Science.gov

Sample records for gene expression pathways

  1. Pathway network inference from gene expression data

    PubMed Central

    2014-01-01

    Background The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. PMID:25032889

  2. Pathway network inference from gene expression data.

    PubMed

    Ponzoni, Ignacio; Nueda, María; Tarazona, Sonia; Götz, Stefan; Montaner, David; Dussaut, Julieta; Dopazo, Joaquín; Conesa, Ana

    2014-01-01

    The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data.

  3. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer

    PubMed Central

    Myers, Jennifer S.; von Lersner, Ariana K.; Robbins, Charles J.; Sang, Qing-Xiang Amy

    2015-01-01

    Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The “transforming growth factor-beta signaling” and “Ran regulation of mitotic spindle formation” pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran) for investigation in prostate cancer pathogenesis. PMID:26683658

  4. Pathway level analysis of gene expression using singular value decomposition

    PubMed Central

    Tomfohr, John; Lu, Jun; Kepler, Thomas B

    2005-01-01

    Background A promising direction in the analysis of gene expression focuses on the changes in expression of specific predefined sets of genes that are known in advance to be related (e.g., genes coding for proteins involved in cellular pathways or complexes). Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation. In this article, we present a new method of this kind that operates by quantifying the level of 'activity' of each pathway in different samples. The activity levels, which are derived from singular value decompositions, form the basis for statistical comparisons and other applications. Results We demonstrate our approach using expression data from a study of type 2 diabetes and another of the influence of cigarette smoke on gene expression in airway epithelia. A number of interesting pathways are identified in comparisons between smokers and non-smokers including ones related to nicotine metabolism, mucus production, and glutathione metabolism. A comparison with results from the related approach, 'gene-set enrichment analysis', is also provided. Conclusion Our method offers a flexible basis for identifying differentially expressed pathways from gene expression data. The results of a pathway-based analysis can be complementary to those obtained from one more focused on individual genes. A web program PLAGE (Pathway Level Analysis of Gene Expression) for performing the kinds of analyses described here is accessible at . PMID:16156896

  5. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  6. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  7. Genes, environment and gene expression in colon tissue: a pathway approach to determining functionality.

    PubMed

    Slattery, Martha L; Pellatt, Daniel F; Wolff, Roger K; Lundgreen, Abbie

    2016-01-01

    Genetic and environmental factors have been shown to work together to alter cancer risk. In this study we evaluate previously identified gene and lifestyle interactions in a candidate pathway that were associated with colon cancer risk to see if these interactions altered gene expression. We analyzed non-tumor RNA-seq data from 144 colon cancer patients who had genotype, recent cigarette smoking, diet, body mass index (BMI), and recent aspirin/non-steroidal anti-inflammatory use data. Using a false discovery rate of 0.1, we evaluated differential gene expression between high and low levels of lifestyle exposure and genotypes using DESeq2. Thirteen pathway genes and 17 SNPs within those genes were associated with altered expression of other genes in the pathway. BMI, NSAIDs use and dietary components of the oxidative balance score (OBS) also were associated with altered gene expression. SNPs previously identified as interacting with these lifestyle factors, altered expression of pathway genes. NSAIDs interacted with 10 genes (15 SNPs) within those genes to alter expression of 28 pathway genes; recent cigarette smoking interacted with seven genes (nine SNPs) to alter expression of 27 genes. BMI interacted with FLT1, KDR, SEPN1, TERT, TXNRD2, and VEGFA to alter expression of eight genes. Three genes (five SNPs) interacted with OBS to alter expression of 12 genes. These data provide support for previously identified lifestyle and gene interactions associated with colon cancer in that they altered expression of key pathway genes. The need to consider lifestyle factors in conjunction with genetic factors is illustrated.

  8. Signalling pathways mediating type I interferon gene expression.

    PubMed

    Edwards, Michael R; Slater, Louise; Johnston, Sebastian L

    2007-09-01

    Type I interferon-alpha/beta play an essential role in immunity to viruses. While interferon-beta has been used as a model of a complex promoter, many of the signalling pathways leading to interferon-beta gene expression remain controversial. Recent milestones include the discovery of Toll-like receptors and RNA helicases that signal via a novel kinase complex composed of I kappa B kinase-iota/epsilon or TANK binding kinase-1. This review provides a timely summary of this rapidly expanding field, focusing specifically on the various viral RNA binding molecules and their associated signalling pathways.

  9. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    PubMed Central

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; Chen, Yi-Cheng; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders. PMID:25276823

  10. Expression data on liver metabolic pathway genes and proteins

    PubMed Central

    Raja Gopal Reddy, Mooli; Pavan Kumar, Chodisetti; Mahesh, Malleswarapu; Sravan Kumar, Manchiryala; Jeyakumar, Shanmugam M.

    2016-01-01

    Here, we present the expression data on various metabolic pathways of liver with special emphasize on lipid and carbohydrate metabolism and long chain polyunsaturated fatty acid (PUFA) synthesis, both at gene and protein levels. The data were obtained to understand the effect of vitamin A deficiency on the expression status (both gene and protein levels) of some of the key factors involved in lipogenesis, fatty acid oxidation, triglyceride secretion, long chain PUFA, resolvin D1 synthesis, glucose transport and glycogen synthesis of liver, using modern biology tools, such as quantitative real-time PCR (RT-PCR) and immunoblotting techniques. This data article provides the supporting evidence to the article “Vitamin A deficiency suppresses high fructose-induced triglyceride synthesis and elevates resolvin D1 levels” [1] and therefore, these data may be referred back, for comprehensive understanding and interpretations and for future studies. PMID:26909377

  11. Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques – Tampere Vascular Study

    PubMed Central

    Sulkava, Miska; Raitoharju, Emma; Levula, Mari; Seppälä, Ilkka; Lyytikäinen, Leo-Pekka; Mennander, Ari; Järvinen, Otso; Zeitlin, Rainer; Salenius, Juha-Pekka; Illig, Thomas; Klopp, Norman; Mononen, Nina; Laaksonen, Reijo; Kähönen, Mika; Oksala, Niku; Lehtimäki, Terho

    2017-01-01

    Cardiovascular diseases due to atherosclerosis are the leading cause of death globally. We aimed to investigate the potentially altered gene and pathway expression in advanced peripheral atherosclerotic plaques in comparison to healthy control arteries. Gene expression analysis was performed (Illumina HumanHT-12 version 3 Expression BeadChip) for 68 advanced atherosclerotic plaques (15 aortic, 29 carotid and 24 femoral plaques) and 28 controls (left internal thoracic artery (LITA)) from Tampere Vascular Study. Dysregulation of individual genes was compared to healthy controls and between plaques from different arterial beds and Ingenuity pathway analysis was conducted on genes with a fold change (FC) > ±1.5 and false discovery rate (FDR) < 0.05. 787 genes were significantly differentially expressed in atherosclerotic plaques. The most up-regulated genes were osteopontin and multiple MMPs, and the most down-regulated were cell death-inducing DFFA-like effector C and A (CIDEC, CIDEA) and apolipoprotein D (FC > 20). 156 pathways were differentially expressed in atherosclerotic plaques, mostly inflammation-related, especially related with leukocyte trafficking and signaling. In artery specific plaque analysis 50.4% of canonical pathways and 41.2% GO terms differentially expressed were in common for all three arterial beds. Our results confirm the inflammatory nature of advanced atherosclerosis and show novel pathway differences between different arterial beds. PMID:28128285

  12. Gene expression profiling of epithelial ovarian cancer reveals key genes and pathways associated with chemotherapy resistance.

    PubMed

    Zhang, M; Luo, S C

    2016-01-22

    The aim of this study is to analyze gene expression data to identify key genes and pathways associated with resistance to platinum-based chemotherapy in epithelial ovarian cancer (EOC) and to improve clinical treatment strategies. The gene expression data set was downloaded from Gene Expression Omnibus and included 12 chemotherapy-resistant EOC samples and 16 chemotherapy-sensitive EOC samples. A differential analysis was performed to screen out differentially expressed genes (DEGs). A functional enrichment analysis was conducted for the DEGs using the database for annotation, visualization, and integration discovery. A protein-protein interaction (PPI) network was constructed with information from the human protein reference database. Pathway-pathway interactions were determined with a test based on the hypergeometric distribution. A total of 1564 DEGs were identified in chemotherapy-sensitive EOC, including 654 upregulated genes and 910 downregulated genes. The top three upregulated genes were HIST1H3G, AKT3, and RTN3, while the top three downregulated genes were NBLA00301, TRIM62, and EPHA5. A Gene Ontology enrichment analysis showed that cell adhesion, biological adhesion, and intracellular signaling cascades were significantly enriched in the DEGs. A KEGG pathway enrichment analysis revealed that the calcium, mitogen-activated protein kinase, and B cell receptor signaling pathways were significantly over-represented in the DEGs. A PPI network containing 101 interactions was acquired. The top three hub genes were RAC1, CAV1, and BCL2. Five modules were identified from the PPI network. Taken together, these findings could advance the understanding of the molecular mechanisms underlying intrinsic chemotherapy resistance in EOC.

  13. Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis.

    PubMed

    Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas

    2017-01-21

    We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.

  14. Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis

    PubMed Central

    Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas

    2017-01-01

    We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues. PMID:28117714

  15. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    SciTech Connect

    Hermsen, Sanne A.B.; Pronk, Tessa E.; Brandhof, Evert-Jan van den; Ven, Leo T.M. van der; Piersma, Aldert H.

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  16. Insulin signal transduction pathways and insulin-induced gene expression.

    PubMed

    Keeton, Adam B; Amsler, Maggie O; Venable, Derwei Y; Messina, Joseph L

    2002-12-13

    Insulin regulates metabolic activity, gene transcription, and cell growth by modulating the activity of several intracellular signaling pathways. Insulin activation of one mitogen-activated protein kinase cascade, the MEK/ERK kinase cascade, is well described. However, the effect of insulin on the parallel p38 pathway is less well understood. The present work examines the effect of inhibiting the p38 signaling pathway by use of specific inhibitors, either alone or in combination with insulin, on the activation of ERK1/2 and on the regulation of gene transcription in rat hepatoma cells. Activation of ERK1/2 was induced by insulin and was dependent on the activation of MEK1, the kinase upstream of ERK in this pathway. Treatment of cells with p38 inhibitors also induced ERK1/2 activation/phosphorylation. The addition of p38 inhibitors followed by insulin addition resulted in a greater than additive activation of ERK1/2. The two genes studied, c-Fos and Pip92, are immediate-early genes that are dependent on the ERK1/2 pathway for insulin-regulated induction because the insulin effect was inhibited by pretreatment with a MEK1 inhibitor. The addition of p38 inhibitors induced transcription of both genes in a dose-dependent manner, and insulin stimulation of both genes was enhanced by prior treatment with p38 inhibitors. The ability of the p38 inhibitors to induce ERK1/2 and gene transcription, both alone and in combination with insulin, was abolished by prior inhibition of MEK1. These data suggest possible cross-talk between the p38 and ERK1/2 signaling pathways and a potential role of p38 in insulin signaling.

  17. Exploring the key genes and pathways of osteosarcoma with pulmonary metastasis using a gene expression microarray.

    PubMed

    Shi, Zhongju; Zhou, Hengxing; Pan, Bin; Lu, Lu; Wei, Zhijian; Shi, Linlin; Yao, Xue; Kang, Yi; Feng, Shiqing

    2017-09-21

    Osteosarcoma is a common and highly malignant tumour in children and teenagers that is characterized by drug resistance and high metastatic potential. Patients often develop pulmonary metastasis and have a low survival rate. However, the mechanistic basis for pulmonary metastasis remains unclear. To identify key gene and pathways associated with pulmonary metastasis of osteosarcoma, the authors downloaded the gene expression dataset GSE85537 and obtained the differentially expressed genes (DEGs) by analyzing high‑throughput gene expression in primary tumours and lung metastases. Subsequently, the authors performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses and a protein‑protein interaction (PPI) network was constructed and analyzed by Cytoscape software. In total, 2,493 genes were identified as DEGs. Of these, 485 genes (19.45%) were upregulated, and the remaining 2,008 genes (80.55%) were downregulated. The authors identified the predominant GO categories and KEGG pathways that were significantly over‑represented in the metastatic OS samples compared with the non‑metastatic OS samples. A PPI network was constructed, and the results indicated that ALB, EGFR, INS, IL6, CDH1, FYN, ERBB2, IL8, CXCL12 and RAC2 were the top 10 core genes. The enrichment analyses of the genes involved in the top three significant modules demonstrated that the DEGs were principally related to neuroactive ligand‑receptor interaction, the Rap1 signaling pathway, and protein digestion and absorption. Together, these data elucidated the molecular mechanisms of OS patients with pulmonary metastasis and provide potential therapeutic targets. However, further experimental studies are needed to confirm these results.

  18. Inferring pathway crosstalk networks using gene set co-expression signatures.

    PubMed

    Wang, Ting; Gu, Jin; Yuan, Jun; Tao, Ran; Li, Yanda; Li, Shao

    2013-07-01

    Constructing molecular interaction networks in cells is important for understanding the underlying mechanisms of biological processes. Except for single gene analysis, several gene set-based methods have been proposed to infer pathway crosstalk by analyzing large-scale gene expression data. But most of them take all pathway genes as a whole to infer the crosstalk. Biological evidence suggests that the pathway crosstalk usually occurs between some subsets rather than the whole sets of pathway genes. In this study, we propose a novel method, sGSCA (signature-based gene set co-expression analysis) which can use the co-expression correlations between subsets of pathway genes to infer the pathway crosstalk networks. The method applies sparse canonical correlation analysis (sCCA) to measure the pathway level co-expression and simultaneously obtain the subsets or signature genes that contribute to the co-expression of pathways. On simulated datasets, sGSCA can efficiently detect pathway crosstalk and the corresponding highly correlated signature genes. We applied sGSCA to two cancer gene expression datasets (one for hepatocellular cancer and the other for lung cancer). In the inferred networks, we found several important pathway crosstalks related to the cancers. The identified signature genes also show high enrichment for the cancer related genes. sGSCA can infer pathway crosstalk networks using large-scale gene expression data, and should be a useful tool for systematically studying the molecular mechanisms of complex diseases on both pathway and gene levels at the same time.

  19. A PSO-Based Approach for Pathway Marker Identification From Gene Expression Data.

    PubMed

    Mandal, Monalisa; Mondal, Jyotirmay; Mukhopadhyay, Anirban

    2015-09-01

    In this article, a new and robust pathway activity inference scheme is proposed from gene expression data using Particle Swarm Optimization (PSO). From microarray gene expression data, the corresponding pathway information of the genes are collected from a public database. For identifying the pathway markers, the expression values of each pathway consisting of genes, termed as pathway activity, are summarized. To measure the goodness of a pathway activity vector, t-score is widely used in the existing literature. The weakness of existing techniques for inferring pathway activity is that they intend to consider all the member genes of a pathway. But in reality, all the member genes may not be significant to the corresponding pathway. Therefore, those genes, which are responsible in the corresponding pathway, should be included only. Motivated by this, in the proposed method, using PSO, important genes with respect to each pathway are identified. The objective is to maximize the average t-score. For the pathway activities inferred from different percentage of significant pathways, the average absolute t -scores are plotted. In addition, the top 50% pathway markers are evaluated using 10-fold cross validation and its performance is compared with that of other existing techniques. Biological relevance of the results is also studied.

  20. Analysis of White Adipose Tissue Gene Expression Reveals CREB1 Pathway Altered in Huntington's Disease.

    PubMed

    McCourt, Andrew Christopher; Parker, Jennifer; Silajdžić, Edina; Haider, Salman; Sethi, Huma; Tabrizi, Sarah J; Warner, Thomas T; Björkqvist, Maria

    2015-01-01

    In addition to classical neurological symptoms, Huntington's disease (HD) is complicated by peripheral pathology and both the mutant gene and the protein are found in cells and tissues throughout the body. Despite the adipose tissue gene expression alterations described in HD mouse models, adipose tissue and its gene expression signature have not been previously explored in human HD. We investigated gene expression signatures in subcutaneous adipose tissue obtained from control subjects, premanifest HD gene carriers and manifest HD subjects with the aim to identify gene expression changes and signalling pathway alterations in adipose tissue relevant to HD. Gene expression was assessed using Affymetrix GeneChip® Human Gene 1.0 ST Array. Target genes were technically validated using real-time quantitative PCR and the expression signature was validated in an independent subject cohort. In subcutaneous adipose tissue, more than 500 genes were significantly different in premanifest HD subjects as compared to healthy controls. Pathway analysis suggests that the differentially expressed genes found here in HD adipose tissue are involved in fatty acid metabolism pathways, angiotensin signalling pathways and immune pathways. Transcription factor analysis highlights CREB1. Using RT-qPCR, we found that MAL2, AGTR2, COBL and the transcription factor CREB1 were significantly upregulated, with CREB1 and AGT also being significantly upregulated in a separate cohort. Distinct gene expression profiles can be seen in HD subcutaneous adipose tissue, with CREB1 highlighted as a key transcription factor.

  1. Gene expression analysis reveals the dysregulation of immune and metabolic pathways in Alzheimer's disease

    PubMed Central

    Li, Zhiyan; Xu, Panpan; Yao, Lifen

    2016-01-01

    In recent years, several pathway analyses of genome-wide association studies reported the involvement of metabolic and immune pathways in Alzheimer's disease (AD). Until now, the exact mechanisms of these pathways in AD are still unclear. Here, we conducted a pathway analysis of a whole genome AD case-control expression dataset (n=41, 25 AD cases and 16 controls) from the human temporal cortex tissue. Using the differently expressed AD genes, we identified significant KEGG pathways related to metabolism and immune processes. Using the up- and down- regulated AD gene list, we further found up-regulated AD gene were significantly enriched in immune and metabolic pathways. We further compare the immune and metabolic KEGG pathways from the expression dataset with those from previous GWAS datasets, and found that most of these pathways are shared in both GWAS and expression datasets. PMID:27732949

  2. Co-expressed Pathways DataBase for Tomato: a database to predict pathways relevant to a query gene.

    PubMed

    Narise, Takafumi; Sakurai, Nozomu; Obayashi, Takeshi; Ohta, Hiroyuki; Shibata, Daisuke

    2017-06-05

    Gene co-expression, the similarity of gene expression profiles under various experimental conditions, has been used as an indicator of functional relationships between genes, and many co-expression databases have been developed for predicting gene functions. These databases usually provide users with a co-expression network and a list of strongly co-expressed genes for a query gene. Several of these databases also provide functional information on a set of strongly co-expressed genes (i.e., provide biological processes and pathways that are enriched in these strongly co-expressed genes), which is generally analyzed via over-representation analysis (ORA). A limitation of this approach may be that users can predict gene functions only based on the strongly co-expressed genes. In this study, we developed a new co-expression database that enables users to predict the function of tomato genes from the results of functional enrichment analyses of co-expressed genes while considering the genes that are not strongly co-expressed. To achieve this, we used the ORA approach with several thresholds to select co-expressed genes, and performed gene set enrichment analysis (GSEA) applied to a ranked list of genes ordered by the co-expression degree. We found that internal correlation in pathways affected the significance levels of the enrichment analyses. Therefore, we introduced a new measure for evaluating the relationship between the gene and pathway, termed the percentile (p)-score, which enables users to predict functionally relevant pathways without being affected by the internal correlation in pathways. In addition, we evaluated our approaches using receiver operating characteristic curves, which concluded that the p-score could improve the performance of the ORA. We developed a new database, named Co-expressed Pathways DataBase for Tomato, which is available at http://cox-path-db.kazusa.or.jp/tomato . The database allows users to predict pathways that are relevant to a

  3. Signal transduction pathways that regulate CAB gene expression. Progress report

    SciTech Connect

    Chory, J.

    1993-12-31

    We have completed the initial genetic and phenotypic characterization of several classes of new mutants that affect CAB gene expression. The doc mutants (for dark overexpression of cab) are characterized by elevated levels of CAB gene expression in the dark; however, unlike the previously isolated de-etiolated mutants (also isolated in my lab), the doc mutants still appear etiolated. The doc alleles define 3 loci, each of which maps to a separate chromosome. The details of the mutant isolation scheme and the genetic and phenotypic description of these new mutants are described. The second class of mutants, the gun mutants (for genomes uncoupled) show accumulation of CAB mRNA in the absence of chloroplast gene expression and development. Thus, the normally tightly coordinated expression between the chloroplast and nuclear genes that encode chloroplast-destined proteins has been uncoupled. We have shown that the Arabidopsis HY3 locus encodes the type B phytochrome apoprotein gene and have characterized the phenotypes of null hy3 alleles to ascertain a role for this phytochrome in Arabidopsis development. We have also isolated and characterized a number of alleles of the phytochrome A gene.

  4. Harnessing the complexity of gene expression data from cancer: from single gene to structural pathway methods

    PubMed Central

    2012-01-01

    High-dimensional gene expression data provide a rich source of information because they capture the expression level of genes in dynamic states that reflect the biological functioning of a cell. For this reason, such data are suitable to reveal systems related properties inside a cell, e.g., in order to elucidate molecular mechanisms of complex diseases like breast or prostate cancer. However, this is not only strongly dependent on the sample size and the correlation structure of a data set, but also on the statistical hypotheses tested. Many different approaches have been developed over the years to analyze gene expression data to (I) identify changes in single genes, (II) identify changes in gene sets or pathways, and (III) identify changes in the correlation structure in pathways. In this paper, we review statistical methods for all three types of approaches, including subtypes, in the context of cancer data and provide links to software implementations and tools and address also the general problem of multiple hypotheses testing. Further, we provide recommendations for the selection of such analysis methods. Reviewers This article was reviewed by Arcady Mushegian, Byung-Soo Kim and Joel Bader. PMID:23227854

  5. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: individual gene expression and pathway regulation.

    PubMed

    Hermsen, Sanne A B; Pronk, Tessa E; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Piersma, Aldert H

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, d-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity.

  6. Identification of hub genes and pathways associated with retinoblastoma based on co-expression network analysis.

    PubMed

    Wang, Q L; Chen, X; Zhang, M H; Shen, Q H; Qin, Z M

    2015-12-08

    The objective of this paper was to identify hub genes and pathways associated with retinoblastoma using centrality analysis of the co-expression network and pathway-enrichment analysis. The co-expression network of retinoblastoma was constructed by weighted gene co-expression network analysis (WGCNA) based on differentially expressed (DE) genes, and clusters were obtained through the molecular complex detection (MCODE) algorithm. Degree centrality analysis of the co-expression network was performed to explore hub genes present in retinoblastoma. Pathway-enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Validation of hub gene expression in retinoblastoma was performed by reverse transcription-polymerase chain reaction (RT-PCR) analysis. The co-expression network based on 221 DE genes between retinoblastoma and normal controls consisted of 210 nodes and 3965 edges, and 5 clusters of the network were evaluated. By assessing the centrality analysis of the co-expression network, 21 hub genes were identified, such as SNORD115-41, RASSF2, and SNORD115-44. According to RT-PCR analysis, 16 of the 21 hub genes were differently expressed, including RASSF2 and CDCA7, and 5 were not differently expressed in retinoblastoma compared to normal controls. Pathway analysis showed that genes in 2 clusters were enriched in 3 pathways: purine metabolism, p53 signaling pathway, and melanogenesis. In this study, we successfully identified 16 hub genes and 3 pathways associated with retinoblastoma, which may be potential biomarkers for early detection and therapy for retinoblastoma.

  7. A search engine to identify pathway genes from expression data on multiple organisms

    PubMed Central

    Chen, Chunnuan; Weirauch, Matthew T; Powell, Corey C; Zambon, Alexander C; Stuart, Joshua M

    2007-01-01

    Background The completion of several genome projects showed that most genes have not yet been characterized, especially in multicellular organisms. Although most genes have unknown functions, a large collection of data is available describing their transcriptional activities under many different experimental conditions. In many cases, the coregulatation of a set of genes across a set of conditions can be used to infer roles for genes of unknown function. Results We developed a search engine, the Multiple-Species Gene Recommender (MSGR), which scans gene expression datasets from multiple organisms to identify genes that participate in a genetic pathway. The MSGR takes a query consisting of a list of genes that function together in a genetic pathway from one of six organisms: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana, and Helicobacter pylori. Using a probabilistic method to merge searches, the MSGR identifies genes that are significantly coregulated with the query genes in one or more of those organisms. The MSGR achieves its highest accuracy for many human pathways when searches are combined across species. We describe specific examples in which new genes were identified to be involved in a neuromuscular signaling pathway and a cell-adhesion pathway. Conclusion The search engine can scan large collections of gene expression data for new genes that are significantly coregulated with a pathway of interest. By integrating searches across organisms, the MSGR can identify pathway members whose coregulation is either ancient or newly evolved. PMID:17477880

  8. Characterization of Differentially Expressed Genes Involved in Pathways Associated with Gastric Cancer

    PubMed Central

    Li, Hao; Yu, Beiqin; Li, Jianfang; Su, Liping; Yan, Min; Zhang, Jun; Li, Chen; Zhu, Zhenggang; Liu, Bingya

    2015-01-01

    To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR) value was < 0.01, P-value was <0.01 and the fold change (FC) was >2. Subsequently, Gene Ontology (GO) categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease. PMID:25928635

  9. Hormonal Regulation and Expression Profiles of Wheat Genes Involved during Phytic Acid Biosynthesis Pathway

    PubMed Central

    Aggarwal, Sipla; Shukla, Vishnu; Bhati, Kaushal Kumar; Kaur, Mandeep; Sharma, Shivani; Singh, Anuradha; Mantri, Shrikant; Pandey, Ajay Kumar

    2015-01-01

    Phytic acid (PA) biosynthesis pathway genes were reported from multiple crop species. PA accumulation was enhanced during grain filling and at that time, hormones like Abscisic acid (ABA) and Gibberellic acid (GA3) interplay to control the process of seed development. Regulation of wheat PA pathway genes has not yet been reported in seeds. In an attempt to find the clues for the regulation by hormones, the promoter region of wheat PA pathway genes was analyzed for the presence of cis-elements. Multiple cis-elements of those known to be involved for ABA, GA3, salicylic acid (SA), and cAMP sensing were identified in the promoters of PA pathway genes. Eight genes (TaIMP, TaITPK1-4, TaPLC1, TaIPK2 and TaIPK1) involved in the wheat PA biosynthesis pathway were selected for the expression studies. The temporal expression response was studied in seeds treated with ABA and GA3 using quantitative real time PCR. Our results suggested that exogenous application of ABA induces few PA pathway genes in wheat grains. Comparison of expression profiles for PA pathway for GA3 and ABA suggested the antagonistic regulation of certain genes. Additionally, to reveal stress responses of wheat PA pathway genes, expression was also studied in the presence of SA and cAMP. Results suggested SA specific differential expression of few genes, whereas, overall repression of genes was observed in cAMP treated samples. This study is an effort to understand the regulation of PA biosynthesis genes in wheat. PMID:27135330

  10. Hormonal Regulation and Expression Profiles of Wheat Genes Involved during Phytic Acid Biosynthesis Pathway.

    PubMed

    Aggarwal, Sipla; Shukla, Vishnu; Bhati, Kaushal Kumar; Kaur, Mandeep; Sharma, Shivani; Singh, Anuradha; Mantri, Shrikant; Pandey, Ajay Kumar

    2015-06-11

    Phytic acid (PA) biosynthesis pathway genes were reported from multiple crop species. PA accumulation was enhanced during grain filling and at that time, hormones like Abscisic acid (ABA) and Gibberellic acid (GA₃) interplay to control the process of seed development. Regulation of wheat PA pathway genes has not yet been reported in seeds. In an attempt to find the clues for the regulation by hormones, the promoter region of wheat PA pathway genes was analyzed for the presence of cis-elements. Multiple cis-elements of those known to be involved for ABA, GA₃, salicylic acid (SA), and cAMP sensing were identified in the promoters of PA pathway genes. Eight genes (TaIMP, TaITPK1-4, TaPLC1, TaIPK2 and TaIPK1) involved in the wheat PA biosynthesis pathway were selected for the expression studies. The temporal expression response was studied in seeds treated with ABA and GA₃ using quantitative real time PCR. Our results suggested that exogenous application of ABA induces few PA pathway genes in wheat grains. Comparison of expression profiles for PA pathway for GA₃ and ABA suggested the antagonistic regulation of certain genes. Additionally, to reveal stress responses of wheat PA pathway genes, expression was also studied in the presence of SA and cAMP. Results suggested SA specific differential expression of few genes, whereas, overall repression of genes was observed in cAMP treated samples. This study is an effort to understand the regulation of PA biosynthesis genes in wheat.

  11. Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes

    PubMed Central

    Dadgostar, Hajir; Zarnegar, Brian; Hoffmann, Alexander; Qin, Xiao-Feng; Truong, Uyen; Rao, Govinda; Baltimore, David; Cheng, Genhong

    2002-01-01

    CD40/CD40L interaction is essential for multiple biological events in T dependent humoral immune responses, including B cell survival and proliferation, germinal center and memory B cell formation, and antibody isotype switching and affinity maturation. By using high-density microarrays, we examined gene expression in primary mouse B lymphocytes after multiple time points of CD40L stimulation. In addition to genes involved in cell survival and growth, which are also induced by other mitogens such as lipopolysaccharide, CD40L specifically activated genes involved in germinal center formation and T cell costimulatory molecules that facilitate T dependent humoral immunity. Next, by examining the roles of individual CD40-activated signal transduction pathways, we dissected the overall CD40-mediated response into genes independently regulated by the individual pathways or collectively by all pathways. We also found that gene down-regulation is a significant part of the overall response and that the p38 pathway plays an important role in this process, whereas the NF-κB pathway is important for the up-regulation of primary response genes. Our finding of overlapping independent control of gene expression modules by different pathways suggests, in principle, that distinct biological behaviors that depend on distinct gene expression subsets can be manipulated by targeting specific signaling pathways. PMID:11830667

  12. Altered Pathway Analyzer: A gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways

    PubMed Central

    Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh

    2017-01-01

    Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397

  13. A novel pathway-based distance score enhances assessment of disease heterogeneity in gene expression.

    PubMed

    Yan, Xiting; Liang, Anqi; Gomez, Jose; Cohn, Lauren; Zhao, Hongyu; Chupp, Geoffrey L

    2017-06-20

    Distance based unsupervised clustering of gene expression data is commonly used to identify heterogeneity in biologic samples. However, high noise levels in gene expression data and relatively high correlation between genes are often encountered, so traditional distances such as Euclidean distance may not be effective at discriminating the biological differences between samples. An alternative method to examine disease phenotypes is to use pre-defined biological pathways. These pathways have been shown to be perturbed in different ways in different subjects who have similar clinical features. We hypothesize that differences in the expressions of genes in a given pathway are more predictive of differences in biological differences compared to standard approaches and if integrated into clustering analysis will enhance the robustness and accuracy of the clustering method. To examine this hypothesis, we developed a novel computational method to assess the biological differences between samples using gene expression data by assuming that ontologically defined biological pathways in biologically similar samples have similar behavior. Pre-defined biological pathways were downloaded and genes in each pathway were used to cluster samples using the Gaussian mixture model. The clustering results across different pathways were then summarized to calculate the pathway-based distance score between samples. This method was applied to both simulated and real data sets and compared to the traditional Euclidean distance and another pathway-based clustering method, Pathifier. The results show that the pathway-based distance score performs significantly better than the Euclidean distance, especially when the heterogeneity is low and genes in the same pathways are correlated. Compared to Pathifier, we demonstrated that our approach achieves higher accuracy and robustness for small pathways. When the pathway size is large, by downsampling the pathways into smaller pathways, our

  14. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    PubMed

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer.

  15. MicroRNA expression, target genes, and signaling pathways in infants with a ventricular septal defect.

    PubMed

    Chai, Hui; Yan, Zhaoyuan; Huang, Ke; Jiang, Yuanqing; Zhang, Lin

    2017-08-18

    This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.

  16. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus

    PubMed Central

    Devi, Kamalakshi; Mishra, Surajit K.; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K.; Sen, Priyabrata

    2016-01-01

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop. PMID:26877149

  17. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus.

    PubMed

    Devi, Kamalakshi; Mishra, Surajit K; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K; Sen, Priyabrata

    2016-02-15

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop.

  18. A Pathway Based Classification Method for Analyzing Gene Expression for Alzheimer’s Disease Diagnosis

    PubMed Central

    Voyle, Nicola; Keohane, Aoife; Newhouse, Stephen; Lunnon, Katie; Johnston, Caroline; Soininen, Hilkka; Kloszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon; Hodges, Angela; Kiddle, Steven; Dobson, Richard JB.

    2015-01-01

    Background: Recent studies indicate that gene expression levels in blood may be able to differentiate subjects with Alzheimer’s disease (AD) from normal elderly controls and mild cognitively impaired (MCI) subjects. However, there is limited replicability at the single marker level. A pathway-based interpretation of gene expression may prove more robust. Objectives: This study aimed to investigate whether a case/control classification model built on pathway level data was more robust than a gene level model and may consequently perform better in test data. The study used two batches of gene expression data from the AddNeuroMed (ANM) and Dementia Case Registry (DCR) cohorts. Methods: Our study used Illumina Human HT-12 Expression BeadChips to collect gene expression from blood samples. Random forest modeling with recursive feature elimination was used to predict case/control status. Age and APOE ɛ4 status were used as covariates for all analysis. Results: Gene and pathway level models performed similarly to each other and to a model based on demographic information only. Conclusions: Any potential increase in concordance from the novel pathway level approach used here has not lead to a greater predictive ability in these datasets. However, we have only tested one method for creating pathway level scores. Further, we have been able to benchmark pathways against genes in datasets that had been extensively harmonized. Further work should focus on the use of alternative methods for creating pathway level scores, in particular those that incorporate pathway topology, and the use of an endophenotype based approach. PMID:26484910

  19. The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation.

    PubMed

    Rohde, John R; Cardenas, Maria E

    2003-01-01

    The Tor pathway mediates cell growth in response to nutrient availability, in part by inducing ribosomal protein (RP) gene expression via an unknown mechanism. Expression of RP genes coincides with recruitment of the Esa1 histone acetylase to RP gene promoters. We show that inhibition of Tor with rapamycin releases Esa1 from RP gene promoters and leads to histone H4 deacetylation without affecting promoter occupancy by Rap1 and Abf1. Genetic and biochemical evidence identifies Rpd3 as the major histone deacetylase responsible for reversing histone H4 acetylation at RP gene promoters in response to Tor inhibition by rapamycin or nutrient limitation. Our results illustrate that the Tor pathway links nutrient sensing with histone acetylation to control RP gene expression and cell growth.

  20. Expression of genes of the aflatoxin biosynthetic pathway in Aspergillus flavus isolates from keratitis.

    PubMed

    Leema, George; Chou, Duen-Suey; Jesudasan, Christadoss A Nelson; Geraldine, Pitchairaj; Thomas, Philip A

    2011-01-01

    To document transcriptional activation (expression) of key aflatoxin biosynthetic pathway genes in corneal isolates of Aspergillus flavus. The expression of certain regulatory (aflatoxin regulatory [aflR] and aflatoxin J [aflJ]) and structural (polyketide synthase acetate [pksA] and norsolonic acid-1 [nor-1]) genes in four corneal A. flavus isolates was evaluated by reverse transcription PCR. The aflatoxin-producing potential of each strain was determined by thin-layer chromatography and quantified by spectrophotometry. Four environmental isolates were used for comparison. The mean expression levels of these genes were compared in the corneal and environmental A. flavus isolates. In addition, the mean expression levels were also correlated with the aflatoxin production levels. All isolates expressed aflJ, nor-1, and pksA, while all but one expressed aflR. Overall, significantly higher mean expression levels occurred in aflatoxigenic than in non-aflatoxigenic corneal isolates. A significant positive correlation was noted between the mean expression level of aflR and the quantum of aflatoxin production by the corneal isolates. Essentially similar patterns of expression of these genes were noted in four environmental A. flavus isolates used for comparison. For the first time, isolates of A. flavus from human keratitis patients have been shown to express regulatory and structural aflatoxin biosynthetic pathway genes. Further studies are needed to clarify the precise influence of the corneal microenvironment on expression of these genes and aflatoxin production by A. flavus infecting the cornea.

  1. Differences in gene expression profiles and carcinogenesis pathways between colon and rectal cancer.

    PubMed

    Li, Jing Nan; Zhao, Li; Wu, Jun; Wu, Bin; Yang, Hong; Zhang, Heng Hui; Qian, Jia Ming

    2012-01-01

    Colon cancer is more common in the USA and Europe than that in China, for reasons that are unclear. The aim of this study was to investigate the differences in gene expression profiles and carcinogenesis pathways between colon and rectal cancer. Expression profiling of primary tumor tissues from 12 colon and 12 rectal cancers was performed using oligonucleotide microarray analysis. All samples were strictly matched by clinical features. Bioinformatic analyses such as the Kyoto Encyclopedia of Genes and Genomes were used to identify genes and pathways specifically associated with colon or rectal cancers. A total of 824 genes were differentially expressed in colon and rectal cancers. All differential gene interactions in the Signal-Net were analyzed. More genes were differentially expressed and included in the Signal-Net for rectal than colon cancer. Of the genes differentially expressed between colon and rectal cancer, S100P, the Reg family, ACTN1, CAMK2G and ACAT1 were the most significantly altered. Genes involved in the cell cycle pathway were present in rectal and colon cancers, but were more important in rectal cancer. The p53 and metabolic signaling pathways were significantly different in colon and rectal cancers. Gene expression profiles differed between colon and rectal cancer, with metabolic pathways being more important in rectal cancer. The oncogenesis of rectal cancer may be more complex than that of colon cancer. Some genes could be new biomarkers for distinguishing between these two cancers. © 2011 The Authors. Journal of Digestive Diseases © 2011 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Blackwell Publishing Asia Pty Ltd.

  2. GRAPE: a pathway template method to characterize tissue-specific functionality from gene expression profiles.

    PubMed

    Klein, Michael I; Stern, David F; Zhao, Hongyu

    2017-06-26

    Personalizing treatment regimes based on gene expression profiles of individual tumors will facilitate management of cancer. Although many methods have been developed to identify pathways perturbed in tumors, the results are often not generalizable across independent datasets due to the presence of platform/batch effects. There is a need to develop methods that are robust to platform/batch effects and able to identify perturbed pathways in individual samples. We present Gene-Ranking Analysis of Pathway Expression (GRAPE) as a novel method to identify abnormal pathways in individual samples that is robust to platform/batch effects in gene expression profiles generated by multiple platforms. GRAPE first defines a template consisting of an ordered set of pathway genes to characterize the normative state of a pathway based on the relative rankings of gene expression levels across a set of reference samples. This template can be used to assess whether a sample conforms to or deviates from the typical behavior of the reference samples for this pathway. We demonstrate that GRAPE performs well versus existing methods in classifying tissue types within a single dataset, and that GRAPE achieves superior robustness and generalizability across different datasets. A powerful feature of GRAPE is the ability to represent individual gene expression profiles as a vector of pathways scores. We present applications to the analyses of breast cancer subtypes and different colonic diseases. We perform survival analysis of several TCGA subtypes and find that GRAPE pathway scores perform well in comparison to other methods. GRAPE templates offer a novel approach for summarizing the behavior of gene-sets across a collection of gene expression profiles. These templates offer superior robustness across distinct experimental batches compared to existing methods. GRAPE pathway scores enable identification of abnormal gene-set behavior in individual samples using a non-competitive approach that

  3. Recreational music-making alters gene expression pathways in patients with coronary heart disease

    PubMed Central

    Bittman, Barry; Croft, Daniel T.; Brinker, Jeannie; van Laar, Ryan; Vernalis, Marina N.; Ellsworth, Darrell L.

    2013-01-01

    Background Psychosocial stress profoundly impacts long-term cardiovascular health through adverse effects on sympathetic nervous system activity, endothelial dysfunction, and atherosclerotic development. Recreational Music Making (RMM) is a unique stress amelioration strategy encompassing group music-based activities that has great therapeutic potential for treating patients with stress-related cardiovascular disease. Material/Methods Participants (n=34) with a history of ischemic heart disease were subjected to an acute time-limited stressor, then randomized to RMM or quiet reading for one hour. Peripheral blood gene expression using GeneChip® Human Genome U133A 2.0 arrays was assessed at baseline, following stress, and after the relaxation session. Results Full gene set enrichment analysis identified 16 molecular pathways differentially regulated (P<0.005) during stress that function in immune response, cell mobility, and transcription. During relaxation, two pathways showed a significant change in expression in the control group, while 12 pathways governing immune function and gene expression were modulated among RMM participants. Only 13% (2/16) of pathways showed differential expression during stress and relaxation. Conclusions Human stress and relaxation responses may be controlled by different molecular pathways. Relaxation through active engagement in Recreational Music Making may be more effective than quiet reading at altering gene expression and thus more clinically useful for stress amelioration. PMID:23435350

  4. Recreational Music-Making alters gene expression pathways in patients with coronary heart disease.

    PubMed

    Bittman, Barry; Croft, Daniel T; Brinker, Jeannie; van Laar, Ryan; Vernalis, Marina N; Ellsworth, Darrell L

    2013-02-25

    Psychosocial stress profoundly impacts long-term cardiovascular health through adverse effects on sympathetic nervous system activity, endothelial dysfunction, and atherosclerotic development. Recreational Music Making (RMM) is a unique stress amelioration strategy encompassing group music-based activities that has great therapeutic potential for treating patients with stress-related cardiovascular disease. Participants (n=34) with a history of ischemic heart disease were subjected to an acute time-limited stressor, then randomized to RMM or quiet reading for one hour. Peripheral blood gene expression using GeneChip® Human Genome U133A 2.0 arrays was assessed at baseline, following stress, and after the relaxation session. Full gene set enrichment analysis identified 16 molecular pathways differentially regulated (P<0.005) during stress that function in immune response, cell mobility, and transcription. During relaxation, two pathways showed a significant change in expression in the control group, while 12 pathways governing immune function and gene expression were modulated among RMM participants. Only 13% (2/16) of pathways showed differential expression during stress and relaxation. Human stress and relaxation responses may be controlled by different molecular pathways. Relaxation through active engagement in Recreational Music Making may be more effective than quiet reading at altering gene expression and thus more clinically useful for stress amelioration.

  5. Impairment of the ubiquitin-proteasome pathway in RPE alters the expression of inflammation related genes

    USDA-ARS?s Scientific Manuscript database

    The ubiquitin-proteasome pathway (UPP) plays an important role in regulating gene expression. Retinal pigment epithelial cells (RPE) are a major source of ocular inflammatory cytokines. In this work we determined the relationship between impairment of the UPP and expression of inflammation-related f...

  6. Pathways enrichment analysis for differentially expressed genes in squamous lung cancer.

    PubMed

    Qian, Liqiang; Luo, Qingquan; Zhao, Xiaojing; Huang, Jia

    2014-01-01

    Squamous lung cancer (SQLC) is a common type of lung cancer, but its oncogenesis mechanism is not so clear. The aim of this study was to screen the potential pathways changed in SQLC and elucidate the mechanism of it. Published microarray data of GSE3268 series was downloaded from Gene Expression Omnibus (GEO). Significance analysis of microarrays was performed using software R, and differentially expressed genes (DEGs) were harvested. The functions and pathways of DEGs were mapped in Gene Otology and KEGG pathway database, respectively. A total of 2961 genes were filtered as DEGs between normal and SQLC cells. Cell cycle and metabolism were the mainly changed functions of SQLC cells. Meanwhile genes such as MCM, RFC, FEN1, and POLD may induce SQLC through DNA replication pathway, and genes such as PTTG1, CCNB1, CDC6, and PCNA may be involved in SQLC through cell cycle pathway. It is demonstrated that pathway analysis is useful in the identification of target genes in SQLC.

  7. Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling

    PubMed Central

    Barr, T.L.; Conley, Y.; Ding, J.; Dillman, A.; Warach, S.; Singleton, A.; Matarin, M.

    2010-01-01

    Objective: The objective of this study was to provide insight into the molecular mechanisms of acute ischemic cerebrovascular syndrome (AICS) through gene expression profiling and pathway analysis. Methods: Peripheral whole blood samples were collected from 39 MRI-diagnosed patients with AICS and 25 nonstroke control subjects ≥18 years of age. Total RNA was extracted from whole blood stabilized in Paxgene RNA tubes, amplified, and hybridized to Illumina HumanRef-8v2 bead chips. Gene expression was compared in a univariate manner between stroke patients and control subjects using t test in GeneSpring. The significant genes were tested in a logistic regression model controlling for age, hypertension, and dyslipidemia. Inflation of type 1 error was corrected by Bonferroni and Ingenuity Systems Pathway analysis was performed. Validation was performed by QRT-PCR using Taqman gene expression assays. Results: A 9-gene profile was identified in the whole blood of ischemic stroke patients using gene expression profiling. Five of these 9 genes were identified in a previously published expression profiling study of stroke and are therefore likely biomarkers of stroke. Pathway analysis revealed toll-like receptor signaling as a highly significant canonical pathway present in the peripheral whole blood of patients with AICS. Conclusions: Our study highlights the relevance of the innate immune system through toll-like receptor signaling as a mediator of response to ischemic stroke and supports the claim that gene expression profiling can be used to identify biomarkers of ischemic stroke. Further studies are needed to validate and refine these biomarkers for their diagnostic potential. GLOSSARY AICS = acute ischemic cerebrovascular syndrome; BBB = blood–brain barrier; IPA = Ingenuity Systems Pathway analysis; PBMC = peripheral blood mononuclear cell; rtPA = recombinant tissue plasminogen activator; TLR = toll-like receptor. PMID:20837969

  8. The DAF-7 TGF-β signaling pathway regulates chemosensory receptor gene expression in C. elegans

    PubMed Central

    Nolan, Katherine M.; Sarafi-Reinach, Trina R.; Horne, Jennifer G.; Saffer, Adam M.; Sengupta, Piali

    2002-01-01

    Regulation of chemoreceptor gene expression in response to environmental or developmental cues provides a mechanism by which animals can alter their sensory responses. Here we demonstrate a role for the daf-7 TGF-β pathway in the regulation of expression of a subset of chemoreceptor genes in Caenorhabditis elegans. We describe a novel role of this pathway in maintaining receptor gene expression in the adult and show that the DAF-4 type II TGF-β receptor functions cell-autonomously to modulate chemoreceptor expression. We also find that the alteration of receptor gene expression in the ASI chemosensory neurons by environmental signals, such as levels of a constitutively produced pheromone, may be mediated via a DAF-7-independent pathway. Receptor gene expression in the ASI and ASH sensory neurons appears to be regulated via distinct mechanisms. Our results suggest that the expression of individual chemoreceptor genes in C. elegans is subject to multiple modes of regulation, thereby ensuring that animals exhibit the responses most appropriate for their developmental stage and environmental conditions. PMID:12464635

  9. Pathway-Informed Classification System (PICS) for Cancer Analysis Using Gene Expression Data

    PubMed Central

    Young, Michael R; Craft, David L

    2016-01-01

    We introduce Pathway-Informed Classification System (PICS) for classifying cancers based on tumor sample gene expression levels. PICS is a computational method capable of expeditiously elucidating both known and novel biological pathway involvement specific to various cancers and uses that learned pathway information to separate patients into distinct classes. The method clearly separates a pan-cancer dataset by tissue of origin and also sub-classifies individual cancer datasets into distinct survival classes. Gene expression values are collapsed into pathway scores that reveal which biological activities are most useful for clustering cancer cohorts into subtypes. Variants of the method allow it to be used on datasets that do and do not contain noncancerous samples. Activity levels of all types of pathways, broadly grouped into metabolic, cellular processes and signaling, and immune system, are useful for separating the pan-cancer cohort. In the clustering of specific cancer types, certain pathway types become more valuable depending on the site being studied. For lung cancer, signaling pathways dominate; for pancreatic cancer, signaling and metabolic pathways dominate; and for melanoma, immune system pathways are the most useful. This work suggests the utility of pathway-level genomic analysis and points in the direction of using pathway classification for predicting the efficacy and side effects of drugs and radiation. PMID:27486299

  10. Crosstalk pathway inference using topological information and biclustering of gene expression data.

    PubMed

    Dussaut, Julieta S; Gallo, Cristian A; Cecchini, Rocío L; Carballido, Jessica A; Ponzoni, Ignacio

    2016-12-01

    Detection of crosstalks among pathways is a challenging task, which requires the identification of different types of interactions associated with cellular processes. A common strategy used in bioinformatics consists in extrapolating pathway associations from the pairwise analysis of some genes related to them, using gene expression data and topological information. PET, the method proposed in this paper, goes a step further by incorporating a strategy for the detection of correlation across conditions between differentially expressed genes based on biclustering analysis. In order to evaluate the performance of this new approach, a comparison with two recently published algorithms was carried out. The methods were contrasted in the inference of pathway associations from Alzheimer disease datasets, where the new proposal presents a higher crosstalk discoveries' rate. Finally, the analysis of the biological relevance of the pathway associations inferred by PET has shown the soundness of the extracted knowledge.

  11. Silent no more: Endogenous small RNA pathways promote gene expression.

    PubMed

    Wedeles, Christopher J; Wu, Monica Z; Claycomb, Julie M

    2014-01-01

    Endogenous small RNA pathways related to RNA interference (RNAi) play a well-documented role in protecting host genomes from the invasion of foreign nucleic acids. In C. elegans, the PIWI type Argonaute, PRG-1, through an association with 21U-RNAs, mediates a genome surveillance process by constantly scanning the genome for potentially deleterious invading elements. Upon recognition of foreign nucleic acids, PRG-1 initiates a cascade of cytoplasmic and nuclear events that results in heritable epigenetic silencing of these transcripts and their coding genomic loci. If the PRG-1/21U-RNA genome surveillance pathway has the capacity to target most of the C. elegans transcriptome, what mechanisms exist to protect endogenous transcripts from being silenced by this pathway? In this commentary, we discuss three recent publications that implicate the CSR-1 small RNA pathway in the heritable activation of germline transcripts, propose a model as to why not all epialleles behave similarly, and touch on the practical implications of these findings.

  12. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure.

    PubMed

    Thomas, Reuben; Hubbard, Alan E; McHale, Cliona M; Zhang, Luoping; Rappaport, Stephen M; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z; Jinot, Jennifer; Sonawane, Babasaheb R; Smith, Martyn T

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from <1 ppm to >10 ppm) compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering) exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings.

  13. Characterization of Changes in Gene Expression and Biochemical Pathways at Low Levels of Benzene Exposure

    PubMed Central

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from <1 ppm to >10 ppm) compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering) exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings. PMID:24786086

  14. Cloning and Expression Analysis of MEP Pathway Enzyme-encoding Genes in Osmanthus fragrans

    PubMed Central

    Xu, Chen; Li, Huogeng; Yang, Xiulian; Gu, Chunsun; Mu, Hongna; Yue, Yuanzheng; Wang, Lianggui

    2016-01-01

    The 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway is responsible for the biosynthesis of many crucial secondary metabolites, such as carotenoids, monoterpenes, plastoquinone, and tocopherols. In this study, we isolated and identified 10 MEP pathway genes in the important aromatic plant sweet osmanthus (Osmanthus fragrans). Multiple sequence alignments revealed that 10 MEP pathway genes shared high identities with other reported proteins. The genes showed distinctive expression profiles in various tissues, or at different flower stages and diel time points. The qRT-PCR results demonstrated that these genes were highly expressed in inflorescences, which suggested a tissue-specific transcript pattern. Our results also showed that OfDXS1, OfDXS2, and OfHDR1 had a clear diurnal oscillation pattern. The isolation and expression analysis provides a strong foundation for further research on the MEP pathway involved in gene function and molecular evolution, and improves our understanding of the molecular mechanism underlying this pathway in plants. PMID:27690108

  15. Characterization of gene expression and activated signaling pathways in solid-pseudopapillary neoplasm of pancreas.

    PubMed

    Park, Minhee; Kim, Minhyung; Hwang, Daehee; Park, Misun; Kim, Won Kyu; Kim, Sang Kyum; Shin, Jihye; Park, Eun Sung; Kang, Chang Moo; Paik, Young-Ki; Kim, Hoguen

    2014-04-01

    Solid-pseudopapillary neoplasm is an uncommon pancreatic tumor with distinct clinicopathologic features. Solid-pseudopapillary neoplasms are characterized by mutations in exon 3 of CTNNB1. However, little is known about the gene and microRNA expression profiles of solid-pseudopapillary neoplasms. Thus, we sought to characterize solid-pseudopapillary neoplasm-specific gene expression and identify the signaling pathways activated in these tumors. Comparisons of gene expression in solid-pseudopapillary neoplasm to pancreatic ductal carcinomas, neuroendocrine tumors, and non-neoplastic pancreatic tissues identified solid-pseudopapillary neoplasm-specific mRNA and microRNA profiles. By analyzing 1686 (1119 upregulated and 567 downregulated) genes differentially expressed in solid-pseudopapillary neoplasm, we found that the Wnt/β-catenin, Hedgehog, and androgen receptor signaling pathways, as well as genes involved in epithelial mesenchymal transition, are activated in solid-pseudopapillary neoplasms. We validated these results experimentally by assessing the expression of β-catenin, WIF-1, GLI2, androgen receptor, and epithelial-mesenchymal transition-related markers with western blotting and immunohistochemistry. Our analysis also revealed 17 microRNAs, especially the miR-200 family and miR-192/215, closely associated with the upregulated genes associated with the three pathways activated in solid-pseudopapillary neoplasm and epithelial mesenchymal transition. Our results provide insight into the molecular mechanisms underlying solid-pseudopapillary neoplasm tumorigenesis and its characteristic less epithelial cell differentiation than the other common pancreatic tumors.

  16. Pathway and gene ontology based analysis of gene expression in a rat model of cerebral ischemic tolerance.

    PubMed

    Feng, Zheng; Davis, Daniel P; Sásik, Roman; Patel, Hemal H; Drummond, John C; Patel, Piyush M

    2007-10-26

    Ischemic tolerance is a phenomenon whereby a sublethal ischemic insult [ischemic preconditioning (IPC)] provides robust protection against subsequent lethal ischemia. Activation of N-methyl-D-aspartate (NMDA) receptors and subsequent new gene transcription are required for tolerance. We utilized the NMDA antagonist, MK801, prior to the IPC stimulus to separate candidate genes from epiphenomenona. Rats were divided into four groups: vehicle/IPC (preconditioned), MK801/IPC (attenuated preconditioning), vehicle/sham (non-preconditioned), and MK801/sham (non-preconditioned). Hippocampi (5/group/time point) were harvested immediately after ischemia as well as 1, 4, and 24 h post-ischemia to profile gene expression patterns using microarray analyses. Extracted mRNAs were pooled and subsequently hybridized to Affymetrix arrays. In addition, groups of rats were sacrificed for Western blot analysis and histological studies. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology (GO) analyses were used to identify functionally related groups of genes whose modulation was statistically significant, while hierarchical cluster analysis was used to visualize the fold expression within these groups. Significantly modulated pathways included: MAP kinase signaling pathway, Toll receptor pathway, TGF-beta signaling pathways, and pathways associated with ribosome function and oxidative phosphorylation. Our data suggest that the tolerant brain responds to subsequent ischemic stress by partially downregulating inflammatory and upregulating protein synthesis and energy metabolism pathways.

  17. Evidence of dynamically dysregulated gene expression pathways in hyperresponsive B cells from African American lupus patients.

    PubMed

    Dozmorov, Igor; Dominguez, Nicolas; Sestak, Andrea L; Robertson, Julie M; Harley, John B; James, Judith A; Guthridge, Joel M

    2013-01-01

    Recent application of gene expression profiling to the immune system has shown a great potential for characterization of complex regulatory processes. It is becoming increasingly important to characterize functional systems through multigene interactions to provide valuable insights into differences between healthy controls and autoimmune patients. Here we apply an original systematic approach to the analysis of changes in regulatory gene interconnections between in Epstein-Barr virus transformed hyperresponsive B cells from SLE patients and normal control B cells. Both traditional analysis of differential gene expression and analysis of the dynamics of gene expression variations were performed in combination to establish model networks of functional gene expression. This Pathway Dysregulation Analysis identified known transcription factors and transcriptional regulators activated uniquely in stimulated B cells from SLE patients.

  18. Evidence of Dynamically Dysregulated Gene Expression Pathways in Hyperresponsive B Cells from African American Lupus Patients

    PubMed Central

    Dozmorov, Igor; Dominguez, Nicolas; Sestak, Andrea L.; Robertson, Julie M.; Harley, John B.; James, Judith A.; Guthridge, Joel M.

    2013-01-01

    Recent application of gene expression profiling to the immune system has shown a great potential for characterization of complex regulatory processes. It is becoming increasingly important to characterize functional systems through multigene interactions to provide valuable insights into differences between healthy controls and autoimmune patients. Here we apply an original systematic approach to the analysis of changes in regulatory gene interconnections between in Epstein-Barr virus transformed hyperresponsive B cells from SLE patients and normal control B cells. Both traditional analysis of differential gene expression and analysis of the dynamics of gene expression variations were performed in combination to establish model networks of functional gene expression. This Pathway Dysregulation Analysis identified known transcription factors and transcriptional regulators activated uniquely in stimulated B cells from SLE patients. PMID:23977035

  19. Computational identification of altered metabolism using gene expression and metabolic pathways.

    PubMed

    Nam, Hojung; Lee, Jinwon; Lee, Doheon

    2009-07-01

    Understanding altered metabolism is an important issue because altered metabolism is often revealed as a cause or an effect in pathogenesis. It has also been shown to be an important factor in the manipulation of an organism's metabolism in metabolic engineering. Unfortunately, it is not yet possible to measure the concentration levels of all metabolites in the genome-wide scale of a metabolic network; consequently, a method that infers the alteration of metabolism is beneficial. The present study proposes a computational method that identifies genome-wide altered metabolism by analyzing functional units of KEGG pathways. As control of a metabolic pathway is accomplished by altering the activity of at least one rate-determining step enzyme, not all gene expressions of enzymes in the pathway demonstrate significant changes even if the pathway is altered. Therefore, we measure the alteration levels of a metabolic pathway by selectively observing expression levels of significantly changed genes in a pathway. The proposed method was applied to two strains of Saccharomyces cerevisiae gene expression profiles measured in very high-gravity (VHG) fermentation. The method identified altered metabolic pathways whose properties are related to ethanol and osmotic stress responses which had been known to be observed in VHG fermentation because of the high sugar concentration in growth media and high ethanol concentration in fermentation products. With the identified altered pathways, the proposed method achieved best accuracy and sensitivity rates for the Red Star (RS) strain compared to other three related studies (gene-set enrichment analysis (GSEA), significance analysis of microarray to gene set (SAM-GS), reporter metabolite), and for the CEN.PK 113-7D (CEN) strain, the proposed method and the GSEA method showed comparably similar performances.

  20. Meta-Analysis of Gene Expression Profiles in Acute Promyelocytic Leukemia Reveals Involved Pathways

    PubMed Central

    Jalili, Mahdi; Salehzadeh-Yazdi, Ali; Mohammadi, Saeed; Yaghmaie, Marjan; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran

    2017-01-01

    Background: Acute promyelocytic leukemia (APL) is a unique subtype of acute leukemia. APL is a curable disease; however, drug resistance, early mortality, disease relapse and treatment-related complications remain challenges in APL patient management. One issue underlying these challenges is that the molecular mechanisms of the disease are not sufficiently understood. Materials and Methods: In this study, we performed a meta-analysis of gene expression profiles derived from microarray experiments and explored the background of disease by functional and pathway analysis. Results: Our analysis revealed a gene signature with 406 genes that are up or down-regulated in APL. The pathway analysis determined that MAPK pathway and its involved elements such as JUN gene and AP-1 play important roles in APL pathogenesis along with insulin-like growth factor–binding protein-7. Conclusion: The results of this meta-analysis could be useful for developing more effective therapy strategies and new targets for diagnosis and drugs. PMID:28286608

  1. Gene expression profiling and pathway network analysis of hepatic metabolic enzymes targeted by baicalein.

    PubMed

    Qin, Si; Chen, Jihua; Tanigawa, Shunsuke; Hou, De-Xing

    2012-03-06

    Baicalein is a flavone originally isolated from the roots of traditional Chinese medicinal herb, Scutellaria baicalensis, which has been proved as a promising chemopreventive compound for many chronic human diseases. The present study aimed to clarify the molecular mechanism targeted by baicalein. Gene expression profiling of HepG2 cells treated with baicalein was carried out, using the Affymetrix 42K oligonucleotide microarray in the present study. Microarray data analyzed by Ingenuity Pathway Analysis (IPA), further study performed by real time PCR, reporter gene assay, and Western blot. Among total 42K gene probes, baicalein treatment up-regulated the signals of 440 gene probes (1.04% of total gene probes) and down-regulated signals of 254 gene probes (0.6% of total gene probes) by ≥2-fold. These genes were categorized into 35 groups and hit for biological processes, molecular functions, and signaling pathways. The network and pathway analyses of these data further revealed that an Nrf2 (nuclear factor-erythroid 2 p45-related factor 2)-mediated ARE (antioxidant response element) pathway is involved in baicalein-induced gene expression of hepatic metabolic enzymes. The representative enzymes involved in Nrf2/ARE pathway were further confirmed at mRNA level by real time PCR and at protein level by Western blot analysis. Moreover, the ARE-reporter gene assay demonstrated that baicalein stimulated Nrf2-mediated ARE transactivation. Our results provide a comprehensive data for understanding the hepatic metabolism, bioactive role and the molecular mechanisms of baicalein. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways.

