonthonnax, Florian; Archambaud, Medhi; Grimes, Jonathan M.; Larrous, Florence; Bourhy, Hervé

    2016-01-01

    The matrix (M) protein of wild isolates of rabies virus such as Tha (M-Tha) was previously shown to be able to interact with RelAp43, a protein of the NF-κB family, and to efficiently suppress NF-κB-dependent reporter gene expression, in contrast with the vaccine strain SAD. Here, we analyze the mechanisms involved in RelAp43-M protein interaction. We demonstrate that the central part of M-Tha, and the specific C-terminal region of RelAp43 are required for this interaction. Four differences in the corresponding amino acid sequences of the M-Tha and M-SAD are shown to be crucial for RelAp43 interaction and subsequent modulation of innate immune response. Furthermore, the capacity of M-Tha to interact with RelAp43 was shown to be crucial for the control of the expression of four genes (IFN, TNF, IL8 and CXCL2) during viral infection. These findings reveal that RelAp43 is a potent regulator of transcription of genes involved in innate immune response during rabies virus infection and that the M protein of wild isolates of rabies virus is a viral immune-modulatory factor playing an important role in this RelAp43-mediated host innate immunity response in contrast to M protein of vaccine strains, which have lost this property. PMID:28000711

  4. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    PubMed Central

    Wang, Likui; Gao, Shijuan; Jiang, Wei; Luo, Cheng; Xu, Maonian; Bohlin, Lars; Rosendahl, Markus; Huang, Wenlin

    2014-01-01

    Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair. PMID:25226533

  5. Increased Resting Intracellular Calcium Modulates NF-κB-dependent Inducible Nitric-oxide Synthase Gene Expression in Dystrophic mdx Skeletal Myotubes*

    PubMed Central

    Altamirano, Francisco; López, Jose R.; Henríquez, Carlos; Molinski, Tadeusz; Allen, Paul D.; Jaimovich, Enrique

    2012-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by dystrophin mutations, characterized by chronic inflammation and severe muscle wasting. Dystrophic muscles exhibit activated immune cell infiltrates, up-regulated inflammatory gene expression, and increased NF-κB activity, but the contribution of the skeletal muscle cell to this process has been unclear. The aim of this work was to study the pathways that contribute to the increased resting calcium ([Ca2+]rest) observed in mdx myotubes and its possible link with up-regulation of NF-κB and pro-inflammatory gene expression in dystrophic muscle cells. [Ca2+]rest was higher in mdx than in WT myotubes (308 ± 6 versus 113 ± 2 nm, p < 0.001). In mdx myotubes, both the inhibition of Ca2+ entry (low Ca2+ solution, Ca2+-free solution, and Gd3+) and blockade of either ryanodine receptors or inositol 1,4,5-trisphosphate receptors reduced [Ca2+]rest. Basal activity of NF-κB was significantly up-regulated in mdx versus WT myotubes. There was an increased transcriptional activity and p65 nuclear localization, which could be reversed when [Ca2+]rest was reduced. Levels of mRNA for TNFα, IL-1β, and IL-6 were similar in WT and mdx myotubes, whereas inducible nitric-oxide synthase (iNOS) expression was increased 5-fold. Reducing [Ca2+]rest using different strategies reduced iNOS gene expression presumably as a result of decreased activation of NF-κB. We propose that NF-κB, modulated by increased [Ca2+]rest, is constitutively active in mdx myotubes, and this mechanism can account for iNOS overexpression and the increase in reactive nitrogen species that promote damage in dystrophic skeletal muscle cells. PMID:22549782

  6. Gene expression of Medicago sativa inoculated with Sinorhizobium meliloti as modulated by the xenobiotics cadmium and fluoranthene.

    PubMed

    Neumann, H; Werner, D

    2000-01-01

    Alfalfa plants (Medicago sativa cv. Europe) inoculated with Sinorhizobium meliloti 2011 (formerly Rhizobium meliloti, de Lajudie et al., 1994) were cultivated for 14 days under standardized growth conditions in mineral medium with addition of the heavy metal cadmium or the polycyclic aromatic hydrocarbon fluoranthene. These xenobiotics significantly reduced the numbers of root nodules before any visible damage to the plant could be detected. EC10, EC50, and EC90 (effective concentrations reducing nodulation, shoot and root fresh weight by 10, 50, or 90% compared to the control without pollutant) were calculated. EC50 for cadmium ranged from 5.8 microM (nodulation) to more than 20 microM (root fresh weight). Testing fluoranthene resulted in an EC50 of 2.5 microg cm(-2) for nodulation, and EC50 values of more than 35 microg cm(-2) for shoot and root biomass production, indicating that the effect parameter nodulation is 10-fold more sensitive than shoot and root fresh weight. With mRNA differential display techniques the effects of both xenobiotics on gene expression in alfalfa root systems were studied. 37 differentially displayed transcripts were detected. Two of them, called DDMs1 and DDMs2, were confirmed by northern hybridization to be down-regulated in the presence of the xenobiotics. The expression of transcript DDMs1 was enhanced in alfalfa control plants inoculated with rhizobia, the transcript level was increased 2.5-3-fold compared to non-inoculated plants. This positive effect of nodulation was suppressed, partly by 35 microg cm(-2) fluoranthene and totally by 20 microM cadmium. The decrease in DDMs1 transcription was highly affected by the cadmium concentration with an EC50 of 5.9 microM. Compared to nodulation, almost identical EC10, EC50, and EC90 values were found for DDMs1 expression. Sequence analysis of DDMs1 revealed a significant overall homology (50% identity) to a hypothetical protein from Arabidopsis thaliana with high similarity to a copper

  7. The metallohormone cadmium modulates AhR-associated gene expression in the small intestine of rats similar to ethinyl-estradiol.

    PubMed

    Kluxen, Felix M; Diel, Patrick; Höfer, Nicola; Becker, Eugenia; Degen, Gisela H

    2013-04-01

    Cadmium (Cd) affects the expression of estrogen receptor (ER) and aryl hydrocarbon receptor (AhR)-associated genes in rat uterus and elicits estrogen-like activity in vitro. The small intestine is highly exposed to dietary Cd which may mimic or antagonize estrogen action in this tissue. We investigated the effects of Cd and 17-alpha-ethinylestradiol (EE₂) on AhR-associated gene expression after oral exposure of ovariectomized female Wistar rats, and metallothionein (Mt1a) expression as a typical metal-response marker. Mt1a in the small intestine was strongly induced by co-treatment with CdCl₂ at 2 mg/kg b.wt (Cd 2) and 0.1 mg/kg b.wt EE2 than by the single compound (3-day gavage). The Cd 2-induced down-regulation of Cyp1a1, Gsta2, and Nqo1 mRNA was not antagonized by pure anti-estrogen (2.5 mg/kg b.wt ZK191703 s.c., ZK). Interestingly, the EE₂-induced down-regulation of Cyp1a1, Gsta2, and Nqo1 mRNA was antagonized by Cd 2 in vivo and in colon cancer cell lines (HT-29 and CaCo-2, treated 5 days with Cd 1 µM and/or E₂ 0.01 µM) with low or no ER-beta expression. Dose dependency was studied after Cd exposure with drinking water (5 and 50 ppm CdCl₂ equivalent to 0.4 and 4 mg/kg b.wt; Cd 0.4, Cd 4) for 28 days and EE₂ as reference. Intestinal Mt1a expression was dose dependently induced, while AhR target genes were down-regulated by Cd 0.4 similar to EE₂ and more pronounced than by Cd 4. We propose that Cd modulates intestinal AhR-associated gene expression similar to estrogens, but (contrary to its effects in uterus) via ER-independent and/or ER-beta-mediated mechanisms. Our new data suggest interference of Cd with estrogen and AhR signaling in the small intestine.

  8. The TRANSFAC system on gene expression regulation.

    PubMed

    Wingender, E; Chen, X; Fricke, E; Geffers, R; Hehl, R; Liebich, I; Krull, M; Matys, V; Michael, H; Ohnhäuser, R; Prüss, M; Schacherer, F; Thiele, S; Urbach, S

    2001-01-01

    The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

  9. Gene conversion is strongly induced in human cells by double-strand breaks and is modulated by the expression of BCL-XL

    SciTech Connect

    Wiese, Claudia; Pierce, Andrew J.; Gauny, Stacey S.; Jasin, Maria; Kronenberg, Amy

    2001-09-25

    Homology-directed repair (HDR) of DNA double-strand breaks (DSBs) is a well-established mechanism that contributes to the maintenance of genomic stability in rodent cells, and it has been assumed that HDR is of similar importance in the repair of DSBs in human cells. However, in addition to promoting genomic stability, some outcomes of homologous recombination can be deleterious, suggesting that factors exist to regulate HDR. We previously demonstrated that overexpression of BCL-2 or BCL-xL enhanced the frequency of x-ray-induced mutations involving the TK1 locus, including loss of heterozygosity (LOH) events presumed to arise by mitotic recombination. The present study was designed to test whether HDR is a prominent DSB repair pathway in human cells, and to directly determine whether ectopic expression of BCL-xL affects HDR. We used the B-lymphoblastoid cell line TK6, which expresses wild-type TP53 and resembles normal lymphocytes in undergoing apoptosis following! genotoxic stress. U sing isogenic derivatives of TK6 cells (TK6-neo, TK6-bcl-xL), we find that a DSB in an integrated HDR reporter stimulates gene conversion 40-50-fold in TK6-neo cells, demonstrating that a DSB can be efficiently repaired by gene conversion in human cells. Significantly, DSB-induced gene conversion events are 3- to 4-fold more frequent in BCL-xL overexpressing cells. The results demonstrate that HDR plays an important role in maintaining genomic integrity in human cells and that ectopic expression of BCL-xL enhances HDR of DSBs. To our knowledge, this is the first study to highlight a function for BCL-xL in modulating DSB repair in human cells.

  10. Retinoid X receptor alpha Regulates the expression of glutathione s-transferase genes and modulates acetaminophen-glutathione conjugation in mouse liver.

    PubMed

    Dai, Guoli; Chou, Nathan; He, Lin; Gyamfi, Maxwell A; Mendy, Alphonse J; Slitt, Angela L; Klaassen, Curtis D; Wan, Yu-Jui Y

    2005-12-01

    Nuclear receptors, including constitutive androstane receptor, pregnane X receptor, and retinoid X receptor (RXR), modulate acetaminophen (APAP)-induced hepatotoxicity by regulating the expression of phase I cytochrome P450 (P450) genes. It has not been fully resolved, however, whether they regulate APAP detoxification at the phase II level. The aim of the current study was to evaluate the role of RXRalpha in phase II enzyme-mediated detoxification of APAP. Wild-type and hepatocyte-specific RXRalpha knockout mice were treated with a toxic dose of APAP (500 mg/kg i.p.). Mutant mice were protected from APAP-induced hepatotoxicity, even though basal liver glutathione (GSH) levels were significantly lower in mutant mice compared with those of wild-type mice. High-performance liquid chromatography analysis of APAP metabolites revealed significantly greater levels of APAP-GSH conjugates in livers and bile of mutant mice compared with those of wild-type mice. Furthermore, hepatocyte RXRalpha deficiency altered the gene expression profile of the glutathione S-transferase (Gst) family. Basal expression of 13 of 15 Gst genes studied was altered in hepatocyte-specific RXRalpha-deficient mice. This probably led to enhanced APAP-GSH conjugation and reduced accumulation of N-acetyl-p-benzoquinone imine, a toxic electrophile that is produced by biotransformation of APAP by phase I P450 enzymes. In conclusion, the data presented in this study define an RXRalpha-Gst regulatory network that controls APAP-GSH conjugation. This report reveals a potential novel strategy to enhance the detoxification of APAP or other xenobiotics by manipulating Gst activity through RXRalpha-mediated pathways.

