Science.gov

Sample records for gene expression pathways

  1. Pathway network inference from gene expression data

    PubMed Central

    2014-01-01

    Background The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. PMID:25032889

  2. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer

    PubMed Central

    Myers, Jennifer S.; von Lersner, Ariana K.; Robbins, Charles J.; Sang, Qing-Xiang Amy

    2015-01-01

    Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The “transforming growth factor-beta signaling” and “Ran regulation of mitotic spindle formation” pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran) for investigation in prostate cancer pathogenesis. PMID:26683658

  3. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  4. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  5. Genes, environment and gene expression in colon tissue: a pathway approach to determining functionality.

    PubMed

    Slattery, Martha L; Pellatt, Daniel F; Wolff, Roger K; Lundgreen, Abbie

    2016-01-01

    Genetic and environmental factors have been shown to work together to alter cancer risk. In this study we evaluate previously identified gene and lifestyle interactions in a candidate pathway that were associated with colon cancer risk to see if these interactions altered gene expression. We analyzed non-tumor RNA-seq data from 144 colon cancer patients who had genotype, recent cigarette smoking, diet, body mass index (BMI), and recent aspirin/non-steroidal anti-inflammatory use data. Using a false discovery rate of 0.1, we evaluated differential gene expression between high and low levels of lifestyle exposure and genotypes using DESeq2. Thirteen pathway genes and 17 SNPs within those genes were associated with altered expression of other genes in the pathway. BMI, NSAIDs use and dietary components of the oxidative balance score (OBS) also were associated with altered gene expression. SNPs previously identified as interacting with these lifestyle factors, altered expression of pathway genes. NSAIDs interacted with 10 genes (15 SNPs) within those genes to alter expression of 28 pathway genes; recent cigarette smoking interacted with seven genes (nine SNPs) to alter expression of 27 genes. BMI interacted with FLT1, KDR, SEPN1, TERT, TXNRD2, and VEGFA to alter expression of eight genes. Three genes (five SNPs) interacted with OBS to alter expression of 12 genes. These data provide support for previously identified lifestyle and gene interactions associated with colon cancer in that they altered expression of key pathway genes. The need to consider lifestyle factors in conjunction with genetic factors is illustrated.

  6. Expression data on liver metabolic pathway genes and proteins

    PubMed Central

    Raja Gopal Reddy, Mooli; Pavan Kumar, Chodisetti; Mahesh, Malleswarapu; Sravan Kumar, Manchiryala; Jeyakumar, Shanmugam M.

    2016-01-01

    Here, we present the expression data on various metabolic pathways of liver with special emphasize on lipid and carbohydrate metabolism and long chain polyunsaturated fatty acid (PUFA) synthesis, both at gene and protein levels. The data were obtained to understand the effect of vitamin A deficiency on the expression status (both gene and protein levels) of some of the key factors involved in lipogenesis, fatty acid oxidation, triglyceride secretion, long chain PUFA, resolvin D1 synthesis, glucose transport and glycogen synthesis of liver, using modern biology tools, such as quantitative real-time PCR (RT-PCR) and immunoblotting techniques. This data article provides the supporting evidence to the article “Vitamin A deficiency suppresses high fructose-induced triglyceride synthesis and elevates resolvin D1 levels” [1] and therefore, these data may be referred back, for comprehensive understanding and interpretations and for future studies. PMID:26909377

  7. Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques – Tampere Vascular Study

    PubMed Central

    Sulkava, Miska; Raitoharju, Emma; Levula, Mari; Seppälä, Ilkka; Lyytikäinen, Leo-Pekka; Mennander, Ari; Järvinen, Otso; Zeitlin, Rainer; Salenius, Juha-Pekka; Illig, Thomas; Klopp, Norman; Mononen, Nina; Laaksonen, Reijo; Kähönen, Mika; Oksala, Niku; Lehtimäki, Terho

    2017-01-01

    Cardiovascular diseases due to atherosclerosis are the leading cause of death globally. We aimed to investigate the potentially altered gene and pathway expression in advanced peripheral atherosclerotic plaques in comparison to healthy control arteries. Gene expression analysis was performed (Illumina HumanHT-12 version 3 Expression BeadChip) for 68 advanced atherosclerotic plaques (15 aortic, 29 carotid and 24 femoral plaques) and 28 controls (left internal thoracic artery (LITA)) from Tampere Vascular Study. Dysregulation of individual genes was compared to healthy controls and between plaques from different arterial beds and Ingenuity pathway analysis was conducted on genes with a fold change (FC) > ±1.5 and false discovery rate (FDR) < 0.05. 787 genes were significantly differentially expressed in atherosclerotic plaques. The most up-regulated genes were osteopontin and multiple MMPs, and the most down-regulated were cell death-inducing DFFA-like effector C and A (CIDEC, CIDEA) and apolipoprotein D (FC > 20). 156 pathways were differentially expressed in atherosclerotic plaques, mostly inflammation-related, especially related with leukocyte trafficking and signaling. In artery specific plaque analysis 50.4% of canonical pathways and 41.2% GO terms differentially expressed were in common for all three arterial beds. Our results confirm the inflammatory nature of advanced atherosclerosis and show novel pathway differences between different arterial beds. PMID:28128285

  8. Gene expression profiling of epithelial ovarian cancer reveals key genes and pathways associated with chemotherapy resistance.

    PubMed

    Zhang, M; Luo, S C

    2016-01-22

    The aim of this study is to analyze gene expression data to identify key genes and pathways associated with resistance to platinum-based chemotherapy in epithelial ovarian cancer (EOC) and to improve clinical treatment strategies. The gene expression data set was downloaded from Gene Expression Omnibus and included 12 chemotherapy-resistant EOC samples and 16 chemotherapy-sensitive EOC samples. A differential analysis was performed to screen out differentially expressed genes (DEGs). A functional enrichment analysis was conducted for the DEGs using the database for annotation, visualization, and integration discovery. A protein-protein interaction (PPI) network was constructed with information from the human protein reference database. Pathway-pathway interactions were determined with a test based on the hypergeometric distribution. A total of 1564 DEGs were identified in chemotherapy-sensitive EOC, including 654 upregulated genes and 910 downregulated genes. The top three upregulated genes were HIST1H3G, AKT3, and RTN3, while the top three downregulated genes were NBLA00301, TRIM62, and EPHA5. A Gene Ontology enrichment analysis showed that cell adhesion, biological adhesion, and intracellular signaling cascades were significantly enriched in the DEGs. A KEGG pathway enrichment analysis revealed that the calcium, mitogen-activated protein kinase, and B cell receptor signaling pathways were significantly over-represented in the DEGs. A PPI network containing 101 interactions was acquired. The top three hub genes were RAC1, CAV1, and BCL2. Five modules were identified from the PPI network. Taken together, these findings could advance the understanding of the molecular mechanisms underlying intrinsic chemotherapy resistance in EOC.

  9. Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis.

    PubMed

    Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas

    2017-01-21

    We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.

  10. Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis

    PubMed Central

    Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas

    2017-01-01

    We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues. PMID:28117714

  11. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    SciTech Connect

    Hermsen, Sanne A.B.; Pronk, Tessa E.; Brandhof, Evert-Jan van den; Ven, Leo T.M. van der; Piersma, Aldert H.

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  12. Insulin signal transduction pathways and insulin-induced gene expression.

    PubMed

    Keeton, Adam B; Amsler, Maggie O; Venable, Derwei Y; Messina, Joseph L

    2002-12-13

    Insulin regulates metabolic activity, gene transcription, and cell growth by modulating the activity of several intracellular signaling pathways. Insulin activation of one mitogen-activated protein kinase cascade, the MEK/ERK kinase cascade, is well described. However, the effect of insulin on the parallel p38 pathway is less well understood. The present work examines the effect of inhibiting the p38 signaling pathway by use of specific inhibitors, either alone or in combination with insulin, on the activation of ERK1/2 and on the regulation of gene transcription in rat hepatoma cells. Activation of ERK1/2 was induced by insulin and was dependent on the activation of MEK1, the kinase upstream of ERK in this pathway. Treatment of cells with p38 inhibitors also induced ERK1/2 activation/phosphorylation. The addition of p38 inhibitors followed by insulin addition resulted in a greater than additive activation of ERK1/2. The two genes studied, c-Fos and Pip92, are immediate-early genes that are dependent on the ERK1/2 pathway for insulin-regulated induction because the insulin effect was inhibited by pretreatment with a MEK1 inhibitor. The addition of p38 inhibitors induced transcription of both genes in a dose-dependent manner, and insulin stimulation of both genes was enhanced by prior treatment with p38 inhibitors. The ability of the p38 inhibitors to induce ERK1/2 and gene transcription, both alone and in combination with insulin, was abolished by prior inhibition of MEK1. These data suggest possible cross-talk between the p38 and ERK1/2 signaling pathways and a potential role of p38 in insulin signaling.

  13. A PSO-Based Approach for Pathway Marker Identification From Gene Expression Data.

    PubMed

    Mandal, Monalisa; Mondal, Jyotirmay; Mukhopadhyay, Anirban

    2015-09-01

    In this article, a new and robust pathway activity inference scheme is proposed from gene expression data using Particle Swarm Optimization (PSO). From microarray gene expression data, the corresponding pathway information of the genes are collected from a public database. For identifying the pathway markers, the expression values of each pathway consisting of genes, termed as pathway activity, are summarized. To measure the goodness of a pathway activity vector, t-score is widely used in the existing literature. The weakness of existing techniques for inferring pathway activity is that they intend to consider all the member genes of a pathway. But in reality, all the member genes may not be significant to the corresponding pathway. Therefore, those genes, which are responsible in the corresponding pathway, should be included only. Motivated by this, in the proposed method, using PSO, important genes with respect to each pathway are identified. The objective is to maximize the average t-score. For the pathway activities inferred from different percentage of significant pathways, the average absolute t -scores are plotted. In addition, the top 50% pathway markers are evaluated using 10-fold cross validation and its performance is compared with that of other existing techniques. Biological relevance of the results is also studied.

  14. Gene expression analysis reveals the dysregulation of immune and metabolic pathways in Alzheimer's disease

    PubMed Central

    Li, Zhiyan; Xu, Panpan; Yao, Lifen

    2016-01-01

    In recent years, several pathway analyses of genome-wide association studies reported the involvement of metabolic and immune pathways in Alzheimer's disease (AD). Until now, the exact mechanisms of these pathways in AD are still unclear. Here, we conducted a pathway analysis of a whole genome AD case-control expression dataset (n=41, 25 AD cases and 16 controls) from the human temporal cortex tissue. Using the differently expressed AD genes, we identified significant KEGG pathways related to metabolism and immune processes. Using the up- and down- regulated AD gene list, we further found up-regulated AD gene were significantly enriched in immune and metabolic pathways. We further compare the immune and metabolic KEGG pathways from the expression dataset with those from previous GWAS datasets, and found that most of these pathways are shared in both GWAS and expression datasets. PMID:27732949

  15. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: individual gene expression and pathway regulation.

    PubMed

    Hermsen, Sanne A B; Pronk, Tessa E; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Piersma, Aldert H

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, d-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity.

  16. Identification of hub genes and pathways associated with retinoblastoma based on co-expression network analysis.

    PubMed

    Wang, Q L; Chen, X; Zhang, M H; Shen, Q H; Qin, Z M

    2015-12-08

    The objective of this paper was to identify hub genes and pathways associated with retinoblastoma using centrality analysis of the co-expression network and pathway-enrichment analysis. The co-expression network of retinoblastoma was constructed by weighted gene co-expression network analysis (WGCNA) based on differentially expressed (DE) genes, and clusters were obtained through the molecular complex detection (MCODE) algorithm. Degree centrality analysis of the co-expression network was performed to explore hub genes present in retinoblastoma. Pathway-enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Validation of hub gene expression in retinoblastoma was performed by reverse transcription-polymerase chain reaction (RT-PCR) analysis. The co-expression network based on 221 DE genes between retinoblastoma and normal controls consisted of 210 nodes and 3965 edges, and 5 clusters of the network were evaluated. By assessing the centrality analysis of the co-expression network, 21 hub genes were identified, such as SNORD115-41, RASSF2, and SNORD115-44. According to RT-PCR analysis, 16 of the 21 hub genes were differently expressed, including RASSF2 and CDCA7, and 5 were not differently expressed in retinoblastoma compared to normal controls. Pathway analysis showed that genes in 2 clusters were enriched in 3 pathways: purine metabolism, p53 signaling pathway, and melanogenesis. In this study, we successfully identified 16 hub genes and 3 pathways associated with retinoblastoma, which may be potential biomarkers for early detection and therapy for retinoblastoma.

  17. Characterization of Differentially Expressed Genes Involved in Pathways Associated with Gastric Cancer

    PubMed Central

    Li, Hao; Yu, Beiqin; Li, Jianfang; Su, Liping; Yan, Min; Zhang, Jun; Li, Chen; Zhu, Zhenggang; Liu, Bingya

    2015-01-01

    To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR) value was < 0.01, P-value was <0.01 and the fold change (FC) was >2. Subsequently, Gene Ontology (GO) categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease. PMID:25928635

  18. Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes

    PubMed Central

    Dadgostar, Hajir; Zarnegar, Brian; Hoffmann, Alexander; Qin, Xiao-Feng; Truong, Uyen; Rao, Govinda; Baltimore, David; Cheng, Genhong

    2002-01-01

    CD40/CD40L interaction is essential for multiple biological events in T dependent humoral immune responses, including B cell survival and proliferation, germinal center and memory B cell formation, and antibody isotype switching and affinity maturation. By using high-density microarrays, we examined gene expression in primary mouse B lymphocytes after multiple time points of CD40L stimulation. In addition to genes involved in cell survival and growth, which are also induced by other mitogens such as lipopolysaccharide, CD40L specifically activated genes involved in germinal center formation and T cell costimulatory molecules that facilitate T dependent humoral immunity. Next, by examining the roles of individual CD40-activated signal transduction pathways, we dissected the overall CD40-mediated response into genes independently regulated by the individual pathways or collectively by all pathways. We also found that gene down-regulation is a significant part of the overall response and that the p38 pathway plays an important role in this process, whereas the NF-κB pathway is important for the up-regulation of primary response genes. Our finding of overlapping independent control of gene expression modules by different pathways suggests, in principle, that distinct biological behaviors that depend on distinct gene expression subsets can be manipulated by targeting specific signaling pathways. PMID:11830667

  19. Altered Pathway Analyzer: A gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways

    PubMed Central

    Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh

    2017-01-01

    Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397

  20. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    PubMed

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer.

  1. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus

    PubMed Central

    Devi, Kamalakshi; Mishra, Surajit K.; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K.; Sen, Priyabrata

    2016-01-01

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop. PMID:26877149

  2. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus.

    PubMed

    Devi, Kamalakshi; Mishra, Surajit K; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K; Sen, Priyabrata

    2016-02-15

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop.

  3. A Pathway Based Classification Method for Analyzing Gene Expression for Alzheimer’s Disease Diagnosis

    PubMed Central

    Voyle, Nicola; Keohane, Aoife; Newhouse, Stephen; Lunnon, Katie; Johnston, Caroline; Soininen, Hilkka; Kloszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon; Hodges, Angela; Kiddle, Steven; Dobson, Richard JB.

    2015-01-01

    Background: Recent studies indicate that gene expression levels in blood may be able to differentiate subjects with Alzheimer’s disease (AD) from normal elderly controls and mild cognitively impaired (MCI) subjects. However, there is limited replicability at the single marker level. A pathway-based interpretation of gene expression may prove more robust. Objectives: This study aimed to investigate whether a case/control classification model built on pathway level data was more robust than a gene level model and may consequently perform better in test data. The study used two batches of gene expression data from the AddNeuroMed (ANM) and Dementia Case Registry (DCR) cohorts. Methods: Our study used Illumina Human HT-12 Expression BeadChips to collect gene expression from blood samples. Random forest modeling with recursive feature elimination was used to predict case/control status. Age and APOE ɛ4 status were used as covariates for all analysis. Results: Gene and pathway level models performed similarly to each other and to a model based on demographic information only. Conclusions: Any potential increase in concordance from the novel pathway level approach used here has not lead to a greater predictive ability in these datasets. However, we have only tested one method for creating pathway level scores. Further, we have been able to benchmark pathways against genes in datasets that had been extensively harmonized. Further work should focus on the use of alternative methods for creating pathway level scores, in particular those that incorporate pathway topology, and the use of an endophenotype based approach. PMID:26484910

  4. The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation.

    PubMed

    Rohde, John R; Cardenas, Maria E

    2003-01-01

    The Tor pathway mediates cell growth in response to nutrient availability, in part by inducing ribosomal protein (RP) gene expression via an unknown mechanism. Expression of RP genes coincides with recruitment of the Esa1 histone acetylase to RP gene promoters. We show that inhibition of Tor with rapamycin releases Esa1 from RP gene promoters and leads to histone H4 deacetylation without affecting promoter occupancy by Rap1 and Abf1. Genetic and biochemical evidence identifies Rpd3 as the major histone deacetylase responsible for reversing histone H4 acetylation at RP gene promoters in response to Tor inhibition by rapamycin or nutrient limitation. Our results illustrate that the Tor pathway links nutrient sensing with histone acetylation to control RP gene expression and cell growth.

  5. Impairment of the ubiquitin-proteasome pathway in RPE alters the expression of inflammation related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway (UPP) plays an important role in regulating gene expression. Retinal pigment epithelial cells (RPE) are a major source of ocular inflammatory cytokines. In this work we determined the relationship between impairment of the UPP and expression of inflammation-related f...

  6. Pathways enrichment analysis for differentially expressed genes in squamous lung cancer.

    PubMed

    Qian, Liqiang; Luo, Qingquan; Zhao, Xiaojing; Huang, Jia

    2014-01-01

    Squamous lung cancer (SQLC) is a common type of lung cancer, but its oncogenesis mechanism is not so clear. The aim of this study was to screen the potential pathways changed in SQLC and elucidate the mechanism of it. Published microarray data of GSE3268 series was downloaded from Gene Expression Omnibus (GEO). Significance analysis of microarrays was performed using software R, and differentially expressed genes (DEGs) were harvested. The functions and pathways of DEGs were mapped in Gene Otology and KEGG pathway database, respectively. A total of 2961 genes were filtered as DEGs between normal and SQLC cells. Cell cycle and metabolism were the mainly changed functions of SQLC cells. Meanwhile genes such as MCM, RFC, FEN1, and POLD may induce SQLC through DNA replication pathway, and genes such as PTTG1, CCNB1, CDC6, and PCNA may be involved in SQLC through cell cycle pathway. It is demonstrated that pathway analysis is useful in the identification of target genes in SQLC.