    PubMed

    Pey, Jon; Valgepea, Kaspar; Rubio, Angel; Beasley, John E; Planes, Francisco J

    2013-12-08

    The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.

  3. Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways

    PubMed Central

    2013-01-01

    Background The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. Results We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. Conclusions A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli. PMID:24314206

  4. Macrophage Gene Expression Associated with Remodeling of the Prepartum Rat Cervix: Microarray and Pathway Analyses

    PubMed Central

    Dobyns, Abigail E.; Goyal, Ravi; Carpenter, Lauren Grisham; Freeman, Tom C.; Longo, Lawrence D.; Yellon, Steven M.

    2015-01-01

    As the critical gatekeeper for birth, prepartum remodeling of the cervix is associated with increased resident macrophages (Mφ), proinflammatory processes, and extracellular matrix degradation. This study tested the hypothesis that expression of genes unique to Mφs characterizes the prepartum from unremodeled nonpregnant cervix. Perfused cervix from prepartum day 21 postbreeding (D21) or nonpregnant (NP) rats, with or without Mφs, had RNA extracted and whole genome microarray analysis performed. By subtractive analyses, expression of 194 and 120 genes related to Mφs in the cervix from D21 rats were increased and decreased, respectively. In both D21 and NP groups, 158 and 57 Mφ genes were also more or less up- or down-regulated, respectively. Mφ gene expression patterns were most strongly correlated within groups and in 5 major clustering patterns. In the cervix from D21 rats, functional categories and canonical pathways of increased expression by Mφ gene related to extracellular matrix, cell proliferation, differentiation, as well as cell signaling. Pathways were characteristic of inflammation and wound healing, e.g., CD163, CD206, and CCR2. Signatures of only inflammation pathways, e.g., CSF1R, EMR1, and MMP12 were common to both D21 and NP groups. Thus, a novel and complex balance of Mφ genes and clusters differentiated the degraded extracellular matrix and cellular genomic activities in the cervix before birth from the unremodeled state. Predicted Mφ activities, pathways, and networks raise the possibility that expression patterns of specific genes characterize and promote prepartum remodeling of the cervix for parturition at term and with preterm labor. PMID:25811906

  5. Macrophage gene expression associated with remodeling of the prepartum rat cervix: microarray and pathway analyses.

    PubMed

    Dobyns, Abigail E; Goyal, Ravi; Carpenter, Lauren Grisham; Freeman, Tom C; Longo, Lawrence D; Yellon, Steven M

    2015-01-01

    As the critical gatekeeper for birth, prepartum remodeling of the cervix is associated with increased resident macrophages (Mφ), proinflammatory processes, and extracellular matrix degradation. This study tested the hypothesis that expression of genes unique to Mφs characterizes the prepartum from unremodeled nonpregnant cervix. Perfused cervix from prepartum day 21 postbreeding (D21) or nonpregnant (NP) rats, with or without Mφs, had RNA extracted and whole genome microarray analysis performed. By subtractive analyses, expression of 194 and 120 genes related to Mφs in the cervix from D21 rats were increased and decreased, respectively. In both D21 and NP groups, 158 and 57 Mφ genes were also more or less up- or down-regulated, respectively. Mφ gene expression patterns were most strongly correlated within groups and in 5 major clustering patterns. In the cervix from D21 rats, functional categories and canonical pathways of increased expression by Mφ gene related to extracellular matrix, cell proliferation, differentiation, as well as cell signaling. Pathways were characteristic of inflammation and wound healing, e.g., CD163, CD206, and CCR2. Signatures of only inflammation pathways, e.g., CSF1R, EMR1, and MMP12 were common to both D21 and NP groups. Thus, a novel and complex balance of Mφ genes and clusters differentiated the degraded extracellular matrix and cellular genomic activities in the cervix before birth from the unremodeled state. Predicted Mφ activities, pathways, and networks raise the possibility that expression patterns of specific genes characterize and promote prepartum remodeling of the cervix for parturition at term and with preterm labor.

  6. Alternations in genes expression of pathway signaling in esophageal tissue with atresia: results of expression microarray profiling.

    PubMed

    Smigiel, R; Lebioda, A; Blaszczyński, M; Korecka, K; Czauderna, P; Korlacki, W; Jakubiak, A; Bednarczyk, D; Maciejewski, H; Wizinska, P; Sasiadek, M M; Patkowski, D

    2015-04-01

    Esophageal atresia (EA) is a congenital defect of the esophagus involving the interruption of the esophagus with or without connection to the trachea (tracheoesophageal fistula [TEF]). EA/TEF may occur as an isolated anomaly, may be part of a complex of congenital defects (syndromic), or may develop within the context of a known syndrome or association. The molecular mechanisms underlying the development of EA are poorly understood. It is supposed that a combination of multigenic factors and epigenetic modification of genes play a role in its etiology. The aim of our work was to assess the human gene expression microarray study in esophageal tissue samples. Total RNA was extracted from 26 lower pouches of esophageal tissue collected during thoracoscopic EA repair in neonates with the isolated (IEA) and the syndromic form (SEA). We identified 787 downregulated and 841 upregulated transcripts between SEA and controls, and about 817 downregulated and 765 upregulated probes between IEA and controls. Fifty percent of these genes showed differential expression specific for either IEA or SEA. Functional pathway analysis revealed substantial enrichment for Wnt and Sonic hedgehog, as well as cytokine and chemokine signaling pathways. Moreover, we performed reverse transcription polymerase chain reaction study in a group of SHH and Wnt pathways genes with differential expression in microarray profiling to confirm the microarray expression results. We verified the altered expression in SFRP2 gene from the Wnt pathway as well as SHH, GLI1, GLI2, and GLI3 from the Sonic hedgehog pathway. The results suggest an important role of these pathways and genes for EA/TEF etiology. © 2014 International Society for Diseases of the Esophagus.

  7. Gene expression of sphingolipid metabolism pathways is altered in hidradenitis suppurativa.

    PubMed

    Dany, Mohammed; Elston, Dirk

    2017-08-01

    Hidradenitis suppurativa (HS) is a debilitating skin disease characterized by painful recurrent nodules and abscesses caused by chronic inflammation. Early events in the development of HS are believed to occur in the folliculopilosebaceous unit; however, the signaling pathways behind this mechanism are unknown. Sphingolipids, such as ceramide, are essential components of the skin and appendages and have important structural and signaling roles. We sought to explore whether the gene expression of enzymes involved in sphingolipid metabolic pathways is altered in HS. A microarray data set including 30 samples was used to compare the expression of sphingolipid-related enzymes in inflammatory skin lesions from HS patients (n = 17) with the expression in clinically healthy skin tissue (n = 13). Differential expression of sphingolipid metabolism-related genes was analyzed using Gene Expression Omnibus 2R. HS lesional skin samples have significantly decreased expression of enzymes generating ceramide and sphingomyelin, increased expression of enzymes catabolizing ceramide to sphingosine, and increased expression of enzymes converting ceramide to galactosylceramide and gangliosides. Limitations of this study include assessing the expression of sphingolipid-related enzymes without assessing the levels of the related sphingolipids. Our study suggests that sphingolipid metabolism is altered in HS lesional skin compared with normal skin. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Mechanisms of Organophosphorus (OP) Injury: Sarin-Induced Hippocampal Gene Expression Changes and Pathway Perturbation

    DTIC Science & Technology

    2012-01-01

    inflammation and/or a role for prostanoid signaling in activity- dependent plasticity. Expression Ptgs2 can be induced by cytokines and mitogens, which...probably by ATM (ataxia telangiectasia mutated) or ATR (ataxia telangiectasia and Rad3 related). Per1 negatively regulates transactivation induced by...i AFRL-RH-FS-TR-2012-0008 Mechanisms of Organophosphorus (OP) Injury: Sarin- Induced Hippocampal Gene Expression Changes and Pathway

  9. Differential expression of small RNA pathway genes associated with the Biomphalaria glabrata/Schistosoma mansoni interaction.

    PubMed

    Queiroz, Fábio Ribeiro; Silva, Luciana Maria; Jeremias, Wander de Jesus; Babá, Élio Hideo; Caldeira, Roberta Lima; Coelho, Paulo Marcos Zech; Gomes, Matheus de Souza

    2017-01-01

    The World Health Organization (WHO) estimates that approximately 240 million people in 78 countries require treatment for schistosomiasis, an endemic disease caused by trematodes of the genus Schistosoma. In Brazil, Schistosoma mansoni is the only species representative of the genus whose passage through an invertebrate host, snails of the genus Biomphalaria, is obligatory before infecting a mammalian host, including humans. The availability of the genome and transcriptome of B. glabrata makes studying the regulation of gene expression, particularly the regulation of miRNA and piRNA processing pathway genes, possible. This might assist in better understanding the biology of B. glabrata as well as its relationship to the parasite S. mansoni. Some aspects of this interaction are still poorly explored, including the participation of non-coding small RNAs, such as miRNAs and piRNAs, with lengths varying from 18 to 30 nucleotides in mature form, which are potent regulators of gene expression. Using bioinformatics tools and quantitative PCR, we characterized and validated the miRNA and piRNA processing pathway genes in B. glabrata. In silico analyses showed that genes involved in miRNA and piRNA pathways were highly conserved in protein domain distribution, catalytic site residue conservation and phylogenetic analysis. Our study showed differential expression of putative Argonaute, Drosha, Piwi, Exportin-5 and Tudor genes at different snail developmental stages and during infection with S. mansoni, suggesting that the machinery is required for miRNA and piRNA processing in B. glabrata at all stages. These data suggested that the silencing pathway mediated by miRNAs and piRNAs can interfere in snail biology throughout the life cycle of the snail, thereby influencing the B. glabrata/S. mansoni interaction. Further studies are needed to confirm the participation of the small RNA processing pathway proteins in the parasite/host relationship, mainly the effective

  10. Partial Reconstruction of the Ergot Alkaloid Pathway by Heterologous Gene Expression in Aspergillus nidulans

    PubMed Central

    Ryan, Katy L.; Moore, Christopher T.; Panaccione, Daniel G.

    2013-01-01

    Ergot alkaloids are pharmaceutically and agriculturally important secondary metabolites produced by several species of fungi. Ergot alkaloid pathways vary among different fungal lineages, but the pathway intermediate chanoclavine-I is evolutionarily conserved among ergot alkaloid producers. At least four genes, dmaW, easF, easE, and easC, are necessary for pathway steps prior to chanoclavine-I; however, the sufficiency of these genes for chanoclavine-I synthesis has not been established. A fragment of genomic DNA containing dmaW, easF, easE, and easC was amplified from the human-pathogenic, ergot alkaloid-producing fungus Aspergillus fumigatus and transformed into Aspergillus nidulans, a model fungus that does not contain any of the ergot alkaloid synthesis genes. HPLC and LC-MS analyses demonstrated that transformed A. nidulans strains produced chanoclavine-I and an earlier pathway intermediate. Aspergillus nidulans transformants containing dmaW, easF, and either easE or easC did not produce chanoclavine-I but did produce an early pathway intermediate and, in the case of the easC transformant, an additional ergot alkaloid-like compound. We conclude that dmaW, easF, easE, and easC are sufficient for the synthesis of chanoclavine-I in A. nidulans and expressing ergot alkaloid pathway genes in A. nidulans provides a novel approach to understanding the early steps in ergot alkaloid synthesis. PMID:23435153

  11. Incorporating Motif Analysis into Gene Co-expression Networks Reveals Novel Modular Expression Pattern and New Signaling Pathways

    PubMed Central

    Ma, Shisong; Shah, Smit; Bohnert, Hans J.; Snyder, Michael; Dinesh-Kumar, Savithramma P.

    2013-01-01

    Understanding of gene regulatory networks requires discovery of expression modules within gene co-expression networks and identification of promoter motifs and corresponding transcription factors that regulate their expression. A commonly used method for this purpose is a top-down approach based on clustering the network into a range of densely connected segments, treating these segments as expression modules, and extracting promoter motifs from these modules. Here, we describe a novel bottom-up approach to identify gene expression modules driven by known cis-regulatory motifs in the gene promoters. For a specific motif, genes in the co-expression network are ranked according to their probability of belonging to an expression module regulated by that motif. The ranking is conducted via motif enrichment or motif position bias analysis. Our results indicate that motif position bias analysis is an effective tool for genome-wide motif analysis. Sub-networks containing the top ranked genes are extracted and analyzed for inherent gene expression modules. This approach identified novel expression modules for the G-box, W-box, site II, and MYB motifs from an Arabidopsis thaliana gene co-expression network based on the graphical Gaussian model. The novel expression modules include those involved in house-keeping functions, primary and secondary metabolism, and abiotic and biotic stress responses. In addition to confirmation of previously described modules, we identified modules that include new signaling pathways. To associate transcription factors that regulate genes in these co-expression modules, we developed a novel reporter system. Using this approach, we evaluated MYB transcription factor-promoter interactions within MYB motif modules. PMID:24098147

  12. Gene expression changes in the tyrosine metabolic pathway regulate caste-specific cuticular pigmentation of termites.

    PubMed

    Masuoka, Yudai; Maekawa, Kiyoto

    2016-07-01

    In social insects, all castes have characteristic phenotypes suitable for their own tasks and to engage in social behavior. The acquisition of caste-specific phenotypes was a key event in the course of social insect evolution. However, understanding of the genetic basis and the developmental mechanisms that produce these phenotypes is still very limited. In particular, termites normally possess more than two castes with specific phenotypes (i.e. workers, soldiers, and reproductives), but proximate developmental mechanisms are far from being fully understood. In this study, we focused on the pigmentation of the cuticle as a model trait for caste-specific phenotypes, during the molts of each caste; workers, soldiers, presoldiers (intermediate stage of soldiers), and alates (primary reproductives) in Zootermopsis nevadensis. Expression patterns of cuticular tanning genes (members of the tyrosine metabolic pathway) were different among each molt, and high expression levels of several "key genes" were observed during each caste differentiation. For the differentiation of castes with well-tanned cuticles (i.e. soldiers and alates), all focal genes except DDC in the former were highly expressed. On the other hand, high expression levels of yellow and aaNAT were observed during worker and presoldier molts, respectively, but most other genes in the pathway were expressed at low levels. RNA interference (RNAi) of these key genes affected caste-specific cuticular pigmentation, leading to soldiers with yellowish-white heads and pigmented mandibular tips, presoldiers with partly pigmented head cuticles, and alates with the yellow head capsules. These results suggest that the pigmentation of caste-specific cuticles is achieved by the regulation of gene expression in the tyrosine metabolic pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons.

    PubMed

    Kosz-Vnenchak, M; Jacobson, J; Coen, D M; Knipe, D M

    1993-09-01

    Thymidine kinase (TK)-negative (TK-) mutant strains of herpes simplex virus type 1 (HSV-1) show reduced expression of alpha and beta viral genes during acute infection of trigeminal ganglion neurons following corneal infection (M. Kosz-Vnenchak, D. M. Coen, and D. M. Knipe, J. Virol. 64:5396-5402, 1990). It was surprising that a defect in a beta gene product would lead to decreased alpha and beta gene expression, given the regulatory pathways demonstrated for HSV infection of cultured cells. In this study, we have examined viral gene expression during reactivation from latent infection in explanted trigeminal ganglion tissue. In explant reactivation studies with wild-type virus, we observed viral productive gene expression over the first 48 h of explant incubation occurring in a temporal order (alpha, beta, gamma) similar to that in cultured cells. This occurred predominantly in latency-associated transcript-positive neurons but was limited to a fraction of these cells. In contrast, TK- mutant viruses showed greatly reduced alpha and beta gene expression upon explant of latently infected trigeminal ganglion tissue. An inhibitor of viral TK or an inhibitor of viral DNA polymerase greatly decreased viral lytic gene expression in trigeminal ganglion tissue latently infected with wild-type virus and explanted in culture. These results indicate that the regulatory mechanisms governing HSV gene expression are different in trigeminal ganglion neurons and cultured cells. We present a new model for viral gene expression in trigeminal ganglion neurons with implications for the nature of the decision process between latent infection and productive infection by HSV.

  14. Gene Expression Profiling Identifies Molecular Pathways Associated with Collagen VI Deficiency and Provides Novel Therapeutic Targets

    PubMed Central

    Paco, Sonia; Kalko, Susana G.; Jou, Cristina; Rodríguez, María A.; Corbera, Joan; Muntoni, Francesco; Feng, Lucy; Rivas, Eloy; Torner, Ferran; Gualandi, Francesca; Gomez-Foix, Anna M.; Ferrer, Anna; Ortez, Carlos; Nascimento, Andrés; Colomer, Jaume; Jimenez-Mallebrera, Cecilia

    2013-01-01

    Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered. PMID:24223098

  15. T-Cell Proliferation Involving the CD28 Pathway is Associated with Cyclosporine-Resistant Interleukin 2 Gene Expression

    DTIC Science & Technology

    1987-12-01

    Security Classification) T-CELL PROLIFERATION INVOLVING THE CD28 PATHWAY IS ASSOCIATED WITH CYCLOSPORINE-RESISTANT INTERLEUKIN 2 GENE EXPRESSION 12. PERSONAL...Cyclosporins,. T Lymphocytes) r’jh ,,.. "’’ .. - | Gene Expression 19. ABSTRACT (Continue on reverse if necessary and identify by block num’ber) DTIC...American Society tor Microbiology T-Cell Proliferation Involving the CD28 Pathway Is Associated with Cyclosporine-Resistant Interleukin 2 Gene Expression

  16. Phenylpropanoid pathway intermediates regulate transient expression of a chalcone synthase gene promoter.

    PubMed Central

    Loake, G J; Choudhary, A D; Harrison, M J; Mavandad, M; Lamb, C J; Dixon, R A

    1991-01-01

    A chimeric gene construct containing a bean chalcone synthase (CHS) promoter fused to the chloramphenicol acetyltransferase (CAT) reporter gene was strongly expressed when electroporated into alfalfa protoplasts that were then exposed to a fungal elicitor. Low concentrations (5 x 10(-6) to 10(-4) M) of exogenously applied trans-cinnamic acid (CA), the first intermediate of the phenylpropanoid pathway, slightly stimulated elicitor-induced CAT expression, whereas high concentrations (greater than 10(-4) M) severely reduced expression to below the levels observed in the absence of elicitor. In contrast, trans-p-coumaric acid (4-CA, the second intermediate in the pathway) stimulated expression from the CHS promoter up to 4.5-fold at 5 x 10(-4) M. Expression of CAT driven by the promoters of other elicitor-inducible defense response genes was not markedly affected by CA or 4-CA. Stimulation of CHS promoter expression by low concentrations of CA and 4-CA was completely abolished by 5' deletion to position -130, but not -174. When the -180 to -130 region of the CHS15 promoter was coelectroporated into elicited protoplasts on a separate plasmid along with the intact -326 CHS-CAT construct, the decreased CAT expression as a function of CA or 4-CA concentration was consistent with the coelectroporated sequence competing in trans with the intact promoter for the binding of a factor(s) involved in the up regulation of CHS transcription by 4-CA and low concentrations of CA. Our data support the hypothesis that phenylpropanoid compounds may act as natural and specific regulators of plant gene expression and define the location of a cis-acting element in the CHS15 promoter involved in the induction by phenylpropanoid pathway intermediates. PMID:1820822

  17. Differentially expressed genes and interacting pathways in bladder cancer revealed by bioinformatic analysis.

    PubMed

    Shen, Yinzhou; Wang, Xuelei; Jin, Yongchao; Lu, Jiasun; Qiu, Guangming; Wen, Xiaofei

    2014-10-01

    The goal of this study was to identify cancer-associated differentially expressed genes (DEGs), analyze their biological functions and investigate the mechanism(s) of cancer occurrence and development, which may provide a theoretical foundation for bladder cancer (BCa) therapy. We downloaded the mRNA expression profiling dataset GSE13507 from the Gene Expression Omnibus database; the dataset includes 165 BCa and 68 control samples. T‑tests were used to identify DEGs. To further study the biological functions of the identified DEGs, we performed a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Next, we built a network of potentially interacting pathways to study the synergistic relationships among DEGs. A total of 12,105 genes were identified as DEGs, of which 5,239 were upregulated and 6,866 were downregulated in BCa. The DEGs encoding activator protein 1 (AP-1), nuclear factor of activated T-cells (NFAT) proteins, nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and interleukin (IL)-10 were revealed to participate in the significantly enriched immune pathways that were downregulated in BCa. KEGG enrichment analysis revealed 7 significantly upregulated and 47 significantly downregulated pathways enriched among the DEGs. We found a crosstalk interaction among a total of 44 pathways in the network of BCa-affected pathways. In conclusion, our results show that BCa involves dysfunctions in multiple systems. Our study is expected to pave ways for immune and inflammatory research and provide molecular insights for cancer therapy.

  18. Gene-Expression Profiling Suggests Impaired Signaling via the Interferon Pathway in Cstb-/- Microglia

    PubMed Central

    Körber, Inken; Katayama, Shintaro; Einarsdottir, Elisabet; Krjutškov, Kaarel; Hakala, Paula; Kere, Juha; Lehesjoki, Anna-Elina; Joensuu, Tarja

    2016-01-01

    Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1, OMIM254800) is an autosomal recessive neurodegenerative disorder characterized by stimulus-sensitive and action-activated myoclonus, tonic-clonic epileptic seizures, and ataxia. Loss-of-function mutations in the gene encoding the cysteine protease inhibitor cystatin B (CSTB) underlie EPM1. The deficiency of CSTB in mice (Cstb-/- mice) generates a phenotype resembling the symptoms of EPM1 patients and is accompanied by microglial activation at two weeks of age and an upregulation of immune system-associated genes in the cerebellum at one month of age. To shed light on molecular pathways and processes linked to CSTB deficiency in microglia we characterized the transcriptome of cultured Cstb-/- mouse microglia using microarray hybridization and RNA sequencing (RNA-seq). The gene expression profiles obtained with these two techniques were in good accordance and not polarized to either pro- or anti-inflammatory status. In Cstb-/- microglia, altogether 184 genes were differentially expressed. Of these, 33 genes were identified by both methods. Several interferon-regulated genes were weaker expressed in Cstb-/- microglia compared to control. This was confirmed by quantitative real-time PCR of the transcripts Irf7 and Stat1. Subsequently, we explored the biological context of CSTB deficiency in microglia more deeply by functional enrichment and canonical pathway analysis. This uncovered a potential role for CSTB in chemotaxis, antigen-presentation, and in immune- and defense response-associated processes by altering JAK-STAT pathway signaling. These data support and expand the previously suggested involvement of inflammatory processes to the disease pathogenesis of EPM1 and connect CSTB deficiency in microglia to altered expression of interferon-regulated genes. PMID:27355630

  19. Evaluation of gene expression profiles and pathways underlying postnatal development in mouse sclera

    PubMed Central

    Lim, Wan’E.; Kwan, Jia Lin; Goh, Liang Kee; Beuerman, Roger W.

    2012-01-01

    Purpose The aim of this study was to identify the genes and pathways underlying the growth of the mouse sclera during postnatal development. Methods Total RNA was isolated from each of 30 single mouse sclera (n=30, 6 sclera each from 1-, 2-, 3-, 6-, and 8-week-old mice) and reverse-transcribed into cDNA using a T7-N6 primer. The resulting cDNA was fragmented, labeled with biotin, and hybridized to a Mouse Gene 1.0 ST Array. ANOVA analysis was then performed using Partek Genomic Suite 6.5 beta and differentially expressed transcript clusters were filtered based on a selection criterion of ≥2 relative fold change at a false discovery rate of ≤5%. Genes identified as involved in the main biologic processes during postnatal scleral development were further confirmed using qPCR. A possible pathway that contributes to the postnatal development of the sclera was investigated using Ingenuity Pathway Analysis software. Results The hierarchical clustering of all time points showed that they did not cluster according to age. The highest number of differentially expressed transcript clusters was found when week 1 and week 2 old scleral tissues were compared. The peroxisome proliferator- activated receptor gamma coactivator 1-alpha (Ppargc1a) gene was found to be involved in the networks generated using Ingenuity Pathway Studio (IPA) from the differentially expressed transcript cluster lists of week 2 versus 1, week 3 versus 2, week 6 versus 3, and week 8 versus 6. The gene expression of Ppargc1a varied during scleral growth from week 1 to 2, week 2 to 3, week 3 to 6, and week 6 to 8 and was found to interact with a different set of genes at different scleral growth stages. Therefore, this indicated that Ppargc1a might play a role in scleral growth during postnatal weeks 1 to 8. Conclusions Gene expression of eye diseases should be studied as early as postnatal weeks 1–2 to ensure that any changes in gene expression pattern during disease development are detected. In

  20. Evaluation of gene expression profiles and pathways underlying postnatal development in mouse sclera.

    PubMed

    Lim, Wan'E; Kwan, Jia Lin; Goh, Liang Kee; Beuerman, Roger W; Barathi, Veluchamy A

    2012-01-01

    The aim of this study was to identify the genes and pathways underlying the growth of the mouse sclera during postnatal development. Total RNA was isolated from each of 30 single mouse sclera (n=30, 6 sclera each from 1-, 2-, 3-, 6-, and 8-week-old mice) and reverse-transcribed into cDNA using a T7-N(6) primer. The resulting cDNA was fragmented, labeled with biotin, and hybridized to a Mouse Gene 1.0 ST Array. ANOVA analysis was then performed using Partek Genomic Suite 6.5 beta and differentially expressed transcript clusters were filtered based on a selection criterion of ≥ 2 relative fold change at a false discovery rate of ≤ 5%. Genes identified as involved in the main biologic processes during postnatal scleral development were further confirmed using qPCR. A possible pathway that contributes to the postnatal development of the sclera was investigated using Ingenuity Pathway Analysis software. The hierarchical clustering of all time points showed that they did not cluster according to age. The highest number of differentially expressed transcript clusters was found when week 1 and week 2 old scleral tissues were compared. The peroxisome proliferator- activated receptor gamma coactivator 1-alpha (Ppargc1a) gene was found to be involved in the networks generated using Ingenuity Pathway Studio (IPA) from the differentially expressed transcript cluster lists of week 2 versus 1, week 3 versus 2, week 6 versus 3, and week 8 versus 6. The gene expression of Ppargc1a varied during scleral growth from week 1 to 2, week 2 to 3, week 3 to 6, and week 6 to 8 and was found to interact with a different set of genes at different scleral growth stages. Therefore, this indicated that Ppargc1a might play a role in scleral growth during postnatal weeks 1 to 8. Gene expression of eye diseases should be studied as early as postnatal weeks 1-2 to ensure that any changes in gene expression pattern during disease development are detected. In addition, we propose that Ppargc1a

  1. Study of gene expression alteration in male androgenetic alopecia: evidence of predominant molecular signaling pathways.

    PubMed

    Michel, L; Reygagne, P; Benech, P; Jean-Louis, F; Scalvino, S; Ly Ka So, S; Hamidou, Z; Bianovici, S; Pouch, J; Ducos, B; Bonnet, M; Bensussan, A; Patatian, A; Lati, E; Wdzieczak-Bakala, J; Choulot, J-C; Loing, E; Hocquaux, M

    2017-04-12

    Male androgenetic alopecia (AGA) is the most common form of hair loss in men and is characterized by a distinct pattern of progressive hair loss starting from the frontal area and the vertex of the scalp. Although several genetic risk loci have been identified, relevant genes for AGA remain to be defined. Herein, molecular biomarkers associated with premature AGA were identified through gene expression analysis using cDNA generated from scalp vertex biopsies of hairless/bald men with premature AGA and healthy volunteers. This monocentric study reveals that genes encoding mast cell granule enzymes, inflammatory and immunoglobulin-associated immune mediators were significantly over-expressed in AGA. In contrast, under-expressed genes appear to be associated with the Wnt/β-catenin and BMP/TGF-β signaling pathways. Although involvement of these pathways in hair follicle regeneration is well-described, functional interpretation of the transcriptomic data highlights different events that account for their inhibition. In particular, one of these events depends on the dysregulated expression of proopiomelanocortin (POMC), as confirmed by RT-qPCR and immunohistochemistry. In addition, lower expression of CYP27B1 in AGA subjects supports the notion that changes in vitamin D metabolism contributes to hair loss. This study provides compelling evidence for distinct molecular events contributing to alopecia that may pave way for new therapeutic approaches. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Identification of genes and pathways related to lymphovascular invasion in breast cancer patients: A bioinformatics analysis of gene expression profiles.

    PubMed

    Klahan, Sukhontip; Wong, Henry Sung-Ching; Tu, Shih-Hsin; Chou, Wan-Hsuan; Zhang, Yan-Feng; Ho, Thien-Fiew; Liu, Chih-Yi; Yih, Shih-Ying; Lu, Hsing Fang; Chen, Sean Chun-Chang; Huang, Chi-Cheng; Chang, Wei-Chiao

    2017-06-01

    Surgery is the most effective treatment for breast cancer patients. However, some patients developed recurrence and distant metastasis after surgery. Adjuvant therapy is considered for high-risk patients depending on several prognostic markers, and lymphovascular invasion has become one of such prognostic markers that help physicians to identify the risk for distant metastasis and recurrence. However, the mechanism of lymphovascular invasion in breast cancer remains unknown. This study aims to unveil the genes and pathways that may involve in lymphovascular invasion in breast cancer. In total, 108 breast cancer samples were collected during surgery and microarray analysis was performed. Significance analysis of the microarrays and limma package for R were used to examine differentially expressed genes between lymphovascular invasion-positive and lymphovascular invasion-negative cases. Network and pathway analyses were mapped using the Ingenuity Pathway Analysis and the Database for Annotation, Visualization and Integrated Discovery. In total, 86 differentially expressed genes, including 37 downregulated genes and 49 upregulated genes were identified in lymphovascular invasion-positive patients. Among these genes, TNFSF11, IL6ST, and EPAS1 play important roles in cytokine-receptor interaction, which is the most enriched pathway related to lymphovascular invasion. Moreover, the results also suggested that an imbalance between extracellular matrix components and tumor micro-environment could induce lymphovascular invasion. Our study evaluated the underlying mechanisms of lymphovascular invasion, which may further help to assess the risk of breast cancer progression and identify potential targets of adjuvant treatment.

  3. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    PubMed Central

    Chandran, Uma R; Ma, Changqing; Dhir, Rajiv; Bisceglia, Michelle; Lyons-Weiler, Maureen; Liang, Wenjing; Michalopoulos, George; Becich, Michael; Monzon, Federico A

    2007-01-01

    Background Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Methods Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. Results The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). Conclusion We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer. PMID:17430594

  4. Regulation of adipocyte differentiation and gene expression-crosstalk between TGFβ and wnt signaling pathways.

    PubMed

    Lu, Hang; Ward, Meliza G; Adeola, Olayiwola; Ajuwon, Kolapo M

    2013-09-01

    Obesity results in reduced differentiation potential of adipocytes leading to adipose tissue insulin resistance. Elevated proinflammatory cytokines from adipose tissue in obesity, such as TNFα have been implicated in the reduced adipocyte differentiation. Other mediators of reduced adipocyte differentiation include TGFβ and wnt proteins. Although some overlap exists in the signaling cascades of the wnt and TGFβ pathways it is unknown if TGFβ or wnt proteins reciprocally induce the expression of each other to maximize their biological effects in adipocytes. Therefore, we investigated the possible involvement of TGFβ signaling in wnt induced gene expression and vice versa in 3T3-L1 adipocyte. Effect of TGFβ and Wnt pathways on differentiation was studied in preadipocytes induced to differentiate in the presence of Wnt3a or TGFβ1 and their inhibitors (FZ8-CRD and SB431542, respectively). Regulation of intracellular signaling and gene expression was also studied in mature adipocytes. Our results show that both TGFβ1 and Wnt3a lead to increased accumulation of β-catenin, phosphorylation of AKT and p44/42 MAPK. However, differences were found in the pattern of gene expression induced by the two proteins suggesting that distinct, but complex, signaling pathways are activated by TGFβ and wnt proteins to independently regulate adipocyte function.

  5. Reduced mycorrhizal colonization (rmc) tomato mutant lacks expression of SymRK signaling pathway genes

    PubMed Central

    Nair, Aswathy; Bhargava, Sujata

    2012-01-01

    Comparison of the expression of 13 genes involved in arbuscular mycorrhizal (AM) symbiosis was performed in a wild type tomato (Solanum lycopersicum cv 76R) and its reduced mycorrhizal colonization mutant rmc in response to colonization with Glomus fasiculatum. Four defense-related genes were induced to a similar extent in the mutant and wild type AM colonized plants, indicating a systemic response to AM colonization. Genes related to nutrient exchange between the symbiont partners showed higher expression in the AM roots of wild type plants than the mutant plants, which correlated with their arbuscular frequency. A symbiosis receptor kinase that is involved in both nodulation and AM symbiosis was not expressed in the rmc mutant. The fact that some colonization was observed in rmc was suggestive of the existence of an alternate colonization signaling pathway for AM symbiosis in this mutant. PMID:23221680

  6. Expression Analysis of Genes Involved in the RB/E2F Pathway in Astrocytic Tumors

    PubMed Central

    Ferreira, Wallax Augusto Silva; Araújo, Mariana Diniz; de Oliveira, Edivaldo Herculano Correa; Brito, José Reginaldo Nascimento; Burbano, Rommel Rodriguez; Harada, Maria Lúcia; Borges, Bárbara do Nascimento

    2015-01-01

    Astrocytic gliomas, which are derived from glial cells, are considered the most common primary neoplasias of the central nervous system (CNS) and are histologically classified as low grade (I and II) or high grade (III and IV). Recent studies have shown that astrocytoma formation is the result of the deregulation of several pathways, including the RB/E2F pathway, which is commonly deregulated in various human cancers via genetic or epigenetic mechanisms. On the basis of the assumption that the study of the mechanisms controlling the INK4/ARF locus can help elucidate the molecular pathogenesis of astrocytic tumors, identify diagnostic and prognostic markers, and help select appropriate clinical treatments, the present study aimed to evaluate and compare methylation patterns using bisulfite sequencing PCR and evaluate the gene expression profile using real-time PCR in the genes CDKN2A, CDKN2B, CDC6, Bmi-1, CCND1, and RB1 in astrocytic tumors. Our results indicate that all the evaluated genes are not methylated independent of the tumor grade. However, the real-time PCR results indicate that these genes undergo progressive deregulation as a function of the tumor grade. In addition, the genes CDKN2A, CDKN2B, and RB1 were underexpressed, whereas CDC6, Bmi-1, and CCND1 were overexpressed; the increase in gene expression was significantly associated with decreased patient survival. Therefore, we propose that the evaluation of the expression levels of the genes involved in the RB/E2F pathway can be used in the monitoring of patients with astrocytomas in clinical practice and for the prognostic indication of disease progression. PMID:26317630

  7. Comparative gene expression study and pathway analysis of the human iris- and the retinal pigment epithelium

    PubMed Central

    ten Brink, Jacoline B.; Moerland, Perry D.; Heine, Vivi M.; Bergen, Arthur A.

    2017-01-01

    Background The retinal pigment epithelium (RPE) is a neural monolayer lining the back of the eye. Degeneration of the RPE leads to severe vision loss in, so far incurable, diseases such as age-related macular degeneration and some forms of retinitis pigmentosa. A promising future replacement therapy may be autologous iris epithelial cell transdifferentiation into RPE in vitro and, subsequently, transplantation. In this study we compared the gene expression profiles of the iris epithelium (IE) and the RPE. Methods We collected both primary RPE- and IE cells from 5 freshly frozen human donor eyes, using respectively laser dissection microscopy and excision. We performed whole-genome expression profiling using 44k Agilent human microarrays. We investigated the gene expression profiles on both gene and functional network level, using R and the knowledge database Ingenuity. Results The major molecular pathways related to the RPE and IE were quite similar and yielded basic neuro-epithelial cell functions. Nonetheless, we also found major specific differences: For example, genes and molecular pathways, related to the visual cycle and retinol biosynthesis are significantly higher expressed in the RPE than in the IE. Interestingly, Wnt and aryl hydrocarbon receptor (AhR-) signaling pathways are much higher expressed in the IE than in the RPE, suggesting, respectively, a possible pluripotent and high detoxification state of the IE. Conclusions This study provides a valuation of the similarities and differences between the expression profiles of the RPE and IE. Our data combined with that of the literature, represent a most comprehensive perspective on transcriptional variation, which may support future research in the development of therapeutic transplantation of IE. PMID:28827822

  8. Comparative gene expression study and pathway analysis of the human iris- and the retinal pigment epithelium.

    PubMed

    Bennis, Anna; Ten Brink, Jacoline B; Moerland, Perry D; Heine, Vivi M; Bergen, Arthur A

    2017-01-01

    The retinal pigment epithelium (RPE) is a neural monolayer lining the back of the eye. Degeneration of the RPE leads to severe vision loss in, so far incurable, diseases such as age-related macular degeneration and some forms of retinitis pigmentosa. A promising future replacement therapy may be autologous iris epithelial cell transdifferentiation into RPE in vitro and, subsequently, transplantation. In this study we compared the gene expression profiles of the iris epithelium (IE) and the RPE. We collected both primary RPE- and IE cells from 5 freshly frozen human donor eyes, using respectively laser dissection microscopy and excision. We performed whole-genome expression profiling using 44k Agilent human microarrays. We investigated the gene expression profiles on both gene and functional network level, using R and the knowledge database Ingenuity. The major molecular pathways related to the RPE and IE were quite similar and yielded basic neuro-epithelial cell functions. Nonetheless, we also found major specific differences: For example, genes and molecular pathways, related to the visual cycle and retinol biosynthesis are significantly higher expressed in the RPE than in the IE. Interestingly, Wnt and aryl hydrocarbon receptor (AhR-) signaling pathways are much higher expressed in the IE than in the RPE, suggesting, respectively, a possible pluripotent and high detoxification state of the IE. This study provides a valuation of the similarities and differences between the expression profiles of the RPE and IE. Our data combined with that of the literature, represent a most comprehensive perspective on transcriptional variation, which may support future research in the development of therapeutic transplantation of IE.

  9. AllR Controls the Expression of Streptomyces coelicolor Allantoin Pathway Genes

    PubMed Central

    Navone, Laura; Macagno, Juan Pablo; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K.; Gramajo, Hugo

    2015-01-01

    Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized in Streptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR. In vitro studies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in the allR mutant, the hyi gene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production. PMID:26187964

  10. Grafting of Beads into Developing Chicken Embryo Limbs to Identify Signal Transduction Pathways Affecting Gene Expression.

    PubMed

    Mohammed, Rabeea H; Sweetman, Dylan

    2016-01-17

    Using chicken embryos it is possible to test directly the effects of either growth factors or specific inhibitors of signaling pathways on gene expression and activation of signal transduction pathways. This technique allows the delivery of signaling molecules at precisely defined developmental stages for specific times. After this embryos can be harvested and gene expression examined, for example by in situ hybridization, or activation of signal transduction pathways observed with immunostaining. In this video heparin beads soaked in FGF18 or AG 1-X2 beads soaked in U0126, a MEK inhibitor, are grafted into the limb bud in ovo. This shows that FGF18 induces expression of MyoD and ERK phosphorylation and both endogenous and FGF18 induced MyoD expression is inhibited by U0126. Beads soaked in a retinoic acid antagonist can potentiate premature MyoD induction by FGF18. This approach can be used with a wide range of different growth factors and inhibitors and is easily adapted to other tissues in the developing embryo.

  11. ArrayXPath: mapping and visualizing microarray gene-expression data with integrated biological pathway resources using Scalable Vector Graphics.

    PubMed

    Chung, Hee-Joon; Kim, Mingoo; Park, Chan Hee; Kim, Jihoon; Kim, Ju Han

    2004-07-01

    Biological pathways can provide key information on the organization of biological systems. ArrayXPath (http://www.snubi.org/software/ArrayXPath/) is a web-based service for mapping and visualizing microarray gene-expression data for integrated biological pathway resources using Scalable Vector Graphics (SVG). By integrating major bio-databases and searching pathway resources, ArrayXPath automatically maps different types of identifiers from microarray probes and pathway elements. When one inputs gene-expression clusters, ArrayXPath produces a list of the best matching pathways for each cluster. We applied Fisher's exact test and the false discovery rate (FDR) to evaluate the statistical significance of the association between a cluster and a pathway while correcting the multiple-comparison problem. ArrayXPath produces Javascript-enabled SVGs for web-enabled interactive visualization of pathways integrated with gene-expression profiles.

  12. Gene Expression Alterations in Immune System Pathways in the Thymus after Exposure to Immunosuppressive Chemicals

    PubMed Central

    Frawley, Rachel; White, Kimber; Brown, Ronnetta; Musgrove, Deborah; Walker, Nigel; Germolec, Dori

    2011-01-01

    Background Dysregulation of positive and negative selection, antigen presentation, or apoptosis in the thymus can lead to immunosuppression or autoimmunity. Diethylstilbestrol (DES), dexamethasone (DEX), cyclophosphamide (CPS), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are immunosuppressive chemicals that induce similar immunotoxic effects in the thymus, however, the mechanism of toxicity is purported to be different for each compound. Objectives We hypothesized that genomic analysis of thymus after chemical-induced atrophy would yield transcriptional profiles that suggest pathways of toxicity associated with reduced function. Methods Female B6C3F1 mice were exposed to these immunosuppressive agents and changes in gene expression and immune cell subpopulations were evaluated. Results All four chemicals induced thymic atrophy and changes in both the relative proportion and absolute number of CD3+, CD4+/CD8−, CD4−/CD8+, and CD4+/CD8+ thymocytes. The most significant impact of exposure to DEX, DES, and CPS was modulation of gene expression in the T-cell receptor (TCR) complex and TCR and CD28 signaling pathways; this could represent a common mechanism of action and play a pivotal role in lineage commitment and development of T cells. Up-regulation of genes associated with the antigen presentation and dendritic cell maturation pathways was the most distinctive effect of TCDD exposure. These elements, which were also up-regulated by DEX and DES, contribute to positive and negative selection. Conclusions Genomic analysis revealed gene expression changes in several pathways that are commonly associated with xenobiotic-induced immune system perturbations, particularly those that contribute to the development and maturation of thymic T cells. PMID:21041162

  13. Airway gene expression of IL-1 pathway mediators predicts exacerbation risk in obstructive airway disease

    PubMed Central

    Baines, Katherine J; Fu, Juan-juan; McDonald, Vanessa M; Gibson, Peter G

    2017-01-01

    Background Exacerbations of asthma and COPD are a major cause of morbidity and mortality and are responsible for significant health care costs. This study further investigates interleukin (IL)-1 pathway activation and its relationship with exacerbations of asthma and COPD. Methods In this prospective cohort study, 95 participants with stable asthma (n=35) or COPD (n=60) were recruited and exacerbations recorded over the following 12 months. Gene expressions of IL-1 pathway biomarkers, including the IL-1 receptors (IL1R1, IL1R2, and IL1RN), and signaling molecules (IRAK2, IRAK3, and PELI1), were measured in sputum using real-time quantitative polymerase chain reaction. Mediators were compared between the frequent (≥2 exacerbations in the 12 months) and infrequent exacerbators, and the predictive relationships investigated using receiver operating characteristic curves and area under the curve (AUC) values. Results Of the 95 participants, 89 completed the exacerbation follow-up, where 30 participants (n=22 COPD, n=8 asthma) had two or more exacerbations. At the baseline visit, expressions of IRAK2, IRAK3, PELI1, and IL1R1 were elevated in participants with frequent exacerbations of both asthma and COPD combined and separately. In the combined population, sputum gene expression of IRAK3 (AUC=75.4%; P<0.001) was the best predictor of future frequent exacerbations, followed by IL1R1 (AUC=72.8%; P<0.001), PELI1 (AUC=71.2%; P<0.001), and IRAK2 (AUC=68.6; P=0.004). High IL-1 pathway gene expression was associated with frequent prior year exacerbations and correlated with the number and severity of exacerbations. Conclusion The upregulation of IL-1 pathway mediators is associated with frequent exacerbations of obstructive airway disease. Further studies should investigate these mediators as both potential diagnostic biomarkers predicting at-risk patients and novel treatment targets. PMID:28223794

  14. Gene expression profiling provides insights into pathways of oxaliplatin-related sinusoidal obstruction syndrome in humans.

    PubMed

    Rubbia-Brandt, Laura; Tauzin, Sébastien; Brezault, Catherine; Delucinge-Vivier, Céline; Descombes, Patrick; Dousset, Bertand; Majno, Pietro E; Mentha, Gilles; Terris, Benoit

    2011-04-01

    Sinusoidal obstruction syndrome (SOS; formerly veno-occlusive disease) is a well-established complication of hematopoietic stem cell transplantation, pyrrolizidine alkaloid intoxication, and widely used chemotherapeutic agents such as oxaliplatin. It is associated with substantial morbidity and mortality. Pathogenesis of SOS in humans is poorly understood. To explore its molecular mechanisms, we used Affymetrix U133 Plus 2.0 microarrays to investigate the gene expression profile of 11 human livers with oxaliplatin-related SOS and compared it to 12 matched controls. Hierarchical clustering analysis showed that profiles from SOS and controls formed distinct clusters. To identify functional networks and gene ontologies, data were analyzed by the Ingenuity Pathway Analysis Tool. A total of 913 genes were differentially expressed in SOS: 613 being upregulated and 300 downregulated. Reverse transcriptase-PCR results showed excellent concordance with microarray data. Pathway analysis showed major gene upregulation in six pathways in SOS compared with controls: acute phase response (notably interleukin 6), coagulation system (Serpine1, THBD, and VWF), hepatic fibrosis/hepatic stellate cell activation (COL3a1, COL3a2, PDGF-A, TIMP1, and MMP2), and oxidative stress. Angiogenic factors (VEGF-C) and hypoxic factors (HIF1A) were upregulated. The most significant increase was seen in CCL20 mRNA. In conclusion, oxaliplatin-related SOS can be readily distinguished according to morphologic characteristics but also by a molecular signature. Global gene analysis provides new insights into mechanisms underlying chemotherapy-related hepatotoxicity in humans and potential targets relating to its diagnosis, prevention, and treatment. Activation of VEGF and coagulation (vWF) pathways could partially explain at a molecular level the clinical observations that bevacizumab and aspirin have a preventive effect in SOS.

  15. Deregulation of Listeria monocytogenes virulence gene expression by two distinct and semi-independent pathways.

    PubMed

    Milenbachs Lukowiak, Andrea; Mueller, Kimberly J; Freitag, Nancy E; Youngman, Philip

    2004-02-01

    Expression of the major virulence cluster in Listeria monocytogenes is positively regulated by the transcription factor PrfA and is influenced by several environmental factors, including the presence of readily metabolized carbohydrates such as cellobiose and glucose. Although little is understood about the mechanisms through which environmental factors influence expression of the PrfA regulon, evidence for structural and functional similarities of PrfA to the CRP-FNR family of regulatory proteins suggests the possibility that PrfA activity could be modulated by a small molecule ligand. The identity of components of the PrfA-associated regulatory pathway was sought through the isolation of mutants that exhibit high levels of PrfA-controlled gene expression in the presence of cellobiose or glucose. Here are described the properties and preliminary genetic analysis in two different genetic loci, gcr and csr, both unlinked by general transduction to the major virulence cluster. A mutation in gcr deregulates the expression of PrfA-controlled genes in the presence of several repressing sugars and other environmental conditions, a phenotype similar to that of a G145S substitution in PrfA itself. A mutation in the csr locus, within csrA, results in a cellobiose-specific defect in virulence gene regulation. Gene products encoded by the csr locus share homology with proteins involved in the sensing and transport of beta-glucosides in other bacteria. Mutations in both gcr and csr are required for full relief of cellobiose-mediated repression of the PrfA regulon. These results suggest the existence of two semi-independent pathways for cellobiose-mediated repression and further reconcile conflicting reports in previous literature concerning the repressive effects of carbohydrates on virulence gene expression in L. monocytogenes.

  16. Integrated analysis of differentially expressed genes and pathways in triple-negative breast cancer

    PubMed Central

    Peng, Cancan; Ma, Wenli; Xia, Wei; Zheng, Wenling

    2017-01-01

    Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by an aggressive phenotype and reduced survival. The aim of the present study was to investigate the molecular mechanisms involved in the carcinogenesis of TNBC and to identify novel target molecules for therapy. The differentially expressed genes (DEGs) in TNBC and normal adjacent tissue were assessed by analyzing the GSE41970 microarray data using Qlucore Omics Explorer, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes. Pathway enrichment analyses for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery online resource. A protein-protein interaction (PPI) network was constructed using Search Tool for the Retrieval of Interacting Genes, and subnetworks were analyzed by ClusterONE. The PPI network and subnetworks were visualized using Cytoscape software. A total of 121 DEGs were obtained, of which 101 were upregulated and 20 were downregulated. The upregulated DEGs were significantly enriched in 14 pathways and 83 GO biological processes, while the downregulated DEGs were significantly enriched in 18 GO biological processes. The PPI network with 118 nodes and 1,264 edges was constructed and three subnetworks were extracted from the entire network. The significant hub DEGs with high degrees were identified, including TP53, glyceraldehyde-3-phosphate dehydrogenase, cyclin D1, HRAS and proliferating cell nuclear antigen, which were predominantly enriched in the cell cycle pathway and pathways in cancer. A number of critical genes and pathways were revealed to be associated with TNBC. The present study may provide an improved understanding of the pathogenesis of TNBC and contribute to the development of therapeutic targets for TNBC. PMID:28075450

  17. Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age.

    PubMed

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-03-09

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors.

  18. Pathway-Based Factor Analysis of Gene Expression Data Produces Highly Heritable Phenotypes That Associate with Age

    PubMed Central

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-01-01

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824

  19. Gene Expression of Proresolving Lipid Mediator Pathways Is Associated With Clinical Outcomes in Trauma Patients

    PubMed Central

    Orr, Sarah K.; Butler, Kathryn L.; Hayden, Douglas; Tompkins, Ronald G.; Serhan, Charles N.; Irimia, Daniel

    2015-01-01

    Objectives Specialized proresolving lipid mediators have emerged as powerful modulators of inflammation and activators of resolution. Animal models show significant benefits of specialized proresolving lipid mediators on survival and wound healing after major burn trauma. To date, no studies have investigated specialized proresolving lipid mediators and their relation to other lipid mediator pathways in humans after trauma. Here we determine if patients with poor outcomes after trauma have dysregulated lipid mediator pathways. Design We studied blood leukocyte expression of 18 genes critical to the synthesis, signaling, and metabolism of specialized proresolving lipid mediators and proinflammatory lipid mediators, and we correlated these expression patterns with clinical outcomes in trauma patients from the Inflammation and the Host Response to Injury study. Setting Seven U.S. medical trauma centers. Subjects Ninety-six patients enrolled in the Inflammation and Host Response to Injury study, after blunt trauma and unambiguously classified as having uncomplicated or complicated recoveries. Twenty-eight healthy volunteers were enrolled as controls. Interventions None. Measurements and Main Results Within each patient, the 18 genes of interest were used to calculate scores for distinct families of lipid mediators, including resolvins, lipoxins, prostaglandins, and leukotrienes, as well as leukotriene to resolvin score ratios. Scores were built using a simple weighting scheme, taking into consideration both dependent and independent activities of enzymes and receptors responsible for lipid mediator biosynthesis and function. Individually, ALOX12, PTGS2, PTGES, PTGDS, ALOX5AP, LTA4H, FPR2, PTGER2, LTB4R, HPGD, PTGR1, and CYP4F3 were expressed differentially over 28 days posttrauma between patients with uncomplicated and complicated recoveries (p < 0.05). When all genes were combined into scores, patients with uncomplicated recoveries had differential and higher resolvin

  20. The impact of gene expression regulation on evolution of extracellular signaling pathways.

    PubMed

    Charoensawan, Varodom; Adryan, Boris; Martin, Stephen; Söllner, Christian; Thisse, Bernard; Thisse, Christine; Wright, Gavin J; Teichmann, Sarah A

    2010-12-01

    Extracellular protein interactions are crucial to the development of multicellular organisms because they initiate signaling pathways and enable cellular recognition cues. Despite their importance, extracellular protein interactions are often under-represented in large scale protein interaction data sets because most high throughput assays are not designed to detect low affinity extracellular interactions. Due to the lack of a comprehensive data set, the evolution of extracellular signaling pathways has remained largely a mystery. We investigated this question using a combined data set of physical pairwise interactions between zebrafish extracellular proteins, mainly from the immunoglobulin superfamily and leucine-rich repeat families, and their spatiotemporal expression profiles. We took advantage of known homology between proteins to estimate the relative rates of changes of four parameters after gene duplication, namely extracellular protein interaction, expression pattern, and the divergence of extracellular and intracellular protein sequences. We showed that change in expression profile is a major contributor to the evolution of signaling pathways followed by divergence in intracellular protein sequence, whereas extracellular sequence and interaction profiles were relatively more conserved. Rapidly evolving expression profiles will eventually drive other parameters to diverge more quickly because differentially expressed proteins get exposed to different environments and potential binding partners. This allows homologous extracellular receptors to attain specialized functions and become specific to tissues and/or developmental stages.

  1. Expression patterns of genes critical for BMP signaling pathway in developing human primary tooth germs.

    PubMed

    Dong, Xiuqing; Shen, Bin; Ruan, Ningsheng; Guan, Zhen; Zhang, Yanding; Chen, YiPing; Hu, Xuefeng

    2014-12-01

    The developing murine tooth has been used as an excellent model system to study the molecular mechanism of organ development and regeneration. While the expression patterns of numerous regulatory genes have been examined and their roles have begun to be revealed in the developing murine tooth, little is known about gene expression and function in human tooth development. In order to unveil the molecular mechanisms that regulate human tooth morphogenesis, we examined the expression patterns of the major BMP signaling pathway molecules in the developing human tooth germ at the cap and bell stages by in situ hybridization, immunohistochemistry, and real-time RT-PCR. Expression of BMP ligands and antagonist, including BMP2, BMP3, BMP4, BMP7, and NOOGGIN, exhibited uniform patterns in the tooth germs of incisor and molar at the cap and bell stages with stronger expression in the inner dental epithelium than that in the dental mesenchyme. Both type I and type II BMP receptors were present in widespread expression pattern in the whole-enamel organ and the dental mesenchyme with the strongest expression in inner dental epithelium at the cap and bell stages. SMAD4 and SMAD1/5/8 showed an expression pattern similar to that of BMP ligands with more intensive signals in the inner dental epithelium. Despite some unique and distinct patterns as compared to the mouse, the intensive expression of BMP signaling pathway molecules in the developing human tooth strongly suggests conserved functions of BMP signaling during human odontogenesis, such as in mediating tissue interactions and regulating differentiation and organization of odontogenic tissues. Our results provide an important set of documents for studying molecular regulatory mechanisms underlying tooth development and regeneration in humans.

  2. The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle.

    PubMed

    Wu, Xuxia; Wang, Jelai; Cui, Xiangqin; Maianu, Lidia; Rhees, Brian; Rosinski, James; So, W Venus; Willi, Steven M; Osier, Michael V; Hill, Helliner S; Page, Grier P; Allison, David B; Martin, Mitchell; Garvey, W Timothy

    2007-02-01

    To study the insulin effects on gene expression in skeletal muscle, muscle biopsies were obtained from 20 insulin sensitive individuals before and after euglycemic hyperinsulinemic clamps. Using microarray analysis, we identified 779 insulin-responsive genes. Particularly noteworthy were effects on 70 transcription factors, and an extensive influence on genes involved in both protein synthesis and degradation. The genetic program in skeletal muscle also included effects on signal transduction, vesicular traffic and cytoskeletal function, and fuel metabolic pathways. Unexpected observations were the pervasive effects of insulin on genes involved in interacting pathways for polyamine and S-adenoslymethionine metabolism and genes involved in muscle development. We further confirmed that four insulin-responsive genes, RRAD, IGFBP5, INSIG1, and NGFI-B (NR4A1), were significantly up-regulated by insulin in cultured L6 skeletal muscle cells. Interestingly, insulin caused an accumulation of NGFI-B (NR4A1) protein in the nucleus where it functions as a transcription factor, without translocation to the cytoplasm to promote apoptosis. The role of NGFI-B (NR4A1) as a new potential mediator of insulin action highlights the need for greater understanding of nuclear transcription factors in insulin action.

  3. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    PubMed

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  4. Multiple Signaling Pathways in Gene Expression during Sugar Starvation. Pharmacological Analysis of din Gene Expression in Suspension-Cultured Cells of Arabidopsis1

    PubMed Central

    Fujiki, Yuki; Ito, Masaki; Nishida, Ikuo; Watanabe, Akira

    2000-01-01

    We have identified many dark-inducible (din) genes that are expressed in Arabidopsis leaves kept in the dark. In the present study we addressed the question of how plant cells sense the depletion of sugars, and how sugar starvation triggers din gene expression in suspension-cultured cells of Arabidopsis. Depletion of sucrose in the medium triggered marked accumulation of din transcripts. Suppression of din gene expression by 2-deoxy-Glc, and a non-suppressive effect exerted by 3-O-methyl-Glc, suggested that sugar-repressible expression of din genes is mediated through the phosphorylation of hexose by hexokinase, as exemplified in the repression of photosynthetic genes by sugars. We have further shown that the signaling triggered by sugar starvation involves protein phosphorylation and dephosphorylation events, and have provided the first evidence that multiple pathways of protein dephosphorylation exist in sugar starvation-induced gene expression. An inhibitor of serine/threonine protein kinase, K-252a, inhibited din gene expression in sugar-depleted cells. Okadaic acid, which may preferentially inhibit type 2A protein phosphatases over type 1, enhanced the transcript levels of all din genes, except din6 and din10, under sugar starvation. Conversely, a more potent inhibitor of type 1 and 2A protein phosphatases, calyculin A, increased transcripts from din2 and din9, but decreased those from other din genes, in sugar-depleted cells. On the other hand, calyculin A, but not okadaic acid, completely inhibited the gene expression of chlorophyll a/b-binding protein under sugar starvation. These results indicate that multiple signaling pathways, mediated by different types of protein phosphatases, regulate gene expression during sugar starvation. PMID:11080291

  5. Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis

    PubMed Central

    Lederer, Carsten W; Torrisi, Antonietta; Pantelidou, Maria; Santama, Niovi; Cavallaro, Sebastiano

    2007-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by the progressive degeneration of motoneurons in brain and spinal cord. Despite identification of disease-linked mutations, the diversity of processes involved and the ambiguity of their relative importance in ALS pathogenesis still represent a major impediment to disease models as a basis for effective therapies. Moreover, the human motor cortex, although critical to ALS pathology and physiologically altered in most forms of the disease, has not been screened systematically for therapeutic targets. Results By whole-genome expression profiling and stringent significance tests we identify genes and gene groups de-regulated in the motor cortex of patients with sporadic ALS, and interpret the role of individual candidate genes in a framework of differentially expressed pathways. Our findings emphasize the importance of defense responses and cytoskeletal, mitochondrial and proteasomal dysfunction, reflect reduced neuronal maintenance and vesicle trafficking, and implicate impaired ion homeostasis and glycolysis in ALS pathogenesis. Additionally, we compared our dataset with publicly available data for the SALS spinal cord, and show a high correlation of changes linked to the diseased state in the SALS motor cortex. In an analogous comparison with data for the Alzheimer's disease hippocampus we demonstrate a low correlation of global changes and a moderate correlation for changes specifically linked to the SALS diseased state. Conclusion Gene and sample numbers investigated allow pathway- and gene-based analyses by established error-correction methods, drawing a molecular portrait of the ALS motor cortex that faithfully represents many known disease features and uncovers several novel aspects of ALS pathology. Contrary to expectations for a tissue under oxidative stress, nuclear-encoded mitochondrial genes are uniformly down-regulated. Moreover, the down-regulation of mitochondrial and glycolytic

  6. Gene expression and pathway analysis of CTNNB1 in cancer and stem cells

    PubMed Central

    Tanabe, Shihori; Kawabata, Takeshi; Aoyagi, Kazuhiko; Yokozaki, Hiroshi; Sasaki, Hiroki

    2016-01-01

    AIM To investigate β-catenin (CTNNB1) signaling in cancer and stem cells, the gene expression and pathway were analyzed using bioinformatics. METHODS The expression of the catenin β 1 (CTNNB1) gene, which codes for β-catenin, was analyzed in mesenchymal stem cells (MSCs) and gastric cancer (GC) cells. Beta-catenin signaling and the mutation of related proteins were also analyzed using the cBioPortal for Cancer Genomics and HOMology modeling of Complex Structure (HOMCOS) databases. RESULTS The expression of the CTNNB1 gene was up-regulated in GC cells compared to MSCs. The expression of EPH receptor A8 (EPHA8), synovial sarcoma translocation chromosome 18 (SS18), interactor of little elongation complex ELL subunit 1 (ICE1), patched 1 (PTCH1), mutS homolog 3 (MSH3) and caspase recruitment domain family member 11 (CARD11) were also shown to be altered in GC cells in the cBioPortal for Cancer Genomics analysis. 3D complex structures were reported for E-cadherin 1 (CDH1), lymphoid enhancer binding factor 1 (LEF1), transcription factor 7 like 2 (TCF7L2) and adenomatous polyposis coli protein (APC) with β-catenin. CONCLUSION The results indicate that the epithelial-mesenchymal transition (EMT)-related gene CTNNB1 plays an important role in the regulation of stem cell pluripotency and cancer signaling. PMID:27928465

  7. Heterologous expression of a bacterial homospermidine synthase gene in transgenic tobacco: effects on the polyamine pathway.