  11. Regulatory Interaction between the Cellular Restriction Factor IFI16 and Viral pp65 (pUL83) Modulates Viral Gene Expression and IFI16 Protein Stability

    PubMed Central

    Pautasso, Sara; von Einem, Jens; Marschall, Manfred; Plachter, Bodo

    2016-01-01

    ABSTRACT A key player in the intrinsic resistance against human cytomegalovirus (HCMV) is the interferon-γ-inducible protein 16 (IFI16), which behaves as a viral DNA sensor in the first hours postinfection and as a repressor of viral gene transcription in the later stages. Previous studies on HCMV replication demonstrated that IFI16 binds to the viral protein kinase pUL97, undergoes phosphorylation, and relocalizes to the cytoplasm of infected cells. In this study, we demonstrate that the tegument protein pp65 (pUL83) recruits IFI16 to the promoter of the UL54 gene and downregulates viral replication, as shown by use of the HCMV mutant v65Stop, which lacks pp65 expression. Interestingly, at late time points of HCMV infection, IFI16 is stabilized by its interaction with pp65, which stood in contrast to IFI16 degradation, observed in herpes simplex virus 1 (HSV-1)-infected cells. Moreover, we found that its translocation to the cytoplasm, in addition to pUL97, strictly depends on pp65, as demonstrated with the HCMV mutant RV-VM1, which expresses a form of pp65 unable to translocate into the cytoplasm. Thus, these data reveal a dual role for pp65: during early infection, it modulates IFI16 activity at the promoter of immediate-early and early genes; subsequently, it delocalizes IFI16 from the nucleus into the cytoplasm, thereby stabilizing and protecting it from degradation. Overall, these data identify a novel activity of the pp65/IFI16 interactome involved in the regulation of UL54 gene expression and IFI16 stability during early and late phases of HCMV replication. IMPORTANCE The DNA sensor IFI16, a member of the PYHIN proteins, restricts HCMV replication by impairing viral DNA synthesis. Using a mutant virus lacking the tegument protein pp65 (v65Stop), we demonstrate that pp65 recruits IFI16 to the early UL54 gene promoter. As a putative counteraction to its restriction activity, pp65 supports the nucleocytoplasmic export of IFI16, which was demonstrated with the

  12. PARP1 promotes gene expression at the post-transcriptional level by modulating the RNA-binding protein HuR

    PubMed Central

    Ke, Yueshuang; Han, Yanlong; Guo, Xiaolan; Wen, Jitao; Wang, Ke; Jiang, Xue; Tian, Xue; Ba, Xueqing; Boldogh, Istvan; Zeng, Xianlu

    2017-01-01

    Poly(ADP-ribosyl)ation (PARylation) is mainly catalysed by poly-ADP-ribose polymerase 1 (PARP1), whose role in gene transcription modulation has been well established. Here we show that, in response to LPS exposure, PARP1 interacts with the adenylateuridylate-rich element-binding protein embryonic lethal abnormal vision-like 1 (Elavl1)/human antigen R (HuR), resulting in its PARylation, primarily at site D226. PARP inhibition and the D226 mutation impair HuR's PARylation, nucleocytoplasmic shuttling and mRNA binding. Increases in mRNA level or stability of pro-inflammatory cytokines/chemokines are abolished by PARP1 ablation or inhibition, or blocked in D226A HuR-expressing cells. The present study demonstrates a mechanism to regulate gene expression at the post-transcriptional level, and suggests that blocking the interaction of PARP1 with HuR could be a strategy to treat inflammation-related diseases that involve increased mRNA stability. PMID:28272405

  13. A novel allelic variant of the human TSG-6 gene encoding an amino acid difference in the CUB module. Chromosomal localization, frequency analysis, modeling, and expression.

    PubMed

    Nentwich, Hilke A; Mustafa, Zehra; Rugg, Marilyn S; Marsden, Brian D; Cordell, Martin R; Mahoney, David J; Jenkins, Suzanne C; Dowling, Barbara; Fries, Erik; Milner, Caroline M; Loughlin, John; Day, Anthony J

    2002-05-03

    Tumor necrosis factor-stimulated gene-6 (TSG-6) encodes a 35-kDa protein, which is comprised of contiguous Link and CUB modules. TSG-6 protein has been detected in the articular joints of osteoarthritis (OA) patients, with little or no constitutive expression in normal adult tissues. It interacts with components of cartilage matrix (e.g. hyaluronan and aggrecan) and thus may be involved in extracellular remodeling during joint disease. In addition, TSG-6 has been found to have anti-inflammatory properties in models of acute and chronic inflammation. Here we have mapped the human TSG-6 gene to 2q23.3, a region of chromosome 2 linked with OA. A single nucleotide polymorphism was identified that involves a non-synonymous G --> A transition at nucleotide 431 of the TSG-6 coding sequence, resulting in an Arg to Gln alteration in the CUB module (at residue 144 in the preprotein). Molecular modeling of the CUB domain indicated that this amino acid change might lead to functional differences. Typing of 400 OA cases and 400 controls revealed that the A(431) variant identified here is the major TSG-6 allele in Caucasians (with over 75% being A(431) homozygotes) but that this polymorphism is not a marker for OA susceptibility in the patients we have studied. Expression of the Arg(144) and Gln(144) allotypes in Drosophila Schneider 2 cells, and functional characterization, showed that there were no significant differences in the ability of these full-length proteins to bind hyaluronan or form a stable complex with inter-alpha-inhibitor.

  14. Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling, and folate uptake in human colonic epithelial cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Folate deficiency may affect gene expression by disrupting DNA methylation patterns or by inducing base substitution, DNA breaks, gene deletions and gene amplification. Changes in expression may explain the inverse relationship observed between folate status and risk of colorectal cancer. Three cell...

  15. Gene expression profile of pulpitis

    PubMed Central

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  16. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  17. Glucose represses the lactose-galactose regulon in Kluyveromyces lactis through a SNF1 and MIG1- dependent pathway that modulates galactokinase (GAL1) gene expression.

    PubMed Central

    Dong, J; Dickson, R C

    1997-01-01

    Expression of the lactose-galactose regulon in Kluyveromyces lactis is induced by lactose or galactose and repressed by glucose. Some components of the induction and glucose repression pathways have been identified but many remain unknown. We examined the role of the SNF1 (KlSNF1) and MIG1 (KlMIG1) genes in the induction and repression pathways. Our data show that full induction of the regulon requires SNF1; partial induction occurs in a Klsnf1 -deleted strain, indicating that a KlSNF1 -independent pathway(s) also regulates induction. MIG1 is required for full glucose repression of the regulon, but there must be a KlMIG1 -independent repression pathway also. The KlMig1 protein appears to act downstream of the KlSnf1 protein in the glucose repression pathway. Most importantly, the KlSnf1-KIMig repression pathway operates by modulating KlGAL1 expression. Regulating KlGAL1 expression in this manner enables the cell to switch the regulon off in the presence of glucose. Overall, our data show that, while the Snf1 and Mig1 proteins play similar roles in regulating the galactose regulon in Saccharomyces cerevisiae and K.lactis , the way in which these proteins are integrated into the regulatory circuits are unique to each regulon, as is the degree to which each regulon is controlled by the two proteins. PMID:9278487

  18. Modulation of chicken intestinal immune gene expression by small cationic peptides as feed additives during the first week posthatch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have been investigating modulation strategies tailored around the selective stimulation of the host’s immune system as an alternative to direct targeting of microbial pathogens by antibiotics. One such approach is the use of a group of small cationic peptides (BT) produced by a Gram-positive soi...

  19. MicroRNAs responsive to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis LPS modulate expression of genes regulating innate immunity in human macrophages.

    PubMed

    Naqvi, Afsar R; Fordham, Jezrom B; Khan, Asma; Nares, Salvador

    2014-07-01

    MicroRNAs (miRNAs) are a class of small, noncoding RNAs that regulate post-transcriptional expression of their respective target genes and are responsive to various stimuli, including LPS. Here we examined the early (4 h) miRNA responses of THP1-differentiated macrophages challenged with LPS derived from the periodontal pathogens, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis or environmentally-modified LPS obtained from P. gingivalis grown in cigarette smoke extract. Predicted miRNA-gene target interactions for LPS-responsive miR-29b and let-7f were confirmed using dual-luciferase assays and by transfection experiments using miRNA mimics and inhibitors. Convergent and divergent miRNA profiles were observed in treated samples where differences in miRNA levels related to the type, concentration and incubation times of LPS challenge. Dual-luciferase experiments revealed miR-29b targeting of interleukin-6 receptorα (IL-6Rα) and IFN-γ inducible protein 30 and let-7f targeting of suppressor of cytokine signaling 4 and thrombospondin-1. Transfection experiments confirmed miR-29b and let-7f modulation of IL-6Rα and SOCS4 protein expression levels, respectively. Thus, we have demonstrated convergent/divergent miRNA responses to wild type LPS and its environmentally-modified LPS, and demonstrate miRNA targeting of key genes linked to inflammation and immunity. Our data indicate that these LPS-responsive miRNAs may play a key role in fine-tuning the host response to periodontal pathogens.

  20. Differential estradiol and selective estrogen receptor modulator (SERM) regulation of Keratin 13 gene expression and its underlying mechanism in breast cancer cells.

    PubMed

    Sheng, Shubin; Barnett, Daniel H; Katzenellenbogen, Benita S

    2008-12-16

    Expression of the Keratin 13 (KRT13) gene, which encodes a cytoskeletal protein thought to play important roles in breast cancer growth and metastasis, is differentially regulated by estradiol (E2) and the selective estrogen receptor modulators (SERMs) tamoxifen and raloxifene. While stimulation of KRT13 by tamoxifen is robust and prolonged, stimulation by E2 is more transient and raloxifene has virtually no effect. To investigate the mechanistic basis for the differential ligand regulation of KRT13, we have defined the regulatory regions of KRT13, compared gene expression by E2 and SERMs, and explored the magnitudes and time courses of estrogen receptor (ER) and cofactor recruitment patterns on these regions. Using a ChIP scanning approach and reporter transactivation assays, we identified a 2.5 kb upstream ER-binding regulatory region for KRT13. Directed composite mutations in this region revealed that three estrogen response elements and three Sp1 sites were involved in its ligand-dependent regulation. Differential recruitment of ERalpha and cofactors to the KRT13 regulatory sites paralleled the different time course and magnitude of regulation by these ligands: there was almost no ERalpha or cofactor recruitment with raloxifene, whereas there was strong, prolonged ER recruitment and histone acetylation with tamoxifen, and an early and more transient recruitment with E2. Taken together, our results suggest that the different ligand regulations of KRT13 are due to ligand-differential recruitment of ER and coactivators, and they provide insight into the mechanisms responsible for the different agonistic activities and differential gene regulation by estradiol and the SERMs tamoxifen and raloxifene.

  1. Neurokinin-1 (NK-1) receptor and brain-derived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain.

    PubMed

    Duric, Vanja; McCarson, Kenneth E

    2007-10-31

    Persistent pain produces complex alterations in sensory pathways of the central nervous system (CNS) through activation of various nociceptive mechanisms. However, the effects of pain on higher brain centers, particularly the influence of the stressful component of pain on the limbic system, are poorly understood. Neurokinin-1 (NK-1) receptors and brain-derived neurotrophic factor (BDNF), known neuromediators of hyperalgesia and spinal central sensitization, have also been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation during exposures to various stressors. Results of this study showed that injections of complete Freund's adjuvant (CFA) into the hind paw increased NK-1 receptor and BDNF mRNA levels in the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the amplification of ascending pain signaling. An opposite effect was observed in the hippocampus, where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously observed in immobilization models of stress and depression. Western blot analyses demonstrated that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-binding protein (CREB), while in the hippocampus the activation of this transcription factor was significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF genes may be partially regulated by common intracellular transduction mechanisms mediated through activation of CREB. These findings suggest that persistent nociception induces differential regional regulation of NK-1 receptor and BDNF gene expression and CREB activation in the CNS, potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent sensory activation vs. modulation of the higher brain structures such as the hippocampus.

  2. Fructus ligustri lucidi ethanol extract improves bone mineral density and properties through modulating calcium absorption-related gene expression in kidney and duodenum of growing rats.