  7. The DAF-7 TGF-β signaling pathway regulates chemosensory receptor gene expression in C. elegans

    PubMed Central

    Nolan, Katherine M.; Sarafi-Reinach, Trina R.; Horne, Jennifer G.; Saffer, Adam M.; Sengupta, Piali

    2002-01-01

    Regulation of chemoreceptor gene expression in response to environmental or developmental cues provides a mechanism by which animals can alter their sensory responses. Here we demonstrate a role for the daf-7 TGF-β pathway in the regulation of expression of a subset of chemoreceptor genes in Caenorhabditis elegans. We describe a novel role of this pathway in maintaining receptor gene expression in the adult and show that the DAF-4 type II TGF-β receptor functions cell-autonomously to modulate chemoreceptor expression. We also find that the alteration of receptor gene expression in the ASI chemosensory neurons by environmental signals, such as levels of a constitutively produced pheromone, may be mediated via a DAF-7-independent pathway. Receptor gene expression in the ASI and ASH sensory neurons appears to be regulated via distinct mechanisms. Our results suggest that the expression of individual chemoreceptor genes in C. elegans is subject to multiple modes of regulation, thereby ensuring that animals exhibit the responses most appropriate for their developmental stage and environmental conditions. PMID:12464635

  8. Pathway-Informed Classification System (PICS) for Cancer Analysis Using Gene Expression Data

    PubMed Central

    Young, Michael R; Craft, David L

    2016-01-01

    We introduce Pathway-Informed Classification System (PICS) for classifying cancers based on tumor sample gene expression levels. PICS is a computational method capable of expeditiously elucidating both known and novel biological pathway involvement specific to various cancers and uses that learned pathway information to separate patients into distinct classes. The method clearly separates a pan-cancer dataset by tissue of origin and also sub-classifies individual cancer datasets into distinct survival classes. Gene expression values are collapsed into pathway scores that reveal which biological activities are most useful for clustering cancer cohorts into subtypes. Variants of the method allow it to be used on datasets that do and do not contain noncancerous samples. Activity levels of all types of pathways, broadly grouped into metabolic, cellular processes and signaling, and immune system, are useful for separating the pan-cancer cohort. In the clustering of specific cancer types, certain pathway types become more valuable depending on the site being studied. For lung cancer, signaling pathways dominate; for pancreatic cancer, signaling and metabolic pathways dominate; and for melanoma, immune system pathways are the most useful. This work suggests the utility of pathway-level genomic analysis and points in the direction of using pathway classification for predicting the efficacy and side effects of drugs and radiation. PMID:27486299

  9. Crosstalk pathway inference using topological information and biclustering of gene expression data.

    PubMed

    Dussaut, Julieta S; Gallo, Cristian A; Cecchini, Rocío L; Carballido, Jessica A; Ponzoni, Ignacio

    2016-12-01

    Detection of crosstalks among pathways is a challenging task, which requires the identification of different types of interactions associated with cellular processes. A common strategy used in bioinformatics consists in extrapolating pathway associations from the pairwise analysis of some genes related to them, using gene expression data and topological information. PET, the method proposed in this paper, goes a step further by incorporating a strategy for the detection of correlation across conditions between differentially expressed genes based on biclustering analysis. In order to evaluate the performance of this new approach, a comparison with two recently published algorithms was carried out. The methods were contrasted in the inference of pathway associations from Alzheimer disease datasets, where the new proposal presents a higher crosstalk discoveries' rate. Finally, the analysis of the biological relevance of the pathway associations inferred by PET has shown the soundness of the extracted knowledge.

  10. Silent no more: Endogenous small RNA pathways promote gene expression.

    PubMed

    Wedeles, Christopher J; Wu, Monica Z; Claycomb, Julie M

    2014-01-01

    Endogenous small RNA pathways related to RNA interference (RNAi) play a well-documented role in protecting host genomes from the invasion of foreign nucleic acids. In C. elegans, the PIWI type Argonaute, PRG-1, through an association with 21U-RNAs, mediates a genome surveillance process by constantly scanning the genome for potentially deleterious invading elements. Upon recognition of foreign nucleic acids, PRG-1 initiates a cascade of cytoplasmic and nuclear events that results in heritable epigenetic silencing of these transcripts and their coding genomic loci. If the PRG-1/21U-RNA genome surveillance pathway has the capacity to target most of the C. elegans transcriptome, what mechanisms exist to protect endogenous transcripts from being silenced by this pathway? In this commentary, we discuss three recent publications that implicate the CSR-1 small RNA pathway in the heritable activation of germline transcripts, propose a model as to why not all epialleles behave similarly, and touch on the practical implications of these findings.

  11. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure.

    PubMed

    Thomas, Reuben; Hubbard, Alan E; McHale, Cliona M; Zhang, Luoping; Rappaport, Stephen M; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z; Jinot, Jennifer; Sonawane, Babasaheb R; Smith, Martyn T

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from <1 ppm to >10 ppm) compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering) exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings.

  12. Characterization of Changes in Gene Expression and Biochemical Pathways at Low Levels of Benzene Exposure

    PubMed Central

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from <1 ppm to >10 ppm) compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering) exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings. PMID:24786086

  13. Cloning and Expression Analysis of MEP Pathway Enzyme-encoding Genes in Osmanthus fragrans

    PubMed Central

    Xu, Chen; Li, Huogeng; Yang, Xiulian; Gu, Chunsun; Mu, Hongna; Yue, Yuanzheng; Wang, Lianggui

    2016-01-01

    The 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway is responsible for the biosynthesis of many crucial secondary metabolites, such as carotenoids, monoterpenes, plastoquinone, and tocopherols. In this study, we isolated and identified 10 MEP pathway genes in the important aromatic plant sweet osmanthus (Osmanthus fragrans). Multiple sequence alignments revealed that 10 MEP pathway genes shared high identities with other reported proteins. The genes showed distinctive expression profiles in various tissues, or at different flower stages and diel time points. The qRT-PCR results demonstrated that these genes were highly expressed in inflorescences, which suggested a tissue-specific transcript pattern. Our results also showed that OfDXS1, OfDXS2, and OfHDR1 had a clear diurnal oscillation pattern. The isolation and expression analysis provides a strong foundation for further research on the MEP pathway involved in gene function and molecular evolution, and improves our understanding of the molecular mechanism underlying this pathway in plants. PMID:27690108

  14. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness.

    PubMed

    Mikhail, Cyril; Vaucher, Angélique; Jimenez, Sonia; Tafti, Mehdi

    2017-01-24

    Wakefulness is accompanied by experience-dependent synaptic plasticity and an increase in activity-regulated gene transcription. Wake-induced genes are certainly markers of neuronal activity and may also directly regulate the duration of and need for sleep. We stimulated murine cortical cultures with the neuromodulatory signals that are known to control wakefulness in the brain and found that norepinephrine alone or a mixture of these neuromodulators induced activity-regulated gene transcription. Pharmacological inhibition of the various signaling pathways involved in the regulation of gene expression indicated that the extracellular signal-regulated kinase (ERK) pathway is the principal one mediating the effects of waking neuromodulators on gene expression. In mice, ERK phosphorylation in the cortex increased and decreased with wakefulness and sleep. Whole-body or cortical neuron-specific deletion of Erk1 or Erk2 significantly increased the duration of wakefulness in mice, and pharmacological inhibition of ERK phosphorylation decreased sleep duration and increased the duration of wakefulness bouts. Thus, this signaling pathway, which is highly conserved from Drosophila to mammals, is a key pathway that links waking experience-induced neuronal gene expression to sleep duration and quality.

  15. Computational identification of altered metabolism using gene expression and metabolic pathways.

    PubMed

    Nam, Hojung; Lee, Jinwon; Lee, Doheon

    2009-07-01

    Understanding altered metabolism is an important issue because altered metabolism is often revealed as a cause or an effect in pathogenesis. It has also been shown to be an important factor in the manipulation of an organism's metabolism in metabolic engineering. Unfortunately, it is not yet possible to measure the concentration levels of all metabolites in the genome-wide scale of a metabolic network; consequently, a method that infers the alteration of metabolism is beneficial. The present study proposes a computational method that identifies genome-wide altered metabolism by analyzing functional units of KEGG pathways. As control of a metabolic pathway is accomplished by altering the activity of at least one rate-determining step enzyme, not all gene expressions of enzymes in the pathway demonstrate significant changes even if the pathway is altered. Therefore, we measure the alteration levels of a metabolic pathway by selectively observing expression levels of significantly changed genes in a pathway. The proposed method was applied to two strains of Saccharomyces cerevisiae gene expression profiles measured in very high-gravity (VHG) fermentation. The method identified altered metabolic pathways whose properties are related to ethanol and osmotic stress responses which had been known to be observed in VHG fermentation because of the high sugar concentration in growth media and high ethanol concentration in fermentation products. With the identified altered pathways, the proposed method achieved best accuracy and sensitivity rates for the Red Star (RS) strain compared to other three related studies (gene-set enrichment analysis (GSEA), significance analysis of microarray to gene set (SAM-GS), reporter metabolite), and for the CEN.PK 113-7D (CEN) strain, the proposed method and the GSEA method showed comparably similar performances.

  16. Meta-Analysis of Gene Expression Profiles in Acute Promyelocytic Leukemia Reveals Involved Pathways

    PubMed Central

    Jalili, Mahdi; Salehzadeh-Yazdi, Ali; Mohammadi, Saeed; Yaghmaie, Marjan; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran

    2017-01-01

    Background: Acute promyelocytic leukemia (APL) is a unique subtype of acute leukemia. APL is a curable disease; however, drug resistance, early mortality, disease relapse and treatment-related complications remain challenges in APL patient management. One issue underlying these challenges is that the molecular mechanisms of the disease are not sufficiently understood. Materials and Methods: In this study, we performed a meta-analysis of gene expression profiles derived from microarray experiments and explored the background of disease by functional and pathway analysis. Results: Our analysis revealed a gene signature with 406 genes that are up or down-regulated in APL. The pathway analysis determined that MAPK pathway and its involved elements such as JUN gene and AP-1 play important roles in APL pathogenesis along with insulin-like growth factor–binding protein-7. Conclusion: The results of this meta-analysis could be useful for developing more effective therapy strategies and new targets for diagnosis and drugs. PMID:28286608

  17. Macrophage gene expression associated with remodeling of the prepartum rat cervix: microarray and pathway analyses.

    PubMed

    Dobyns, Abigail E; Goyal, Ravi; Carpenter, Lauren Grisham; Freeman, Tom C; Longo, Lawrence D; Yellon, Steven M

    2015-01-01

    As the critical gatekeeper for birth, prepartum remodeling of the cervix is associated with increased resident macrophages (Mφ), proinflammatory processes, and extracellular matrix degradation. This study tested the hypothesis that expression of genes unique to Mφs characterizes the prepartum from unremodeled nonpregnant cervix. Perfused cervix from prepartum day 21 postbreeding (D21) or nonpregnant (NP) rats, with or without Mφs, had RNA extracted and whole genome microarray analysis performed. By subtractive analyses, expression of 194 and 120 genes related to Mφs in the cervix from D21 rats were increased and decreased, respectively. In both D21 and NP groups, 158 and 57 Mφ genes were also more or less up- or down-regulated, respectively. Mφ gene expression patterns were most strongly correlated within groups and in 5 major clustering patterns. In the cervix from D21 rats, functional categories and canonical pathways of increased expression by Mφ gene related to extracellular matrix, cell proliferation, differentiation, as well as cell signaling. Pathways were characteristic of inflammation and wound healing, e.g., CD163, CD206, and CCR2. Signatures of only inflammation pathways, e.g., CSF1R, EMR1, and MMP12 were common to both D21 and NP groups. Thus, a novel and complex balance of Mφ genes and clusters differentiated the degraded extracellular matrix and cellular genomic activities in the cervix before birth from the unremodeled state. Predicted Mφ activities, pathways, and networks raise the possibility that expression patterns of specific genes characterize and promote prepartum remodeling of the cervix for parturition at term and with preterm labor.

  18. Alternations in genes expression of pathway signaling in esophageal tissue with atresia: results of expression microarray profiling.

    PubMed

    Smigiel, R; Lebioda, A; Blaszczyński, M; Korecka, K; Czauderna, P; Korlacki, W; Jakubiak, A; Bednarczyk, D; Maciejewski, H; Wizinska, P; Sasiadek, M M; Patkowski, D

    2015-04-01

    Esophageal atresia (EA) is a congenital defect of the esophagus involving the interruption of the esophagus with or without connection to the trachea (tracheoesophageal fistula [TEF]). EA/TEF may occur as an isolated anomaly, may be part of a complex of congenital defects (syndromic), or may develop within the context of a known syndrome or association. The molecular mechanisms underlying the development of EA are poorly understood. It is supposed that a combination of multigenic factors and epigenetic modification of genes play a role in its etiology. The aim of our work was to assess the human gene expression microarray study in esophageal tissue samples. Total RNA was extracted from 26 lower pouches of esophageal tissue collected during thoracoscopic EA repair in neonates with the isolated (IEA) and the syndromic form (SEA). We identified 787 downregulated and 841 upregulated transcripts between SEA and controls, and about 817 downregulated and 765 upregulated probes between IEA and controls. Fifty percent of these genes showed differential expression specific for either IEA or SEA. Functional pathway analysis revealed substantial enrichment for Wnt and Sonic hedgehog, as well as cytokine and chemokine signaling pathways. Moreover, we performed reverse transcription polymerase chain reaction study in a group of SHH and Wnt pathways genes with differential expression in microarray profiling to confirm the microarray expression results. We verified the altered expression in SFRP2 gene from the Wnt pathway as well as SHH, GLI1, GLI2, and GLI3 from the Sonic hedgehog pathway. The results suggest an important role of these pathways and genes for EA/TEF etiology.

  19. Partial Reconstruction of the Ergot Alkaloid Pathway by Heterologous Gene Expression in Aspergillus nidulans

    PubMed Central

    Ryan, Katy L.; Moore, Christopher T.; Panaccione, Daniel G.

    2013-01-01

    Ergot alkaloids are pharmaceutically and agriculturally important secondary metabolites produced by several species of fungi. Ergot alkaloid pathways vary among different fungal lineages, but the pathway intermediate chanoclavine-I is evolutionarily conserved among ergot alkaloid producers. At least four genes, dmaW, easF, easE, and easC, are necessary for pathway steps prior to chanoclavine-I; however, the sufficiency of these genes for chanoclavine-I synthesis has not been established. A fragment of genomic DNA containing dmaW, easF, easE, and easC was amplified from the human-pathogenic, ergot alkaloid-producing fungus Aspergillus fumigatus and transformed into Aspergillus nidulans, a model fungus that does not contain any of the ergot alkaloid synthesis genes. HPLC and LC-MS analyses demonstrated that transformed A. nidulans strains produced chanoclavine-I and an earlier pathway intermediate. Aspergillus nidulans transformants containing dmaW, easF, and either easE or easC did not produce chanoclavine-I but did produce an early pathway intermediate and, in the case of the easC transformant, an additional ergot alkaloid-like compound. We conclude that dmaW, easF, easE, and easC are sufficient for the synthesis of chanoclavine-I in A. nidulans and expressing ergot alkaloid pathway genes in A. nidulans provides a novel approach to understanding the early steps in ergot alkaloid synthesis. PMID:23435153

  20. Incorporating Motif Analysis into Gene Co-expression Networks Reveals Novel Modular Expression Pattern and New Signaling Pathways

    PubMed Central

    Ma, Shisong; Shah, Smit; Bohnert, Hans J.; Snyder, Michael; Dinesh-Kumar, Savithramma P.

    2013-01-01

    Understanding of gene regulatory networks requires discovery of expression modules within gene co-expression networks and identification of promoter motifs and corresponding transcription factors that regulate their expression. A commonly used method for this purpose is a top-down approach based on clustering the network into a range of densely connected segments, treating these segments as expression modules, and extracting promoter motifs from these modules. Here, we describe a novel bottom-up approach to identify gene expression modules driven by known cis-regulatory motifs in the gene promoters. For a specific motif, genes in the co-expression network are ranked according to their probability of belonging to an expression module regulated by that motif. The ranking is conducted via motif enrichment or motif position bias analysis. Our results indicate that motif position bias analysis is an effective tool for genome-wide motif analysis. Sub-networks containing the top ranked genes are extracted and analyzed for inherent gene expression modules. This approach identified novel expression modules for the G-box, W-box, site II, and MYB motifs from an Arabidopsis thaliana gene co-expression network based on the graphical Gaussian model. The novel expression modules include those involved in house-keeping functions, primary and secondary metabolism, and abiotic and biotic stress responses. In addition to confirmation of previously described modules, we identified modules that include new signaling pathways. To associate transcription factors that regulate genes in these co-expression modules, we developed a novel reporter system. Using this approach, we evaluated MYB transcription factor-promoter interactions within MYB motif modules. PMID:24098147

  1. Comprehensive gene expression atlas for the Arabidopsis MAP kinase signalling pathways.

    PubMed

    Menges, Margit; Dóczi, Róbert; Okrész, László; Morandini, Piero; Mizzi, Luca; Soloviev, Mikhail; Murray, James A H; Bögre, László

    2008-01-01

    * Mitogen activated protein kinase (MAPK) pathways are signal transduction modules with layers of protein kinases having c. 120 genes in Arabidopsis, but only a few have been linked experimentally to functions. * We analysed microarray expression data for 114 MAPK signalling genes represented on the ATH1 Affymetrix arrays; determined their expression patterns during development, and in a wide range of time-course microarray experiments for their signal-dependent transcriptional regulation and their coregulation with other signalling components and transcription factors. * Global expression correlation of the MAPK genes with each of the represented 21 692 Arabidopsis genes was determined by calculating Pearson correlation coefficients. To group MAPK signalling genes based on similarities in global regulation, we performed hierarchical clustering on the pairwise correlation values. This should allow inferring functional information from well-studied MAPK components to functionally uncharacterized ones. Statistical overrepresentation of specific gene ontology (GO) categories in the gene lists showing high expression correlation values with each of the MAPK components predicted biological themes for the gene functions. * The combination of these methods provides functional information for many uncharacterized MAPK genes, and a framework for complementary future experimental dissection of the function of this complex family.

  2. T-Cell Proliferation Involving the CD28 Pathway is Associated with Cyclosporine-Resistant Interleukin 2 Gene Expression

    DTIC Science & Technology

    1987-12-01

    Security Classification) T-CELL PROLIFERATION INVOLVING THE CD28 PATHWAY IS ASSOCIATED WITH CYCLOSPORINE-RESISTANT INTERLEUKIN 2 GENE EXPRESSION 12. PERSONAL...Cyclosporins,. T Lymphocytes) r’jh ,,.. "’’ .. - | Gene Expression 19. ABSTRACT (Continue on reverse if necessary and identify by block num’ber) DTIC...American Society tor Microbiology T-Cell Proliferation Involving the CD28 Pathway Is Associated with Cyclosporine-Resistant Interleukin 2 Gene Expression

  3. Gene Expression Profiling Identifies Molecular Pathways Associated with Collagen VI Deficiency and Provides Novel Therapeutic Targets

    PubMed Central

    Paco, Sonia; Kalko, Susana G.; Jou, Cristina; Rodríguez, María A.; Corbera, Joan; Muntoni, Francesco; Feng, Lucy; Rivas, Eloy; Torner, Ferran; Gualandi, Francesca; Gomez-Foix, Anna M.; Ferrer, Anna; Ortez, Carlos; Nascimento, Andrés; Colomer, Jaume; Jimenez-Mallebrera, Cecilia

    2013-01-01

    Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered. PMID:24223098

  4. Differentially expressed genes and interacting pathways in bladder cancer revealed by bioinformatic analysis.

    PubMed

    Shen, Yinzhou; Wang, Xuelei; Jin, Yongchao; Lu, Jiasun; Qiu, Guangming; Wen, Xiaofei

    2014-10-01

    The goal of this study was to identify cancer-associated differentially expressed genes (DEGs), analyze their biological functions and investigate the mechanism(s) of cancer occurrence and development, which may provide a theoretical foundation for bladder cancer (BCa) therapy. We downloaded the mRNA expression profiling dataset GSE13507 from the Gene Expression Omnibus database; the dataset includes 165 BCa and 68 control samples. T‑tests were used to identify DEGs. To further study the biological functions of the identified DEGs, we performed a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Next, we built a network of potentially interacting pathways to study the synergistic relationships among DEGs. A total of 12,105 genes were identified as DEGs, of which 5,239 were upregulated and 6,866 were downregulated in BCa. The DEGs encoding activator protein 1 (AP-1), nuclear factor of activated T-cells (NFAT) proteins, nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and interleukin (IL)-10 were revealed to participate in the significantly enriched immune pathways that were downregulated in BCa. KEGG enrichment analysis revealed 7 significantly upregulated and 47 significantly downregulated pathways enriched among the DEGs. We found a crosstalk interaction among a total of 44 pathways in the network of BCa-affected pathways. In conclusion, our results show that BCa involves dysfunctions in multiple systems. Our study is expected to pave ways for immune and inflammatory research and provide molecular insights for cancer therapy.