    PubMed

    Kaiser, Annette; Sell, Simone; Hehl, Reinhard

    2002-04-01

    Homospermidine synthase (HSS) is a branch-point enzyme that links the secondary pathway (pyrrolizidine alkaloids) to primary metabolism (polyamines). Since the diamine putrescine is a precursor of homospermidine and nicotine in tobacco, we performed heterologous expression of a bacterial homospermidine synthase gene (hss)in Nicotiana tabacum and determined the effect on free and conjugated polyamine levels. The hss gene from Rhodopseudomonas viridis was placed under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Agrobacterium tumefaciens Ti-plasmid in sense and antisense orientation and both hss constructs were transformed into tobacco plants. Expression of the hss gene was verified by "Northern" and "Southern Blot" analysis. 2 transgenic sense lines were generated from 1000 calli which showed weak expression of homospermidine synthase, i.e. 50 pktal/mg protein and 45 pktal/mg protein. These transgenic sense plants showed a significantly decreased content of free spermidine while the pool of conjugated spermidine was not affected. The 2 sense plants exhibited a range of abnormal phenotypes such as dwarfness and stunted growth. Homospermidine was sporadically detectable in wild type tobacco. To our knowledge, this is the first biotechnological approach to express a prokaryotic homospermidine synthase gene in tobacco plants.

  8. Genetic and expression analysis of cattle identifies candidate genes in pathways responding to Trypanosoma congolense infection

    PubMed Central

    Noyes, Harry; Brass, Andy; Obara, Isaiah; Anderson, Susan; Archibald, Alan L.; Bradley, Dan G.; Fisher, Paul; Freeman, Abigail; Gibson, John; Gicheru, Michael; Hall, Laurence; Hanotte, Olivier; Hulme, Helen; McKeever, Declan; Murray, Caitriona; Oh, Sung Jung; Tate, Catriona; Smith, Ken; Tapio, Miika; Wambugu, John; Williams, Diana J.; Agaba, Morris; Kemp, Stephen J.

    2011-01-01

    African bovine trypanosomiasis caused by Trypanosoma sp., is a major constraint on cattle productivity in sub-Saharan Africa. Some African Bos taurus breeds are highly tolerant of infection, but the potentially more productive Bos indicus zebu breeds are much more susceptible. Zebu cattle are well adapted for plowing and haulage, and increasing their tolerance of trypanosomiasis could have a major impact on crop cultivation as well as dairy and beef production. We used three strategies to obtain short lists of candidate genes within QTL that were previously shown to regulate response to infection. We analyzed the transcriptomes of trypanotolerant N'Dama and susceptible Boran cattle after infection with Trypanosoma congolense. We sequenced EST libraries from these two breeds to identify polymorphisms that might underlie previously identified quantitative trait loci (QTL), and we assessed QTL regions and candidate loci for evidence of selective sweeps. The scan of the EST sequences identified a previously undescribed polymorphism in ARHGAP15 in the Bta2 trypanotolerance QTL. The polymorphism affects gene function in vitro and could contribute to the observed differences in expression of the MAPK pathway in vivo. The expression data showed that TLR and MAPK pathways responded to infection, and the former contained TICAM1, which is within a QTL on Bta7. Genetic analyses showed that selective sweeps had occurred at TICAM1 and ARHGAP15 loci in African taurine cattle, making them strong candidates for the genes underlying the QTL. Candidate QTL genes were identified in other QTL by their expression profile and the pathways in which they participate. PMID:21593421

  9. Particle Radiation signals the Expression of Genes in stress-associated Pathways

    NASA Astrophysics Data System (ADS)

    Blakely, E.; Chang, P.; Bjornstad, K.; Dosanjh, M.; Cherbonnel, C.; Rosen, C.

    The explosive development of microarray screening methods has propelled genome research in a variety of biological systems allowing investigators to examine large-scale alterations in gene expression for research in toxicology pathology and therapy The radiation environment in space is complex and encompasses a variety of highly energetic and charged particles Estimation of biological responses after exposure to these types of radiation is important for NASA in their plans for long-term manned space missions Instead of using the 10 000 gene arrays that are in the marketplace we have chosen to examine particle radiation-induced changes in gene expression using a focused DNA microarray system to study the expression of about 100 genes specifically associated with both the upstream and downstream aspects of the TP53 stress-responsive pathway Genes that are regulated by TP53 include functional clusters that are implicated in cell cycle arrest apoptosis and DNA repair A cultured human lens epithelial cell model Blakely et al IOVS 41 3808 2000 was used for these studies Additional human normal and radiosensitive fibroblast cell lines have also been examined Lens cells were grown on matrix-coated substrate and exposed to 55 MeV u protons at the 88 cyclotron in LBNL or 1 GeV u Iron ions at the NASA Space Radiation Laboratory The other cells lines were grown on conventional tissue culture plasticware RNA and proteins were harvested at different times after irradiation RNA was isolated from sham-treated or select irradiated populations

  10. Gene expression activity and pathway selection for sucrose metabolism in developing storage root of sweet potato.

    PubMed

    Li, Xiu-Qing; Zhang, Dapeng

    2003-06-01

    Development of sweet potato (Ipomoea batatas) storage root coincides with starch accumulation made using cleaved products of imported photoassimilate sucrose. The genes and pathways are predominantly active for sucrose metabolism in developing storage root were unknown. In this study, we used both an expressed sequence tag (EST) approach and a reverse transcription-polymerase chain reaction (RT-PCR) approach to answer this question. Sucrose synthase (SuSy) was found to be significantly more frequent in storage root ESTs than in fibrous root ESTs. SuSy was the most abundant carbohydrate-metabolism gene in the storage-root ESTs. RT-PCR results confirmed this by showing that invertase was active in fibrous roots but rapidly decreased to an undetectable level during storage root development while SuSy became predominant. Invertase expression was also detectable in young immature storage root and shoot tips, suggesting an involvement in cell formation. SuSy expression pattern showed considerable similarity to that of ADP-glucose pyrophosphorylase, an essential enzyme for starch synthesis. The results indicated that (i). SuSy was the most actively expressed enzyme in sucrose metabolism in developing storage root and was correlated with sink strength, and (ii). whereas invertase was active at cell formation stages, SuSy pathway was predominant for sucrose cleavage related to starch-accumulation.

  11. The Expression of Petunia Strigolactone Pathway Genes is Altered as Part of the Endogenous Developmental Program

    PubMed Central

    Drummond, Revel S. M.; Sheehan, Hester; Simons, Joanne L.; Martínez-Sánchez, N. Marcela; Turner, Rebecca M.; Putterill, Joanna; Snowden, Kimberley C.

    2012-01-01

    Analysis of mutants with increased branching has revealed the strigolactone synthesis/perception pathway which regulates branching in plants. However, whether variation in this well conserved developmental signaling system contributes to the unique plant architectures of different species is yet to be determined. We examined petunia orthologs of the Arabidopsis MAX1 and MAX2 genes to characterize their role in petunia architecture. A single ortholog of MAX1, PhMAX1 which encodes a cytochrome P450, was identified and was able to complement the max1 mutant of Arabidopsis. Petunia has two copies of the MAX2 gene, PhMAX2A and PhMAX2B which encode F-Box proteins. Differences in the transcript levels of these two MAX2-like genes suggest diverging functions. Unlike PhMAX2B, PhMAX2A mRNA levels change in leaves of differing age/position on the plant. Nonetheless, this gene functionally complements the Arabidopsis max2 mutant indicating that the biochemical activity of the PhMAX2A protein is not significantly different from MAX2. The expression of the petunia strigolactone pathway genes (PhCCD7, PhCCD8, PhMAX1, PhMAX2A, and PhMAX2B) was then further investigated throughout the development of wild-type petunia plants. Three of these genes showed changes in mRNA levels over a development series. Alterations to the expression patterns of these genes may influence the branching growth habit of plants by changing strigolactone production and/or sensitivity. These changes could allow both subtle and dramatic changes to branching within and between species. PMID:22645562

  12. Hepatic gene expression during treatment with peginterferon and ribavirin: Identifying molecular pathways for treatment response.

    PubMed

    Feld, Jordan J; Nanda, Santosh; Huang, Ying; Chen, Weiping; Cam, Maggie; Pusek, Susan N; Schweigler, Lisa M; Theodore, Dickens; Zacks, Steven L; Liang, T Jake; Fried, Michael W

    2007-11-01

    The reasons for hepatitis C treatment failure remain unknown but may be related to different host responses to therapy. In this study, we compared hepatic gene expression in patients prior to and during peginterferon and ribavirin therapy. In the on-treatment group, patients received either ribavirin for 72 hours prior to peginterferon alpha-2a injection or peginterferon alpha-2a for 24 hours, prior to biopsy. The patients were grouped into rapid responders (RRs) with a greater than 2-log drop and slow responders (SRs) with a less than 2-log drop in hepatitis C virus RNA by week 4. Pretreatment biopsy specimens were obtained from a matched control group. The pretreatment patients were grouped as RRs or SRs on the basis of the subsequent treatment response. Gene expression profiling was performed with Affymetrix microarray technology. Known interferon-stimulated genes (ISGs) were induced in treated patients. In the pretreatment group, future SRs had higher pretreatment ISG expression than RRs. On treatment, RRs and SRs had similar absolute ISG expression, but when it was corrected for the baseline expression with the pretreatment group, RRs showed a greater fold change in ISGs, whereas SRs showed a greater change in interferon (IFN)-inhibitory pathways. The patients pretreated with ribavirin had heightened induction of IFN-related genes and down-regulation of genes involved in IFN inhibition and hepatic stellate cell activation. These data suggest that ISG inducibility is important for the treatment response and that ribavirin may improve outcomes by enhancing hepatic gene responses to peginterferon. Collectively, these mechanisms may provide a molecular basis for the improved efficacy of combination therapy.

  13. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation.

    PubMed

    Xu, Wenping; Peng, Hui; Yang, Tianbao; Whitaker, Bruce; Huang, Luhong; Sun, Jianghao; Chen, Pei

    2014-09-01

    Two diploid woodland strawberry (Fragaria vesca) inbred lines, Ruegen F7-4 (red fruit-bearing) and YW5AF7 (yellow fruit-bearing) were used to study the regulation of anthocyanin biosynthesis in fruit. Ruegen F7-4 fruit had similar total phenolics and anthocyanin contents to commercial octoploid (F. × ananassa) cultivar Seascape, while YW5AF7 exhibited relatively low total phenolics content and no anthocyanin accumulation. Foliar spray of CaCl2 boosted fruit total phenolics content, especially anthocyanins, by more than 20% in both Seascape and RF7-4. Expression levels of almost all the flavonoid pathway genes were comparable in Ruegen F7-4 and YW5AF7 green-stage fruit. However, at the turning and ripe stages, key anthocyanin structural genes, including flavanone 3-hydroxylase (F3H1), dihydroflavonol 4-reductase (DFR2), anthocyanidin synthase (ANS1), and UDP-glucosyltransferase (UGT1), were highly expressed in Ruegen F7-4 compared with YW5AF7 fruit. Calcium treatment further stimulated the expression of those genes in Ruegen F7-4 fruit. Anthocyanins isolated from petioles of YW5AF7 and Ruegen F-7 had the same HPLC-DAD profile, which differed from that of Ruegen F-7 fruit anthocyanins. All the anthocyanin structural genes except FvUGT1 were detected in petioles of YW5AF7 and Ruegen F-7. Taken together, these results indicate that the "yellow" gene in YW5AF7 is a fruit specific regulatory gene(s) for anthocyanin biosynthesis. Calcium can enhance accumulation of anthocyanins and total phenolics in fruit possibly via upregulation of anthocyanin structural genes. Our results also suggest that the anthocyanin biosynthesis machinery in petioles is different from that in fruit. Published by Elsevier Masson SAS.

  14. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells.

    PubMed

    Page, Andrew F; Minocha, Rakesh; Minocha, Subhash C

    2012-01-01

    Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the

  15. Gene expression profiling reveals key genes and pathways related to the development of non-alcoholic fatty liver disease.

    PubMed

    Wang, Ruifeng; Wang, Xiaobing; Zhuang, Liwei

    2016-01-01

     Background. This study aims to identify key genes and pathways involved in non-alcoholic fatty liver disease (NAFLD). The dataset GSE48452 was downloaded from Gene Expression Omnibus, including 14 control liver samples, 27 healthy obese samples, 14 steatosis samples and 18 nonalcoholic steatohepatitis (NASH) samples. Differentially expressed genes (DEGs) between controls and other samples were screened through LIMMA package. Then pathway enrichment analysis for DEGs was performed by using DAVID, and alterations of enriched pathways were determined. Furthermore, protein-protein interaction (PPI) networks were constructed based on the PPI information from HPRD database, and then, networks were visualized through Cytoscape. Additionally, interactions between microRNAs (miRNAs) and pathways were analyzed via Fisher's exact test. A total of 505, 814 and 783 DEGs were identified for healthy obese, steatosis and NASH samples in comparison with controls, respectively. DEGs were enriched in ribosome (RPL36A, RPL14, etc.), ubiquitin mediated proteolysis (UBE2A, UBA7, etc.), focal adhesion (PRKCA, EGFR, CDC42, VEGFA, etc.), Fc?R-mediated phagocytosis (PRKCA, CDC42, etc.), and so on. The 27 enriched pathways gradually deviated from baseline (namely, controls) along with the changes of obese-steatosis-NASH. In PPI networks, PRKCA interacted with EGFR and CDC42. Besides, hsa-miR-330-3p and hsa-miR-126 modulated focal adhesion through targeting VEGFA and CDC42. The identified DEGs (PRKCA, EGFR, CDC42, VEGFA), disturbed pathways (ribosome, ubiquitin mediated proteolysis, focal adhesion, Fc?R-mediated phagocytosis, etc.) and miRNAs (hsa-miR-330-3p, hsa-miR-126, etc.) might be closely related to NAFLD progression. These results might contribute to understanding NAFLD mechanism, conducting experimental researches, and designing clinical practices.

  16. The effects of nonyl phenoxypolyethoxyl ethanol on cell damage pathway gene expression in SK-NSH cells

    PubMed Central

    Park, Samel; Hwang, Il-woong; Kim, Jin-sheon; Kang, Hyo-chul; Park, Su-Yeon; Gil, Hyo-wook; Song, Ho-yeon; Hong, Sae-yong

    2015-01-01

    Background/Aims: Most pesticide formulations contain both chief and additive ingredients. But, the additives may not have been tested as thoroughly as the chief ingredients. The surfactant, nonyl phenoxypolyethoxylethanol (NP40), is an additive frequently present in pesticide formulations. We investigated the effects of NP40 and other constituents of a validamycin pesticide formulation on cell viability and on the expression of genes involved in cell damage pathways. Methods: The effects of validamycin pesticide ingredients on cell viability and of NP40 on the mRNA expression of 80 genes involved in nine key cellular pathways were examined in the human neuroblastoma SK-N-SH cell line. Results: The chemicals present in the validamycin pesticide formulation were cytotoxic to SK-N-SH cells and NP40 showed the greatest cytotoxicity. A range of gene expression changes were identified, with both up- and down-regulation of genes within the same pathway. However, all genes tested in the necrosis signaling pathway were down-regulated and all genes tested in the cell cycle checkpoint/arrest pathway were up-regulated. The median fold-change in gene expression was significantly higher in the cell cycle checkpoint/arrest pathway than in the hypoxia pathway category (p = 0.0064). The 70 kDa heat shock protein 4 gene, within the heat shock protein/unfolded protein response category, showed the highest individual increase in expression (26.1-fold). Conclusions: NP40 appeared to be particularly harmful, inducing gene expression changes that indicated genotoxicity, activation of the cell death (necrosis signaling) pathway, and induction of the 70 kDa heat shock protein 4 gene. PMID:26552463

  17. piRNA pathway gene expression in the malaria vector mosquito Anopheles stephensi.

    PubMed

    Macias, V; Coleman, J; Bonizzoni, M; James, A A

    2014-10-01

    The ability of transposons to mobilize to new places in a genome enables them to introgress rapidly into populations. The piRNA pathway has been characterized recently in the germ line of the fruit fly, Drosophila melanogaster, and is responsible for downregulating transposon mobility. Transposons have been used as tools in mosquitoes to genetically transform a number of species including Anopheles stephensi, a vector of human malaria. These mobile genetic elements also have been proposed as tools to drive antipathogen effector genes into wild mosquito populations to replace pathogen-susceptible insects with those engineered genetically to be resistant to or unable to transmit a pathogen. The piRNA pathway may affect the performance of such proposed genetic engineering strategies. In the present study, we identify and describe the An. stephensi orthologues of the major genes in the piRNA pathway, Ago3, Aubergine (Aub) and Piwi. Consistent with a role in protection from transposon movement, these three genes are expressed constitutively in the germ-line cells of ovaries and induced further after a blood meal. © 2014 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of The Royal Entomological Society.

  18. Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits.

    PubMed Central

    Hugueney, P; Bouvier, F; Badillo, A; Quennemet, J; d'Harlingue, A; Camara, B

    1996-01-01

    Plant cells synthesize a myriad of isoprenoid compounds in different subcellular compartments, which include the plastid, the mitochondria, and the endoplasmic reticulum cytosol. To start the study of the regulation of these parallel pathways, we used pepper (Capsicum annuum) fruit as a model. Using different isoprenoid biosynthetic gene probes from cloned cDNAs, we showed that only genes encoding the plastid enzymes (geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and capasanthin-capsorubin synthase) are specifically triggered during the normal period of development, at the ripening stage. This pattern of expression can be mimicked and precociously induced by a simple wounding stress. Concerning the cytosol-located enzymes, we observed that the expression of the gene encoding farnesyl pyrophosphate synthase is constitutive, whereas that of farnesyl pyrophosphate cyclase (5-epi-aristolochene synthase) is undetectable during the normal development of the fruit. The expression of these later genes are, however, only selectively triggered after elicitor treatment. The results provide evidence for developmental control of isoprenoid biosynthesis occurring in plastids and that cytoplasmic isoprenoid biosynthesis is regulated, in part, by environmental signals. PMID:8787029

  19. Gene expression profile of renal cell carcinomas after neoadjuvant treatment with sunitinib: new pathways revealed.

    PubMed

    Dzik, Carlos; Reis, Sabrina T; Viana, Nayara I; Brito, Glauber; Paloppi, Isis; Nahas, Willian; Srougi, Miguel; Leite, Katia R M

    2017-05-04

    In renal cell carcinoma (RCC) of the clear cell type, inactivity of the VHL gene induces overexpression of HIF1 α and its targets, the tyrosine kinase receptors, promoting RCC development and progression. The discovery of tyrosine kinase inhibitors (TKIs) changed the treatment of these tumors. Other molecular pathways involved in the TKI mechanisms of action have not been described in the literature. The aim of our study was to elucidate alternative mechanisms of action of sunitinib in tumor tissue after neoadjuvant treatment of RCC. The gene expression profile was accessed using microarray (Affymetrix Human Genome U133 Plus 2.0 platform) and frozen RCC tissues collected from 5 patients with locally advanced non-metastatic tumors who underwent nephrectomy after being treated with 2 cycles of neoadjuvant sunitinib. The results were compared with matched controls comprising 6 patients with no neoadjuvant intervention. There was underexpression of the majority of genes after sunitinib treatment. The lower expression levels of IGFBP1, CCL20, CXCL6 and FGB were confirmed by qRT-PCR in all cases. The downregulation of gene expression leads us to search for methylation as a mechanism of action of the TKI. IGFBP1 was shown to be methylated by methylation-sensitive high-resolution melting technique. The ultimate genetic effects of sunitinib may explain its actions as an antitumor drug that apparently suppresses the expression of important genes related to cell survival, adhesion, invasion and immunomodulation. The methylation of gene promoters was shown to be part of the mechanism of action of this class of drugs.

  20. Gene profiling of keloid fibroblasts shows altered expression in multiple fibrosis-associated pathways

    PubMed Central

    Smith, Joan C.; Boone, Braden E.; Opalenik, Susan R.; Williams, Scott M.; Russell, Shirley B.

    2010-01-01

    Keloids are benign tumors of the dermis that form during a protracted wound healing process. Susceptibility to keloid formation occurs predominantly in people of African and Asian descent. The key alteration(s) responsible for keloid formation has not been identified and there is no satisfactory treatment for this disorder. The altered regulatory mechanism is limited to dermal wound healing, although several diseases characterized by an exaggerated response to injury are prevalent in individuals of African ancestry. We have observed a complex pattern of phenotypic differences in keloid fibroblasts grown in standard culture medium or induced by hydrocortisone. In this study Affymetrix-based microarray was performed on RNA obtained from fibroblasts cultured from normal scars and keloids grown in the absence and presence of hydrocortisone. We observed differential regulation of approximately 500 genes of the 38,000 represented on the Affymetrix chip. Of particular interest was increased expression of several IGF-binding and IGF-binding related proteins and decreased expression of a subset of Wnt pathway inhibitors and multiple IL-1-inducible genes. Increased expression of CTGF and IGFBP-3 was observed in keloid fibroblasts only in the presence of hydrocortisone. These findings support a role for multiple fibrosis-related pathways in the pathogenesis of keloids. PMID:17989729

  1. [Screening of key genes and inflammatory signalling pathway involved in the pathogenesis of HLA-B27-associated acute anterior uveitis by gene expression microarray].

    PubMed

    Hu, Xiao-feng; Lu, Hong; Wang, Jing; Zhang, Xiao-sheng; Zhang, Xiao-long; Liu, Xu-hui; Xu, Zhuo-zai; Hu, Jun-min; Lu, Qing-jun

    2013-03-01

    To investigate the genes and signalling pathways located upstream of the inflammatory processes in human leukocyte antigen (HLA)-B27-associated acute anterior uveitis by gene expression microarray. Experimental study. HLA-B27-positive and-negative monocytes isolated from human peripheral blood were stimulated with Vibrio cholera lipopolysaccharide (LPS). Gene expression microarrays were used to identify the differentially expressed genes. Differentially expressed (DE) genes were testified by real-time PCR and analyzed by a series of bioinformatics-based techniques such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes. Gene expression microarray analysis revealed marked differences between HLA-B27-positive acute anterior uveitis (AAU) and HLA-B27-negative healthy control peripheral monocytes in the genes that were upregulated in response to LPS stimulation with 1105 genes and 25 genes respectively. Gene Ontology enrichment and pathway analysis indicated that genes participating in protein transport and folding were essential to the inflammatory process. The LPS receptor-Toll-like receptor (TLR)4 induced TLR signalling pathway and pathway related to Vibrio cholerae infection were located upstream of the network and contribute to the overall response. Among the DE genes, PIK3CA, PIK3CB, AKT3, and MAPK1 might play critical roles in inflammation. Equivalent LPS stimulation induces a different response in HLA-B27-positive peripheral monocytes compared to normal control, suggesting that the TLR pathway is involved in the pathogenesis of HLA-B27-associated AAU.

  2. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    PubMed

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.

  3. Palmitate increases musclin gene expression through activation of PERK signaling pathway in C2C12 myotubes.

    PubMed

    Gu, Ning; Guo, Qian; Mao, Ke; Hu, Hailong; Jin, Sanli; Zhou, Ying; He, Hongjuan; Oh, Yuri; Liu, Chuanpeng; Wu, Qiong

    2015-11-20

    Musclin is a type of muscle-secreted cytokine and its increased gene expression induces insulin resistance in type 2 diabetes. However, the mechanism underlying increased musclin gene expression is currently unclear. Excessive saturated fatty acids (SFA) can activate the secretion of several muscle-secreted cytokines as well as endoplasmic reticulum (ER) stress pathway, thereby contributing to the development of type 2 diabetes. The purpose of this study was to investigate the mechanisms responsible for the effect of palmitate, the most abundant SFA in the plasma, on the gene expression of musclin in C2C12 myotubes. Treatment of C2C12 myotubes with palmitate or tunicamycin significantly increased the expression of musclin as well as ER stress-related genes, but treatment with oleate did not. Pre-treatment of C2C12 myotubes with 4-phenyl butyrate suppressed the expression of ER stress-related genes, simultaneously, resulting in decreased expression of the musclin gene induced by palmitate or tunicamycin. These results indicate that ER stress is related to palmitate-induced musclin gene expression. Moreover, palmitate-induced musclin gene expression was significantly inhibited in C2C12 myotubes when PERK pathway signaling was suppressed by knockdown of the PERK gene or treatment with GSK2656157, a PERK autophosphorylation inhibitor. However, there was no difference in the palmitate-induced musclin gene expression when IRE1 and ATF6 signaling pathways were suppressed by knockdown of the IRE1 and ATF6 genes. These findings suggest that palmitate increases musclin gene expression via the activation of the PERK signaling pathway in C2C12 myotubes.

  4. Integrated signaling pathway and gene expression regulatory model to dissect dynamics of Escherichia coli challenged mammary epithelial cells.

    PubMed

    den Breems, Nicoline Y; Nguyen, Lan K; Kulasiri, Don

    2014-12-01

    Cells transform external stimuli, through the activation of signaling pathways, which in turn activate gene regulatory networks, in gene expression. As more omics data are generated from experiments, eliciting the integrated relationship between the external stimuli, the signaling process in the cell and the subsequent gene expression is a major challenge in systems biology. The complex system of non-linear dynamic protein interactions in signaling pathways and gene networks regulates gene expression. The complexity and non-linear aspects have resulted in the study of the signaling pathway or the gene network regulation in isolation. However, this limits the analysis of the interaction between the two components and the identification of the source of the mechanism differentiating the gene expression profiles. Here, we present a study of a model of the combined signaling pathway and gene network to highlight the importance of integrated modeling. Based on the experimental findings we developed a compartmental model and conducted several simulation experiments. The model simulates the mRNA expression of three different cytokines (RANTES, IL8 and TNFα) regulated by the transcription factor NFκB in mammary epithelial cells challenged with E. coli. The analysis of the gene network regulation identifies a lack of robustness and therefore sensitivity for the transcription factor regulation. However, analysis of the integrated signaling and gene network regulation model reveals distinctly different underlying mechanisms in the signaling pathway responsible for the variation between the three cytokine's mRNA expression levels. Our key findings reveal the importance of integrating the signaling pathway and gene expression dynamics in modeling. Modeling infers valid research questions which need to be verified experimentally and can assist in the design of future biological experiments.

  5. tortuga refines Notch pathway gene expression in the zebrafish presomitic mesoderm at the post-transcriptional level.

    PubMed

    Dill, Kariena K; Amacher, Sharon L

    2005-11-15

    We have identified the zebrafish tortuga (tor) gene by an ENU-induced mutation that disrupts the presomitic mesoderm (PSM) expression of Notch pathway genes. In tor mutants, Notch pathway gene expression persists in regions of the PSM where expression is normally off in wild type embryos. The expression of hairy/Enhancer of split-related 1 (her1) is affected first, followed by the delta genes deltaC and deltaD, and finally, by another hairy/Enhancer of split-related gene, her7. In situ hybridization with intron-specific probes for her1 and deltaC indicates that transcriptional bursts of expression are normal in tor mutants, suggesting that tor normally functions to refine her1 and deltaC message levels downstream of transcription. Despite the striking defects in Notch pathway gene expression, somite boundaries form normally in tor mutant embryos, although somitic mesoderm defects are apparent later, when cells mature to form muscle fibers. Thus, while the function of Notch pathway genes is required for proper somite formation, the tor mutant phenotype suggests that precise oscillations of Notch pathway transcripts are not essential for establishing segmental pattern in the presomitic mesoderm.

  6. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    SciTech Connect

    Cheng, Chi-Chih; Hsueh, Chi-Mei; Chen, Chiu-Yuan; Chen, Tzu-Hsiu; Hsu, Shih-Lan

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.

  7. Gene expression profiling reveals potential key pathways involved in pyrazinamide-mediated hepatotoxicity in Wistar rats.

    PubMed

    Zhang, Yun; Jiang, Zhenzhou; Su, Yijing; Chen, Mi; Li, Fu; Liu, Li; Sun, Lixin; Wang, Yun; Zhang, Shuang; Zhang, Luyong

    2013-08-01

    Pyrazinamide (PZA) is an important sterilizing prodrug that shortens the duration of tuberculosis therapy. However, hepatotoxicity has been reported during clinical trials investigating PZA. To determine the hepatotoxic effects of PZA in vivo and to further investigate the underlying cellular mechanism, we profiled the gene expression patterns of PZA-treated rat livers by microarray analysis. Wistar rats of both sexes were orally administered PZA at doses of 0.5, 1.0 and 2.0 g kg(-1) for 28 days. Body weight, absolute and relative liver weight, biochemical analysis, histopathology, oxidative stress parameters in liver homogenates and changes in global transcriptomic expression were evaluated to study the hepatotoxic effects of PZA. Our results confirm the dose-dependent and sex-related hepatotoxicity of PZA. Female rats were more sensitive to PZA-induced hepatotoxicity than males. Furthermore, changes in the activity of major antioxidant enzymes and nonenzymatic antioxidants (superoxide dismutase, total antioxidant capacity, glutathione and malondialdehyde), indicating the development of oxidative stress, were more significant in the PZA-treated group. PZA-induced gene expression changes were related to pathways involved in drug metabolism, peroxisome proliferator-activated receptor (PPAR) signaling, oxidative stress and apoptosis. Real-time polymerase chain reaction confirmed the regulation of selected genes involved in PZA-hepatotoxicity (Ephx1, Cyp2b1, Gstm1, Gstp1, Fabp7, Acaa1, Cpt-1b, Cyp8b1, Hmox1 and Ntrk1). We observed for the first time that these genes have effects on PZA-induced hepatotoxicity. In addition, drug metabolism and PPAR signaling pathways may play an important role in PZA hepatotoxicity. Taken together, these findings will be useful for future PZA hepatotoxicity studies.

  8. Expression analysis in response to drought stress in soybean: Shedding light on the regulation of metabolic pathway genes

    PubMed Central

    Guimarães-Dias, Fábia; Neves-Borges, Anna Cristina; Viana, Antonio Americo Barbosa; Mesquita, Rosilene Oliveira; Romano, Eduardo; de Fátima Grossi-de-Sá, Maria; Nepomuceno, Alexandre Lima; Loureiro, Marcelo Ehlers; Alves-Ferreira, Márcio

    2012-01-01

    Metabolomics analysis of wild type Arabidopsis thaliana plants, under control and drought stress conditions revealed several metabolic pathways that are induced under water deficit. The metabolic response to drought stress is also associated with ABA dependent and independent pathways, allowing a better understanding of the molecular mechanisms in this model plant. Through combining an in silico approach and gene expression analysis by quantitative real-time PCR, the present work aims at identifying genes of soybean metabolic pathways potentially associated with water deficit. Digital expression patterns of Arabidopsis genes, which were selected based on the basis of literature reports, were evaluated under drought stress condition by Genevestigator. Genes that showed strong induction under drought stress were selected and used as bait to identify orthologs in the soybean genome. This allowed us to select 354 genes of putative soybean orthologs of 79 Arabidopsis genes belonging to 38 distinct metabolic pathways. The expression pattern of the selected genes was verified in the subtractive libraries available in the GENOSOJA project. Subsequently, 13 genes from different metabolic pathways were selected for validation by qPCR experiments. The expression of six genes was validated in plants undergoing drought stress in both pot-based and hydroponic cultivation systems. The results suggest that the metabolic response to drought stress is conserved in Arabidopsis and soybean plants. PMID:22802708

  9. Differential gene expression of the key signalling pathway in para-carcinoma, carcinoma and relapse human pancreatic cancer.

    PubMed

    Chang, Zheng-Yan; Sun, Ran; Ma, Yu-Shui; Fu, Da; Lai, Xiao-Long; Li, Yu-Sheng; Wang, Xing-Hong; Zhang, Xiao-Ping; Lv, Zhong-Wei; Cong, Xian-Ling; Li, Wen-Ping

    2014-04-01

    Pancreatic cancer (PC) has a high rate of mortality and a poorly understood mechanism of progression. Investigation of the molecular mechanism of PC and exploration of the specific markers for early diagnosis and specific targets of therapy are key points to prevent and treat PC effectively and to improve their prognosis. In our study, expression profiles experiment of para-carcinoma, carcinoma and relapse human PC was performed using Agilent human whole genomic oligonucleotide microarrays with 45 000 probes. Differentially expressed genes related with PC were screened and analysed further by Gene Ontology term analysis and Kyoto encyclopaedia of genes and genomes pathway analysis. Our results showed that there were 3853 differentially expressed genes associated with pancreatic carcinogenesis and relapse. In addition, our study found that PC was related to the Jak-STAT signalling pathway, PPAR signalling pathway and Calcium signalling pathway, indicating their potential roles in pancreatic carcinogenesis and progress.

  10. The ERK/MAP kinase pathway couples light to immediate-early gene expression in the suprachiasmatic nucleus.

    PubMed

    Dziema, Heather; Oatis, Ben; Butcher, Greg Q; Yates, Robert; Hoyt, Kari R; Obrietan, Karl

    2003-04-01

    Signalling via the p42/44 mitogen-activated protein kinase (MAPK) pathway has been identified as an intermediate event coupling light to entrainment of the mammalian circadian clock located in the suprachiasmatic nucleus (SCN). Given this observation, it was of interest to determine where within the entrainment process the MAPK pathway was functioning. In this study, we examined the role of the MAPK pathway as a regulator of light-induced gene expression in the SCN. Towards this end, we characterized the effect pharmacological disruption of the MAPK cascade has on the expression of the immediate-early genes c-Fos, JunB and EGR-1. We report that uncoupling light from MAPK pathway activation attenuated the expression of all three gene products. In the absence of photic stimulation, inhibition of the MAPK pathway did not alter basal gene product expression levels. Light-induced activation of cAMP response element (CRE)-dependent transcription, as assessed using a CRE-LacZ transgenic mouse strain, was also disrupted by blocking MAPK pathway activation. These results reveal that the MAPK cascade functions as one of the first transduction steps leading from light to rapid transcriptional activation, an essential event in the entrainment process. MAPK pathway-dependent gene expression in the SCN may result, in part, from stimulation of CRE-dependent transcription.

  11. Lhx9 gene expression during early limb development in mice requires the FGF signalling pathway.

    PubMed

    Yang, Yisheng; Wilson, Megan J

    2015-01-01

    Lhx9 is a member of the LIM-homeodomain gene family necessary for the correct development of many organs including gonads, limbs, heart and the nervous system. In the context of limb development, Lhx9 has been implicated as an integrator for Fibroblast growth factor (FGF) and Sonic hedgehog (Shh) signalling required for proximal-distal (PD) and anterior-posterior (AP) development of the limb. Three splice variants of the Lhx9 transcript are expressed during development, two of which are predicted to act in a dominant negative fashion, competing with the DNA binding version of Lhx9 for binding to cofactors via the LIM-domain. We examined the expression pattern for the three alternative splice forms of Lhx9; Lhx9α, Lhx9β and Lhx9c during early limb development. We have found that of the three Lhx9 isoforms, only Lhx9α and Lhx9c (intact homeodomain) are expressed during early limb development, each with their own distinct expression pattern. Additionally we determined that Lhx9 expression overlaps with FGF10 expression in the developing limb bud mesenchyme. Limb bud explant cultures, in the presence of signalling pathway inhibitors, also indicated that Lhx9 mRNA expression in the limb bud was dependent on FGF signalling.

  12. Juvenile hormone regulates vitellogenin gene expression through insulin-like peptide signaling pathway in the red flour beetle, Tribolium castaneum.

    PubMed

    Sheng, Zhentao; Xu, Jingjing; Bai, Hua; Zhu, Fang; Palli, Subba R

    2011-12-09

    Our recent studies identified juvenile hormone (JH) and nutrition as the two key signals that regulate vitellogenin (Vg) gene expression in the red flour beetle, Tribolium castaneum. Juvenile hormone regulation of Vg synthesis has been known for a long time in several insects, but the mechanism of JH action is not known. Experiments were conducted to determine the mechanism of action of these two signals in regulation of Vg gene expression. Injection of bovine insulin or FOXO double-stranded RNA into the previtellogenic, starved, or JH-deficient female adults increased Vg mRNA and protein levels, thereby implicating the pivotal role for insulin-like peptide signaling in the regulation of Vg gene expression and possible cross-talk between JH and insulin-like peptide signaling pathways. Reduction in JH synthesis or its action by RNAi-mediated silencing of genes coding for acid methyltransferase or methoprene-tolerant decreased expression of genes coding for insulin-like peptides (ILPs) and influenced FOXO subcellular localization, resulting in the down-regulation of Vg gene expression. Furthermore, JH application to previtellogenic female beetles induced the expression of genes coding for ILP2 and ILP3, and induced Vg gene expression. FOXO protein expressed in baculovirus system binds to FOXO response element present in the Vg gene promoter. These data suggest that JH functions through insulin-like peptide signaling pathway to regulate Vg gene expression.

  13. Juvenile Hormone Regulates Vitellogenin Gene Expression through Insulin-like Peptide Signaling Pathway in the Red Flour Beetle, Tribolium castaneum*

    PubMed Central

    Sheng, Zhentao; Xu, Jingjing; Bai, Hua; Zhu, Fang; Palli, Subba R.

    2011-01-01

    Our recent studies identified juvenile hormone (JH) and nutrition as the two key signals that regulate vitellogenin (Vg) gene expression in the red flour beetle, Tribolium castaneum. Juvenile hormone regulation of Vg synthesis has been known for a long time in several insects, but the mechanism of JH action is not known. Experiments were conducted to determine the mechanism of action of these two signals in regulation of Vg gene expression. Injection of bovine insulin or FOXO double-stranded RNA into the previtellogenic, starved, or JH-deficient female adults increased Vg mRNA and protein levels, thereby implicating the pivotal role for insulin-like peptide signaling in the regulation of Vg gene expression and possible cross-talk between JH and insulin-like peptide signaling pathways. Reduction in JH synthesis or its action by RNAi-mediated silencing of genes coding for acid methyltransferase or methoprene-tolerant decreased expression of genes coding for insulin-like peptides (ILPs) and influenced FOXO subcellular localization, resulting in the down-regulation of Vg gene expression. Furthermore, JH application to previtellogenic female beetles induced the expression of genes coding for ILP2 and ILP3, and induced Vg gene expression. FOXO protein expressed in baculovirus system binds to FOXO response element present in the Vg gene promoter. These data suggest that JH functions through insulin-like peptide signaling pathway to regulate Vg gene expression. PMID:22002054

  14. Differential expression of carotenoid biosynthetic pathway genes in two contrasting tomato genotypes for lycopene content.

    PubMed

    Pandurangaiah, Shilpa; Ravishankar, Kundapura V; Shivashankar, Kodthalu S; Sadashiva, Avverahally T; Pillakenchappa, Kavitha; Narayanan, Sunil Kumar

    2016-06-01

    Tomato (Solanum lycopersicum L.) is one of the model plant to study carotenoid biosynthesis. In the present study, the fruit carotenoid content were quantified at different developmental stages for two contrasting genotypes, viz. IIHR-249-1 and IIHR-2866 by UPLC. Lycopene content was high in IIHR-249-1 (19.45 mg/100 g fresh weight) compared to IIHR-2866 (1.88 mg/100 g fresh weight) at the ripe stage. qPCR was performed for genes that are involved in the carotenoid biosynthetic pathway to study the difference in lycopene content in fruits of both the genotypes. The expression of Phytoene synthase (PSY) increased by 36-fold and Phytoene desaturase (PDS) increased by 14-fold from immature green stage to ripe stage in IIHR-249-1. The expression of Chloroplast lycopene beta-cyclase (LCY-B) and Chromoplast lycopene beta cyclase (CYC-B) decreased gradually from the initial stage to the ripe stage in IIHR-249-1. IIHR 249-1 showed 3- and 1.8-fold decrease in gene expression for Chloroplast lycopene beta-cyclase (LCY-B) and Chromoplast lycopene beta-cyclase (CYC-B) .The F2 hybrids derived from IIHR-249-1 and IIHR-2866 were analysed at the ripe stage for lycopene content. The gene expression of Chloroplast lycopene beta-cyclase (LCY-B) and Chromoplast lycopene beta-cyclase (CYC-B) in high and low lycopene lines from F2 progenies also showed the decrease in transcript levels of both the genes in high lycopene F2 lines. We wish to suggest that the differential expression of lycopene beta-cyclases can be used in marker-assisted breeding.

  15. Differential expression of hypoxia pathway genes in honey bee (Apis mellifera L.) caste development.

    PubMed

    Azevedo, Sergio Vicente; Caranton, Omar Arvey Martinez; de Oliveira, Tatiane Lippi; Hartfelder, Klaus

    2011-01-01

    Diphenism in social bees is essentially contingent on nutrient-induced cellular and systemic physiological responses resulting in divergent gene expression patterns. Analyses of juvenile hormone (JH) titers and functional genomics assays of the insulin-insulin-like signaling (IIS) pathway and its associated branch, target-of-rapamycin (TOR), revealed systemic responses underlying honey bee (Apis mellifera) caste development. Nevertheless, little attention has been paid to cellular metabolic responses. Following up earlier investigations showing major caste differences in oxidative metabolism and mitochondrial physiology, we herein identified honey bee homologs of hypoxia signaling factors, HIFα/Sima, HIFβ/Tango and PHD/Fatiga and we investigated their transcript levels throughout critical stages of larval development. Amsima, Amtango and Amfatiga showed correlated transcriptional activity, with two peaks of occurring in both queens and workers, the first one shortly after the last larval molt and the second during the cocoon-spinning phase. Transcript levels for the three genes were consistently higher in workers. As there is no evidence for major microenvironmental differences in oxygen levels within the brood nest area, this appears to be an inherent caste character. Quantitative PCR analyses on worker brain, ovary, and leg imaginal discs showed that these tissues differ in transcript levels. Being a highly conserved pathway and linked to IIS/TOR, the hypoxia gene expression pattern seen in honey bee larvae denotes that the hypoxia pathway has undergone a transformation, at least during larval development, from a response to environmental oxygen concentrations to an endogenous regulatory factor in the diphenic development of honey bee larvae.

  16. Gene expression profiles from discordant monozygotic twins suggest that molecular pathways are shared among multiple systemic autoimmune diseases

    PubMed Central

    2011-01-01

    Introduction The objective of this study is to determine if multiple systemic autoimmune diseases (SAID) share gene expression pathways that could provide insights into pathogenic mechanisms common to these disorders. Methods RNA microarray analyses (Agilent Human 1A(V2) 20K oligo arrays) were used to quantify gene expression in peripheral blood cells from 20 monozygotic (MZ) twin pairs discordant for SAID. Six affected probands with systemic lupus erythematosus (SLE), six with rheumatoid arthritis (RA), eight with idiopathic inflammatory myopathies (IIM), and their same-gendered unaffected twins, were enrolled. Comparisons were made between discordant twin pairs and these were also each compared to 40 unrelated control subjects (matched 2:1 to each twin by age, gender and ethnicity) using statistical and molecular pathway analyses. Relative quantitative PCR was used to verify independently measures of differential gene expression assessed by microarray analysis. Results Probands and unrelated, matched controls differed significantly in gene expression for 104 probes corresponding to 92 identifiable genes (multiple-comparison adjusted P values < 0.1). Differentially expressed genes involved several overlapping pathways including immune responses (16%), signaling pathways (24%), transcription/translation regulators (26%), and metabolic functions (15%). Interferon (IFN)-response genes (IFI27, OASF, PLSCR1, EIF2AK2, TNFAIP6, and TNFSF10) were up-regulated in probands compared to unrelated controls. Many of the abnormally expressed genes played regulatory roles in multiple cellular pathways. We did not detect any probes expressed differentially in comparisons among the three SAID phenotypes. Similarly, we found no significant differences in gene expression when comparing probands to unaffected twins or unaffected twins to unrelated controls. Gene expression levels for unaffected twins appeared intermediate between that of probands and unrelated controls for 6535 probes

  17. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.

    PubMed

    Hodar, Christian; Zuñiga, Alejandro; Pulgar, Rodrigo; Travisany, Dante; Chacon, Carlos; Pino, Michael; Maass, Alejandro; Cambiazo, Verónica

    2014-02-10

    In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-β superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Argonaute and the Nuclear RNAs: New Pathways for RNA-Mediated Control of Gene Expression

    PubMed Central

    Gagnon, Keith T.

    2012-01-01

    Small RNAs are a commonly used tool for gene silencing and a promising platform for nucleic acid drug development. They are almost exclusively used to silence gene expression post-transcriptionally through degradation of mRNA. Small RNAs, however, can have a broader range of function by binding to Argonaute proteins and associating with complementary RNA targets in the nucleus, including long noncoding RNAs (lncRNAs) and pre-mRNA. Argonaute–RNA complexes can regulate nuclear events like transcription, genome maintenance, and splicing. Thousands of lncRNAs and alternatively spliced pre-mRNA isoforms exist in humans, and these RNAs may serve as natural targets for regulation and therapeutic intervention. This review describes nuclear mechanisms for Argonaute proteins and small RNAs, new pathways for sequence-specific targeting, and the potential for therapeutic development of small RNAs with nuclear targets. PMID:22283730

  19. Conservation and expression of PIWI-interacting RNA pathway genes in male and female adult gonad of amniotes.

    PubMed

    Lim, Shu Ly; Tsend-Ayush, Enkhjargal; Kortschak, R Daniel; Jacob, Reuben; Ricciardelli, Carmela; Oehler, Martin K; Grützner, Frank

    2013-12-01

    The PIWI-interacting RNA (piRNA) pathway is essential for germline development and transposable element repression. Key elements of this pathway are members of the piRNA-binding PIWI/Argonaute protein family and associated factors (e.g., VASA, MAELSTROM, and TUDOR domain proteins). PIWI-interacting RNAs have been identified in mouse testis and oocytes, but information about the expression of the different piRNA pathway genes, in particular in the mammalian ovary, remains incomplete. We investigated the evolution and expression of piRNA pathway genes in gonads of amniote species (chicken, platypus, and mouse). Database searches confirm a high level of conservation and revealed lineage-specific gain and loss of Piwi genes in vertebrates. Expression analysis in mammals shows that orthologs of Piwi-like (Piwil) genes, Mael (Maelstrom), Mvh (mouse vasa homolog), and Tdrd1 (Tudor domain-containing protein 1) are expressed in platypus adult testis. In contrast to mouse, Piwil4 is expressed in platypus and human adult testis. We found evidence for Mael and Piwil2 expression in mouse Sertoli cells. Importantly, we show mRNA expression of Piwil2, Piwil4, and Mael in oocytes and supporting cells of human, mouse, and platypus ovary. We found no Piwil1 expression in mouse and chicken ovary. The conservation of gene expression in somatic parts of the gonad and germ cells of species that diverged over 800 million yr ago indicates an important role in adult male and female gonad.

  20. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    PubMed

    Zanotto-Filho, Alfeu; Dashnamoorthy, Ravi; Loranc, Eva; de Souza, Luis H T; Moreira, José C F; Suresh, Uthra; Chen, Yidong; Bishop, Alexander J R

    2016-01-01

    Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

  1. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways.

    PubMed

    Armbrecht, Harvey J; Siddiqui, Akbar M; Green, Michael; Farr, Susan A; Kumar, Vijaya B; Banks, William A; Patrick, Ping; Shah, Gul N; Morley, John E

    2014-01-01

    The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself.

  2. Coenzyme Q regulates the expression of essential genes of the pathogen- and xenobiotic-associated defense pathway in C. elegans

    PubMed Central

    Fischer, Alexandra; Niklowitz, Petra; Menke, Thomas; Döring, Frank

    2015-01-01

    Coenzyme Q (CoQ) is necessary for mitochondrial energy production and modulates the expression of genes that are important for inflammatory processes, growth and detoxification reactions. A cellular surveillance-activated detoxification and defenses (cSADDs) pathway has been recently identified in C. elegans. The down-regulation of the components of the cSADDs pathway initiates an aversion behavior of the nematode. Here we hypothesized that CoQ regulates genes of the cSADDs pathway. To verify this we generated CoQ-deficient worms (“CoQ-free”) and performed whole-genome expression profiling. We found about 30% (120 genes) of the cSADDs pathway genes were differentially regulated under CoQ-deficient condition. Remarkably, 83% of these genes were down-regulated. The majority of the CoQ-sensitive cSADDs pathway genes encode for proteins involved in larval development (enrichment score (ES) = 38.0, p = 5.0E−37), aminoacyl-tRNA biosynthesis, proteasome function (ES 8.2, p = 5.9E−31) and mitochondria function (ES 3.4, p = 1.7E−5). 67% (80 genes) of these genes are categorized as lethal. Thus it is shown for the first time that CoQ regulates a substantial number of essential genes that function in the evolutionary conserved cellular surveillance-activated detoxification and defenses pathway in C. elegans. PMID:26566301

  3. Intensive cardiovascular risk reduction induces sustainable changes in expression of genes and pathways important to vascular function.

    PubMed

    Ellsworth, Darrell L; Croft, Daniel T; Weyandt, Jamie; Sturtz, Lori A; Blackburn, Heather L; Burke, Amy; Haberkorn, Mary Jane; McDyer, Fionnuala A; Jellema, Gera L; van Laar, Ryan; Mamula, Kimberly A; Chen, Yaqin; Vernalis, Marina N

    2014-04-01

    Healthy lifestyle changes are thought to mediate cardiovascular disease risk through pathways affecting endothelial function and progression of atherosclerosis; however, the extent, persistence, and clinical significance of molecular change during lifestyle modification are not well known. We examined the effect of a rigorous cardiovascular disease risk reduction program on peripheral blood gene expression profiles in 63 participants and 63 matched controls to characterize molecular responses and identify regulatory pathways important to cardiovascular health. Dramatic changes in dietary fat intake (-61%; P<0.001 versus controls) and physical fitness (+34%; P<0.001) led to significant improvements in cardiovascular disease risk factors. Analysis of variance with false discovery rate correction for multiple testing (P<0.05) identified 26 genes after 12 weeks and 143 genes after 52 weeks that were differentially expressed from baseline in participants. Controls showed little change in cardiovascular disease risk factors or gene expression. Quantitative reverse transcription polymerase chain reaction validated differential expression for selected transcripts. Lifestyle modification effectively reduced expression of proinflammatory genes associated with neutrophil activation and molecular pathways important to vascular function, including cytokine production, carbohydrate metabolism, and steroid hormones. Prescription medications did not significantly affect changes in gene expression. Successful and sustained modulation of gene expression through lifestyle changes may have beneficial effects on the vascular system not apparent from traditional risk factors. Healthy lifestyles may restore homeostasis to the leukocyte transcriptome by downregulating lactoferrin and other genes important in the pathogenesis of atherosclerosis. Clinical Trial Registration- URL: www.clinicaltrials.gov. Unique identifier: NCT01805492.

  4. Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress

    PubMed Central

    Li, Changning; Nong, Qian; Solanki, Manoj Kumar; Liang, Qiang; Xie, Jinlan; Liu, Xiaoyan; Li, Yijie; Wang, Weizan; Yang, Litao; Li, Yangrui

    2016-01-01

    Water stress causes considerable yield losses in sugarcane. To investigate differentially expressed genes under water stress, a pot experiment was performed with the sugarcane variety GT21 at three water-deficit levels (mild, moderate, and severe) during the elongation stage and gene expression was analyzed using microarray technology. Physiological parameters of sugarcane showed significant alterations in response to drought stress. Based on the expression profile of 15,593 sugarcane genes, 1,501 (9.6%) genes were differentially expressed under different water-level treatments; 821 genes were upregulated and 680 genes were downregulated. A gene similarity analysis showed that approximately 62.6% of the differentially expressed genes shared homology with functional proteins. In a Gene Ontology (GO) analysis, 901 differentially expressed genes were assigned to 36 GO categories. Moreover, 325 differentially expressed genes were classified into 101 pathway categories involved in various processes, such as the biosynthesis of secondary metabolites, ribosomes, carbon metabolism, etc. In addition, some unannotated genes were detected; these may provide a basis for studies of water-deficit tolerance. The reliability of the observed expression patterns was confirmed by RT-PCR. The results of this study may help identify useful genes for improving drought tolerance in sugarcane. PMID:27170459

  5. Human protein secretory pathway genes are expressed in a tissue-specific pattern to match processing demands of the secretome.

    PubMed

    Feizi, Amir; Gatto, Francesco; Uhlen, Mathias; Nielsen, Jens

    2017-01-01

    Protein secretory pathway in eukaryal cells is responsible for delivering functional secretory proteins. The dysfunction of this pathway causes a range of important human diseases from congenital disorders to cancer. Despite the piled-up knowledge on the molecular biology and biochemistry level, the tissue-specific expression of the secretory pathway genes has not been analyzed on the transcriptome level. Based on the recent RNA-sequencing studies, the largest fraction of tissue-specific transcriptome encodes for the secretome (secretory proteins). Here, the question arises that if the expression levels of the secretory pathway genes have a tissue-specific tuning. In this study, we tackled this question by performing a meta-analysis of the recently published transcriptome data on human tissues. As a result, we detected 68 as called "extreme genes" which show an unusual expression pattern in specific gene families of the secretory pathway. We also inspected the potential functional link between detected extreme genes and the corresponding tissues enriched secretome. As a result, the detected extreme genes showed correlation with the enrichment of the nature and number of specific post-translational modifications in each tissue's secretome. Our findings conciliate both the housekeeping and tissue-specific nature of the protein secretory pathway, which we attribute to a fine-tuned regulation of defined gene families to support the diversity of secreted proteins and their modifications.

  6. Cloning, identification and expression analysis of ACC oxidase gene involved in ethylene production pathway.

    PubMed

    Jafari, Zohreh; Haddad, Raheem; Hosseini, Ramin; Garoosi, Ghasemali

    2013-02-01

    1-aminocyclopropane-1-carboxylic acid oxidase (ACO) enzyme is a member of the Fe II-dependent family of oxidases/oxygenases which require Fe(2+) as a cofactor, ascorbate as a cosubstrate and CO(2) as an activator. This enzyme catalyses the terminal step in the plant signaling of ethylene biosynthetic pathway. A 948 bp fragment of the ACO1 gene cDNA sequence was cloned from tomato (Lycopersicon esculentum) fruit tissues by using reverse transcriptase-polymerase chain reaction (RT-PCR) with two PCR primers designed according to the sequence of a tomato cDNA clone (X58273). The BLAST search showed a high level of similarity (77-98 %) between ACO1 and ACO genes of other plants. The calculated molecular mass and predicted isoelectric point of LeACO1 were 35.8 kDa and 5.13, respectively. The three-dimensional structure studies illustrated that the LeACO1 protein folds into a compact jelly-roll motif comprised of 8 α-helices, 12 β-strands and several long loops. The cosubstrate was located in a cofactor-binding pocket referred to as a 2-His-1-carboxylate facial triad. Semi-quantitative RT-PCR analysis of gene expression revealed that the LeACO1 was expressed in fruit tissues at different ripening stages.

  7. Gene Expression in Transformed Lymphocytes Reveals Variation in Endomembrane and HLA Pathways Modifying Cystic Fibrosis Pulmonary Phenotypes

    PubMed Central

    O’Neal, Wanda K.; Gallins, Paul; Pace, Rhonda G.; Dang, Hong; Wolf, Whitney E.; Jones, Lisa C.; Guo, XueLiang; Zhou, Yi-Hui; Madar, Vered; Huang, Jinyan; Liang, Liming; Moffatt, Miriam F.; Cutting, Garry R.; Drumm, Mitchell L.; Rommens, Johanna M.; Strug, Lisa J.; Sun, Wei; Stonebraker, Jaclyn R.; Wright, Fred A.; Knowles, Michael R.

    2015-01-01

    Variation in cystic fibrosis (CF) phenotypes, including lung disease severity, age of onset of persistent Pseudomonas aeruginosa (P. aeruginosa) lung infection, and presence of meconium ileus (MI), has been partially explained by genome-wide association studies (GWASs). It is not expected that GWASs alone are sufficiently powered to uncover all heritable traits associated with CF phenotypic diversity. Therefore, we utilized gene expression association from lymphoblastoid cells lines from 754 p.Phe508del CF-affected homozygous individuals to identify genes and pathways. LPAR6, a G protein coupled receptor, associated with lung disease severity (false discovery rate q value = 0.0006). Additional pathway analyses, utilizing a stringent permutation-based approach, identified unique signals for all three phenotypes. Pathways associated with lung disease severity were annotated in three broad categories: (1) endomembrane function, containing p.Phe508del processing genes, providing evidence of the importance of p.Phe508del processing to explain lung phenotype variation; (2) HLA class I genes, extending previous GWAS findings in the HLA region; and (3) endoplasmic reticulum stress response genes. Expression pathways associated with lung disease were concordant for some endosome and HLA pathways, with pathways identified using GWAS associations from 1,978 CF-affected individuals. Pathways associated with age of onset of persistent P. aeruginosa infection were enriched for HLA class II genes, and those associated with MI were related to oxidative phosphorylation. Formal testing demonstrated that genes showing differential expression associated with lung disease severity were enriched for heritable genetic variation and expression quantitative traits. Gene expression provided a powerful tool to identify unrecognized heritable variation, complementing ongoing GWASs in this rare disease. PMID:25640674

  8. Profile of gene expression of TLR-signaling pathways in colorectal cancer tissues.

    PubMed

    Bednarczyk, Martyna; Muc-Wierzgoń, Małgorzata; Walkiewicz, Katarzyna; Kokot, Teresa; Fatyga, Edyta; Mazurek, Urszula

    2017-09-01

    Toll-like receptors (TLRs) are involved in transduction of molecular signals in immune process such as induction and regulation of immunity, production of cytokines, and recognition of specific molecular patterns on the surface of microorganisms, but also in cancer development-which was partially proven in previous studies. There is a lack of detailed research on differentiating levels of TLR expression in colorectal cancer at different stages of its advancement, so in our study we want to determine whether there is such a difference of TLRs and TLR-connected protein expression. In this study, 83 samples of colorectal adenocarcinoma (varying clinical degrees) and 40 slices of healthy colon tissue have been analyzed. The delivered material was subjected to homogenization and extraction of total RNA. The isolated RNA was subsequently purified and valued quantitatively and qualitatively. Quantification was performed using a spectrophotometer GeneQuant II. The RNA concentration in the tested samples was determined spectrophotometrically. A qualitative assessment was performed by performing electrophoresis on a 1% agarose gel stained with ethidium bromide. The expression profile of the genes encoding the TLRs was determined using oligonucleotide microarray HG-U133A. To determine the mRNA (messenger RNA), differentiate cancerous tissue from normal colon using PL-Grid Infrastructure. The results were analyzed statistically, taking a significance level P < 0.05. In the study were found three proteins, DUSP2, IFNγ, EIF4A1, associated with TLR system, that differentiate early stages of colorectal cancer of healthy tissue, moreover eleven, inter alia: vascular endothelial growth factor (VEGF), which differentiate high stage of cancer of healthy tissues. The results emphasize the role of pathways associated with TLR activation in the pathogenesis of colorectal cancer. In summary, molecular studies on the development of colorectal cancer will enable the introduction of

  9. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit

    USDA-ARS?s Scientific Manuscript database

    Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription f...

  10. Expression analysis of cytosolic DNA-sensing pathway genes in the intestinal mucosal layer of necrotic enteritis-induced chicken.

    PubMed

    Rengaraj, Deivendran; Truong, Anh Duc; Lee, Sung-Hyen; Lillehoj, Hyun S; Hong, Yeong Ho

    2016-02-01

    Necrotic enteritis (NE) is a serious problem to the poultry farms, which report NE outbreaks more than once per year, as a result of the inappropriate use of antibiotics in the feed. The NE affected bird die rapidly as a result of various pathophysiological complications in the intestine and immune system. Also, several studies have reported that the genes exclusively related to intestine and immune functions are significantly altered in response to NE. In this study, NE was induced in two genetically disparate chicken lines that are resistant (line 6.3) and sensitive (line 7.2) to avian leukosis and Marek's disease. The intestinal mucosal layer was collected from NE-induced and control chickens, and subjected to RNA-sequencing analysis. The involvement of differentially expressed genes in the intestinal mucosal layer of line 6.3 and 7.2 with the immune system-related pathways was investigated. Among the identified immune system-related pathways, a candidate pathway known as chicken cytosolic DNA-sensing pathway (CDS pathway) was selected for further investigation. RNA-sequencing and pathway analysis identified a total of 21 genes that were involved in CDS pathway and differentially expressed in the intestinal mucosal layer of lines 6.3 and 7.2. The expression of CDS pathway genes was further confirmed by real-time qPCR. In the results, a majority of the CDS pathway genes were significantly altered in the NE-induced intestinal mucosal layer from lines 6.3 and 7.2. In conclusion, our study indicate that NE seriously affects several genes involved in innate immune defense and foreign DNA sensing mechanisms in the chicken intestinal mucosal layer. Identifying the immune genes affected by NE could be an important evidence for the protective immune response to NE-causative pathogens.