    PubMed

    Feng, Xin; Lyu, Ying; Wu, Zhenghao; Fang, Yuehui; Xu, Hao; Zhao, Pengling; Xu, Yajun; Feng, Haotian

    2014-04-01

    Optimizing peak bone mass in early life is one of key preventive strategies against osteoporosis. Fructus ligustri lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a commonly prescribed herb in many kidney-tonifying traditional Chinese medicinal formulas to alleviate osteoporosis. Previously, FLL extracts have been shown to have osteoprotective effect in aged or ovariectomized rats. In the present study, we investigated the effects of FLL ethanol extract on bone mineral density (BMD) and mechanical properties in growing male rats and explored the underlying mechanisms. Male weaning Sprague-Dawley rats were randomized into four groups and orally administrated for 4 months an AIN-93G formula-based diet supplementing with different doses of FLL ethanol extract (0.40, 0.65, and 0.90 %) or vehicle control, respectively. Then calcium balance, serum level of Ca, P, 25(OH)2D3, 1,25(OH)2D3, osteocalcin (OCN), C-terminal telopeptide of type I collagen (CTX-I), and parathyroid hormone, bone microarchitecture, and calcium absorption-related genes expression in duodenum and kidney were analyzed. The results demonstrated that FLL ethanol extract increased BMD of growing rats and improved their bone microarchitecture and mechanical properties. FLL ethanol extract altered bone turnover, as evidenced by increasing a bone formation maker, OCN, and decreasing a bone resorption maker, CTX-I. Intriguingly, both Ca absorption and Ca retention rate were elevated by FLL ethanol extract treatment, possibly through the mechanisms of up-regulating the transcriptions of calcitropic genes in kidney (1α-hydroxylase) and duodenum (vitamin D receptor, calcium transporter calbindin-D9k, and transient receptor potential vanilloid 6). In conclusion, FLL ethanol extract increased bone mass gain and improved bone properties via modulating bone turnover and up-regulating calcium absorption-related gene expression in kidney and duodenum, which could then activate 1,25(OH)2D3-dependent calcium

  3. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells

    PubMed Central

    Myers, Samuel A; Peddada, Sailaja; Chatterjee, Nilanjana; Friedrich, Tara; Tomoda, Kiichrio; Krings, Gregor; Thomas, Sean; Maynard, Jason; Broeker, Michael; Thomson, Matthew; Pollard, Katherine; Yamanaka, Shinya; Burlingame, Alma L; Panning, Barbara

    2016-01-01

    The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor. DOI: http://dx.doi.org/10.7554/eLife.10647.001 PMID:26949256

  4. Modulation of gene expression by the oxidative stress generated in human skin cells by UVA radiation and the restoration of redox homeostasis.

    PubMed

    Tyrrell, Rex M

    2012-01-01

    UVA radiation generates a significant oxidative stress in skin cells which is further enhanced by the release of the pro-oxidant catalysts iron and heme, and exacerbated by UVA-mediated destruction of cellular reducing equivalents and the antioxidant enzyme catalase. An important consequence of this altered redox state is the generation of oxidized membrane components in the form of 4-hydroxynonenal, ceramides and oxidized phospholipids, all of which are potent signalling molecules which lead to modulation of the expression of many genes. Transcription factors (such as nuclear factor kappa-light-chain-enhancer of activated B cells) and several genes (e.g. interleukins, intercellular adhesion molecule and 1, hemeoxygenase 1) involved in the inflammatory response are dramatically modified by UVA. Levels of both antioxidant and pro-oxidant proteins, including manganese-dependent superoxide dismutase, glutathione peroxidase, hemeoxygenase 1, NADPH oxidase, ferritin, and methionine-S-sulfoxidereductase, are increased by UVA treatment and following moderate dose levels these will contribute to either the restoration or a further perturbation of redox homeostasis. Finally, UVA induces a whole set of matrix metalloproteinases and proteases, primarily in cells of dermal origin, which can contribute to the long-term consequences of UVA exposure of skin.

  5. Modulation of multidrug resistance gene expression in human breast cancer cells by (-)-gossypol-enriched cottonseed oil.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    P-glycoprotein, the product of the multidrug resistance 1 gene, acts as an efflux pump and prevents sufficient intracellular accumulation of several anticancer agents. Thus, it plays a major role in multidrug cancer resistance. Using the non-radioactive cell proliferation MTS assay, none of three ...

  6. Cytosolic Calcium, hydrogen peroxide, and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: Parabolic flight data

    NASA Astrophysics Data System (ADS)

    Hampp, Ruediger; Hausmann, Niklas; Neef, Maren; Fengler, Svenja

    Callus cell cultures of Arabidopsis thaliana (cv. Columbia) were exposed to parabolic flights in order to assess molecular short-term responses to altered gravity fields. Using transgenic cell lines, hydrogen peroxide and cytosolic Ca2+ were continuously monitored. In parallel, the metabolism of samples was chemically quenched (RNAlater, Ambion, for RNA; acid/base for NADPH, NADP) at typical stages of a parabola (1g before pull up; end of pull up (1.8 g), end of microgravity (µg, 20 sec), and end of pull out (1.8 g)). Cells exhibited an increase of both Ca2+ and hydrogen peroxide with the onset of µg, and a decline thereafter. This behaviour was accompanied by a decrease of the NADPH/NADP redox ratio, indicating a Ca2+-dependent activation of a NADPH oxidase. Microarray analyses revealed concomitant expression profiles. At the end of the microgravity phase, 396 transcripts were specifically up-, while 485 were down-regulated. Up-regulation was dominated by Ca2+- and ROS(reactive oxygen species)-related gene products. The same material was also used for the analysis of phosphopeptides by 2D SDS PAGE. Relevant spots were identified by liquid chromatography-MS. With the exception of a chaperone (HSP 70-3), hypergravity (1.8 g) and microgravity modified different sets of proteins. These are partly involved in primary metabolism (glycolysis, gluconeogenesis, citrate cycle) and detoxification of reactive oxygen species. Taken together, these data show that both gene expression and protein modulation jointly respond within seconds to alterations in the gravity field, with a focus on metabolic adaptation, signalling and control of ROS.

  7. Cytosolic calcium, hydrogen peroxide and related gene expression and protein modulation in Arabidopsis thaliana cell cultures respond immediately to altered gravitation: parabolic flight data.

    PubMed

    Hausmann, N; Fengler, S; Hennig, A; Franz-Wachtel, M; Hampp, R; Neef, M

    2014-01-01

    Callus cell cultures of Arabidopsis thaliana (cv. Columbia) were exposed to parabolic flights in order to assess molecular, short-term responses to altered gravity fields. Using transgenic cell lines, hydrogen peroxide (H2 O2 ) and cytosolic Ca(2+) were continuously monitored. In parallel, the metabolism of samples was chemically quenched (RNAlater, Ambion for RNA; acid/base for NADPH, NADP) at typical stages of a parabola [1 g before pull up; end of pull up (1.8 g), end of microgravity (20 s) and end of pull out (1.8 g)]. Cells exhibited an increase in both Ca(2+) and H2 O2 with the onset of microgravity, and a decline thereafter. This behaviour was accompanied by a decrease of the NADPH/NADP redox ratio, indicating Ca(2+) -dependent activation of a NADPH oxidase. Microarray analyses revealed concomitant expression profiles. At the end of the microgravity phase, 396 transcripts were specifically up-, while 485 were down-regulated. Up-regulation was dominated by Ca(2+) - and ROS-related gene products. The same material was also used for analysis of phosphopeptides with 2-D SDS PAGE. Relevant spots were identified by liquid chromatography-MS. With the exception of a chaperone (HSP 70-3), hypergravity (1.8 g) and microgravity modified different sets of proteins. These are partly involved in primary metabolism (glycolysis, gluconeogenesis, citrate cycle) and detoxification of ROS. Taken together, these data show that both gene expression and protein modulation jointly respond within seconds to alterations in the gravity field, with a focus on metabolic adaptation, signalling and control of ROS.

  8. Effects of targeted modulation of miR-762 on expression of the IFITM5 gene in Saos-2 cells.

    PubMed

    Mo, Xinkai; Lu, Yanqin; Han, Jinxiang

    2014-02-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that plays an important role in the mineralization of the matrix in mature osteoblasts. However, understanding of the regulatory mechanism of IFITM5 expression is limited. Emerging evidence indicates that microRNAs (miRNAs) act as pivotal regulators in various biological processes including osteoblast proliferation and differentiation. This study aimed to investigate the impact of miRNAs on IFITM5 expression. Bioinformatic analyses predicted that miR-762 would be a potential regulator of IFITM5. A Dual-Luciferase Reporter Assay System indicated that miR-762 could bond with the 3'untranslated region (3'UTR) of IFITM5 via wild-type or mutant recombinant vectors and Western blotting verified that miR-762 negatively regulated IFITM5 expression. Collectively, these data indicate that miR-762 is a novel regulator of IFITM5 and that it suppresses the expression of IFITM5 in Saos-2 cells.

  9. Glucocorticoid-dependent expression of O(6)-methylguanine-DNA methyltransferase gene modulates dacarbazine-induced hepatotoxicity in mice.

    PubMed

    Horiguchi, Michiko; Kim, Jahye; Matsunaga, Naoya; Kaji, Hiroaki; Egawa, Takashi; Makino, Kazutaka; Koyanagi, Satoru; Ohdo, Shigehiro

    2010-06-01

    O(6)-methylguanine-DNA methyltransferase (MGMT) plays a crucial role in the defense against the alkylating agent-induced cytotoxic lesion O(6)-alkylguanine in DNA. Although a significant circadian variation in MGMT activity has been found in the liver of mice, the exact mechanism of the variation remains poorly understood. In this study, we present evidence that glucocorticoids were required for the 24-h oscillation of MGMT expression in mouse liver. The exposure of mouse hepatic cells (Hepa1-6) to dexamethasone (DEX) significantly increased the mRNA levels of MGMT in a dose-dependent manner. The DEX-induced increase in MGMT expression was reversed by concomitant treatment with RU486 [11beta-[p-(dimethylamino) phenyl]-17beta-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one], a glucocorticoid receptor antagonist. The mRNA levels of MGMT and its enzymatic activity in the liver of mice showed significant 24-h oscillations, which were not observed in adrenalectomized mice. A single administration of DEX to adrenalectomized mice significantly increased the mRNA levels of MGMT in the liver. These findings suggest that the 24-h oscillation in the hepatic expression of MGMT is caused by the endogenous rhythm of glucocorticoid secretion. Dacarbazine (DTIC), a potent O(6)-guanine-alkylating agent, causes serious hepatotoxicity accompanied by hepatocellular necrosis and hepatic vein thrombosis. DTIC-induced hepatotoxicity in mice was attenuated by administering the drug at the time of day when MGMT expression was abundant. The present findings suggest that glucocorticoid-regulated oscillation in the hepatic MGMT expression is the underlying cause of dosing time-dependent changes in DTIC-induced hepatotoxicity.

  10. Researchers use Modified CRISPR Systems to Modulate Gene Expression on a Genomic Scale | Office of Cancer Genomics

    Cancer.gov

    The genetic engineering system, clustered regularly interspaced short palindromic repeats (CRISPR), has conventionally been used to inactivate genes by making targeted double stranded cuts in DNA. While CRISPR is a useful tool, it can only be used to create loss-of-function modifications and often causes off-target effects due to the disruptive mechanism by which it works. CTD2 researchers at the University of California, San Francisco recently addressed these shortcomings in a publication in Cell.

  11. Comparing the functions of equine and canine influenza H3N8 virus PA-X proteins: Suppression of reporter gene expression and modulation of global host gene expression.

    PubMed

    Feng, Kurtis H; Sun, Miao; Iketani, Sho; Holmes, Edward C; Parrish, Colin R

    2016-09-01

    The influenza PA-X protein is translated from the PA open reading frame from frameshifting and suppresses cellular gene expression due to its ribonuclease activity. We further defined the functional roles of PA-X by comparing PA-X proteins from two related viruses - equine influenza (EIV) and canine influenza (CIV) H3N8 - that differ in a C-terminal truncation and internal mutations. In vitro reporter gene assays revealed that both proteins were able to suppress gene expression. Interestingly, EIV PA-X demonstrated ~50% greater activity compared to CIV PA-X, and we identified the mutations that caused this difference. We used RNA-seq to evaluate the effects of PA-X on host gene expression after transfection into cultured cells. There were no significant differences in this property between EIV and CIV PA-X proteins, but expression of either resulted in the up-regulation of genes when compared to controls, most notably immunity-related proteins, trafficking proteins, and transcription factors.

  12. Modulation of innate immunity and gene expressions in white shrimp Litopenaeus vannamei following long-term starvation and re-feeding.

    PubMed

    Lin, Yong-Chin; Chen, Jiann-Chu; C Man, Siti Nursafura; W Morni, Wan Zabidii; N A Suhaili, Awangku Shahrir; Cheng, Sha-Yen; Hsu, Chih-Hung

    2012-01-01

    of re-feeding except for GCs, whereas all parameters of 14-day-starved shrimp failed to return to the baseline values even with 5 days of re-feeding. It was concluded that shrimp starved for 14 days exhibited three stages of modulation of gene expression, together with reductions in immune parameters, and decreased resistance against pathogens.