  5. Gene-Expression Profiling Suggests Impaired Signaling via the Interferon Pathway in Cstb-/- Microglia

    PubMed Central

    Körber, Inken; Katayama, Shintaro; Einarsdottir, Elisabet; Krjutškov, Kaarel; Hakala, Paula; Kere, Juha; Lehesjoki, Anna-Elina; Joensuu, Tarja

    2016-01-01

    Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1, OMIM254800) is an autosomal recessive neurodegenerative disorder characterized by stimulus-sensitive and action-activated myoclonus, tonic-clonic epileptic seizures, and ataxia. Loss-of-function mutations in the gene encoding the cysteine protease inhibitor cystatin B (CSTB) underlie EPM1. The deficiency of CSTB in mice (Cstb-/- mice) generates a phenotype resembling the symptoms of EPM1 patients and is accompanied by microglial activation at two weeks of age and an upregulation of immune system-associated genes in the cerebellum at one month of age. To shed light on molecular pathways and processes linked to CSTB deficiency in microglia we characterized the transcriptome of cultured Cstb-/- mouse microglia using microarray hybridization and RNA sequencing (RNA-seq). The gene expression profiles obtained with these two techniques were in good accordance and not polarized to either pro- or anti-inflammatory status. In Cstb-/- microglia, altogether 184 genes were differentially expressed. Of these, 33 genes were identified by both methods. Several interferon-regulated genes were weaker expressed in Cstb-/- microglia compared to control. This was confirmed by quantitative real-time PCR of the transcripts Irf7 and Stat1. Subsequently, we explored the biological context of CSTB deficiency in microglia more deeply by functional enrichment and canonical pathway analysis. This uncovered a potential role for CSTB in chemotaxis, antigen-presentation, and in immune- and defense response-associated processes by altering JAK-STAT pathway signaling. These data support and expand the previously suggested involvement of inflammatory processes to the disease pathogenesis of EPM1 and connect CSTB deficiency in microglia to altered expression of interferon-regulated genes. PMID:27355630

  6. Reduced mycorrhizal colonization (rmc) tomato mutant lacks expression of SymRK signaling pathway genes

    PubMed Central

    Nair, Aswathy; Bhargava, Sujata

    2012-01-01

    Comparison of the expression of 13 genes involved in arbuscular mycorrhizal (AM) symbiosis was performed in a wild type tomato (Solanum lycopersicum cv 76R) and its reduced mycorrhizal colonization mutant rmc in response to colonization with Glomus fasiculatum. Four defense-related genes were induced to a similar extent in the mutant and wild type AM colonized plants, indicating a systemic response to AM colonization. Genes related to nutrient exchange between the symbiont partners showed higher expression in the AM roots of wild type plants than the mutant plants, which correlated with their arbuscular frequency. A symbiosis receptor kinase that is involved in both nodulation and AM symbiosis was not expressed in the rmc mutant. The fact that some colonization was observed in rmc was suggestive of the existence of an alternate colonization signaling pathway for AM symbiosis in this mutant. PMID:23221680

  7. AllR Controls the Expression of Streptomyces coelicolor Allantoin Pathway Genes

    PubMed Central

    Navone, Laura; Macagno, Juan Pablo; Licona-Cassani, Cuauhtémoc; Marcellin, Esteban; Nielsen, Lars K.; Gramajo, Hugo

    2015-01-01

    Streptomyces species are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized in Streptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR. In vitro studies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in the allR mutant, the hyi gene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production. PMID:26187964

  8. Grafting of Beads into Developing Chicken Embryo Limbs to Identify Signal Transduction Pathways Affecting Gene Expression.

    PubMed

    Mohammed, Rabeea H; Sweetman, Dylan

    2016-01-17

    Using chicken embryos it is possible to test directly the effects of either growth factors or specific inhibitors of signaling pathways on gene expression and activation of signal transduction pathways. This technique allows the delivery of signaling molecules at precisely defined developmental stages for specific times. After this embryos can be harvested and gene expression examined, for example by in situ hybridization, or activation of signal transduction pathways observed with immunostaining. In this video heparin beads soaked in FGF18 or AG 1-X2 beads soaked in U0126, a MEK inhibitor, are grafted into the limb bud in ovo. This shows that FGF18 induces expression of MyoD and ERK phosphorylation and both endogenous and FGF18 induced MyoD expression is inhibited by U0126. Beads soaked in a retinoic acid antagonist can potentiate premature MyoD induction by FGF18. This approach can be used with a wide range of different growth factors and inhibitors and is easily adapted to other tissues in the developing embryo.

  9. ArrayXPath: mapping and visualizing microarray gene-expression data with integrated biological pathway resources using Scalable Vector Graphics.

    PubMed

    Chung, Hee-Joon; Kim, Mingoo; Park, Chan Hee; Kim, Jihoon; Kim, Ju Han

    2004-07-01

    Biological pathways can provide key information on the organization of biological systems. ArrayXPath (http://www.snubi.org/software/ArrayXPath/) is a web-based service for mapping and visualizing microarray gene-expression data for integrated biological pathway resources using Scalable Vector Graphics (SVG). By integrating major bio-databases and searching pathway resources, ArrayXPath automatically maps different types of identifiers from microarray probes and pathway elements. When one inputs gene-expression clusters, ArrayXPath produces a list of the best matching pathways for each cluster. We applied Fisher's exact test and the false discovery rate (FDR) to evaluate the statistical significance of the association between a cluster and a pathway while correcting the multiple-comparison problem. ArrayXPath produces Javascript-enabled SVGs for web-enabled interactive visualization of pathways integrated with gene-expression profiles.

  10. Airway gene expression of IL-1 pathway mediators predicts exacerbation risk in obstructive airway disease

    PubMed Central

    Baines, Katherine J; Fu, Juan-juan; McDonald, Vanessa M; Gibson, Peter G

    2017-01-01

    Background Exacerbations of asthma and COPD are a major cause of morbidity and mortality and are responsible for significant health care costs. This study further investigates interleukin (IL)-1 pathway activation and its relationship with exacerbations of asthma and COPD. Methods In this prospective cohort study, 95 participants with stable asthma (n=35) or COPD (n=60) were recruited and exacerbations recorded over the following 12 months. Gene expressions of IL-1 pathway biomarkers, including the IL-1 receptors (IL1R1, IL1R2, and IL1RN), and signaling molecules (IRAK2, IRAK3, and PELI1), were measured in sputum using real-time quantitative polymerase chain reaction. Mediators were compared between the frequent (≥2 exacerbations in the 12 months) and infrequent exacerbators, and the predictive relationships investigated using receiver operating characteristic curves and area under the curve (AUC) values. Results Of the 95 participants, 89 completed the exacerbation follow-up, where 30 participants (n=22 COPD, n=8 asthma) had two or more exacerbations. At the baseline visit, expressions of IRAK2, IRAK3, PELI1, and IL1R1 were elevated in participants with frequent exacerbations of both asthma and COPD combined and separately. In the combined population, sputum gene expression of IRAK3 (AUC=75.4%; P<0.001) was the best predictor of future frequent exacerbations, followed by IL1R1 (AUC=72.8%; P<0.001), PELI1 (AUC=71.2%; P<0.001), and IRAK2 (AUC=68.6; P=0.004). High IL-1 pathway gene expression was associated with frequent prior year exacerbations and correlated with the number and severity of exacerbations. Conclusion The upregulation of IL-1 pathway mediators is associated with frequent exacerbations of obstructive airway disease. Further studies should investigate these mediators as both potential diagnostic biomarkers predicting at-risk patients and novel treatment targets. PMID:28223794

  11. Gene expression profiling provides insights into pathways of oxaliplatin-related sinusoidal obstruction syndrome in humans.

    PubMed

    Rubbia-Brandt, Laura; Tauzin, Sébastien; Brezault, Catherine; Delucinge-Vivier, Céline; Descombes, Patrick; Dousset, Bertand; Majno, Pietro E; Mentha, Gilles; Terris, Benoit

    2011-04-01

    Sinusoidal obstruction syndrome (SOS; formerly veno-occlusive disease) is a well-established complication of hematopoietic stem cell transplantation, pyrrolizidine alkaloid intoxication, and widely used chemotherapeutic agents such as oxaliplatin. It is associated with substantial morbidity and mortality. Pathogenesis of SOS in humans is poorly understood. To explore its molecular mechanisms, we used Affymetrix U133 Plus 2.0 microarrays to investigate the gene expression profile of 11 human livers with oxaliplatin-related SOS and compared it to 12 matched controls. Hierarchical clustering analysis showed that profiles from SOS and controls formed distinct clusters. To identify functional networks and gene ontologies, data were analyzed by the Ingenuity Pathway Analysis Tool. A total of 913 genes were differentially expressed in SOS: 613 being upregulated and 300 downregulated. Reverse transcriptase-PCR results showed excellent concordance with microarray data. Pathway analysis showed major gene upregulation in six pathways in SOS compared with controls: acute phase response (notably interleukin 6), coagulation system (Serpine1, THBD, and VWF), hepatic fibrosis/hepatic stellate cell activation (COL3a1, COL3a2, PDGF-A, TIMP1, and MMP2), and oxidative stress. Angiogenic factors (VEGF-C) and hypoxic factors (HIF1A) were upregulated. The most significant increase was seen in CCL20 mRNA. In conclusion, oxaliplatin-related SOS can be readily distinguished according to morphologic characteristics but also by a molecular signature. Global gene analysis provides new insights into mechanisms underlying chemotherapy-related hepatotoxicity in humans and potential targets relating to its diagnosis, prevention, and treatment. Activation of VEGF and coagulation (vWF) pathways could partially explain at a molecular level the clinical observations that bevacizumab and aspirin have a preventive effect in SOS.

  12. Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age.

    PubMed

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-03-09

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors.

  13. Pathway-Based Factor Analysis of Gene Expression Data Produces Highly Heritable Phenotypes That Associate with Age

    PubMed Central

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-01-01

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824

  14. Integrated analysis of differentially expressed genes and pathways in triple-negative breast cancer

    PubMed Central

    Peng, Cancan; Ma, Wenli; Xia, Wei; Zheng, Wenling

    2017-01-01

    Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by an aggressive phenotype and reduced survival. The aim of the present study was to investigate the molecular mechanisms involved in the carcinogenesis of TNBC and to identify novel target molecules for therapy. The differentially expressed genes (DEGs) in TNBC and normal adjacent tissue were assessed by analyzing the GSE41970 microarray data using Qlucore Omics Explorer, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes. Pathway enrichment analyses for DEGs were performed using the Database for Annotation, Visualization and Integrated Discovery online resource. A protein-protein interaction (PPI) network was constructed using Search Tool for the Retrieval of Interacting Genes, and subnetworks were analyzed by ClusterONE. The PPI network and subnetworks were visualized using Cytoscape software. A total of 121 DEGs were obtained, of which 101 were upregulated and 20 were downregulated. The upregulated DEGs were significantly enriched in 14 pathways and 83 GO biological processes, while the downregulated DEGs were significantly enriched in 18 GO biological processes. The PPI network with 118 nodes and 1,264 edges was constructed and three subnetworks were extracted from the entire network. The significant hub DEGs with high degrees were identified, including TP53, glyceraldehyde-3-phosphate dehydrogenase, cyclin D1, HRAS and proliferating cell nuclear antigen, which were predominantly enriched in the cell cycle pathway and pathways in cancer. A number of critical genes and pathways were revealed to be associated with TNBC. The present study may provide an improved understanding of the pathogenesis of TNBC and contribute to the development of therapeutic targets for TNBC. PMID:28075450

  15. Gene Expression of Proresolving Lipid Mediator Pathways Is Associated With Clinical Outcomes in Trauma Patients

    PubMed Central

    Orr, Sarah K.; Butler, Kathryn L.; Hayden, Douglas; Tompkins, Ronald G.; Serhan, Charles N.; Irimia, Daniel

    2015-01-01

    Objectives Specialized proresolving lipid mediators have emerged as powerful modulators of inflammation and activators of resolution. Animal models show significant benefits of specialized proresolving lipid mediators on survival and wound healing after major burn trauma. To date, no studies have investigated specialized proresolving lipid mediators and their relation to other lipid mediator pathways in humans after trauma. Here we determine if patients with poor outcomes after trauma have dysregulated lipid mediator pathways. Design We studied blood leukocyte expression of 18 genes critical to the synthesis, signaling, and metabolism of specialized proresolving lipid mediators and proinflammatory lipid mediators, and we correlated these expression patterns with clinical outcomes in trauma patients from the Inflammation and the Host Response to Injury study. Setting Seven U.S. medical trauma centers. Subjects Ninety-six patients enrolled in the Inflammation and Host Response to Injury study, after blunt trauma and unambiguously classified as having uncomplicated or complicated recoveries. Twenty-eight healthy volunteers were enrolled as controls. Interventions None. Measurements and Main Results Within each patient, the 18 genes of interest were used to calculate scores for distinct families of lipid mediators, including resolvins, lipoxins, prostaglandins, and leukotrienes, as well as leukotriene to resolvin score ratios. Scores were built using a simple weighting scheme, taking into consideration both dependent and independent activities of enzymes and receptors responsible for lipid mediator biosynthesis and function. Individually, ALOX12, PTGS2, PTGES, PTGDS, ALOX5AP, LTA4H, FPR2, PTGER2, LTB4R, HPGD, PTGR1, and CYP4F3 were expressed differentially over 28 days posttrauma between patients with uncomplicated and complicated recoveries (p < 0.05). When all genes were combined into scores, patients with uncomplicated recoveries had differential and higher resolvin

  16. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    PubMed

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  17. Multiple Signaling Pathways in Gene Expression during Sugar Starvation. Pharmacological Analysis of din Gene Expression in Suspension-Cultured Cells of Arabidopsis1

    PubMed Central

    Fujiki, Yuki; Ito, Masaki; Nishida, Ikuo; Watanabe, Akira

    2000-01-01

    We have identified many dark-inducible (din) genes that are expressed in Arabidopsis leaves kept in the dark. In the present study we addressed the question of how plant cells sense the depletion of sugars, and how sugar starvation triggers din gene expression in suspension-cultured cells of Arabidopsis. Depletion of sucrose in the medium triggered marked accumulation of din transcripts. Suppression of din gene expression by 2-deoxy-Glc, and a non-suppressive effect exerted by 3-O-methyl-Glc, suggested that sugar-repressible expression of din genes is mediated through the phosphorylation of hexose by hexokinase, as exemplified in the repression of photosynthetic genes by sugars. We have further shown that the signaling triggered by sugar starvation involves protein phosphorylation and dephosphorylation events, and have provided the first evidence that multiple pathways of protein dephosphorylation exist in sugar starvation-induced gene expression. An inhibitor of serine/threonine protein kinase, K-252a, inhibited din gene expression in sugar-depleted cells. Okadaic acid, which may preferentially inhibit type 2A protein phosphatases over type 1, enhanced the transcript levels of all din genes, except din6 and din10, under sugar starvation. Conversely, a more potent inhibitor of type 1 and 2A protein phosphatases, calyculin A, increased transcripts from din2 and din9, but decreased those from other din genes, in sugar-depleted cells. On the other hand, calyculin A, but not okadaic acid, completely inhibited the gene expression of chlorophyll a/b-binding protein under sugar starvation. These results indicate that multiple signaling pathways, mediated by different types of protein phosphatases, regulate gene expression during sugar starvation. PMID:11080291

  18. Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis

    PubMed Central

    Lederer, Carsten W; Torrisi, Antonietta; Pantelidou, Maria; Santama, Niovi; Cavallaro, Sebastiano

    2007-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by the progressive degeneration of motoneurons in brain and spinal cord. Despite identification of disease-linked mutations, the diversity of processes involved and the ambiguity of their relative importance in ALS pathogenesis still represent a major impediment to disease models as a basis for effective therapies. Moreover, the human motor cortex, although critical to ALS pathology and physiologically altered in most forms of the disease, has not been screened systematically for therapeutic targets. Results By whole-genome expression profiling and stringent significance tests we identify genes and gene groups de-regulated in the motor cortex of patients with sporadic ALS, and interpret the role of individual candidate genes in a framework of differentially expressed pathways. Our findings emphasize the importance of defense responses and cytoskeletal, mitochondrial and proteasomal dysfunction, reflect reduced neuronal maintenance and vesicle trafficking, and implicate impaired ion homeostasis and glycolysis in ALS pathogenesis. Additionally, we compared our dataset with publicly available data for the SALS spinal cord, and show a high correlation of changes linked to the diseased state in the SALS motor cortex. In an analogous comparison with data for the Alzheimer's disease hippocampus we demonstrate a low correlation of global changes and a moderate correlation for changes specifically linked to the SALS diseased state. Conclusion Gene and sample numbers investigated allow pathway- and gene-based analyses by established error-correction methods, drawing a molecular portrait of the ALS motor cortex that faithfully represents many known disease features and uncovers several novel aspects of ALS pathology. Contrary to expectations for a tissue under oxidative stress, nuclear-encoded mitochondrial genes are uniformly down-regulated. Moreover, the down-regulation of mitochondrial and glycolytic

  19. Gene expression and pathway analysis of CTNNB1 in cancer and stem cells

    PubMed Central

    Tanabe, Shihori; Kawabata, Takeshi; Aoyagi, Kazuhiko; Yokozaki, Hiroshi; Sasaki, Hiroki

    2016-01-01

    AIM To investigate β-catenin (CTNNB1) signaling in cancer and stem cells, the gene expression and pathway were analyzed using bioinformatics. METHODS The expression of the catenin β 1 (CTNNB1) gene, which codes for β-catenin, was analyzed in mesenchymal stem cells (MSCs) and gastric cancer (GC) cells. Beta-catenin signaling and the mutation of related proteins were also analyzed using the cBioPortal for Cancer Genomics and HOMology modeling of Complex Structure (HOMCOS) databases. RESULTS The expression of the CTNNB1 gene was up-regulated in GC cells compared to MSCs. The expression of EPH receptor A8 (EPHA8), synovial sarcoma translocation chromosome 18 (SS18), interactor of little elongation complex ELL subunit 1 (ICE1), patched 1 (PTCH1), mutS homolog 3 (MSH3) and caspase recruitment domain family member 11 (CARD11) were also shown to be altered in GC cells in the cBioPortal for Cancer Genomics analysis. 3D complex structures were reported for E-cadherin 1 (CDH1), lymphoid enhancer binding factor 1 (LEF1), transcription factor 7 like 2 (TCF7L2) and adenomatous polyposis coli protein (APC) with β-catenin. CONCLUSION The results indicate that the epithelial-mesenchymal transition (EMT)-related gene CTNNB1 plays an important role in the regulation of stem cell pluripotency and cancer signaling. PMID:27928465

  20. Genetic and expression analysis of cattle identifies candidate genes in pathways responding to Trypanosoma congolense infection

    PubMed Central

    Noyes, Harry; Brass, Andy; Obara, Isaiah; Anderson, Susan; Archibald, Alan L.; Bradley, Dan G.; Fisher, Paul; Freeman, Abigail; Gibson, John; Gicheru, Michael; Hall, Laurence; Hanotte, Olivier; Hulme, Helen; McKeever, Declan; Murray, Caitriona; Oh, Sung Jung; Tate, Catriona; Smith, Ken; Tapio, Miika; Wambugu, John; Williams, Diana J.; Agaba, Morris; Kemp, Stephen J.

    2011-01-01

    African bovine trypanosomiasis caused by Trypanosoma sp., is a major constraint on cattle productivity in sub-Saharan Africa. Some African Bos taurus breeds are highly tolerant of infection, but the potentially more productive Bos indicus zebu breeds are much more susceptible. Zebu cattle are well adapted for plowing and haulage, and increasing their tolerance of trypanosomiasis could have a major impact on crop cultivation as well as dairy and beef production. We used three strategies to obtain short lists of candidate genes within QTL that were previously shown to regulate response to infection. We analyzed the transcriptomes of trypanotolerant N'Dama and susceptible Boran cattle after infection with Trypanosoma congolense. We sequenced EST libraries from these two breeds to identify polymorphisms that might underlie previously identified quantitative trait loci (QTL), and we assessed QTL regions and candidate loci for evidence of selective sweeps. The scan of the EST sequences identified a previously undescribed polymorphism in ARHGAP15 in the Bta2 trypanotolerance QTL. The polymorphism affects gene function in vitro and could contribute to the observed differences in expression of the MAPK pathway in vivo. The expression data showed that TLR and MAPK pathways responded to infection, and the former contained TICAM1, which is within a QTL on Bta7. Genetic analyses showed that selective sweeps had occurred at TICAM1 and ARHGAP15 loci in African taurine cattle, making them strong candidates for the genes underlying the QTL. Candidate QTL genes were identified in other QTL by their expression profile and the pathways in which they participate. PMID:21593421

  1. Particle Radiation signals the Expression of Genes in stress-associated Pathways

    NASA Astrophysics Data System (ADS)

    Blakely, E.; Chang, P.; Bjornstad, K.; Dosanjh, M.; Cherbonnel, C.; Rosen, C.