  11. High variability of expression profiles of homeologous genes for Wnt, Hh, Notch, and Hippo signaling pathways in Xenopus laevis.

    PubMed

    Michiue, Tatsuo; Yamamoto, Takayoshi; Yasuoka, Yuuri; Goto, Toshiyasu; Ikeda, Takafumi; Nagura, Kei; Nakayama, Takuya; Taira, Masanori; Kinoshita, Tsutomu

    2017-01-12

    Cell signaling pathways, such as Wnt, Hedgehog (Hh), Notch, and Hippo, are essential for embryogenesis, organogenesis, and tissue homeostasis. In this study, we analyzed 415 genes involved in these pathways in the allotetraploid frog, Xenopus laevis. Most genes are retained in two subgenomes called L and S (193 homeologous gene pairs and 29 singletons). This conservation rate of homeologs is much higher than that of all genes in the X. laevis genome (86.9% vs 60.2%). Among singletons, 24 genes are retained in the L subgenome, a rate similar to the average for all genes (82.8% vs 74.6%). In addition, as general components of signal transduction, we also analyzed 32 heparan sulfate proteoglycan (HSPG)-related genes and eight TLE/Groucho transcriptional corepressors-related genes. In these gene sets, all homeologous pairs have been retained. Transcriptome analysis using RNA-seq data from developmental stages and adult tissues demonstrated that most homeologous pairs of signaling components have variable expression patterns, in contrast to the conservative expression profiles of homeologs for transcription factors. Our results indicate that homeologous gene pairs for cell signaling regulation have tended to become subfunctionalized after allotetraploidization. Diversification of signaling pathways by subfunctionalization of homeologs may enhance environmental adaptability. These results provide insights into the evolution of signaling pathways after polyploidization.

  12. Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes.

    PubMed

    Chakraborty, K; Sairam, Raj K; Bhattacharya, R C

    2012-02-01

    The objective of the present study was to examine the role of SOS pathway in salinity stress tolerance in Brassica spp. An experiment was conducted in pot culture with 4 Brassica genotypes, i.e., CS 52 and CS 54, Varuna and T 9 subjected to two levels of salinity treatments along with a control, viz., 1.65 (S(0)), 4.50 (S(1)) and 6.76 (S(2)) dS m(-1). Salinity treatment significantly decreased relative water content (RWC), membrane stability index (MSI) and chlorophyll (Chl) content in leaves and potassium (K) content in leaf, stem and root of all the genotypes. The decline in RWC, MSI, Chl and K content was significantly less in CS 52 and CS 54 as compared to Varuna and T 9. In contrast, the sodium (Na) content increased under salinity stress in all the plant parts in all the genotypes, however, the increase was less in CS 52 and CS 54, which also showed higher K/Na ratio, and thus more favourable cellular environment. Gene expression studies revealed the existence of a more efficient salt overly sensitive pathway composed of SOS1, SOS2, SOS3 and vacuolar Na(+)/H(+) antiporter in CS 52 and CS 54 compared to Varuna and T 9. Sequence analyses of partial cDNAs showed the conserved nature of these genes, and their intra and intergenic relatedness. It is thus concluded that existence of an efficient SOS pathway, resulting in higher K/Na ratio, could be one of the major factor determining salinity stress tolerance of Brassica juncea genotypes CS 52 and CS 54.

  13. A blood-based gene expression and signaling pathway analysis to differentiate between high and low grade gliomas.

    PubMed

    Ponnampalam, Stephen N; Kamaluddin, Nor Rizan; Zakaria, Zubaidah; Matheneswaran, Vickneswaran; Ganesan, Dharmendra; Haspani, Mohammed Saffari; Ryten, Mina; Hardy, John A

    2017-01-01

    The aims of the present study were to undertake gene expression profiling of the blood of glioma patients to determine key genetic components of signaling pathways and to develop a panel of genes that could be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and control samples. In this study, blood samples were obtained from glioma patients, non-glioma and control subjects. Ten samples each were obtained from patients with high and low grade tumours, respectively, ten samples from non-glioma patients and twenty samples from control subjects. Total RNA was isolated from each sample after which first and second strand synthesis was performed. The resulting cRNA was then hybridized with the Agilent Whole Human Genome (4x44K) microarray chip according to the manufacturer's instructions. Universal Human Reference RNA and samples were labeled with Cy3 CTP and Cy5 CTP, respectively. Microarray data were analyzed by the Agilent Gene Spring 12.1V software using stringent criteria which included at least a 2-fold difference in gene expression between samples. Statistical analysis was performed using the unpaired Student's t-test with a p<0.01. Pathway enrichment was also performed, with key genes selected for validation using droplet digital polymerase chain reaction (ddPCR). The gene expression profiling indicated that were a substantial number of genes that were differentially expressed with more than a 2-fold change (p<0.01) between each of the four different conditions. We selected key genes within significant pathways that were analyzed through pathway enrichment. These key genes included regulators of cell proliferation, transcription factors, cytokines and tumour suppressor genes. In the present study, we showed that key genes involved in significant and well established pathways, could possibly be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and

  14. A blood-based gene expression and signaling pathway analysis to differentiate between high and low grade gliomas

    PubMed Central

    Ponnampalam, Stephen N.; Kamaluddin, Nor Rizan; Zakaria, Zubaidah; Matheneswaran, Vickneswaran; Ganesan, Dharmendra; Haspani, Mohammed Saffari; Ryten, Mina; Hardy, John A.

    2016-01-01

    The aims of the present study were to undertake gene expression profiling of the blood of glioma patients to determine key genetic components of signaling pathways and to develop a panel of genes that could be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and control samples. In this study, blood samples were obtained from glioma patients, non-glioma and control subjects. Ten samples each were obtained from patients with high and low grade tumours, respectively, ten samples from non-glioma patients and twenty samples from control subjects. Total RNA was isolated from each sample after which first and second strand synthesis was performed. The resulting cRNA was then hybridized with the Agilent Whole Human Genome (4×44K) microarray chip according to the manufacturer's instructions. Universal Human Reference RNA and samples were labeled with Cy3 CTP and Cy5 CTP, respectively. Microarray data were analyzed by the Agilent Gene Spring 12.1V software using stringent criteria which included at least a 2-fold difference in gene expression between samples. Statistical analysis was performed using the unpaired Student's t-test with a P<0.01. Pathway enrichment was also performed, with key genes selected for validation using droplet digital polymerase chain reaction (ddPCR). The gene expression profiling indicated that were a substantial number of genes that were differentially expressed with more than a 2-fold change (P<0.01) between each of the four different conditions. We selected key genes within significant pathways that were analyzed through pathway enrichment. These key genes included regulators of cell proliferation, transcription factors, cytokines and tumour suppressor genes. In the present study, we showed that key genes involved in significant and well established pathways, could possibly be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and

  15. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    PubMed

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  16. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  17. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  18. Gene Expression Profile of Adult Human Olfactory Bulb and Embryonic Neural Stem Cell Suggests Distinct Signaling Pathways and Epigenetic Control

    PubMed Central

    Marei, Hany E. S.; Ahmed, Abd-Elmaksoud; Michetti, Fabrizio; Pescatori, Mario; Pallini, Roberto; Casalbore, Patricia; Cenciarelli, Carlo; Elhadidy, Mohamed

    2012-01-01

    Global gene expression profiling was performed using RNA from human embryonic neural stem cells (hENSC), and adult human olfactory bulb-derived neural stem cells (OBNSCs), to define a gene expression pattern and signaling pathways that are specific for each cell lineage. We have demonstrated large differences in the gene expression profile of human embryonic NSC, and adult human OBNSCs, but less variability between parallel cultures. Transcripts of genes involved in neural tube development and patterning (ALDH1A2, FOXA2), progenitor marker genes (LMX1a, ALDH1A1, SOX10), proliferation of neural progenitors (WNT1 and WNT3a), neuroplastin (NPTN), POU3F1 (OCT6), neuroligin (NLGN4X), MEIS2, and NPAS1 were up-regulated in both cell populations. By Gene Ontology, 325 out of 3875 investigated gene sets were scientifically different. 41 out of the 307 investigated Cellular Component (CC) categories, 45 out of the 620 investigated Molecular Function (MF) categories, and 239 out of the 2948 investigated Biological Process (BP) categories were significant. KEGG Pathway Class Comparison had revealed that 75 out of 171 investigated gene sets passed the 0.005 significance threshold. Levels of gene expression were explored in three signaling pathways, Notch, Wnt, and mTOR that are known to be involved in NS cell fates determination. The transcriptional signature also deciphers the role of genes involved in epigenetic modifications. SWI/SNF DNA chromatin remodeling complex family, including SMARCC1 and SMARCE1, were found specifically up-regulated in our OBNSC but not in hENSC. Differences in gene expression profile of transcripts controlling epigenetic modifications, and signaling pathways might indicate differences in the therapeutic potential of our examined two cell populations in relation to in cell survival, proliferation, migration, and differentiation following engraftments in different CNS insults. PMID:22485144

  19. Differential Expression Analysis for Pathways

    PubMed Central

    Haynes, Winston A.; Higdon, Roger; Stanberry, Larissa; Collins, Dwayne; Kolker, Eugene

    2013-01-01

    Life science technologies generate a deluge of data that hold the keys to unlocking the secrets of important biological functions and disease mechanisms. We present DEAP, Differential Expression Analysis for Pathways, which capitalizes on information about biological pathways to identify important regulatory patterns from differential expression data. DEAP makes significant improvements over existing approaches by including information about pathway structure and discovering the most differentially expressed portion of the pathway. On simulated data, DEAP significantly outperformed traditional methods: with high differential expression, DEAP increased power by two orders of magnitude; with very low differential expression, DEAP doubled the power. DEAP performance was illustrated on two different gene and protein expression studies. DEAP discovered fourteen important pathways related to chronic obstructive pulmonary disease and interferon treatment that existing approaches omitted. On the interferon study, DEAP guided focus towards a four protein path within the 26 protein Notch signalling pathway. PMID:23516350

  20. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    SciTech Connect

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  1. PI3K/Akt pathway regulates retinoic acid-induced Hox gene expression in F9 cells.

    PubMed

    Lee, Youra; Lee, Ji-Yeon; Kim, Myoung Hee

    2014-09-01

    Retinoic acid (RA), the most potent natural form of vitamin A, is a key morphogen in vertebrate development and a potent regulator of both adult and embryonic cell differentiation. Specifically, RA regulates clustered Hox gene expression during embryogenesis and is required to establish the anteroposterior body plan. The PI3K/Akt pathway was also reported to play an essential role in the process of RA-induced cell differentiation. Therefore, we tested whether the PI3K/Akt pathway is involved in RA-induced Hox gene expression in a F9 murine embryonic teratocarcinoma cells. To examine the effect of PI3K/Akt signaling on RA-induced initiation of collinear expression of Hox genes, F9 cells were treated with RA in the presence or absence of PI3K inhibitor LY294002, and time-course gene expression profiles for all 39 Hox genes located in four different clusters-Hoxa, Hoxb, Hoxc, and Hoxd-were analyzed. Collinear expression of Hoxa and -b cluster genes was initiated earlier than that of the -c and -d clusters upon RA treatment. When LY294002 was applied along with RA, collinear expression induced by RA was delayed, suggesting that the PI3K/Akt signaling pathway somehow regulates RA-induced collinear expression of Hox genes in F9 cells. The initiation of Hox collinear expression by RA and the delayed expression following LY294002 in F9 cells would provide a good model system to decipher the yet to be answered de novo collinear expression of Hox genes during gastrulation, which make the gastrulating cells to remember their positional address along the AP body axis in the developing embryo.

  2. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway

    PubMed Central

    2011-01-01

    Background In trees, a substantial amount of carbon is directed towards production of phenolics for development and defense. This metabolic pathway is also a major factor in resistance to insect pathogens in spruce. In such gene families, environmental stimuli may have an important effect on the evolutionary fate of duplicated genes, and different expression patterns may indicate functional diversification. Results Gene families in spruce (Picea) have expanded to superfamilies, including O-methyltransferases, cytochrome-P450, and dirigents/classIII-peroxidases. Neo-functionalization of superfamily members from different clades is reflected in expression diversification. Genetical genomics can provide new insights into the genetic basis and evolution of insect resistance in plants. Adopting this approach, we merged genotype data (252 SNPs in a segregating pedigree), gene expression levels (for 428 phenylpropanoid-related genes) and measures of susceptibility to Pissodes stobi, using a partial-diallel crossing-design with white spruce (Picea glauca). Thirty-eight expressed phenylpropanoid-related genes co-segregated with weevil susceptibility, indicating either causative or reactive effects of these genes to weevil resistance. We identified eight regulatory genomic regions with extensive overlap of quantitative trait loci from susceptibility and growth phenotypes (pQTLs) and expression QTL (eQTL) hotspots. In particular, SNPs within two different CCoAOMT loci regulate phenotypic variation from a common set of 24 genes and three resistance traits. Conclusions Pest resistance was associated with individual candidate genes as well as with trans-regulatory hotspots along the spruce genome. Our results showed that specific genes within the phenylpropanoid pathway have been duplicated and diversified in the conifer in a process fundamentally different from short-lived angiosperm species. These findings add to the information about the role of the phenylpropanoid pathway in

  3. Expression profile of critical genes involved in FGF signaling pathway in the developing human primary dentition.

    PubMed

    Huang, Feng; Hu, Xiaoxiao; Fang, Chunni; Liu, Hong; Lin, Chensheng; Zhang, Yanding; Hu, Xuefeng

    2015-11-01

    Mammalian tooth development is regulated by paracrine signal molecules of several conserved family interactions between epithelium and mesenchyme. The expression patterns and regulative roles of FGF signaling have been extensively studied in the mouse odontogenesis; however, that is not well known in human tooth development. In order to unveil the molecular mechanisms that regulate human tooth morphogenesis, we examined the expression patterns of the critical molecules involved in FGF signaling pathway in the developing human tooth germ by in situ hybridization, immunohistochemistry, and real-time RT-PCR, including FGF ligands, receptors, and intracellular transducer. We found overlapping but distinct expression pattern of FGF ligands and receptors in the different stages and components. Expression of FGF4, FGF7, FGF8, and FGF9 persists widespread in human tooth mesenchyme, which is quite different to that of in mouse. FGFR1 may be the major receptor in regulate mechanisms of FGF signals in human tooth development. Real-time RT-PCR indeed confirmed the results of in situ hybridization. Results of K-Ras, p-ERK1/2, p-p38, p-JNK, and p-PDK1 expression reveal spatial and temporal patterns of FGF signaling during morphogenesis and organogenesis of human tooth germ. Activity of the FGF signaling transducer protein in human tooth germ was much higher than that of in mouse. Our results provided important FGF singling information in the developing process, pinpoint to the domains where the downstream target genes of FGF signaling can be sought, and enlightened our knowledge about the nature of FGF signaling in human tooth germ.

  4. Gene expression profile reveals abnormalities of multiple signaling pathways in mesenchymal stem cell derived from patients with systemic lupus erythematosus.

    PubMed

    Tang, Yu; Ma, Xiaolei; Zhang, Huayong; Gu, Zhifeng; Hou, Yayi; Gilkeson, Gary S; Lu, Liwei; Zeng, Xiaofeng; Sun, Lingyun

    2012-01-01

    We aimed to compare bone-marrow-derived mesenchymal stem cells (BMMSCs) between systemic lupus erythematosus (SLE) and normal controls by means of cDNA microarray, immunohistochemistry, immunofluorescence, and immunoblotting. Our results showed there were a total of 1, 905 genes which were differentially expressed by BMMSCs derived from SLE patients, of which, 652 genes were upregulated and 1, 253 were downregulated. Gene ontology (GO) analysis showed that the majority of these genes were related to cell cycle and protein binding. Pathway analysis exhibited that differentially regulated signal pathways involved actin cytoskeleton, focal adhesion, tight junction, and TGF-β pathway. The high protein level of BMP-5 and low expression of Id-1 indicated that there might be dysregulation in BMP/TGF-β signaling pathway. The expression of Id-1 in SLE BMMSCs was reversely correlated with serum TNF-α levels. The protein level of cyclin E decreased in the cell cycling regulation pathway. Moreover, the MAPK signaling pathway was activated in BMMSCs from SLE patients via phosphorylation of ERK1/2 and SAPK/JNK. The actin distribution pattern of BMMSCs from SLE patients was also found disordered. Our results suggested that there were distinguished differences of BMMSCs between SLE patients and normal controls.

  5. Gene Expression Profile Reveals Abnormalities of Multiple Signaling Pathways in Mesenchymal Stem Cell Derived from Patients with Systemic Lupus Erythematosus

    PubMed Central

    Tang, Yu; Ma, Xiaolei; Zhang, Huayong; Gu, Zhifeng; Hou, Yayi; Gilkeson, Gary S.; Lu, Liwei; Zeng, Xiaofeng; Sun, Lingyun

    2012-01-01

    We aimed to compare bone-marrow-derived mesenchymal stem cells (BMMSCs) between systemic lupus erythematosus (SLE) and normal controls by means of cDNA microarray, immunohistochemistry, immunofluorescence, and immunoblotting. Our results showed there were a total of 1, 905 genes which were differentially expressed by BMMSCs derived from SLE patients, of which, 652 genes were upregulated and 1, 253 were downregulated. Gene ontology (GO) analysis showed that the majority of these genes were related to cell cycle and protein binding. Pathway analysis exhibited that differentially regulated signal pathways involved actin cytoskeleton, focal adhesion, tight junction, and TGF-β pathway. The high protein level of BMP-5 and low expression of Id-1 indicated that there might be dysregulation in BMP/TGF-β signaling pathway. The expression of Id-1 in SLE BMMSCs was reversely correlated with serum TNF-α levels. The protein level of cyclin E decreased in the cell cycling regulation pathway. Moreover, the MAPK signaling pathway was activated in BMMSCs from SLE patients via phosphorylation of ERK1/2 and SAPK/JNK. The actin distribution pattern of BMMSCs from SLE patients was also found disordered. Our results suggested that there were distinguished differences of BMMSCs between SLE patients and normal controls. PMID:22966240

  6. Cloning and expression analysis of some genes involved in the phosphoinositide and phospholipid signaling pathways from maize (Zea mays L.).

    PubMed

    Sui, Zhenhua; Niu, Linyuan; Yue, Guidong; Yang, Aifang; Zhang, Juren

    2008-12-15

    Previous studies have indicated the phosphoinositide and phospholipid signaling pathways play a key role in plant growth, development and responses to environmental stresses. However, little is known about the phosphoinositide and phospholipid signaling pathways in maize (Zea mays L.). To better understand the function of genes involved in the phosphoinositide and phospholipid signaling pathways in maize, the cDNA sequences of ZmPIS2, ZmPLC2, ZmDGK1, ZmDGK2 and ZmDGK3 were obtained by RACE (rapid amplification of cDNA ends) or in silico cloning combined with PCR. RT-PCR analysis of cDNA from five tissues (roots, stems, leaves, tassels, and ears) indicated that the expression patterns of the five cDNAs we isolated as well as ZmPIS, ZmPLC, ZmPLD varied in different tissues. To determine the effects of different environmental conditions such as cold, drought and various phytohormones (abscisic acid, indole-3-acetic acid and gibberellic acid) on gene expression, we analyzed expression by Real-Time (RT-PCR), and found that the different isoforms of these gene families involved in the phosphoinositide and phospholipid signaling pathways have specific expression patterns. Our results suggested that these genes may be involved in the responses to environmental stresses, but have different functions. The isolation and analysis of expression patterns of genes involved in the phosphoinositide and phospholipid signaling pathways provides a good basis for further research of the phosphoinositide and phospholipid signaling pathways in maize and is a novel supplement to our comprehension of these pathways in plants.

  7. Chronic alcohol consumption from adolescence-to-adulthood in mice - hypothalamic gene expression changes in the dilated cardiomyopathy signaling pathway

    PubMed Central

    2014-01-01

    Background Adolescence is a developmental stage vulnerable to alcohol drinking-related problems and the onset of alcoholism. Hypothalamus is a key brain region for food and water intake regulation, and is one of the alcohol-sensitive brain regions. However, it is not known what would be the alcohol effect on hypothalamus following adolescent alcohol intake, chronically over the adolescent development, at moderate levels. Results We employed a paradigm of chronic moderate alcohol intake from adolescence-to-adulthood in mice, and analyzed the alcohol effect on both behavioral and hypothalamic gene expression changes. A total of 751 genes were found and subjected to pathway analysis. The dilated cardiomyopathy (DCM) pathway was identified. The changes of ten genes under this pathway were further verified using RT-PCR. Chronic alcohol consumption during adolescence, even at moderate levels, led to a decrease of motor activity in mice, and also a concerted down regulation of signaling pathway initiating factor (SPIF) genes in the DCM signaling pathway, including β1-adrenergic receptor (Adrb1), Gs protein (Gnas), adenylyl cyclase 1 (Adcy1), and dihydropyridine receptor/L-type calcium channel (Cacna1d). Conclusions These findings suggest that adolescent alcohol intake may trigger gene expression changes in the CNS that parallel those found in the dilated cardiomyopathy signaling pathway. If such effects also take place in humans, our findings would serve as a warning against alcohol intake in youth, such as by teens and/or college students. PMID:24884436

  8. Airway gene expression in COPD is dynamic with inhaled corticosteroid treatment and reflects biological pathways associated with disease activity

    PubMed Central

    van den Berge, Maarten; Steiling, Katrina; Timens, Wim; Hiemstra, Pieter S; Sterk, Peter J; Heijink, Irene H; Liu, Gang; Alekseyev, Yuriy O; Lenburg, Marc E; Spira, Avrum; Postma, Dirkje S

    2014-01-01

    Background A core feature of chronic obstructive pulmonary disease (COPD) is the accelerated decline in forced expiratory volume in one second (FEV1). The recent Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease (GLUCOLD) study suggested that particular phenotypes of COPD benefit from fluticasone±salmeterol by reducing the rate of FEV1 decline, yet the underlying mechanisms are unknown. Methods Whole-genome gene expression profiling using the Affymetrix Gene ST array (V.1.0) was performed on 221 bronchial biopsies available from 89 COPD patients at baseline and after 6 and 30 months of fluticasone±salmeterol and placebo treatment in GLUCOLD. Results Linear mixed effects modelling revealed that the expression of 138 genes decreased, whereas the expression of 140 genes significantly upregulated after both 6 and 30 months of treatment with fluticasone±salmeterol versus placebo. A more pronounced treatment-induced change in the expression of 50 and 55 of these 278 genes was associated with a lower rate of decline in FEV1 and Saint George Respiratory Questionnaire, respectively. Genes decreasing with treatment were involved in pathways related to cell cycle, oxidative phosphorylation, epithelial cell signalling, p53 signalling and T cell signalling. Genes increasing with treatment were involved in pathways related to focal adhesion, gap junction and extracellular matrix deposition. Finally, the fluticasone-induced gene expression changes were enriched among genes that change in the airway epithelium in smokers with versus without COPD in an independent data set. Conclusions The present study suggests that gene expression in biological pathways of COPD is dynamic with treatment and reflects disease activity. This study opens the gate to targeted and molecular phenotype-driven therapy of COPD. PMID:23925644

  9. Nuclear RNA Decay Pathways Aid Rapid Remodeling of Gene Expression in Yeast.

    PubMed

    Bresson, Stefan; Tuck, Alex; Staneva, Desislava; Tollervey, David

    2017-03-02

    In budding yeast, the nuclear RNA surveillance system is active on all pre-mRNA transcripts and modulated by nutrient availability. To test the role of nuclear surveillance in reprogramming gene expression, we identified transcriptome-wide binding sites for RNA polymerase II and the exosome cofactors Mtr4 (TRAMP complex) and Nab3 (NNS complex) by UV crosslinking immediately following glucose withdrawal (0, 4, and 8 min). In glucose, mRNA binding by Nab3 and Mtr4 was mainly restricted to promoter-proximal sites, reflecting early transcription termination. Following glucose withdrawal, many growth-related mRNAs showed reduced transcription but increased Nab3 binding, accompanied by downstream recruitment of Mtr4, and oligo(A) tailing. We conclude that transcription termination is followed by TRAMP-mediated RNA decay. Upregulated transcripts evaded increased surveillance factor binding following glucose withdrawal. Some upregulated genes showed use of alternative transcription starts to bypass strong NNS binding sites. We conclude that nuclear surveillance pathways regulate both positive and negative responses to glucose availability.

  10. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants

    PubMed Central

    Nouri, Mohammad-Zaman; Moumeni, Ali; Komatsu, Setsuko

    2015-01-01

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants, especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C3 or C4), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress. PMID:26343644

  11. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants.

    PubMed

    Nouri, Mohammad-Zaman; Moumeni, Ali; Komatsu, Setsuko

    2015-08-28

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C₃ or C₄), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress.

  12. Conservation and Expression Patterns Divergence of Ascorbic Acid d-mannose/l-galactose Pathway Genes in Brassica rapa

    PubMed Central

    Duan, Weike; Ren, Jun; Li, Yan; Liu, Tongkun; Song, Xiaoming; Chen, Zhongwen; Huang, Zhinan; Hou, Xilin; Li, Ying

    2016-01-01

    Ascorbic acid (AsA) participates in diverse biological processes, is regulated by multiple factors and is a potent antioxidant and cellular reductant. The D-Mannose/L-Galactose pathway is a major plant AsA biosynthetic pathway that is highly connected within biosynthetic networks, and generally conserved across plants. Previous work has shown that, although most genes of this pathway are expressed under standard growth conditions in Brassica rapa, some paralogs of these genes are not. We hypothesize that regulatory evolution in duplicate AsA pathway genes has occurred as an adaptation to environmental stressors, and that gene retention has been influenced by polyploidation events in Brassicas. To test these hypotheses, we explored the conservation of these genes in Brassicas and their expression patterns divergence in B. rapa. Similar retention and a high degree of gene sequence similarity were identified in B. rapa (A genome), B. oleracea (C genome) and B. napus (AC genome). However, the number of genes that encode the same type of enzymes varied among the three plant species. With the exception of GMP, which has nine genes, there were one to four genes that encoded the other enzymes. Moreover, we found that expression patterns divergence widely exists among these genes. (i) VTC2 and VTC5 are paralogous genes, but only VTC5 is influenced by FLC. (ii) Under light treatment, PMI1 co-regulates the AsA pool size with other D-Man/L-Gal pathway genes, whereas PMI2 is regulated only by darkness. (iii) Under NaCl, Cu2+, MeJA and wounding stresses, most of the paralogs exhibit different expression patterns. Additionally, GME and GPP are the key regulatory enzymes that limit AsA biosynthesis in response to these treatments. In conclusion, our data support that the conservative and divergent expression patterns of D-Man/L-Gal pathway genes not only avoid AsA biosynthesis network instability but also allow B. rapa to better adapt to complex environments. PMID:27313597

  13. Species-Specific Dibutyl Phthalate Fetal Testis Endocrine Disruption Correlates with Inhibition of SREBP2-Dependent Gene Expression Pathways

    PubMed Central

    Johnson, Kamin J.; McDowell, Erin N.; Viereck, Megan P.; Xia, Jessie Q.

    2011-01-01

    Fetal rat phthalate exposure produces a spectrum of male reproductive tract malformations downstream of reduced Leydig cell testosterone production, but the molecular mechanism of phthalate perturbation of Leydig cell function is not well understood. By bioinformatically examining fetal testis expression microarray data sets from susceptible (rat) and resistant (mouse) species after dibutyl phthalate (DBP) exposure, we identified decreased expression of several metabolic pathways in both species. However, lipid metabolism pathways transcriptionally regulated by sterol regulatory element–binding protein (SREBP) were inhibited in the rat but induced in the mouse, and this differential species response corresponded with repression of the steroidogenic pathway. In rats exposed to 100 or 500 mg/kg DBP from gestational days (GD) 16 to 20, a correlation was observed between GD20 testis steroidogenic inhibition and reductions of testis cholesterol synthesis endpoints including testis total cholesterol levels, Srebf2 gene expression, and cholesterol synthesis pathway gene expression. SREBP2 expression was detected in all fetal rat testis cells but was highest in Leydig cells. Quantification of SREBP2 immunostaining showed that 500 mg/kg DBP exposure significantly reduced SREBP2 expression in rat fetal Leydig cells but not in seminiferous cords. By Western analysis, total rat testis SREBP2 levels were not altered by DBP exposure. Together, these data suggest that phthalate-induced inhibition of fetal testis steroidogenesis is closely associated with reduced activity of several lipid metabolism pathways and SREBP2-dependent cholesterologenesis in Leydig cells. PMID:21266533

  14. Integrating pathway analysis and genetics of gene expression for genome-wide association study of basal cell carcinoma.

    PubMed

    Zhang, Mingfeng; Liang, Liming; Morar, Nilesh; Dixon, Anna L; Lathrop, G Mark; Ding, Jun; Moffatt, Miriam F; Cookson, William O C; Kraft, Peter; Qureshi, Abrar A; Han, Jiali

    2012-04-01

    Genome-wide association studies (GWASs) have primarily focused on marginal effects for individual markers and have incorporated external functional information only after identifying robust statistical associations. We applied a new approach combining the genetics of gene expression and functional classification of genes to the GWAS of basal cell carcinoma (BCC) to identify potential biological pathways associated with BCC. We first identified 322,324 expression-associated single-nucleotide polymorphisms (eSNPs) from two existing GWASs of global gene expression in lymphoblastoid cell lines (n = 955), and evaluated the association of these functionally annotated SNPs with BCC among 2,045 BCC cases and 6,013 controls in Caucasians. We then grouped them into 99 KEGG pathways for pathway analysis and identified two pathways associated with BCC with p value <0.05 and false discovery rate (FDR) <0.5: the autoimmune thyroid disease pathway (mainly HLA class I and II antigens, p < 0.001, FDR = 0.24) and Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway (p = 0.02, FDR = 0.49). Seventy-nine (25.7%) out of 307 significant eSNPs in the JAK-STAT pathway were associated with BCC risk (p < 0.05) in an independent replication set of 278 BCC cases and 1,262 controls. In addition, the association of JAK-STAT signaling pathway was marginally validated using 16,691 eSNPs identified from 110 normal skin samples (p = 0.08). Based on the evidence of biological functions of the JAK-STAT pathway on oncogenesis, it is plausible that this pathway is involved in BCC pathogenesis.

  15. D-galactose catabolism in Penicillium chrysogenum: Expression analysis of the structural genes of the Leloir pathway.

    PubMed

    Jónás, Ágota; Fekete, Erzsébet; Németh, Zoltán; Flipphi, Michel; Karaffa, Levente

    2016-09-01

    In this study, we analyzed the expression of the structural genes encoding the five enzymes comprising the Leloir pathway of D-galactose catabolism in the industrial cell factory Penicillium chrysogenum on various carbon sources. The genome of P. chrysogenum contains a putative galactokinase gene at the annotated locus Pc13g10140, the product of which shows strong structural similarity to yeast galactokinase that was expressed on lactose and D-galactose only. The expression profile of the galactose-1-phosphate uridylyl transferase gene at annotated locus Pc15g00140 was essentially similar to that of galactokinase. This is in contrast to the results from other fungi such as Aspergillus nidulans, Trichoderma reesei and A. niger, where the ortholog galactokinase and galactose-1-phosphate uridylyl transferase genes were constitutively expressed. As for the UDP-galactose-4-epimerase encoding gene, five candidates were identified. We could not detect Pc16g12790, Pc21g12170 and Pc20g06140 expression on any of the carbon sources tested, while for the other two loci (Pc21g10370 and Pc18g01080) transcripts were clearly observed under all tested conditions. Like the 4-epimerase specified at locus Pc21g10370, the other two structural Leloir pathway genes - UDP-glucose pyrophosphorylase (Pc21g12790) and phosphoglucomutase (Pc18g01390) - were expressed constitutively at high levels as can be expected from their indispensable function in fungal cell wall formation.

  16. Gene expression analysis of canonical Wnt pathway transcriptional regulators during early morphogenesis of the facial region in the mouse embryo.

    PubMed

    Vendrell, Victor; Summerhurst, Kristen; Sharpe, James; Davidson, Duncan; Murphy, Paula

    2009-06-01

    Structures and features of the face, throat and neck are formed from a series of branchial arches that grow out along the ventrolateral aspect of the embryonic head. Multiple signalling pathways have been implicated in patterning interactions that lead to species-specific growth and differentiation within the branchial region that sculpt these features. A direct role for Wnt signalling in particular has been shown. The spatial and temporal distribution of Wnt pathway components contributes to the operation of the signalling system. We present the precise distribution of gene expression of canonical Wnt pathway transcriptional regulators, Tcf1, Lef1, Tcf3, Tcf4 and beta-catenin between embryonic day (E) 9.5 and 11.5. In situ hybridization combined with Optical Projection Tomography was used to record and compare distribution of transcripts in 3D within the developing branchial arches. This shows widespread yet very specific expression of the gene set indicating that all genes contribute to proper patterning of the region. Tcf1 and Lef1 are more prominent in rostral arches, particularly at later ages, and Tcf3 and Tcf4 are in general expressed more deeply (medial/endodermal aspect) in the arches than Tcf1 and Lef1. Comparison with Wnt canonical pathway readout patterns shows that the relationship between the expression of individual transcription factors and activation of the pathway is not simple, indicating complexity and flexibility in the signalling system.

  17. Expression of Wnt pathway genes in polyps and medusa-like structures of Ectopleura larynx (Cnidaria: Hydrozoa).

    PubMed

    Nawrocki, Annalise M; Cartwright, Paulyn

    2013-01-01

    The canonical Wnt signaling pathway is conserved in its role in axial patterning throughout Metazoa. In some hydrozoans (Phylum Cnidaria), Wnt signaling is implicated in oral-aboral patterning of the different life cycle stages-the planula, polyp and medusa. Unlike most hydrozoans, members of Aplanulata lack a planula larva and the polyp instead develops directly from a brooded or encysted embryo. The Aplanulata species Ectopleura larynx broods such embryos within gonophores. These gonophores are truncated medusae that remain attached to the polyps from which they bud, and retain evolutionary remnants of medusa structures. In E. larynx, gonophores differ between males and females in their degree of medusa truncation, making them an ideal system for examining truncated medusa development. Using next-generation sequencing, we isolated genes from Wnt signaling pathways and examined their expression in E. larynx. Our data are consistent with the Wnt pathway being involved in axial patterning of the polyp and truncated medusa. Changes in the spatial expression of Wnt pathway genes are correlated with the development of different oral structures in male and female gonophores. The absence of expression of components of the Wnt pathway and presence of a Wnt pathway antagonist SFRP in the developing anterior end of the gonophore suggest that downregulation of the Wnt pathway could play a role in medusa reduction in E. larynx. © 2013 Wiley Periodicals, Inc.

  18. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    EPA Science Inventory

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo a...

  19. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    EPA Science Inventory

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo a...

  20. Genome-Wide Expression Analysis Reveals Diverse Effects of Acute Nicotine Exposure on Neuronal Function-Related Genes and Pathways

    PubMed Central

    Wang, Ju; Cui, Wenyan; Wei, Jinxue; Sun, Dongxiao; Gutala, Ramana; Gu, Jun; Li, Ming D.

    2011-01-01

    Previous human and animal studies demonstrate that acute nicotine exposure has complicated influences on the function of the nervous system, which may lead to long-lasting effects on the behavior and physiology of the subject. To determine the genes and pathways that might account for long-term changes after acute nicotine exposure, a pathway-focused oligoarray specifically designed for drug addiction research was used to assess acute nicotine effect on gene expression in the neuron-like SH-SY5Y cells. Our results showed that 295 genes involved in various biological functions were differentially regulated by 1 h of nicotine treatment. Among these genes, the expression changes of 221 were blocked by mecamylamine, indicating that the majority of nicotine-modulated genes were altered through the nicotinic acetylcholine receptors (nAChRs)-mediated signaling process. We further identified 14 biochemical pathways enriched among the nicotine-modulated genes, among which were those involved in neural development/synaptic plasticity, neuronal survival/death, immune response, or cellular metabolism. In the genes significantly regulated by nicotine but blocked by mecamylamine, 13 enriched pathways were detected. Nine of these pathways were shared with those enriched in the genes regulated by nicotine, including neuronal function-related pathways such as glucocorticoid receptor signaling, p38 MAPK signaling, PI3K/AKT signaling, and PTEN signaling, implying that nAChRs play important roles in the regulation of these biological processes. Together, our results not only provide insights into the mechanism underlying the acute response of neuronal cells to nicotine but also provide clues to how acute nicotine exposure exerts long-term effects on the nervous system. PMID:21556275

  1. Identification of Potential Anticancer Activities of Novel Ganoderma lucidum Extracts Using Gene Expression and Pathway Network Analysis.

    PubMed

    Kao, Chi H J; Bishop, Karen S; Xu, Yuanye; Han, Dug Yeo; Murray, Pamela M; Marlow, Gareth J; Ferguson, Lynnette R

    2016-01-01

    Ganoderma lucidum (lingzhi) has been used for the general promotion of health in Asia for many centuries. The common method of consumption is to boil lingzhi in water and then drink the liquid. In this study, we examined the potential anticancer activities of G. lucidum submerged in two commonly consumed forms of alcohol in East Asia: malt whiskey and rice wine. The anticancer effect of G. lucidum, using whiskey and rice wine-based extraction methods, has not been previously reported. The growth inhibition of G. lucidum whiskey and rice wine extracts on the prostate cancer cell lines, PC3 and DU145, was determined. Using Affymetrix gene expression assays, several biologically active pathways associated with the anticancer activities of G. lucidum extracts were identified. Using gene expression analysis (real-time polymerase chain reaction [RT-PCR]) and protein analysis (Western blotting), we confirmed the expression of key genes and their associated proteins that were initially identified with Affymetrix gene expression analysis.

  2. Differentiating disease subtypes by using pathway patterns constructed from gene expressions and protein networks.

    PubMed

    Hung, Fei-Hung; Chiu, Hung-Wen

    2015-01-01

    Gene expression profiles differ in different diseases. Even if diseases are at the same stage, such diseases exhibit different gene expressions, not to mention the different subtypes at a single lesion site. Distinguishing different disease subtypes at a single lesion site is difficult. In early cases, subtypes were initially distinguished by doctors. Subsequently, further differences were found through pathological experiments. For example, a brain tumor can be classified according to its origin, its cell-type origin, or the tumor site. Because of the advancements in bioinformatics and the techniques for accumulating gene expressions, researchers can use gene expression data to classify disease subtypes. Because the operation of a biopathway is closely related to the disease mechanism, the application of gene expression profiles for clustering disease subtypes is insufficient. In this study, we collected gene expression data of healthy and four myelodysplastic syndrome subtypes and applied a method that integrated protein-protein interaction and gene expression data to identify different patterns of disease subtypes. We hope it is efficient for the classification of disease subtypes in adventure.

  3. Isolation and dynamic expression of four genes involving in shikimic acid pathway in Camellia sinensis 'Baicha 1' during periodic albinism.

    PubMed

    Zhu, Xu-Jun; Zhao, Zhen; Xin, Hua-Hong; Wang, Ming-Le; Wang, Wei-Dong; Chen, Xuan; Li, Xing-Hui

    2016-10-01

    Flavonoids are the main flavor components and functional ingredients in tea, and the shikimic acid pathway is considered as one of the most important pathways in flavonoid biosynthesis, but little was known about the function of regulatory genes in the metabolism phenolic compounds in tea plant (Camellia sinensis), especially related genes in shikimic acid pathway. The dynamic changes of catechin (predominant flavonoid) contents were analyzed in this study, and four genes (CsPPT, CsDAHPS, CsSDH and CsCS) involving in shikimic acid pathway in C. sinensis albino cultivar 'Baicha 1' were cloned and characterized. The full-length cDNA sequences of these genes were obtained using reverse transcription-PCR and rapid amplification of cDNA ends. At the albinistic stage, the amounts of all catechins decreased to the lowest levels, when epigallocatechin gallate was the highest, whereas gallocatechin-3-O-gallate the lowest. Gene expression patterns analyzed by qRT-PCR showed that CsPPT and CsDAHPS were highly expressed in flowers and buds, while CsSDH and CsCS showed high expression levels in buds and leaves. It was also found that the transcript abundance of shikimic acid biosynthetic genes followed a tightly regulated biphasic pattern, and was affected by albinism. The transcript levels of CsPPT and CsDAHPS were decreased at albinistic stage followed elevated expression, whereas CsSDH and CsCS were increased only at re-greening stage. Taken together, these findings suggested that these four genes in C. sinensis may play different roles in shikimic acid biosynthesis and these genes may have divergent functions.

  4. Maximization of negative correlations in time-course gene expression data for enhancing understanding of molecular pathways.

    PubMed

    Zeng, Tao; Li, Jinyan

    2010-01-01

    Positive correlation can be diversely instantiated as shifting, scaling or geometric pattern, and it has been extensively explored for time-course gene expression data and pathway analysis. Recently, biological studies emerge a trend focusing on the notion of negative correlations such as opposite expression patterns, complementary patterns and self-negative regulation of transcription factors (TFs). These biological ideas and primitive observations motivate us to formulate and investigate the problem of maximizing negative correlations. The objective is to discover all maximal negative correlations of statistical and biological significance from time-course gene expression data for enhancing our understanding of molecular pathways. Given a gene expression matrix, a maximal negative correlation is defined as an activation-inhibition two-way expression pattern (AIE pattern). We propose a parameter-free algorithm to enumerate the complete set of AIE patterns from a data set. This algorithm can identify significant negative correlations that cannot be identified by the traditional clustering/biclustering methods. To demonstrate the biological usefulness of AIE patterns in the analysis of molecular pathways, we conducted deep case studies for AIE patterns identified from Yeast cell cycle data sets. In particular, in the analysis of the Lysine biosynthesis pathway, new regulation modules and pathway components were inferred according to a significant negative correlation which is likely caused by a co-regulation of the TFs at the higher layer of the biological network. We conjecture that maximal negative correlations between genes are actually a common characteristic in molecular pathways, which can provide insights into the cell stress response study, drug response evaluation, etc.

  5. Short communication: expression and alternative splicing of POU1F1 pathway genes in preimplantation bovine embryos.

    PubMed

    Laporta, J; Driver, A; Khatib, H

    2011-08-01

    Early embryo loss is a major contributing factor to cow infertility and that 70 to 80% of this loss occurs between d 8 and 16 postfertilization. However, little is known about the molecular mechanisms and the nature of genes involved in normal and abnormal embryonic development. Moreover, information is limited on the contributions of the genomes of dams and of embryos to the development and survival of preimplantation embryos. We hypothesized that proper gene expression level in the developing embryo is essential for embryo survival and pregnancy success. As such, the characterization of expression profiles in early embryos could lead to a better understanding of the mechanisms involved in normal and abnormal embryo development. To test this hypothesis, 2 d-8 embryo populations (degenerate embryos and blastocysts) that differed in morphology and developmental status were investigated. Expression levels of POU1F1 pathway genes were estimated in 4 sets of biological replicate pools of degenerate embryos and blastocysts. The OPN and STAT5A genes were found to be upregulated in degenerate embryos compared with blastocysts, whereas STAT5B showed similar expression levels in both embryo groups. Analysis of splice variants of OPN and STAT5A revealed expression patterns different from the total expression values of these genes. As such, measuring expression of individual transcripts should be considered in gene expression studies.

  6. Gene Expression Profiles from Disease Discordant Twins Suggest Shared Antiviral Pathways and Viral Exposures among Multiple Systemic Autoimmune Diseases.

    PubMed

    Gan, Lu; O'Hanlon, Terrance P; Lai, Zhennan; Fannin, Rick; Weller, Melodie L; Rider, Lisa G; Chiorini, John A; Miller, Frederick W

    2015-01-01

    Viral agents are of interest as possible autoimmune triggers due to prior reported associations and widely studied molecular mechanisms of antiviral immune responses in autoimmunity. Here we examined new viral candidates for the initiation and/or promotion of systemic autoimmune diseases (SAID), as well as possible related signaling pathways shared in the pathogenesis of those disorders. RNA isolated from peripheral blood samples from 33 twins discordant for SAID and 33 matched, unrelated healthy controls was analyzed using a custom viral-human gene microarray. Paired comparisons were made among three study groups-probands with SAID, their unaffected twins, and matched, unrelated healthy controls-using statistical and molecular pathway analyses. Probands and unaffected twins differed significantly in the expression of 537 human genes, and 107 of those were associated with viral infections. These 537 differentially expressed human genes participate in overlapping networks of several canonical, biologic pathways relating to antiviral responses and inflammation. Moreover, certain viral genes were expressed at higher levels in probands compared to either unaffected twins or unrelated, healthy controls. Interestingly, viral gene expression levels in unaffected twins appeared intermediate between those of probands and the matched, unrelated healthy controls. Of the viruses with overexpressed viral genes, herpes simplex virus-2 (HSV-2) was the only human viral pathogen identified using four distinct oligonucleotide probes corresponding to three HSV-2 genes associated with different stages of viral infection. Although the effects from immunosuppressive therapy on viral gene expression remain unclear, this exploratory study suggests a new approach to evaluate shared viral agents and antiviral immune responses that may be involved in the development of SAID.

  7. Gene Expression Profiles from Disease Discordant Twins Suggest Shared Antiviral Pathways and Viral Exposures among Multiple Systemic Autoimmune Diseases

    PubMed Central

    Gan, Lu; O’Hanlon, Terrance P.; Lai, Zhennan; Fannin, Rick; Weller, Melodie L.; Rider, Lisa G.; Chiorini, John A.; Miller, Frederick W.

    2015-01-01

    Viral agents are of interest as possible autoimmune triggers due to prior reported associations and widely studied molecular mechanisms of antiviral immune responses in autoimmunity. Here we examined new viral candidates for the initiation and/or promotion of systemic autoimmune diseases (SAID), as well as possible related signaling pathways shared in the pathogenesis of those disorders. RNA isolated from peripheral blood samples from 33 twins discordant for SAID and 33 matched, unrelated healthy controls was analyzed using a custom viral-human gene microarray. Paired comparisons were made among three study groups—probands with SAID, their unaffected twins, and matched, unrelated healthy controls—using statistical and molecular pathway analyses. Probands and unaffected twins differed significantly in the expression of 537 human genes, and 107 of those were associated with viral infections. These 537 differentially expressed human genes participate in overlapping networks of several canonical, biologic pathways relating to antiviral responses and inflammation. Moreover, certain viral genes were expressed at higher levels in probands compared to either unaffected twins or unrelated, healthy controls. Interestingly, viral gene expression levels in unaffected twins appeared intermediate between those of probands and the matched, unrelated healthy controls. Of the viruses with overexpressed viral genes, herpes simplex virus-2 (HSV-2) was the only human viral pathogen identified using four distinct oligonucleotide probes corresponding to three HSV-2 genes associated with different stages of viral infection. Although the effects from immunosuppressive therapy on viral gene expression remain unclear, this exploratory study suggests a new approach to evaluate shared viral agents and antiviral immune responses that may be involved in the development of SAID. PMID:26556803

  8. Overlapping gene expression profiles indicative of antigen processing and the interferon pathway characterize inflammatory fibrotic skin diseases.

    PubMed

    Limpers, Annelies; van Royen-Kerkhof, Annet; van Roon, Joel A G; Radstake, Timothy R D J; Broen, Jasper C A

    2014-02-01

    Inflammatory fibrotic disorders have been of high interest both for dermatologists and rheumatologists. Although the phenotypic end stage of this group of diseases is ultimately the same, namely fibrosis, patients present with different clinical features and are often treated with distinct therapeutic modalities. This review addresses whether there is evidence for different underlying molecular pathways in the various inflammatory fibrotic diseases such as localized scleroderma, pediatric lichen sclerosus, adult lichen sclerosus, eosinophilic fasciitis and systemic sclerosis. To investigate this, a large number of gene expression microarray studies performed on skin or fibroblasts from patients with these aforementioned diseases were described, (re-)analysed, and compared. As suspected by the heterogeneous phenotype, most diseases showed unique gene expression features. Intriguingly, a clear overlap was observed between adult and pediatric lichen sclerosus and localized scleroderma, in antigen processing and the interferon pathway. Delineating the cause and consequence of these pathways may generate novel tools to better characterize and more effectively treat these patients.

  9. Exploring the potential relationship between Notch pathway genes expression and their promoter methylation in mice hippocampal neurogenesis.

    PubMed

    Zhang, Zhen; Gao, Feng; Kang, Xiaokui; Li, Jia; Zhang, Litong; Dong, Wentao; Jin, Zhangning; Li, Fan; Gao, Nannan; Cai, Xinwang; Yang, Shuyuan; Zhang, Jianning; Ren, Xinliang; Yang, Xinyu

    2015-04-01

    The Notch pathway is a highly conserved pathway that regulates hippocampal neurogenesis during embryonic development and adulthood. It has become apparent that intracellular epigenetic modification including DNA methylation is deeply involved in fate specification of neural stem cells (NSCs). However, it is still unclear whether the Notch pathway regulates hippocampal neurogenesis by changing the Notch genes' DNA methylation status. Here, we present the evidence from DNA methylation profiling of Notch1, Hes1 and Ngn2 promoters during neurogenesis in the dentate gyrus (DG) of postnatal, adult and traumatic brains. We observed the expression of Notch1, Hes1 and Ngn2 in hippocampal DG with qPCR, Western blot and immunofluorescence staining. In addition, we investigated the methylation status of Notch pathway genes using the bisulfite sequencing PCR (BSP) method. The number of Notch1 or Hes1 (+) and BrdU (+) cells decreased in the subgranular zone (SGZ) of the DG in the hippocampus following TBI. Nevertheless, the number of Ngn2-positive cells in the DG of injured mice was markedly higher than in the DG of non-TBI mice. Accordingly, the DNA methylation level of the three gene promoters changed with their expression in the DG. These findings suggest that the strict spatio-temporal expression of Notch effector genes plays an important role during hippocampal neurogenesis and suggests the possibility that Notch1, Hes1 and Ngn2 were regulated by changing some specific CpG sites of their promoters to further orchestrate neurogenesis in vivo.

  10. Spatio-temporal expression of the pathway-specific regulatory gene redD in S. coelicolor.

    PubMed

    Zhou, Li-hua; Li, Yu-qin; Li, Yong-quan; Wu, Dan

    2005-06-01

    Confocal laser scanning microscopy was used to observe the spatio-temporal expression of the pathway-specific gene redD during S. coelicolor cell cultivation. The corresponding mutant S. coelicolor lyqRY1522 carrying redD::eyfp in the chromosome was constructed. The temporal expression results of the fusion protein during submerged cultivation demonstrated that expression of redD began in the transition phase, continuing through the exponential growth phase to the stationary phase, and reached maximum in the stationary phase. On the other hand, redD was expressed only in substrate mycelia during solid-state culture, while aerial mycelia remained essentially non-fluorescent throughout culture. Results demonstrated that the expression pattern of redD coincides with that of the biosynthesis of the antibiotics during culture, revealing a direct correlation between the spatio-temporal distribution of regulatory gene expression and second metabolism.

  11. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression.

    PubMed

    Chen, Xi-Lin; Dodd, Geraldine; Thomas, Suzanne; Zhang, Xiaolan; Wasserman, Martin A; Rovin, Brad H; Kunsch, Charles

    2006-05-01

    The antioxidant response element (ARE) is a transcriptional control element that mediates expression of a set of antioxidant proteins. NF-E2-related factor 2 (Nrf2) is a transcription factor that activates ARE-containing genes. In endothelial cells, the ARE-mediated genes are upregulated by atheroprotective laminar flow through a Nrf2-dependent mechanism. We tested the hypothesis that activation of ARE-regulated genes via adenovirus-mediated expression of Nrf2 may suppress redox-sensitive inflammatory gene expression. Expression of Nrf2 in human aortic endothelial cells (HAECs) resulted in a marked increase in ARE-driven transcriptional activity and protected HAECs from H2O2-mediated cytotoxicity. Nrf2 suppressed TNF-alpha-induced monocyte chemoattractant protein (MCP)-1 and VCAM-1 mRNA and protein expression in a dose-dependent manner and inhibited TNF-alpha-induced monocytic U937 cell adhesion to HAECs. Nrf2 also inhibited IL-1beta-induced MCP-1 gene expression in human mesangial cells. Expression of Nrf2 inhibited TNF-alpha-induced activation of p38 MAP kinase. Furthermore, expression of a constitutively active form of MKK6 (an upstream kinase for p38 MAP kinase) partially reversed Nrf2-mediated inhibition of VCAM-1 expression, suggesting that p38 MAP kinase, at least in part, mediates Nrf2's anti-inflammatory action. In contrast, Nrf2 did not inhibit TNF-alpha-induced NF-kappaB activation. These data identify the Nrf2/ARE pathway as an endogenous atheroprotective system for antioxidant protection and suppression of redox-sensitive inflammatory genes, suggesting that targeting the Nrf2/ARE pathway may represent a novel therapeutic approach for the treatment of inflammatory diseases such as atherosclerosis.

  12. The inhibitory effect of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus.

    PubMed

    Kong, Qing; Chi, Chen; Yu, Jiujiang; Shan, Shihua; Li, Qiyu; Li, Qianting; Guan, Bin; Nierman, William C; Bennett, Joan W

    2014-06-01

    Aspergillus flavus is one of the major moulds that colonize peanut in the field and during storage. The impact to human and animal health, and to the economy in agriculture and commerce, is significant since this mold produces the most potent known natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect in inhibiting aflatoxin formation in A. flavus through down-regulating aflatoxin pathway gene expression as demonstrated by gene chip analysis. Aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98 %) inhibited by co-cultivation with B. megaterium. Growth was also reduced. Using expression studies, we identified the fungal genes down-regulated by co-cultivation with B. megaterium across the entire fungal genome and specifically within the aflatoxin pathway gene cluster (aflF, aflT, aflS, aflJ, aflL, aflX). Modulating the expression of these genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was significantly down-regulated during co-cultivation. We present a model showing a hypothesis of the regulatory mechanism of aflatoxin production suppression by AflS and AflR through B. megaterium co-cultivation.

  13. Gene expression profiling reveals biological pathways responsible for phenotypic heterogeneity between UK and Sri Lankan oral squamous cell carcinomas.

    PubMed

    Saeed, Anas A; Sims, Andrew H; Prime, Stephen S; Paterson, Ian; Murray, Paul G; Lopes, Victor R

    2015-03-01

    It is well recognized that oral squamous cell carcinoma (OSCC) cases from Asia that are associated with betel quid chewing are phenotypically distinct to those from Western countries that are predominantly caused by smoking/drinking, but the molecular basis of these differences are largely unknown. The aim of this study is to examine gene expression, related carcinogenic pathways and molecular processes that might be responsible for the phenotypic heterogeneity of OSCC between UK and Sri Lankan population groups. We have compared the gene expression profiles of OSCCs and normal oral mucosal tissues from both Sri Lankan and UK individuals using Affymetrix gene expression arrays. The generated data was interrogated using significance analysis of microarrays and Ingenuity Pathway Analysis (IPA). The gene expression profiles of UK and Sri Lankan OSCC are similar in many respects to other oral cancer expression profiles reported in the literature and were mainly similar to each other. However, genes involved in tumor invasion, metastasis and recurrence were more obviously associated with UK tumors as opposed to those from Sri Lanka. The development of OSCCs in both UK and Sri Lankan populations appears largely mediated by similar biological pathways despite the differences related to race, ethnicity, lifestyle, and/or exposure to environmental carcinogens. However, IPA revealed a highly activated "Cell-mediated Immune Response" in Sri Lankan normal and tumor samples relative to UK cohorts. It seems likely, therefore, that any future attempts to personalize treatment for OSCC patients will need to be different in Western and Asian countries to reflect differences in gene expression and the immune status of the patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: altered pathways in neuronal development and steroid biosynthesis.

    PubMed

    Hu, Valerie W; Nguyen, AnhThu; Kim, Kyung Soon; Steinberg, Mara E; Sarachana, Tewarit; Scully, Michele A; Soldin, Steven J; Luu, Truong; Lee, Norman H

    2009-06-03

    Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present "case-control" study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects approximately 4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism.

  15. Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis

    PubMed Central

    Hu, Valerie W.; Nguyen, AnhThu; Kim, Kyung Soon; Steinberg, Mara E.; Sarachana, Tewarit; Scully, Michele A.; Soldin, Steven J.; Luu, Truong; Lee, Norman H.

    2009-01-01

    Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present “case-control” study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects ∼4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism. PMID:19492049

  16. Analysis of functional and pathway association of differential co-expressed genes: a case study in drug addiction.

    PubMed

    Li, Zi-hui; Liu, Yu-feng; Li, Ke-ning; Duanmu, Hui-zi; Chang, Zhi-qiang; Li, Zhen-qi; Zhang, Shan-zhen; Xu, Yan

    2012-02-01

    Drug addiction has been considered as a kind of chronic relapsing brain disease influenced by both genetic and environmental factors. At present, many causative genes and pathways related to diverse kinds of drug addiction have been discovered, while less attention has been paid to common mechanisms shared by different drugs underlying addiction. By applying a co-expression meta-analysis method to mRNA expression profiles of alcohol, cocaine, heroin addicted and normal samples, we identified significant gene co-expression pairs. As co-expression networks of drug group and control group constructed, associated function term pairs and pathway pairs reflected by co-expression pattern changes were discovered by integrating functional and pathway information respectively. The results indicated that respiratory electron transport chain, synaptic transmission, mitochondrial electron transport, signal transduction, locomotory behavior, response to amphetamine, negative regulation of cell migration, glucose regulation of insulin secretion, signaling by NGF, diabetes pathways, integration of energy metabolism, dopamine receptors may play an important role in drug addiction. In addition, the results can provide theory support for studies of addiction mechanisms.

  17. Partial sleep restriction activates immune response-related gene expression pathways: experimental and epidemiological studies in humans.

    PubMed

    Aho, Vilma; Ollila, Hanna M; Rantanen, Ville; Kronholm, Erkki; Surakka, Ida; van Leeuwen, Wessel M A; Lehto, Maili; Matikainen, Sampsa; Ripatti, Samuli; Härmä, Mikko; Sallinen, Mikael; Salomaa, Veikko; Jauhiainen, Matti; Alenius, Harri; Paunio, Tiina; Porkka-Heiskanen, Tarja

    2013-01-01

    Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9) was restricted to 4 h/night for five nights. The control subjects (N = 4) spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472). Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005). Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases.

  18. Combined gene expression and proteomic analysis of EGF induced apoptosis in A431 cells suggests multiple pathways trigger apoptosis.

    PubMed

    Alanazi, Ibrahim; Ebrahimie, Esmaeil; Hoffmann, Peter; Adelson, David L

    2013-11-01

    A431 cells, derived from epidermoid carcinoma, overexpress the epidermal growth factor receptor (EGFR) and when treated with a high dose of EGF will undergo apoptosis. We exploited microarray and proteomics techniques and network prediction to study the regulatory mechanisms of EGF-induced apoptosis in A431 cells. We observed significant changes in gene expression in 162 genes, approximately evenly split between pro-apoptotic and anti-apoptotic genes and identified 30 proteins from the proteomic data that had either pro or anti-apoptotic annotation. Our correlation analysis of gene expression and proteome modeled a number of distinct sub-networks that are associated with the onset of apoptosis, allowing us to identify specific pathways and components. These include components of the interferon signalling pathway, and down stream components, including cytokines and suppressors of cytokine signalling. A central component of almost all gene expression sub-networks identified was TP53, which is mutated in A431 cells, and was down regulated. This down regulation of TP53 appeared to be correlated with proteomic sub-networks of cytoskeletal or cell adhesion components that might induce apoptosis by triggering cytochrome C release. Of the only three genes also differentially expressed as proteins, only serpinb1 had a known association with apoptosis. We confirmed that up regulation and cleavage of serpinb1 into L-DNAaseII was correlated with the induction of apoptosis. It is unlikely that a single pathway, but more likely a combination of pathways is needed to trigger EGF induced apoptosis in A431cells.

  19. Partial Sleep Restriction Activates Immune Response-Related Gene Expression Pathways: Experimental and Epidemiological Studies in Humans

    PubMed Central

    Rantanen, Ville; Kronholm, Erkki; Surakka, Ida; van Leeuwen, Wessel M. A.; Lehto, Maili; Matikainen, Sampsa; Ripatti, Samuli; Härmä, Mikko; Sallinen, Mikael; Salomaa, Veikko; Jauhiainen, Matti; Alenius, Harri; Paunio, Tiina; Porkka-Heiskanen, Tarja

    2013-01-01

    Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9) was restricted to 4 h/night for five nights. The control subjects (N = 4) spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472). Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005). Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases. PMID:24194869

  20. Contents of therapeutic metabolites in Swertia chirayita correlate with the expression profiles of multiple genes in corresponding biosynthesis pathways.