  13. Tanshinone IIA Modulates Low Density Lipoprotein Uptake via Down-Regulation of PCSK9 Gene Expression in HepG2 Cells.

    PubMed

    Chen, Hung-Chen; Chen, Pei-Yi; Wu, Ming-Jiuan; Tai, Mi-Hsueh; Yen, Jui-Hung

    2016-01-01

    Tanshinone IIA, one of the most pharmacologically bioactive phytochemicals isolated from Salvia miltiorrhiza Bunge, possesses several biological activities such as anti-inflammation, anti-cancer, neuroprotection and hypolipidemic activities. In this study, we aim to investigate the hypocholesterolemic effect of tanshinone IIA in hepatic cells. We demonstrated that tanshinone IIA significantly increased the amount of low-density lipoprotein receptor (LDLR) and LDL uptake activity in HepG2 cells at the post-transcriptional regulation. We further demonstrated that tanshinone IIA inhibited the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) mRNA and mature protein, which may lead to an increase the cell-surface LDLR in hepatic cells. We further identified a regulatory DNA element involved in the tanshinone IIA-mediated PCSK9 down-regulation, which is located between the -411 and -336 positions of the PCSK9 promoter. Moreover, we found that tanshinone IIA markedly increased the nuclear forkhead box O3a (FoxO3a) level, enhanced FoxO3a/PCSK9 promoter complexes formation and decreased the PCSK9 promoter binding capacity of hepatocyte nuclear factor 1α (HNF-1α), resulting in suppression of PCSK9 gene expression. Finally, we found that the statin-induced PCSK9 overexpression was attenuated and the LDLR activity was elevated in a synergic manner by combination of tanshinone IIA treatment in HepG2 cells. Overall, our results reveal that the tanshinone IIA modulates LDLR level and activity via down-regulation of PCSK9 expression in hepatic cells. Our current findings provide a molecular basis of tanshinone IIA to develop PCSK9 inhibitors for cholesterol management.

  14. Tanshinone IIA Modulates Low Density Lipoprotein Uptake via Down-Regulation of PCSK9 Gene Expression in HepG2 Cells

    PubMed Central

    Wu, Ming-Jiuan; Tai, Mi-Hsueh; Yen, Jui-Hung

    2016-01-01

    Tanshinone IIA, one of the most pharmacologically bioactive phytochemicals isolated from Salvia miltiorrhiza Bunge, possesses several biological activities such as anti-inflammation, anti-cancer, neuroprotection and hypolipidemic activities. In this study, we aim to investigate the hypocholesterolemic effect of tanshinone IIA in hepatic cells. We demonstrated that tanshinone IIA significantly increased the amount of low-density lipoprotein receptor (LDLR) and LDL uptake activity in HepG2 cells at the post-transcriptional regulation. We further demonstrated that tanshinone IIA inhibited the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9) mRNA and mature protein, which may lead to an increase the cell-surface LDLR in hepatic cells. We further identified a regulatory DNA element involved in the tanshinone IIA-mediated PCSK9 down-regulation, which is located between the -411 and -336 positions of the PCSK9 promoter. Moreover, we found that tanshinone IIA markedly increased the nuclear forkhead box O3a (FoxO3a) level, enhanced FoxO3a/PCSK9 promoter complexes formation and decreased the PCSK9 promoter binding capacity of hepatocyte nuclear factor 1α (HNF-1α), resulting in suppression of PCSK9 gene expression. Finally, we found that the statin-induced PCSK9 overexpression was attenuated and the LDLR activity was elevated in a synergic manner by combination of tanshinone IIA treatment in HepG2 cells. Overall, our results reveal that the tanshinone IIA modulates LDLR level and activity via down-regulation of PCSK9 expression in hepatic cells. Our current findings provide a molecular basis of tanshinone IIA to develop PCSK9 inhibitors for cholesterol management. PMID:27617748

  15. Polyamine analogs modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells.

    PubMed

    Zhu, Qingsong; Huang, Yi; Marton, Laurence J; Woster, Patrick M; Davidson, Nancy E; Casero, Robert A

    2012-02-01

    Aberrant epigenetic repression of gene expression has been implicated in most cancers, including breast cancer. The nuclear amine oxidase, lysine-specific demethylase 1 (LSD1) has the ability to broadly repress gene expression by removing the activating mono- and di-methylation marks at the lysine 4 residue of histone 3 (H3K4me1 and me2). Additionally, LSD1 is highly expressed in estrogen receptor α negative (ER-) breast cancer cells. Since epigenetic marks are reversible, they make attractive therapeutic targets. Here we examine the effects of polyamine analog inhibitors of LSD1 on gene expression, with the goal of targeting LSD1 as a therapeutic modality in the treatment of breast cancer. Exposure of the ER-negative human breast cancer cells, MDA-MB-231 to the LSD1 inhibitors, 2d or PG11144, significantly increases global H3K4me1 and H3K4me2, and alters gene expression. Array analysis indicated that 98 (75 up and 23 down) and 477 (237 up and 240 down) genes changed expression by at least 1.5-fold or greater after treatment with 2d and PG11144, respectively. The expression of 12 up-regulated genes by 2d and 14 up-regulated genes by PG11144 was validated by quantitative RT-PCR. Quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated that up-regulated gene expression by polyamine analogs is associated with increase of the active histone marks H3K4me1, H3K4me2 and H3K9act, and decrease of the repressive histone marks H3K9me2 and H3K27me3, in the promoter regions of the relevant target genes. These data indicate that the pharmacologic inhibition of LSD1 can effectively alter gene expression and that this therapeutic strategy has potential.

  16. Analyses of a satiety factor NUCB2/nesfatin-1; gene expressions and modulation by different dietary components in dogs

    PubMed Central

    NOZAWA, Satoshi; KIMURA, Tomoko; KURISHIMA, Miyuki; MIMURA, Kana; SAEKI, Kaori; MIKI, Yohei; ODA, Hitomi; MORI, Akihiro; MOMOTA, Yutaka; AZAKAMI, Daigo; ISHIOKA, Katsumi

    2015-01-01

    Nesfatin-1 is an anorexic peptide derived from a precursor, nucleobindin-2 (NUCB2), which is distributed in various organs, coexists with ghrelin in the gastric X/A-like cells and closely relates to an appetite control in rodents and humans. Nesfatin-1 may be a significant factor addressing the satiety also in veterinary medicine, however, there are few reports about nesfatin-1 in dogs. In the present study, we detected canine NUCB2/nesfatin-1 mRNA in various tissues, especially abundant in pancreas, gastrointestinal tracts, testis and cerebellum. We examined circulating nesfatin-1 concentrations and NUCB2/nesfatin-1 mRNA expressions in upper gastrointestinal tracts (gastric corpus, pyloric antrum and duodenum) in dogs fed on different types of diets. Plasma nesfatin-1 concentrations in the dogs were approximately 4 ng/ml and they did not change after feeding through the study, however, NUCB2/nesfatin-1 mRNA expressions in pyloric antrum were 1.84-fold higher in the dogs fed on a High fiber/High protein diet (P<0.001), 1.48-fold higher in the dogs fed on a High fat/Low protein diet (P<0.05) and 1.02-fold higher in the dogs fed on a Low fat/High carbohydrate diet (not significant) comparing to those on a control diet. It was concluded that High fiber/High protein and High fat/Low protein diets increased NUCB2/nesfatin-1 production in canine gastrointestinal tracts. These results may set the stage for further investigations of canine NUCB2/nesfatin-1, which may relate to satiety effects in dogs. PMID:26596634

  17. Analyses of a satiety factor NUCB2/nesfatin-1; gene expressions and modulation by different dietary components in dogs.

    PubMed

    Nozawa, Satoshi; Kimura, Tomoko; Kurishima, Miyuki; Mimura, Kana; Saeki, Kaori; Miki, Yohei; Oda, Hitomi; Mori, Akihiro; Momota, Yutaka; Azakami, Daigo; Ishioka, Katsumi

    2016-03-01

    Nesfatin-1 is an anorexic peptide derived from a precursor, nucleobindin-2 (NUCB2), which is distributed in various organs, coexists with ghrelin in the gastric X/A-like cells and closely relates to an appetite control in rodents and humans. Nesfatin-1 may be a significant factor addressing the satiety also in veterinary medicine, however, there are few reports about nesfatin-1 in dogs. In the present study, we detected canine NUCB2/nesfatin-1 mRNA in various tissues, especially abundant in pancreas, gastrointestinal tracts, testis and cerebellum. We examined circulating nesfatin-1 concentrations and NUCB2/nesfatin-1 mRNA expressions in upper gastrointestinal tracts (gastric corpus, pyloric antrum and duodenum) in dogs fed on different types of diets. Plasma nesfatin-1 concentrations in the dogs were approximately 4 ng/ml and they did not change after feeding through the study, however, NUCB2/nesfatin-1 mRNA expressions in pyloric antrum were 1.84-fold higher in the dogs fed on a High fiber/High protein diet (P<0.001), 1.48-fold higher in the dogs fed on a High fat/Low protein diet (P<0.05) and 1.02-fold higher in the dogs fed on a Low fat/High carbohydrate diet (not significant) comparing to those on a control diet. It was concluded that High fiber/High protein and High fat/Low protein diets increased NUCB2/nesfatin-1 production in canine gastrointestinal tracts. These results may set the stage for further investigations of canine NUCB2/nesfatin-1, which may relate to satiety effects in dogs.

  18. NAP (davunetide) protects primary hippocampus culture by modulating expression profile of antioxidant genes during limiting oxygen conditions.

    PubMed

    Arya, A; Meena, R; Sethy, N K; Das, M; Sharma, M; Bhargava, K

    2015-04-01

    Hypoxia is a well-known threat to neuronal cells and triggers the pathophysiological syndromes in extreme environments such as high altitudes and traumatic conditions such as stroke. Among several prophylactic molecules proven suitable for ameliorating free radical damage, NAP (an octapeptide with initial amino acids: asparagine/N, alanine/A, and proline/P) can be considered superlative, primarily due to its high permeability into brain through blood-brain barrier and observed activity at femtomolar concentrations. Several mechanisms of action of NAP have been hypothesized for its protective role during hypoxia, yet any distinct mechanism is unknown. Oxidative stress is advocated as the leading event in hypoxia; we, therefore, investigated the regulation of key antioxidant genes to understand the regulatory role of NAP in providing neuroprotection. Primary neuronal culture of rat was subjected to cellular hypoxia by limiting the oxygen concentration to 0.5% for 72 h and observing the prophylactic efficacies of 15fM NAP by conventional cell death assays using flow cytometry. We performed real-time quantitative polymerase chain reaction to comprehend the regulatory mechanism. Further, we validated the significantly regulated candidates by enzyme assays and immunoblotting. In the present study, we report that NAP regulates a major clad of cellular antioxidants and there is an involvement of more than one route of action in neuroprotection during hypoxia.

  19. Gene Co-Expression Analysis Inferring the Crosstalk of Ethylene and Gibberellin in Modulating the Transcriptional Acclimation of Cassava Root Growth in Different Seasons

    PubMed Central

    Saithong, Treenut; Saerue, Samorn; Kalapanulak, Saowalak; Sojikul, Punchapat; Narangajavana, Jarunya; Bhumiratana, Sakarindr

    2015-01-01

    Cassava is a crop of hope for the 21st century. Great advantages of cassava over other crops are not only the capacity of carbohydrates, but it is also an easily grown crop with fast development. As a plant which is highly tolerant to a poor environment, cassava has been believed to own an effective acclimation process, an intelligent mechanism behind its survival and sustainability in a wide range of climates. Herein, we aimed to investigate the transcriptional regulation underlying the adaptive development of a cassava root to different seasonal cultivation climates. Gene co-expression analysis suggests that AP2-EREBP transcription factor (ERF1) orthologue (D142) played a pivotal role in regulating the cellular response to exposing to wet and dry seasons. The ERF shows crosstalk with gibberellin, via ent-Kaurene synthase (D106), in the transcriptional regulatory network that was proposed to modulate the downstream regulatory system through a distinct signaling mechanism. While sulfur assimilation is likely to be a signaling regulation for dry crop growth response, calmodulin-binding protein is responsible for regulation in the wet crop. With our initiative study, we hope that our findings will pave the way towards sustainability of cassava production under various kinds of stress considering the future global climate change. PMID:26366737

  20. Heavy Metal Ion Regulation of Gene Expression: MECHANISMS BY WHICH LEAD INHIBITS OSTEOBLASTIC BONE-FORMING ACTIVITY THROUGH MODULATION OF THE Wnt/β-CATENIN SIGNALING PATHWAY.