    The explosive development of microarray screening methods has propelled genome research in a variety of biological systems allowing investigators to examine large-scale alterations in gene expression for research in toxicology pathology and therapy The radiation environment in space is complex and encompasses a variety of highly energetic and charged particles Estimation of biological responses after exposure to these types of radiation is important for NASA in their plans for long-term manned space missions Instead of using the 10 000 gene arrays that are in the marketplace we have chosen to examine particle radiation-induced changes in gene expression using a focused DNA microarray system to study the expression of about 100 genes specifically associated with both the upstream and downstream aspects of the TP53 stress-responsive pathway Genes that are regulated by TP53 include functional clusters that are implicated in cell cycle arrest apoptosis and DNA repair A cultured human lens epithelial cell model Blakely et al IOVS 41 3808 2000 was used for these studies Additional human normal and radiosensitive fibroblast cell lines have also been examined Lens cells were grown on matrix-coated substrate and exposed to 55 MeV u protons at the 88 cyclotron in LBNL or 1 GeV u Iron ions at the NASA Space Radiation Laboratory The other cells lines were grown on conventional tissue culture plasticware RNA and proteins were harvested at different times after irradiation RNA was isolated from sham-treated or select irradiated populations

  2. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells.

    PubMed

    Page, Andrew F; Minocha, Rakesh; Minocha, Subhash C

    2012-01-01

    Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the

  3. The effects of nonyl phenoxypolyethoxyl ethanol on cell damage pathway gene expression in SK-NSH cells

    PubMed Central

    Park, Samel; Hwang, Il-woong; Kim, Jin-sheon; Kang, Hyo-chul; Park, Su-Yeon; Gil, Hyo-wook; Song, Ho-yeon; Hong, Sae-yong

    2015-01-01

    Background/Aims: Most pesticide formulations contain both chief and additive ingredients. But, the additives may not have been tested as thoroughly as the chief ingredients. The surfactant, nonyl phenoxypolyethoxylethanol (NP40), is an additive frequently present in pesticide formulations. We investigated the effects of NP40 and other constituents of a validamycin pesticide formulation on cell viability and on the expression of genes involved in cell damage pathways. Methods: The effects of validamycin pesticide ingredients on cell viability and of NP40 on the mRNA expression of 80 genes involved in nine key cellular pathways were examined in the human neuroblastoma SK-N-SH cell line. Results: The chemicals present in the validamycin pesticide formulation were cytotoxic to SK-N-SH cells and NP40 showed the greatest cytotoxicity. A range of gene expression changes were identified, with both up- and down-regulation of genes within the same pathway. However, all genes tested in the necrosis signaling pathway were down-regulated and all genes tested in the cell cycle checkpoint/arrest pathway were up-regulated. The median fold-change in gene expression was significantly higher in the cell cycle checkpoint/arrest pathway than in the hypoxia pathway category (p = 0.0064). The 70 kDa heat shock protein 4 gene, within the heat shock protein/unfolded protein response category, showed the highest individual increase in expression (26.1-fold). Conclusions: NP40 appeared to be particularly harmful, inducing gene expression changes that indicated genotoxicity, activation of the cell death (necrosis signaling) pathway, and induction of the 70 kDa heat shock protein 4 gene. PMID:26552463

  4. Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits.

    PubMed Central

    Hugueney, P; Bouvier, F; Badillo, A; Quennemet, J; d'Harlingue, A; Camara, B

    1996-01-01

    Plant cells synthesize a myriad of isoprenoid compounds in different subcellular compartments, which include the plastid, the mitochondria, and the endoplasmic reticulum cytosol. To start the study of the regulation of these parallel pathways, we used pepper (Capsicum annuum) fruit as a model. Using different isoprenoid biosynthetic gene probes from cloned cDNAs, we showed that only genes encoding the plastid enzymes (geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and capasanthin-capsorubin synthase) are specifically triggered during the normal period of development, at the ripening stage. This pattern of expression can be mimicked and precociously induced by a simple wounding stress. Concerning the cytosol-located enzymes, we observed that the expression of the gene encoding farnesyl pyrophosphate synthase is constitutive, whereas that of farnesyl pyrophosphate cyclase (5-epi-aristolochene synthase) is undetectable during the normal development of the fruit. The expression of these later genes are, however, only selectively triggered after elicitor treatment. The results provide evidence for developmental control of isoprenoid biosynthesis occurring in plastids and that cytoplasmic isoprenoid biosynthesis is regulated, in part, by environmental signals. PMID:8787029

  5. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    PubMed

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.

  6. Palmitate increases musclin gene expression through activation of PERK signaling pathway in C2C12 myotubes.

    PubMed

    Gu, Ning; Guo, Qian; Mao, Ke; Hu, Hailong; Jin, Sanli; Zhou, Ying; He, Hongjuan; Oh, Yuri; Liu, Chuanpeng; Wu, Qiong

    2015-11-20

    Musclin is a type of muscle-secreted cytokine and its increased gene expression induces insulin resistance in type 2 diabetes. However, the mechanism underlying increased musclin gene expression is currently unclear. Excessive saturated fatty acids (SFA) can activate the secretion of several muscle-secreted cytokines as well as endoplasmic reticulum (ER) stress pathway, thereby contributing to the development of type 2 diabetes. The purpose of this study was to investigate the mechanisms responsible for the effect of palmitate, the most abundant SFA in the plasma, on the gene expression of musclin in C2C12 myotubes. Treatment of C2C12 myotubes with palmitate or tunicamycin significantly increased the expression of musclin as well as ER stress-related genes, but treatment with oleate did not. Pre-treatment of C2C12 myotubes with 4-phenyl butyrate suppressed the expression of ER stress-related genes, simultaneously, resulting in decreased expression of the musclin gene induced by palmitate or tunicamycin. These results indicate that ER stress is related to palmitate-induced musclin gene expression. Moreover, palmitate-induced musclin gene expression was significantly inhibited in C2C12 myotubes when PERK pathway signaling was suppressed by knockdown of the PERK gene or treatment with GSK2656157, a PERK autophosphorylation inhibitor. However, there was no difference in the palmitate-induced musclin gene expression when IRE1 and ATF6 signaling pathways were suppressed by knockdown of the IRE1 and ATF6 genes. These findings suggest that palmitate increases musclin gene expression via the activation of the PERK signaling pathway in C2C12 myotubes.

  7. Integrated signaling pathway and gene expression regulatory model to dissect dynamics of Escherichia coli challenged mammary epithelial cells.

    PubMed

    den Breems, Nicoline Y; Nguyen, Lan K; Kulasiri, Don

    2014-12-01

    Cells transform external stimuli, through the activation of signaling pathways, which in turn activate gene regulatory networks, in gene expression. As more omics data are generated from experiments, eliciting the integrated relationship between the external stimuli, the signaling process in the cell and the subsequent gene expression is a major challenge in systems biology. The complex system of non-linear dynamic protein interactions in signaling pathways and gene networks regulates gene expression. The complexity and non-linear aspects have resulted in the study of the signaling pathway or the gene network regulation in isolation. However, this limits the analysis of the interaction between the two components and the identification of the source of the mechanism differentiating the gene expression profiles. Here, we present a study of a model of the combined signaling pathway and gene network to highlight the importance of integrated modeling. Based on the experimental findings we developed a compartmental model and conducted several simulation experiments. The model simulates the mRNA expression of three different cytokines (RANTES, IL8 and TNFα) regulated by the transcription factor NFκB in mammary epithelial cells challenged with E. coli. The analysis of the gene network regulation identifies a lack of robustness and therefore sensitivity for the transcription factor regulation. However, analysis of the integrated signaling and gene network regulation model reveals distinctly different underlying mechanisms in the signaling pathway responsible for the variation between the three cytokine's mRNA expression levels. Our key findings reveal the importance of integrating the signaling pathway and gene expression dynamics in modeling. Modeling infers valid research questions which need to be verified experimentally and can assist in the design of future biological experiments.

  8. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    SciTech Connect

    Cheng, Chi-Chih; Hsueh, Chi-Mei; Chen, Chiu-Yuan; Chen, Tzu-Hsiu; Hsu, Shih-Lan

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-induced PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.

  9. Gene expression profiling reveals potential key pathways involved in pyrazinamide-mediated hepatotoxicity in Wistar rats.

    PubMed

    Zhang, Yun; Jiang, Zhenzhou; Su, Yijing; Chen, Mi; Li, Fu; Liu, Li; Sun, Lixin; Wang, Yun; Zhang, Shuang; Zhang, Luyong

    2013-08-01

    Pyrazinamide (PZA) is an important sterilizing prodrug that shortens the duration of tuberculosis therapy. However, hepatotoxicity has been reported during clinical trials investigating PZA. To determine the hepatotoxic effects of PZA in vivo and to further investigate the underlying cellular mechanism, we profiled the gene expression patterns of PZA-treated rat livers by microarray analysis. Wistar rats of both sexes were orally administered PZA at doses of 0.5, 1.0 and 2.0 g kg(-1) for 28 days. Body weight, absolute and relative liver weight, biochemical analysis, histopathology, oxidative stress parameters in liver homogenates and changes in global transcriptomic expression were evaluated to study the hepatotoxic effects of PZA. Our results confirm the dose-dependent and sex-related hepatotoxicity of PZA. Female rats were more sensitive to PZA-induced hepatotoxicity than males. Furthermore, changes in the activity of major antioxidant enzymes and nonenzymatic antioxidants (superoxide dismutase, total antioxidant capacity, glutathione and malondialdehyde), indicating the development of oxidative stress, were more significant in the PZA-treated group. PZA-induced gene expression changes were related to pathways involved in drug metabolism, peroxisome proliferator-activated receptor (PPAR) signaling, oxidative stress and apoptosis. Real-time polymerase chain reaction confirmed the regulation of selected genes involved in PZA-hepatotoxicity (Ephx1, Cyp2b1, Gstm1, Gstp1, Fabp7, Acaa1, Cpt-1b, Cyp8b1, Hmox1 and Ntrk1). We observed for the first time that these genes have effects on PZA-induced hepatotoxicity. In addition, drug metabolism and PPAR signaling pathways may play an important role in PZA hepatotoxicity. Taken together, these findings will be useful for future PZA hepatotoxicity studies.

  10. Expression analysis in response to drought stress in soybean: Shedding light on the regulation of metabolic pathway genes

    PubMed Central

    Guimarães-Dias, Fábia; Neves-Borges, Anna Cristina; Viana, Antonio Americo Barbosa; Mesquita, Rosilene Oliveira; Romano, Eduardo; de Fátima Grossi-de-Sá, Maria; Nepomuceno, Alexandre Lima; Loureiro, Marcelo Ehlers; Alves-Ferreira, Márcio

    2012-01-01

    Metabolomics analysis of wild type Arabidopsis thaliana plants, under control and drought stress conditions revealed several metabolic pathways that are induced under water deficit. The metabolic response to drought stress is also associated with ABA dependent and independent pathways, allowing a better understanding of the molecular mechanisms in this model plant. Through combining an in silico approach and gene expression analysis by quantitative real-time PCR, the present work aims at identifying genes of soybean metabolic pathways potentially associated with water deficit. Digital expression patterns of Arabidopsis genes, which were selected based on the basis of literature reports, were evaluated under drought stress condition by Genevestigator. Genes that showed strong induction under drought stress were selected and used as bait to identify orthologs in the soybean genome. This allowed us to select 354 genes of putative soybean orthologs of 79 Arabidopsis genes belonging to 38 distinct metabolic pathways. The expression pattern of the selected genes was verified in the subtractive libraries available in the GENOSOJA project. Subsequently, 13 genes from different metabolic pathways were selected for validation by qPCR experiments. The expression of six genes was validated in plants undergoing drought stress in both pot-based and hydroponic cultivation systems. The results suggest that the metabolic response to drought stress is conserved in Arabidopsis and soybean plants. PMID:22802708

  11. Differential gene expression of the key signalling pathway in para-carcinoma, carcinoma and relapse human pancreatic cancer.

    PubMed

    Chang, Zheng-Yan; Sun, Ran; Ma, Yu-Shui; Fu, Da; Lai, Xiao-Long; Li, Yu-Sheng; Wang, Xing-Hong; Zhang, Xiao-Ping; Lv, Zhong-Wei; Cong, Xian-Ling; Li, Wen-Ping

    2014-04-01

    Pancreatic cancer (PC) has a high rate of mortality and a poorly understood mechanism of progression. Investigation of the molecular mechanism of PC and exploration of the specific markers for early diagnosis and specific targets of therapy are key points to prevent and treat PC effectively and to improve their prognosis. In our study, expression profiles experiment of para-carcinoma, carcinoma and relapse human PC was performed using Agilent human whole genomic oligonucleotide microarrays with 45 000 probes. Differentially expressed genes related with PC were screened and analysed further by Gene Ontology term analysis and Kyoto encyclopaedia of genes and genomes pathway analysis. Our results showed that there were 3853 differentially expressed genes associated with pancreatic carcinogenesis and relapse. In addition, our study found that PC was related to the Jak-STAT signalling pathway, PPAR signalling pathway and Calcium signalling pathway, indicating their potential roles in pancreatic carcinogenesis and progress.

  12. Lhx9 gene expression during early limb development in mice requires the FGF signalling pathway.

    PubMed

    Yang, Yisheng; Wilson, Megan J

    2015-01-01

    Lhx9 is a member of the LIM-homeodomain gene family necessary for the correct development of many organs including gonads, limbs, heart and the nervous system. In the context of limb development, Lhx9 has been implicated as an integrator for Fibroblast growth factor (FGF) and Sonic hedgehog (Shh) signalling required for proximal-distal (PD) and anterior-posterior (AP) development of the limb. Three splice variants of the Lhx9 transcript are expressed during development, two of which are predicted to act in a dominant negative fashion, competing with the DNA binding version of Lhx9 for binding to cofactors via the LIM-domain. We examined the expression pattern for the three alternative splice forms of Lhx9; Lhx9α, Lhx9β and Lhx9c during early limb development. We have found that of the three Lhx9 isoforms, only Lhx9α and Lhx9c (intact homeodomain) are expressed during early limb development, each with their own distinct expression pattern. Additionally we determined that Lhx9 expression overlaps with FGF10 expression in the developing limb bud mesenchyme. Limb bud explant cultures, in the presence of signalling pathway inhibitors, also indicated that Lhx9 mRNA expression in the limb bud was dependent on FGF signalling.

  13. Differential expression of carotenoid biosynthetic pathway genes in two contrasting tomato genotypes for lycopene content.

    PubMed

    Pandurangaiah, Shilpa; Ravishankar, Kundapura V; Shivashankar, Kodthalu S; Sadashiva, Avverahally T; Pillakenchappa, Kavitha; Narayanan, Sunil Kumar

    2016-06-01

    Tomato (Solanum lycopersicum L.) is one of the model plant to study carotenoid biosynthesis. In the present study, the fruit carotenoid content were quantified at different developmental stages for two contrasting genotypes, viz. IIHR-249-1 and IIHR-2866 by UPLC. Lycopene content was high in IIHR-249-1 (19.45 mg/100 g fresh weight) compared to IIHR-2866 (1.88 mg/100 g fresh weight) at the ripe stage. qPCR was performed for genes that are involved in the carotenoid biosynthetic pathway to study the difference in lycopene content in fruits of both the genotypes. The expression of Phytoene synthase (PSY) increased by 36-fold and Phytoene desaturase (PDS) increased by 14-fold from immature green stage to ripe stage in IIHR-249-1. The expression of Chloroplast lycopene beta-cyclase (LCY-B) and Chromoplast lycopene beta cyclase (CYC-B) decreased gradually from the initial stage to the ripe stage in IIHR-249-1. IIHR 249-1 showed 3- and 1.8-fold decrease in gene expression for Chloroplast lycopene beta-cyclase (LCY-B) and Chromoplast lycopene beta-cyclase (CYC-B) .The F2 hybrids derived from IIHR-249-1 and IIHR-2866 were analysed at the ripe stage for lycopene content. The gene expression of Chloroplast lycopene beta-cyclase (LCY-B) and Chromoplast lycopene beta-cyclase (CYC-B) in high and low lycopene lines from F2 progenies also showed the decrease in transcript levels of both the genes in high lycopene F2 lines. We wish to suggest that the differential expression of lycopene beta-cyclases can be used in marker-assisted breeding.

  14. Gene expression profiles from discordant monozygotic twins suggest that molecular pathways are shared among multiple systemic autoimmune diseases

    PubMed Central

    2011-01-01

    Introduction The objective of this study is to determine if multiple systemic autoimmune diseases (SAID) share gene expression pathways that could provide insights into pathogenic mechanisms common to these disorders. Methods RNA microarray analyses (Agilent Human 1A(V2) 20K oligo arrays) were used to quantify gene expression in peripheral blood cells from 20 monozygotic (MZ) twin pairs discordant for SAID. Six affected probands with systemic lupus erythematosus (SLE), six with rheumatoid arthritis (RA), eight with idiopathic inflammatory myopathies (IIM), and their same-gendered unaffected twins, were enrolled. Comparisons were made between discordant twin pairs and these were also each compared to 40 unrelated control subjects (matched 2:1 to each twin by age, gender and ethnicity) using statistical and molecular pathway analyses. Relative quantitative PCR was used to verify independently measures of differential gene expression assessed by microarray analysis. Results Probands and unrelated, matched controls differed significantly in gene expression for 104 probes corresponding to 92 identifiable genes (multiple-comparison adjusted P values < 0.1). Differentially expressed genes involved several overlapping pathways including immune responses (16%), signaling pathways (24%), transcription/translation regulators (26%), and metabolic functions (15%). Interferon (IFN)-response genes (IFI27, OASF, PLSCR1, EIF2AK2, TNFAIP6, and TNFSF10) were up-regulated in probands compared to unrelated controls. Many of the abnormally expressed genes played regulatory roles in multiple cellular pathways. We did not detect any probes expressed differentially in comparisons among the three SAID phenotypes. Similarly, we found no significant differences in gene expression when comparing probands to unaffected twins or unaffected twins to unrelated controls. Gene expression levels for unaffected twins appeared intermediate between that of probands and unrelated controls for 6535 probes

  15. Differential expression of hypoxia pathway genes in honey bee (Apis mellifera L.) caste development.

    PubMed

    Azevedo, Sergio Vicente; Caranton, Omar Arvey Martinez; de Oliveira, Tatiane Lippi; Hartfelder, Klaus

    2011-01-01

    Diphenism in social bees is essentially contingent on nutrient-induced cellular and systemic physiological responses resulting in divergent gene expression patterns. Analyses of juvenile hormone (JH) titers and functional genomics assays of the insulin-insulin-like signaling (IIS) pathway and its associated branch, target-of-rapamycin (TOR), revealed systemic responses underlying honey bee (Apis mellifera) caste development. Nevertheless, little attention has been paid to cellular metabolic responses. Following up earlier investigations showing major caste differences in oxidative metabolism and mitochondrial physiology, we herein identified honey bee homologs of hypoxia signaling factors, HIFα/Sima, HIFβ/Tango and PHD/Fatiga and we investigated their transcript levels throughout critical stages of larval development. Amsima, Amtango and Amfatiga showed correlated transcriptional activity, with two peaks of occurring in both queens and workers, the first one shortly after the last larval molt and the second during the cocoon-spinning phase. Transcript levels for the three genes were consistently higher in workers. As there is no evidence for major microenvironmental differences in oxygen levels within the brood nest area, this appears to be an inherent caste character. Quantitative PCR analyses on worker brain, ovary, and leg imaginal discs showed that these tissues differ in transcript levels. Being a highly conserved pathway and linked to IIS/TOR, the hypoxia gene expression pattern seen in honey bee larvae denotes that the hypoxia pathway has undergone a transformation, at least during larval development, from a response to environmental oxygen concentrations to an endogenous regulatory factor in the diphenic development of honey bee larvae.

  16. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.

    PubMed

    Hodar, Christian; Zuñiga, Alejandro; Pulgar, Rodrigo; Travisany, Dante; Chacon, Carlos; Pino, Michael; Maass, Alejandro; Cambiazo, Verónica

    2014-02-10

    In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-β superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica.