    PubMed

    Padhan, Jibesh Kumar; Kumar, Varun; Sood, Hemant; Singh, Tiratha Raj; Chauhan, Rajinder S

    2015-08-01

    Swertia chirayita, an endangered medicinal herb, contains three major secondary metabolites swertiamarin, amarogentin and mangiferin, exhibiting valuable therapeutic traits. No information exists as of today on the biosynthesis of these metabolites in S. chirayita. The current study reports the expression profiling of swertiamarin, amarogentin and mangiferin biosynthesis pathway genes and their correlation with the respective metabolites content in different tissues of S. chirayita. Root tissues of greenhouse grown plants contained the maximum amount of secoiridoids (swertiamarin, 2.8% of fr. wt and amarogentin, 0.1% of fr. wt), whereas maximum accumulation of mangiferin (1.0% of fr. wt) was observed in floral organs. Differential gene expression analysis and their subsequent principal component analysis unveiled ten genes (encoding HMGR, PMK, MVK, ISPD, ISPE, GES, G10H, 8HGO, IS and 7DLGT) of the secoiridoids biosynthesis pathway and five genes (encoding EPSPS, PAL, ADT, CM and CS) of mangiferin biosynthesis with elevated transcript amounts in relation to corresponding metabolite contents. Three genes of the secoiridoids biosynthesis pathway (encoding PMK, ISPD and IS) showed elevated levels (∼57-104 fold increase in roots), and EPSPS of mangiferin biosynthesis showed an about 117 fold increase in transcripts in leaf tissues of the greenhouse grown plants. The study does provide leads on potential candidate genes correlating with the metabolites biosynthesis in S. chirayita as an initiative towards its genetic improvement.

  1. Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus.

    PubMed

    Biggar, Kyle K; Wu, Cheng-Wei; Tessier, Shannon N; Zhang, Jing; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B

    2015-04-01

    A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been identified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus murinus). To explore the regulatory mechanisms that underlie daily torpor in a primate, we analyzed the expression of 28 selected genes that represent crucial survival pathways known to be involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene expression in control (aroused) versus torpid lemurs in five tissues including the liver, kidney, skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated gene expression of peroxisome proliferator activated receptor gamma (ppargc), ferritin (fth1), and protein chaperones during torpor. Overall, the data show that the expression of only a few genes changed during lemur daily torpor, as compared with the broader expression changes reported for hibernation in ground squirrels. These results provide an indication that the alterations in gene expression required for torpor in lemurs are not as extensive as those needed for winter hibernation in squirrel models. However, identification of crucial genes with altered expression that support lemur torpor provides key targets to be explored and manipulated toward a goal of translational applications of inducible torpor as a treatment option in human biomedicine. Copyright © 2015. Production and hosting by Elsevier Ltd.

  2. Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus

    PubMed Central

    Biggar, Kyle K.; Wu, Cheng-Wei; Tessier, Shannon N.; Zhang, Jing; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B.

    2015-01-01

    A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been identified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus murinus). To explore the regulatory mechanisms that underlie daily torpor in a primate, we analyzed the expression of 28 selected genes that represent crucial survival pathways known to be involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene expression in control (aroused) versus torpid lemurs in five tissues including the liver, kidney, skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated gene expression of peroxisome proliferator activated receptor gamma (ppargc), ferritin (fth1), and protein chaperones during torpor. Overall, the data show that the expression of only a few genes changed during lemur daily torpor, as compared with the broader expression changes reported for hibernation in ground squirrels. These results provide an indication that the alterations in gene expression required for torpor in lemurs are not as extensive as those needed for winter hibernation in squirrel models. However, identification of crucial genes with altered expression that support lemur torpor provides key targets to be explored and manipulated toward a goal of translational applications of inducible torpor as a treatment option in human biomedicine. PMID:26093281

  3. Azithromycin Treatment Alters Gene Expression in Inflammatory, Lipid Metabolism, and Cell Cycle Pathways in Well-Differentiated Human Airway Epithelia

    PubMed Central

    Ribeiro, Carla Maria P.; Hurd, Harry; Wu, Yichao; Martino, Mary E. B.; Jones, Lisa; Brighton, Brian; Boucher, Richard C.; O'Neal, Wanda K.

    2009-01-01

    Prolonged macrolide antibiotic therapy at low doses improves clinical outcome in patients affected with diffuse panbronchiolitis and cystic fibrosis. Consensus is building that the therapeutic effects are due to anti-inflammatory, rather than anti-microbial activities, but the mode of action is likely complex. To gain insights into how the macrolide azithromycin (AZT) modulates inflammatory responses in airways, well-differentiated primary cultures of human airway epithelia were exposed to AZT alone, an inflammatory stimulus consisting of soluble factors from cystic fibrosis airways, or AZT followed by the inflammatory stimulus. RNA microarrays were conducted to identify global and specific gene expression changes. Analysis of gene expression changes revealed that the AZT treatment alone altered the gene profile of the cells, primarily by significantly increasing the expression of lipid/cholesterol genes and decreasing the expression of cell cycle/mitosis genes. The increase in cholesterol biosynthetic genes was confirmed by increased filipin staining, an index of free cholesterol, after AZT treatment. AZT also affected genes with inflammatory annotations, but the effect was variable (both up- and down-regulation) and gene specific. AZT pretreatment prevented the up-regulation of some genes, such as MUC5AC and MMP9, triggered by the inflammatory stimulus, but the up-regulation of other inflammatory genes, e.g., cytokines and chemokines, such as interleukin-8, was not affected. On the other hand, HLA genes were increased by AZT. Notably, secreted IL-8 protein levels did not reflect mRNA levels, and were, in fact, higher after AZT pretreatment in cultures exposed to the inflammatory stimulus, suggesting that AZT can affect inflammatory pathways other than by altering gene expression. These findings suggest that the specific effects of AZT on inflamed and non-inflamed airway epithelia are likely relevant to its clinical activity, and their apparent complexity may help

  4. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    PubMed

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1.

  5. Perturbation Detection Through Modeling of Gene Expression on a Latent Biological Pathway Network: A Bayesian hierarchical approach.

    PubMed

    Pham, Lisa M; Carvalho, Luis; Schaus, Scott; Kolaczyk, Eric D

    Cellular response to a perturbation is the result of a dynamic system of biological variables linked in a complex network. A major challenge in drug and disease studies is identifying the key factors of a biological network that are essential in determining the cell's fate. Here our goal is the identification of perturbed pathways from high-throughput gene expression data. We develop a three-level hierarchical model, where (i) the first level captures the relationship between gene expression and biological pathways using confirmatory factor analysis, (ii) the second level models the behavior within an underlying network of pathways induced by an unknown perturbation using a conditional autoregressive model, and (iii) the third level is a spike-and-slab prior on the perturbations. We then identify perturbations through posterior-based variable selection. We illustrate our approach using gene transcription drug perturbation profiles from the DREAM7 drug sensitivity predication challenge data set. Our proposed method identified regulatory pathways that are known to play a causative role and that were not readily resolved using gene set enrichment analysis or exploratory factor models. Simulation results are presented assessing the performance of this model relative to a network-free variant and its robustness to inaccuracies in biological databases.

  6. An analysis of gene expression in PTSD implicates genes involved in the glucocorticoid receptor pathway and neural responses to stress

    PubMed Central

    Logue, Mark W.; Smith, Alicia K.; Baldwin, Clinton; Wolf, Erika J.; Guffanti, Guia; Ratanatharathorn, Andrew; Stone, Annjanette; Schichman, Steven A.; Humphries, Donald; Binder, Elisabeth B.; Arloth, Janine; Menke, Andreas; Uddin, Monica; Wildman, Derek; Galea, Sandro; Aiello, Allison E.; Koenen, Karestan C.; Miller, Mark W.

    2015-01-01

    We examined the association between posttraumatic stress disorder (PTSD) and gene expression using whole blood samples from a cohort of trauma-exposed white non-Hispanic male veterans (115 cases and 28 controls). 10,264 probes of genes and gene transcripts were analyzed. We found 41 that were differentially expressed in PTSD cases versus controls (multiple-testing corrected p<0.05). The most significant was DSCAM, a neurological gene expressed widely in the developing brain and in the amygdala and hippocampus of the adult brain. We then examined the 41 differentially expressed genes in a meta-analysis using two replication cohorts and found significant associations with PTSD for 7 of the 41 (p<0.05), one of which (ATP6AP1L) survived multiple-testing correction. There was also broad evidence of overlap across the discovery and replication samples for the entire set of genes implicated in the discovery data based on the direction of effect and an enrichment of p<0.05 significant probes beyond what would be expected under the null. Finally, we found that the set of differentially expressed genes from the discovery sample was enriched for genes responsive to glucocorticoid signaling with most showing reduced expression in PTSD cases compared to controls. PMID:25867994

  7. Developing discriminate model and comparative analysis of differentially expressed genes and pathways for bloodstream samples of diabetes mellitus type 2

    PubMed Central

    2014-01-01

    Background Diabetes mellitus of type 2 (T2D), also known as noninsulin-dependent diabetes mellitus (NIDDM) or adult-onset diabetes, is a common disease. It is estimated that more than 300 million people worldwide suffer from T2D. In this study, we investigated the T2D, pre-diabetic and healthy human (no diabetes) bloodstream samples using genomic, genealogical, and phonemic information. We identified differentially expressed genes and pathways. The study has provided deeper insights into the development of T2D, and provided useful information for further effective prevention and treatment of the disease. Results A total of 142 bloodstream samples were collected, including 47 healthy humans, 22 pre-diabetic and 73 T2D patients. Whole genome scale gene expression profiles were obtained using the Agilent Oligo chips that contain over 20,000 human genes. We identified 79 significantly differentially expressed genes that have fold change ≥ 2. We mapped those genes and pinpointed locations of those genes on human chromosomes. Amongst them, 3 genes were not mapped well on the human genome, but the rest of 76 differentially expressed genes were well mapped on the human genome. We found that most abundant differentially expressed genes are on chromosome one, which contains 9 of those genes, followed by chromosome two that contains 7 of the 76 differentially expressed genes. We performed gene ontology (GO) functional analysis of those 79 differentially expressed genes and found that genes involve in the regulation of cell proliferation were among most common pathways related to T2D. The expression of the 79 genes was combined with clinical information that includes age, sex, and race to construct an optimal discriminant model. The overall performance of the model reached 95.1% accuracy, with 91.5% accuracy on identifying healthy humans, 100% accuracy on pre-diabetic patients and 95.9% accuract on T2D patients. The higher performance on identifying pre-diabetic patients was

  8. Gene Expression and Pathway Analysis of Effects of the CMAH Deactivation on Mouse Lung, Kidney and Heart

    PubMed Central

    Kwon, Deug-Nam; Chang, Byung-Soo; Kim, Jin-Hoi

    2014-01-01

    Background N-glycolylneuraminic acid (Neu5Gc) is generated by hydroxylation of CMP-Neu5Ac to CMP-Neu5Gc, catalyzed by CMP-Neu5Ac hydroxylase (CMAH). However, humans lack this common mammalian cell surface molecule, Neu5Gc, due to inactivation of the CMAH gene during evolution. CMAH is one of several human-specific genes whose function has been lost by disruption or deletion of the coding frame. It has been suggested that CMAH inactivation has resulted in biochemical or physiological characteristics that have resulted in human-specific diseases. Methodology/Principal Findings To identify differential gene expression profiles associated with the loss of Neu5Gc expression, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip, using the main tissues (lung, kidney, and heart) from control mice and CMP-Neu5Ac hydroxylase (Cmah) gene knock-out mice, respectively. Out of a total of 25,697 genes, 204, 162, and 147 genes were found to be significantly modulated in the lung, kidney, and heart tissues of the Cmah null mouse, respectively. In this study, we examined the gene expression profiles, using three commercial pathway analysis software packages: Ingenuity Pathways Analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and Pathway Studio. The gene ontology analysis revealed that the top 6 biological processes of these genes included protein metabolism and modification, signal transduction, lipid, fatty acid, and steroid metabolism, nucleoside, nucleotide and nucleic acid metabolism, immunity and defense, and carbohydrate metabolism. Gene interaction network analysis showed a common network that was common to the different tissues of the Cmah null mouse. However, the expression of most sialytransferase mRNAs of Hanganutziu-Deicher antigen, sialy-Tn antigen, Forssman antigen, and Tn antigen was significantly down-regulated in the liver tissue of Cmah null mice. Conclusions/Significance Mice bearing a human-like deletion of the Cmah gene

  9. Inhibin alpha gene expression in human trophoblasts is regulated by interactions between TFAP2 and cAMP signaling pathways.

    PubMed

    Depoix, Christophe L; Debiève, Frédéric; Hubinont, Corinne

    2014-11-01

    Inhibin α (Inha) gene expression is regulated, in rat granulosa cells, via a cyclic 3',5'-adenosine monophosphate (AMP)-response element (CRE) found in a region of the promoter that is homologous to the human INHA promoter. We previously found that during in vitro cytotrophoblast differentiation, human INHA gene expression was regulated by TFAP2A via association with an AP-2 site located upstream of this CRE. The aim of this study was to evaluate if the human INHA gene was also regulated by cAMP in trophoblasts, and to investigate the possible crosstalk between TFAP2 and cAMP signaling pathways in the regulation of INHA gene expression. Treatment with cAMP or forskolin increased INHA mRNA expression by 7- and 2-fold in primary cytotrophoblasts and choriocarcinoma-derived BeWo cells, respectively. Treatment with the protein kinase A inhibitor H-89 reduced forskolin-induced luciferase activity by ∼40% in BeWo cells transfected with an INHA promoter-driven luciferase reporter vector. TFAP2 overexpression increased basal luciferase activity, whereas the dominant repressor KCREB abolished it. Surprisingly, mutation of the CRE also eliminated the TFAP2-induced transcription, although TFAP2 overexpression was still able to increase forskolin-induced luciferase activity when the AP-2 binding site, but not the CRE site, was mutated. Thus, INHA gene expression is upregulated by cAMP via CRE in human trophoblasts, and TFAP2 regulates this expression by interacting with CRE.

  10. Varietal Dependence of GLVs Accumulation and LOX-HPL Pathway Gene Expression in Four Vitis vinifera Wine Grapes

    PubMed Central

    Qian, Xu; Xu, Xiao-Qing; Yu, Ke-Ji; Zhu, Bao-Qing; Lan, Yi-Bin; Duan, Chang-Qing; Pan, Qiu-Hong

    2016-01-01

    Variety is one of the major factors influencing grape and wine aromatic characteristics. Green leaf volatiles (GLVs), derived from lipoxygenase-hydroperoxides lyase (LOX-HPL) pathway, are important components for the aromatic quality of grapes and wines. However, the varietal difference regarding GLVs accumulation and related gene expression are poorly studied. This work exhibited that the accumulation of various GLVs and the expression of LOX-HPL pathway genes in four Vitis vinifera wine grape cultivars: Syrah, Muscat Tchervine, Gewürztraminer and Chardonnay. The results showed a variety dependence of GLVs profile. Muscat Tchervine harvested grapes contained less C6 aldehydes and the most abundant esters, which corresponded to very low VvLOXA and VvHPL1 expression abundance as well as high VvAAT transcript in this variety. High expression level of both VvLOXA and VvHPL1 paralleled with higher level of C6 aldehydes together with higher alcohols in Syrah grape. Gewürztraminer and Chardonnay grapes had high aldehydes and alcohols as well as low esters, which were resulted from their higher expression level of VvLOXA or VvHPL1 and lower VvAAT. From these above corresponding relations, it is concluded that VvLOXA, VvHPL1 and VvAAT in the LOX-HPL pathway are targets for altering GLVs composition in the grape varieties. PMID:27886056

  11. Varietal Dependence of GLVs Accumulation and LOX-HPL Pathway Gene Expression in Four Vitis vinifera Wine Grapes.

    PubMed

    Qian, Xu; Xu, Xiao-Qing; Yu, Ke-Ji; Zhu, Bao-Qing; Lan, Yi-Bin; Duan, Chang-Qing; Pan, Qiu-Hong

    2016-11-23

    Variety is one of the major factors influencing grape and wine aromatic characteristics. Green leaf volatiles (GLVs), derived from lipoxygenase-hydroperoxides lyase (LOX-HPL) pathway, are important components for the aromatic quality of grapes and wines. However, the varietal difference regarding GLVs accumulation and related gene expression are poorly studied. This work exhibited that the accumulation of various GLVs and the expression of LOX-HPL pathway genes in four Vitis vinifera wine grape cultivars: Syrah, Muscat Tchervine, Gewürztraminer and Chardonnay. The results showed a variety dependence of GLVs profile. Muscat Tchervine harvested grapes contained less C6 aldehydes and the most abundant esters, which corresponded to very low VvLOXA and VvHPL1 expression abundance as well as high VvAAT transcript in this variety. High expression level of both VvLOXA and VvHPL1 paralleled with higher level of C6 aldehydes together with higher alcohols in Syrah grape. Gewürztraminer and Chardonnay grapes had high aldehydes and alcohols as well as low esters, which were resulted from their higher expression level of VvLOXA or VvHPL1 and lower VvAAT. From these above corresponding relations, it is concluded that VvLOXA, VvHPL1 and VvAAT in the LOX-HPL pathway are targets for altering GLVs composition in the grape varieties.

  12. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds.

    PubMed

    Clemente, A C S; Guimarães, R M; Martins, D C; Gomes, L A A; Caixeta, F; Reis, R G E; Rosa, S D V F

    2015-05-11

    Seed germination and dormancy are complex phenomena that are controlled by many genes and environmental factors. Such genes are indicated by phytohormones that interact with each other, and may cause dormancy or promote seed germination. The objective of this study was to investigate gene expression associated with the biosynthetic pathways of abscisic acid (ABA), gibberellic acid (GA), and ethylene (ET) in dormant and germinated lettuce seeds. The expressions of LsNCED, LsGA3ox1, and ACO-B were evaluated in germinating and dormant seeds from the cultivars Everglades, Babá de Verão, Verônica, Salinas, Colorado, and Regina 71. The expressions of LsNCED, LsGA3ox1, and ACO-B were related to the biosynthesis of ABA, GA, and ET, respectively; therefore, the presence of these substances depends on genotype. LsNCED expression only occurred in dormant seeds, and was connected to dormancy. LsGA3ox1expression only occurred in germinated seeds, and was connected to germination. The ACO-B gene was involved in ET biosynthesis, and was expressed differently in germinated and dormant seeds, depending on the genotype, indicating different functions for different characteristics. Furthermore, sensitivity to phytohormones appeared to be more important than the expression levels of LsNCED, LsGA3ox1, or ACO-B.

  13. Pathway-Specific Analysis of Gene Expression Data Identifies the PI3K/Akt Pathway as a Novel Therapeutic Target in Cervical Cancer

    PubMed Central

    Schwarz, Julie K.; Payton, Jacqueline E.; Rashmi, Ramachandran; Xiang, Tao; Jia, Yunhe; Huettner, Phyllis; Rogers, Buck E.; Yang, Qin; Watson, Mark; Rader, Janet S.; Grigsby, Perry W.

    2013-01-01

    Purpose Cervical tumor response on posttherapy 2[18F]fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) is predictive of survival outcome. The purpose of this study was to use gene expression profiling to identify pathways associated with tumor metabolic response. Experimental Design This was a prospective tissue collection study for gene expression profiling of 62 pretreatment biopsies from patients with advanced cervical cancer. Patients were treated with definitive radiation. Fifty-three patients received concurrent chemotherapy. All patients underwent a pretreatment and a 3-month posttherapy FDG-PET/computed tomography (CT). Tumor RNA was harvested from fresh frozen tissue and hybridized to Affymetrix U133Plus2 GeneChips. Gene set enrichment analysis (GSEA) was used to identify signaling pathways associated with tumor metabolic response. Immunohistochemistry and in vitro FDG uptake assays were used to confirm our results. Results There were 40 biopsies from patients with a complete metabolic response (PET-negative group) and 22 biopsies from patients with incomplete metabolic response (PET-positive group). The 3-year cause-specific survival estimates were 98% for the PET-negative group and 39% for the PET-positive group (P < 0.0001). GSEA identified alterations in expression of genes associated with the PI3K/Akt signaling pathway in patients with a positive follow-up PET. Immunohistochemistry using a tissue microarray of 174 pretreatment biopsies confirmed p-Akt as a biomarker for poor prognosis in cervical cancer. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 inhibited FDG uptake in vitro in cervical cancer cell lines. Conclusions Activation of the PI3K/Akt pathway is associated with incomplete metabolic response in cervical cancer. Targeted inhibition of PI3K/Akt may improve response to chemoradiation. PMID:22235101

  14. High expression of BMP pathway genes distinguishes a subset of atypical teratoid/rhabdoid tumors associated with shorter survival.

    PubMed

    Birks, Diane K; Donson, Andrew M; Patel, Purvi R; Dunham, Christopher; Muscat, Andrea; Algar, Elizabeth M; Ashley, David M; Kleinschmidt-Demasters, B K; Vibhakar, Rajeev; Handler, Michael H; Foreman, Nicholas K

    2011-12-01

    Molecular profiling of tumors has proven to be a valuable tool for identification of prognostic and diagnostic subgroups in medulloblastomas, glioblastomas, and other cancers. However, the molecular landscape of atypical teratoid/rhabdoid tumors (AT/RTs) remains largely unexplored. To address this issue, we used microarrays to measure the gene expression profiles of 18 AT/RTs and performed unsupervised hierarchical clustering to determine molecularly similar subgroups. Four major subgroups (clusters) were identified. These did not conform to sex, tumor location, or presence of monosomy 22. Clusters showed distinct gene signatures and differences in enriched biological processes, including elevated expression of some genes associated with choroid plexus lineage in cluster 4. In addition, survival differed significantly by cluster, with shortest survival (mean, 4.7 months) in both clusters 3 and 4, compared with clusters 1 and 2 (mean, 28.1 months). Analysis showed that multiple bone morphogenetic protein (BMP) pathway genes were upregulated in the short survival clusters, with BMP4 showing the most significant upregulation (270-fold). Thus, high expression of BMP pathway genes was negatively associated with survival in this dataset. Our study indicates that molecular subgroups exist in AT/RTs and that molecular profiling of these comparatively rare tumors may be of diagnostic, prognostic, and therapeutic value.

  15. Genetics and Gene Expression Involving Stress and Distress Pathways in Fibromyalgia with and without Comorbid Chronic Fatigue Syndrome

    PubMed Central

    Light, Kathleen C.; White, Andrea T.; Tadler, Scott; Iacob, Eli; Light, Alan R.

    2012-01-01

    In complex multisymptom disorders like fibromyalgia syndrome (FMS) and chronic fatigue syndrome (CFS) that are defined primarily by subjective symptoms, genetic and gene expression profiles can provide very useful objective information. This paper summarizes research on genes that may be linked to increased susceptibility in developing and maintaining these disorders, and research on resting and stressor-evoked changes in leukocyte gene expression, highlighting physiological pathways linked to stress and distress. These include the adrenergic nervous system, the hypothalamic-pituitary-adrenal axis and serotonergic pathways, and exercise responsive metabolite-detecting ion channels. The findings to date provide some support for both inherited susceptibility and/or physiological dysregulation in all three systems, particularly for catechol-O-methyl transferase (COMT) genes, the glucocorticoid and the related mineralocorticoid receptors (NR3C1, NR3C2), and the purinergic 2X4 (P2X4) ion channel involved as a sensory receptor for muscle pain and fatigue and also in upregulation of spinal microglia in chronic pain models. Methodological concerns for future research, including potential influences of comorbid clinical depression and antidepressants and other medications, on gene expression are also addressed. PMID:22110941

  16. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD

    PubMed Central

    Li, He; Li, Xin; Smerin, Stanley E.; Zhang, Lei; Jia, Min; Xing, Guoqiang; Su, Yan A.; Wen, Jillian; Benedek, David; Ursano, Robert

    2014-01-01

    The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p < 0.01). Ingenuity pathway analysis revealed up- or downregulation in the amygdala complex of four signaling networks – one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear. PMID:25295026

  17. Gene Expression in Osteolysis: Review on the Identification of Altered Molecular Pathways in Preclinical and Clinical Studies

    PubMed Central

    Veronesi, Francesca; Tschon, Matilde; Fini, Milena

    2017-01-01

    Aseptic loosening (AL) due to osteolysis is the primary cause of joint prosthesis failure. Currently, a second surgery is still the only available treatment for AL, with its associated drawbacks. The present review aims at identifying genes whose expression is altered in osteolysis, and that could be the target of new pharmacological treatments, with the goal of replacing surgery. This review also aims at identifying the molecular pathways altered by different wear particles. We reviewed preclinical and clinical studies from 2010 to 2016, analyzing gene expression of tissues or cells affected by osteolysis. A total of 32 in vitro, 16 in vivo and six clinical studies were included. These studies revealed that genes belonging to both inflammation and osteoclastogenesis pathways are mainly involved in osteolysis. More precisely, an increase in genes encoding for the following factors were observed: Interleukins 6 and 1β (IL16 and β), Tumor Necrosis Factor α (TNFα), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), Cathepsin K (CATK) and Tartrate-resistant acid phosphatase (TRAP). Titanium (Ti) and Polyethylene (PE) were the most studied particles, showing that Ti up-regulated inflammation and osteoclastogenesis related genes, while PE up-regulated primarily osteoclastogenesis related genes. PMID:28245614

  18. Characterization of Light and Nitrogen Regulated Gene Expression Pathways in Marine Diatoms

    DTIC Science & Technology

    1992-12-31

    glutamine synthetase (GS) and the fucoxanthin-chlorophyll a/c pigment protein (FCP). The products of these genes determine the nitrogen assimilation and...Oceanian Biochemists. October 1992, Shanghai, China. 3. Robertson, D.L., G.J. Smith and R.S. Alberte. 1992. Glutamine synthetase expression is

  19. Novel expression patterns of carotenoid pathway-related gene in citrus leaves and maturing fruits

    USDA-ARS?s Scientific Manuscript database

    Carotenoids are abundant in citrus fruits and vary among cultivars and species. In the present study, HPLC and real-time PCR were used to investigate the expression patterns of 23 carotenoid biosynthesis gene family members and their possible relation with carotenoid accumulation in flavedo, juice s...

  20. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    SciTech Connect

    Kim, Yongbaek; Thai-Vu Ton; De Angelo, Anthony B.; Morgan, Kevin; Devereux, Theodora R.; Anna, Colleen; Collins, Jennifer B.; Paules, Richard S.; Crosby, Lynn M.; Sills, Robert C. . E-mail: sills@niehs.nih.gov

    2006-07-15

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo arrays, with over 20,000 target genes, were used to evaluate o-NT- and BCA-induced RPMs, when compared to a non-transformed mesothelial cell line (Fred-PE). Analysis using Ingenuity Pathway Analysis software revealed 169 cancer-related genes that were categorized into binding activity, growth and proliferation, cell cycle progression, apoptosis, and invasion and metastasis. The microarray data were validated by positive correlation with quantitative real-time RT-PCR on 16 selected genes including igf1, tgfb3 and nov. Important carcinogenic pathways involved in RPM formation included insulin-like growth factor 1 (IGF-1), p38 MAPkinase, Wnt/{beta}-catenin and integrin signaling pathways. This study demonstrated that mesotheliomas in rats exposed to o-NT- and BCA were similar to mesotheliomas in humans, at least at the cellular and molecular level.

  1. Expression profiling of S. pombe acetyltransferase mutants identifies redundant pathways of gene regulation

    PubMed Central

    2010-01-01

    Background Histone acetyltransferase enzymes (HATs) are implicated in regulation of transcription. HATs from different families may overlap in target and substrate specificity. Results We isolated the elp3+ gene encoding the histone acetyltransferase subunit of the Elongator complex in fission yeast and characterized the phenotype of an Δelp3 mutant. We examined genetic interactions between Δelp3 and two other HAT mutants, Δmst2 and Δgcn5 and used whole genome microarray analysis to analyze their effects on gene expression. Conclusions Comparison of phenotypes and expression profiles in single, double and triple mutants indicate that these HAT enzymes have overlapping functions. Consistent with this, overlapping specificity in histone H3 acetylation is observed. However, there is no evidence for overlap with another HAT enzyme, encoded by the essential mst1+ gene. PMID:20096118

  2. Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes

    PubMed Central

    Riquelme Medina, Ignacio; Lubovac-Pilav, Zelmina

    2016-01-01

    Type 1 diabetes (T1D) is a complex disease, caused by the autoimmune destruction of the insulin producing pancreatic beta cells, resulting in the body’s inability to produce insulin. While great efforts have been put into understanding the genetic and environmental factors that contribute to the etiology of the disease, the exact molecular mechanisms are still largely unknown. T1D is a heterogeneous disease, and previous research in this field is mainly focused on the analysis of single genes, or using traditional gene expression profiling, which generally does not reveal the functional context of a gene associated with a complex disorder. However, network-based analysis does take into account the interactions between the diabetes specific genes or proteins and contributes to new knowledge about disease modules, which in turn can be used for identification of potential new biomarkers for T1D. In this study, we analyzed public microarray data of T1D patients and healthy controls by applying a systems biology approach that combines network-based Weighted Gene Co-Expression Network Analysis (WGCNA) with functional enrichment analysis. Novel co-expression gene network modules associated with T1D were elucidated, which in turn provided a basis for the identification of potential pathways and biomarker genes that may be involved in development of T1D. PMID:27257970

  3. Gene expression of muscular and neuronal pathways is cooperatively dysregulated in patients with idiopathic achalasia

    PubMed Central

    Palmieri, Orazio; Mazza, Tommaso; Merla, Antonio; Fusilli, Caterina; Cuttitta, Antonello; Martino, Giuseppina; Latiano, Tiziana; Corritore, Giuseppe; Bossa, Fabrizio; Palumbo, Orazio; Muscarella, Lucia Anna; Carella, Massimo; Graziano, Paolo; Andriulli, Angelo; Latiano, Anna

    2016-01-01

    Idiopathic achalasia is characterized by the absence of peristalsis secondary to loss of neurons in the myenteric plexus that hampers proper relaxation of the lower esophageal sphincter. Achalasia can be considered a multifactorial disorder as it occurs in related individuals and is associated with HLA class II genes, thereby suggesting genetic influence. We used microarray technology and advanced in-silico functional analyses to perform the first genome-wide expression profiling of mRNA in tissue samples from 12 achalasia and 5 control patients. It revealed 1,728 differentially expressed genes, of these, 837 (48.4%) were up-regulated in cases. In particular, genes participating to the smooth muscle contraction biological function were mostly up-regulated. Functional analysis revealed a significant enrichment of neuronal/muscular and neuronal/immunity processes. Upstream regulatory analysis of 180 genes involved in these processes suggested TLR4 and IL18 as critical key-players. Two functional gene networks were significantly over-represented: one involved in organ morphology, skeletal muscle system development and function, and neurological diseases, and the other participating in cell morphology, humoral immune response and cellular movement. These results highlight on pivotal genes that may play critical roles in neuronal/muscular and neuronal/immunity processes, and that may contribute to the onset and development of achalasia. PMID:27511445

  4. Multidestructive pathways triggered in photoreceptor cell death of the rd mouse as determined through gene expression profiling.

    PubMed

    Rohrer, Baerbel; Pinto, Francisco R; Hulse, Kathryn E; Lohr, Heather R; Zhang, Li; Almeida, Jonas S

    2004-10-01

    In the rd/rd mouse, photoreceptor degeneration is due to a mutation of the rod-specific enzyme cGMP phosphodiesterase, resulting in permanently opened cGMP-gated cation channels in the rod outer segment membrane that allow Na(+) and Ca(2+) ions to enter the cell, resulting in possibly toxic levels of Ca(2+). To identify pathways involved in cell death of the rd/rd rods, we evaluated gene expression in the rd/rd and wild type (wt) mouse retina (U74A oligonucleotide arrays (Affymetrix)) over the known time course of photoreceptor degeneration. 181 genes passed the selection criteria (low standard deviation and high correlation between replicates), falling into six clusters. For any given pair of genes, an expression profile correlation distance and a semantic distance (one for each class of gene ontology terms) were established using newly designed software. Gene expression in rd/rd started to deviate from wt by postnatal day 10. The reduction in photoreceptor-specific genes followed the known time course of photoreceptor degeneration. Likewise the increase in transcription factors and apoptosis- and neuroinflammation-specific genes followed the kinetics of the rise in intracellular cGMP in the rod photoreceptors. In addition, genes coding for calcium-binding proteins and those implicated in tissue and vessel remodeling were increased. These results suggest that photoreceptor degeneration in the rd/rd mouse is a process starting with Ca(2+) toxicity followed by secondary insults involving multidestructive pathways such as apoptosis and neuroinflammation, presumably boosting morphological changes. All of these components need to be addressed if rods are to be successfully protected.

  5. The Coordination of Gene Expression within Photosynthesis Pathway for Acclimation of C4 Energy Crop Miscanthus lutarioriparius.

    PubMed

    Xing, Shilai; Kang, Lifang; Xu, Qin; Fan, Yangyang; Liu, Wei; Zhu, Caiyun; Song, Zhihong; Wang, Qian; Yan, Juan; Li, Jianqiang; Sang, Tao

    2016-01-01

    As a promising candidate for the second-generation C4 energy crop, Miscanthus lutarioriparius has well acclimated to the water-limited and high-light Loess Plateau in China by improving photosynthesis rate and water use efficiency (WUE) compared to its native habitat along Yangtze River. Photosynthetic genes were demonstrated as one major category of the candidate genes underlying the physiological superiority. To further study how photosynthetic genes interact to improve the acclimation potential of M. lutarioriparius, population expression patterns within photosynthesis pathway were explored between one mild environment and one harsh environment. We found that 108 transcripts in assembled transcriptome of M. lutarioriparius were highly similar to genes in three Kyoto Encyclopedia of Genes and Genomes (KEGG) photosynthesis pathways of sorghum and maize. Phylogenetic analyses using sorghum, maize, rice, and Arabidopsis genes of dark reaction identified 23 orthologs and 30 paralogs of M. lutarioriparius photosynthetic genes. These genes were also clustered into two kinds of expression pattern. 87% of transcripts in dark reaction were up-regulated and all 14 chloroplast-encoded transcripts in light reaction increased degradation in the harsh environment compared to the mild environment. Moreover, 80.8% of photosynthetic transcripts were coordinated at transcription level under the two environments. Interestingly, LHCI and PSI were significantly correlated with F-ATPase and C4 cycle. Overall, this study indicates the coordinated expression between cyclic electron transport (consisting of LHCI, PSI, and ATPase) and CO2-concentrating mechanism (C4 cycle) could account for photosynthesis plasticity on M. lutarioriparius acclimation potential.

  6. The Coordination of Gene Expression within Photosynthesis Pathway for Acclimation of C4 Energy Crop Miscanthus lutarioriparius

    PubMed Central

    Xing, Shilai; Kang, Lifang; Xu, Qin; Fan, Yangyang; Liu, Wei; Zhu, Caiyun; Song, Zhihong; Wang, Qian; Yan, Juan; Li, Jianqiang; Sang, Tao

    2016-01-01

    As a promising candidate for the second-generation C4 energy crop, Miscanthus lutarioriparius has well acclimated to the water-limited and high-light Loess Plateau in China by improving photosynthesis rate and water use efficiency (WUE) compared to its native habitat along Yangtze River. Photosynthetic genes were demonstrated as one major category of the candidate genes underlying the physiological superiority. To further study how photosynthetic genes interact to improve the acclimation potential of M. lutarioriparius, population expression patterns within photosynthesis pathway were explored between one mild environment and one harsh environment. We found that 108 transcripts in assembled transcriptome of M. lutarioriparius were highly similar to genes in three Kyoto Encyclopedia of Genes and Genomes (KEGG) photosynthesis pathways of sorghum and maize. Phylogenetic analyses using sorghum, maize, rice, and Arabidopsis genes of dark reaction identified 23 orthologs and 30 paralogs of M. lutarioriparius photosynthetic genes. These genes were also clustered into two kinds of expression pattern. 87% of transcripts in dark reaction were up-regulated and all 14 chloroplast-encoded transcripts in light reaction increased degradation in the harsh environment compared to the mild environment. Moreover, 80.8% of photosynthetic transcripts were coordinated at transcription level under the two environments. Interestingly, LHCI and PSI were significantly correlated with F-ATPase and C4 cycle. Overall, this study indicates the coordinated expression between cyclic electron transport (consisting of LHCI, PSI, and ATPase) and CO2-concentrating mechanism (C4 cycle) could account for photosynthesis plasticity on M. lutarioriparius acclimation potential. PMID:26904072

  7. Differential Hippocampal Gene Expression and Pathway Analysis in an Etiology-Based Mouse Model of Major Depressive Disorder

    PubMed Central

    Zubenko, George S.; Hughes, Hugh B.; Jordan, Rick M.; Lyons-Weiler, James; Cohen, Bruce M.

    2015-01-01

    We have recently reported the creation and initial characterization of an etiology-based recombinant mouse model of a severe and inherited form of Major Depressive Disorder (MDD). This was achieved by replacing the corresponding mouse DNA sequence witha6-base DNA sequence from the human CREB1promoterthat is associated with MDD in individuals from families with recurrent, early-onset MDD (RE-MDD). In the current study, we explored the effect of the pathogenic Creb1 allele on gene expression in the mouse hippocampus, a brain region that is altered in structure and function in MDD. Mouse whole-genome profiling was performed using the Illumina MouseWG-6 v2.0 Expression BeadChip microarray. Univariate analysis identified 269 differentially-expressed genes in the hippocampus of the mutant mouse. Pathway analyses highlighted 11 KEGG pathways: the phosphatidylinositol signaling system, which has been widely implicated in MDD, Bipolar Disorder, and the action of mood stabilizers; gap junction and long-term potentiation, which mediate cognition and memory functions often impaired in MDD; cardiac muscle contraction, insulin signaling pathway, and three neurodegenerative brain disorders (Alzheimer’s, Parkinson’s, and Huntington’s Diseases) that are associated with MDD; ribosome and proteasome pathways affecting protein synthesis/degradation; and the oxidative phosphorylation pathway that is key to energy production. These findings illustrate the merit of this congenic C57BL/6 recombinant mouse as a model of RE-MDD, and demonstrate its potential for highlighting molecular and cellular pathways that contribute to the biology of MDD. The results also inform our understanding of the mechanisms that underlie the comorbidity of MDD with other disorders. PMID:25059218

  8. Cadmium exposure activates the ERK signaling pathway leading to altered osteoblast gene expression and apoptotic death in Saos-2 cells

    PubMed Central

    Arbon, Kate S.; Christensen, Cody M.; Harvey, Wendy A.; Heggland, Sara J.

    2012-01-01

    Recent reports of cadmium in electronic waste and jewelry have increased public awareness regarding this toxic metal. Human exposure to cadmium is associated with the development of osteoporosis. We previously reported cadmium induces apoptosis in human tumor-derived Saos-2 osteoblasts. In this study, we examine the extracellular signal-regulated protein kinase (ERK) and protein kinase C (PKC) pathways in cadmium-induced apoptosis and altered osteoblast gene expression. Saos-2 osteoblasts were cultured in the presence or absence of 10 μM CdCl2 for 2–72 hours. We detected significant ERK activation in response to CdCl2 and pretreatment with the ERK inhibitor PD98059 attenuated cadmium-induced apoptosis. However, PKCα activation was not observed after exposure to CdCl2 and pretreatment with the PKC inhibitor, Calphostin C, was unable to rescue cells from cadmium-induced apoptosis. Gene expression studies were conducted using qPCR. Cells exposed to CdCl2 exhibited a significant decrease in the bone-forming genes osteopontin (OPN) and alkaline phosphatase (ALP) mRNA. In contrast, SOST, whose protein product inhibits bone formation, significantly increased in response to CdCl2. Pretreatment with PD98059 had a recovery effect on cadmium-induced changes in gene expression. This research demonstrates cadmium can directly inhibit osteoblasts via ERK signaling pathway and identifies SOST as a target for cadmium-induced osteotoxicity. PMID:22019892

  9. Cadmium exposure activates the ERK signaling pathway leading to altered osteoblast gene expression and apoptotic death in Saos-2 cells.

    PubMed

    Arbon, Kate S; Christensen, Cody M; Harvey, Wendy A; Heggland, Sara J

    2012-02-01

    Recent reports of cadmium in electronic waste and jewelry have increased public awareness regarding this toxic metal. Human exposure to cadmium is associated with the development of osteoporosis. We previously reported cadmium induces apoptosis in human tumor-derived Saos-2 osteoblasts. In this study, we examine the extracellular signal-regulated protein kinase (ERK) and protein kinase C (PKC) pathways in cadmium-induced apoptosis and altered osteoblast gene expression. Saos-2 osteoblasts were cultured in the presence or absence of 10μM CdCl(2) for 2-72h. We detected significant ERK activation in response to CdCl(2) and pretreatment with the ERK inhibitor PD98059 attenuated cadmium-induced apoptosis. However, PKCα activation was not observed after exposure to CdCl(2) and pretreatment with the PKC inhibitor, Calphostin C, was unable to rescue cells from cadmium-induced apoptosis. Gene expression studies were conducted using qPCR. Cells exposed to CdCl(2) exhibited a significant decrease in the bone-forming genes osteopontin (OPN) and alkaline phosphatase (ALP) mRNA. In contrast, SOST, whose protein product inhibits bone formation, significantly increased in response to CdCl(2). Pretreatment with PD98059 had a recovery effect on cadmium-induced changes in gene expression. This research demonstrates cadmium can directly inhibit osteoblasts via ERK signaling pathway and identifies SOST as a target for cadmium-induced osteotoxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. A seasonal switch in histone deacetylase gene expression in the hypothalamus and their capacity to modulate nuclear signaling pathways.

    PubMed

    Stoney, Patrick N; Rodrigues, Diana; Helfer, Gisela; Khatib, Thabat; Ashton, Anna; Hay, Elizabeth A; Starr, Robert; Kociszewska, Dagmara; Morgan, Peter; McCaffery, Peter

    2017-03-01

    Seasonal animals undergo changes in physiology and behavior between summer and winter conditions. These changes are in part driven by a switch in a series of hypothalamic genes under transcriptional control by hormones and, of recent interest, inflammatory factors. Crucial to the control of transcription are histone deacetylases (HDACs), generally acting to repress transcription by local histone modification. Seasonal changes in hypothalamic HDAC transcripts were investigated in photoperiod-sensitive F344 rats by altering the day-length (photoperiod). HDAC4, 6 and 9 were found to change in expression. The potential influence of HDACs on two hypothalamic signaling pathways that regulate transcription, inflammatory and nuclear receptor signaling, was investigated. For inflammatory signaling the focus was on NF-κB because of the novel finding made that its expression is seasonally regulated in the rat hypothalamus. For nuclear receptor signaling it was discovered that expression of retinoic acid receptor beta was regulated seasonally. HDAC modulation of NF-κB-induced pathways was examined in a hypothalamic neuronal cell line and primary hypothalamic tanycytes. HDAC4/5/6 inhibition altered the control of gene expression (Fos, Prkca, Prkcd and Ptp1b) by inducers of NF-κB that activate inflammation. These inhibitors also modified the action of nuclear receptor ligands thyroid hormone and retinoic acid. Thus seasonal changes in HDAC4 and 6 have the potential to epigenetically modify multiple gene regulatory pathways in the hypothalamus that could act to limit inflammatory pathways in the hypothalamus during long-day summer-like conditions. Copyright © 2016. Published by Elsevier Inc.

  11. Contribution of taxane biosynthetic pathway gene expression to observed variability in paclitaxel accumulation in Taxus suspension cultures

    PubMed Central

    Patil, Rohan A.; Kolewe, Martin E.; Normanly, Jennifer; Walker, Elsbeth L.; Roberts, Susan C.

    2012-01-01

    Variability in product accumulation is one of the major obstacles limiting the widespread commercialization of plant cell culture technology to supply natural product pharmaceuticals. Despite extensive process engineering efforts, which have led to increased yields, plant cells exhibit variability in productivity that is poorly understood. Elicitation of Taxus cultures with methyl jasmonate (MeJA) induces paclitaxel accumulation, but to varying extents in different cultures. In this work, cultures with different aggregation profiles were established to create predictable differences in paclitaxel accumulation upon MeJA elicitation. Expression of known paclitaxel biosynthetic genes in MeJA-elicited cultures exhibiting both substantial (15-fold) and moderate (2-fold) differences in paclitaxel accumulation was analyzed using qRT-PCR. Each population exhibited the characteristic large increase in paclitaxel pathway gene expression following MeJA elicitation; however, differences in expression between populations were minor, and only observed for the cultures with the 15-fold variation in paclitaxel content. These data suggest that although upregulation of biosynthetic pathway gene expression contributes to observed increases in paclitaxel synthesis upon elicitation with MeJA, there are additional factors that need to be uncovered before paclitaxel productivity can be fully optimized. PMID:22095859

  12. Surgical procedures and postsurgical tissue processing significantly affect expression of genes and EGFR-pathway proteins in colorectal cancer tissue.

    PubMed

    David, Kerstin A; Unger, Florian T; Uhlig, Philipp; Juhl, Hartmut; Moore, Helen M; Compton, Carolyn; Nashan, Björn; Dörner, Arnulf; de Weerth, Andreas; Zornig, Carsten

    2014-11-30

    An understanding of tissue data variability in relation to processing techniques during and postsurgery would be desirable when testing surgical specimens for clinical diagnostics, drug development, or identification of predictive biomarkers. Specimens of normal and colorectal cancer (CRC) tissues removed during colon and liver resection surgery were obtained at the beginning of surgery and postsurgically, tissue was fixed at 10, 20, and 45 minutes. Specimens were analyzed from 50 patients with primary CRC and 43 with intrahepatic metastasis of CRC using a whole genome gene expression array. Additionally, we focused on the epidermal growth factor receptor pathway and quantified proteins and their phosphorylation status in relation to tissue processing timepoints. Gene and protein expression data obtained from colorectal and liver specimens were influenced by tissue handling during surgery and by postsurgical processing time. To obtain reliable expression data, tissue processing for research and diagnostic purposes needs to be highly standardized.

  13. Identification of Inflammatory, Metabolic, and Cell Survival Pathways Contributing to Cerebral Small Vessel Disease by Postmortem Gene Expression Microarray.

    PubMed

    Ritz, Marie-Françoise; Grond-Ginsbach, Caspar; Kloss, Manja; Tolnay, Markus; Fluri, Felix; Bonati, Leo H; Traenka, Christopher; Zeis, Thomas; Schaeren-Wiemers, Nicole; Peters, Nils; Engelter, Stefan Thomas; Lyrer, Philippe Alexandre

    2016-01-01

    Cerebral small-vessel disease (SVD) is characterized by periventricular white matter (WM) changes and general brain atrophy. SVD is prevalent in elderly individuals and is frequently associated with the development of vascular dementia (VaD). Studies of the molecular basis of SVD are sparse. We have to gain further insight into the pathogenic mechanisms of SVD. Therefore, we compared gene expression patterns in the brains of SVD and control patients, in order to identify cellular pathways changed in diseased brains. We compared the expression of mRNA transcripts in postmortem, macroscopically normal-appearing human brain tissues isolated from frontal, temporal and occipital cortical and subcortical regions in 5 SVD and 5 non-SVD control patients. Significant expression changes were determined by fold change F>1.2 in either direction, and p<0.05. We identified 228 genes differentially expressed in cortex (89 up-, 139 down-regulated) and 555 genes in WM (223 up-, 332 down-regulated) in SVD patients. Pathway analyses revealed that upregulated genes were associated with inflammation and apoptosis in WM, suggesting active cell death. Downregulated genes were associated with coagulation and fatty and amino acids metabolisms. In the cortex, down-regulated genes were principally associated with neuronal functions. Our data revealed widespread changes in the transcriptome profiles in the cortex and WM of human SVD brains, with a predominance of changes in WM. We provide for the first time a comprehensive view of the molecular alterations in human SVD brains that seem to contribute to the neuropathogenesis of SVD.

  14. DHA Production in Escherichia coli by Expressing Reconstituted Key Genes of Polyketide Synthase Pathway from Marine Bacteria.

    PubMed

    Peng, Yun-Feng; Chen, Wen-Chao; Xiao, Kang; Xu, Lin; Wang, Lian; Wan, Xia

    2016-01-01

    The gene encoding phosphopantetheinyl transferase (PPTase), pfaE, a component of the polyketide synthase (PKS) pathway, is crucial for the production of docosahexaenoic acid (DHA, 22:6ω3), along with the other pfa cluster members pfaA, pfaB, pfaC and pfaD. DHA was produced in Escherichia coli by co-expressing pfaABCD from DHA-producing Colwellia psychrerythraea 34H with one of four pfaE genes from bacteria producing arachidonic acid (ARA, 20:4ω6), eicosapentaenoic acid (EPA, 20:5ω3) or DHA, respectively. Substitution of the pfaE gene from different strain source in E. coli did not influence the function of the PKS pathway producing DHA, although they led to different DHA yields and fatty acid profiles. This result suggested that the pfaE gene could be switchable between these strains for the production of DHA. The DHA production by expressing the reconstituted PKS pathway was also investigated in different E. coli strains, at different temperatures, or with the treatment of cerulenin. The highest DHA production, 2.2 mg of DHA per gram of dry cell weight or 4.1% of total fatty acids, was obtained by co-expressing pfaE(EPA) from the EPA-producing strain Shewanella baltica with pfaABCD in DH5α. Incubation at low temperature (10-15°C) resulted in higher accumulation of DHA compared to higher temperatures. The addition of cerulenin to the medium increased the proportion of DHA and saturated fatty acids, including C12:0, C14:0 and C16:0, at the expense of monounsaturated fatty acids, including C16:1 and C18:1. Supplementation with 1 mg/L cerulenin resulted in the highest DHA yield of 2.4 mg/L upon co-expression of pfaE(DHA) from C. psychrerythraea.

  15. Benzo[a]pyrene and glycine N-methyltransferse Interactions: Gene expression profiles of the liver detoxification pathway

    SciTech Connect

    Lee, C.-M.; Chen, S.-Y.; Lee, Y.-C.G.; Huang, C.-Y.F.; Chen, Y.-M. Arthur . E-mail: arthur@ym.edu.tw

    2006-07-15

    Benzo[a]pyrene (BaP) is one of many polycyclic aromatic hydrocarbons that have been identified as major risk factors for developing various cancers. We previously demonstrated that the liver cancer susceptibility gene glycine N-methyltransferase (GNMT) is capable of binding with BaP and protecting cells from BaP-7,8-diol 9,10-epoxide-DNA adduct formation. In this study, we used a cytotoxicity assay to demonstrate that the higher expression level of GNMT, the lower cytotoxicity occurred in the cells treated with BaP. In addition, a cDNA microarray containing 7,597 human genes was used to examine gene expression patterns in BaP-treated HepG2 (a liver cancer cell line that expresses very low levels of GNMT) and SCG2-1-1 (a stable HepG2 clone that expresses high levels of GNMT) cells. The results showed that among 6,018 readable HepG2 genes, 359 (6.0%) were up-regulated more than 1.5-fold and 768 (12.8%) were down-regulated. Overexpression of GNMT in SCG2-1-1 cells resulted in the down-regulation of genes related to the detoxification, kinase/phosphatase pathways, and oncogenes. Furthermore, real-time PCR was used to validate microarray data from 21 genes belonging to the detoxification pathway. Combining both microarray and real-time PCR data, the results showed that among 89 detoxification pathway genes analyzed, 22 (24.7%) were up-regulated and 6 (6.7%) were down-regulated in BaP-treated HepG2 cells, while in the BaP-treated SCG2-1-1 cells, 12 (13.5%) were up-regulated and 26 (29.2%) were down-regulated (P < 0.001). Therefore, GNMT sequesters BaP, diminishes BaP's effects to the liver detoxification pathway and prevents subsequent cytotoxicity.

  16. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles.

    PubMed

    Zaya, Renee M; Amini, Zakariya; Whitaker, Ashley S; Ide, Charles F

    2011-08-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p=0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule, also

  17. Identification of differentially expressed genes and signalling pathways in bark of Hevea brasiliensis seedlings associated with secondary laticifer differentiation using gene expression microarray.

    PubMed

    Loh, Swee Cheng; Thottathil, Gincy P; Othman, Ahmad Sofiman

    2016-10-01

    The natural rubber of Para rubber tree, Hevea brasiliensis, is the main crop involved in industrial rubber production due to its superior quality. The Hevea bark is commercially exploited to obtain latex, which is produced from the articulated secondary laticifer. The laticifer is well defined in the aspect of morphology; however, only some genes associated with its development have been reported. We successfully induced secondary laticifer in the jasmonic acid (JA)-treated and linolenic acid (LA)-treated Hevea bark but secondary laticifer is not observed in the ethephon (ET)-treated and untreated Hevea bark. In this study, we analysed 27,195 gene models using NimbleGen microarrays based on the Hevea draft genome. 491 filtered differentially expressed (FDE) transcripts that are common to both JA- and LA-treated bark samples but not ET-treated bark samples were identified. In the Eukaryotic Orthologous Group (KOG) analysis, 491 FDE transcripts belong to different functional categories that reflect the diverse processes and pathways involved in laticifer differentiation. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) and KOG analysis, the profile of the FDE transcripts suggest that JA- and LA-treated bark samples have a sufficient molecular basis for secondary laticifer differentiation, especially regarding secondary metabolites metabolism. FDE genes in this category are from the cytochrome (CYP) P450 family, ATP-binding cassette (ABC) transporter family, short-chain dehydrogenase/reductase (SDR) family, or cinnamyl alcohol dehydrogenase (CAD) family. The data includes many genes involved in cell division, cell wall synthesis, and cell differentiation. The most abundant transcript in FDE list was SDR65C, reflecting its importance in laticifer differentiation. Using the Basic Local Alignment Search Tool (BLAST) as part of annotation and functional prediction, several characterised as well as uncharacterized transcription factors and genes were found in the

  18. Expression analysis of sex-determining pathway genes during development in male and female Atlantic salmon (Salmo salar).

    PubMed

    Lubieniecki, Krzysztof P; Botwright, Natasha A; Taylor, Richard S; Evans, Brad S; Cook, Mathew T; Davidson, William S

    2015-12-01

    We studied the expression of 28 genes that are involved in vertebrate sex-determination or sex-differentiation pathways, in male and female Atlantic salmon (Salmo salar) in 11 stages of development from fertilization to after first feeding. Gene expression was measured in half-sibs that shared the same dam. The sire of family 1 was a sex-reversed female (i.e., genetically female but phenotypically male), and so the progeny of this family are all female. The sire of family 2 was a true male, and so the offspring were 50% male and 50% female. Gene expression levels were compared among three groups: 20 female offspring of the cross between a regular female and the sex-reversed female (family 1, first group), ∼ 10 females from the cross between a regular female and a regular male (family 2, second group) and ∼ 10 males from this same family (family 2, third group). Statistically significant differences in expression levels between males and the two groups of females were observed for two genes, gsdf and amh/mis, in the last four developmental stages examined. SdY, the sex-determining gene in rainbow trout, appeared to be expressed in males from 58 days postfertilization (dpf). Starting at 83 dpf, ovarian aromatase, cyp19a, expression appeared to be greater in both groups of females compared with males, but this difference was not statistically significant. The time course of expression suggests that sdY may be involved in the upregulation of gsdf and amh/mis and the subsequent repression of cyp19a in males via the effect of amh/mis. Copyright © 2015 the American Physiological Society.

  19. Acute Wnt pathway activation positively regulates leptin gene expression in mature adipocytes.

    PubMed

    Chen, Zong-Lan; Shao, Wei-Juan; Xu, Fen; Liu, Ling; Lin, Bei-Si; Wei, Xiao-Hong; Song, Zhuo-Lun; Lu, Huo-Gen; Fantus, I George; Weng, Jian-Ping; Jin, Tian-Ru

    2015-03-01

    Genome-wide association studies (GWAS) have revealed the implication of several Wnt signaling pathway components, including its effector transcription factor 7-like 2 (TCF7L2) in diabetes and other metabolic disorders. As TCF7L2 is expressed in adipocytes, we investigated its expression and function in rodent fat tissue and mature adipocytes. We found that TCF7L2 mRNA expression in C57BL/6 mouse epididymal fat tissue was up-regulated by feeding but down-regulated by intraperitoneal insulin injection. In high-fat diet (HFD) fed mice, db/db mice and Zucker (fa/fa) rats, epididymal fat TCF7L2 mRNA levels were lower than the corresponding controls. Treating rat adipocytes with 100nM insulin repressed TCF7L2 mRNA and protein levels, associated with the repression of leptin mRNA level. The treatment with 1nM insulin, however, stimulated TCF7L2 and leptin mRNA levels. This stimulation could be attenuated by iCRT14, an inhibitor of β-catenin/TCF-responsive transcription. Wnt3a stimulated leptin mRNA level, which was also blocked by iCRT14 co-treatment. Utilizing the leptin-expressing cell line HTR8 as a tool, we defined an evolutionarily conserved CREB binding motif that mediated Wnt3a activation. Although Wnt activation is known to repress the differentiation of 3T3-L1 cells towards mature adipocytes, short-term Wnt3a treatment of differentiated 3T3-L1 cells stimulated leptin mRNA levels. Thus, wnt pathway plays a dual function in adipocytes, including the well-known repressive effect on adipogenesis and the stimulation of leptin production in mature adipocytes in response to nutritional status. Copyright © 2014. Published by Elsevier Inc.

  20. Expression and regulation by thyroid hormone (TH) of zebrafish IGF-I gene and amphioxus IGFl gene with implication of the origin of TH/IGF signaling pathway.

    PubMed

    Wang, Yanfeng; Zhang, Shicui

    2011-12-01

    Thyroid hormone (TH)/insulin-like growth factor (IGF) signaling pathway has been identified in all the vertebrates, but its evolutionary origin remains elusive. In this study we examined the expression profiles in vitro as well as in vivo of the IGF-I gene of fish Danio rerio (vertebrate) and the IGF-like gene (IGFl) of amphioxus Branchiostoma japonicum (protochordate) following T(3) treatment. Our results showed that T(3) was able to enhance hepatic IGF-I/IGFl gene expression in vitro in both zebrafish and amphioxus in a dose-dependent manner. This T(3)-induced hepatic expression of IGF-I/IGFl genes in both species was significantly inhibited by the T(3)-specific inhibitor DEA, indicating the specificity of IGF-I/IGFl gene regulation by T(3). At 100nM T(3), in both the long (42h) and short (8h) time course experiments, the IGF-I/IGFl gene expression profiles following T(3) treatment in the tissue cultures of both species exhibited closely similar pattern and trend. Moreover, exposure of zebrafish and amphioxus to T(3)in vivo for 72h induced a significant increase in the expression of IGF-I/IGFl genes in both the liver and the hepatic caecum. These data together suggest that amphioxus and zebrafish both share a similar regulatory mechanism of IGF gene expression in response to T(3), providing an evidence for the presence of a vertebrate-like TH/IGF signaling pathway in the protochordate amphioxus.

  1. Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes

    PubMed Central

    Cohen, Seth D.; Tarara, Julie M.; Gambetta, Greg A.; Matthews, Mark A.; Kennedy, James A.

    2012-01-01

    Little is known about the impact of temperature on proanthocyanidin (PA) accumulation in grape skins, despite its significance in berry composition and wine quality. Field-grown grapes (cv. Merlot) were cooled during the day or heated at night by +/–8 °C, from fruit set to véraison in three seasons, to determine the effect of temperature on PA accumulation. Total PA content per berry varied only in one year, when PA content was highest in heated berries (1.46 mg berry−1) and lowest in cooled berries (0.97 mg berry−1). In two years, cooling berries resulted in a significant increase in the proportion of (–)-epigallocatechin as an extension subunit. In the third year, rates of berry development, PA accumulation, and the expression levels of several genes involved in flavonoid biosynthesis were assessed. Heating and cooling berries altered the initial rates of PA accumulation, which was correlated strongly with the expression of core genes in the flavonoid pathway. Both heating and cooling altered the rate of berry growth and coloration, and the expression of several structural genes within the flavonoid pathway. PMID:22268158

  2. Expression patterns of NLRC5 and key genes in the STAT1 pathway following infection with Salmonella pullorum.

    PubMed

    Qiu, Lingling; Ma, Teng; Chang, Guobin; Liu, Xiangping; Guo, Xiaomin; Xu, Lu; Zhang, Yang; Zhao, Wenming; Xu, Qi; Chen, Guohong

    2017-01-15

    NLRC5, a protein belonging to the NOD-like receptor protein family (NLRs), is highly expressed in immune tissues and cells. NLRC5 plays an important role in the immune response of humans, where its regulatory mechanism has been elucidated. However, the function and regulation of NLRC5 in chickens remains unclear. In this study, temporal expression characteristics of NLRC5 and associated genes in the STAT1 pathway in chickens following infection with Salmonella pullorum were investigated using quantitative real-time polymerase chain reaction and hierarchical cluster analyses. The role of transcription factor STAT1 in NLRC5 promoter activity was studied via point mutation of the STAT1-binding cis-element and dual-luciferase assays. Our results showed a strong correlation between NLRC5 and NF-κB. In addition, STAT1 played a crucial role in NLRC5 promoter activity, and may be activated via the interferon pathway. There was also a close relationship between CD80 and NF-κB, and CD80 may up-regulate NF-κB expression and enhance its protein activity in chickens. These findings reveal the temporal characteristics of chicken NLRC5 and STAT1 genes during S. pullorum infection, and highlight the role of STAT1 in NLRC5 promoter activity. This information aids our understanding of the regulatory mechanisms of NLRC5 and associated genes, and will help elucidate their function in the immune response of chickens.

  3. The shrimp IKK-NF-κB signaling pathway regulates antimicrobial peptide expression and may be subverted by white spot syndrome virus to facilitate viral gene expression.