    PubMed

    Beier, Eric E; Sheu, Tzong-Jen; Dang, Deborah; Holz, Jonathan D; Ubayawardena, Resika; Babij, Philip; Puzas, J Edward

    2015-07-17

    Exposure to lead (Pb) from environmental sources remains an overlooked and serious public health risk. Starting in childhood, Pb in the skeleton can disrupt epiphyseal plate function, constrain the growth of long bones, and prevent attainment of a high peak bone mass, all of which will increase susceptibility to osteoporosis later in life. We hypothesize that the effects of Pb on bone mass, in part, come from depression of Wnt/β-catenin signaling, a critical anabolic pathway for osteoblastic bone formation. In this study, we show that depression of Wnt signaling by Pb is due to increased sclerostin levels in vitro and in vivo. Downstream activation of the β-catenin pathway using a pharmacological inhibitor of GSK-3β ameliorates the Pb inhibition of Wnt signaling activity in the TOPGAL reporter mouse. The effect of Pb was determined to be dependent on sclerostin expression through use of the SOST gene knock-out mice, which are resistant to Pb-induced trabecular bone loss and maintain their mechanical bone strength. Moreover, isolated bone marrow cells from the sclerostin null mice show improved bone formation potential even after exposure to Pb. Also, our data suggest that the TGFβ canonical signaling pathway is the mechanism by which Pb controls sclerostin production. Taken together these results support our hypothesis that the osteoporotic-like phenotype observed after Pb exposure is, in part, regulated through modulation of the Wnt/β-catenin pathway.

  1. Niche-modulated and niche-modulating genes in bone marrow cells

    PubMed Central

    Cohen, Y; Garach-Jehoshua, O; Bar-Chaim, A; Kornberg, A

    2012-01-01

    Bone marrow (BM) cells depend on their niche for growth and survival. However, the genes modulated by niche stimuli have not been discriminated yet. For this purpose, we investigated BM aspirations from patients with various hematological malignancies. Each aspirate was fractionated, and the various samples were fixed at different time points and analyzed by microarray. Identification of niche-modulated genes relied on sustained change in expression following loss of niche regulation. Compared with the reference (‘authentic') samples, which were fixed immediately following aspiration, the BM samples fixed after longer stay out-of-niche acquired numerous changes in gene-expression profile (GEP). The overall genes modulated included a common subset of functionally diverse genes displaying prompt and sustained ‘switch' in expression irrespective of the tumor type. Interestingly, the ‘switch' in GEP was reversible and turned ‘off-and-on' again in culture conditions, resuming cell–cell–matrix contact versus respread into suspension, respectively. Moreover, the resuming of contact prolonged the survival of tumor cells out-of-niche, and the regression of the ‘contactless switch' was followed by induction of a new set of genes, this time mainly encoding extracellular proteins including angiogenic factors and extracellular matrix proteins. Our data set, being unique in authentic expression design, uncovered niche-modulated and niche-modulating genes capable of controlling homing, expansion and angiogenesis. PMID:23241658

  2. Modulation of inducible nitric oxide synthase gene expression in RAW 264.7 murine macrophages by Pacific ciguatoxin.

    PubMed

    Kumar-Roiné, Shilpa; Matsui, Mariko; Chinain, Mireille; Laurent, Dominique; Pauillac, Serge

    2008-08-01

    To investigate the possible involvement of the nitric oxide radical (NO) in ciguatera fish poisoning (CFP), the in vitro effects of the main Pacific ciguatoxin (P-CTX-1B) and bacterial lipopolysaccharide (LPS) were comparatively studied on neuroblastoma Neuro-2a and on macrophage RAW 264.7 cell lines. NO accumulation was quantified by measuring nitrite levels in cellular supernatant using Griess reagent while the up-regulation of inducible nitric oxide synthase (iNOS) at the mRNA level was quantified via Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR). P-CTX-1B caused a concentration- and time-dependent induction of iNOS in RAW 264.7 cells but not in Neuro-2a cells. NO production was evidenced by increased nitrite levels in the 10 microM range after 48 h of RAW 264.7 cells exposure to LPS and P-CTX-1B (0.05 microg/ml and 6 nM, respectively). The expression of iNOS mRNA peaked at 8h for LPS then gradually decreased to low level at 48 h. In contrast, a sustained level was recorded with P-CTX-1B in the 8-48 h time interval. The addition of N(omega)-nitro-L-arginine methyl ester (L-NAME), a stereoselective NOS inhibitor, strongly diminished NO formation but had no effect on iNOS mRNA synthesis. The implication of NO in CFP paves the way for new therapies for both western and traditional medicines.

  3. Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study

    PubMed Central

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Frank, Mark Barton; Bebak, Melissa; Ding, Xi-Qin

    2013-01-01

    The cone photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Mutations in the channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophy. We investigated the gene expression profiles in mouse retina with CNG channel deficiency using whole genome expression microarrays. As cones comprise only 2 to 3% of the total photoreceptor population in the wild-type mouse retina, the mouse lines with CNG channel deficiency on a cone-dominant background, i.e. Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− mice, were used in our study. Comparative data analysis revealed a total of 105 genes altered in Cnga3−/−/Nrl−/− and 92 in Cngb3−/−/Nrl−/− retinas, relative to Nrl−/− retinas, with 27 genes changed in both genotypes. The differentially expressed genes primarily encode proteins associated with cell signaling, cellular function maintenance and gene expression. Ingenuity pathway analysis (IPA) identified 26 and 9 canonical pathways in Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− retinas, respectively, with 6 pathways being shared. The shared pathways include phototransduction, cAMP/PKA-mediated signaling, endothelin signaling, and EIF2/endoplasmic reticulum (ER) stress, whereas the IL-1, CREB, and purine metabolism signaling were found to specifically associate with Cnga3 deficiency. Thus, CNG channel deficiency differentially regulates genes that affect cell processes such as phototransduction, cellular survival and gene expression, and such regulations play a crucial role(s) in the retinal adaptation to impaired cone phototransduction. Though lack of Cnga3 and Cngb3 shares many common pathways, deficiency of Cnga3 causes more significant alterations in gene expression. This work provides insights into how cones respond to impaired phototransduction at the gene expression levels. PMID:23740940

  4. A nanoparticle-based epigenetic modulator for efficient gene modulation

    NASA Astrophysics Data System (ADS)

    Pongkulapa, Thanapat

    Modulation of gene expression through chromatin remodeling involves epigenetic mechanisms, such as histone acetylation. Acetylation is tightly regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). Molecules that can regulate these enzymes by altering (activating or inhibiting) their functions have become a valuable tool for understanding cell development and diseases. HAT activators, i.e. N-(4-Chloro-(3-trifluoromethyl)phenyl)-2-ethoxybenzamide (CTB), have shown a therapeutic potential for many diseases, including cancer and neurodegeneration. However, these compounds encounter a solubility and a membrane permeability issue, which restricts their full potential for practical usage, especially for in vivo applications. To address this issue, in this work, we developed a nanoparticle-based HAT activator CTB, named Au-CTB, by incorporating a new CTB analogue onto gold nanoparticles (AuNPs) along with a poly(ethylene glycol) moiety and a nuclear localization signal (NLS) peptide to assist with solubility and membrane permeability. We found that our new CTB analogue and Au-CTB could activate HAT activity. Significantly, an increase in potency to activate HAT activity by Au-CTB proved the effectiveness of using the nanoparticle delivery platform. In addition, the versatility of Au-CTB platform permits the attachment of multiple ligands with tunable ratios on the nanoparticle surface via facile surface functionalization of gold nanoparticles. Due to its high delivery efficiency and versatility, Au-CTB can be a powerful platform for applications in epigenetic regulation of gene expression.

  5. Personalized Identification of Differentially Expressed Modules in Osteosarcoma

    PubMed Central

    Liu, Xiaozhou; Li, Chengjun; Zhang, Lei; Shi, Xin; Wu, Sujia

    2017-01-01

    Background Osteosarcoma (OS), an aggressive malignant neoplasm, is the most common primary bone cancer mainly in adolescents and young adults. Differentially expressed modules tend to distinguish differences integrally. Identifying modules individually has been crucial for understanding OS mechanisms and applications of custom therapeutic decisions in the future. Material/Methods Samples came from individuals were used from control group (n=15) and OS group (n=84). Based on clique-merging, module-identification algorithm was used to identify modules from OS PPI networks. A novel approach – the individualized module aberrance score (iMAS) was performed to distinguish differences, making special use of accumulated normal samples (ANS). We performed biological process ontology to classify functionally modules. Then Support Vector Machine (SVM) was used to test distribution results of normal and OS group with screened modules. Results We identified 83 modules containing 2084 genes from PPI network in which 61 modules were significantly different. Cluster analysis of OS using the iMAS method identified 5 modules clusters. Specificity=1.00 and Sensitivity=1.00 proved the distribution outcomes of screened modules were mainly consistent with that of total data, which suggested the efficiency of 61 modules. Conclusions We conclude that a novel pipeline that identified the dysregulated modules in individuals of OS. The constructed process is expected to aid in personalized health care, which may present fruitful strategies for medical therapy. PMID:28190021

  6. X chromosome regulation of autosomal gene expression in bovine blastocysts.

    PubMed

    Itoh, Yuichiro; Arnold, Arthur P

    2014-10-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here, we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male-to-female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient.

  7. Dietary antioxidants at supranutritional doses modulate skeletal muscle heat shock protein and inflammatory gene expression in sheep exposed to heat stress.

    PubMed

    Chauhan, S S; Celi, P; Fahri, F T; Leury, B J; Dunshea, F R

    2014-11-01

    The objective of this study was to investigate the effects of chronic heat (thermal) stress and dietary antioxidant supplementation on the expression of heat shock proteins and inflammatory genes in the skeletal muscle of sheep. Twenty-four Merino × Poll Dorset crossbred ewes were allocated to either a control (10 IU vitamin E and 0.24 mg Se/kg DM) or high-antioxidant (VitE+Se; 100 IU vitamin E and 1.20 mg Se/kg DM) diet and were exposed to 2 thermal (temperature) treatments (thermoneutral [TN]: 18°C-21°C and 26%-30% relative humidity; heat stress [HS]: 28°C-40°C and 40%-50% relative humidity) for 1 wk. Physiological parameters were recorded daily, and muscle biopsies were conducted at the end of thermal treatments. Total RNA was extracted from muscle samples and reverse transcribed to cDNA for real-time PCR analysis. Respiration rates and rectal temperature were increased in response to HS (84.2 vs. 161 breaths per minute and 39.52°C vs. 40.06°C for TN and HS conditions, respectively; P < 0.001). There were interactions between dietary and thermal treatments, indicating that dietary antioxidant supplementation reduced respiration rate (P = 0.097) and rectal temperature (P = 0.086) of sheep during HS but not TN conditions. Skeletal muscle heat shock transcription factor 1 (HSF1) mRNA abundance was increased by HS (1.3-fold; P < 0.050) but was not changed (P = 0.77) by dietary antioxidant supplementation. The expression of skeletal muscle heat shock protein 70 (HSP70) mRNA was increased (P < 0.001) 3.5-fold by HS and tended (P = 0.08) to be increased by dietary antioxidant supplementation. Although there were no main effects of diet (P = 0.42) or HS (P = 0.47) on skeletal muscle HSP90 mRNA expression, there was an interaction (P = 0.040) such that HSP90 mRNA expression was increased (P = 0.010) in antioxidant-supplemented sheep under HS compared to TN conditions. Skeletal muscle nuclear factor kappa B (NF-κB) and tissue necrosis factor α (TNF-α) m

  8. Silencing of grapevine pectate lyase-like genes VvPLL2 and VvPLL3 confers resistance against Erysiphe necator and differentially modulates gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broad-spectrum resistance against powdery mildew (PM) has been reported by silencing susceptibility genes in the model plant Arabidopsis. Here we used artificial microRNA constructs in PM-susceptible Vitis vinifera cv. Chardonnay to stably silence two pectate lyase-like orthologs (VvPLL2 and VvPLL3)...

  9. Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial.

    PubMed

    Di Renzo, Laura; Carraro, Alberto; Valente, Roberto; Iacopino, Leonardo; Colica, Carmen; De Lorenzo, Antonino

    2014-01-01

    Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald's Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P < 0.05) and expression of antioxidant genes is increased, while CCL5 expression is decreased (P < 0.05). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P < 0.001). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070.

  10. Intake of Red Wine in Different Meals Modulates Oxidized LDL Level, Oxidative and Inflammatory Gene Expression in Healthy People: A Randomized Crossover Trial

    PubMed Central

    Di Renzo, Laura; Valente, Roberto; Colica, Carmen

    2014-01-01

    Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald's Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P < 0.05) and expression of antioxidant genes is increased, while CCL5 expression is decreased (P < 0.05). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P < 0.001). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070. PMID:24876915

  11. The Global Regulatory hns Gene Negatively Affects Adhesion to Solid Surfaces by Anaerobically Grown Escherichia coli by Modulating Expression of Flagellar Genes and Lipopolysaccharide Production

    PubMed Central

    Landini, Paolo; Zehnder, Alexander J. B.