  17. Argonaute and the Nuclear RNAs: New Pathways for RNA-Mediated Control of Gene Expression

    PubMed Central

    Gagnon, Keith T.

    2012-01-01

    Small RNAs are a commonly used tool for gene silencing and a promising platform for nucleic acid drug development. They are almost exclusively used to silence gene expression post-transcriptionally through degradation of mRNA. Small RNAs, however, can have a broader range of function by binding to Argonaute proteins and associating with complementary RNA targets in the nucleus, including long noncoding RNAs (lncRNAs) and pre-mRNA. Argonaute–RNA complexes can regulate nuclear events like transcription, genome maintenance, and splicing. Thousands of lncRNAs and alternatively spliced pre-mRNA isoforms exist in humans, and these RNAs may serve as natural targets for regulation and therapeutic intervention. This review describes nuclear mechanisms for Argonaute proteins and small RNAs, new pathways for sequence-specific targeting, and the potential for therapeutic development of small RNAs with nuclear targets. PMID:22283730

  18. SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways.

    PubMed

    Armbrecht, Harvey J; Siddiqui, Akbar M; Green, Michael; Farr, Susan A; Kumar, Vijaya B; Banks, William A; Patrick, Ping; Shah, Gul N; Morley, John E

    2014-01-01

    The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta (Aβ) peptide accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4- and 12-month-old SAMP8 and control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the long term potentiation (6 genes), phosphatidylinositol signaling (6 genes), and endocytosis (10 genes) pathways. The changes in long term potentiation included mitogen-activated protein kinase (MAPK) signaling (N-ras, cAMP responsive element binding protein [CREB], protein phosphatase inhibitor 1) and Ca-dependent signaling (inositol triphosphate [ITP] receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through phosphatidylinositol-3-kinase, and Western blotting revealed phosphorylation changes in serine/threonine protein kinase AKT and 70S6K. Changes in the endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered gene expression in 3 SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways might provide new therapeutic targets in addition to targeting Aβ metabolism itself.

  19. Coenzyme Q regulates the expression of essential genes of the pathogen- and xenobiotic-associated defense pathway in C. elegans

    PubMed Central

    Fischer, Alexandra; Niklowitz, Petra; Menke, Thomas; Döring, Frank

    2015-01-01

    Coenzyme Q (CoQ) is necessary for mitochondrial energy production and modulates the expression of genes that are important for inflammatory processes, growth and detoxification reactions. A cellular surveillance-activated detoxification and defenses (cSADDs) pathway has been recently identified in C. elegans. The down-regulation of the components of the cSADDs pathway initiates an aversion behavior of the nematode. Here we hypothesized that CoQ regulates genes of the cSADDs pathway. To verify this we generated CoQ-deficient worms (“CoQ-free”) and performed whole-genome expression profiling. We found about 30% (120 genes) of the cSADDs pathway genes were differentially regulated under CoQ-deficient condition. Remarkably, 83% of these genes were down-regulated. The majority of the CoQ-sensitive cSADDs pathway genes encode for proteins involved in larval development (enrichment score (ES) = 38.0, p = 5.0E−37), aminoacyl-tRNA biosynthesis, proteasome function (ES 8.2, p = 5.9E−31) and mitochondria function (ES 3.4, p = 1.7E−5). 67% (80 genes) of these genes are categorized as lethal. Thus it is shown for the first time that CoQ regulates a substantial number of essential genes that function in the evolutionary conserved cellular surveillance-activated detoxification and defenses pathway in C. elegans. PMID:26566301

  20. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    PubMed

    Zanotto-Filho, Alfeu; Dashnamoorthy, Ravi; Loranc, Eva; de Souza, Luis H T; Moreira, José C F; Suresh, Uthra; Chen, Yidong; Bishop, Alexander J R

    2016-01-01

    Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

  1. Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress

    PubMed Central

    Li, Changning; Nong, Qian; Solanki, Manoj Kumar; Liang, Qiang; Xie, Jinlan; Liu, Xiaoyan; Li, Yijie; Wang, Weizan; Yang, Litao; Li, Yangrui

    2016-01-01

    Water stress causes considerable yield losses in sugarcane. To investigate differentially expressed genes under water stress, a pot experiment was performed with the sugarcane variety GT21 at three water-deficit levels (mild, moderate, and severe) during the elongation stage and gene expression was analyzed using microarray technology. Physiological parameters of sugarcane showed significant alterations in response to drought stress. Based on the expression profile of 15,593 sugarcane genes, 1,501 (9.6%) genes were differentially expressed under different water-level treatments; 821 genes were upregulated and 680 genes were downregulated. A gene similarity analysis showed that approximately 62.6% of the differentially expressed genes shared homology with functional proteins. In a Gene Ontology (GO) analysis, 901 differentially expressed genes were assigned to 36 GO categories. Moreover, 325 differentially expressed genes were classified into 101 pathway categories involved in various processes, such as the biosynthesis of secondary metabolites, ribosomes, carbon metabolism, etc. In addition, some unannotated genes were detected; these may provide a basis for studies of water-deficit tolerance. The reliability of the observed expression patterns was confirmed by RT-PCR. The results of this study may help identify useful genes for improving drought tolerance in sugarcane. PMID:27170459

  2. Cloning, identification and expression analysis of ACC oxidase gene involved in ethylene production pathway.

    PubMed

    Jafari, Zohreh; Haddad, Raheem; Hosseini, Ramin; Garoosi, Ghasemali

    2013-02-01

    1-aminocyclopropane-1-carboxylic acid oxidase (ACO) enzyme is a member of the Fe II-dependent family of oxidases/oxygenases which require Fe(2+) as a cofactor, ascorbate as a cosubstrate and CO(2) as an activator. This enzyme catalyses the terminal step in the plant signaling of ethylene biosynthetic pathway. A 948 bp fragment of the ACO1 gene cDNA sequence was cloned from tomato (Lycopersicon esculentum) fruit tissues by using reverse transcriptase-polymerase chain reaction (RT-PCR) with two PCR primers designed according to the sequence of a tomato cDNA clone (X58273). The BLAST search showed a high level of similarity (77-98 %) between ACO1 and ACO genes of other plants. The calculated molecular mass and predicted isoelectric point of LeACO1 were 35.8 kDa and 5.13, respectively. The three-dimensional structure studies illustrated that the LeACO1 protein folds into a compact jelly-roll motif comprised of 8 α-helices, 12 β-strands and several long loops. The cosubstrate was located in a cofactor-binding pocket referred to as a 2-His-1-carboxylate facial triad. Semi-quantitative RT-PCR analysis of gene expression revealed that the LeACO1 was expressed in fruit tissues at different ripening stages.

  3. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription f...

  4. Expression analysis of cytosolic DNA-sensing pathway genes in the intestinal mucosal layer of necrotic enteritis-induced chicken.

    PubMed

    Rengaraj, Deivendran; Truong, Anh Duc; Lee, Sung-Hyen; Lillehoj, Hyun S; Hong, Yeong Ho

    2016-02-01

    Necrotic enteritis (NE) is a serious problem to the poultry farms, which report NE outbreaks more than once per year, as a result of the inappropriate use of antibiotics in the feed. The NE affected bird die rapidly as a result of various pathophysiological complications in the intestine and immune system. Also, several studies have reported that the genes exclusively related to intestine and immune functions are significantly altered in response to NE. In this study, NE was induced in two genetically disparate chicken lines that are resistant (line 6.3) and sensitive (line 7.2) to avian leukosis and Marek's disease. The intestinal mucosal layer was collected from NE-induced and control chickens, and subjected to RNA-sequencing analysis. The involvement of differentially expressed genes in the intestinal mucosal layer of line 6.3 and 7.2 with the immune system-related pathways was investigated. Among the identified immune system-related pathways, a candidate pathway known as chicken cytosolic DNA-sensing pathway (CDS pathway) was selected for further investigation. RNA-sequencing and pathway analysis identified a total of 21 genes that were involved in CDS pathway and differentially expressed in the intestinal mucosal layer of lines 6.3 and 7.2. The expression of CDS pathway genes was further confirmed by real-time qPCR. In the results, a majority of the CDS pathway genes were significantly altered in the NE-induced intestinal mucosal layer from lines 6.3 and 7.2. In conclusion, our study indicate that NE seriously affects several genes involved in innate immune defense and foreign DNA sensing mechanisms in the chicken intestinal mucosal layer. Identifying the immune genes affected by NE could be an important evidence for the protective immune response to NE-causative pathogens.

  5. High variability of expression profiles of homeologous genes for Wnt, Hh, Notch, and Hippo signaling pathways in Xenopus laevis.

    PubMed

    Michiue, Tatsuo; Yamamoto, Takayoshi; Yasuoka, Yuuri; Goto, Toshiyasu; Ikeda, Takafumi; Nagura, Kei; Nakayama, Takuya; Taira, Masanori; Kinoshita, Tsutomu

    2017-01-12

    Cell signaling pathways, such as Wnt, Hedgehog (Hh), Notch, and Hippo, are essential for embryogenesis, organogenesis, and tissue homeostasis. In this study, we analyzed 415 genes involved in these pathways in the allotetraploid frog, Xenopus laevis. Most genes are retained in two subgenomes called L and S (193 homeologous gene pairs and 29 singletons). This conservation rate of homeologs is much higher than that of all genes in the X. laevis genome (86.9% vs 60.2%). Among singletons, 24 genes are retained in the L subgenome, a rate similar to the average for all genes (82.8% vs 74.6%). In addition, as general components of signal transduction, we also analyzed 32 heparan sulfate proteoglycan (HSPG)-related genes and eight TLE/Groucho transcriptional corepressors-related genes. In these gene sets, all homeologous pairs have been retained. Transcriptome analysis using RNA-seq data from developmental stages and adult tissues demonstrated that most homeologous pairs of signaling components have variable expression patterns, in contrast to the conservative expression profiles of homeologs for transcription factors. Our results indicate that homeologous gene pairs for cell signaling regulation have tended to become subfunctionalized after allotetraploidization. Diversification of signaling pathways by subfunctionalization of homeologs may enhance environmental adaptability. These results provide insights into the evolution of signaling pathways after polyploidization.

  6. A blood-based gene expression and signaling pathway analysis to differentiate between high and low grade gliomas

    PubMed Central

    Ponnampalam, Stephen N.; Kamaluddin, Nor Rizan; Zakaria, Zubaidah; Matheneswaran, Vickneswaran; Ganesan, Dharmendra; Haspani, Mohammed Saffari; Ryten, Mina; Hardy, John A.

    2016-01-01

    The aims of the present study were to undertake gene expression profiling of the blood of glioma patients to determine key genetic components of signaling pathways and to develop a panel of genes that could be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and control samples. In this study, blood samples were obtained from glioma patients, non-glioma and control subjects. Ten samples each were obtained from patients with high and low grade tumours, respectively, ten samples from non-glioma patients and twenty samples from control subjects. Total RNA was isolated from each sample after which first and second strand synthesis was performed. The resulting cRNA was then hybridized with the Agilent Whole Human Genome (4×44K) microarray chip according to the manufacturer's instructions. Universal Human Reference RNA and samples were labeled with Cy3 CTP and Cy5 CTP, respectively. Microarray data were analyzed by the Agilent Gene Spring 12.1V software using stringent criteria which included at least a 2-fold difference in gene expression between samples. Statistical analysis was performed using the unpaired Student's t-test with a P<0.01. Pathway enrichment was also performed, with key genes selected for validation using droplet digital polymerase chain reaction (ddPCR). The gene expression profiling indicated that were a substantial number of genes that were differentially expressed with more than a 2-fold change (P<0.01) between each of the four different conditions. We selected key genes within significant pathways that were analyzed through pathway enrichment. These key genes included regulators of cell proliferation, transcription factors, cytokines and tumour suppressor genes. In the present study, we showed that key genes involved in significant and well established pathways, could possibly be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and

  7. A blood-based gene expression and signaling pathway analysis to differentiate between high and low grade gliomas.

    PubMed

    Ponnampalam, Stephen N; Kamaluddin, Nor Rizan; Zakaria, Zubaidah; Matheneswaran, Vickneswaran; Ganesan, Dharmendra; Haspani, Mohammed Saffari; Ryten, Mina; Hardy, John A

    2017-01-01

    The aims of the present study were to undertake gene expression profiling of the blood of glioma patients to determine key genetic components of signaling pathways and to develop a panel of genes that could be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and control samples. In this study, blood samples were obtained from glioma patients, non-glioma and control subjects. Ten samples each were obtained from patients with high and low grade tumours, respectively, ten samples from non-glioma patients and twenty samples from control subjects. Total RNA was isolated from each sample after which first and second strand synthesis was performed. The resulting cRNA was then hybridized with the Agilent Whole Human Genome (4x44K) microarray chip according to the manufacturer's instructions. Universal Human Reference RNA and samples were labeled with Cy3 CTP and Cy5 CTP, respectively. Microarray data were analyzed by the Agilent Gene Spring 12.1V software using stringent criteria which included at least a 2-fold difference in gene expression between samples. Statistical analysis was performed using the unpaired Student's t-test with a p<0.01. Pathway enrichment was also performed, with key genes selected for validation using droplet digital polymerase chain reaction (ddPCR). The gene expression profiling indicated that were a substantial number of genes that were differentially expressed with more than a 2-fold change (p<0.01) between each of the four different conditions. We selected key genes within significant pathways that were analyzed through pathway enrichment. These key genes included regulators of cell proliferation, transcription factors, cytokines and tumour suppressor genes. In the present study, we showed that key genes involved in significant and well established pathways, could possibly be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and

  8. Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes.

    PubMed

    Chakraborty, K; Sairam, Raj K; Bhattacharya, R C

    2012-02-01

    The objective of the present study was to examine the role of SOS pathway in salinity stress tolerance in Brassica spp. An experiment was conducted in pot culture with 4 Brassica genotypes, i.e., CS 52 and CS 54, Varuna and T 9 subjected to two levels of salinity treatments along with a control, viz., 1.65 (S(0)), 4.50 (S(1)) and 6.76 (S(2)) dS m(-1). Salinity treatment significantly decreased relative water content (RWC), membrane stability index (MSI) and chlorophyll (Chl) content in leaves and potassium (K) content in leaf, stem and root of all the genotypes. The decline in RWC, MSI, Chl and K content was significantly less in CS 52 and CS 54 as compared to Varuna and T 9. In contrast, the sodium (Na) content increased under salinity stress in all the plant parts in all the genotypes, however, the increase was less in CS 52 and CS 54, which also showed higher K/Na ratio, and thus more favourable cellular environment. Gene expression studies revealed the existence of a more efficient salt overly sensitive pathway composed of SOS1, SOS2, SOS3 and vacuolar Na(+)/H(+) antiporter in CS 52 and CS 54 compared to Varuna and T 9. Sequence analyses of partial cDNAs showed the conserved nature of these genes, and their intra and intergenic relatedness. It is thus concluded that existence of an efficient SOS pathway, resulting in higher K/Na ratio, could be one of the major factor determining salinity stress tolerance of Brassica juncea genotypes CS 52 and CS 54.

  9. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  10. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    PubMed

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  11. Differential Expression Analysis for Pathways

    PubMed Central

    Haynes, Winston A.; Higdon, Roger; Stanberry, Larissa; Collins, Dwayne; Kolker, Eugene

    2013-01-01

    Life science technologies generate a deluge of data that hold the keys to unlocking the secrets of important biological functions and disease mechanisms. We present DEAP, Differential Expression Analysis for Pathways, which capitalizes on information about biological pathways to identify important regulatory patterns from differential expression data. DEAP makes significant improvements over existing approaches by including information about pathway structure and discovering the most differentially expressed portion of the pathway. On simulated data, DEAP significantly outperformed traditional methods: with high differential expression, DEAP increased power by two orders of magnitude; with very low differential expression, DEAP doubled the power. DEAP performance was illustrated on two different gene and protein expression studies. DEAP discovered fourteen important pathways related to chronic obstructive pulmonary disease and interferon treatment that existing approaches omitted. On the interferon study, DEAP guided focus towards a four protein path within the 26 protein Notch signalling pathway. PMID:23516350

  12. Gene Expression Profile of Adult Human Olfactory Bulb and Embryonic Neural Stem Cell Suggests Distinct Signaling Pathways and Epigenetic Control

    PubMed Central

    Marei, Hany E. S.; Ahmed, Abd-Elmaksoud; Michetti, Fabrizio; Pescatori, Mario; Pallini, Roberto; Casalbore, Patricia; Cenciarelli, Carlo; Elhadidy, Mohamed

    2012-01-01

    Global gene expression profiling was performed using RNA from human embryonic neural stem cells (hENSC), and adult human olfactory bulb-derived neural stem cells (OBNSCs), to define a gene expression pattern and signaling pathways that are specific for each cell lineage. We have demonstrated large differences in the gene expression profile of human embryonic NSC, and adult human OBNSCs, but less variability between parallel cultures. Transcripts of genes involved in neural tube development and patterning (ALDH1A2, FOXA2), progenitor marker genes (LMX1a, ALDH1A1, SOX10), proliferation of neural progenitors (WNT1 and WNT3a), neuroplastin (NPTN), POU3F1 (OCT6), neuroligin (NLGN4X), MEIS2, and NPAS1 were up-regulated in both cell populations. By Gene Ontology, 325 out of 3875 investigated gene sets were scientifically different. 41 out of the 307 investigated Cellular Component (CC) categories, 45 out of the 620 investigated Molecular Function (MF) categories, and 239 out of the 2948 investigated Biological Process (BP) categories were significant. KEGG Pathway Class Comparison had revealed that 75 out of 171 investigated gene sets passed the 0.005 significance threshold. Levels of gene expression were explored in three signaling pathways, Notch, Wnt, and mTOR that are known to be involved in NS cell fates determination. The transcriptional signature also deciphers the role of genes involved in epigenetic modifications. SWI/SNF DNA chromatin remodeling complex family, including SMARCC1 and SMARCE1, were found specifically up-regulated in our OBNSC but not in hENSC. Differences in gene expression profile of transcripts controlling epigenetic modifications, and signaling pathways might indicate differences in the therapeutic potential of our examined two cell populations in relation to in cell survival, proliferation, migration, and differentiation following engraftments in different CNS insults. PMID:22485144

  13. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    SciTech Connect

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  14. PI3K/Akt pathway regulates retinoic acid-induced Hox gene expression in F9 cells.

    PubMed

    Lee, Youra; Lee, Ji-Yeon; Kim, Myoung Hee

    2014-09-01

    Retinoic acid (RA), the most potent natural form of vitamin A, is a key morphogen in vertebrate development and a potent regulator of both adult and embryonic cell differentiation. Specifically, RA regulates clustered Hox gene expression during embryogenesis and is required to establish the anteroposterior body plan. The PI3K/Akt pathway was also reported to play an essential role in the process of RA-induced cell differentiation. Therefore, we tested whether the PI3K/Akt pathway is involved in RA-induced Hox gene expression in a F9 murine embryonic teratocarcinoma cells. To examine the effect of PI3K/Akt signaling on RA-induced initiation of collinear expression of Hox genes, F9 cells were treated with RA in the presence or absence of PI3K inhibitor LY294002, and time-course gene expression profiles for all 39 Hox genes located in four different clusters-Hoxa, Hoxb, Hoxc, and Hoxd-were analyzed. Collinear expression of Hoxa and -b cluster genes was initiated earlier than that of the -c and -d clusters upon RA treatment. When LY294002 was applied along with RA, collinear expression induced by RA was delayed, suggesting that the PI3K/Akt signaling pathway somehow regulates RA-induced collinear expression of Hox genes in F9 cells. The initiation of Hox collinear expression by RA and the delayed expression following LY294002 in F9 cells would provide a good model system to decipher the yet to be answered de novo collinear expression of Hox genes during gastrulation, which make the gastrulating cells to remember their positional address along the AP body axis in the developing embryo.