    PubMed

    Wang, Pei-Hui; Gu, Zhi-Hua; Wan, Ding-Hui; Liu, Bo-Du; Huang, Xian-De; Weng, Shao-Ping; Yu, Xiao-Qiang; He, Jian-Guo

    2013-09-01

    The IκB kinases IKKα and IKKβ and the IKK-related kinases TANK-binding kinase 1 (TBK1) and IKKε are the master regulators of the NF-κB signaling pathway. Although this pathway has been extensively studied in mammals, less attention has been paid in crustaceans, which have significant economic value. Here, we report the cloning and functional studies of two IKK homologs, LvIKKβ and LvIKKε, from Pacific white shrimp, Litopenaeus vannamei. LvIKKβ and LvIKKε mRNAs are widely expressed in different tissues and are responsive to white spot syndrome virus (WSSV) infection. When overexpressed in Drosophila S2 cells, LvIKKβ but not LvIKKε activates the promoters of NF-κB pathway-controlled antimicrobial peptide genes (AMPs), such as the Penaeidins (PENs). In HEK 293T cells, both LvIKKβ and LvIKKε activate an NF-κB reporter. The silencing of LvIKKβ or LvIKKε using double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) decreases the expression of L. vannamei AMPs, including PENs, lysozyme and crustins. Intriguingly, LvIKKβ- or LvIKKε-silenced L. vannamei are resistant to WSSV infection. We hypothesized that successful infection with WSSV requires the activation of the IKK-NF-κB signaling pathway to modulate viral gene expression. We constructed luciferase reporters for 147 WSSV genes. By screening, we found that the WSV051, WSV059, WSV069, WSV083, WSV090, WSV107, WSV244, WSV303, WSV371 and WSV445 promoters can be activated by LvIKKβ or LvIKKε in Drosophila S2 cells. Taken together, our results reveal that LvIKKβ and LvIKKε may participate in the regulation of shrimp AMPs and that WSSV may subvert the L. vannamei IKK-NF-κB signaling pathway to facilitate viral gene expression.

  4. Identification of Potential Anticancer Activities of Novel Ganoderma lucidum Extracts Using Gene Expression and Pathway Network Analysis

    PubMed Central

    Kao, Chi H.J.; Bishop, Karen S.; Xu, Yuanye; Han, Dug Yeo; Murray, Pamela M.; Marlow, Gareth J.; Ferguson, Lynnette R.

    2016-01-01

    Ganoderma lucidum (lingzhi) has been used for the general promotion of health in Asia for many centuries. The common method of consumption is to boil lingzhi in water and then drink the liquid. In this study, we examined the potential anticancer activities of G. lucidum submerged in two commonly consumed forms of alcohol in East Asia: malt whiskey and rice wine. The anticancer effect of G. lucidum, using whiskey and rice wine-based extraction methods, has not been previously reported. The growth inhibition of G. lucidum whiskey and rice wine extracts on the prostate cancer cell lines, PC3 and DU145, was determined. Using Affymetrix gene expression assays, several biologically active pathways associated with the anticancer activities of G. lucidum extracts were identified. Using gene expression analysis (real-time polymerase chain reaction [RT-PCR]) and protein analysis (Western blotting), we confirmed the expression of key genes and their associated proteins that were initially identified with Affymetrix gene expression analysis. PMID:27006591

  5. Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview.

    PubMed

    Tardito, Daniela; Perez, Jorge; Tiraboschi, Ettore; Musazzi, Laura; Racagni, Giorgio; Popoli, Maurizio

    2006-03-01

    Regulation of gene expression represents a major component in antidepressant drug action. The effect of antidepressant treatments on the function of cAMP-responsive element binding protein (CREB), a transcription factor that regulates expression of several genes involved in neuroplasticity, cell survival, and cognition, has been extensively studied. Although there is general agreement that chronic antidepressants stimulate CREB function, conflicting results suggest that different effects may depend on drug type, drug dosage, and different experimental paradigms. CREB function is activated by a vast array of physiological stimuli, conveyed through a number of signaling pathways acting in concert, but thus far the effects of antidepressants on CREB have been analyzed mostly with regard to the cAMP-protein kinase A pathway. A growing body of data shows that other major pathways, such as the calcium/calmodulin-dependent kinase and the mitogen-activated kinase cascades, are involved in activity-dependent regulation of gene expression and may also be implicated in the mechanism of action of antidepressants. In this article the available evidence is reviewed with an attempt to identify the reasons for experimental discrepancies and possible directions for future research. Particularemphasis is given to the regulation of brain-derived neurotrophic factor (BDNF), a CREB-regulated gene, which has been implicated in both the pathophysiology and pharmacology of mood disorders. The array of different results obtained by various groups is analyzed with an eye on recent advancements in the regulation of BDNF transcription, in an attempt to understand better the mechanisms of drug action and dissect molecular requirements for faster and more efficient antidepressant treatment.

  6. Gene expression of peripheral blood cells reveals pathways downstream of glucocorticoid receptor antagonism and nab-paclitaxel treatment

    PubMed Central

    Maranville, Joseph C; Nanda, Rita; Fleming, Gini F; Skor, Maxwell N; Di Rienzo, Anna; Conzen, Suzanne D

    2014-01-01

    Objectives While paclitaxel treatment is associated with leukopenia, the mechanisms that underlie this effect are not well-characterized. Additionally, despite the importance of glucocorticoid signaling in cancer treatment, the genomic effects of glucocorticoid receptor (GR) antagonism by mifepristone treatment in primary human cells have never been described. Methods As part of a randomized Phase 1 clinical trial, we used microarrays to profile gene expression in peripheral blood cells sampled from each of 4 patients at baseline, after placebo/nab-paclitaxel treatment (cycle 1), and after mifepristone/nab-paclitaxel treatment (cycle 2). Results We found that 63 genes were differentially-expressed following treatment with nab-paclitaxel, including multiple genes in the tubulin pathway. We also found 606 genes that were differentially expressed in response to mifepristone; genes down-regulated by mifepristone overlapped significantly with those previously identified as being up-regulated by dexamethasone. Conclusions These results provide insights into the mechanisms of paclitaxel and GR inhibition in peripheral blood cells. PMID:25000515

  7. Anomalous altered expressions of downstream gene-targets in TP53-miRNA pathways in head and neck cancer

    PubMed Central

    Mitra, Sanga; Mukherjee, Nupur; Das, Smarajit; Das, Pijush; Panda, Chinmay Kumar; Chakrabarti, Jayprokas

    2014-01-01

    The prevalence of head and neck squamous cell carcinoma, HNSCC, continues to grow. Change in the expression of TP53 in HNSCC affects its downstream miRNAs and their gene targets, anomalously altering the expressions of the five genes, MEIS1, AGTR1, DTL, TYMS and BAK1. These expression alterations follow the repression of TP53 that upregulates miRNA-107, miRNA- 215, miRNA-34 b/c and miRNA-125b, but downregulates miRNA-155. The above five so far unreported genes are the targets of these miRNAs. Meta-analyses of microarray and RNA-Seq data followed by qRT-PCR validation unravel these new ones in HNSCC. The regulatory roles of TP53 on miRNA-155 and miRNA-125b differentiate the expressions of AGTR1 and BAK1in HNSCC vis-à-vis other carcinogenesis. Expression changes alter cell cycle regulation, angiogenic and blood cell formation, and apoptotic modes in affliction. Pathway analyses establish the resulting systems-level functional and mechanistic insights into the etiology of HNSCC. PMID:25186767

  8. Microarray-based gene expression profiling reveals genes and pathways involved in the oncogenic function of REG3A on pancreatic cancer cells.

    PubMed

    Xu, Qianqian; Fu, Rong; Yin, Guoxiao; Liu, Xiulan; Liu, Yang; Xiang, Ming

    2016-03-10

    We previously reported that regenerating islet-derived protein 3 alpha (REG3A) exacerbates pancreatic malignancies. The mechanism of this effect has not been clearly elucidated. Here we first identified key differentially expressed genes (DEGs) and signal pathways in the pancreatic cancer cell line SW1990, compared to two control cell lines, by microarray analysis. We then identified key genes and pathways regulated by REG3A or the cytokine IL6 in SW1990 cells. Afterwards, these DEGs induced by REG3A or IL6 were subjected to KEGG pathway enrichment analysis and GO function analysis by the DAVID online tool. Ultimately, we constructed protein-protein interaction networks among the DEGs by Cytoscape. Among the three pancreatic cell lines, SW1990 exhibited highly deterioration with the activation of genes and pathways related to proliferation, survival, angiogenesis, and invasion. As a result, 50 DEGs enriched in 11 pathways were identified in REG3A-treated SW1990 cells, and 28 DEGs enriched in 9 pathways were detected in IL6-treated cells. Overall, results of microarray analysis followed by qRT-PCR and Western blotting suggest that REG3A regulates pancreatic cell growth by increasing the expression of at least 8 genes: JAK1, STAT3, IL10, FOXM1, KRAS, MYC, CyclinD1, and c-fos; and activation of at least 4 signal pathways: TGFβ, PDGF, angiogenesis and RAS. Similar results were obtained with IL6 treatment. Regulation network analysis confirmed the cell growth related DEGs, and further uncovered three transcription factor families with immune functions regulated by REG3A.

  9. Over-Expression of VvWRKY1 in Grapevines Induces Expression of Jasmonic Acid Pathway-Related Genes and Confers Higher Tolerance to the Downy Mildew

    PubMed Central

    Marchive, Chloé; Léon, Céline; Kappel, Christian; Coutos-Thévenot, Pierre; Corio-Costet, Marie-France; Delrot, Serge; Lauvergeat, Virginie

    2013-01-01

    Most WRKY transcription factors activate expression of defence genes in a salicylic acid- and/or jasmonic acid-dependent signalling pathway. We previously identified a WRKY gene, VvWRKY1, which is able to enhance tolerance to fungal pathogens when it is overexpressed in tobacco. The present work analyzes the effects of VvWRKY1 overexpression in grapevine. Microarray analysis showed that genes encoding defence-related proteins were up-regulated in the leaves of transgenic 35S::VvWRKY1 grapevines. Quantitative RT-PCR analysis confirmed that three genes putatively involved in jasmonic acid signalling pathway were overexpressed in the transgenic grapes. The ability of VvWRKY1 to trans-activate the promoters of these genes was demonstrated by transient expression in grape protoplasts. The resistance to the causal agent of downy mildew, Plasmopara viticola, was enhanced in the transgenic plants. These results show that VvWRKY1 can increase resistance of grapevine against the downy mildew through transcriptional reprogramming leading to activation of the jasmonic acid signalling pathway. PMID:23342101

  10. Identification of a gene expression driven progression pathway in myxoid liposarcoma

    PubMed Central

    Brich, Silvia; Mauro, Valentina; Bozzi, Fabio; Dagrada, GianPaolo; Disciglio, Vittoria; Sanfilippo, Roberta; Gronchi, Alessandro; D'Incalci, Maurizio; Casali, Paolo G.; Canevari, Silvana; Pierotti, Marco A.; Pilotti, Silvana

    2014-01-01

    Aim: to investigate the events involved in the progression of myxoid liposarcoma (MLS). Gene expression profiling and immunohistochemical/biochemical analyses were applied to specimens representative of the opposite ends of the MLS spectrum: pure myxoid (ML) and pure round cell (RC) liposarcomas. The analyses revealed the involvement of both coding and non coding RNAs (SNORDs located in DLK1-DIO3 region) and support a model of stepwise progression mainly driven by epigenetic changes involving tumour vascular supply and tumoral cellular component. In this model, a switch in the vascular landscape from a normal to a pro-angiogenic signature and the silencing of DLK1-DIO3 region mark the progression from ML to RC in concert with the acquisition by the latter of the over-expression of YY1/C-MYC/HDAC2, together with over-expression of genes involved in cell proliferation and stemness: MKNK2, MSX1 and TRIM71. Taken together, these findings strongly suggest that to progress from ML to RC liposarcoma the cells have to overcome the epigenetic silencing restriction point in order to reset their new stem-like differentiation signature. Our findings provide a first attempt at identifying the missing links between ML and RC liposarcomas, that may also have broader applications in other clinico-pathological settings characterised by a spectrum of progression. PMID:25115389

  11. Analysis of Gene Expression in an Inbred Line of Soft-Shell Clams (Mya arenaria) Displaying Growth Heterosis: Regulation of Structural Genes and the NOD2 Pathway

    PubMed Central

    Dunlap-Smith, Azaline

    2016-01-01

    Mya arenaria is a bivalve mollusk of commercial and economic importance, currently impacted by ocean warming, acidification, and invasive species. In order to inform studies on the growth of M. arenaria, we selected and inbred a population of soft-shell clams for a fast-growth phenotype. This population displayed significantly faster growth (p < 0.0001), as measured by 35.4% greater shell size. To assess the biological basis of this growth heterosis, we characterized the complete transcriptomes of six individuals and identified differentially expressed genes by RNAseq. Pathways differentially expressed included structural gene pathways. Also differentially expressed was the nucleotide-binding oligomerization domain 2 (NOD2) receptor pathway that contributes to determination of growth, immunity, apoptosis, and proliferation. NOD2 pathway members that were upregulated included a subset of isoforms of RIPK2 (mean 3.3-fold increase in expression), ERK/MAPK14 (3.8-fold), JNK/MAPK8 (4.1-fold), and NFκB (4.08-fold). These transcriptomes will be useful resources for both the aquaculture community and researchers with an interest in mollusks and growth heterosis. PMID:27822466

  12. Analysis of Gene Expression in an Inbred Line of Soft-Shell Clams (Mya arenaria) Displaying Growth Heterosis: Regulation of Structural Genes and the NOD2 Pathway.

    PubMed

    Wilson, John J; Grendler, Janelle; Dunlap-Smith, Azaline; Beal, Brian F; Page, Shallee T

    2016-01-01

    Mya arenaria is a bivalve mollusk of commercial and economic importance, currently impacted by ocean warming, acidification, and invasive species. In order to inform studies on the growth of M. arenaria, we selected and inbred a population of soft-shell clams for a fast-growth phenotype. This population displayed significantly faster growth (p < 0.0001), as measured by 35.4% greater shell size. To assess the biological basis of this growth heterosis, we characterized the complete transcriptomes of six individuals and identified differentially expressed genes by RNAseq. Pathways differentially expressed included structural gene pathways. Also differentially expressed was the nucleotide-binding oligomerization domain 2 (NOD2) receptor pathway that contributes to determination of growth, immunity, apoptosis, and proliferation. NOD2 pathway members that were upregulated included a subset of isoforms of RIPK2 (mean 3.3-fold increase in expression), ERK/MAPK14 (3.8-fold), JNK/MAPK8 (4.1-fold), and NFκB (4.08-fold). These transcriptomes will be useful resources for both the aquaculture community and researchers with an interest in mollusks and growth heterosis.

  13. Chronic alcohol consumption from adolescence to adulthood in mice--hypothalamic gene expression changes in insulin-signaling pathway.

    PubMed

    Wang, Ke; Song, Huaiguang; Jin, Meilei; Xiao, Huasheng; Zhao, Guoping; Zou, Hong; Yu, Lei

    2014-09-01

    Adolescence is a developmental stage vulnerable to alcohol drinking-related problems, and alcohol exposure during adolescence may lead to long-lasting consequences. The hypothalamus is a key brain region for food and water intake regulation as well as weight control, and is one of the alcohol-sensitive brain regions. However, it is not known what the alcohol effect is on the hypothalamus following adolescent alcohol intake, chronically over adolescent development, at moderate levels. We employed a model of chronic moderate alcohol intake from adolescence to adulthood in mice, and analyzed the effect of alcohol on growth and weight gain, as well as hypothalamic gene expression patterns. The results indicated that chronic alcohol consumption during adolescence, even at moderate levels, led to both a reduction in weight gain in mice, and considerable gene expression changes in the hypothalamus. Pathway analysis and real-time PCR identified the type II diabetes mellitus and the insulin-signaling pathways as being the hypothalamic pathways affected by chronic alcohol. Our findings from the mouse alcohol consumption study therefore serve as a potential warning against alcohol consumption during adolescence, such as in teens and college students.

  14. The zero-sum game of pathway optimization: emerging paradigms for tuning gene expression.

    PubMed

    Solomon, Kevin V; Prather, Kristala L J

    2011-09-01

    With increasing price volatility and growing awareness of the lack of sustainability of traditional chemical synthesis, microbial chemical production has been tapped as a promising renewable alternative for the generation of diverse, stereospecific compounds. Nonetheless, many attempts to generate them are not yet economically viable. Due to the zero-sum nature of microbial resources, traditional strategies of pathway optimization are attaining minimal returns. This result is in part a consequence of the gross changes in host physiology resulting from such efforts and underscores the need for more precise and subtle forms of gene modulation. In this review, we describe alternative strategies and emerging paradigms to address this problem and highlight potential solutions from the emerging field of synthetic biology.

  15. Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes.

    PubMed

    Bauersachs, S; Ulbrich, S E; Gross, K; Schmidt, S E M; Meyer, H H D; Einspanier, R; Wenigerkind, H; Vermehren, M; Blum, H; Sinowatz, F; Wolf, E

    2005-06-01

    The endometrium plays a central role among the reproductive tissues in the context of early embryo-maternal communication and pregnancy. It undergoes typical changes during the sexual/oestrous cycle, which are regulated by the ovarian hormones progesterone and oestrogen. To identify the underlying molecular mechanisms we have performed the first holistic screen of transcriptome changes in bovine intercaruncular endometrium at two stages of the cycle--end of day 0 (late oestrus, low progesterone) and day 12 (dioestrus, high progesterone). A combination of subtracted cDNA libraries and cDNA array hybridisation revealed 133 genes showing at least a 2-fold change of their mRNA abundance, 65 with higher levels at oestrus and 68 at dioestrus. Interestingly, genes were identified which showed differential expression between different uterine sections as well. The most prominent example was the UTMP (uterine milk protein) mRNA, which was markedly upregulated in the cranial part of the ipsilateral uterine horn at oestrus. A Gene Ontology classification of the genes with known function characterised the oestrus time by elevated expression of genes, for example related to cell adhesion, cell motility and extracellular matrix and the dioestrus time by higher expression of mRNAs encoding for a variety of enzymes and transport proteins, in particular ion channels. Searching in pathway databases and literature data-mining revealed physiological processes and signalling cascades, e.g. the transforming growth factor-beta signalling pathway and retinoic acid signalling, which are potentially involved in the regulation of changes of the endometrium during the oestrous cycle.

  16. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model.

    PubMed

    Kogelman, Lisette J A; Cirera, Susanna; Zhernakova, Daria V; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2014-09-30

    Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P < 0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E-7), and immune-related complications (e.g. Natural killer cell mediated cytotoxity, P = 3.8E-5; B cell receptor signaling pathway, P = 7.2E-5). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and 34.58). Moreover, detection

  17. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    PubMed Central

    2014-01-01

    Background Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. Methods We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. Results WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P < 0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E-7), and immune-related complications (e.g. Natural killer cell mediated cytotoxity, P = 3.8E-5; B cell receptor signaling pathway, P = 7.2E-5). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and

  18. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms

    PubMed Central

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-01-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3–23.3 (n=1), 9q33.1–34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31–36.33 (n=6), 17q21.2–q21.31 (n=5) and 17q25.1–25.3 (n=5) and deletions affecting 18p11.31–11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a ‘HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal. PMID:22829077

  19. Inhibition of the mevalonate pathway enhances carvacrol biosynthesis and DXR gene expression in shoot cultures of Satureja khuzistanica Jamzad.

    PubMed

    Ramak, Parvin; Kazempour Osaloo, Shahrokh; Ebrahimzadeh, Hassan; Sharifi, Mozafar; Behmanesh, Mehrdad

    2013-09-01

    Carvacrol is a major component of Satureja khuzistanica Jamzad (≤90%) that has significant antimicrobial and antioxidant properties. Considering the specific capabilities of S. khuzistanica to produce highly pure carvacrol, this plant is an important potential source of carvacrol that could address the abundant consumption and increasing demand for this monoterpene in current world markets. This research was performed to better understand the process of biosynthesis and accumulation of carvacrol in S. khuzistanica. Tests were performed on shoot cultures of S. khuzistanica in Linsmaier-Skoog (LS) medium treated with different concentrations of fosmidomycin (an inhibitor of the non-mevalonate pathway) and mevinolin (an inhibitor of the mevalonate pathway) for 21 days at the following concentrations: 0, 10, 25, 50, 75 and 100 μM. The present study demonstrated that the MEP pathway is the major pathway that provides IPP for the biosynthesis of carvacrol, and the expression and activity levels of the DXR enzyme have a critical effect on carvacrol biosynthesis. Surprisingly, Mevinolin at concentrations of 75 and 100 μM increased the carvacrol content and the DXR activity and gene expression in S. khuzistanica plantlets. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Gene Expression Analysis Implicates a Death Receptor Pathway in Schizophrenia Pathology

    PubMed Central

    Catts, Vibeke Sørensen; Shannon Weickert, Cynthia

    2012-01-01

    An increase in apoptotic events may underlie neuropathology in schizophrenia. By data-mining approaches, we identified significant expression changes in death receptor signaling pathways in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia, particularly implicating the Tumor Necrosis Factor Superfamily member 6 (FAS) receptor and the Tumor Necrosis Factor [ligand] Superfamily member 13 (TNFSF13) in schizophrenia. We sought to confirm and replicate in an independent tissue collection the noted mRNA changes with quantitative real-time RT-PCR. To test for regional and diagnostic specificity, tissue from orbital frontal cortex (OFC) was examined and a bipolar disorder group included. In schizophrenia, we confirmed and replicated significantly increased expression of TNFSF13 mRNA in the DLPFC. Also, a significantly larger proportion of subjects in the schizophrenia group had elevated FAS receptor expression in the DLPFC relative to unaffected controls. These changes were not observed in the bipolar disorder group. In the OFC, there were no significant differences in TNFSF13 or FAS receptor mRNA expression. Decreases in BH3 interacting domain death agonist (BID) mRNA transcript levels were found in the schizophrenia and bipolar disorder groups affecting both the DLPFC and the OFC. We tested if TNFSF13 mRNA expression correlated with neuronal mRNAs in the DLPFC, and found significant negative correlations with interneuron markers, parvalbumin and somatostatin, and a positive correlation with PPP1R9B (spinophilin), but not DLG4 (PSD-95). The expression of TNFSF13 mRNA in DLPFC correlated negatively with tissue pH, but decreasing pH in cultured cells did not cause increased TNFSF13 mRNA nor did exogenous TNFSF13 decrease pH. We concluded that increased TNFSF13 expression may be one of several cell-death cytokine abnormalities that contribute to the observed brain pathology in schizophrenia, and while increased TNFSF13 may be associated with lower

  1. Thymoquinone regulates gene expression levels in the estrogen metabolic and interferon pathways in MCF7 breast cancer cells.

    PubMed

    Motaghed, Marjaneh; Al-Hassan, Faisal Muti; Hamid, Shahrul Sahul

    2014-01-01

    New drugs are continuously being developed for the treatment of patients with estrogen receptor-positive breast cancer. Thymoquinone is one of the drugs that exhibits anticancer characteristics based on in vivo and in vitro models. This study further investigates the effects of thymoquinone on human gene expression using cDNA microarray technology. The quantification of RNA samples was carried out using an Agilent 2100 Bioanalyser to determine the RNA integrity number (RIN). The Agilent Low Input Quick Amplification Labelling kit was used to generate cRNA in two-color microarray analysis. Samples with RIN >9.0 were used in this study. The universal human reference RNA was used as the common reference. The samples were labelled with cyanine-3 (cye-3) CTP dye and the universal human reference was labelled with cyanine-5 (cye-5) CTP dye. cRNA was purified with the RNeasy Plus Mini kit and quantified using a NanoDrop 2000c spectrophotometer. The arrays were scanned data analysed using Feature Extraction and GeneSpring software. Two-step qRT-PCR was selected to determine the relative gene expression using the High Capacity RNA-to-cDNA kit. The results from Gene Ontology (GO) analysis, indicated that 8 GO terms were related to biological processes (84%) and molecular functions (16%). A total of 577 entities showed >2-fold change in expression. Of these entities, 45.2% showed an upregulation and 54.7% showed a downregulation in expression. The interpretation of single experiment analysis (SEA) revealed that the cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and UDP glucuronosyltransferase 1 family, polypeptide A8 (UGT1A8) genes in the estrogen metabolic pathway were downregulated significantly by 43- and 11‑fold, respectively. The solute carrier family 7 (anionic amino acid transporter light chain, xc-system), member 11 (SLC7A11) gene in the interferon pathway, reported to be involved in the development of chemoresistance, was downregulated by 15

  2. Ingenuity Pathway Analysis of Gene Expression Profiles in Distal Nerve Stump following Nerve Injury: Insights into Wallerian Degeneration

    PubMed Central

    Yu, Jun; Gu, Xiaosong; Yi, Sheng

    2016-01-01

    Nerve injury is a common and difficult clinical problem worldwide with a high disability rate. Different from the central nervous system, the peripheral nervous system is able to regenerate after injury. Wallerian degeneration in the distal nerve stump contributes to the construction of a permissible microenvironment for peripheral nerve regeneration. To gain new molecular insights into Wallerian degeneration, this study aimed to identify differentially expressed genes and elucidate significantly involved pathways and cellular functions in the distal nerve stump following nerve injury. Microarray analysis showed that a few genes were differentially expressed at 0.5 and 1 h post nerve injury and later on a relatively larger number of genes were up-regulated or down-regulated. Ingenuity pathway analysis indicated that inflammation and immune response, cytokine signaling, cellular growth and movement, as well as tissue development and function were significantly activated following sciatic nerve injury. Notably, a cellular function highly related to nerve regeneration, which is called Nervous System Development and Function, was continuously activated from 4 days until 4 weeks post injury. Our results may provide further understanding of Wallerian degeneration from a genetic perspective, thus aiding the development of potential therapies for peripheral nerve injury. PMID:27999531

  3. Altered gene expression patterns of innate and adaptive immunity pathways in transgenic rainbow trout harboring Cecropin P1 transgene.

    PubMed

    Lo, Jay H; Lin, Chun-Mean; Chen, Maria J; Chen, Thomas T

    2014-10-11

    We have recently developed several homozygous families of transgenic rainbow trout harbouring cecropin P1 transgene. These fish exhibit resistance characteristic to infection by Aeromonas salmonicida and infectious hematopoietic necrosis virus (IHNV). In our earlier studies we have reported that treatment of a rainbow trout macrophage cell line (RTS11) with a linear cationic α-helical antimicrobial peptide (e.g., cecropin B) resulted in elevated levels of expression of two pro-inflammatory relevant genes (e.g., IL-1β and COX-2). Therefore, we hypothesized that in addition to the direct antimicrobial activity of cecropin P1 in the disease resistant transgenic rainbow trout, this antimicrobial peptide may also affect the expression of immune relevant genes in the host. To confirm this hypothesis, we launched a study to determine the global gene expression profiles in three immune competent organs of cecropin P1 transgenic rainbow trout by using a 44k salmonid microarray. From the microarray data, a total of 2480 genes in the spleen, 3022 in the kidney, and 2102 in the liver were determined as differentially expressed genes (DEGs) in the cecropin P1 transgenic rainbow trout when compared to the non-transgenics. There were 478 DEGs in common among three tissues. Enrichment analyses conducted by two different bioinformatics tools revealed a tissue specific profile of functional pathway perturbation. Many of them were directly related to innate immune system such as phagocytosis, lysosomal processing, complement activation, antigen processing/presentation, and leukocyte migration. Perturbation of other biological functions that might contribute indirectly to host immunity was also observed. The gene product of cecropin P1 transgene produced in the disease resistant transgenic rainbow trout not only can kill the pathogens directly but also exert multifaceted immunomodulatory properties to boost host immunity. The identified genes involved in different pathways related

  4. Decreased T cell ERK pathway signaling may contribute to the development of lupus through effects on DNA methylation and gene expression.

    PubMed

    Oelke, Kurt; Richardson, Bruce

    2004-01-01

    T cells from patients with active lupus have multiple biochemical abnormalities. One of these is DNA hypomethylation, which in model systems alters gene expression and induces lupus-like autoimmunity. Recent reports indicate that DNA methylation is regulated in part by the ERK pathway, and that ERK pathway signaling is diminished in lupus T cells. This suggests a model in which defective T cell ERK pathway signaling contributes to the development of autoimmunity by decreasing DNA methyltransferase expression, modifying DNA methylation patterns and altering gene expression. This mechanism could contribute to idiopathic and drug-induced lupus.

  5. 4-Nitrophenol exposure alters the AhR signaling pathway and related gene expression in the rat liver.

    PubMed

    Li, Ruonan; Song, Meiyan; Li, Zhi; Li, Yansen; Watanabe, Gen; Nagaoka, Kentaro; Taya, Kazuyoshi; Li, Chunmei

    2017-02-01

    4-Nitrophenol (PNP) is well known as an environmental endocrine disruptor. The aim of this study was to clarify the mechanism of PNP-induced liver damage and determine the regulatory involvement of the aryl hydrocarbon receptor (AhR) signaling pathway and associated gene expression. Immature male Wistar-Imamichi rats (28 days old) were randomly divided into control and PNP groups, which consisted of 1- and 3-day exposure (1 DE and 3 DE, respectively) and 3-day exposure followed by 3-day recovery (3 DE + 3 DR), groups. Each group was administered the vehicle or PNP (200 mg kg(-1) body weight). The body and liver weight were significantly decreased in the 3 DE group. The mRNA expression levels of estrogen receptor-α (ERα), glutathione S-transferase (GST) and AhR exhibited a significant increase in the 1 DE group whereas, in contrast, that of cytochrome P450 (CYP) 1A1 decreased significantly in the 3 DE +3 DR group. AhR and CYP1A1 proteins were detected in the cytoplasm of hepatocytes of the 1 DE and 3 DE +3 DR groups whereas the ERα protein was found in the hepatocyte nuclei of the 1 DE and 3 DE groups. The present study demonstrates that PNP activated the AhR signaling pathway and regulated related CYP1A1 and GST gene expression in the liver. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Cloning of three genes involved in the flavonoid metabolic pathway and their expression during insect resistance in Pinus massoniana Lamb.

    PubMed

    Yang, Z Q; Chen, H; Tan, J H; Xu, H L; Jia, J; Feng, Y H

    2016-12-23

    Pinus massoniana Lamb. is an important timber and turpentine-producing tree species in China. Dendrolimus punctatus and Dasychira axutha are leaf-eating pests that have harmful effects on P. massoniana production. Few studies have focused on the molecular mechanisms underlying pest resistance in P. massoniana. Based on sequencing analysis of the transcriptomes of insect-resistant P. massoniana, three key genes involved in the flavonoid metabolic pathway were identified in the present study (PmF3H, PmF3'5'H, and PmC4H). Structural domain analysis showed that the PmF3H gene contains typical binding sites for the 2OG-Fe (II) oxygenase superfamily, while PmF3'5'H and PmC4H both contain the cytochrome P450 structural domain, which is specific for P450 enzymes. Phylogenetic analysis showed that each of the three P. massoniana genes, and the homologous genes in gymnosperms, clustered into a group. Expression of these three genes was highest in the stems, and was higher in the insect-resistant P. massoniana varieties than in the controls. The extent of the increased expression in the insect-resistant P. massoniana varieties indicated that these three genes are involved in defense mechanisms against pests in this species. In the insect-resistant varieties, rapid induction of PmF3H increased the levels of PmF3'5'H and PmC4H expression. The enhanced anti-pest capability of the insect-resistant varieties could be related to temperature and humidity. In addition, these results suggest that these three genes maycontribute to the change in flower color during female cone development.

  7. Analysis of biochemical compounds and differentially expressed genes of the anthocyanin biosynthetic pathway in variegated peach flowers.

    PubMed

    Hassani, D; Liu, H L; Chen, Y N; Wan, Z B; Zhuge, Q; Li, S X

    2015-10-28

    Variegated plants are highly valuable in the floricultural market, yet the genetic mechanism underlying this attractive phenomenon has not been completely elucidated. In this study, we identified and measured different compounds in pink and white flower petals of peach (Prunus persica) by high-performance liquid chromatography and liquid chromatography/mass spectrometry analyses. No cyanidin-based or pelargonidin-based compounds were detected in white petals, but high levels of these compounds were found in pink petals. Additionally, we sequenced and analyzed the expression of six key structural genes in the anthocyanin biosynthesis pathway (CHI, CHS, DFR, F3'H, ANS, and UFGT) in both white and pink petals. Quantitative real-time polymerase chain reaction revealed all six genes to be expressed at greatly reduced levels in white flower petals, relative to pink. No allelic variations were found in the transcribed sequences. However, alignment of transcribed and genomic sequences of the ANS gene detected alternative splicing, resulting in transcripts of 1.071 and 942 bp. Only the longer transcript was observed in white flower petals. Since ANS is the key intermediate enzyme catalyzing the colorless leucopelargonidin and leucocyanidin to substrates required for completion of anthocyanin biosynthesis, the ANS gene is implicated in flower color variegation and should be explored in future studies. This article, together with a previous transcriptome study, elucidates the mechanism underlying peach flower color variegation in terms of the key structural genes involved in anthocyanin biosynthesis.

  8. Curcumin induces human cathelicidin antimicrobial peptide gene expression through a vitamin D receptor-independent pathway

    PubMed Central

    Guo, Chunxiao; Rosoha, Elena; Lowry, Malcolm B.; Borregaard, Niels; Gombart, Adrian F.

    2012-01-01

    The vitamin D receptor (VDR) mediates the pleiotropic biologic effects of 1α,25 dihydroxy-vitamin D3. Recent in vitro studies suggested that curcumin and poly-unsaturated fatty acids (PUFAs) also bind to VDR with low affinity. As potential ligands for the VDR, we hypothesized that curcumin and PUFAs would induce expression of known VDR target genes in cells. In this study, we tested whether these compounds regulated two important VDR target genes - human cathelicidin antimicrobial peptide (CAMP) and 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1)- in human monocytic cell line U937, colon cancer cell line HT-29 and keratinocyte cell line HaCaT. We demonstrated that PUFAs failed to induce CAMP or CYP24A1 mRNA expression in all three cell lines, but curcumin up-regulated CAMP mRNA and protein levels in U937 cells. Curcumin treatment induced CAMP promoter activity from a luciferase reporter construct lacking the VDR binding site and did not increase binding of the VDR to the CAMP promoter as determined by chromatin immunoprecipitation assays. These findings indicate that induction of CAMP by curcumin occurs through a vitamin D receptor-independent manner. We conclude that PUFAs and curcumin do not function as ligands for the VDR. PMID:22841393

  9. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair

    PubMed Central

    Mikhed, Yuliya; Görlach, Agnes; Knaus, Ulla G.; Daiber, Andreas

    2015-01-01

    Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease. PMID:26079210

  10. Differentially co-expressed genes in postmortem prefrontal cortex of individuals with alcohol use disorders: Influence on alcohol metabolism-related pathways

    PubMed Central

    Zhang, Huiping; Wang, Fan; Xu, Hongqin; Liu, Yawen; Liu, Jin; Zhao, Hongyu; Gelernter, Joel

    2014-01-01

    Chronic alcohol consumption may induce gene expression alterations in brain reward regions such as the prefrontal cortex (PFC), modulating the risk of alcohol use disorders (AUDs). Transcriptome profiles of 23 AUD cases and 23 matched controls (16 pairs of males and 7 pairs of females) in postmortem PFC were generated using Illumina’s HumanHT-12 v4 Expression BeadChip. Probe-level differentially expressed genes and gene modules in AUD subjects were identified using multiple linear regression and weighted gene co-expression network analyses. The enrichment of differentially co-expressed genes in alcohol dependence-associated genes identified by genome-wide association studies (GWAS) was examined using gene set enrichment analysis. Biological pathways overrepresented by differentially co-expressed genes were uncovered using DAVID bioinformatics resources. Three AUD-associated gene modules in males [Module 1 (561 probes mapping to 505 genes): r=0.42, Pcorrelation=0.020; Module 2 (815 probes mapping to 713 genes): r=0.41, Pcorrelation=0.020; Module 3 (1,446 probes mapping to 1,305 genes): r=−0.38, Pcorrelation=0.030] and one AUD-associated gene module in females [Module 4 (683 probes mapping to 652 genes): r=0.64, Pcorrelation=0.010] were identified. Differentially expressed genes mapped by significant expression probes (Pnominal≤0.05) clustered in Modules 1 and 2 were enriched in GWAS-identified alcohol dependence-associated genes [Module 1 (134 genes): P=0.028; Module 2 (243 genes): P=0.004]. These differentially expressed genes, including ALDH2, ALDH7A1, and ALDH9A1, are involved in cellular functions such as aldehyde detoxification, mitochondrial function, and fatty acid metabolism. Our study revealed differentially co-expressed genes in postmortem PFC of AUD subjects and demonstrated that some of these differentially co-expressed genes participate in alcohol metabolism. PMID:25073604

  11. Temporal blastemal cell gene expression analysis in the kidney reveals new Wnt and related signaling pathway genes to be essential for Wilms' tumor onset

    PubMed Central

    Maschietto, M; Trapé, A P; Piccoli, F S; Ricca, T I; Dias, A A M; Coudry, R A; Galante, P A; Torres, C; Fahhan, L; Lourenço, S; Grundy, P E; de Camargo, B; de Souza, S; Neves, E J; Soares, F A; Brentani, H; Carraro, D M

    2011-01-01

    Wilms' tumors (WTs) originate from metanephric blastema cells that are unable to complete differentiation, resulting in triphasic tumors composed of epithelial, stromal and blastemal cells, with the latter harboring molecular characteristics similar to those of the earliest kidney development stages. Precise regulation of Wnt and related signaling pathways has been shown to be crucial for correct kidney differentiation. In this study, the gene expression profile of Wnt and related pathways was assessed in laser-microdissected blastemal cells in WTs and differentiated kidneys, in human and in four temporal kidney differentiation stages (i.e. E15.5, E17.5, P1.5 and P7.5) in mice, using an orthologous cDNA microarray platform. A signaling pathway-based gene signature was shared between cells of WT and of earliest kidney differentiation stages, revealing genes involved in the interruption of blastemal cell differentiation in WT. Reverse transcription-quantitative PCR showed high robustness of the microarray data demonstrating 75 and 56% agreement in the initial and independent sample sets, respectively. The protein expression of CRABP2, IGF2, GRK7, TESK1, HDGF, WNT5B, FZD2 and TIMP3 was characterized in WTs and in a panel of human fetal kidneys displaying remarkable aspects of differentiation, which was recapitulated in the tumor. Taken together, this study reveals new genes candidate for triggering WT onset and for therapeutic treatment targets. PMID:22048167

  12. Transcript Profiling Identifies Dynamic Gene Expression Patterns and an Important Role for Nrf2/Keap1 Pathway in the Developing Mouse Esophagus

    PubMed Central

    Li, Haiyan; Hu, Yuhui; Tevebaugh, Whitney; Yamamoto, Masayuki; Que, Jianwen; Chen, Xiaoxin

    2012-01-01

    Background and Aims Morphological changes during human and mouse esophageal development have been well characterized. However, changes at the molecular level in the course of esophageal morphogenesis remain unclear. This study aims to globally profile critical genes and signaling pathways during the development of mouse esophagus. By using microarray analysis this study also aims to determine how the Nrf2/Keap1 pathway regulates the morphogenesis of the esophageal epithelium. Methods Gene expression microarrays were used to survey gene expression in the esophagus at three critical phases: specification, metaplasia and maturation. The esophagi were isolated from wild-type, Nrf2−/−, Keap1−/−, or Nrf2−/−Keap1−/− embryos or young adult mice. Array data were statistically analyzed for differentially expressed genes and pathways. Histochemical and immunohistochemical staining were used to verify potential involvement of the Wnt pathway, Pparβ/δ and the PI3K/Akt pathway in the development of esophageal epithelium. Results Dynamic gene expression patterns accompanied the morphological changes of the developing esophagus at critical phases. Particularly, the Nrf2/Keap1 pathway had a baseline activity in the metaplasia phase and was further activated in the maturation phase. The Wnt pathway was active early and became inactive later in the metaplasia phase. In addition, Keap1−/− mice showed increased expression of Nrf2 downstream targets and genes involved in keratinization. Microarray and immunostaining data also suggested that esophageal hyperkeratosis in the Keap1−/− mice was due to activation of Pparβ/δ and the PI3K/Akt pathway. Conclusions Morphological changes of the esophageal epithelium are associated with dynamic changes in gene expression. Nrf2/Keap1 pathway activity is required for maturation of mouse esophageal epithelium. PMID:22567161

  13. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.

    PubMed

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady

    2017-02-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.

  14. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

    PubMed Central

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya

    2017-01-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390

  15. Effects of learning on mTOR pathway gene expression in the brain of zebrafish (Danio rerio) of different ages.

    PubMed

    Peixoto, Carolina da Silva; Parfitt, Gustavo Morrone; Bruch, Gisele Eva; Cordeiro, Marcos Freitas; Almeida, Daniela Volcan; Marins, Luis Fernando Fernandes; Barros, Daniela Martí

    2017-03-01

    Target of rapamycin (TOR) is a protein kinase involved in the modulation of mRNA translation and, therefore, in the regulation of protein synthesis. In neurons, the role of TOR is particularly important in the consolidation of long-term memory (LTM). One of the modulators of TOR is brain-derived neurotrophic factor (BDNF), which activates the TOR signaling pathway to promote protein synthesis, synapse strengthening, and the creation of new neural networks. We investigated the gene expression pattern of this pathway during memory consolidation in zebrafish of different ages. Our findings demonstrate that TOR activation in old animals occurs in the early phase of consolidation, and follows a pattern identical to that of BDNF expression. In younger animals, this increase in activation did not occur, and changes in BDNF expression were also not so remarkable. Furthermore, the expression of the main proteins regulated by the synthesis of TOR (i.e., 4EBP and p70S6K) remained identical to that of TOR in all age groups.

  16. Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures

    PubMed Central

    Lijavetzky, Diego; Almagro, Lorena; Belchi-Navarro, Sarai; Martínez-Zapater, José M; Bru, Roque; Pedreño, Maria A

    2008-01-01

    Background Plant cell cultures have been shown as feasible systems for the production of secondary metabolites, being the elicitation with biotic or abiotic stimuli the most efficient strategy to increase the production of those metabolites. Vitaceae phytoalexins constitute a group of molecules belonging to the stilbene family which are derivatives of the trans-resveratrol structure and are produced by plants and cell cultures as a response to biotic and abiotic stresses. The potential benefits of resveratrol on human health have made it one of the most thoroughly studied phytochemical molecules. The aim of this study was to evaluate the elicitor effect of both cyclodextrin (CD) and methyljasmonate (MeJA) on grapevine cell cultures by carrying out a quantitative analysis of their role on resveratrol production and on the expression of stilbene biosynthetic genes in Vitis vinifera cv Monastrell albino cell suspension cultures. Findings MeJA and CD significantly but transiently induced the expression of stilbene biosynthetic genes when independently used to treat grapevine cells. This expression correlated with resveratrol production in CD-treated cells but not in MeJA-treated cells, which growth was drastically affected. In the combined treatment of CD and MeJA cell growth was similarly affected, however resveratrol production was almost one order of magnitude higher, in correlation with maximum expression values for stilbene biosynthetic genes. Conclusion The effect of MeJA on cell division combined with a true and strong elicitor like CD could be responsible for the observed synergistic effect of both compounds on resveratrol production and on the expression of genes in the stilbene pathway. PMID:19102745

  17. Magnetite (Fe3O4) nanocrystals affect the expression of genes involved in the TGF-beta signalling pathway.

    PubMed

    Khan, Jameel Ahmad; Mandal, Tarun Kumar; Das, Taposh Kumar; Singh, Yogendra; Pillai, Beena; Maiti, Souvik

    2011-05-01

    An understanding of interaction of nanomaterials with living systems is fundamental to address nanosafety issues, which, in turn will dictate the future prospects of nanomedicine. Herein, we examine the molecular effects of uptake of Magnetite (Fe(3)O(4)) Nanocrystals (MNC) using a transcriptomics approach. The uptake of MNC was studied by electron microscopy. This was followed by transcriptional profiling using whole genome microarrays, functional analysis of microarray data, real time PCR and biochemical assay for CASP9. Transcriptional profiling revealed 69 genes to be differentially expressed upon MNC treatment. Many of these genes are associated with TGF-beta signaling and include ID1, ID2, ID3, CASP9, SMAD6 and SMAD7, which are important negative regulators of signaling pathways involved in development and tumorigenesis. Moreover, upon treatment with MNC, expression of CASP9 was also found to decrease in a dose dependent manner. This approach could help us to identify specific effects of MNC upon cells and give us simultaneous clues about their biocompatibility and therapeutic potential. The MNC can specifically interfere with TGF-beta signaling by inhibiting the expression of ID and SMAD genes. As TGF-beta signaling invokes different responses in undifferentiated cells and adult tissues in a cell-type specific manner, our findings have far reaching implications in cellular development, differentiation and cancer.

  18. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana.

    PubMed

    Liu, Ting-Wu; Niu, Li; Fu, Bin; Chen, Juan; Wu, Fei-Hua; Chen, Juan; Wang, Wen-Hua; Hu, Wen-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2013-01-01

    Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.

  19. A microRNA derived from an apparent canonical biogenesis pathway regulates variant surface protein gene expression in Giardia lamblia

    PubMed Central

    Saraiya, Ashesh A.; Li, Wei; Wang, Ching C.

    2011-01-01

    We have previously shown that a snoRNA-derived microRNA, miR2, in Giardia lamblia potentially regulates the expression of 22 variant surface protein (VSP) genes. Here, we identified another miRNA, miR4, also capable of regulating the expression of several VSPs but derived from an unannotated open reading frame (ORF) rather than a snoRNA, suggesting a canonical miRNA biogenesis pathway in Giardia. miR4 represses expression of a reporter containing two miR4 antisense sequences at the 3′ UTR without causing a corresponding decrease in the mRNA level. This repression requires the presence of the Giardia Argonaute protein (GlAgo) and is reversed by 2′ O–methylated antisense oligo to miR4, suggesting an RNA-induced silencing complex (RISC)–mediated mechanism. Furthermore, in vivo and in vitro evidence suggested that the Giardia Dicer protein (GlDcr) is required for miR4 biogenesis. Coimmunoprecipitation of miR4 with GlAgo further verified miR4 as a miRNA. A total of 361 potential target sites for miR4 were bioinformatically identified in Giardia, out of which 69 (32.7%) were associated with VSP genes. miR4 reduces the expression of a reporter containing two copies of the target site from VSP (GL50803_36493) at the 3′ UTR. Sixteen of the 69 VSP genes were further found to contain partially overlapping miR2 and miR4 targeting sites. Expression of a reporter carrying the two overlapping sites was inhibited by either miR2 or miR4, but the inhibition was neither synergistic nor additive, suggesting a complex mechanism of miRNA regulation of VSP expression and the presence of a rich miRNAome in Giardia. PMID:22033329

  20. ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks

    PubMed Central

    Ho, Ritchie; Sances, Samuel; Gowing, Genevieve; Amoroso, Mackenzie Weygandt; O'Rourke, Jacqueline G.; Sahabian, Anais; Wichterle, Hynek; Baloh, Robert H.; Sareen, Dhruv

    2016-01-01

    Modeling Amyotrophic Lateral Sclerosis (ALS) with human induced pluripotent stem cells (iPSCs) aims to reenact embryogenesis, maturation, and aging of spinal motor neurons (spMNs) in vitro. As the maturity of spMNs grown in vitro compared to spMNs in vivo remains largely unaddressed, it is unclear to what extent this in vitro system captures critical aspects of spMN development and molecular signatures associated with ALS. Here, we compared transcriptomes among iPSC-derived spMNs, fetal, and adult spinal tissues. This approach produced a maturation scale revealing that iPSC-derived spMNs were more similar to fetal spinal tissue than to adult spMNs. Additionally, we resolved gene networks and pathways associated with spMN maturation and aging. These networks enriched for pathogenic familial ALS genetic variants and were disrupted in sporadic ALS spMNs. Altogether, our findings suggest that developing strategies to further mature and age iPSC-derived spMNs will provide more effective iPSC models of ALS pathology. PMID:27428653

  1. ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks.

    PubMed

    Ho, Ritchie; Sances, Samuel; Gowing, Genevieve; Amoroso, Mackenzie Weygandt; O'Rourke, Jacqueline G; Sahabian, Anais; Wichterle, Hynek; Baloh, Robert H; Sareen, Dhruv; Svendsen, Clive N

    2016-09-01

    Modeling amyotrophic lateral sclerosis (ALS) with human induced pluripotent stem cells (iPSCs) aims to reenact embryogenesis, maturation and aging of spinal motor neurons (spMNs) in vitro. As the maturity of spMNs grown in vitro compared to spMNs in vivo remains largely unaddressed, it is unclear to what extent this in vitro system captures critical aspects of spMN development and molecular signatures associated with ALS. Here, we compared transcriptomes among iPSC-derived spMNs, fetal spinal tissues and adult spinal tissues. This approach produced a maturation scale revealing that iPSC-derived spMNs were more similar to fetal spinal tissue than to adult spMNs. Additionally, we resolved gene networks and pathways associated with spMN maturation and aging. These networks enriched for pathogenic familial ALS genetic variants and were disrupted in sporadic ALS spMNs. Altogether, our findings suggest that developing strategies to further mature and age iPSC-derived spMNs will provide more effective iPSC models of ALS pathology.

  2. DHA Production in Escherichia coli by Expressing Reconstituted Key Genes of Polyketide Synthase Pathway from Marine Bacteria

    PubMed Central

    Xiao, Kang; Xu, Lin; Wang, Lian; Wan, Xia

    2016-01-01

    The gene encoding phosphopantetheinyl transferase (PPTase), pfaE, a component of the polyketide synthase (PKS) pathway, is crucial for the production of docosahexaenoic acid (DHA, 22:6ω3), along with the other pfa cluster members pfaA, pfaB, pfaC and pfaD. DHA was produced in Escherichia coli by co-expressing pfaABCD from DHA-producing Colwellia psychrerythraea 34H with one of four pfaE genes from bacteria producing arachidonic acid (ARA, 20:4ω6), eicosapentaenoic acid (EPA, 20:5ω3) or DHA, respectively. Substitution of the pfaE gene from different strain source in E. coli did not influence the function of the PKS pathway producing DHA, although they led to different DHA yields and fatty acid profiles. This result suggested that the pfaE gene could be switchable between these strains for the production of DHA. The DHA production by expressing the reconstituted PKS pathway was also investigated in different E. coli strains, at different temperatures, or with the treatment of cerulenin. The highest DHA production, 2.2 mg of DHA per gram of dry cell weight or 4.1% of total fatty acids, was obtained by co-expressing pfaE(EPA) from the EPA-producing strain Shewanella baltica with pfaABCD in DH5α. Incubation at low temperature (10–15°C) resulted in higher accumulation of DHA compared to higher temperatures. The addition of cerulenin to the medium increased the proportion of DHA and saturated fatty acids, including C12:0, C14:0 and C16:0, at the expense of monounsaturated fatty acids, including C16:1 and C18:1. Supplementation with 1 mg/L cerulenin resulted in the highest DHA yield of 2.4 mg/L upon co-expression of pfaE(DHA) from C. psychrerythraea. PMID:27649078

  3. Deciphering the gene expression profile of peroxisome proliferator-activated receptor signaling pathway in the left atria of patients with mitral regurgitation.

    PubMed

    Chen, Mien-Cheng; Chang, Jen-Ping; Lin, Yu-Sheng; Pan, Kuo-Li; Ho, Wan-Chun; Liu, Wen-Hao; Chang, Tzu-Hao; Huang, Yao-Kuang; Fang, Chih-Yuan; Chen, Chien-Jen

    2016-06-02

    Differentially expressed genes in the left atria of mitral regurgitation (MR) pigs have been linked to peroxisome proliferator-activated receptor (PPAR) signaling pathway in the KEGG pathway. However, specific genes of the PPAR signaling pathway in the left atria of MR patients have never been explored. This study enrolled 15 MR patients with heart failure, 7 patients with aortic valve disease and heart failure, and 6 normal controls. We used PCR assay (84 genes) for PPAR pathway and quantitative RT-PCR to study specific genes of the PPAR pathway in the left atria. Gene expression profiling analysis through PCR assay identified 23 genes to be differentially expressed in the left atria of MR patients compared to normal controls. The expressions of APOA1, ACADM, FABP3, ETFDH, ECH1, CPT1B, CPT2, SLC27A6, ACAA2, SMARCD3, SORBS1, EHHADH, SLC27A1, PPARGC1B, PPARA and CPT1A were significantly up-regulated, whereas the expression of PLTP was significantly down-regulated in the MR patients compared to normal controls. The expressions of HMGCS2, ACADM, FABP3, MLYCD, ECH1, ACAA2, EHHADH, CPT1A and PLTP were significantly up-regulated in the MR patients compared to patients with aortic valve disease. Notably, only ACADM, FABP3, ECH1, ACAA2, EHHADH, CPT1A and PLTP of the PPAR pathway were significantly differentially expressed in the MR patients compared to patients with aortic valve disease and normal controls. Differentially expressed genes of the PPAR pathway have been identified in the left atria of MR patients compared with patients with aortic valve disease and normal controls.

  4. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPARβ/δ in HepG2 cells.

    PubMed

    Luo, Guanghua; Shi, Yuanping; Zhang, Jun; Mu, Qinfeng; Qin, Li; Zheng, Lu; Feng, Yuehua; Berggren-Söderlund, Maria; Nilsson-Ehle, Peter; Zhang, Xiaoying; Xu, Ning

    2014-02-28

    It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPARβ/δ pathway.

  5. An automated RNA-Seq analysis pipeline to identify and visualize differentially expressed genes and pathways in CHO cells.

    PubMed

    Chen, Chun; Le, Huong; Goudar, Chetan T

    2015-01-01

    Recent advances in RNA-Seq based comparative transcriptomics have opened up a unique opportunity to understand the mechanisms of different phenotypes in bioprocessing-related cell lines including Chinese hamster ovary (CHO) cells. However, simple and powerful tools are needed to translate large data sets into biologically relevant information that can be leveraged for genetic engineering and cell culture medium and process development. While tools exist to perform specific tasks associated with transcriptomics analysis, integrated end to end solutions that span the entire spectrum of raw data processing to visualization of gene expression changes on canonical pathways are rare. Additionally, these are not automated and require substantial user intervention. To address this gap, we have developed an automated RNA-Seq analysis pipeline in R which leverages the latest public domain statistical advances in transcriptomics data analysis. This pipeline reads RNA-Seq gene count data, identifies differentially expressed genes and differentially expressed pathways, and provides multiple intuitive visualizations as outputs. By using two publicly available CHO RNA-Seq datasets, we have demonstrated the utility of this pipeline. Subsequently, this pipeline was used to demonstrate transcriptomic similarity between laboratory- and pilot-scale bioreactors, helping make a case for the suitability of the lab-scale bioreactor as a scaled-down model. Automated end to end RNA-Seq data analysis approaches such as the one presented in this study will shorten the time required from acquiring sequencing data to biological interpretation of the results and can help accelerate the adoption of RNA-Seq analysis and thus mechanism-driven approaches for cell line and bioprocess optimization. © 2015 American Institute of Chemical Engineers.

  6. Infection-Induced Retrotransposon-Derived Noncoding RNAs Enhance Herpesviral Gene Expression via the NF-κB Pathway

    PubMed Central

    Karijolich, John; Abernathy, Emma; Glaunsinger, Britt A.

    2015-01-01

    Short interspersed nuclear elements (SINEs) are highly abundant, RNA polymerase III-transcribed noncoding retrotransposons that are silenced in somatic cells but activated during certain stresses including viral infection. How these induced SINE RNAs impact the host-pathogen interaction is unknown. Here we reveal that during murine gammaherpesvirus 68 (MHV68) infection, rapidly induced SINE RNAs activate the antiviral NF-κB signaling pathway through both mitochondrial antiviral-signaling protein (MAVS)-dependent and independent mechanisms. However, SINE RNA-based signaling is hijacked by the virus to enhance viral gene expression and replication. B2 RNA expression stimulates IKKβ-dependent phosphorylation of the major viral lytic cycle transactivator protein RTA, thereby enhancing its activity and increasing progeny virion production. Collectively, these findings suggest that SINE RNAs participate in the innate pathogen response mechanism, but that herpesviruses have evolved to co-opt retrotransposon activation for viral benefit. PMID:26584434

  7. Subpathway-CorSP: Identification of metabolic subpathways via integrating expression correlations and topological features between metabolites and genes of interest within pathways

    PubMed Central

    Feng, Chenchen; Zhang, Jian; Li, Xuecang; Ai, Bo; Han, Junwei; Wang, Qiuyu; Wei, Taiming; Xu, Yong; Li, Meng; Li, Shang; Song, Chao; Li, Chunquan

    2016-01-01

    Metabolic pathway analysis is a popular strategy for comprehensively researching metabolites and genes of interest associated with specific diseases. However, the traditional pathway identification methods do not accurately consider the combined effect of these interesting molecules and neglects expression correlations or topological features embedded in the pathways. In this study, we propose a powerful method, Subpathway-CorSP, for identifying metabolic subpathway regions. This method improved on original pathway identification methods by using a subpathway identification strategy and emphasizing expression correlations between metabolites and genes of interest based on topological features within the metabolic pathways. We analyzed a prostate cancer data set and its metastatic sub-group data set with detailed comparison of Subpathway-CorSP with four traditional pathway identification methods. Subpathway-CorSP was able to identify multiple subpathway regions whose entire corresponding pathways were not detected by traditional pathway identification methods. Further evidences indicated that Subpathway-CorSP provided a robust and efficient way of reliably recalling cancer-related subpathways and locating novel subpathways by the combined effect of metabolites and genes. This was a novel subpathway strategy based on systematically considering expression correlations and topological features between metabolites and genes of interest within given pathways. PMID:27625019

  8. Sex-specific variation in signaling pathways and gene expression patterns in human leukocytes in response to endotoxin and exercise.

    PubMed

    Abbasi, Asghar; de Paula Vieira, Rodolfo; Bischof, Felix; Walter, Michael; Movassaghi, Masoud; Berchtold, Nicole C; Niess, Andreas M; Cotman, Carl W; Northoff, Hinnak

    2016-11-10

    While exercise effects on the immune system have received increasing attention in recent years, it remains unclear to what extent gender and fluctuations in sex hormones during menstrual cycle influence immunological responses to exercise. We investigated mRNA changes induced through exhaustive exercise (half-marathon; pre-exercise and post-exercise [30 min, 3 h, 24 h] on whole blood cultures ± lipopolysaccharide [LPS] [1 h]) with a specific focus on sex differences (men vs women in luteal phase) as an extension of our previous study. Inflammation related signaling pathways, TLRs, cytosolic DNA sensing and RIG-I like receptors were differentially activated between sexes in LPS-stimulated cultures. Genes differentially regulated between sexes included TNIP-1, TNIP-3, IL-6, HIVEP1, CXCL3, CCR3, IL-8, and CD69, revealing a bias towards less anti-inflammatory gene regulation in women compared to men. In addition, several genes relevant to brain function (KMO, DDIT4, VEGFA, IGF1R, IGF2R, and FGD4) showed differential activation between sexes. Some of these genes (e.g., KMO in women, DDIT4 in both sexes) potentially constitute neuroprotective mechanisms. These data reveal that the exercise-induced change in gene expression might be gender and menstrual cycle phase dependent.

  9. Expression of the lncRNA Maternally Expressed Gene 3 (MEG3) Contributes to the Control of Lung Cancer Cell Proliferation by the Rb Pathway

    PubMed Central

    Kruer, Traci L.; Dougherty, Susan M.; Reynolds, Lindsey; Long, Elizabeth; de Silva, Tanya; Lockwood, William W.; Clem, Brian F.

    2016-01-01

    Maternally expressed gene 3 (MEG3, mouse homolog Gtl2) encodes a long noncoding RNA (lncRNA) that is expressed in many normal tissues, but is suppressed in various cancer cell lines and tumors, suggesting it plays a functional role as a tumor suppressor. Hypermethylation has been shown to contribute to this loss of expression. We now demonstrate that MEG3 expression is regulated by the retinoblastoma protein (Rb) pathway and correlates with a change in cell proliferation. Microarray analysis of mouse embryonic fibroblasts (MEFs) isolated from mice with genetic deletion of all three Rb family members (TKO) revealed a significant silencing of Gtl2/MEG3 expression compared to WT MEFs, and re-expression of Gtl2/MEG3 caused decrease in cell proliferation and increased apoptosis. MEG3 levels also were suppressed in A549 lung cancer cells compared with normal human bronchial epithelial (NHBE) cells, and, similar to the TKO cells, re-constitution of MEG3 led to a decrease in cell proliferation and elevated apoptosis. Activation of pRb by treatment of A549 and SK-MES-1 cells with palbociclib, a CDK4/6 inhibitor, increased the expression of MEG3 in a dose-dependent manner, while knockdown of pRb/p107 attenuated this effect. In addition, expression of phosphorylation-deficient mutant of pRb increased MEG3 levels in both lung cancer cell types. Treatment of these cells with palbociclib also decreased the expression of pRb-regulated DNA methyltransferase 1 (DNMT1), while conversely, knockdown of DNMT1 resulted in increased expression of MEG3. As gene methylation has been suggested for MEG3 regulation, we found that palbociclib resulted in decreased methylation of the MEG3 locus similar to that observed with 5-aza-deoxycytidine. Anti-sense oligonucleotide silencing of drug-induced MEG3 expression in A549 and SK-MES-1 cells partially rescued the palbociclib-mediated decrease in cell proliferation, while analysis of the TCGA database revealed decreased MEG3 expression in human

  10. Expression of the lncRNA Maternally Expressed Gene 3 (MEG3) Contributes to the Control of Lung Cancer Cell Proliferation by the Rb Pathway.