    2002-01-01

    The initial binding of bacterial cells to a solid surface is a critical and essential step in biofilm formation. In this report we show that stationary-phase cultures of Escherichia coli W3100 (a K-12 strain) can efficiently attach to sand columns when they are grown in Luria broth medium at 28°C in fully aerobic conditions. In contrast, growth in oxygen-limited conditions results in a sharp decrease in adhesion to hydrophilic substrates. We show that the production of lipopolysaccharide (LPS) and of flagella, as well as the transcription of the fliC gene, encoding the major flagellar subunit, increases under oxygen-limited conditions. Inactivation of the global regulatory hns gene counteracts increased production of LPS and flagella in response to anoxia and allows E. coli W3100 to attach to sand columns even when it is grown under oxygen-limited conditions. We propose that increased production of the FliC protein and of LPS in response to oxygen limitation results in the loss of the ability of E. coli W3100 to adhere to hydrophilic surfaces. Indeed, overexpression of the fliC gene results in a decreased adhesion to sand even when W3100 is grown in fully aerobic conditions. Our observations strongly suggest that anoxia is a negative environmental signal for adhesion in E. coli. PMID:11872702

  12. Transcriptome analysis of human primary endothelial cells (HUVEC) from umbilical cords of gestational diabetic mothers reveals candidate sites for an epigenetic modulation of specific gene expression.

    PubMed

    Ambra, R; Manca, S; Palumbo, M C; Leoni, G; Natarelli, L; De Marco, A; Consoli, A; Pandolfi, A; Virgili, F

    2014-01-01

    Within the complex pathological picture associated to diabetes, high glucose (HG) has "per se" effects on cells and tissues that involve epigenetic reprogramming of gene expression. In fetal tissues, epigenetic changes occur genome-wide and are believed to induce specific long term effects. Human umbilical vein endothelial cells (HUVEC) obtained at delivery from gestational diabetic women were used to study the transcriptomic effects of chronic hyperglycemia in fetal vascular cells using Affymetrix microarrays. In spite of the small number of samples analyzed (n=6), genes related to insulin sensing and extracellular matrix reorganization were found significantly affected by HG. Quantitative PCR analysis of gene promoters identified a significant differential DNA methylation in TGFB2. Use of Ea.hy926 endothelial cells confirms data on HUVEC. Our study corroborates recent evidences suggesting that epigenetic reprogramming of gene expression occurs with persistent HG and provides a background for future investigations addressing genomic consequences of chronic HG.

  13. The Selective Estrogen Receptor Modulator Raloxifene Regulates Arginine-Vasopressin Gene Expression in Human Female Neuroblastoma Cells Through G Protein-Coupled Estrogen Receptor and ERK Signaling.

    PubMed

    Grassi, Daniela; Ghorbanpoor, Samar; Acaz-Fonseca, Estefania; Ruiz-Palmero, Isabel; Garcia-Segura, Luis M

    2015-10-01

    The selective estrogen receptor modulator raloxifene reduces blood pressure in hypertensive postmenopausal women. In the present study we have explored whether raloxifene regulates gene expression of arginine vasopressin (AVP), which is involved in the pathogenesis of hypertension. The effect of raloxifene was assessed in human female SH-SY5Y neuroblastoma cells, which have been recently identified as a suitable cellular model to study the estrogenic regulation of AVP. Raloxifene, within a concentration ranging from 10(-10) M to 10(-6) M, decreased the mRNA levels of AVP in SH-SY5Y cells with maximal effect at 10(-7) M. This effect of raloxifene was imitated by an agonist (±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone of G protein-coupled estrogen receptor-1 (GPER) and blocked by an antagonist (3aS*,4R*,9bR*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline of GPER and by GPER silencing. Raloxifene induced a time-dependent increase in the level of phosphorylated ERK1 and ERK2, by a mechanism blocked by the GPER antagonist. The treatment of SH-SY5Y cells with either a MAPK/ERK kinase 1/2-specific inhibitor (1,4-diamino-2, 3-dicyano-1,4-bis(2-aminophenylthio)butadine) or a protein kinase C inhibitor (sotrastaurin) blocked the effects of raloxifene on the phosphorylation of ERK1/2 and the regulation of AVP mRNA levels. These results reveal a mechanism mediating the regulation of AVP expression by raloxifene, involving the activation of GPER, which in turn activates protein kinase C, MAPK/ERK kinase, and ERK. The regulation of AVP by raloxifene and GPER may have implications for the treatment of blood hypertension(.).

  14. Repression of gene expression by oxidative stress.

    PubMed Central

    Morel, Y; Barouki, R

    1999-01-01

    Gene expression is modulated by both physiological signals (hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). Oxidative stress appears to be a key pleiotropic modulator which may be involved in either pathway. Indeed, reactive oxygen species (ROS) have been described as second messengers for several growth factors and cytokines, but have also been shown to rise following cellular insults such as xenobiotic metabolism or enzymic deficiency. Extensive studies on the induction of stress-response genes by oxidative stress have been reported. In contrast, owing to the historical focus on gene induction, less attention has been paid to gene repression by ROS. However, a growing number of studies have shown that moderate (i.e. non-cytotoxic) oxidative stress specifically down-regulates the expression of various genes. In this review, we describe the alteration of several physiological functions resulting from oxidative-stress-mediated inhibition of gene transcription. We will then focus on the repressive oxidative modulation of various transcription factors elicited by ROS. PMID:10477257

  15. Influence of candidate polymorphisms on the dipeptidyl peptidase IV and μ-opioid receptor genes expression in aspect of the β-casomorphin-7 modulation functions in autism.

    PubMed

    Cieślińska, Anna; Sienkiewicz-Szłapka, Edyta; Wasilewska, Jolanta; Fiedorowicz, Ewa; Chwała, Barbara; Moszyńska-Dumara, Małgorzata; Cieśliński, Tomasz; Bukało, Marta; Kostyra, Elżbieta

    2015-03-01

    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with population prevalence of approximately 60-70 per 10,000. Data shows that both opioid system function enhancement and opiate administration can result in autistic-like symptoms. Cow milk opioid peptides, including β-casomorphin-7 (BCM7, Tyr-Pro-Phe-Pro-Gly-Pro-Ile), affect the μ-opioid receptor (MOR) and are subjected to degradation resulting from the proline dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5) enzyme activity. The presence of MOR and DPPIV activity are crucial factors determining biological activity of BCM7 in the human body. Our study examined the effect of β-casomorphin-7 on the MOR and DPPIV genes expression according to specific point mutations in these genes. In addition, we investigated frequency of A118G SNP in the MOR gene and rs7608798 of the DPPIV (A/G) gene in healthy and autistic children. Our research indicated correlation in DPPIV gene expression under the influence of BCM7 and hydrolyzed milk between healthy and ASD-affected children with genotype GG (P<0.0001). We also observed increased MOR gene expression in healthy children with genotype AG at polymorphic site A118G under influence of BCM7 and hydrolyzed milk. The G allele frequency was 0.09 in MOR gene and 0.68 in the DPPIV gene. But our results suggest no association between presence of the alleles G and A at position rs7608798 in DPPIV gene nor alleles A and G at position A118G of the MOR and increased incidence of ASD. Our studies emphasize the compulsion for genetic analysis in correlation with genetic factors affecting development and enhancement of autism symptoms.

  16. Maternal folic acid supplementation modulates DNA methylation and gene expression in the rat offspring in a gestation period-dependent and organ-specific manner.

    PubMed

    Ly, Anna; Ishiguro, Lisa; Kim, Denise; Im, David; Kim, Sung-Eun; Sohn, Kyoung-Jin; Croxford, Ruth; Kim, Young-In

    2016-07-01

    Maternal folic acid supplementation can alter DNA methylation and gene expression in the developing fetus, which may confer disease susceptibility later in life. We determined which gestation period and organ were most sensitive to the modifying effect of folic acid supplementation during pregnancy on DNA methylation and gene expression in the offspring. Pregnant rats were randomized to a control diet throughout pregnancy; folic acid supplementation at 2.5× the control during the 1st, 2nd or 3rd week of gestation only; or folic acid supplementation throughout pregnancy. The brain, liver, kidney and colon from newborn pups were analyzed for folate concentrations, global DNA methylation and gene expression of the Igf2, Er-α, Gr, Ppar-α and Ppar-γ genes. Folic acid supplementation during the 2nd or 3rd week gestation or throughout pregnancy significantly increased brain folate concentrations (P<.001), while only folic acid supplementation throughout pregnancy significantly increased liver folate concentrations (P=.005), in newborn pups. Brain global DNA methylation incrementally decreased from early to late gestational folic acid supplementation and was the lowest with folic acid supplementation throughout pregnancy (P=.026). Folic acid supplementation in late gestation or throughout pregnancy significantly decreased Er-α, Gr and Ppar-α gene expression in the liver (P<.05). The kidney and colon were resistant to the effect of folic acid supplementation. Maternal folic acid supplementation affects tissue folate concentrations, DNA methylation and gene expression in the offspring in a gestation-period-dependent and organ-specific manner.

  17. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  18. The flow of gene expression.

    PubMed

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  19. Regulation of desmocollin gene expression in the epidermis: CCAAT/enhancer-binding proteins modulate early and late events in keratinocyte differentiation.

    PubMed Central

    Smith, Conrad; Zhu, Kuichun; Merritt, Anita; Picton, Rhian; Youngs, Denise; Garrod, David; Chidgey, Martyn

    2004-01-01

    Desmocollins (Dscs) are desmosomal cadherins that exhibit differentiation-specific patterns of expression in the epidermis. Dsc3 expression is strongest in basal cell layers, whereas Dsc1 is largely confined to upper, terminally differentiating strata. To understand better the processes by which Dsc expression is regulated in the epidermis, we have isolated Dsc3 and Dsc1 5'-flanking DNAs and analysed their activity in primary keratinocytes. In the present study, we found that transcription factors of the CCAAT/enhancer-binding protein family play a role in the regulation of expression of both Dscs and, in so doing, implicate this class of transcription factors in both early and late events in keratinocyte differentiation. We show that Dscs are differentially regulated by C/EBP (CCAAT/enhancer-binding protein) family members, with Dsc3 expression being activated by C/EBPbeta but not C/EBPalpha, and the reverse being the case for Dsc1. Expression of both Dscs is activated by another family member, C/EBPdelta. These results show for the first time how desmosomal cadherin gene expression is regulated and provide a mechanism for the control of other differentiation-specific genes in the epidermis. PMID:15030314

  20. The expression of plasticity-related genes in an acute model of stress is modulated by chronic desipramine in a time-dependent manner within medial prefrontal cortex.

    PubMed

    Nava, Nicoletta; Treccani, Giulia; Müller, Heidi Kaastrup; Popoli, Maurizio; Wegener, Gregers; Elfving, Betina

    2017-01-01

    It is well established that stress plays a major role in the pathogenesis of neuropsychiatric diseases. Stress-induced alteration of synaptic plasticity has been hypothesized to underlie the morphological changes observed by neuroimaging in psychiatric patients in key regions such as hippocampus and prefrontal cortex (PFC). We have recently shown that a single acute stress exposure produces significant short-term alterations of structural plasticity within medial PFC. These alterations were partially prevented by previous treatment with chronic desipramine (DMI). In the present study we evaluated the effects of acute Foot-shock (FS)-stress and pre-treatment with the traditional antidepressant DMI on the gene expression of key regulators of synaptic plasticity and structure. Expression of Homer, Shank, Spinophilin, Densin-180, and the small RhoGTPase related gene Rac1 and downstream target genes, Limk1, Cofilin1 and Rock1 were investigated 1 day (1d), 7 d and 14d after FS-stress exposure. We found that DMI specifically increases the short-term expression of Spinophilin, as well as Homer and Shank family genes, and that both acute stress and DMI exert significant long-term effects on mRNA levels of genes involved in spine plasticity. These findings support the knowledge that acute FS stress and antidepressant treatment induce both rapid and sustained time-dependent alterations in structural components of synaptic plasticity in rodent medial PFC.

  1. The NMRA/NMRAL1 homologue PadA modulates the expression of extracellular cAMP relay genes during aggregation in Dictyostelium discoideum.

    PubMed

    Garciandia, Ane; Suarez, Teresa

    2013-09-15

    NMRA-like proteins belong to a class of conserved transcriptional regulators that function as direct sensors of the metabolic state of the cell and link basic metabolism to changes in gene expression. PadA was the first NMRA-like protein described in Dictyostelium discoideum and was shown to be necessary for prestalk cell differentiation and correct development. We describe and characterize padA(-) mutant phenotype during the onset of development, which results in the formation of abnormally small territories and impairment of cAMP responses. Transcriptional analysis shows that cAMP-induced gene expression is downregulated in padA(-), particularly the genes that establish the extracellular cAMP relay. The mutant phenotype can be rescued with the constitutive expression of one of these genes, carA, encoding the cAMP receptor. Transcriptional analysis of padA(-)/A15::carA showed that carA maximum mRNA levels were not reached during aggregation. Our data support a regulatory role for PadA on the regulation of extracellular cAMP relay genes during aggregation and suggest that PadA is required to achieve carA full induction.