  15. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway

    PubMed Central

    2011-01-01

    Background In trees, a substantial amount of carbon is directed towards production of phenolics for development and defense. This metabolic pathway is also a major factor in resistance to insect pathogens in spruce. In such gene families, environmental stimuli may have an important effect on the evolutionary fate of duplicated genes, and different expression patterns may indicate functional diversification. Results Gene families in spruce (Picea) have expanded to superfamilies, including O-methyltransferases, cytochrome-P450, and dirigents/classIII-peroxidases. Neo-functionalization of superfamily members from different clades is reflected in expression diversification. Genetical genomics can provide new insights into the genetic basis and evolution of insect resistance in plants. Adopting this approach, we merged genotype data (252 SNPs in a segregating pedigree), gene expression levels (for 428 phenylpropanoid-related genes) and measures of susceptibility to Pissodes stobi, using a partial-diallel crossing-design with white spruce (Picea glauca). Thirty-eight expressed phenylpropanoid-related genes co-segregated with weevil susceptibility, indicating either causative or reactive effects of these genes to weevil resistance. We identified eight regulatory genomic regions with extensive overlap of quantitative trait loci from susceptibility and growth phenotypes (pQTLs) and expression QTL (eQTL) hotspots. In particular, SNPs within two different CCoAOMT loci regulate phenotypic variation from a common set of 24 genes and three resistance traits. Conclusions Pest resistance was associated with individual candidate genes as well as with trans-regulatory hotspots along the spruce genome. Our results showed that specific genes within the phenylpropanoid pathway have been duplicated and diversified in the conifer in a process fundamentally different from short-lived angiosperm species. These findings add to the information about the role of the phenylpropanoid pathway in

  16. Expression profile of critical genes involved in FGF signaling pathway in the developing human primary dentition.

    PubMed

    Huang, Feng; Hu, Xiaoxiao; Fang, Chunni; Liu, Hong; Lin, Chensheng; Zhang, Yanding; Hu, Xuefeng

    2015-11-01

    Mammalian tooth development is regulated by paracrine signal molecules of several conserved family interactions between epithelium and mesenchyme. The expression patterns and regulative roles of FGF signaling have been extensively studied in the mouse odontogenesis; however, that is not well known in human tooth development. In order to unveil the molecular mechanisms that regulate human tooth morphogenesis, we examined the expression patterns of the critical molecules involved in FGF signaling pathway in the developing human tooth germ by in situ hybridization, immunohistochemistry, and real-time RT-PCR, including FGF ligands, receptors, and intracellular transducer. We found overlapping but distinct expression pattern of FGF ligands and receptors in the different stages and components. Expression of FGF4, FGF7, FGF8, and FGF9 persists widespread in human tooth mesenchyme, which is quite different to that of in mouse. FGFR1 may be the major receptor in regulate mechanisms of FGF signals in human tooth development. Real-time RT-PCR indeed confirmed the results of in situ hybridization. Results of K-Ras, p-ERK1/2, p-p38, p-JNK, and p-PDK1 expression reveal spatial and temporal patterns of FGF signaling during morphogenesis and organogenesis of human tooth germ. Activity of the FGF signaling transducer protein in human tooth germ was much higher than that of in mouse. Our results provided important FGF singling information in the developing process, pinpoint to the domains where the downstream target genes of FGF signaling can be sought, and enlightened our knowledge about the nature of FGF signaling in human tooth germ.

  17. Cloning and expression analysis of some genes involved in the phosphoinositide and phospholipid signaling pathways from maize (Zea mays L.).

    PubMed

    Sui, Zhenhua; Niu, Linyuan; Yue, Guidong; Yang, Aifang; Zhang, Juren

    2008-12-15

    Previous studies have indicated the phosphoinositide and phospholipid signaling pathways play a key role in plant growth, development and responses to environmental stresses. However, little is known about the phosphoinositide and phospholipid signaling pathways in maize (Zea mays L.). To better understand the function of genes involved in the phosphoinositide and phospholipid signaling pathways in maize, the cDNA sequences of ZmPIS2, ZmPLC2, ZmDGK1, ZmDGK2 and ZmDGK3 were obtained by RACE (rapid amplification of cDNA ends) or in silico cloning combined with PCR. RT-PCR analysis of cDNA from five tissues (roots, stems, leaves, tassels, and ears) indicated that the expression patterns of the five cDNAs we isolated as well as ZmPIS, ZmPLC, ZmPLD varied in different tissues. To determine the effects of different environmental conditions such as cold, drought and various phytohormones (abscisic acid, indole-3-acetic acid and gibberellic acid) on gene expression, we analyzed expression by Real-Time (RT-PCR), and found that the different isoforms of these gene families involved in the phosphoinositide and phospholipid signaling pathways have specific expression patterns. Our results suggested that these genes may be involved in the responses to environmental stresses, but have different functions. The isolation and analysis of expression patterns of genes involved in the phosphoinositide and phospholipid signaling pathways provides a good basis for further research of the phosphoinositide and phospholipid signaling pathways in maize and is a novel supplement to our comprehension of these pathways in plants.

  18. Chronic alcohol consumption from adolescence-to-adulthood in mice - hypothalamic gene expression changes in the dilated cardiomyopathy signaling pathway

    PubMed Central

    2014-01-01

    Background Adolescence is a developmental stage vulnerable to alcohol drinking-related problems and the onset of alcoholism. Hypothalamus is a key brain region for food and water intake regulation, and is one of the alcohol-sensitive brain regions. However, it is not known what would be the alcohol effect on hypothalamus following adolescent alcohol intake, chronically over the adolescent development, at moderate levels. Results We employed a paradigm of chronic moderate alcohol intake from adolescence-to-adulthood in mice, and analyzed the alcohol effect on both behavioral and hypothalamic gene expression changes. A total of 751 genes were found and subjected to pathway analysis. The dilated cardiomyopathy (DCM) pathway was identified. The changes of ten genes under this pathway were further verified using RT-PCR. Chronic alcohol consumption during adolescence, even at moderate levels, led to a decrease of motor activity in mice, and also a concerted down regulation of signaling pathway initiating factor (SPIF) genes in the DCM signaling pathway, including β1-adrenergic receptor (Adrb1), Gs protein (Gnas), adenylyl cyclase 1 (Adcy1), and dihydropyridine receptor/L-type calcium channel (Cacna1d). Conclusions These findings suggest that adolescent alcohol intake may trigger gene expression changes in the CNS that parallel those found in the dilated cardiomyopathy signaling pathway. If such effects also take place in humans, our findings would serve as a warning against alcohol intake in youth, such as by teens and/or college students. PMID:24884436

  19. Nuclear RNA Decay Pathways Aid Rapid Remodeling of Gene Expression in Yeast.

    PubMed

    Bresson, Stefan; Tuck, Alex; Staneva, Desislava; Tollervey, David

    2017-03-02

    In budding yeast, the nuclear RNA surveillance system is active on all pre-mRNA transcripts and modulated by nutrient availability. To test the role of nuclear surveillance in reprogramming gene expression, we identified transcriptome-wide binding sites for RNA polymerase II and the exosome cofactors Mtr4 (TRAMP complex) and Nab3 (NNS complex) by UV crosslinking immediately following glucose withdrawal (0, 4, and 8 min). In glucose, mRNA binding by Nab3 and Mtr4 was mainly restricted to promoter-proximal sites, reflecting early transcription termination. Following glucose withdrawal, many growth-related mRNAs showed reduced transcription but increased Nab3 binding, accompanied by downstream recruitment of Mtr4, and oligo(A) tailing. We conclude that transcription termination is followed by TRAMP-mediated RNA decay. Upregulated transcripts evaded increased surveillance factor binding following glucose withdrawal. Some upregulated genes showed use of alternative transcription starts to bypass strong NNS binding sites. We conclude that nuclear surveillance pathways regulate both positive and negative responses to glucose availability.

  20. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants.

    PubMed

    Nouri, Mohammad-Zaman; Moumeni, Ali; Komatsu, Setsuko

    2015-08-28

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C₃ or C₄), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress.

  1. Species-Specific Dibutyl Phthalate Fetal Testis Endocrine Disruption Correlates with Inhibition of SREBP2-Dependent Gene Expression Pathways

    PubMed Central

    Johnson, Kamin J.; McDowell, Erin N.; Viereck, Megan P.; Xia, Jessie Q.

    2011-01-01

    Fetal rat phthalate exposure produces a spectrum of male reproductive tract malformations downstream of reduced Leydig cell testosterone production, but the molecular mechanism of phthalate perturbation of Leydig cell function is not well understood. By bioinformatically examining fetal testis expression microarray data sets from susceptible (rat) and resistant (mouse) species after dibutyl phthalate (DBP) exposure, we identified decreased expression of several metabolic pathways in both species. However, lipid metabolism pathways transcriptionally regulated by sterol regulatory element–binding protein (SREBP) were inhibited in the rat but induced in the mouse, and this differential species response corresponded with repression of the steroidogenic pathway. In rats exposed to 100 or 500 mg/kg DBP from gestational days (GD) 16 to 20, a correlation was observed between GD20 testis steroidogenic inhibition and reductions of testis cholesterol synthesis endpoints including testis total cholesterol levels, Srebf2 gene expression, and cholesterol synthesis pathway gene expression. SREBP2 expression was detected in all fetal rat testis cells but was highest in Leydig cells. Quantification of SREBP2 immunostaining showed that 500 mg/kg DBP exposure significantly reduced SREBP2 expression in rat fetal Leydig cells but not in seminiferous cords. By Western analysis, total rat testis SREBP2 levels were not altered by DBP exposure. Together, these data suggest that phthalate-induced inhibition of fetal testis steroidogenesis is closely associated with reduced activity of several lipid metabolism pathways and SREBP2-dependent cholesterologenesis in Leydig cells. PMID:21266533

  2. Integrating pathway analysis and genetics of gene expression for genome-wide association study of basal cell carcinoma.

    PubMed

    Zhang, Mingfeng; Liang, Liming; Morar, Nilesh; Dixon, Anna L; Lathrop, G Mark; Ding, Jun; Moffatt, Miriam F; Cookson, William O C; Kraft, Peter; Qureshi, Abrar A; Han, Jiali

    2012-04-01

    Genome-wide association studies (GWASs) have primarily focused on marginal effects for individual markers and have incorporated external functional information only after identifying robust statistical associations. We applied a new approach combining the genetics of gene expression and functional classification of genes to the GWAS of basal cell carcinoma (BCC) to identify potential biological pathways associated with BCC. We first identified 322,324 expression-associated single-nucleotide polymorphisms (eSNPs) from two existing GWASs of global gene expression in lymphoblastoid cell lines (n = 955), and evaluated the association of these functionally annotated SNPs with BCC among 2,045 BCC cases and 6,013 controls in Caucasians. We then grouped them into 99 KEGG pathways for pathway analysis and identified two pathways associated with BCC with p value <0.05 and false discovery rate (FDR) <0.5: the autoimmune thyroid disease pathway (mainly HLA class I and II antigens, p < 0.001, FDR = 0.24) and Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway (p = 0.02, FDR = 0.49). Seventy-nine (25.7%) out of 307 significant eSNPs in the JAK-STAT pathway were associated with BCC risk (p < 0.05) in an independent replication set of 278 BCC cases and 1,262 controls. In addition, the association of JAK-STAT signaling pathway was marginally validated using 16,691 eSNPs identified from 110 normal skin samples (p = 0.08). Based on the evidence of biological functions of the JAK-STAT pathway on oncogenesis, it is plausible that this pathway is involved in BCC pathogenesis.

  3. D-galactose catabolism in Penicillium chrysogenum: Expression analysis of the structural genes of the Leloir pathway.

    PubMed

    Jónás, Ágota; Fekete, Erzsébet; Németh, Zoltán; Flipphi, Michel; Karaffa, Levente

    2016-09-01

    In this study, we analyzed the expression of the structural genes encoding the five enzymes comprising the Leloir pathway of D-galactose catabolism in the industrial cell factory Penicillium chrysogenum on various carbon sources. The genome of P. chrysogenum contains a putative galactokinase gene at the annotated locus Pc13g10140, the product of which shows strong structural similarity to yeast galactokinase that was expressed on lactose and D-galactose only. The expression profile of the galactose-1-phosphate uridylyl transferase gene at annotated locus Pc15g00140 was essentially similar to that of galactokinase. This is in contrast to the results from other fungi such as Aspergillus nidulans, Trichoderma reesei and A. niger, where the ortholog galactokinase and galactose-1-phosphate uridylyl transferase genes were constitutively expressed. As for the UDP-galactose-4-epimerase encoding gene, five candidates were identified. We could not detect Pc16g12790, Pc21g12170 and Pc20g06140 expression on any of the carbon sources tested, while for the other two loci (Pc21g10370 and Pc18g01080) transcripts were clearly observed under all tested conditions. Like the 4-epimerase specified at locus Pc21g10370, the other two structural Leloir pathway genes - UDP-glucose pyrophosphorylase (Pc21g12790) and phosphoglucomutase (Pc18g01390) - were expressed constitutively at high levels as can be expected from their indispensable function in fungal cell wall formation.

  4. Gene expression analysis of canonical Wnt pathway transcriptional regulators during early morphogenesis of the facial region in the mouse embryo.

    PubMed

    Vendrell, Victor; Summerhurst, Kristen; Sharpe, James; Davidson, Duncan; Murphy, Paula

    2009-06-01

    Structures and features of the face, throat and neck are formed from a series of branchial arches that grow out along the ventrolateral aspect of the embryonic head. Multiple signalling pathways have been implicated in patterning interactions that lead to species-specific growth and differentiation within the branchial region that sculpt these features. A direct role for Wnt signalling in particular has been shown. The spatial and temporal distribution of Wnt pathway components contributes to the operation of the signalling system. We present the precise distribution of gene expression of canonical Wnt pathway transcriptional regulators, Tcf1, Lef1, Tcf3, Tcf4 and beta-catenin between embryonic day (E) 9.5 and 11.5. In situ hybridization combined with Optical Projection Tomography was used to record and compare distribution of transcripts in 3D within the developing branchial arches. This shows widespread yet very specific expression of the gene set indicating that all genes contribute to proper patterning of the region. Tcf1 and Lef1 are more prominent in rostral arches, particularly at later ages, and Tcf3 and Tcf4 are in general expressed more deeply (medial/endodermal aspect) in the arches than Tcf1 and Lef1. Comparison with Wnt canonical pathway readout patterns shows that the relationship between the expression of individual transcription factors and activation of the pathway is not simple, indicating complexity and flexibility in the signalling system.

  5. Expression of Wnt pathway genes in polyps and medusa-like structures of Ectopleura larynx (Cnidaria: Hydrozoa).

    PubMed

    Nawrocki, Annalise M; Cartwright, Paulyn

    2013-01-01

    The canonical Wnt signaling pathway is conserved in its role in axial patterning throughout Metazoa. In some hydrozoans (Phylum Cnidaria), Wnt signaling is implicated in oral-aboral patterning of the different life cycle stages-the planula, polyp and medusa. Unlike most hydrozoans, members of Aplanulata lack a planula larva and the polyp instead develops directly from a brooded or encysted embryo. The Aplanulata species Ectopleura larynx broods such embryos within gonophores. These gonophores are truncated medusae that remain attached to the polyps from which they bud, and retain evolutionary remnants of medusa structures. In E. larynx, gonophores differ between males and females in their degree of medusa truncation, making them an ideal system for examining truncated medusa development. Using next-generation sequencing, we isolated genes from Wnt signaling pathways and examined their expression in E. larynx. Our data are consistent with the Wnt pathway being involved in axial patterning of the polyp and truncated medusa. Changes in the spatial expression of Wnt pathway genes are correlated with the development of different oral structures in male and female gonophores. The absence of expression of components of the Wnt pathway and presence of a Wnt pathway antagonist SFRP in the developing anterior end of the gonophore suggest that downregulation of the Wnt pathway could play a role in medusa reduction in E. larynx.

  6. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    EPA Science Inventory

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo a...

  7. Genome-Wide Expression Analysis Reveals Diverse Effects of Acute Nicotine Exposure on Neuronal Function-Related Genes and Pathways

    PubMed Central

    Wang, Ju; Cui, Wenyan; Wei, Jinxue; Sun, Dongxiao; Gutala, Ramana; Gu, Jun; Li, Ming D.

    2011-01-01

    Previous human and animal studies demonstrate that acute nicotine exposure has complicated influences on the function of the nervous system, which may lead to long-lasting effects on the behavior and physiology of the subject. To determine the genes and pathways that might account for long-term changes after acute nicotine exposure, a pathway-focused oligoarray specifically designed for drug addiction research was used to assess acute nicotine effect on gene expression in the neuron-like SH-SY5Y cells. Our results showed that 295 genes involved in various biological functions were differentially regulated by 1 h of nicotine treatment. Among these genes, the expression changes of 221 were blocked by mecamylamine, indicating that the majority of nicotine-modulated genes were altered through the nicotinic acetylcholine receptors (nAChRs)-mediated signaling process. We further identified 14 biochemical pathways enriched among the nicotine-modulated genes, among which were those involved in neural development/synaptic plasticity, neuronal survival/death, immune response, or cellular metabolism. In the genes significantly regulated by nicotine but blocked by mecamylamine, 13 enriched pathways were detected. Nine of these pathways were shared with those enriched in the genes regulated by nicotine, including neuronal function-related pathways such as glucocorticoid receptor signaling, p38 MAPK signaling, PI3K/AKT signaling, and PTEN signaling, implying that nAChRs play important roles in the regulation of these biological processes. Together, our results not only provide insights into the mechanism underlying the acute response of neuronal cells to nicotine but also provide clues to how acute nicotine exposure exerts long-term effects on the nervous system. PMID:21556275

  8. Identification of Potential Anticancer Activities of Novel Ganoderma lucidum Extracts Using Gene Expression and Pathway Network Analysis.

    PubMed

    Kao, Chi H J; Bishop, Karen S; Xu, Yuanye; Han, Dug Yeo; Murray, Pamela M; Marlow, Gareth J; Ferguson, Lynnette R

    2016-01-01

    Ganoderma lucidum (lingzhi) has been used for the general promotion of health in Asia for many centuries. The common method of consumption is to boil lingzhi in water and then drink the liquid. In this study, we examined the potential anticancer activities of G. lucidum submerged in two commonly consumed forms of alcohol in East Asia: malt whiskey and rice wine. The anticancer effect of G. lucidum, using whiskey and rice wine-based extraction methods, has not been previously reported. The growth inhibition of G. lucidum whiskey and rice wine extracts on the prostate cancer cell lines, PC3 and DU145, was determined. Using Affymetrix gene expression assays, several biologically active pathways associated with the anticancer activities of G. lucidum extracts were identified. Using gene expression analysis (real-time polymerase chain reaction [RT-PCR]) and protein analysis (Western blotting), we confirmed the expression of key genes and their associated proteins that were initially identified with Affymetrix gene expression analysis.

  9. Isolation and dynamic expression of four genes involving in shikimic acid pathway in Camellia sinensis 'Baicha 1' during periodic albinism.

    PubMed

    Zhu, Xu-Jun; Zhao, Zhen; Xin, Hua-Hong; Wang, Ming-Le; Wang, Wei-Dong; Chen, Xuan; Li, Xing-Hui

    2016-10-01

    Flavonoids are the main flavor components and functional ingredients in tea, and the shikimic acid pathway is considered as one of the most important pathways in flavonoid biosynthesis, but little was known about the function of regulatory genes in the metabolism phenolic compounds in tea plant (Camellia sinensis), especially related genes in shikimic acid pathway. The dynamic changes of catechin (predominant flavonoid) contents were analyzed in this study, and four genes (CsPPT, CsDAHPS, CsSDH and CsCS) involving in shikimic acid pathway in C. sinensis albino cultivar 'Baicha 1' were cloned and characterized. The full-length cDNA sequences of these genes were obtained using reverse transcription-PCR and rapid amplification of cDNA ends. At the albinistic stage, the amounts of all catechins decreased to the lowest levels, when epigallocatechin gallate was the highest, whereas gallocatechin-3-O-gallate the lowest. Gene expression patterns analyzed by qRT-PCR showed that CsPPT and CsDAHPS were highly expressed in flowers and buds, while CsSDH and CsCS showed high expression levels in buds and leaves. It was also found that the transcript abundance of shikimic acid biosynthetic genes followed a tightly regulated biphasic pattern, and was affected by albinism. The transcript levels of CsPPT and CsDAHPS were decreased at albinistic stage followed elevated expression, whereas CsSDH and CsCS were increased only at re-greening stage. Taken together, these findings suggested that these four genes in C. sinensis may play different roles in shikimic acid biosynthesis and these genes may have divergent functions.