    PubMed

    Kruer, Traci L; Dougherty, Susan M; Reynolds, Lindsey; Long, Elizabeth; de Silva, Tanya; Lockwood, William W; Clem, Brian F

    2016-01-01

    Maternally expressed gene 3 (MEG3, mouse homolog Gtl2) encodes a long noncoding RNA (lncRNA) that is expressed in many normal tissues, but is suppressed in various cancer cell lines and tumors, suggesting it plays a functional role as a tumor suppressor. Hypermethylation has been shown to contribute to this loss of expression. We now demonstrate that MEG3 expression is regulated by the retinoblastoma protein (Rb) pathway and correlates with a change in cell proliferation. Microarray analysis of mouse embryonic fibroblasts (MEFs) isolated from mice with genetic deletion of all three Rb family members (TKO) revealed a significant silencing of Gtl2/MEG3 expression compared to WT MEFs, and re-expression of Gtl2/MEG3 caused decrease in cell proliferation and increased apoptosis. MEG3 levels also were suppressed in A549 lung cancer cells compared with normal human bronchial epithelial (NHBE) cells, and, similar to the TKO cells, re-constitution of MEG3 led to a decrease in cell proliferation and elevated apoptosis. Activation of pRb by treatment of A549 and SK-MES-1 cells with palbociclib, a CDK4/6 inhibitor, increased the expression of MEG3 in a dose-dependent manner, while knockdown of pRb/p107 attenuated this effect. In addition, expression of phosphorylation-deficient mutant of pRb increased MEG3 levels in both lung cancer cell types. Treatment of these cells with palbociclib also decreased the expression of pRb-regulated DNA methyltransferase 1 (DNMT1), while conversely, knockdown of DNMT1 resulted in increased expression of MEG3. As gene methylation has been suggested for MEG3 regulation, we found that palbociclib resulted in decreased methylation of the MEG3 locus similar to that observed with 5-aza-deoxycytidine. Anti-sense oligonucleotide silencing of drug-induced MEG3 expression in A549 and SK-MES-1 cells partially rescued the palbociclib-mediated decrease in cell proliferation, while analysis of the TCGA database revealed decreased MEG3 expression in human

  11. Safety assessment considerations for food and feed derived from plants with genetic modifications that modulate endogenous gene expression and pathways.

    PubMed

    Kier, Larry D; Petrick, Jay S

    2008-08-01

    The current globally recognized comparative food and feed safety assessment paradigm for biotechnology-derived crops is a robust and comprehensive approach for evaluating the safety of both the inserted gene product and the resulting crop. Incorporating many basic concepts from food safety, toxicology, nutrition, molecular biology, and plant breeding, this approach has been used effectively by scientists and regulatory agencies for 10-15 years. Current and future challenges in agriculture include the need for improved yields, tolerance to biotic and abiotic stresses, and improved nutrition. The next generation of biotechnology-derived crops may utilize regulatory proteins, such as transcription factors that modulate gene expression and/or endogenous plant pathways. In this review, we discuss the applicability of the current safety assessment paradigm to biotechnology-derived crops developed using modifications involving regulatory proteins. The growing literature describing the molecular biology underlying plant domestication and conventional breeding demonstrates the naturally occurring genetic variation found in plants, including significant variation in the classes, expression, and activity of regulatory proteins. Specific examples of plant modifications involving insertion or altered expression of regulatory proteins are discussed as illustrative case studies supporting the conclusion that the current comparative safety assessment process is appropriate for these types of biotechnology-developed crops.

  12. Differentially expressed JAK-STAT signaling pathway genes and target microRNAs in the spleen of necrotic enteritis-afflicted chicken lines.

    PubMed

    Truong, Anh Duc; Rengaraj, Deivendran; Hong, Yeojin; Hoang, Cong Thanh; Hong, Yeong Ho; Lillehoj, Hyun S

    2017-05-13

    The JAK signal transducer and STAT signaling pathway is an important regulator of cell proliferation, differentiation, survival, motility, apoptosis, immune response, and development. In this study, we used RNA-Sequencing, qRT-PCR, and bioinformatics tools to investigate the differential expression of JAK-STAT pathway genes, their interactions, and regulators in the spleen of two genetically disparate chicken lines (Marek's disease-resistant line 6.3 and MD-susceptible line 7.2) induced necrotic enteritis (NE) disease by co-infection with Eimeria maxima and Clostridium perfringens. Using RNA-Seq analysis, we identified a total of 116 JAK-STAT pathway genes that were differentially expressed in the spleen of these chickens. All of the identified genes were analyzed through clustering, mapping to the KEGG chicken JAK-STAT pathway, and the Pathway Studio program. Of the 116 JAK-STAT pathway genes, 20 were further verified by qRT-PCR. According to the RNA-Seq results, several key genes, including STAT1-6, JAK1-3, TYK2, AKT1, AKT3, SOCS1-5, PIAS1, PIAS2, PIAS4, SHP1, SHP2, and PIK3, showed marked differential expression in the two lines, relative to their respective controls. Moreover, the RNA-Seq results of many key genes were highly correlated with the qRT-PCR results. Finally, we predicted 63 mature miRNAs that variably target JAK-STAT pathway genes and are differentially expressed in the spleen of chickens of both lines. To the best of our knowledge, this study is the first to analyze most of the genes, interactions, and regulators of the JAK-STAT pathway in the innate immune response to NE disease in chickens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Global gene expression and functional network analysis of gastric cancer identify extended pathway maps and GPRC5A as a potential biomarker.

    PubMed

    Cheng, Lei; Yang, Sheng; Yang, Yanqing; Zhang, Wen; Xiao, Huasheng; Gao, Hengjun; Deng, Xiaxing; Zhang, Qinghua

    2012-12-29

    To get more understanding of the molecular mechanisms underlying gastric cancer, 25 paired samples were applied to gene expression microarray analysis. Here, expression microarray, quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemical analysis indicated that GPRC5A was significantly elevated in gastric cancer tissues. The integrative network analysis of deregulated genes generated eight subnetworks. We also mapped copy number variations (CNVs) and associated mRNA expression changes into pathways and identified WNT, RTK-Ras-PI3K-AKT, NF-κB, and PLAU-JAK-STAT pathways involved in proliferation, evading apoptosis and sustained angiogenesis, respectively. Taken together, our results reveal several interesting genes including GPRC5A as potential biomarkers for gastric cancer, and highlight more systematical insight of deregulated genes in genetic pathways of gastric carcinogenesis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Gene expression profiles following exposure to a developmental neurotoxicant, Aroclor 1254: Pathway analysis for possible mode(s) of action

    SciTech Connect

    Royland, Joyce E.; Kodavanti, Prasada Rao S.

    2008-09-01

    Epidemiological studies indicate that low levels of polychlorinated biphenyl (PCB) exposure can adversely affect neurocognitive development. In animal models, perturbations in calcium signaling, neurotransmitters, and thyroid hormones have been postulated as potential mechanisms for PCB-induced developmental neurotoxicity. In order to understand the role of these proposed mechanisms and to identify other mechanisms in PCB-induced neurotoxicity, we have chosen a global approach utilizing oligonucleotide microarrays to examine gene expression profiles in the brain following developmental exposure to Aroclor 1254 (0 or 6 mg/kg/day from gestation day 6 through postnatal day (PND) 21) in Long-Evans rats. Gene expression levels in the cerebellum and hippocampus from PNDs 7 and 14 animals were determined on Affymetrix rat 230A{sub 2}.0 chips. In the cerebellum, 87 transcripts were altered at PND7 compared to 27 transcripts at PND14 by Aroclor 1254 exposure, with only one transcript affected at both ages. In hippocampus, 175 transcripts and 50 transcripts were altered at PND7 and PND14, respectively, by Aroclor 1254 exposure with five genes commonly affected. Functional analysis suggests that pathways related to calcium homeostasis (Gng3, Ryr2, Trdn, Cacna1a), intracellular signaling (Camk2d, Stk17b, Pacsin2, Ryr2, Trio, Fert2, Ptk2b), axonal guidance (Lum, Mxd3, Akap11, Gucy1b3), aryl hydrocarbon receptor signaling (Nfia, Col1a2), and transcripts involved in cell proliferation (Gspt2, Cdkn1c, Ptk2b) and differentiation (Ifitm31, Hpca, Zfp260, Igsf4a, Hes5) leading to the development of nervous system were significantly altered by Aroclor 1254 exposure. Of the two brain regions examined, Aroclor 1254-induced genomic changes were greater in the hippocampus than the cerebellum. The genomic data suggests that PCB-induced neurotoxic effects were due to disruption of normal ontogenetic pattern of nervous system growth and development by altering intracellular signaling pathways

  15. Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study

    PubMed Central

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Frank, Mark Barton; Bebak, Melissa; Ding, Xi-Qin

    2013-01-01

    The cone photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Mutations in the channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophy. We investigated the gene expression profiles in mouse retina with CNG channel deficiency using whole genome expression microarrays. As cones comprise only 2 to 3% of the total photoreceptor population in the wild-type mouse retina, the mouse lines with CNG channel deficiency on a cone-dominant background, i.e. Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− mice, were used in our study. Comparative data analysis revealed a total of 105 genes altered in Cnga3−/−/Nrl−/− and 92 in Cngb3−/−/Nrl−/− retinas, relative to Nrl−/− retinas, with 27 genes changed in both genotypes. The differentially expressed genes primarily encode proteins associated with cell signaling, cellular function maintenance and gene expression. Ingenuity pathway analysis (IPA) identified 26 and 9 canonical pathways in Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− retinas, respectively, with 6 pathways being shared. The shared pathways include phototransduction, cAMP/PKA-mediated signaling, endothelin signaling, and EIF2/endoplasmic reticulum (ER) stress, whereas the IL-1, CREB, and purine metabolism signaling were found to specifically associate with Cnga3 deficiency. Thus, CNG channel deficiency differentially regulates genes that affect cell processes such as phototransduction, cellular survival and gene expression, and such regulations play a crucial role(s) in the retinal adaptation to impaired cone phototransduction. Though lack of Cnga3 and Cngb3 shares many common pathways, deficiency of Cnga3 causes more significant alterations in gene expression. This work provides insights into how cones respond to impaired phototransduction at the gene expression levels. PMID:23740940

  16. Effects of hydrogen sulfide on alternative pathway respiration and induction of alternative oxidase gene expression in rice suspension cells.

    PubMed

    Xiao, Man; Ma, Jun; Li, Hongyu; Jin, Han; Feng, Hanqing

    2010-01-01

    The toxic effects of H2S on plants are well documented. However, the molecular mechanisms reponsible for inhibition of plants by H2S are still not completely understood. We determined the effects of NaHS in the range of 0.5-10 mM on the growth of rice suspension culture cells, as well as on the expression of the alternative oxidase (AOX) gene. AOX is the terminal oxidase of the alternative pathway (AP) and exists in plant mitochondria. The results showed that H2S treatment enhanced the AP activity. During the process of H2S treatment for 4 h, the AP activity increased dramatically and achieved the peak value at a concentration of 2 mM NaHS. Then it declined at higher concentrations of NaHS (5-10 mM) and maintained a steady level. The AOX1 gene transcript level also showed a similar change as the AP activity. Interestingly, different NaHS concentrations seemed to have different effects on the expression of AOX1a, AOX1b, and AOX1c. The induction of AOX expression by low concentrations of NaHS was inferred through a reactive oxygen species (ROS)-independent pathway. At the same time, rice cells grown in culture were very sensitive to H2S, different H2S concentrations induced an increase in the cell viability. These results indicate that the H2S-induced AOX induction might play a role in inhibiting the ROS production and have an influence on cell viability.

  17. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline.

    PubMed

    Chen, Yunshun; Lun, Aaron T L; Smyth, Gordon K

    2016-01-01

    In recent years, RNA sequencing (RNA-seq) has become a very widely used technology for profiling gene expression. One of the most common aims of RNA-seq profiling is to identify genes or molecular pathways that are differentially expressed (DE) between two or more biological conditions. This article demonstrates a computational workflow for the detection of DE genes and pathways from RNA-seq data by providing a complete analysis of an RNA-seq experiment profiling epithelial cell subsets in the mouse mammary gland. The workflow uses R software packages from the open-source Bioconductor project and covers all steps of the analysis pipeline, including alignment of read sequences, data exploration, differential expression analysis, visualization and pathway analysis. Read alignment and count quantification is conducted using the Rsubread package and the statistical analyses are performed using the edgeR package. The differential expression analysis uses the quasi-likelihood functionality of edgeR.

  18. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline

    PubMed Central

    Chen, Yunshun; Lun, Aaron T. L.; Smyth, Gordon K.

    2016-01-01

    In recent years, RNA sequencing (RNA-seq) has become a very widely used technology for profiling gene expression. One of the most common aims of RNA-seq profiling is to identify genes or molecular pathways that are differentially expressed (DE) between two or more biological conditions. This article demonstrates a computational workflow for the detection of DE genes and pathways from RNA-seq data by providing a complete analysis of an RNA-seq experiment profiling epithelial cell subsets in the mouse mammary gland. The workflow uses R software packages from the open-source Bioconductor project and covers all steps of the analysis pipeline, including alignment of read sequences, data exploration, differential expression analysis, visualization and pathway analysis. Read alignment and count quantification is conducted using the Rsubread package and the statistical analyses are performed using the edgeR package. The differential expression analysis uses the quasi-likelihood functionality of edgeR. PMID:27508061

  19. A network approach of gene co-expression in the zea mays/Aspergillus flavus pathosystem to map host/pathogen interaction pathways

    USDA-ARS?s Scientific Manuscript database

    A gene co-expression network was generated using a dual RNA-seq study with the fungal pathogen A. flavus and its plant host Z. mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network reveal...

  20. [Regulations of berberine on gene expression of BMP4 transcriptional pathways to improve visceral white adipose tissues insulin resistance in type 2 diabetic hamsters].

    PubMed

    Li, Guo-Sheng; Liu, Xu-Han; Li, Xin-Yu; Gao, Zheng-Nan; Huang, Lan; Liu, Ya-Li

    2016-02-01

    To study the effects of berberine on the gene mRNA expressions of BMP4 transcriptional pathways and brown/white adipose tissue conversion transcriptional pathways in visceral white adipose tissues(VWAT) in type 2 diabetic hamsters and explore the relevant mechanisms. The obese insulin-resistant hamster model were induced by using high-fat diet, and then the type 2 diabetic hamster model was created through injection with low-dose streptozotocin in the obese insulin-resistant hamster model. After the modeling, the hamsters were randomly divided into normal control, obese insulin-resistant, type 2 diabetic and berberine-treated diabetic groups. After the nine-week treatment, real-time quantitative PCR was used to measure the changes in gene mRNA expressions of VWAT BMP4 transcriptional pathways, brown/white adipose tissue conversion transcriptional pathways and their target genes in different groups. The results showed that the gene mRNA expressions of BMP4, BMPRⅡ, BMPRlA, Smad1, Smad5, Smad8, p38/MAPK, ATF2, PRDM16, C/EBPβ, PGC1α, PPARγ and brown adipose tissue-specific genes was decreased and that of Smad6, Smurf1 and white adipose tissue-specific genes was increased in VWAT of model hamsters. Treatment with berberine regulated BMP4 transcriptional pathways and brown adipose tissue transcriptional pathways and induced the gene mRNA expression of brown adipose tissue-specific genes in VWAT to develop browning gene phenotype of white adipose tissues, and then improved fat-induced insulin resistance. These findings indicated that BMP4 transcriptional pathways involved in the formation of fat-induced visceral white adipose tissues insulin resistance (FIVWATIR) and the browning molecular mechanism of white adipose tissues induced by berberine. Copyright© by the Chinese Pharmaceutical Association.

  1. Pathways analysis of differential gene expression induced by engrafting doses of total body irradiation for allogeneic bone marrow transplantation in mice.

    PubMed

    Chen, Xinjian; Wang, Yuanyuan; Li, Qiuxia; Tsai, Schickwann; Thomas, Alun; Shizuru, Judith A; Cao, Thai M

    2013-08-01

    A major challenge in allogeneic bone marrow (BM) transplantation is overcoming engraftment resistance to avoid the clinical problem of graft rejection. Identifying gene pathways that regulate BM engraftment may reveal molecular targets for overcoming engraftment barriers. Previously, we developed a mouse model of BM transplantation that utilizes recipient conditioning with non-myeloablative total body irradiation (TBI). We defined TBI doses that lead to graft rejection, that conversely are permissive for engraftment, and mouse strain variation with regards to the permissive TBI dose. We now report gene expression analysis, using Agilent Mouse 8x60K microarrays, in spleens of mice conditioned with varied TBI doses for correlation to the expected engraftment phenotype. The spleens of mice given engrafting doses of TBI, compared with non-engrafting TBI doses, demonstrated substantially broader gene expression changes, significant at the multiple testing-corrected P <0.05 level and with fold change ≥2. Functional analysis revealed significant enrichment for a down-regulated canonical pathway involving B-cell development. Genes enriched in this pathway suggest that suppressing donor antigen processing and presentation may be pivotal effects conferred by TBI to enable engraftment. Regardless of TBI dose and recipient mouse strain, pervasive genomic changes related to inflammation was observed and reflected by significant enrichment for canonical pathways and association with upstream regulators. These gene expression changes suggest that macrophage and complement pathways may be targeted to overcome engraftment barriers. These exploratory results highlight gene pathways that may be important in mediating BM engraftment resistance.

  2. Transcriptome profiling of gene expression during immunisation trial against Fasciola hepatica: identification of genes and pathways involved in conferring immunoprotection in a murine model.

    PubMed

    Rojas-Caraballo, Jose; López-Abán, Julio; Moreno-Pérez, Darwin Andrés; Vicente, Belén; Fernández-Soto, Pedro; Del Olmo, Esther; Patarroyo, Manuel Alfonso; Muro, Antonio

    2017-01-23

    Fasciolosis remains a significant food-borne trematode disease causing high morbidity around the world and affecting grazing animals and humans. A deeper understanding concerning the molecular mechanisms by which Fasciola hepatica infection occurs, as well as the molecular basis involved in acquiring protection is extremely important when designing and selecting new vaccine candidates. The present study provides a first report of microarray-based technology for describing changes in the splenic gene expression profile for mice immunised with a highly effective, protection-inducing, multi-epitope, subunit-based, chemically-synthesised vaccine candidate against F. hepatica. The mice were immunised with synthetic peptides containing B- and T-cell epitopes, which are derived from F. hepatica cathepsin B and amoebapore proteins, as novel vaccine candidates against F. hepatica formulated in an adjuvant adaptation vaccination system; they were experimentally challenged with F. hepatica metacercariae. Spleen RNA from mice immunised with the highest protection-inducing synthetic peptides was isolated, amplified and labelled using Affymetrix standardised protocols. Data was then background corrected, normalised and the expression signal was calculated. The Ingenuity Pathway Analysis tool was then used for analysing differentially expressed gene identifiers for annotating bio-functions and constructing and visualising molecular interaction networks. Mice immunised with a combination of three peptides containing T-cell epitopes induced high protection against experimental challenge according to survival rates and hepatic damage scores. It also induced differential expression of 820 genes, 168 genes being up-regulated and 652 genes being down-regulated, p value <0.05, fold change ranging from -2.944 to 7.632. A functional study of these genes revealed changes in the pathways related to nitric oxide and reactive oxygen species production, Interleukin-12 signalling and production

  3. Gene expression profiling in treatment-naive schizophrenia patients identifies abnormalities in biological pathways involving AKT1 that are corrected by antipsychotic medication.

    PubMed

    Kumarasinghe, Nishantha; Beveridge, Natalie J; Gardiner, Erin; Scott, Rodney J; Yasawardene, Surangi; Perera, Antoinette; Mendis, Jayan; Suriyakumara, Kanishka; Schall, Ulrich; Tooney, Paul A

    2013-08-01

    Distinct gene expression profiles can be detected in peripheral blood mononuclear cells (PBMCs) in patients with schizophrenia; however, little is known about the effects of antipsychotic medication. This study compared gene expression profiles in PMBCs from treatment-naive patients with schizophrenia before and after antipsychotic drug treatment. PBMCs were obtained from 10 treatment-naive schizophrenia patients before and 6 wk after initiating antipsychotic drug treatment and compared to PMBCs collected from 11 healthy community volunteers. Genome-wide expression profiling was conducted using Illumina HumanHT-12 expression bead arrays and analysed using significance analysis of microarrays. This analysis identified 624 genes with altered expression (208 up-regulated, 416 down-regulated) prior to antipsychotic treatment (p < 0.05) including schizophrenia-associated genes AKT1, DISC1 and DGCR6. After 6-8 wk treatment of patients with risperidone or risperidone in combination with haloperidol, only 106 genes were altered, suggesting that the treatment corrected the expression of a large proportion of genes back to control levels. However, 67 genes continued to show the same directional change in expression after treatment. Ingenuity® pathway analysis and gene set enrichment analysis implicated dysregulation of biological functions and pathways related to inflammation and immunity in patients with schizophrenia. A number of the top canonical pathways dysregulated in treatment-naive patients signal through AKT1 that was up-regulated. After treatment, AKT1 returned to control levels and less dysregulation of these canonical pathways was observed. This study supports immune dysfunction and pathways involving AKT1 in the aetiopathophysiology of schizophrenia and their response to antipsychotic medication.

  4. Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway.

    PubMed

    Tossi, Vanesa; Amenta, Melina; Lamattina, Lorenzo; Cassia, Raúl

    2011-06-01

    The link between ultraviolet (UV)-B, nitric oxide (NO) and phenylpropanoid biosynthetic pathway (PPBP) was studied in maize and Arabidopsis. The transcription factor (TF) ZmP regulates PPBP in maize. A genetic approach using P-rr (ZmP+) and P-ww (ZmP⁻) maize lines demonstrate that: (1) NO protects P-rr leaves but not P-ww from UV-B-induced reactive oxygen species (ROS) and cell damage; (2) NO increases flavonoid and anthocyanin content and prevents chlorophyll loss in P-rr but not in P-ww and (3) the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) blocks the UV-B-induced expression of ZmP and their targets CHS and CHI suggesting that NO plays a key role in the UV-B-regulated PPBP. Involvement of endogenous NO was studied in Arabidopsis nitric oxide dioxygenase (NOD) plants that express a NO dioxygenase gene under the control of a dexamethasone (DEX)-inducible promoter. Expression of HY5 and MYB12, TFs involved in PPBP regulation, was induced by UV-B, reduced by DEX in NOD plants and recovered by subsequent NO treatment. C4H regulates synapate esters synthesis and is UV-B-induced in a NO-independent pathway. Data indicate that UV-B perception increases NO concentration, which protects plant against UV-B by two ways: (1) scavenging ROS; and (2) up-regulating the expression of HY5, MYB12 and ZmP, resulting in the PPBP activation.

  5. Identification of novel molecules and pathogenic pathways in primary biliary cirrhosis: cDNA array analysis of intrahepatic differential gene expression

    PubMed Central

    Shackel, N; McGuinness, P; Abbott, C; Gorrell, M; McCaughan, G

    2001-01-01

    BACKGROUND—Primary biliary cirrhosis (PBC) is an autoimmune disease in which the pathogenesis of progressive liver injury is poorly understood.
AIM—To provide novel insights into the pathogenesis of PBC related liver injury using cDNA array analysis, which simultaneously examines expression of many genes.
METHODS—Utilising cDNA arrays of 874 genes, PBC was compared with primary sclerosing cholangitis (PSC) associated cirrhosis and non-diseased liver. Differential expression of 10 genes was confirmed by real time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR).
RESULTS—Array analysis identified many differentially expressed genes that are important in inflammation, fibrosis, proliferation, signalling, apoptosis, and oxidative stress. PBC was associated with increased expression of both Th1 and Th2 type molecules of the immune response. Fibrosis related gene expression featured upregulation of connective tissue growth factor and transforming growth factor beta3. Many more apoptosis associated molecules exhibited increased expression, consistent with apoptosis being a more active and regulated process, in PSC associated cirrhosis than in PBC. Increased expression of many genes of the Wnt and notch pathways implicated these highly conserved and linked pathways in PBC pathogenesis. The observed increases in expression of c-jun, c-myc, and c-fos related antigen 1 are consistent with increased Wnt pathway activity in PBC. Differential expression of four components of the Wnt pathway, Wnt-5a, Wnt-13, FRITZ, and beta-catenin, was confirmed by quantitative RT-PCR.
CONCLUSION—Many genes implicated in intrahepatic inflammation, fibrosis, and regeneration were upregulated in PBC cirrhosis. In particular, increased expression of a number of Drosophila homologues was seen in PBC.


Keywords: primary sclerosing cholangitis; apoptosis; fibrosis; connective tissue growth factor; Wnt; Th1/Th2; brain derived neurotrophic factor; notch

  6. Polyphenols and the modulation of gene expression pathways: can we eat our way out of the danger of chronic disease?

    PubMed

    Joven, Jorge; Micol, Vicente; Segura-Carretero, Antonio; Alonso-Villaverde, Carlos; Menéndez, Javier A

    2014-01-01

    Plant-derived dietary polyphenols may improve some disease states and promote health. Experimental evidence suggests that this is partially attributable to changes in gene expression. The rational use of bioactive food components may therefore present an opportunity to activate or repress selected gene expression pathways and, consequently, to manage or prevent disease. It remains to be determined whether this use of bioactive food components can be done safely. This article reviews the associated controversies and limitations of polyphenol therapy. There is a paucity of clinical data on the rational use of polyphenols, including a lack of knowledge on effective dosage, actual chemical formulations, bioavailability, distribution in tissues, the effect of genetic variations, differences in gut microflora, the synergistic (or antagonistic) effects observed in extracts, and the possible interaction between polyphenols and lipid domains of cell membranes that may alter the function of relevant receptors. The seminal question of why plants make substances that benefit humans remains unanswered, and there is still much to learn in terms of correlative versus causal effects of human exposure to various nutrients. The available data strongly suggest significant effects at the molecular level that represent interactions with the epigenome. The advent of relatively simple technologies is helping the field of epigenetics progress and facilitating the acquisition of multiple types of data that were previously difficult to obtain. In this review, we summarize the molecular basis of the epigenetic regulation of gene expression and the epigenetic changes associated with the consumption of polyphenols that illustrate how modifications in human nutrition may become relevant to health and disease.

  7. Are diverse signalling pathways integrated in the regulation of arabidopsis antioxidant defence gene expression in response to excess excitation energy?

    PubMed Central

    Mullineaux, P; Ball, L; Escobar, C; Karpinska, B; Creissen, G; Karpinski, S

    2000-01-01

    When low-light-grown Arabidopsis rosettes are partially exposed to excess light (EL), the unexposed leaves become acclimated to excess excitation energy (EEE) and consequent photo-oxidative stress. This phenomenon, termed systemic acquired acclimation (SAA), is associated with redox changes in the proximity of photosystem II, changes in foliar H2O2 content and induction of antioxidant defences. The induction of extra-plastidial antioxidant systems is important in the protection of the chloroplast under EL conditions. A larger range of transcripts encoding different antioxidant defence enzymes may be induced in the systemically acclimated leaves and these include those encoded by the glutathione peroxidase (GPX2) and glutathione-S-transferase (GST) genes, which are also highly induced in the hypersensitive response and associated systemic acquired resistance (SAR) in incompatible plant-pathogen interactions. Furthermore, the expression of the SAR-inducible pathogenesis-related protein gene, PR2, is enhanced in SAA leaves. Wounded leaf tissue also shows enhanced systemic induction of a cytosolic ascorbate peroxidase gene (APX2) under EL conditions. These and other considerations, suggest H2O2 and other reactive oxygen species (ROS) could be the common factor in signalling pathways for diverse environmental stresses. These effects may be mediated by changes in the level and redox state of the cellular glutathione pool. Mutants with constitutive expression of a normally EL-inducible APX2 gene have much reduced levels of foliar glutathione. The expression of APX1 and APX3, encoding cytosolic and peroxisome-associated isoforms, respectively, are also under phytochrome-A-mediated control. The expression of these genes is tightly linked to the greening of plastids in etiolated seedlings. These data suggest that part of the developmental processes that bring about the acclimation of leaves to high light includes the configuration of antioxidant defences. Therefore, the

  8. Oxidative stress inhibits IFN-alpha-induced antiviral gene expression by blocking the JAK-STAT pathway.

    PubMed

    Di Bona, Danilo; Cippitelli, Marco; Fionda, Cinzia; Cammà, Calogero; Licata, Anna; Santoni, Angela; Craxì, Antonio

    2006-08-01

    Unresponsiveness to IFN-alpha is common in chronic hepatitis C. Since conditions associated with an increased oxidative stress (advanced age, steatosis, fibrosis, iron overload, and alcohol consumption) reduce the likelihood of response, we hypothesized that oxidative stress may affect the antiviral actions of IFN-alpha. We examined in a human hepatocellular carcinoma cell line (Huh-7) the effect of hydrogen peroxide (H2O2), as a generator of oxidative stress, on the IFN-alpha signaling pathway. Pretreatment of Huh-7 cells with 0.5-1 mM H2O2 resulted in the suppression of the IFN-alpha-induced antiviral protein MxA and of IRF-9 mRNA expression. The reduced expression of these genes was associated to H2O2 -mediated suppression of the IFN-alpha-induced assembly of signal transducer and activator of transcription (STAT) factors to specific promoter motifs on IFN-alpha-inducible genes. This was accomplished by preventing the IFN-alpha-induced tyrosine phosphorylation of STAT-1 and STAT-2 through the inactivation of the upstream receptor associated tyrosine kinases, JAK-1 and Tyk-2. The suppression was fast, occurring within 5mins of pretreatment with H2O2, and did not require protein synthesis. In conclusion, oxidative stress impairs IFN-alpha signaling and might cause resistance to the antiviral action of IFN-alpha in chronically HCV infected patients with high level of oxidative stress in the liver.

  9. Genome-wide gene expression profiling reveals aberrant MAPK and Wnt signaling pathways associated with early parthenogenesis.

    PubMed

    Liu, Na; Enkemann, Steven A; Liang, Ping; Hersmus, Remko; Zanazzi, Claudia; Huang, Junjiu; Wu, Chao; Chen, Zhisheng; Looijenga, Leendert H J; Keefe, David L; Liu, Lin

    2010-12-01

    Mammalian parthenogenesis could not survive but aborted during mid-gestation, presumably because of lack of paternal gene expression. To understand the molecular mechanisms underlying the failure of parthenogenesis at early stages of development, we performed global gene expression profiling and functional analysis of parthenogenetic blastocysts in comparison with those of blastocysts from normally fertilized embryos. Parthenogenetic blastocysts exhibited changes in the expression of 749 genes, of which 214 had lower expression and 535 showed higher expressions than fertilized embryos using a minimal 1.8-fold change as a cutoff. Genes important for placenta development were decreased in their expression in parthenote blastocysts. Some maternally expressed genes were up-regulated and paternal-related genes were down-regulated. Moreover, aberrantly increased Wnt signaling and reduced mitogen-activated protein kinase (MAPK) signaling were associated with early parthenogenesis. The protein level of extracellular signal-regulated kinase 2 (ERK2) was low in parthenogenetic blastocysts compared with that of fertilized blastocysts 120 h after fertilization. 6-Bromoindirubin-3'-oxime, a specific glycogen synthase kinase-3 (GSK-3) inhibitor, significantly decreased embryo hatching. The expression of several imprinted genes was altered in parthenote blastocysts. Gene expression also linked reduced expression of Xist to activation of X chromosome. Our findings suggest that failed X inactivation, aberrant imprinting, decreased ERK/MAPK signaling and possibly elevated Wnt signaling, and reduced expression of genes for placental development collectively may contribute to abnormal placenta formation and failed fetal development in parthenogenetic embryos.

  10. The sequence diversity and expression among genes of the folic acid biosynthesis pathway in industrial Saccharomyces strains.

    PubMed

    Goncerzewicz, Anna; Misiewicz, Anna

    2015-01-01

    Folic acid is an important vitamin in human nutrition and its deficiency in pregnant women's diets results in neural tube defects and other neurological damage to the fetus. Additionally, DNA synthesis, cell division and intestinal absorption are inhibited in case of adults. Since this discovery, governments and health organizations worldwide have made recommendations concerning folic acid supplementation of food for women planning to become pregnant. In many countries this has led to the introduction of fortifications, where synthetic folic acid is added to flour. It is known that Saccharomyces strains (brewing and bakers' yeast) are one of the main producers of folic acid and they can be used as a natural source of this vitamin. Proper selection of the most efficient strains may enhance the folate content in bread, fermented vegetables, dairy products and beer by 100% and may be used in the food industry. The objective of this study was to select the optimal producing yeast strain by determining the differences in nucleotide sequences in the FOL2, FOL3 and DFR1 genes of folic acid biosynthesis pathway. The Multitemperature Single Strand Conformation Polymorphism (MSSCP) method and further nucleotide sequencing for selected strains were applied to indicate SNPs in selected gene fragments. The RT qPCR technique was also applied to examine relative expression of the FOL3 gene. Furthermore, this is the first time ever that industrial yeast strains were analysed regarding genes of the folic acid biosynthesis pathway. It was observed that a correlation exists between the folic acid amount produced by industrial yeast strains and changes in the nucleotide sequence of adequate genes. The most significant changes occur in the DFR1 gene, mostly in the first part, which causes major protein structure modifications in KKP 232, KKP 222 and KKP 277 strains. Our study shows that the large amount of SNP contributes to impairment of the selected enzymes and S. cerevisiae and S

  11. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways

    SciTech Connect

    Yu Xiaozhong Robinson, Joshua F.; Gribble, Elizabeth; Hong, Sung Woo; Sidhu, Jaspreet S.; Faustman, Elaine M.

    2008-12-15

    Arsenic (As) is a well-known environmental toxicant and carcinogen as well as an effective chemotherapeutic agent. The underlying mechanism of this dual capability, however, is not fully understood. Tumor suppressor gene p53, a pivotal cell cycle checkpoint signaling protein, has been hypothesized to play a possible role in mediating As-induced toxicity and therapeutic efficiency. In this study, we found that arsenite (As{sup 3+}) induced apoptosis and cell cycle arrest in a dose-dependent manner in both p53{sup +/+} and p53{sup -/-} mouse embryonic fibroblasts (MEFs). There was, however, a distinction between genotypes in the apoptotic response, with a more prominent induction of caspase-3 in the p53{sup -/-} cells than in the p53{sup +/+} cells. To examine this difference further, a systems-based genomic analysis was conducted comparing the critical molecular mechanisms between the p53 genotypes in response to As{sup 3+}. A significant alteration in the Nrf2-mediated oxidative stress response pathway was found in both genotypes. In p53{sup +/+} MEFs, As{sup 3+} induced p53-dependent gene expression alterations in DNA damage and cell cycle regulation genes. However, in the p53{sup -/-} MEFs, As{sup 3+} induced a significant up-regulation of pro-apoptotic genes (Noxa) and down-regulation of genes in immune modulation. Our findings demonstrate that As-induced cell death occurs through a p53-independent pathway in p53 deficient cells while apoptosis induction occurs through p53-dependent pathway in normal tissue. This difference in the mechanism of apoptotic responses between the genotypes provides important information regarding the apparent dichotomy of arsenic's dual mechanisms, and potentially leads to further advancement of its utility as a chemotherapeutic agent.

  12. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.

  13. Increased nitrous oxide accumulation by bioelectrochemical denitrification under autotrophic conditions: kinetics and expression of denitrification pathway genes.

    PubMed

    Van Doan, Tuan; Lee, Tae Kwon; Shukla, Sudheer Kumar; Tiedje, James M; Park, Joonhong

    2013-12-01

    Under autotrophic conditions, we investigated the effects of different current densities on bioelectrochemical denitrification (BED). In this study, nitrate consumption and nitrous oxide (N2O) production, microbial diversity and population dynamics, and denitrification pathway gene expressions were explored in continuous flow BED reactors at different current densities (0.2, 1, 5, 10 and 20 A/m(2)). We found that, under the autotrophic conditions, N2O accumulation was increased with increase in current density. The maximum rate of denitrification was 1.65 NO3(-)-N (g/NCCm(3).h), and approximately 70% of the reduced N was accumulated as N2O. After each current density was applied, pyrosequencing of the expressed 16S rRNA genes amplified from the cathodic biofilms revealed that that 16 genera were active and in common at all currents, and that eight of those showed a statistically significant correlation with particular current densities. The relative expression of napA and narG was highest, whereas nosZ was low relative to its level in the inoculum suggesting that this could have contributed the high N2O accumulation. Kinetic analysis of nitrate reduction and N2O accumulation followed Michaelis-Menten kinetics. The Vmax for nitrate consumption and N2O accumulation were similar, however the Km values determined as A/m(2) were not. This study provides better understanding of the community and kinetics of a current-fed, autotrophic, cathodic biofilm for evaluating its potential for scale-up and for N2O recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Carbohydrate Stress Affecting Fruitlet Abscission and Expression of Genes Related to Auxin Signal Transduction Pathway in Litchi

    PubMed Central

    Kuang, Jian-Fei; Wu, Jian-Yang; Zhong, Hai-Ying; Li, Cai-Qin; Chen, Jian-Ye; Lu, Wang-Jin; Li, Jian-Guo

    2012-01-01

    Auxin, a vital plant hormone, regulates a variety of physiological and developmental processes. It is involved in fruit abscission through transcriptional regulation of many auxin-related genes, including early auxin responsive genes (i.e., auxin/indole-3-acetic acid (AUX/IAA), Gretchen Hagen3 (GH3) and small auxin upregulated (SAUR)) and auxin response factors (ARF), which have been well characterized in many plants. In this study, totally five auxin-related genes, including one AUX/IAA (LcAUX/IAA1), one GH3 (LcGH3.1), one SAUR (LcSAUR1) and two ARFs (LcARF1 and LcARF2), were isolated and characterized from litchi fruit. LcAUX/IAA1, LcGH3.1, LcSAUR1, LcARF1 and LcARF2 contain open reading frames (ORFs) encoding polypeptides of 203, 613, 142, 792 and 832 amino acids, respectively, with their corresponding molecular weights of 22.67, 69.20, 11.40, 88.20 and 93.16 kDa. Expression of these genes was investigated under the treatment of girdling plus defoliation which aggravated litchi fruitlet abscission due to the blockage of carbohydrates transport and the reduction of endogenous IAA content. Results showed that transcript levels of LcAUX/IAA1, LcGH3.1 and LcSAUR1 mRNAs were increased after the treatment in abscission zone (AZ) and other tissues, in contrast to the decreasing accumulation of LcARF1 mRNA, suggesting that LcAUX/IAA1, LcSAUR1 and LcARF1 may play more important roles in abscission. Our results provide new insight into the process of fruitlet abscission induced by carbohydrate stress and broaden our understanding of the auxin signal transduction pathway in this process at the molecular level. PMID:23443112

  15. Research resource: interactome of human embryo implantation: identification of gene expression pathways, regulation, and integrated regulatory networks.

    PubMed

    Altmäe, Signe; Reimand, Jüri; Hovatta, Outi; Zhang, Pu; Kere, Juha; Laisk, Triin; Saare, Merli; Peters, Maire; Vilo, Jaak; Stavreus-Evers, Anneli; Salumets, Andres

    2012-01-01

    A prerequisite for successful embryo implantation is adequate preparation of receptive endometrium and the establishment and maintenance of a viable embryo. The success of implantation further relies upon a two-way dialogue between the embryo and uterus. However, molecular bases of these preimplantation and implantation processes in humans are not well known. We performed genome expression analyses of human embryos (n = 128) and human endometria (n = 8). We integrated these data with protein-protein interactions in order to identify molecular networks within the endometrium and the embryo, and potential embryo-endometrium interactions at the time of implantation. For that, we applied a novel network profiling algorithm HyperModules, which combines topological module identification and functional enrichment analysis. We found a major wave of transcriptional down-regulation in preimplantation embryos. In receptive-stage endometrium, several genes and signaling pathways were identified, including JAK-STAT signaling and inflammatory pathways. The main curated embryo-endometrium interaction network highlighted the importance of cell adhesion molecules in the implantation process. We also identified cytokine-cytokine receptor interactions involved in implantation, where osteopontin (SPP1), leukemia inhibitory factor (LIF) and leptin (LEP) pathways were intertwining. Further, we identified a number of novel players in human embryo-endometrium interactions, such as apolipoprotein D (APOD), endothelin 1 (END1), fibroblast growth factor 7 (FGF7), gastrin (GAST), kringle containing trnasmembrane protein 1 (KREMEN1), neuropilin 1 (NRP1), serpin peptidase inhibitor clade A member 3 (SERPINA3), versican (VCAN), and others. Our findings provide a fundamental resource for better understanding of the genetic network that leads to successful embryo implantation. We demonstrate the first systems biology approach into the complex molecular network of the implantation process in humans.

  16. Gene expression in BMPR2 mutation carriers with and without evidence of Pulmonary Arterial Hypertension suggests pathways relevant to disease penetrance

    PubMed Central

    West, James; Cogan, Joy; Geraci, Mark; Robinson, Linda; Newman, John; Phillips, John A; Lane, Kirk; Meyrick, Barbara; Loyd, Jim

    2008-01-01

    Background While BMPR2 mutation strongly predisposes to pulmonary arterial hypertension (PAH), only 20% of mutation carriers develop clinical disease. This finding suggests that modifier genes contribute to FPAH clinical expression. Since modifiers are likely to be common alleles, this problem is not tractable by traditional genetic approaches. Furthermore, examination of gene expression is complicated by confounding effects attributable to drugs and the disease process itself. Methods To resolve these problems, B-cells were isolated, EBV-immortalized, and cultured from familial PAH patients with BMPR2 mutations, mutation positive but disease-free family members, and family members without mutation. This allows examination of differences in gene expression without drug or disease-related effects. These differences were assayed by Affymetrix array, with follow-up by quantitative RT-PCR and additional statistical analyses. Results By gene array, we found consistent alterations in multiple pathways with known relationship to PAH, including actin organization, immune function, calcium balance, growth, and apoptosis. Selected genes were verified by quantitative RT-PCR using a larger sample set. One of these, CYP1B1, had tenfold lower expression than control groups in female but not male PAH patients. Analysis of overrepresented gene ontology groups suggests that risk of disease correlates with alterations in pathways more strongly than with any specific gene within those pathways. Conclusion Disease status in BMPR2 mutation carriers was correlated with alterations in proliferation, GTP signaling, and stress response pathway expression. The estrogen metabolizing gene CYP1B1 is a strong candidate as a modifier gene in female PAH patients. PMID:18823550

  17. Gene Expression Profiling on Global cDNA Arrays Gives Hints Concerning Potential Signal Transduction Pathways Involved in Cardiac Fibrosis of Renal Failure

    PubMed Central

    Ridinger, Heidrun; Rutenberg, Christiane; Ritz, Eberhard; Mall, Gerhard; Maercker, Christian

    2003-01-01

    Cardiac remodelling with interstitial fibrosis in renal failure, which so far is only poorly understood on the molecular level, was investigated in the rat model by a global gene expression profiling analysis. Sprague–Dawley rats were subjected to subtotal nephrectomy (SNX) or sham operation (sham) and followed for 2 and 12 weeks, respectively. Heart-specific gene expression profiling, with RZPD Rat Unigene-1 cDNA arrays containing about 27 000 gene and EST sequences revealed substantial changes in gene expression in SNX compared to sham animals. Motor protein genes, growth and differentiation markers, and extracellular matrix genes were upregulated in SNX rats. Obviously, not only genes involved in cardiomyocyte hypertrophy, but also genes involved in the expansion of non-vascular interstitial tissue are activated very early in animals with renal failure. Together with earlier findings in the SNX model, the present data suggest the hypothesis that the local renin–angiotensin system (RAS) may be activated by at least two pathways: (a) via second messengers and Gproteins (short-term signalling); and (b) via motor proteins, actins and integrins (longterm signalling). The study documents that complex hybridization analysis yields reproducible and promising results of patterns of gene activation pointing to signalling pathways involved in cardiac remodelling in renal failure. The complete array data are available via http://www.rzpd.de/cgi-bin/services/exp/viewExpressionData.pl.cgi PMID:18629021

  18. Cloning and expression in Escherichia coli of genes involved in the lysine pathway of Brevibacterium lactofermentum.

    PubMed Central

    Márquez, G; Sousa, J M; Sánchez, F

    1985-01-01

    The Brevibacterium lactofermentum genes which complement Escherichia coli lysA and asd-1 mutants were identified, respectively, as a 1.9-kilobase PstI-ClaI fragment and a 2.5-kilobase PstI fragment by cloning into pBR325. Southern blot transfers show hybridization to chromosomal fragments of identical size. The putative B. lactofermentum asd and lysA products are 44 and 48 kilodaltons, respectively. Images PMID:2864331

  19. Dynamic gene expression patterns in animal models of early and late heart failure reveal biphasic-bidirectional transcriptional activation of signaling pathways.

    PubMed

    Rowell, Janelle; Koitabashi, Norimichi; Kass, David A; Barth, Andreas S

    2014-10-15

    Altered cardiac gene expression in heart failure (HF) has mostly been identified by single-point analysis of end-stage disease. This may miss earlier changes in gene expression that are transient and/or directionally opposite to those observed later. Myocardial datasets from the largest microarray data repository (Gene Expression Omnibus) yielded six HF studies with time-course data. Differentially expressed transcripts between nonfailing controls, early HF (<3 days after cardiac insult) and late HF (usually >2 wk) were determined, and analysis of KEGG pathways and predicted regulatory control elements performed. We found that gene expression followed varying patterns: Downregulation of metabolic pathways occurred early and was sustained into late-stage HF. In contrast, most signaling pathways undergo a complex biphasic pattern: Calcium signaling, p53, apoptosis, and MAPK pathways displayed a bidirectional response, declining early but rising late. These profiles were compatible with specific microRNA (miRNA) and transcription regulators: Estrogen-related receptor-α and myocyte-enhancer factor-2 binding sites were overrepresented in the promoter regions of downregulated transcripts. Concurrently, there were overrepresented binding sites for E2f and ETS family members (E-Twenty Six, including Gabp, Elf1, and Ets2), serum response and interferon regulated factor in biphasic-bidirectional and late-upregulated transcripts. Binding sites for miRNAs downregulated by HF were more common in upregulated transcripts (e.g., miRNA-22,-133a/b, and -150 in early HF and miRNA-1,-9,-499 in late HF). During the development of HF, gene expression is characterized by dynamic overlapping sets of transcripts controlled by specific interrelated regulatory mechanisms. While metabolic gene classes show early and sustained downregulation in HF, signaling pathways undergo a complex biphasic pattern with early down- and more pronounced late upregulation.

  20. Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors

    PubMed Central

    Zhu, Fangjun; Schlupp, Ingo; Tiedemann, Ralph

    2016-01-01

    The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs’ embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess–as most other teleost fish—two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed

  1. Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors.

    PubMed

    Zhu, Fangjun; Schlupp, Ingo; Tiedemann, Ralph

    2016-01-01

    The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs' embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess-as most other teleost fish-two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed three

  2. Hepatocyte nuclear factor 1α downregulates HBV gene expression and replication by activating the NF-κB signaling pathway

    PubMed Central

    Shen, Zhongliang; Liu, Yanfeng; Wang, Wei; Tao, Shuai; Cui, Xiaoxian; Liu, Jing

    2017-01-01

    The role of hepatocyte nuclear factor 1α (HNF1α) in the regulation of gene expression and replication of hepatitis B virus (HBV) is not fully understood. Previous reports have documented the induction of the expression of viral large surface protein (LHBs) by HNF1α through activating viral Sp1 promoter. Large amount of LHBs can block the secretion of hepatitis B surface antigen (HBsAg). Here we found that HNF1α overexpression inhibited HBV gene expression and replication in Huh7 cells, resulting in marked decreases in HBsAg, hepatitis B e antigen (HBeAg) and virion productions. In contrast, knockdown of endogenous HNF1α expression enhanced viral gene expression and replication. This HNF1α-mediated inhibition did not depend on LHBs. Instead, HNF1α promoted the expression of NF-κB p65 and slowed p65 protein degradation, leading to nuclear accumulation of p65 and activation of the NF-κB signaling, which in turn inhibited HBV gene expression and replication. The inhibitor of the NF-κB signaling, IκBα-SR, could abrogate this HNF1α-mediated inhibition. While the dimerization domain of HNF1α was dispensable for the induction of LHBs expression, all the domains of HNF1α was required for the inhibition of HBV gene expression. Our findings identify a novel role of HNF1α in the regulation of HBV gene expression and replication. PMID:28319127

  3. Differential expression of cancer pathway-related genes in low-versus high-dose-rate-irradiated AKR/J mice

    NASA Astrophysics Data System (ADS)

    Jong Bong, Jin; Kang, Yu Mi; Shin, Suk Chul; Choi, Moo Hyun; Choi, Seung Jin; Kim, Hee Sun

    2012-11-01

    To understand the biological effects of ionizing radiation on lymphomagenesis, we reared AKR/J mice for 130 days with exposure to either high-dose-rate (HDR, 0.8 Gy/min, a single dose of 4.5 Gy) or low-dose-rate (LDR, 0.7 mGy/h, a cumulative dose of 2.1 Gy) irradiation. After 130 days, we compared the mean thymus weight, analyzed the histological changes, and measured apoptotic cell numbers using the terminal deoxynucleotidyl transferase-mediated dUTP-end labeling (TUNEL) assay. We also used microarrays and quantitative polymerase chain reaction analysis (qPCR) to analyze the expression profiles of cancer pathway-related genes in the thymuses of the mice. The mean thymus weight of the LDR-irradiated mice decreased relative to Sham- and HDR-irradiated mice. Histopathological examination revealed that the neoplastic cells in the thymuses of the Sham- and HDR-irradiated mice were pleomorphic, with marked anisocytosis and anisokaryosis, whereas the cells and their nuclei were relatively small and uniform in size in the LDR-irradiated mice. Furthermore, TUNEL assays showed that the number of apoptotic cells was higher in the LDR-irradiated mice than in the Sham- and HDR-irradiated mice. Microarray analysis showed differentially expressed genes according to carcinogenic stage (DNA repair/genomic instability, DNA damage signaling pathway, cell cycle, cancer pathway, p53 signaling pathway, apoptosis, and T- and B-cell activation). qPCR data for cancer pathway-related genes showed that Cds1 gene expression was upregulated in the LDR-irradiated mice, whereas expression of the Itga4, Myc, and Itgb1 genes was upregulated in the irradiated mice. However, the functions of cancer pathway-related genes require further study and validation.

  4. Mice exposed in situ to urban air pollution exhibit pulmonary alterations in gene expression in the lipid droplet synthesis pathways.

    PubMed

    Rowan-Carroll, Andrea; Halappanavar, Sabina; Williams, Andrew; Somers, Christophers M; Yauk, Carole L

    2013-05-01

    It is clear that particulate air pollution poses a serious risk to human health; however, the underlying mechanisms are not completely understood. We investigated pulmonary transcriptional responses in mice following in-situ exposure to ambient air in a heavily industrialized urban environment. Mature C57BL/CBA male mice were caged in sheds near two working steel mills and a major highway in Hamilton, Ontario, Canada in the spring/summer of 2004. Control mice were housed in the same environment, but received only high-efficiency particle filtered air (HEPA). Whole lung tissues were collected from mice exposed for 3, 10, or for 10 weeks followed by 6 weeks recovery in the laboratory (16 weeks). DNA microarrays were used to profile changes in pulmonary gene expression. Transcriptional profiling revealed changes in the expression of genes implicated in the lipid droplet synthesis (Plin I, Dgat2, Lpl, S3-12, and Agpat2), and antioxidant defense (Ucp1) pathways in mice breathing unfiltered air. We postulate that exposure to urban air, containing an abundance of particulate matter adsorbed with polycyclic aromatic hydrocarbons, triggers lipid droplet (holding depots for lipids and malformed/excess proteins tagged for degradation) synthesis in the lungs, which may act to sequester particulates. Increased lipid droplet synthesis could lead to endogenous/stressor-induced production of reactive oxygen species and activation of antioxidant mechanisms. Further investigation into the stimulation of lipid droplet synthesis in the lung in response to air pollution and the resulting health implications is warranted. Copyright © 2013 Wiley Periodicals, Inc.

  5. Global gene expression changes of in vitro stimulated human transformed germinal centre B cells as surrogate for oncogenic pathway activation in individual aggressive B cell lymphomas

    PubMed Central

    2012-01-01

    Background Aggressive Non-Hodgkin lymphomas (NHL) are a group of lymphomas derived from germinal centre B cells which display a heterogeneous pattern of oncogenic pathway activation. We postulate that specific immune response associated signalling, affecting gene transcription networks, may be associated with the activation of different oncogenic pathways in aggressive Non-Hodgkin lymphomas (NHL). Methodology The B cell receptor (BCR), CD40, B-cell activating factor (BAFF)-receptors and Interleukin (IL) 21 receptor and Toll like receptor 4 (TLR4) were stimulated in human transformed germinal centre B cells by treatment with anti IgM F(ab)2-fragments, CD40L, BAFF, IL21 and LPS respectively. The changes in gene expression following the activation of Jak/STAT, NF-кB, MAPK, Ca2+ and PI3K signalling triggered by these stimuli was assessed using microarray analysis. The expression of top 100 genes which had a change in gene expression following stimulation was investigated in gene expression profiles of patients with Aggressive non-Hodgkin Lymphoma (NHL). Results αIgM stimulation led to the largest number of changes in gene expression, affecting overall 6596 genes. While CD40L stimulation changed the expression of 1194 genes and IL21 stimulation affected 902 genes, only 283 and 129 genes were modulated by lipopolysaccharide or BAFF receptor stimulation, respectively. Interestingly, genes associated with a Burkitt-like phenotype, such as MYC, BCL6 or LEF1, were affected by αIgM. Unique and shared gene expression was delineated. NHL-patients were sorted according to their similarity in the expression of TOP100 affected genes to stimulated transformed germinal centre B cells The αIgM gene module discriminated individual DLBCL in a similar manner to CD40L or IL21 gene modules. DLBCLs with low module activation often carry chromosomal MYC aberrations. DLBCLs with high module activation show strong expression of genes involved in cell-cell communication, immune responses

  6. Not4 enhances JAK/STAT pathway-dependent gene expression in Drosophila and in human cells.

    PubMed

    Grönholm, Juha; Kaustio, Meri; Myllymäki, Henna; Kallio, Jenni; Saarikettu, Juha; Kronhamn, Jesper; Valanne, Susanna; Silvennoinen, Olli; Rämet, Mika

    2012-03-01

    The JAK/STAT pathway is essential for organogenesis, innate immunity, and stress responses in Drosophila melanogaster. The JAK/STAT pathway and its associated regulators have been highly conserved in evolution from flies to humans. We have used a genome-wide RNAi screen in Drosophila S2 cells to identify regulators of the JAK/STAT pathway, and here we report the characterization of Not4 as a positive regulator of the JAK/STAT pathway. Overexpression of Not4 enhanced Stat92E-mediated gene responses in vitro and in vivo in Drosophila. Specifically, Not4 increased Stat92E-mediated reporter gene activation in S2 cells; and in flies, Not4 overexpression resulted in an 8-fold increase in Turandot M (TotM) and in a 4-fold increase in Turandot A (TotA) stress gene activation when compared to wild-type flies. Drosophila Not4 is structurally related to human CNOT4, which was found to regulate interferon-γ- and interleukin-4-induced STAT-mediated gene responses in human HeLa cells. Not4 was found to coimmunoprecipitate with Stat92E but not to affect tyrosine phosphorylation of Stat92E in Drosophila cells. However, Not4 is required for binding of Stat92E to its DNA recognition sequence in the TotM gene promoter. In summary, Not4/CNOT4 is a novel positive regulator of the JAK/STAT pathway in Drosophila and in humans.

  7. Role of innate immunity-triggered pathways in the pathogenesis of Sickle Cell Disease: a meta-analysis of gene expression studies

    PubMed Central

    Hounkpe, Bidossessi Wilfried; Fiusa, Maiara Marx Luz; Colella, Marina Pereira; Nilkenes Gomes da Costa, Loredana; Benatti, Rafaela de Oliveira; Olalla Saad, Sara T; Costa, Fernando Ferreira; dos Santos, Magnun Nueldo Nunes; De Paula, Erich Vinicius

    2015-01-01

    Despite the detailed characterization of the inflammatory and endothelial changes observed in Sickle Cell Disease (SCD), the hierarchical relationship between elements involved in the pathogenesis of this complex disease is yet to be described. Meta-analyses of gene expression studies from public repositories represent a novel strategy, capable to identify key mediators in complex diseases. We performed several meta-analyses of gene expression studies involving SCD, including studies with patient samples, as well as in-vitro models of the disease. Meta-analyses were performed with the Inmex bioinformatics tool, based on the RankProd package, using raw gene expression data. Functional gene set analysis was performed using more than 60 gene-set libraries. Our results demonstrate that the well-characterized association between innate immunity, hemostasis, angiogenesis and heme metabolism with SCD is also consistently observed at the transcriptomic level, across independent studies. The enrichment of genes and pathways associated with innate immunity and damage repair-associated pathways supports the model of erythroid danger-associated molecular patterns (DAMPs) as key mediators of the pathogenesis of SCD. Our study also generated a novel database of candidate genes, pathways and transcription factors not previously associated with the pathogenesis of SCD that warrant further investigation in models and patients of SCD. PMID:26648000

  8. APE1/Ref-1 knockdown in pancreatic ductal adenocarcinoma: Characterizing gene expression changes and identifying novel pathways using single-cell RNA sequencing.

    PubMed

    Shah, Fenil; Goossens, Emery; Atallah, Nadia M; Grimard, Michelle; Kelley, Mark R; Fishel, Melissa L

    2017-09-18

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1 or APE1) is a multifunctional protein that regulates numerous transcription factors associated with cancer-related pathways. Because APE1 is essential for cell viability, generation of APE1 knockout cell lines and determining a comprehensive list of genes regulated by APE1 has not been possible. To circumvent this challenge, we utilized single-cell RNA Sequencing to identify differentially expressed genes in relation to APE1 protein levels within the cell. Using a straight forward yet novel statistical design, we identified 2,837 genes whose expression is significantly changed following APE1 knockdown. Using this gene expression profile, we identified multiple new pathways not previously linked to APE1, including the EIF2 signaling and mTOR pathways and a number of mitochondrial-related pathways. We demonstrate that APE1 has an effect on modifying gene expression up to a threshold of APE1 expression, demonstrating that it is not necessary to completely knockout APE1 in cells to accurately study APE1 function. We validated the findings using a selection of the differentially expressed genes along with siRNA knockdown and qRT-PCR. Testing additional patient-derived pancreatic cancer cells reveal particular genes (ITGA1, TNFAIP2, COMMD7, RAB3D) that respond to APE1 knockdown similarly across all the cell lines. Furthermore, we verified that the redox function of APE1 was responsible for driving gene expression of mitochondrial genes such as PRDX5 and genes that are important for proliferation such as SIPA1 and RAB3D by treating with APE1 redox specific inhibitor, APX3330. Our study identifies several novel genes and pathways affected by APE1, as well as tumor sub-type specificity. These findings will allow for hypothesis driven approaches to generate combination therapies using, for example, APE1 inhibitor APX3330 with other approved FDA drugs in an innovative manner for pancreatic and other cancer

  9. Hidden Treasures in “Ancient” Microarrays: Gene-Expression Portrays Biology and Potential Resistance Pathways of Major Lung Cancer Subtypes and Normal Tissue

    PubMed Central

    Kerkentzes, Konstantinos; Lagani, Vincenzo; Tsamardinos, Ioannis; Vyberg, Mogens; Røe, Oluf Dimitri

    2014-01-01

    Objective: Novel statistical methods and increasingly more accurate gene annotations can transform “old” biological data into a renewed source of knowledge with potential clinical relevance. Here, we provide an in silico proof-of-concept by extracting novel information from a high-quality mRNA expression dataset, originally published in 2001, using state-of-the-art bioinformatics approaches. Methods: The dataset consists of histologically defined cases of lung adenocarcinoma (AD), squamous (SQ) cell carcinoma, small-cell lung cancer, carcinoid, metastasis (breast and colon AD), and normal lung specimens (203 samples in total). A battery of statistical tests was used for identifying differential gene expressions, diagnostic and prognostic genes, enriched gene ontologies, and signaling pathways. Results: Our results showed that gene expressions faithfully recapitulate immunohistochemical subtype markers, as chromogranin A in carcinoids, cytokeratin 5, p63 in SQ, and TTF1 in non-squamous types. Moreover, biological information with putative clinical relevance was revealed as potentially novel diagnostic genes for each subtype with specificity 93–100% (AUC = 0.93–1.00). Cancer subtypes were characterized by (a) differential expression of treatment target genes as TYMS, HER2, and HER3 and (b) overrepresentation of treatment-related pathways like cell cycle, DNA repair, and ERBB pathways. The vascular smooth muscle contraction, leukocyte trans-endothelial migration, and actin cytoskeleton pathways were overexpressed in normal tissue. Conclusion: Reanalysis of this public dataset displayed the known biological features of lung cancer subtypes and revealed novel pathways of potentially clinical importance. The findings also support our hypothesis that even old omics data of high quality can be a source of significant biological information when appropriate bioinformatics methods are used. PMID:25325012

  10. Gene Expression during the Generation and Activation of Mouse Neutrophils: Implication of Novel Functional and Regulatory Pathways

    PubMed Central

    Ericson, Jeffrey A.; Duffau, Pierre; Yasuda, Kei; Ortiz-Lopez, Adriana; Rothamel, Katherine; Rifkin, Ian R.; Monach, Paul A.