  2. How much is enough? Modulation of dose-response curve for steroid receptor-regulated gene expression by changing concentrations of transcription factor.

    PubMed

    Simons, S Stoney

    2006-01-01

    The position of the dose-response curve for steroid-regulated gene expression determines how much variation in response will accompany the normal physiological changes in circulating steroid. Over the last several years, it has become clear that the concentration of steroid hormone required for half-maximal induction or repression by a given receptor-steroid complex, which is normally called the EC50, is not constant for all responsive genes. Thus, the position of the dose-response curve can change so that a single concentration of steroid produces very different percentages of maximal activity. This, in turn, allows for the differential expression of genes by a common steroid hormone concentration during development, differentiation, and homeostasis. Here we review the variety of factors that influence the EC50 and position of the dose-response curve for steroid hormone receptors, discuss what is known about the mechanisms, and highlight promising areas for future research.

  3. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Dae-Sik; Shin, Kyung-Hoon; Lee, Yong Sung; Leung, Kenneth Mei-Yee; Lee, Su-Jae; Lee, Jae-Seong

    2014-07-01

    In this study, we investigated the effects of the water-accommodated fraction (WAF) of crude oil on the development and reproduction of the intertidal copepod Tigriopus japonicus through life-cycle experiments. Furthermore, we investigated the mechanisms underlying the toxic effects of WAF on this benthic organism by studying expression patterns of cytochrome P450 (CYP) genes. Development of T. japonicus was delayed and molting was interrupted in response to WAF exposure. Hatching rate was also significantly reduced in response to WAF exposure. Activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), and catalase (CAT) were increased by WAF exposure in a concentration-dependent manner. These results indicated that WAF exposure resulted in oxidative stress, which in turn was associated with dysfunctional development and reproduction. To evaluate the involvement of cytochrome P450 (CYP) genes, we cloned the entire repertoire of CYP genes in T. japonicus (n=52) and found that the CYP genes belonged to five different clans (i.e., Clans 2, 3, 4, mitochondrial, and 20). We then examined expression patterns of these 52 CYP genes in response to WAF exposure. Three TJ-CYP genes (CYP3024A2, CYP3024A3, and CYP3027C2) belonging to CYP clan 3 were significantly induced by WAF exposure in a time- and concentration-dependent manner. We identified aryl hydrocarbon responsive elements (AhRE), xenobiotic responsive elements (XREs), and metal response elements (MRE) in the promoter regions of these three CYP genes, suggesting that these genes are involved in detoxification of toxicants. Overall, our results indicate that WAF can trigger oxidative stress and thus induce dysfunctional development and reproduction in the copepod T. japonicus. Furthermore, we identified three TJ-CYP genes that represent potential biomarkers of oil pollution.

  4. Use of transposase and ends of IS608 enables precise and scarless genome modification for modulating gene expression and metabolic engineering applications in Escherichia coli.

    PubMed

    Thakker, Chandresh; Lin, Kevin; Martini-Stoica, Heidi; Bennett, George N

    2016-01-01

    Various methods have been developed for gene disruption in bacteria; however, extra in vitro manipulation steps or the residual presence of a scar in the host chromosome limits the use of such methods. By utilizing the unique properties of ISHp608, we have developed a simple and precise method for genome manipulation in Escherichia coli that alters the gene sequence without leaving foreign DNA in the chromosome. This strategy involves PCR amplification of a DNA cassette containing ISHp608-LE (left end)-antibiotic resistance gene-counterselection marker-ISHp608-RE (right end) by using primers containing extensions homologous to the adjacent regions of the target gene on the chromosome. The λ Red mediated recombination of the PCR product and antibiotic resistance screening results in transformants with a modified gene target. The ISHp608-LE-antibiotic resistance gene-counterselection marker-ISHp608-RE cassette can then be excised using a temperature sensitive plasmid expressing the TnpA transposase, which precisely cleaves ISHp608-LE and ISHp608-RE without leaving a scar sequence. We demonstrated lacZ gene point mutation repair, two precise disruptions of the lacZ gene and constructed a library of lacZ variants having variable β-galactosidase activity by changing its ribosome binding site sequences using the ISHp608 system. This technique can be used in E. coli genome modification and could be extended for use in other bacteria.

  5. The Rice E3-Ubiquitin Ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 Modulates the Expression of ROOT MEANDER CURLING, a Gene Involved in Root Mechanosensing, through the Interaction with Two ETHYLENE-RESPONSE FACTOR Transcription Factors1

    PubMed Central

    Lourenço, Tiago F.; Serra, Tânia S.; Cordeiro, André M.; Swanson, Sarah J.; Gilroy, Simon; Saibo, Nelson J.M.; Oliveira, M. Margarida

    2015-01-01

    Plant roots can sense and respond to a wide diversity of mechanical stimuli, including touch and gravity. However, little is known about the signal transduction pathways involved in mechanical stimuli responses in rice (Oryza sativa). This work shows that rice root responses to mechanical stimuli involve the E3-ubiquitin ligase rice HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (OsHOS1), which mediates protein degradation through the proteasome complex. The morphological analysis of the roots in transgenic RNA interference::OsHOS1 and wild-type plants, exposed to a mechanical barrier, revealed that the OsHOS1 silencing plants keep a straight root in contrast to wild-type plants that exhibit root curling. Moreover, it was observed that the absence of root curling in response to touch can be reverted by jasmonic acid. The straight root phenotype of the RNA interference::OsHOS1 plants was correlated with a higher expression rice ROOT MEANDER CURLING (OsRMC), which encodes a receptor-like kinase characterized as a negative regulator of rice root curling mediated by jasmonic acid. Using the yeast two-hybrid system and bimolecular fluorescence complementation assays, we showed that OsHOS1 interacts with two ETHYLENE-RESPONSE FACTOR transcription factors, rice ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN1 (OsEREBP1) and rice OsEREBP2, known to regulate OsRMC gene expression. In addition, we showed that OsHOS1 affects the stability of both transcription factors in a proteasome-dependent way, suggesting that this E3-ubiquitin ligase targets OsEREBP1 and OsEREBP2 for degradation. Our results highlight the function of the proteasome in rice response to mechanical stimuli and in the integration of these signals, through hormonal regulation, into plant growth and developmental programs. PMID:26381316

  6. Modulation of DNA damage and alteration of gene expression during aflatoxicosis via dietary supplementation of Spirulina (Arthrospira) and Whey protein concentrate.

    PubMed

    Hassan, Aziza M; Abdel-Aziem, Sekena H; Abdel-Wahhab, Mosaad A

    2012-05-01

    Spirulina (SPN) and Whey protein (WPC) are being touted as functional foods with a number of health benefits. SPN is blue green algae while WPC is a protein complex derived from milk and both have strong antioxidant activity and provoke a free radical scavenging enzyme system. The aim of the present study was to evaluate the antioxidant potentials of SPN and WPC to regulate the alteration of genes' expression and counteract oxidative stress in rats during aflatoxecosis. Eighty male Sprague-Dawley rats were divided into eight groups, which included the control group, the group fed with aflatoxins (AFs)-contaminated diet (2.5 mg/kg diet) for 30 day, the group treated orally with WPC (300 mg/kg b.w.), the group treated orally with SPN (50 mg/kg b.w), the group treated orally with WPC plus SPN and the groups fed with AFs-contaminated diet and treated orally with WPC, SPN and/or WPC. Oxidative stress markers and gene expression were assayed in liver and testis and the damage of DNA was evaluated by DNA fragmentation and micronucleus tests. The results demonstrated that supplementation of SPN and/or WPC reduced the oxidative stress induced by AFs as indicated by decreased lipid peroxidation level, increased glutathione content and up-regulated PHGPx gene expression. Both agents succeed to inhibit DNA damage as indicated by the down-regulation of Fas gene expression, and decreased the percentage of DNA fragmentation and micronucleated erythrocytes. Moreover, WPC was found to be effective than SPN and the combined treatment was more effective than the single treatment. It could be concluded that both SPN and WPC induced a protective action and regulated the alteration of genes expression induced by AFs; however, the combined treatment may be useful than the single treatment.

  7. Impaired redox environment modulates cardiogenic and ion-channel gene expression in cardiac-resident and non-resident mesenchymal stem cells.

    PubMed

    Subramani, Baskar; Subbannagounder, Sellamuthu; Ramanathanpullai, Chithra; Palanivel, Sekar; Ramasamy, Rajesh

    2017-03-01

    Redox homeostasis plays a crucial role in the regulation of self-renewal and differentiation of stem cells. However, the behavioral actions of mesenchymal stem cells in redox imbalance state remain elusive. In the present study, the effect of redox imbalance that was induced by either hydrogen peroxide (H2O2) or ascorbic acid on human cardiac-resident (hC-MSCs) and non-resident (umbilical cord) mesenchymal stem cells (hUC-MSCs) was evaluated. Both cells were sensitive and responsive when exposed to either H2O2 or ascorbic acid at a concentration of 400 µmol/L. Ascorbic acid pre-treated cells remarkably ameliorated the reactive oxygen species level when treated with H2O2. The endogenous antioxidative enzyme gene (Sod1, Sod2, TRXR1 and Gpx1) expressions were escalated in both MSCs in response to reactive oxygen species elevation. In contrast, ascorbic acid pre-treated hUC-MSCs attenuated considerable anti-oxidative gene (TRXR1 and Gpx1) expressions, but not the hC-MSCs. Similarly, the cardiogenic gene (Nkx 2.5, Gata4, Mlc2a and β-MHC) and ion-channel gene ( IKDR, IKCa, Ito and INa.TTX) expressions were significantly increased in both MSCs on the oxidative state. On the contrary, reduced environment could not alter the ion-channel gene expression and negatively regulated the cardiogenic gene expressions except for troponin-1 in both cells. In conclusion, redox imbalance potently alters the cardiac-resident and non-resident MSCs stemness, cardiogenic, and ion-channel gene expressions. In comparison with cardiac-resident MSC, non-resident umbilical cord-MSC has great potential to tolerate the redox imbalance and positively respond to cardiac regeneration. Impact statement Human mesenchymal stem cells (h-MSCs) are highly promising candidates for tissue repair in cardiovascular diseases. However, the retention of cells in the infarcted area has been a major challenge due to its poor viability and/or low survival rate after transplantation. The regenerative potential

  8. Carcinogen-induced trans activation of gene expression.

    PubMed Central

    Kleinberger, T; Flint, Y B; Blank, M; Etkin, S; Lavi, S

    1988-01-01

    We report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later. Images PMID:2835673

  9. Carcinogen-induced trans activation of gene expression

    SciTech Connect

    Kleinberger, T.; Flint, Y.B.; Blank, M.; Etkin, S.; Lavi, S.

    1988-03-01

    The authors report a new mechanism of carcinogen action by which the expression of several genes was concomitantly enhanced. This mechanism involved the altered activity of cellular factors which modulate the expression of genes under their control. The increased expression was regulated at least in part on the transcriptional level and did not require amplification of the overexpressed genes. This phenomenon was transient; it was apparent as early as 24 h after carcinogen treatment and declined a few days later.

  10. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  11. Downregulation of Chloroplast RPS1 Negatively Modulates Nuclear Heat-Responsive Expression of HsfA2 and Its Target Genes in Arabidopsis

    PubMed Central

    Yu, Hai-Dong; Yang, Xiao-Fei; Chen, Si-Ting; Wang, Yu-Ting; Li, Ji-Kai; Shen, Qi; Liu, Xun-Liang; Guo, Fang-Qing

    2012-01-01

    Heat stress commonly leads to inhibition of photosynthesis in higher plants. The transcriptional induction of heat stress-responsive genes represents the first line of inducible defense against imbalances in cellular homeostasis. Although heat stress transcription factor HsfA2 and its downstream target genes are well studied, the regulatory mechanisms by which HsfA2 is activated in response to heat stress remain elusive. Here, we show that chloroplast ribosomal protein S1 (RPS1) is a heat-responsive protein and functions in protein biosynthesis in chloroplast. Knockdown of RPS1 expression in the rps1 mutant nearly eliminates the heat stress-activated expression of HsfA2 and its target genes, leading to a considerable loss of heat tolerance. We further confirm the relationship existed between the downregulation of RPS1 expression and the loss of heat tolerance by generating RNA interference-transgenic lines of RPS1. Consistent with the notion that the inhibited activation of HsfA2 in response to heat stress in the rps1 mutant causes heat-susceptibility, we further demonstrate that overexpression of HsfA2 with a viral promoter leads to constitutive expressions of its target genes in the rps1 mutant, which is sufficient to reestablish lost heat tolerance and recovers heat-susceptible thylakoid stability to wild-type levels. Our findings reveal a heat-responsive retrograde pathway in which chloroplast translation capacity is a critical factor in heat-responsive activation of HsfA2 and its target genes required for cellular homeostasis under heat stress. Thus, RPS1 is an essential yet previously unknown determinant involved in retrograde activation of heat stress responses in higher plants. PMID:22570631

  12. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-Jun.