  10. Differentiating disease subtypes by using pathway patterns constructed from gene expressions and protein networks.

    PubMed

    Hung, Fei-Hung; Chiu, Hung-Wen

    2015-01-01

    Gene expression profiles differ in different diseases. Even if diseases are at the same stage, such diseases exhibit different gene expressions, not to mention the different subtypes at a single lesion site. Distinguishing different disease subtypes at a single lesion site is difficult. In early cases, subtypes were initially distinguished by doctors. Subsequently, further differences were found through pathological experiments. For example, a brain tumor can be classified according to its origin, its cell-type origin, or the tumor site. Because of the advancements in bioinformatics and the techniques for accumulating gene expressions, researchers can use gene expression data to classify disease subtypes. Because the operation of a biopathway is closely related to the disease mechanism, the application of gene expression profiles for clustering disease subtypes is insufficient. In this study, we collected gene expression data of healthy and four myelodysplastic syndrome subtypes and applied a method that integrated protein-protein interaction and gene expression data to identify different patterns of disease subtypes. We hope it is efficient for the classification of disease subtypes in adventure.

  11. Short communication: expression and alternative splicing of POU1F1 pathway genes in preimplantation bovine embryos.

    PubMed

    Laporta, J; Driver, A; Khatib, H

    2011-08-01

    Early embryo loss is a major contributing factor to cow infertility and that 70 to 80% of this loss occurs between d 8 and 16 postfertilization. However, little is known about the molecular mechanisms and the nature of genes involved in normal and abnormal embryonic development. Moreover, information is limited on the contributions of the genomes of dams and of embryos to the development and survival of preimplantation embryos. We hypothesized that proper gene expression level in the developing embryo is essential for embryo survival and pregnancy success. As such, the characterization of expression profiles in early embryos could lead to a better understanding of the mechanisms involved in normal and abnormal embryo development. To test this hypothesis, 2 d-8 embryo populations (degenerate embryos and blastocysts) that differed in morphology and developmental status were investigated. Expression levels of POU1F1 pathway genes were estimated in 4 sets of biological replicate pools of degenerate embryos and blastocysts. The OPN and STAT5A genes were found to be upregulated in degenerate embryos compared with blastocysts, whereas STAT5B showed similar expression levels in both embryo groups. Analysis of splice variants of OPN and STAT5A revealed expression patterns different from the total expression values of these genes. As such, measuring expression of individual transcripts should be considered in gene expression studies.

  12. Gene Expression Profiles from Disease Discordant Twins Suggest Shared Antiviral Pathways and Viral Exposures among Multiple Systemic Autoimmune Diseases.

    PubMed

    Gan, Lu; O'Hanlon, Terrance P; Lai, Zhennan; Fannin, Rick; Weller, Melodie L; Rider, Lisa G; Chiorini, John A; Miller, Frederick W

    2015-01-01

    Viral agents are of interest as possible autoimmune triggers due to prior reported associations and widely studied molecular mechanisms of antiviral immune responses in autoimmunity. Here we examined new viral candidates for the initiation and/or promotion of systemic autoimmune diseases (SAID), as well as possible related signaling pathways shared in the pathogenesis of those disorders. RNA isolated from peripheral blood samples from 33 twins discordant for SAID and 33 matched, unrelated healthy controls was analyzed using a custom viral-human gene microarray. Paired comparisons were made among three study groups-probands with SAID, their unaffected twins, and matched, unrelated healthy controls-using statistical and molecular pathway analyses. Probands and unaffected twins differed significantly in the expression of 537 human genes, and 107 of those were associated with viral infections. These 537 differentially expressed human genes participate in overlapping networks of several canonical, biologic pathways relating to antiviral responses and inflammation. Moreover, certain viral genes were expressed at higher levels in probands compared to either unaffected twins or unrelated, healthy controls. Interestingly, viral gene expression levels in unaffected twins appeared intermediate between those of probands and the matched, unrelated healthy controls. Of the viruses with overexpressed viral genes, herpes simplex virus-2 (HSV-2) was the only human viral pathogen identified using four distinct oligonucleotide probes corresponding to three HSV-2 genes associated with different stages of viral infection. Although the effects from immunosuppressive therapy on viral gene expression remain unclear, this exploratory study suggests a new approach to evaluate shared viral agents and antiviral immune responses that may be involved in the development of SAID.

  13. Gene Expression Profiles from Disease Discordant Twins Suggest Shared Antiviral Pathways and Viral Exposures among Multiple Systemic Autoimmune Diseases

    PubMed Central

    Gan, Lu; O’Hanlon, Terrance P.; Lai, Zhennan; Fannin, Rick; Weller, Melodie L.; Rider, Lisa G.; Chiorini, John A.; Miller, Frederick W.

    2015-01-01

    Viral agents are of interest as possible autoimmune triggers due to prior reported associations and widely studied molecular mechanisms of antiviral immune responses in autoimmunity. Here we examined new viral candidates for the initiation and/or promotion of systemic autoimmune diseases (SAID), as well as possible related signaling pathways shared in the pathogenesis of those disorders. RNA isolated from peripheral blood samples from 33 twins discordant for SAID and 33 matched, unrelated healthy controls was analyzed using a custom viral-human gene microarray. Paired comparisons were made among three study groups—probands with SAID, their unaffected twins, and matched, unrelated healthy controls—using statistical and molecular pathway analyses. Probands and unaffected twins differed significantly in the expression of 537 human genes, and 107 of those were associated with viral infections. These 537 differentially expressed human genes participate in overlapping networks of several canonical, biologic pathways relating to antiviral responses and inflammation. Moreover, certain viral genes were expressed at higher levels in probands compared to either unaffected twins or unrelated, healthy controls. Interestingly, viral gene expression levels in unaffected twins appeared intermediate between those of probands and the matched, unrelated healthy controls. Of the viruses with overexpressed viral genes, herpes simplex virus-2 (HSV-2) was the only human viral pathogen identified using four distinct oligonucleotide probes corresponding to three HSV-2 genes associated with different stages of viral infection. Although the effects from immunosuppressive therapy on viral gene expression remain unclear, this exploratory study suggests a new approach to evaluate shared viral agents and antiviral immune responses that may be involved in the development of SAID. PMID:26556803

  14. Exploring the potential relationship between Notch pathway genes expression and their promoter methylation in mice hippocampal neurogenesis.

    PubMed

    Zhang, Zhen; Gao, Feng; Kang, Xiaokui; Li, Jia; Zhang, Litong; Dong, Wentao; Jin, Zhangning; Li, Fan; Gao, Nannan; Cai, Xinwang; Yang, Shuyuan; Zhang, Jianning; Ren, Xinliang; Yang, Xinyu

    2015-04-01

    The Notch pathway is a highly conserved pathway that regulates hippocampal neurogenesis during embryonic development and adulthood. It has become apparent that intracellular epigenetic modification including DNA methylation is deeply involved in fate specification of neural stem cells (NSCs). However, it is still unclear whether the Notch pathway regulates hippocampal neurogenesis by changing the Notch genes' DNA methylation status. Here, we present the evidence from DNA methylation profiling of Notch1, Hes1 and Ngn2 promoters during neurogenesis in the dentate gyrus (DG) of postnatal, adult and traumatic brains. We observed the expression of Notch1, Hes1 and Ngn2 in hippocampal DG with qPCR, Western blot and immunofluorescence staining. In addition, we investigated the methylation status of Notch pathway genes using the bisulfite sequencing PCR (BSP) method. The number of Notch1 or Hes1 (+) and BrdU (+) cells decreased in the subgranular zone (SGZ) of the DG in the hippocampus following TBI. Nevertheless, the number of Ngn2-positive cells in the DG of injured mice was markedly higher than in the DG of non-TBI mice. Accordingly, the DNA methylation level of the three gene promoters changed with their expression in the DG. These findings suggest that the strict spatio-temporal expression of Notch effector genes plays an important role during hippocampal neurogenesis and suggests the possibility that Notch1, Hes1 and Ngn2 were regulated by changing some specific CpG sites of their promoters to further orchestrate neurogenesis in vivo.

  15. Spatio-temporal expression of the pathway-specific regulatory gene redD in S. coelicolor.

    PubMed

    Zhou, Li-hua; Li, Yu-qin; Li, Yong-quan; Wu, Dan

    2005-06-01

    Confocal laser scanning microscopy was used to observe the spatio-temporal expression of the pathway-specific gene redD during S. coelicolor cell cultivation. The corresponding mutant S. coelicolor lyqRY1522 carrying redD::eyfp in the chromosome was constructed. The temporal expression results of the fusion protein during submerged cultivation demonstrated that expression of redD began in the transition phase, continuing through the exponential growth phase to the stationary phase, and reached maximum in the stationary phase. On the other hand, redD was expressed only in substrate mycelia during solid-state culture, while aerial mycelia remained essentially non-fluorescent throughout culture. Results demonstrated that the expression pattern of redD coincides with that of the biosynthesis of the antibiotics during culture, revealing a direct correlation between the spatio-temporal distribution of regulatory gene expression and second metabolism.

  16. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression.

    PubMed

    Chen, Xi-Lin; Dodd, Geraldine; Thomas, Suzanne; Zhang, Xiaolan; Wasserman, Martin A; Rovin, Brad H; Kunsch, Charles

    2006-05-01

    The antioxidant response element (ARE) is a transcriptional control element that mediates expression of a set of antioxidant proteins. NF-E2-related factor 2 (Nrf2) is a transcription factor that activates ARE-containing genes. In endothelial cells, the ARE-mediated genes are upregulated by atheroprotective laminar flow through a Nrf2-dependent mechanism. We tested the hypothesis that activation of ARE-regulated genes via adenovirus-mediated expression of Nrf2 may suppress redox-sensitive inflammatory gene expression. Expression of Nrf2 in human aortic endothelial cells (HAECs) resulted in a marked increase in ARE-driven transcriptional activity and protected HAECs from H2O2-mediated cytotoxicity. Nrf2 suppressed TNF-alpha-induced monocyte chemoattractant protein (MCP)-1 and VCAM-1 mRNA and protein expression in a dose-dependent manner and inhibited TNF-alpha-induced monocytic U937 cell adhesion to HAECs. Nrf2 also inhibited IL-1beta-induced MCP-1 gene expression in human mesangial cells. Expression of Nrf2 inhibited TNF-alpha-induced activation of p38 MAP kinase. Furthermore, expression of a constitutively active form of MKK6 (an upstream kinase for p38 MAP kinase) partially reversed Nrf2-mediated inhibition of VCAM-1 expression, suggesting that p38 MAP kinase, at least in part, mediates Nrf2's anti-inflammatory action. In contrast, Nrf2 did not inhibit TNF-alpha-induced NF-kappaB activation. These data identify the Nrf2/ARE pathway as an endogenous atheroprotective system for antioxidant protection and suppression of redox-sensitive inflammatory genes, suggesting that targeting the Nrf2/ARE pathway may represent a novel therapeutic approach for the treatment of inflammatory diseases such as atherosclerosis.

  17. The inhibitory effect of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus.

    PubMed

    Kong, Qing; Chi, Chen; Yu, Jiujiang; Shan, Shihua; Li, Qiyu; Li, Qianting; Guan, Bin; Nierman, William C; Bennett, Joan W

    2014-06-01

    Aspergillus flavus is one of the major moulds that colonize peanut in the field and during storage. The impact to human and animal health, and to the economy in agriculture and commerce, is significant since this mold produces the most potent known natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect in inhibiting aflatoxin formation in A. flavus through down-regulating aflatoxin pathway gene expression as demonstrated by gene chip analysis. Aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98 %) inhibited by co-cultivation with B. megaterium. Growth was also reduced. Using expression studies, we identified the fungal genes down-regulated by co-cultivation with B. megaterium across the entire fungal genome and specifically within the aflatoxin pathway gene cluster (aflF, aflT, aflS, aflJ, aflL, aflX). Modulating the expression of these genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was significantly down-regulated during co-cultivation. We present a model showing a hypothesis of the regulatory mechanism of aflatoxin production suppression by AflS and AflR through B. megaterium co-cultivation.

  18. Analysis of functional and pathway association of differential co-expressed genes: a case study in drug addiction.

    PubMed

    Li, Zi-hui; Liu, Yu-feng; Li, Ke-ning; Duanmu, Hui-zi; Chang, Zhi-qiang; Li, Zhen-qi; Zhang, Shan-zhen; Xu, Yan

    2012-02-01

    Drug addiction has been considered as a kind of chronic relapsing brain disease influenced by both genetic and environmental factors. At present, many causative genes and pathways related to diverse kinds of drug addiction have been discovered, while less attention has been paid to common mechanisms shared by different drugs underlying addiction. By applying a co-expression meta-analysis method to mRNA expression profiles of alcohol, cocaine, heroin addicted and normal samples, we identified significant gene co-expression pairs. As co-expression networks of drug group and control group constructed, associated function term pairs and pathway pairs reflected by co-expression pattern changes were discovered by integrating functional and pathway information respectively. The results indicated that respiratory electron transport chain, synaptic transmission, mitochondrial electron transport, signal transduction, locomotory behavior, response to amphetamine, negative regulation of cell migration, glucose regulation of insulin secretion, signaling by NGF, diabetes pathways, integration of energy metabolism, dopamine receptors may play an important role in drug addiction. In addition, the results can provide theory support for studies of addiction mechanisms.

  19. Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis

    PubMed Central

    Hu, Valerie W.; Nguyen, AnhThu; Kim, Kyung Soon; Steinberg, Mara E.; Sarachana, Tewarit; Scully, Michele A.; Soldin, Steven J.; Luu, Truong; Lee, Norman H.

    2009-01-01

    Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present “case-control” study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects ∼4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism. PMID:19492049

  20. Gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: altered pathways in neuronal development and steroid biosynthesis.

    PubMed

    Hu, Valerie W; Nguyen, AnhThu; Kim, Kyung Soon; Steinberg, Mara E; Sarachana, Tewarit; Scully, Michele A; Soldin, Steven J; Luu, Truong; Lee, Norman H

    2009-06-03

    Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present "case-control" study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects approximately 4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism.

  1. Partial Sleep Restriction Activates Immune Response-Related Gene Expression Pathways: Experimental and Epidemiological Studies in Humans

    PubMed Central

    Rantanen, Ville; Kronholm, Erkki; Surakka, Ida; van Leeuwen, Wessel M. A.; Lehto, Maili; Matikainen, Sampsa; Ripatti, Samuli; Härmä, Mikko; Sallinen, Mikael; Salomaa, Veikko; Jauhiainen, Matti; Alenius, Harri; Paunio, Tiina; Porkka-Heiskanen, Tarja

    2013-01-01

    Epidemiological studies have shown that short or insufficient sleep is associated with increased risk for metabolic diseases and mortality. To elucidate mechanisms behind this connection, we aimed to identify genes and pathways affected by experimentally induced, partial sleep restriction and to verify their connection to insufficient sleep at population level. The experimental design simulated sleep restriction during a working week: sleep of healthy men (N = 9) was restricted to 4 h/night for five nights. The control subjects (N = 4) spent 8 h/night in bed. Leukocyte RNA expression was analyzed at baseline, after sleep restriction, and after recovery using whole genome microarrays complemented with pathway and transcription factor analysis. Expression levels of the ten most up-regulated and ten most down-regulated transcripts were correlated with subjective assessment of insufficient sleep in a population cohort (N = 472). Experimental sleep restriction altered the expression of 117 genes. Eight of the 25 most up-regulated transcripts were related to immune function. Accordingly, fifteen of the 25 most up-regulated Gene Ontology pathways were also related to immune function, including those for B cell activation, interleukin 8 production, and NF-κB signaling (P<0.005). Of the ten most up-regulated genes, expression of STX16 correlated negatively with self-reported insufficient sleep in a population sample, while three other genes showed tendency for positive correlation. Of the ten most down-regulated genes, TBX21 and LGR6 correlated negatively and TGFBR3 positively with insufficient sleep. Partial sleep restriction affects the regulation of signaling pathways related to the immune system. Some of these changes appear to be long-lasting and may at least partly explain how prolonged sleep restriction can contribute to inflammation-associated pathological states, such as cardiometabolic diseases. PMID:24194869

  2. Combined gene expression and proteomic analysis of EGF induced apoptosis in A431 cells suggests multiple pathways trigger apoptosis.

    PubMed

    Alanazi, Ibrahim; Ebrahimie, Esmaeil; Hoffmann, Peter; Adelson, David L

    2013-11-01

    A431 cells, derived from epidermoid carcinoma, overexpress the epidermal growth factor receptor (EGFR) and when treated with a high dose of EGF will undergo apoptosis. We exploited microarray and proteomics techniques and network prediction to study the regulatory mechanisms of EGF-induced apoptosis in A431 cells. We observed significant changes in gene expression in 162 genes, approximately evenly split between pro-apoptotic and anti-apoptotic genes and identified 30 proteins from the proteomic data that had either pro or anti-apoptotic annotation. Our correlation analysis of gene expression and proteome modeled a number of distinct sub-networks that are associated with the onset of apoptosis, allowing us to identify specific pathways and components. These include components of the interferon signalling pathway, and down stream components, including cytokines and suppressors of cytokine signalling. A central component of almost all gene expression sub-networks identified was TP53, which is mutated in A431 cells, and was down regulated. This down regulation of TP53 appeared to be correlated with proteomic sub-networks of cytoskeletal or cell adhesion components that might induce apoptosis by triggering cytochrome C release. Of the only three genes also differentially expressed as proteins, only serpinb1 had a known association with apoptosis. We confirmed that up regulation and cleavage of serpinb1 into L-DNAaseII was correlated with the induction of apoptosis. It is unlikely that a single pathway, but more likely a combination of pathways is needed to trigger EGF induced apoptosis in A431cells.

  3. Contents of therapeutic metabolites in Swertia chirayita correlate with the expression profiles of multiple genes in corresponding biosynthesis pathways.

    PubMed

    Padhan, Jibesh Kumar; Kumar, Varun; Sood, Hemant; Singh, Tiratha Raj; Chauhan, Rajinder S

    2015-08-01

    Swertia chirayita, an endangered medicinal herb, contains three major secondary metabolites swertiamarin, amarogentin and mangiferin, exhibiting valuable therapeutic traits. No information exists as of today on the biosynthesis of these metabolites in S. chirayita. The current study reports the expression profiling of swertiamarin, amarogentin and mangiferin biosynthesis pathway genes and their correlation with the respective metabolites content in different tissues of S. chirayita. Root tissues of greenhouse grown plants contained the maximum amount of secoiridoids (swertiamarin, 2.8% of fr. wt and amarogentin, 0.1% of fr. wt), whereas maximum accumulation of mangiferin (1.0% of fr. wt) was observed in floral organs. Differential gene expression analysis and their subsequent principal component analysis unveiled ten genes (encoding HMGR, PMK, MVK, ISPD, ISPE, GES, G10H, 8HGO, IS and 7DLGT) of the secoiridoids biosynthesis pathway and five genes (encoding EPSPS, PAL, ADT, CM and CS) of mangiferin biosynthesis with elevated transcript amounts in relation to corresponding metabolite contents. Three genes of the secoiridoids biosynthesis pathway (encoding PMK, ISPD and IS) showed elevated levels (∼57-104 fold increase in roots), and EPSPS of mangiferin biosynthesis showed an about 117 fold increase in transcripts in leaf tissues of the greenhouse grown plants. The study does provide leads on potential candidate genes correlating with the metabolites biosynthesis in S. chirayita as an initiative towards its genetic improvement.

  4. Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus

    PubMed Central

    Biggar, Kyle K.; Wu, Cheng-Wei; Tessier, Shannon N.; Zhang, Jing; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B.