    2014-01-01

    As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating) mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes), thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking. However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid. Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64, mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for optimal secretion of IL-10, IP-10, MIP-1α, MIP-1β, and TNF-α by mouse neutrophils in vitro after stimulation through TLR9. This data-set and its analysis using the ImmGen regulatory

  11. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  12. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  13. Differentiation expression during proliferative activity induced through different pathways: in situ hybridization study of thyroglobulin gene expression in thyroid epithelial cells

    PubMed Central

    1990-01-01

    In canine thyrocytes in primary culture, our previous studies have identified three mitogenic agents and pathways: thyrotropin (TSH) acting through cyclic AMP (cAMP), EGF and its receptor tyrosine protein kinase, and the phorbol esters that stimulate protein kinase C. TSH enhances, while EGF and phorbol esters inhibit, the expression of differentiation. Given that growth and differentiation expression are often considered as mutually exclusive activities of the cells, it was conceivable that the differentiating action of TSH was restricted to noncycling (Go) cells, while the inhibition of the differentiation expression by EGF and phorbol esters only concerned proliferating cells. Therefore, the capacity to express the thyroglobulin (Tg) gene, the most prominent marker of differentiation in thyrocytes, was studied in proliferative cells (with insulin) and in quiescent cells (without insulin). Using cRNA in situ hybridization, we observed that TSH (and, to a lesser extent, insulin and insulin-like growth factor I) restored or maintained the expression of the Tg gene. Without these hormones, the Tg mRNA content became undetectable in most of the cells. EGF and 12-0-tetradecanoyl phorbol-13-acetate (TPA) inhibited the Tg mRNA accumulation induced by TSH (and/or insulin). Most of the cells (up to 90%) responded to both TSH and EGF. Nevertheless, the range of individual response was quite variable. The effects of TSH and EGF on differentiation expression were not dependent on insulin and can therefore be dissociated from their mitogenic effects. Cell cycling did not affect the induction of Tg gene. Indeed, the same cell distribution of Tg mRNA content was observed in quiescent cells stimulated by TSH alone, or in cells approximately 50% of which had performed one mitotic cycle in response to TSH + insulin. Moreover, after proliferation in "dedifferentiating" conditions (EGF + serum + insulin), thyrocytes had acquired a fusiform fibroblast-like morphology, and responded

  14. Whole Genome Gene Expression Analysis Reveals Casiopeína-Induced Apoptosis Pathways

    PubMed Central

    Valencia-Cruz, Alejandra Idan; Uribe-Figueroa, Laura I.; Galindo-Murillo, Rodrigo; Baca-López, Karol; Gutiérrez, Anllely G.; Vázquez-Aguirre, Adriana; Ruiz-Azuara, Lena; Hernández-Lemus, Enrique; Mejía, Carmen

    2013-01-01

    Copper-based chemotherapeutic compounds Casiopeínas, have been presented as able to promote selective programmed cell death in cancer cells, thus being proper candidates for targeted cancer therapy. DNA fragmentation and apoptosis–in a process mediated by reactive oxygen species–for a number of tumor cells, have been argued to be the main mechanisms. However, a detailed functional mechanism (a model) is still to be defined and interrogated for a wide variety of cellular conditions before establishing settings and parameters needed for their wide clinical application. In order to shorten the gap in this respect, we present a model proposal centered in the role played by intrinsic (or mitochondrial) apoptosis triggered by oxidative stress caused by the chemotherapeutic agent. This model has been inferred based on genome wide expression profiling in cervix cancer (HeLa) cells, as well as statistical and computational tests, validated via functional experiments (both in the same HeLa cells and also in a Neuroblastoma model, the CHP-212 cell line) and assessed by means of data mining studies. PMID:23382936

  15. Redox pathway sensing bile salts activates virulence gene expression in Vibrio cholerae.

    PubMed

    Xue, Yuanyuan; Tu, Fei; Shi, Mengting; Wu, Chun-Qin; Ren, Guoping; Wang, Xiaojie; Fang, Weihuan; Song, Houhui; Yang, Menghua

    2016-12-01

    Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, has evolved signal transduction systems to control co-ordinately the expression of virulence determinants. It was previously shown that the presence of the bile salts glycocholate and taurocholate in the small intestine causes dimerization of the transmembrane transcription factor TcpP by inducing intermolecular disulphide bonds in the TcpP periplasmic domain. In this study, they further investigated the mechanism of how taurocholate affects V. cholerae virulence determinants. In vitro assay of TcpP oxidation by VcDsbA showed that VcDsbA induced TcpP dimerization in the presence of taurocholate. Taurocholate bound to VcDsbA with a KD of 40 ± 2.5 μM, and also bound other Dsb proteins, including EcDsbA, EcDsbC and VcDsbC. Taurocholate inhibited VcDsbA reductase activity without affecting VcDsbA secondary structure or thermostability. VcDsbA and its substrates were more extensively reduced in the presence of taurocholate, as compared with their redox state in the absence of taurocholate. The data presented here not only provide new insights into the mechanism by which bile salts induce V. cholerae virulence but also suggest a means by which to develop inhibitors against DsbA. © 2016 John Wiley & Sons Ltd.

  16. Transcriptome profiling and pathway analysis of genes expressed differentially in participants with or without a positive response to topiramate treatment for methamphetamine addiction.

    PubMed

    Li, Ming D; Wang, Ju; Niu, Tianhua; Ma, Jennie Z; Seneviratne, Chamindi; Ait-Daoud, Nassima; Saadvandi, Jim; Morris, Rana; Weiss, David; Campbell, Jan; Haning, William; Mawhinney, David J; Weis, Denis; McCann, Michael; Stock, Christopher; Kahn, Roberta; Iturriaga, Erin; Yu, Elmer; Elkashef, Ahmed; Johnson, Bankole A

    2014-12-12

    Developing efficacious medications to treat methamphetamine dependence is a global challenge in public health. Topiramate (TPM) is undergoing evaluation for this indication. The molecular mechanisms underlying its effects are largely unknown. Examining the effects of TPM on genome-wide gene expression in methamphetamine addicts is a clinically and scientifically important component of understanding its therapeutic profile. In this double-blind, placebo-controlled clinical trial, 140 individuals who met the DSM-IV criteria for methamphetamine dependence were randomized to receive either TPM or placebo, of whom 99 consented to participate in our genome-wide expression study. The RNA samples were collected from whole blood for 50 TPM- and 49 placebo-treated participants at three time points: baseline and the ends of weeks 8 and 12. Genome-wide expression profiles and pathways of the two groups were compared for the responders and non-responders at Weeks 8 and 12. To minimize individual variations, expression of all examined genes at Weeks 8 and 12 were normalized to the values at baseline prior to identification of differentially expressed genes and pathways. At the single-gene level, we identified 1054, 502, 204, and 404 genes at nominal P values < 0.01 in the responders vs. non-responders at Weeks 8 and 12 for the TPM and placebo groups, respectively. Among them, expression of 159, 38, 2, and 21 genes was still significantly different after Bonferroni corrections for multiple testing. Many of these genes, such as GRINA, PRKACA, PRKCI, SNAP23, and TRAK2, which are involved in glutamate receptor and GABA receptor signaling, are direct targets for TPM. In contrast, no TPM drug targets were identified in the 38 significant genes for the Week 8 placebo group. Pathway analyses based on nominally significant genes revealed 27 enriched pathways shared by the Weeks 8 and 12 TPM groups. These pathways are involved in relevant physiological functions such as neuronal

  17. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways

    PubMed Central

    Musungu, Bryan M.; Bhatnagar, Deepak; Brown, Robert L.; Payne, Gary A.; OBrian, Greg; Fakhoury, Ahmad M.; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus. PMID:27917194

  18. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways.

    PubMed

    Musungu, Bryan M; Bhatnagar, Deepak; Brown, Robert L; Payne, Gary A; OBrian, Greg; Fakhoury, Ahmad M; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus.

  19. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.

    PubMed

    Sasaki, Hiromi; Uemura, Hiroshi

    2005-01-30

    A complex of the transcription factors Gcr1p and Gcr2p coordinately regulates the expression of glycolytic genes in Saccharomyces cerevisiae. To understand the effects of gcr mutations on other metabolic pathways, genome-wide gene expression profiles in gcr1 and gcr2 mutants were examined. The biggest effects of gcr1 and gcr2 mutations were observed on the glycolytic genes and the expressions of most of the glycolytic genes were substantially decreased compared to those in the wild-type strain in both glucose and glycerol+lactate growth conditions. On the other hand, the expressions of genes encoding the TCA cycle and respiration were increased in gcr mutants when the cells were grown in glucose. RT-PCR analyses revealed that the expression of SIP4 and HAP5, which are known to affect the expression of some of the gluconeogenic, TCA cycle and respiratory genes, were also increased under this condition. The growth of gcr mutants on glucose was impaired by adding respiration inhibitor antimycin A, whereas the growth of the wild-type strain was not. The conversion of glucose to biomass was higher and, to the contrary, ethanol yield was lower in the gcr2 mutant compared to those in the wild-type strain. These results suggest the possibility that the gcr mutants, in which glycolytic activities are low, changed their metabolic patterns under glucose growth condition to enhance the expression of TCA cycle and respiratory genes to produce more energy.

  20. Tobacco Nicotine Uptake Permease Regulates the Expression of a Key Transcription Factor Gene in the Nicotine Biosynthesis Pathway1[C][W

    PubMed Central

    2014-01-01

    The down-regulation of a tobacco (Nicotiana tabacum) plasma membrane-localized nicotine uptake permease, NUP1, was previously reported to reduce total alkaloid levels in tobacco plants. However, it was unclear how this nicotine transporter affected the biosynthesis of the alkaloid nicotine. When NUP1 expression was suppressed in cultured tobacco cells treated with jasmonate, which induces nicotine biosynthesis, the NICOTINE2-locus transcription factor gene ETHYLENE RESPONSE FACTOR189 (ERF189) and its target structural genes, which function in nicotine biosynthesis and transport, were strongly suppressed, resulting in decreased total alkaloid levels. Conversely, NUP1 overexpression had the opposite effect. In these experiments, the expression levels of the MYC2 transcription factor gene and its jasmonate-inducible target gene were not altered. Inhibiting tobacco alkaloid biosynthesis by suppressing the expression of genes encoding enzymes in the nicotine pathway did not affect the expression of ERF189 and other nicotine pathway genes, indicating that ERF189 is not regulated by cellular alkaloid levels. Suppressing the expression of jasmonate signaling components in cultured tobacco cells showed that NUP1 acts downstream of the CORONATINE INSENSITIVE1 receptor and MYC2, but upstream of ERF189. These results suggest that although jasmonate-activated expression of MYC2 induces the expression of both NUP1 and ERF189, expression of ERF189 may actually be mediated by NUP1. Furthermore, NUP1 overexpression in tobacco plants inhibited the long-range transport of nicotine from the roots to the aerial parts. Thus, NUP1 not only mediates the uptake of tobacco alkaloids into root cells, but also positively controls the expression of ERF189, a key gene in the biosynthesis of these alkaloids. PMID:25344505

  1. Time series gene expression profiling and temporal regulatory pathway analysis of BMP6 induced osteoblast differentiation and mineralization.

    PubMed

    Luo, Weijun; Friedman, Michael S; Hankenson, Kurt D; Woolf, Peter J

    2011-05-23

    BMP6 mediated osteoblast differentiation plays a key role in skeletal development and bone disease. Unfortunately, the signaling pathways regulated by BMP6 are largely uncharacterized due to both a lack of data and the complexity of the response. To better characterize the signaling pathways responsive to BMP6, we conducted a time series microarray study to track BMP6 induced osteoblast differentiation and mineralization. These temporal data were analyzed using a customized gene set analysis approach to identify temporally coherent sets of genes that act downstream of BMP6. Our analysis identified BMP6 regulation of previously reported pathways, such as the TGF-beta pathway. We also identified previously unknown connections between BMP6 and pathways such as Notch signaling and the MYB and BAF57 regulatory modules. In addition, we identify a super-network of pathways that are sequentially activated following BMP6 induction. In this work, we carried out a microarray-based temporal regulatory pathway analysis of BMP6 induced osteoblast differentiation and mineralization using GAGE method. This novel temporal analysis is more informative and powerful than the classical static pathway analysis in that: (1) it captures the interconnections between signaling pathways or functional modules and demonstrates the even higher level organization of molecular biological systems; (2) it describes the temporal perturbation patterns of each pathway or module and their dynamic roles in osteoblast differentiation. The same set of experimental and computational strategies employed in our work could be useful for studying other complex biological processes. © 2011 Luo et al; licensee BioMed Central Ltd.

  2. Maternal high-fat diet modulates hepatic glucose, lipid homeostasis and gene expression in the PPAR pathway in the early life of offspring.

    PubMed

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin

    2014-08-25

    Maternal dietary modifications determine the susceptibility to metabolic diseases in adult life. However, whether maternal high-fat feeding can modulate glucose and lipid metabolism in the early life of offspring is less understood. Furthermore, we explored the underlying mechanisms that influence the phenotype. Using C57BL/6J mice, we examined the effects on the offspring at weaning from dams fed with a high-fat diet or normal chow diet throughout pregnancy and lactation. Gene array experiments and quantitative real-time PCR were performed in the liver tissues of the offspring mice. The offspring of the dams fed the high-fat diet had a heavier body weight, impaired glucose tolerance, decreased insulin sensitivity, increased serum cholesterol and hepatic steatosis at weaning. Bioinformatic analyses indicated that all differentially expressed genes of the offspring between the two groups were mapped to nine pathways. Genes in the peroxisome proliferator-activated receptor (PPAR) signaling pathway were verified by quantitative real-time PCR and these genes were significantly up-regulated in the high-fat diet offspring. A maternal high-fat diet during pregnancy and lactation can modulate hepatic glucose, lipid homeostasis, and gene expression in the PPAR signaling in the early life of offspring, and our results suggested that potential mechanisms that influences this phenotype may be related partially to up-regulate some gene expression in the PPAR signalling pathway.

  3. Variations in target gene expression and pathway profiles in the mouse hippocampus following treatment with different effective compounds for ischemia-reperfusion injury.

    PubMed

    Chen, Yinying; Zhou, Caixiu; Yu, Yanan; Liu, Jun; Jing, Zhiwei; Lv, Aiping; Meng, Fanyun; Wang, Zhong; Wang, Yongyan

    2012-08-01

    In order to elucidate the overlapping and diverse pharmacological protective mechanisms of different Chinese medicinal compounds, we investigated the alteration of gene expression and activation of signaling pathways in the mouse hippocampus after treatment of cerebral ischemia-reperfusion injury with various compounds. A microarray including 16,463 genes was used to identify differentially expressed genes among six treatment groups: baicalin (BA), jasminoidin (JA), cholic acid (CA), concha margaritiferausta (CM), sham, and vehicle. The US Food and Drug Administration (FDA) ArrayTrack system and Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used to screen significantly altered genes and pathways (P < 0.05, fold change >1.5). Vehicle treatment alone resulted in alteration of 726 genes (283 upregulated, 443 downregulated) compared to the sham treatment group. BA, JA, and CA treatments, but not CM treatment, were effective in reducing infarct volume compared with vehicle treatment (P < 0.05). Compared with the CM group, a total of 167 (73 upregulated, 94 downregulated), 379 (211 upregulated, 168 downregulated), and 181 (76 upregulated, 105 downregulated) altered genes were found in the BA, JA, and CA groups, respectively. The numbers of overlapping genes between the BA and JA, BA and CA, and JA and CA groups were 28 (16 upregulated, 12 downregulated), 14 (4 upregulated, 10 downregulated), and 31 (8 upregulated, 23 downregulated), respectively. Three overlapping genes were identified among the BA, JA, and CA treatment groups: Il1rap, Gnb5, and Wdr38. Based on KEGG pathway analysis, two, seven, and four pathways were significantly activated in the BA, JA, and CA groups, respectively, when compared to the CM group. The ATP-binding cassette (ABC) transporters general pathway was activated by BA and JA treatment, and the mitogen-activated protein kinase (MAPK) signaling pathway was activated by JA and CA treatment. Alteration of IL-1 and Hspa1a expression

  4. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water

    SciTech Connect

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V.; Costa, Max

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p < 0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. - Highlights: • Males and females exhibit unique gene expression changes in response to arsenic. • Only 23 genes are common among the differentially expressed genes for the sexes. • Male and female gene lists exhibit common biological

  5. Adaptive Regulation of Testis Gene Expression and Control of Male Fertility by the Drosophila Harpin RNA Pathway

    PubMed Central

    Wen, Jiayu; Duan, Hong; Bejarano, Fernando; Okamura, Katsutomo; Fabian, Lacramioara; Brill, Julie A.; Bortolamiol-Becet, Diane; Martin, Raquel; Ruby, J. Graham; Lai, Eric C.

    2014-01-01

    SUMMARY Although endogenous siRNAs (endo-siRNAs) have been described in many species, still little is known about their endogenous utility. Here, we show that Drosophila hairpin RNAs (hpRNAs) generate an endo-siRNA class with predominant expression in testes. Although hpRNAs are universally recently evolved, we identify highly complementary protein-coding targets for all hpRNAs. Importantly, we find broad evidence for evolutionary divergences that preferentially maintain compensatory pairing between hpRNAs and targets, serving as first evidence for adaptive selection for siRNA-mediated target regulation in metazoans. We demonstrate organismal impact of hpRNA activity, since knockout of hpRNA1 derepresses its target ATP synthase-β in testes and compromises spermatogenesis and male fertility. Moreover, we reveal surprising male-specific impact of RNAi factors on germ cell development and fertility, consistent with testis-directed function of the hpRNA pathway. Finally, the collected hpRNA loci chronicle an evolutionary timeline that reflects their origins from prospective target genes, mirroring a strategy described for plant miRNAs. PMID:25544562

  6. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.

    PubMed

    Manikandan, P; Ramyachitra, D; Banupriya, D

    2016-04-15

    Proteins show their functional activity by interacting with other proteins and forms protein complexes since it is playing an important role in cellular organization and function. To understand the higher order protein organization, overlapping is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Most of the clustering algorithms do not consider the weighted as well as overlapping complexes. In this research, Prorank based Fuzzy algorithm has been proposed to find the overlapping protein complexes. The Fuzzy detection algorithm is incorporated in the Prorank algorithm after ranking step to find the overlapping community. The proposed algorithm executes in an iterative manner to compute the probability of robust clusters. The proposed and the existing algorithms were tested on different datasets such as PPI-D1, PPI-D2, Collins, DIP, Krogan Core and Krogan-Extended, gene expression such as GSE7645, GSE22269, GSE26923, pathways such as Meiosis, MAPK, Cell Cycle, phenotypes such as Yeast Heterogeneous and Yeast Homogeneous datasets. The experimental results show that the proposed algorithm predicts protein complexes with better accuracy compared to other state of art algorithms.

  7. Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L.

    PubMed

    Yadav, Ritesh K; Sangwan, Rajender S; Sabir, Farzana; Srivastava, Awadesh K; Sangwan, Neelam S

    2014-01-01

    Artemisia annua L. accumulates substantial quantities of unique sesquiternoid artemisinin and related phytomolecules and characteristic essential oil in glandular trichomes, present on its leaves and inflorescence. Water stress is a major concern in controlling plant growth and productivity. In this study, our aim was to find out the modulation of artemisinin and essential oil constituents in plants grown under prolonged water stress conditions. A. annua CIM-Arogya plants grown in pots were subjected to mild (60% ± 5) and moderate (40% ± 5) water stress treatment and continued during entire developmental period. Results revealed that artemisinin, arteannuin-B, artemisinic acid, dihydroartemisinic acid and essential oil content were positively controlled by the growth and development however negatively modulated by water deficit stress. Interestingly, some of minor monoterpenes, all sesquiterpenes and other low molecular weight volatiles of essential oil components were induced by water deficit treatment. Camphor which is the major essential oil constituents did not alter much while 1, 8 cineole was modulated during development of plant as well as under water stress conditions. Water deficit stress induces a decrease in glandular trichome density and size as well. The dynamics of various secondary metabolites is discussed in the light of growth responses, trichomes and pathway gene expression in plants grown under two levels of prolonged water stress conditions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Catabolic cytokines disrupt the circadian clock and the expression of clock-controlled genes in cartilage via an NFкB-dependent pathway

    PubMed Central

    Guo, B.; Yang, N.; Borysiewicz, E.; Dudek, M.; Williams, J.L.; Li, J.; Maywood, E.S.; Adamson, A.; Hastings, M.H.; Bateman, J.F.; White, M.R.H.; Boot-Handford, R.P.; Meng, Q.J.

    2015-01-01

    Summary Objective To define how the catabolic cytokines (Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα)) affect the circadian clock mechanism and the expression of clock-controlled catabolic genes within cartilage, and to identify the downstream pathways linking the cytokines to the molecular clock within chondrocytes. Methods Ex vivo cartilage explants were isolated from the Cry1-luc or PER2::LUC clock reporter mice. Clock gene dynamics were monitored in real-time by bioluminescence photon counting. Gene expression changes were studied by qRT-PCR. Functional luc assays were used to study the function of the core Clock/BMAL1 complex in SW-1353 cells. NFкB pathway inhibitor and fluorescence live-imaging of cartilage were performed to study the underlying mechanisms. Results Exposure to IL-1β severely disrupted circadian gene expression rhythms in cartilage. This effect was reversed by an anti-inflammatory drug dexamethasone, but not by other clock synchronizing agents. Circadian disruption mediated by IL-1β was accompanied by disregulated expression of endogenous clock genes and clock-controlled catabolic pathways. Mechanistically, NFкB signalling was involved in the effect of IL-1β on the cartilage clock in part through functional interference with the core Clock/BMAL1 complex. In contrast, TNFα had little impact on the circadian rhythm and clock gene expression in cartilage. Conclusion In our experimental system (young healthy mouse cartilage), we demonstrate that IL-1β (but not TNFα) abolishes circadian rhythms in Cry1-luc and PER2::LUC gene expression. These data implicate disruption of the chondrocyte clock as a novel aspect of the catabolic responses of cartilage to pro-inflammatory cytokines, and provide an additional mechanism for how chronic joint inflammation may contribute to osteoarthritis (OA). PMID:26521744

  9. Catabolic cytokines disrupt the circadian clock and the expression of clock-controlled genes in cartilage via an NFкB-dependent pathway.

    PubMed

    Guo, B; Yang, N; Borysiewicz, E; Dudek, M; Williams, J L; Li, J; Maywood, E S; Adamson, A; Hastings, M H; Bateman, J F; White, M R H; Boot-Handford, R P; Meng, Q J

    2015-11-01

    To define how the catabolic cytokines (Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα)) affect the circadian clock mechanism and the expression of clock-controlled catabolic genes within cartilage, and to identify the downstream pathways linking the cytokines to the molecular clock within chondrocytes. Ex vivo cartilage explants were isolated from the Cry1-luc or PER2::LUC clock reporter mice. Clock gene dynamics were monitored in real-time by bioluminescence photon counting. Gene expression changes were studied by qRT-PCR. Functional luc assays were used to study the function of the core Clock/BMAL1 complex in SW-1353 cells. NFкB pathway inhibitor and fluorescence live-imaging of cartilage were performed to study the underlying mechanisms. Exposure to IL-1β severely disrupted circadian gene expression rhythms in cartilage. This effect was reversed by an anti-inflammatory drug dexamethasone, but not by other clock synchronizing agents. Circadian disruption mediated by IL-1β was accompanied by disregulated expression of endogenous clock genes and clock-controlled catabolic pathways. Mechanistically, NFкB signalling was involved in the effect of IL-1β on the cartilage clock in part through functional interference with the core Clock/BMAL1 complex. In contrast, TNFα had little impact on the circadian rhythm and clock gene expression in cartilage. In our experimental system (young healthy mouse cartilage), we demonstrate that IL-1β (but not TNFα) abolishes circadian rhythms in Cry1-luc and PER2::LUC gene expression. These data implicate disruption of the chondrocyte clock as a novel aspect of the catabolic responses of cartilage to pro-inflammatory cytokines, and provide an additional mechanism for how chronic joint inflammation may contribute to osteoarthritis (OA). Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus

    PubMed Central

    Hu, Qing; Guo, Wei; Li, Dapeng

    2017-01-01

    Background The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus). How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male) from the rice field eel to investigate changes in transcriptional level during the sex reversal process. Results Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes). These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes’ expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary. Conclusion This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms. PMID:28319194

  11. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens

    PubMed Central

    2012-01-01

    Background Intramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY), a slow-growing Chinese breed possessing high meat quality and Arbor Acres (AA), a commercial fast-growing broiler line. Results Agilent cDNA microarray analyses were conducted to determine gene expression profiles of breast muscle sampled at different developmental stages of BJY and AA chickens. Relative to d 1 when there is no detectable IMF, breast muscle at d 21, d 42, d 90 and d 120 (only for BJY) contained 1310 differentially expressed genes (DEGs) in BJY and 1080 DEGs in AA. Of these, 34–70 DEGs related to lipid metabolism or muscle development processes were examined further in each breed based on Gene Ontology (GO) analysis. The expression of several DEGs was correlated, positively or negatively, with the changing patterns of lipid content or breast weight across the ages sampled, indicating that those genes may play key roles in these developmental processes. In addition, based on KEGG pathway analysis of DEGs in both BJY and AA chickens, it was found that in addition to pathways affecting lipid metabolism (pathways for MAPK & PPAR signaling), cell junction-related pathways (tight junction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton), which play a prominent role in maintaining the integrity of tissues, could contribute to the IMF deposition. Conclusion The results of this study identified potential candidate genes associated with chicken IMF deposition and imply that IMF deposition in chicken breast muscle is regulated and mediated not only by genes and pathways related to lipid metabolism and muscle

  12. Gene expression profiling of precursor T-cell lymphoblastic leukemia/lymphoma identifies oncogenic pathways that are potential therapeutic targets

    PubMed Central

    Lin, Ying-Wei; Aplan, Peter D.

    2007-01-01

    We compared the gene expression pattern of thymic tumors from precursor T-cell lymphoblastic lymphoma/leukemia (pre-T LBL) that arose in transgenic mice which over-expressed SCL, LMO1, or NUP98-HOXD13 (NHD13) with that of thymocytes from normal littermates. Only two genes, Ccl8 and Mrpl38, were consistently more than 4-fold over-expressed in pre-T LBL from all three genotypes analyzed, and a single gene, Prss16 was consistently under-expressed. However, we identified a number of genes, such as Cfl1, Tcra, Tcrb, Pbx3, Eif4a, Eif4b, and Cox8b that were over or under-expressed in pre-T LBL that arose in specific transgenic lines. Similar to the situation seen with human pre-T LBL, the SCL/LMO1 leukemias displayed an expression profile consistent with mature, late cortical thymocytes, whereas the NHD13 leukemias displayed an expression profile more consistent with immature thymocytes. We evaluated two of the most differentially regulated genes as potential therapeutic targets. Cfl1 was specifically over-expressed in SCL-LMO1 tumors; inactivation of Cfl1 using Okadaic acid resulted in suppression of leukemic cell growth. Overexpression of Ccl8 was a consistent finding in all 3 transgenic lines, and an antagonist for the Ccl8 receptor induced death of leukemic cell lines, suggesting a novel therapeutic approach. PMID:17429429

  13. Analysis of Gene Expression Profiling in Meningioma: Deregulated Signaling Pathways Associated with Meningioma and EGFL6 Overexpression in Benign Meningioma Tissue and Serum

    PubMed Central

    Wang, Xuanchun; Gong, Ye; Wang, Daijun; Xie, Qing; Zheng, Mingzhe; Zhou, Yu; Li, Qin; Yang, Zhen; Tang, Hailiang; Li, Yiming; Hu, Renming; Chen, Xiancheng; Mao, Ying

    2012-01-01

    Molecular mechanisms underlying the pathogenesis of meningioma are not fully elucidated. In this study, we established differential gene expression profiles between meningiomas and brain arachnoidal tissue by using Affymetrix GeneChip Human U133 Plus 2.0 Array. KEGG pathway analysis demonstrated that PI3K/Akt and TGFβ signaling pathways were up-regulated in fibroblastic meningioma, and focal adhesion and ECM-receptor interaction pathways were activated in anaplastic meningioma. EGFL6 was one of the most up-regulated genes in fibroblastic meningioma by microarray analysis. Quantitative real-time PCR demonstrated that benign meningiomas had significantly higher levels of EGFL6 mRNA than brain arachnoidal tissue and atypical and anaplastic meningiomas (P<0.001). EGFL6 gene was also highly expressed in ovarian cancer, but expressed lowly in other investigated tumors. ELISA analysis showed that patients with benign meningiomas and ovarian cancers had the highest serum levels of EGFL6 (mean concentration: 672 pg/ml for benign meningiomas, and 616 pg/ml for ovarian cancers). Healthy people and patients with other tumors, however, had low levels of serum EGFL6. In conclusion, we proposed that activation of PI3K/Akt and integrin-mediated signaling pathways was involved in the pathogenesis of benign and anaplastic meningiomas, respectively. We also presented evidence that EGFL6 was overexpressed in benign meningioma tissues and serum. PMID:23285163

  14. Analysis of gene expression profiling in meningioma: deregulated signaling pathways associated with meningioma and EGFL6 overexpression in benign meningioma tissue and serum.

    PubMed

    Wang, Xuanchun; Gong, Ye; Wang, Daijun; Xie, Qing; Zheng, Mingzhe; Zhou, Yu; Li, Qin; Yang, Zhen; Tang, Hailiang; Li, Yiming; Hu, Renming; Chen, Xiancheng; Mao, Ying

    2012-01-01

    Molecular mechanisms underlying the pathogenesis of meningioma are not fully elucidated. In this study, we established differential gene expression profiles between meningiomas and brain arachnoidal tissue by using Affymetrix GeneChip Human U133 Plus 2.0 Array. KEGG pathway analysis demonstrated that PI3K/Akt and TGFβ signaling pathways were up-regulated in fibroblastic meningioma, and focal adhesion and ECM-receptor interaction pathways were activated in anaplastic meningioma. EGFL6 was one of the most up-regulated genes in fibroblastic meningioma by microarray analysis. Quantitative real-time PCR demonstrated that benign meningiomas had significantly higher levels of EGFL6 mRNA than brain arachnoidal tissue and atypical and anaplastic meningiomas (P<0.001). EGFL6 gene was also highly expressed in ovarian cancer, but expressed lowly in other investigated tumors. ELISA analysis showed that patients with benign meningiomas and ovarian cancers had the highest serum levels of EGFL6 (mean concentration: 672 pg/ml for benign meningiomas, and 616 pg/ml for ovarian cancers). Healthy people and patients with other tumors, however, had low levels of serum EGFL6. In conclusion, we proposed that activation of PI3K/Akt and integrin-mediated signaling pathways was involved in the pathogenesis of benign and anaplastic meningiomas, respectively. We also presented evidence that EGFL6 was overexpressed in benign meningioma tissues and serum.

  15. Integration of gene expression data with network-based analysis to identify signaling and metabolic pathways regulated during the development of osteoarthritis.

    PubMed

    Olex, Amy L; Turkett, William H; Fetrow, Jacquelyn S; Loeser, Richard F

    2014-05-25

    Osteoarthritis (OA) is characterized by remodeling and degradation of joint tissues. Microarray studies have led to a better understanding of the molecular changes that occur in tissues affected by conditions such as OA; however, such analyses are limited to the identification of a list of genes with altered transcript expression, usually at a single time point during disease progression. While these lists have identified many novel genes that are altered during the disease process, they are unable to identify perturbed relationships between genes and gene products. In this work, we have integrated a time course gene expression dataset with network analysis to gain a better systems level understanding of the early events that occur during the development of OA in a mouse model. The subnetworks that were enriched at one or more of the time points examined (2, 4, 8, and 16 weeks after induction of OA) contained genes from several pathways proposed to be important to the OA process, including the extracellular matrix-receptor interaction and the focal adhesion pathways and the Wnt, Hedgehog and TGF-β signaling pathways. The genes within the subnetworks were most active at the 2 and 4 week time points and included genes not previously studied in the OA process. A unique pathway, riboflavin metabolism, was active at the 4 week time point. These results suggest that the incorporation of network-type analyses along with time series microarray data will lead to advancements in our understanding of complex diseases such as OA at a systems level, and may provide novel insights into the pathways and processes involved in disease pathogenesis.

  16. Reactive oxygen species and nuclear factor-kappa B pathway mediate high glucose-induced Pax-2 gene expression in mouse embryonic mesenchymal epithelial cells and kidney explants.

    PubMed

    Chen, Y-W; Liu, F; Tran, S; Zhu, Y; Hébert, M-J; Ingelfinger, J R; Zhang, S-L

    2006-11-01

    Diabetic mellitus confers a major risk of congenital malformations, and is associated with diabetic embryopathy, affecting multiple organs including the kidney. The DNA paired box-2 (Pax-2) gene is essential in nephrogenesis. We investigated whether high glucose alters Pax-2 gene expression and aimed to delineate its underlying mechanism(s) of action using both in vitro (mouse embryonic mesenchymal epithelial cells (MK4) and ex vivo (kidney explant from Hoxb7-green florescent protein (GFP) mice) approaches. Pax-2 gene expression was determined by reverse transcriptase-polymerase chain reaction, Western blotting, and immunofluorescent staining. A fusion gene containing the full-length 5'-flanking region of the human Pax-2 promoter linked to a luciferase reporter gene, pGL-2/hPax-2, was transfected into MK4 cells with or without dominant negative IkappaBalpha (DN IkappaBalpha) cotransfection. Fusion gene expression level was quantified by cellular luciferase activity. Reactive oxygen species (ROS) generation was measured by lucigenin assay. Embryonic kidneys from Hoxb7-GFP mice were cultured ex vivo. High D(+) glucose (25 mM), compared to normal glucose (5 mM), specifically induced Pax-2 gene expression in MK4 cells and kidney explants. High glucose-induced Pax-2 gene expression is mediated, at least in part, via ROS generation and activation of the nuclear factor kappa B signaling pathway, but not via protein kinase C, p38 mitogen-activated protein kinase (MAPK), and p44/42 MAPK signaling.

  17. The Gene Expression Status of the PI3K/AKT/mTOR Pathway in Gastric Cancer Tissues and Cell Lines.

    PubMed

    Riquelme, Ismael; Tapia, Oscar; Espinoza, Jaime A; Leal, Pamela; Buchegger, Kurt; Sandoval, Alejandra; Bizama, Carolina; Araya, Juan Carlos; Peek, Richard M; Roa, Juan Carlos

    2016-10-01

    The PI3K/AKT/mTOR pathway plays a crucial role in the regulation of multiple cellular functions including cell growth, proliferation, metabolism and angiogenesis. Emerging evidence has shown that deregulation of this pathway has a role promoting gastric cancer (GC). The aim was to assess the expression of genes involved in this pathway by qPCR in 23 tumor and 23 non-tumor gastric mucosa samples from advanced GC patients, and in AGS, MKN28 and MKN45 gastric cancer cell lines. Results showed a slight overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1, EIF4EBP1 and EIF4E genes, and a slightly decreased PTEN and TSC1 expression. In AGS, MKN28 and MKN45 cells a significant gene overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1 and EIF4E, and a significant repression of PTEN gene expression were observed. Immunoblotting showed that PI3K-β, AKT, p-AKT, PTEN, mTOR, p-mTOR, P70S6K1, p-P70S6K1, 4E-BP1, p-4E-BP1, eIF4E and p-eIF4E proteins were present in cell lines at different levels, confirming activation of this pathway in vitro. This is the first time this extensive panel of 9 genes within PI3K/AKT/mTOR pathway has been studied in GC to clarify the biological role of this pathway in GC and develop new strategies for this malignancy.

  18. Gene expression analysis reveals important pathways for drought response in leaves and roots of a wheat cultivar adapted to rainfed cropping in the Cerrado biome

    PubMed Central

    Poersch-Bortolon, Liane Balvedi; Pereira, Jorge Fernando; Nhani, Antonio; Gonzáles, Hebert Hernán Soto; Torres, Gisele Abigail Montan; Consoli, Luciano; Arenhart, Rafael Augusto; Bodanese-Zanettini, Maria Helena; Margis-Pinheiro, Márcia

    2016-01-01

    Abstract Drought limits wheat production in the Brazilian Cerrado biome. In order to search for candidate genes associated to the response to water deficit, we analyzed the gene expression profiles, under severe drought stress, in roots and leaves of the cultivar MGS1 Aliança, a well-adapted cultivar to the Cerrado. A set of 4,422 candidate genes was found in roots and leaves. The number of down-regulated transcripts in roots was higher than the up-regulated transcripts, while the opposite occurred in leaves. The number of common transcripts between the two tissues was 1,249, while 2,124 were specific to roots and 1,049 specific to leaves. Quantitative RT-PCR analysis revealed a 0.78 correlation with the expression data. The candidate genes were distributed across all chromosomes and component genomes, but a greater number was mapped on the B genome, particularly on chromosomes 3B, 5B and 2B. When considering both tissues, 116 different pathways were induced. One common pathway, among the top three activated pathways in both tissues, was starch and sucrose metabolism. These results pave the way for future marker development and selection of important genes and are useful for understanding the metabolic pathways involved in wheat drought response. PMID:27768155

  19. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects

    PubMed Central

    2012-01-01

    Background To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women. Methods Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software. Results The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934). Inflammatory pathways with complement components (inflammatory response, GO:0006954) and cytokines (chemotaxis, GO:0042330) were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1) and in genes involved in regulating lipolysis (ANGPTL4) between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia. Conclusions The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype. PMID:22471940

  20. Identification of Genes in the Phenylalanine Metabolic Pathway by Ectopic Expression of a MYB Transcription Factor in Tomato Fruit[W

    PubMed Central

    Dal Cin, Valeriano; Tieman, Denise M.; Tohge, Takayuki; McQuinn, Ryan; de Vos, Ric C.H.; Osorio, Sonia; Schmelz, Eric A.; Taylor, Mark G.; Smits-Kroon, Miriam T.; Schuurink, Robert C.; Haring, Michel A.; Giovannoni, James; Fernie, Alisdair R.; Klee, Harry J.

    2011-01-01

    Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription factor, Petunia hybrida ODORANT1, to alter Phe and phenylpropanoid metabolism in tomato (Solanum lycopersicum) fruits. Despite the importance of Phe and phenylpropanoids to plant and human health, the pathway for Phe synthesis has not been unambiguously determined. Microarray analysis of ripening fruits from transgenic and control plants permitted identification of a suite of coregulated genes involved in synthesis and further metabolism of Phe. The pattern of coregulated gene expression facilitated discovery of the tomato gene encoding prephenate aminotransferase, which converts prephenate to arogenate. The expression and biochemical data establish an arogenate pathway for Phe synthesis in tomato fruits. Metabolic profiling and 13C flux analysis of ripe fruits further revealed large increases in the levels of a specific subset of phenylpropanoid compounds. However, while increased levels of these human nutrition-related phenylpropanoids may be desirable, there were no increases in levels of Phe-derived flavor volatiles. PMID:21750236

  1. Glucose represses the lactose-galactose regulon in Kluyveromyces lactis through a SNF1 and MIG1- dependent pathway that modulates galactokinase (GAL1) gene expression.

    PubMed Central

    Dong, J; Dickson, R C

    1997-01-01

    Expression of the lactose-galactose regulon in Kluyveromyces lactis is induced by lactose or galactose and repressed by glucose. Some components of the induction and glucose repression pathways have been identified but many remain unknown. We examined the role of the SNF1 (KlSNF1) and MIG1 (KlMIG1) genes in the induction and repression pathways. Our data show that full induction of the regulon requires SNF1; partial induction occurs in a Klsnf1 -deleted strain, indicating that a KlSNF1 -independent pathway(s) also regulates induction. MIG1 is required for full glucose repression of the regulon, but there must be a KlMIG1 -independent repression pathway also. The KlMig1 protein appears to act downstream of the KlSnf1 protein in the glucose repression pathway. Most importantly, the KlSnf1-KIMig repression pathway operates by modulating KlGAL1 expression. Regulating KlGAL1 expression in this manner enables the cell to switch the regulon off in the presence of glucose. Overall, our data show that, while the Snf1 and Mig1 proteins play similar roles in regulating the galactose regulon in Saccharomyces cerevisiae and K.lactis , the way in which these proteins are integrated into the regulatory circuits are unique to each regulon, as is the degree to which each regulon is controlled by the two proteins. PMID:9278487

  2. JAK2V617F/STAT5 signaling pathway promotes cell proliferation through activation of Pituitary Tumor Transforming Gene 1 expression

    SciTech Connect

    Shen, Xu-Liang; Wei, Wu; Xu, Hong-Liang; Zhang, Mei-Xiang; Qin, Xiao-Qi; Shi, Wen-Zhi; Jiang, Zhi-Ping; Chen, Yi-Jian; Chen, Fang-Ping

    2010-08-06

    Research highlights: {yields} AG490, a member of tyrosine kinase inhibitors, could inhibit the JAK2V617F/STAT5 signaling pathway in HEL cell which harbor JAK2V617F mutation. {yields} Inhibition of the JAK2V617F/STAT5 signaling pathway inhibited the growth of HEL cells. {yields} JAK2V617F mutation promotes cell proliferation through activation of PTTG1 expression. {yields} JAK2V617F/STAT5 signaling pathway regulate PTTG1 expression at transcriptional level. -- Abstract: Gain-of-function mutations of JAK2 play crucial roles in the development of myeloproliferative neoplasms; however, the underlying downstream events of this activated signaling pathway are not fully understood. Our experiment was designed and performed to address one aspect of this issue. Here we report that AG490, a potent JAK2V617F kinase inhibitor, effectively inhibits the proliferation of HEL cells. Interestingly, AG490 also decreases the expression of PTTG1, a possible target gene of the aberrant signaling pathway, in a dose- and time-dependent manner. Furthermore, the promoter activity analyses reveal that the inhibition of the PTTG1 expression is affected at the transcriptional level. Thus, our results suggest that the JAK2V617F/STAT5 signaling pathway promotes cell proliferation through the transcriptional activation of PTTG1.

  3. Expression of the arginine deiminase pathway genes in Lactobacillus sakei is strain dependent and is affected by the environmental pH.

    PubMed

    Rimaux, T; Rivière, A; Illeghems, K; Weckx, S; De Vuyst, L; Leroy, F

    2012-07-01

    The adaptation of Lactobacillus sakei to a meat environment is reflected in its metabolic potential. For instance, the ability to utilize arginine through the arginine deiminase (ADI) pathway, resulting in additional ATP, represents a competitive benefit. In L. sakei CTC 494, the arc operon (arcABCTDR) shows the same gene order and organization as that in L. sakei 23K, the genome sequence of which is known. However, differences in relative gene expression were found, and these seemed to be optimal in different growth phases, namely, the highest relative gene expression level was in the end exponential growth phase in the case of L. sakei CTC 494 and in the mid-exponential growth phase of L. sakei 23K. Also, the environmental pH influenced the relative expression level of the arc operon, as shown for L. sakei CTC 494, with the highest relative expression level occurring at the optimal pH for growth (pH 6.0). Deviations from this optimal pH (pH 5.0 and pH 7.0) resulted in an overall decline of the relative expression level of all genes of the arc operon. Furthermore, a differential relative expression of the individual genes of the arc operon was found, with the highest relative gene expression occurring for the first two genes of the arc operon (arcA and arcB). Finally, it was shown that some L. sakei strains were able to convert agmatine into putrescine, suggesting an operational agmatine deiminase pathway in these strains, a metabolic trait that is undesirable in meat fermentations. This study shows that this metabolic trait is most probably encoded by a previously erroneously annotated second putative arc operon.

  4. Expression of the Arginine Deiminase Pathway Genes in Lactobacillus sakei Is Strain Dependent and Is Affected by the Environmental pH

    PubMed Central

    Rimaux, T.; Rivière, A.; Illeghems, K.; Weckx, S.; De Vuyst, L.

    2012-01-01

    The adaptation of Lactobacillus sakei to a meat environment is reflected in its metabolic potential. For instance, the ability to utilize arginine through the arginine deiminase (ADI) pathway, resulting in additional ATP, represents a competitive benefit. In L. sakei CTC 494, the arc operon (arcABCTDR) shows the same gene order and organization as that in L. sakei 23K, the genome sequence of which is known. However, differences in relative gene expression were found, and these seemed to be optimal in different growth phases, namely, the highest relative gene expression level was in the end exponential growth phase in the case of L. sakei CTC 494 and in the mid-exponential growth phase of L. sakei 23K. Also, the environmental pH influenced the relative expression level of the arc operon, as shown for L. sakei CTC 494, with the highest relative expression level occurring at the optimal pH for growth (pH 6.0). Deviations from this optimal pH (pH 5.0 and pH 7.0) resulted in an overall decline of the relative expression level of all genes of the arc operon. Furthermore, a differential relative expression of the individual genes of the arc operon was found, with the highest relative gene expression occurring for the first two genes of the arc operon (arcA and arcB). Finally, it was shown that some L. sakei strains were able to convert agmatine into putrescine, suggesting an operational agmatine deiminase pathway in these strains, a metabolic trait that is undesirable in meat fermentations. This study shows that this metabolic trait is most probably encoded by a previously erroneously annotated second putative arc operon. PMID:22544250

  5. Gene expression profiling of common signal transduction pathways affected by rBMSCs/F92A-Cav1 in the lungs of rat with pulmonary arterial hypertension.

    PubMed

    Chen, Haiying; Yang, Hongli; Xu, Chong; Yue, Hongmei; Xia, Peng; Strappe, Pádraig Michael; Wang, Lei; Pan, Li; Tang, Wenqiang; Chen, Shuangfeng; Wang, Lexin

    2016-10-01

    Pulmonary arterial hypertension (PAH) is associated with sustained vasoconstriction, inflammation and suppressed apoptosis of smooth muscle cells. Our previous studies have found that rat bone marrow-derived mesenchymal stem cells (rBMSCs) transduced with a mutant caveolin-1(F92A-Cav1) could enhance endothelial nitric oxide synthase (eNOS) activity and improve pulmonary vascular remodeling, but the potential mechanism is not yet fully explored. The present study was to investigate the gene expression profile upon rBMSCs/F92A-Cav1delivered to PAH rat to evaluate the role of F92A-Cav1 in its regulation. PAH was induced with monocrotaline (MCT, 60mg/kg) prior to delivery of lentiviral vector transduced rBMSCs expressing Cav1 or F92A-Cav1. Gene expression profiling was performed using Rat Signal Transduction PathwayFinder array. The expression changes of 84 key genes representing 10 signal transduction pathways in rat following rBMSCs/F92A-Cav1 treatment was examined. Screening with the Rat Signal Transduction PathwayFinder R(2) PCR Array system and subsequent western blot, immunohistochemistry or real time PCR analysis revealed that F92A-Cav1 modified rBMSCs can inhibit the inflammation factors (TNF-alpha, Icam1 and C/EBPdelta), pro-proliferation genes (c-Myc, Bcl2a1d, Notch1and Hey2), oxidative stress gene (Hmox1) and activate cell cycle arrested gene Cdkn1a, ameliorating inflammation and inhibiting cell proliferation in PAH rat. rBMSCs/F92A-Cav1 inhibits inflammation and cell proliferation by regulating signaling pathways that related to inflammation, proliferation, cell cycle and oxidative stress. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Network analysis of gene expression in mice provides new evidence of involvement of the mTOR pathway in antipsychotic-induced extrapyramidal symptoms.

    PubMed

    Mas, S; Gassó, P; Boloc, D; Rodriguez, N; Mármol, F; Sánchez, J; Bernardo, M; Lafuente, A

    2016-06-01

    To identify potential candidate genes for future pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we used gene expression arrays to analyze changes induced by risperidone in mice strains with different susceptibility to EPS. We proposed a systems biology analytical approach that combined the identification of gene co-expression modules related to AP treatment, the construction of protein-protein interaction networks with genes included in identified modules and finally, gene set enrichment analysis of constructed networks. In response to risperidone, mice strain with susceptibility to develop EPS showed downregulation of genes involved in the mammalian target of rapamycin (mTOR) pathway and biological processes related to this pathway. Moreover, we also showed differences in the phosphorylation pattern of the ribosomal protein S6 (rpS6), which is a major downstream effector of mTOR. The present study provides new evidence of the involvement of the mTOR pathway in AP-induced EPS and offers new and valuable markers for pharmacogenetic studies.

  7. Peroxisome proliferator-activated receptors-α and -γ, and cAMP-mediated pathways, control retinol-binding protein-4 gene expression in brown adipose tissue.

    PubMed

    Rosell, Meritxell; Hondares, Elayne; Iwamoto, Sadahiko; Gonzalez, Frank J; Wabitsch, Martin; Staels, Bart; Olmos, Yolanda; Monsalve, Maria; Giralt, Marta; Iglesias, Roser; Villarroya, Francesc

    2012-03-01

    Retinol binding protein-4 (RBP4) is a serum protein involved in the transport of vitamin A. It is known to be produced by the liver and white adipose tissue. RBP4 release by white fat has been proposed to induce insulin resistance. We analyzed the regulation and production of RBP4 in brown adipose tissue. RBP4 gene expression is induced in brown fat from mice exposed to cold or treated with peroxisome proliferator-activated receptor (PPAR) agonists. In brown adipocytes in culture, norepinephrine, cAMP, and activators of PPARγ and PPARα induced RBP4 gene expression and RBP4 protein release. The induction of RBP4 gene expression by norepinephrine required intact PPAR-dependent pathways, as evidenced by impaired response of the RBP4 gene expression to norepinephrine in PPARα-null brown adipocytes or in the presence of inhibitors of PPARγ and PPARα. PPARγ and norepinephrine can also induce the RBP4 gene in white adipocytes, and overexpression of PPARα confers regulation by this PPAR subtype to white adipocytes. The RBP4 gene promoter transcription is activated by cAMP, PPARα, and PPARγ. This is mediated by a PPAR-responsive element capable of binding PPARα and PPARγ and required also for activation by cAMP. The induction of the RBP4 gene expression by norepinephrine in brown adipocytes is protein synthesis dependent and requires PPARγ-coactivator-1-α, which acts as a norepinephine-induced coactivator of PPAR on the RBP4 gene. We conclude that PPARγ- and PPARα-mediated signaling controls RBP4 gene expression and releases in brown adipose tissue, and thermogenic activation induces RBP4 gene expression in brown fat through mechanisms involving PPARγ-coactivator-1-α coactivation of PPAR signaling.

  8. The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays a collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos.

    PubMed Central

    Papalopulu, N; Lovell-Badge, R; Krumlauf, R

    1991-01-01

    In this paper we describe experiments that detail the response of murine Hox-2 genes to cellular differentiation and retinoic acid in cell culture. Hox-2 genes are transiently activated in differentiating ES cells even in the absence of retinoic acid (RA), indicating that their induction is a normal aspect of differentiation. Furthermore, in the continuous presence of RA F9 teratocarcinoma cells show a differential ability to maintain Hox-2 expression depending upon whether the cells follow a visceral or parietal endoderm pathway. These data suggest a clear dependence of Hox-2 expression on the degree and type of differentiation in different cells. However, RA also has dramatic differentiation independent effects on Hox-2 regulation. In ES cells the levels of Hox expression are greatly enhanced by exposure to RA, and in F9 cells of the visceral or parietal phenotype the continuous presence of RA is required to maintain these high levels. Nuclear run-on experiments illustrate that Hox-2 genes are active in F9 stem cells and that a large portion of the RA induction is mediated by post-transcriptional mechanisms. Therefore RA exerts its effects on Hox-2 expression by upregulating or modulating genes which are already active, rather than by turning-on silent genes. All nine Hox-2 genes are induced in F9 cells by RA and there is a direct correlation (collinearity) between gene order and the relative dose response of each gene to RA. In Xenopus embryos treated with RA, homologues of the Hox-2 genes also displayed a temporal and dose response collinearity with gene organisation. Together these findings suggest that the collinear response to RA is highly conserved in vertebrates and combined with the ability of RA to modify expression during cellular differentiation could be an important feature of the Hox-2 cluster itself used to generate the spatially-restricted patterns of gene expression in embryogenesis. Images PMID:1682879

  9. Temporal gene expression profile of human precursor B leukemia cells induced by adhesion receptor: identification of pathways regulating B-cell survival.

    PubMed

    Astier, Anne Laurence; Xu, Ronghui; Svoboda, Marek; Hinds, Esther; Munoz, Olivier; de Beaumont, Rosalie; Crean, Colin Daniel; Gabig, Theodore; Freedman, Arnold Stephen

    2003-02-01

    The physical interactions between B cells and stromal cells from the lymphoid tissue microenvironment are critical to the survival of normal and malignant B cells. They are principally mediated by integrins expressed on B cells and counterreceptors on stromal cells. Specifically, alpha4beta1 integrin engagement rescues B cells from physiological or drug-induced apoptosis. Therefore, in order to understand the mechanisms by which integrins prevent apoptosis in leukemia B cells, we compared the temporal gene expression profiles induced by beta1-integrin ligation with fibronectin (Fn) or adhesion by poly-L-Lysine in serum-starved precursor B leukemia cells. Among the 38 selected differentially expressed genes, 6 genes involved in adhesion (VAV2, EPB41L1, CORO1A), proliferation (FRAP1, CCT4), and intercellular communication (GJB3) were validated by real-time quantitative polymerase chain reaction (RT-Q-PCR). Gene expression modulation could also be validated at the protein level for 5 other genes. We show that integrin stimulation up-regulated FBI-1 expression but inhibited CD79a, Requiem, c-Fos, and caspase 7 induction when the cells underwent apoptosis. We further demonstrate that Fn stimulation also inhibits caspase 3 activation but increases XIAP and survivin expression. Moreover, integrin stimulation also prevents caspase activation induced by doxorubicin. Therefore, we identified genes modulated by adhesion of human precursor B leukemia cells that regulate proliferation and apoptosis, highlighting new pathways that might provide insights into future therapy aiming at targeting apoptosis of leukemia cells.

  10. Functional analysis of the relationship between intestinal microbiota and the expression of hepatic genes and pathways during the course of liver regeneration

    PubMed Central

    Liu, Hui-Xin; Rocha, Clarissa Santos; Dandekar, Satya; Wan, Yu-Jui Yvonne

    2015-01-01

    Background & Aims The pathways regulating liver regeneration have been extensively studied within the liver. However, the signaling contribution derived from the gut microbiota to liver regeneration is poorly understood. Methods Microbiota and expression of hepatic genes in regenerating livers obtained from mice 0 hour to 9 days post 2/3 partial hepatectomy (PHx) were temporally profiled to establish their interactive relationships. Results PHx led to rapid changes in gut microbiota that was reflected in increased abundance of Bacteroidetes S24-7 and Rikenellaceae and decreased abundance of Firmicutes Clostridiales, Lachnospiraceae, and Ruminococcaceae. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to infer biological functional changes of the shifted microbiota. RNA-sequencing data revealed 6,125 genes with more than 2 folds difference in their expression levels during regeneration. By analyzing their expression pattern, six uniquely expressed patterns were observed. In addition, there were significant correlations between hepatic gene expression profiles and shifted bacterial populations during regeneration. Moreover, hepatic metabolism and immune function were closely associated with the abundance of Ruminococcacea, Lachnospiraceae, and S24-7. Bile acid (BA) profile was analyzed because bacterial enzymes produce BAs that significantly impact hepatocyte proliferation. The data revealed that specific bacteria were closely associated with the concentration of certain BAs and expression of hepatic genes. Conclusions The presented data established, for the first time, an intimate relationship between intestinal microbiota and the expression of hepatic genes in regenerating livers. PMID:26453969

  11. Prostaglandin pathway gene expression in human placenta, amnion and choriodecidua is differentially affected by preterm and term labour and by uterine inflammation.

    PubMed

    Phillips, Robert J; Fortier, Michel A; López Bernal, Andrés

    2014-07-22

    Elucidation of the biochemical pathways involved in activation of preterm and term human labour would facilitate the development of effective management and inform judgements regarding the necessity for preterm tocolysis and post-term induction. Prostaglandins act at all stages of human reproduction, and are potentially activators of labour. Expression of 15 genes involved in prostaglandin synthesis, transport and degradation was measured by qPCR using tissue samples from human placenta, amnion and choriodecidua at preterm and full-term vaginal and caesarean delivery. Cellular localisation of eight prostaglandin pathway proteins was determined by immunohistochemistry. Expression of prostaglandin pathway genes was differentially affected by factors including gestational age at delivery, and the incidence and duration of labour. Chorioamnionitis/deciduitis was associated with upregulation of PTGS2 (prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)), along with the inflammatory genes IL8 (interleukin 8), S100A8 (S100 calcium binding protein A8) and TLR2 (toll-like receptor 2), in amnion and choriodecidua, and with downregulation of CBR1 (carbonyl reductase 1) and HPGD (hydroxyprostaglandin dehydrogenase 15-(NAD)) in choriodecidua. Protein localisation differed greatly between the various maternal and fetal cell types. Preterm and term labour are associated with distinct prostaglandin pathway expression profiles; inflammation provokes specific changes, unrelated to the presence of labour; spontaneous and induced term labour are indistinguishable.

  12. De Novo Transcriptome and Expression Profile Analysis to Reveal Genes and Pathways Potentially Involved in Cantharidin Biosynthesis in the Blister Beetle Mylabris cichorii

    PubMed Central

    Huang, Yi; Wang, Zhongkang; Zha, Shenfang; Wang, Yu; Jiang, Wei; Liao, Yufeng; Song, Zhangyong; Qi, Zhaoran; Yin, Youping

    2016-01-01

    The dried body of Mylabris cichorii is well-known Chinese traditional medicine. The sesquiterpenoid cantharidin, which is secreted mostly by adult male beetles, has recently been used as an anti-cancer drug. However, little is known about the mechanisms of cantharidin biosynthesis. Furthermore, there is currently no genomic or transcriptomic information for M. cichorii. In this study, we performed de novo assembly transcriptome of M. cichorii using the Illumina Hiseq2000. A single run produced 9.19 Gb of clean nucleotides comprising 29,247 sequences, including 23,739 annotated sequences (about 81%). We also constructed two expression profile libraries (20–25 day-old adult males and 20–25 day-old adult females) and discovered 2,465 significantly differentially-expressed genes. Putative genes and pathways involved in the biosynthesis of cantharidin were then characterized. We also found that cantharidin biosynthesis in M. cichorii might only occur via the mevalonate (MVA) pathway, not via the methylerythritol 4-phosphate/deoxyxylulose 5-phosphate (MEP/DOXP) pathway or a mixture of these. Besides, we considered that cantharidin biosynthesis might be related to the juvenile hormone (JH) biosynthesis or degradation. The results of transcriptome and expression profiling analysis provide a comprehensive sequence resource for M. cichorii that could facilitate the in-depth study of candidate genes and pathways involved in cantharidin biosynthesis, and may thus help to improve our understanding of the mechanisms of cantharidin biosynthesis in blister beetles. PMID:26752526

  13. Prostaglandin pathway gene expression in human placenta, amnion and choriodecidua is differentially affected by preterm and term labour and by uterine inflammation

    PubMed Central

    2014-01-01

    Background Elucidation of the biochemical pathways involved in activation of preterm and term human labour would facilitate the development of effective management and inform judgements regarding the necessity for preterm tocolysis and post-term induction. Prostaglandins act at all stages of human reproduction, and are potentially activators of labour. Methods Expression of 15 genes involved in prostaglandin synthesis, transport and degradation was measured by qPCR using tissue samples from human placenta, amnion and choriodecidua at preterm and full-term vaginal and caesarean delivery. Cellular localisation of eight prostaglandin pathway proteins was determined by immunohistochemistry. Results Expression of prostaglandin pathway genes was differentially affected by factors including gestational age at delivery, and the incidence and duration of labour. Chorioamnionitis/deciduitis was associated with upregulation of PTGS2 (prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)), along with the inflammatory genes IL8 (interleukin 8), S100A8 (S100 calcium binding protein A8) and TLR2 (toll-like receptor 2), in amnion and choriodecidua, and with downregulation of CBR1 (carbonyl reductase 1) and HPGD (hydroxyprostaglandin dehydrogenase 15-(NAD)) in choriodecidua. Protein localisation differed greatly between the various maternal and fetal cell types. Conclusions Preterm and term labour are associated with distinct prostaglandin pathway expression profiles; inflammation provokes specific changes, unrelated to the presence of labour; spontaneous and induced term labour are indistinguishable. PMID:25048443