    PubMed

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata; Aumercier, Marc; Mukhopadhyay, Gauranga; Tyagi, Rakesh K

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling.

  13. The Dynamic Character of the BCL2 Promoter i-Motif Provides a Mechanism for Modulation of Gene Expression by Compounds That Bind Selectively to the Alternative DNA Hairpin Structure

    PubMed Central

    2015-01-01

    It is generally accepted that DNA predominantly exists in duplex form in cells. However, under torsional stress imposed by active transcription, DNA can assume nonduplex structures. The BCL2 promoter region forms two different secondary DNA structures on opposite strands called the G-quadruplex and the i-motif. The i-motif is a highly dynamic structure that exists in equilibrium with a flexible hairpin species. Here we identify a pregnanol derivative and a class of piperidine derivatives that differentially modulate gene expression by stabilizing either the i-motif or the flexible hairpin species. Stabilization of the i-motif structure results in significant upregulation of the BCL2 gene and associated protein expression; in contrast, stabilization of the flexible hairpin species lowers BCL2 levels. The BCL2 levels reduced by the hairpin-binding compound led to chemosensitization to etoposide in both in vitro and in vivo models. Furthermore, we show antagonism between the two classes of compounds in solution and in cells. For the first time, our results demonstrate the principle of small molecule targeting of i-motif structures in vitro and in vivo to modulate gene expression. PMID:24559410

  14. A gene expression biomarker accurately predicts estrogen ...

    EPA Pesticide Factsheets

    The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c

  15. Human Lacrimal Gland Gene Expression

    PubMed Central

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  16. [Genes and the modulation of learning and memory].

    PubMed

    Xiong, Y; Zhang, C C

    1995-10-01

    Recently, progress in the study of the relationship between gene and the modulation of learning and memory was noticeable. The studies showed that: (1) The expression of immediate early genes (IEGs), especially the c-fos, is a necessary prerequisite for the formation of memory; the induction of long term potentiation (LTP) is accompanied by an increase of IEGs expression; (2) Mice with deficiency of alpha-Calcium-Calmodulin Kinase II (alpha-CaMK II), or neural-cell adhesion molecules (N-CAM) or tyrosine kinase gene (fyn) generated by gene targeting appear deficits in spatial learning and memory, mutation of alpha-CaMK II and N-CAM gene can also interfere with the induction and maintenance of LTP; (3) The single-gene mutants of Drosophilia (dnc, rut) showed significant decrease of the ability of memory. The mechanism is related to the altered synaptic plasticity, and the mushroom body may be the memory center of Drosophila.

  17. The Acyl-Homoserine Lactone Synthase YenI from Yersinia enterocolitica Modulates Virulence Gene Expression in Enterohemorrhagic Escherichia coli O157:H7

    PubMed Central

    Nguyen, Y N.; Sheng, Haiqing; Dakarapu, Rambabu; Falck, John R.; Hovde, Carolyn J.

    2013-01-01

    The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes the rectoanal junction (RAJ) in cattle, its natural reservoir. Colonization at the RAJ poses a serious risk for fecal shedding and contamination of the environment. We previously demonstrated that EHEC senses acyl-homoserine lactones (AHLs) produced by the microbiota in the rumen to activate the gad acid resistance genes necessary for survival through the acidic stomachs in cattle and to repress the locus of enterocyte effacement (LEE) genes important for colonization of the RAJ, but unnecessary in the rumen. Devoid of AHLs, the RAJ is the prominent site of colonization of EHEC in cattle. To determine if the presence of AHLs in the RAJ could repress colonization at this site, we engineered EHEC to express the Yersinia enterocolitica AHL synthase gene yenI, which constitutively produces AHLs, to mimic a constant exposure of AHLs in the environment. The yenI+ EHEC produces oxo-C6-homoserine lactone (oxo-C6-HSL) and had a significant reduction in LEE expression, effector protein secretion, and attaching and effacing (A/E) lesion formation in vitro compared to the wild type (WT). The yenI+ EHEC also activated expression of the gad genes. To assess whether AHL production, which decreases LEE expression, would decrease RAJ colonization by EHEC, cattle were challenged at the RAJ with WT or yenI+ EHEC. Although the yenI+ EHEC colonized the RAJ with efficiency equal to that of the WT, there was a trend for the cattle to shed the WT strain longer than the yenI+ EHEC. PMID:23980115

  18. Dietary Lactobacillus acidophilus modulated skin mucus protein profile, immune and appetite genes expression in gold fish (Carassius auratus gibelio).

    PubMed

    Hosseini, Marjan; Kolangi Miandare, Hamed; Hoseinifar, Seyed Hossein; Yarahmadi, Peyman

    2016-12-01

    The objective of the present study was to investigate the effect of dietary Lactobacillus acidophilus on skin mucus protein pattern, immune and appetite related genes expression as well as growth performance in gold fish (Carassius auratus gibelio). Three hundred healthy gold fish (2.5 ± 0.05) juveniles were randomly distributed in 12 glass aquariums (400-L; 25 fish per aquaria) and fed experimental diets contain different levels of L. acidophilus (0, 1.5 × 10(8), 3 × 10(8) and 6 × 10(8)) for 8 weeks. SDS-PAGE analysis of skin mucus protein profile at the end of the feeding trial revealed differences in protein profile of probiotic fed fish and control group; even three new bands were observed in L. acidophilus treated groups. Furthermore, fish fed 6 × 10(8) CFU g(-1) supplemented diet showed up-regulation of both TNF-1α and TNF-2α gene expression (P < 0.05). Evaluation of appetite related gene expression showed down-regulation of ghrelin in probiotic fed fish compared those of control treatment (P < 0.05). However, administration of different levels of L. acidophilus had no significant effects on growth performance (P > 0.05). These results demonstrated that while no beneficial effects on growth performance, dietary L. acidophilus affects immune and appetite related genes expression as well as skin mucus protein profile.

  19. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  20. UVB-dependent changes in the expression of fast-responding early genes is modulated by huCOP1 in keratinocytes.

    PubMed

    Fazekas, B; Polyánka, H; Bebes, A; Tax, G; Szabó, K; Farkas, K; Kinyó, A; Nagy, F; Kemény, L; Széll, M; Ádám, É

    2014-11-01

    Ultraviolet (UV) B is the most prominent physical carcinogen in the environment leading to the development of various skin cancers. We have previously demonstrated that the human ortholog of the Arabidopsis thaliana constitutive photomorphogenesis 1 (COP1) protein, huCOP1, is expressed in keratinocytes in a UVB-regulated manner and is a negative regulator of p53 as a posttranslational modifier. However, it was not known whether huCOP1 plays a role in mediating the UVB-induced early transcriptional responses of human keratinocytes. In this study, we report that stable siRNA-mediated silencing of huCOP1 affects the UVB response of several genes within 2 h of irradiation, indicating that altered huCOP1 expression sensitizes the cells toward UVB. Pathway analysis identified a molecular network in which 13 of the 30 examined UVB-regulated genes were organized around three central proteins. Since the expression of the investigated genes was upregulated by UVB in the siCOP1 cell line, we hypothesize that huCOP1 is a repressor of the identified pathway. Several members of the network have been implicated previously in the pathogenesis of non-melanoma skin cancers; therefore, clarifying the role of huCOP1 in these skin diseases may have clinical relevance in the future.

  1. Laminarin modulates the chloroplast antioxidant system to enhance abiotic stress tolerance partially through the regulation of the defensin-like gene expression.

    PubMed

    Wu, Yi-Ru; Lin, Yi-Chen; Chuang, Huey-wen

    2016-06-01

    Algae wall polysaccharide, laminarin (Lam), has an established role on induction of plant disease resistance. In this study, application of Lam increased Arabidopsis fresh weight and enhanced tolerance to salt and heat stress by stabilizing chloroplast under adverse environment. Transcriptome analysis indicated that, in addition to induced a large number of genes associated with the host defense, genes involved in the regulation of abiotic stress tolerance mostly the heat stress response constituted the largest group of the up-regulated genes. Lam induced expression of IRT1, ZIP8, and copper transporters involved in transport of Fe, Zn, Cu ions associated with the activity of chloroplast antioxidant system. Lam also up-regulated genes involved in the synthesis of terpenoid, a plastidial-derived secondary metabolite with antioxidant activity. Overexpression of a Lam-induced defensin like 202 (DEFL202) resulted in increased chloroplast stability under salt stress and increased plant growth activity after heat stress. Expression of antioxidant enzymes including SOD and ascorbate peroxidase (APX), photosystem PsbA-D1 and ABA-dependent responsive to desiccation 22 (RD22) was induced to higher levels in the transgenic seedlings. In sum, our results suggest that Lam is an potent inducer for induction of chloroplastic antioxidant activity. Lam affect plant abiotic stress tolerance partially through regulation of the DEFL-mediated pathway.

  2. Comparative analysis of hepatocellular carcinoma and cirrhosis gene expression profiles.

    PubMed

    Jiang, Mingming; Zeng, Qingfang; Dai, Suiping; Liang, Huixia; Dai, Fengying; Xie, Xueling; Lu, Kunlin; Gao, Chunfang

    2017-01-01

    Gene expression data of hepatocellular carcinoma (HCC) was compared with that of cirrhosis (C) to identify critical genes in HCC. A total of five gene expression data sets were downloaded from Gene Expression Omnibus. HCC and healthy samples were combined as dataset HCC, whereas cirrhosis samples were included in dataset C. A network was constructed for dataset HCC with the package R for performing Weighted Gene Co‑expression Network Analysis. Modules were identified by cluster analysis with the packages flashClust and dynamicTreeCut. Hub genes were screened out by calculating connectivity. Functional annotations were assigned to the hub genes using the Database for Annotation, Visualization and Integration Discovery, and functional annotation networks were visualized with Cytoscape. Following the exclusion of outlier samples, 394 HCC samples and 47 healthy samples were included in dataset HCC and 233 cirrhosis samples were included in dataset C. A total of 6 modules were identified in the weighted gene co‑expression network of dataset HCC (blue, brown, turquoise, green, red and yellow). Modules blue, brown and turquoise had high preservation whereas module yellow exhibited the lowest preservation. These modules were associated with transcription, mitosis, cation transportation, cation homeostasis, secretion and regulation of cyclase activity. Various hub genes of module yellow were cytokines, including chemokine (C‑C motif) ligand 22 and interleukin‑19, which may be important in the development of HCC. Gene expression profiles of HCC were compared with those of cirrhosis and numerous critical genes were identified, which may contribute to the progression of HCC. Further studies on these genes may improve the understanding of HCC pathogenesis.

  3. Impact of apple polyphenols on GSTT2 gene expression, subsequent protection of DNA and modulation of proliferation using LT97 human colon adenoma cells.

    PubMed

    Miene, Claudia; Klenow, Stefanie; Veeriah, Selvaraju; Richling, Elke; Glei, Michael

    2009-10-01

    Apple extract (AE) enhances expression of glutathione S-transferases (e.g., GSTT2) in human colon cells (LT97). Therefore, aim of the present study was to identify functional consequences of GSTT2 induction by AE and to determine the relation of AE effects to isolated compounds. Polyphenol composition of AE was analyzed. LT97 cells were treated with AE or synthetic polyphenol mixture (SPM) under conditions that induced GSTT2, and challenged with GSTT2-2 substrate cumene hydroperoxide (CumOOH) to determine DNA damage using comet assay. Modulation of GSTT2 expression (real-time PCR) was reassessed, and the influence on cell proliferation and pro-oxidative potential of AE and SPM were assessed to understand additional mechanisms. Induction of GSTT2 by AE was accompanied by protection of LT97 cells from CumOOH-induced genotoxicity. Although SPM was unable to reflect AE-specific bioactivity related to GSTT2 modulation and anti-genotoxicity, inhibition of LT97 cell proliferation by SPM was comparable. Storage of AE caused changes in phenolic composition along with loss of activity regarding GSTT2 induction and amplified growth inhibition. At the applied concentrations, no H(2)O(2) formation was detectable with any of the substances. AE can protect against oxidatively induced DNA damage. Nevertheless, chemopreventive