    2015-01-01

    A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been identified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus murinus). To explore the regulatory mechanisms that underlie daily torpor in a primate, we analyzed the expression of 28 selected genes that represent crucial survival pathways known to be involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene expression in control (aroused) versus torpid lemurs in five tissues including the liver, kidney, skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated gene expression of peroxisome proliferator activated receptor gamma (ppargc), ferritin (fth1), and protein chaperones during torpor. Overall, the data show that the expression of only a few genes changed during lemur daily torpor, as compared with the broader expression changes reported for hibernation in ground squirrels. These results provide an indication that the alterations in gene expression required for torpor in lemurs are not as extensive as those needed for winter hibernation in squirrel models. However, identification of crucial genes with altered expression that support lemur torpor provides key targets to be explored and manipulated toward a goal of translational applications of inducible torpor as a treatment option in human biomedicine. PMID:26093281

  5. Modulation of Gene Expression in Key Survival Pathways During Daily Torpor in the Gray Mouse Lemur, Microcebus murinus.

    PubMed

    Biggar, Kyle K; Wu, Cheng-Wei; Tessier, Shannon N; Zhang, Jing; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B

    2015-04-01

    A variety of mammals employ torpor as an energy-saving strategy in environments of marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been identified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus murinus). To explore the regulatory mechanisms that underlie daily torpor in a primate, we analyzed the expression of 28 selected genes that represent crucial survival pathways known to be involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene expression in control (aroused) versus torpid lemurs in five tissues including the liver, kidney, skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated gene expression of peroxisome proliferator activated receptor gamma (ppargc), ferritin (fth1), and protein chaperones during torpor. Overall, the data show that the expression of only a few genes changed during lemur daily torpor, as compared with the broader expression changes reported for hibernation in ground squirrels. These results provide an indication that the alterations in gene expression required for torpor in lemurs are not as extensive as those needed for winter hibernation in squirrel models. However, identification of crucial genes with altered expression that support lemur torpor provides key targets to be explored and manipulated toward a goal of translational applications of inducible torpor as a treatment option in human biomedicine.

  6. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    PubMed

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1.

  7. Perturbation Detection Through Modeling of Gene Expression on a Latent Biological Pathway Network: A Bayesian hierarchical approach.

    PubMed

    Pham, Lisa M; Carvalho, Luis; Schaus, Scott; Kolaczyk, Eric D

    Cellular response to a perturbation is the result of a dynamic system of biological variables linked in a complex network. A major challenge in drug and disease studies is identifying the key factors of a biological network that are essential in determining the cell's fate. Here our goal is the identification of perturbed pathways from high-throughput gene expression data. We develop a three-level hierarchical model, where (i) the first level captures the relationship between gene expression and biological pathways using confirmatory factor analysis, (ii) the second level models the behavior within an underlying network of pathways induced by an unknown perturbation using a conditional autoregressive model, and (iii) the third level is a spike-and-slab prior on the perturbations. We then identify perturbations through posterior-based variable selection. We illustrate our approach using gene transcription drug perturbation profiles from the DREAM7 drug sensitivity predication challenge data set. Our proposed method identified regulatory pathways that are known to play a causative role and that were not readily resolved using gene set enrichment analysis or exploratory factor models. Simulation results are presented assessing the performance of this model relative to a network-free variant and its robustness to inaccuracies in biological databases.

  8. Developing discriminate model and comparative analysis of differentially expressed genes and pathways for bloodstream samples of diabetes mellitus type 2

    PubMed Central

    2014-01-01

    Background Diabetes mellitus of type 2 (T2D), also known as noninsulin-dependent diabetes mellitus (NIDDM) or adult-onset diabetes, is a common disease. It is estimated that more than 300 million people worldwide suffer from T2D. In this study, we investigated the T2D, pre-diabetic and healthy human (no diabetes) bloodstream samples using genomic, genealogical, and phonemic information. We identified differentially expressed genes and pathways. The study has provided deeper insights into the development of T2D, and provided useful information for further effective prevention and treatment of the disease. Results A total of 142 bloodstream samples were collected, including 47 healthy humans, 22 pre-diabetic and 73 T2D patients. Whole genome scale gene expression profiles were obtained using the Agilent Oligo chips that contain over 20,000 human genes. We identified 79 significantly differentially expressed genes that have fold change ≥ 2. We mapped those genes and pinpointed locations of those genes on human chromosomes. Amongst them, 3 genes were not mapped well on the human genome, but the rest of 76 differentially expressed genes were well mapped on the human genome. We found that most abundant differentially expressed genes are on chromosome one, which contains 9 of those genes, followed by chromosome two that contains 7 of the 76 differentially expressed genes. We performed gene ontology (GO) functional analysis of those 79 differentially expressed genes and found that genes involve in the regulation of cell proliferation were among most common pathways related to T2D. The expression of the 79 genes was combined with clinical information that includes age, sex, and race to construct an optimal discriminant model. The overall performance of the model reached 95.1% accuracy, with 91.5% accuracy on identifying healthy humans, 100% accuracy on pre-diabetic patients and 95.9% accuract on T2D patients. The higher performance on identifying pre-diabetic patients was

  9. Inhibin alpha gene expression in human trophoblasts is regulated by interactions between TFAP2 and cAMP signaling pathways.

    PubMed

    Depoix, Christophe L; Debiève, Frédéric; Hubinont, Corinne

    2014-11-01

    Inhibin α (Inha) gene expression is regulated, in rat granulosa cells, via a cyclic 3',5'-adenosine monophosphate (AMP)-response element (CRE) found in a region of the promoter that is homologous to the human INHA promoter. We previously found that during in vitro cytotrophoblast differentiation, human INHA gene expression was regulated by TFAP2A via association with an AP-2 site located upstream of this CRE. The aim of this study was to evaluate if the human INHA gene was also regulated by cAMP in trophoblasts, and to investigate the possible crosstalk between TFAP2 and cAMP signaling pathways in the regulation of INHA gene expression. Treatment with cAMP or forskolin increased INHA mRNA expression by 7- and 2-fold in primary cytotrophoblasts and choriocarcinoma-derived BeWo cells, respectively. Treatment with the protein kinase A inhibitor H-89 reduced forskolin-induced luciferase activity by ∼40% in BeWo cells transfected with an INHA promoter-driven luciferase reporter vector. TFAP2 overexpression increased basal luciferase activity, whereas the dominant repressor KCREB abolished it. Surprisingly, mutation of the CRE also eliminated the TFAP2-induced transcription, although TFAP2 overexpression was still able to increase forskolin-induced luciferase activity when the AP-2 binding site, but not the CRE site, was mutated. Thus, INHA gene expression is upregulated by cAMP via CRE in human trophoblasts, and TFAP2 regulates this expression by interacting with CRE.

  10. Varietal Dependence of GLVs Accumulation and LOX-HPL Pathway Gene Expression in Four Vitis vinifera Wine Grapes

    PubMed Central

    Qian, Xu; Xu, Xiao-Qing; Yu, Ke-Ji; Zhu, Bao-Qing; Lan, Yi-Bin; Duan, Chang-Qing; Pan, Qiu-Hong

    2016-01-01

    Variety is one of the major factors influencing grape and wine aromatic characteristics. Green leaf volatiles (GLVs), derived from lipoxygenase-hydroperoxides lyase (LOX-HPL) pathway, are important components for the aromatic quality of grapes and wines. However, the varietal difference regarding GLVs accumulation and related gene expression are poorly studied. This work exhibited that the accumulation of various GLVs and the expression of LOX-HPL pathway genes in four Vitis vinifera wine grape cultivars: Syrah, Muscat Tchervine, Gewürztraminer and Chardonnay. The results showed a variety dependence of GLVs profile. Muscat Tchervine harvested grapes contained less C6 aldehydes and the most abundant esters, which corresponded to very low VvLOXA and VvHPL1 expression abundance as well as high VvAAT transcript in this variety. High expression level of both VvLOXA and VvHPL1 paralleled with higher level of C6 aldehydes together with higher alcohols in Syrah grape. Gewürztraminer and Chardonnay grapes had high aldehydes and alcohols as well as low esters, which were resulted from their higher expression level of VvLOXA or VvHPL1 and lower VvAAT. From these above corresponding relations, it is concluded that VvLOXA, VvHPL1 and VvAAT in the LOX-HPL pathway are targets for altering GLVs composition in the grape varieties. PMID:27886056

  11. Genetics and Gene Expression Involving Stress and Distress Pathways in Fibromyalgia with and without Comorbid Chronic Fatigue Syndrome

    PubMed Central

    Light, Kathleen C.; White, Andrea T.; Tadler, Scott; Iacob, Eli; Light, Alan R.

    2012-01-01

    In complex multisymptom disorders like fibromyalgia syndrome (FMS) and chronic fatigue syndrome (CFS) that are defined primarily by subjective symptoms, genetic and gene expression profiles can provide very useful objective information. This paper summarizes research on genes that may be linked to increased susceptibility in developing and maintaining these disorders, and research on resting and stressor-evoked changes in leukocyte gene expression, highlighting physiological pathways linked to stress and distress. These include the adrenergic nervous system, the hypothalamic-pituitary-adrenal axis and serotonergic pathways, and exercise responsive metabolite-detecting ion channels. The findings to date provide some support for both inherited susceptibility and/or physiological dysregulation in all three systems, particularly for catechol-O-methyl transferase (COMT) genes, the glucocorticoid and the related mineralocorticoid receptors (NR3C1, NR3C2), and the purinergic 2X4 (P2X4) ion channel involved as a sensory receptor for muscle pain and fatigue and also in upregulation of spinal microglia in chronic pain models. Methodological concerns for future research, including potential influences of comorbid clinical depression and antidepressants and other medications, on gene expression are also addressed. PMID:22110941

  12. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD

    PubMed Central

    Li, He; Li, Xin; Smerin, Stanley E.; Zhang, Lei; Jia, Min; Xing, Guoqiang; Su, Yan A.; Wen, Jillian; Benedek, David; Ursano, Robert

    2014-01-01

    The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p < 0.01). Ingenuity pathway analysis revealed up- or downregulation in the amygdala complex of four signaling networks – one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear. PMID:25295026

  13. Gene Expression in Osteolysis: Review on the Identification of Altered Molecular Pathways in Preclinical and Clinical Studies

    PubMed Central

    Veronesi, Francesca; Tschon, Matilde; Fini, Milena

    2017-01-01

    Aseptic loosening (AL) due to osteolysis is the primary cause of joint prosthesis failure. Currently, a second surgery is still the only available treatment for AL, with its associated drawbacks. The present review aims at identifying genes whose expression is altered in osteolysis, and that could be the target of new pharmacological treatments, with the goal of replacing surgery. This review also aims at identifying the molecular pathways altered by different wear particles. We reviewed preclinical and clinical studies from 2010 to 2016, analyzing gene expression of tissues or cells affected by osteolysis. A total of 32 in vitro, 16 in vivo and six clinical studies were included. These studies revealed that genes belonging to both inflammation and osteoclastogenesis pathways are mainly involved in osteolysis. More precisely, an increase in genes encoding for the following factors were observed: Interleukins 6 and 1β (IL16 and β), Tumor Necrosis Factor α (TNFα), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), Cathepsin K (CATK) and Tartrate-resistant acid phosphatase (TRAP). Titanium (Ti) and Polyethylene (PE) were the most studied particles, showing that Ti up-regulated inflammation and osteoclastogenesis related genes, while PE up-regulated primarily osteoclastogenesis related genes. PMID:28245614

  14. Novel expression patterns of carotenoid pathway-related gene in citrus leaves and maturing fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carotenoids are abundant in citrus fruits and vary among cultivars and species. In the present study, HPLC and real-time PCR were used to investigate the expression patterns of 23 carotenoid biosynthesis gene family members and their possible relation with carotenoid accumulation in flavedo, juice s...

  15. Characterization of Light and Nitrogen Regulated Gene Expression Pathways in Marine Diatoms

    DTIC Science & Technology

    1992-12-31

    glutamine synthetase (GS) and the fucoxanthin-chlorophyll a/c pigment protein (FCP). The products of these genes determine the nitrogen assimilation and...Oceanian Biochemists. October 1992, Shanghai, China. 3. Robertson, D.L., G.J. Smith and R.S. Alberte. 1992. Glutamine synthetase expression is

  16. Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes

    PubMed Central

    Riquelme Medina, Ignacio; Lubovac-Pilav, Zelmina

    2016-01-01

    Type 1 diabetes (T1D) is a complex disease, caused by the autoimmune destruction of the insulin producing pancreatic beta cells, resulting in the body’s inability to produce insulin. While great efforts have been put into understanding the genetic and environmental factors that contribute to the etiology of the disease, the exact molecular mechanisms are still largely unknown. T1D is a heterogeneous disease, and previous research in this field is mainly focused on the analysis of single genes, or using traditional gene expression profiling, which generally does not reveal the functional context of a gene associated with a complex disorder. However, network-based analysis does take into account the interactions between the diabetes specific genes or proteins and contributes to new knowledge about disease modules, which in turn can be used for identification of potential new biomarkers for T1D. In this study, we analyzed public microarray data of T1D patients and healthy controls by applying a systems biology approach that combines network-based Weighted Gene Co-Expression Network Analysis (WGCNA) with functional enrichment analysis. Novel co-expression gene network modules associated with T1D were elucidated, which in turn provided a basis for the identification of potential pathways and biomarker genes that may be involved in development of T1D. PMID:27257970

  17. Expression profiling of S. pombe acetyltransferase mutants identifies redundant pathways of gene regulation

    PubMed Central

    2010-01-01

    Background Histone acetyltransferase enzymes (HATs) are implicated in regulation of transcription. HATs from different families may overlap in target and substrate specificity. Results We isolated the elp3+ gene encoding the histone acetyltransferase subunit of the Elongator complex in fission yeast and characterized the phenotype of an Δelp3 mutant. We examined genetic interactions between Δelp3 and two other HAT mutants, Δmst2 and Δgcn5 and used whole genome microarray analysis to analyze their effects on gene expression. Conclusions Comparison of phenotypes and expression profiles in single, double and triple mutants indicate that these HAT enzymes have overlapping functions. Consistent with this, overlapping specificity in histone H3 acetylation is observed. However, there is no evidence for overlap with another HAT enzyme, encoded by the essential mst1+ gene. PMID:20096118

  18. Gene expression of muscular and neuronal pathways is cooperatively dysregulated in patients with idiopathic achalasia

    PubMed Central

    Palmieri, Orazio; Mazza, Tommaso; Merla, Antonio; Fusilli, Caterina; Cuttitta, Antonello; Martino, Giuseppina; Latiano, Tiziana; Corritore, Giuseppe; Bossa, Fabrizio; Palumbo, Orazio; Muscarella, Lucia Anna; Carella, Massimo; Graziano, Paolo; Andriulli, Angelo; Latiano, Anna

    2016-01-01

    Idiopathic achalasia is characterized by the absence of peristalsis secondary to loss of neurons in the myenteric plexus that hampers proper relaxation of the lower esophageal sphincter. Achalasia can be considered a multifactorial disorder as it occurs in related individuals and is associated with HLA class II genes, thereby suggesting genetic influence. We used microarray technology and advanced in-silico functional analyses to perform the first genome-wide expression profiling of mRNA in tissue samples from 12 achalasia and 5 control patients. It revealed 1,728 differentially expressed genes, of these, 837 (48.4%) were up-regulated in cases. In particular, genes participating to the smooth muscle contraction biological function were mostly up-regulated. Functional analysis revealed a significant enrichment of neuronal/muscular and neuronal/immunity processes. Upstream regulatory analysis of 180 genes involved in these processes suggested TLR4 and IL18 as critical key-players. Two functional gene networks were significantly over-represented: one involved in organ morphology, skeletal muscle system development and function, and neurological diseases, and the other participating in cell morphology, humoral immune response and cellular movement. These results highlight on pivotal genes that may play critical roles in neuronal/muscular and neuronal/immunity processes, and that may contribute to the onset and development of achalasia. PMID:27511445

  19. Comparative Transcriptome Analysis of Differentially Expressed Genes and Signaling Pathways between XY and YY Testis in Yellow Catfish

    PubMed Central

    Wu, Junjie; Xiong, Shuting; Jing, Jing; Chen, Xin; Wang, Weimin; Gui, Jian-Fang; Mei, Jie

    2015-01-01

    YY super-males have rarely been detected in nature and only been artificially created in some fish species including tilapia and yellow catfish (Pelteobagrusfulvidraco), which provides a promising model for testis development and spermatogenesis. In our previous study, significant differences in morphology and miRNA expression were detected between XY and YY testis of yellow catfish. Here, solexa sequencing technology was further performed to compare mRNA expression between XY and YY testis. Compared with unigenes expressed in XY testis, 1146 and 1235 unigenes have significantly higher and lower expression in YY testis, respectively. 605 differentially expressed unigenes were annotated to 1604 GO terms with 319 and 286 genes having relative higher expression in XY and YY testis. KEGG analysis suggested different levels of PI3K-AKT and G protein-coupled receptor (GPCR) signaling pathways between XY and YY testis. Down-regulation of miR-141/429 in YY testis was speculated to promote testis development and maturation, and several factors in PI3K-AKT and GPCR signaling pathways were found as predicted targets of miR-141/429, several of which were confirmed by dual-luciferase reporter assays. Our study provides a comparative transcriptome analysis between XY and YY testis, and reveals interactions between miRNAs and their target genes that are possibly involved in regulating testis development and spermatogenesis. PMID:26241040

  20. Differential Hippocampal Gene Expression and Pathway Analysis in an Etiology-Based Mouse Model of Major Depressive Disorder

    PubMed Central

    Zubenko, George S.; Hughes, Hugh B.; Jordan, Rick M.; Lyons-Weiler, James; Cohen, Bruce M.

    2015-01-01

    We have recently reported the creation and initial characterization of an etiology-based recombinant mouse model of a severe and inherited form of Major Depressive Disorder (MDD). This was achieved by replacing the corresponding mouse DNA sequence witha6-base DNA sequence from the human CREB1promoterthat is associated with MDD in individuals from families with recurrent, early-onset MDD (RE-MDD). In the current study, we explored the effect of the pathogenic Creb1 allele on gene expression in the mouse hippocampus, a brain region that is altered in structure and function in MDD. Mouse whole-genome profiling was performed using the Illumina MouseWG-6 v2.0 Expression BeadChip microarray. Univariate analysis identified 269 differentially-expressed genes in the hippocampus of the mutant mouse. Pathway analyses highlighted 11 KEGG pathways: the phosphatidylinositol signaling system, which has been widely implicated in MDD, Bipolar Disorder, and the action of mood stabilizers; gap junction and long-term potentiation, which mediate cognition and memory functions often impaired in MDD; cardiac muscle contraction, insulin signaling pathway, and three neurodegenerative brain disorders (Alzheimer’s, Parkinson’s, and Huntington’s Diseases) that are associated with MDD; ribosome and proteasome pathways affecting protein synthesis/degradation; and the oxidative phosphorylation pathway that is key to energy production. These findings illustrate the merit of this congenic C57BL/6 recombinant mouse as a model of RE-MDD, and demonstrate its potential for highlighting molecular and cellular pathways that contribute to the biology of MDD. The results also inform our understanding of the mechanisms that underlie the comorbidity of MDD with other disorders. PMID:25059218

  1. Cadmium exposure activates the ERK signaling pathway leading to altered osteoblast gene expression and apoptotic death in Saos-2 cells.

    PubMed

    Arbon, Kate S; Christensen, Cody M; Harvey, Wendy A; Heggland, Sara J

    2012-02-01

    Recent reports of cadmium in electronic waste and jewelry have increased public awareness regarding this toxic metal. Human exposure to cadmium is associated with the development of osteoporosis. We previously reported cadmium induces apoptosis in human tumor-derived Saos-2 osteoblasts. In this study, we examine the extracellular signal-regulated protein kinase (ERK) and protein kinase C (PKC) pathways in cadmium-induced apoptosis and altered osteoblast gene expression. Saos-2 osteoblasts were cultured in the presence or absence of 10μM CdCl(2) for 2-72h. We detected significant ERK activation in response to CdCl(2) and pretreatment with the ERK inhibitor PD98059 attenuated cadmium-induced apoptosis. However, PKCα activation was not observed after exposure to CdCl(2) and pretreatment with the PKC inhibitor, Calphostin C, was unable to rescue cells from cadmium-induced apoptosis. Gene expression studies were conducted using qPCR. Cells exposed to CdCl(2) exhibited a significant decrease in the bone-forming genes osteopontin (OPN) and alkaline phosphatase (ALP) mRNA. In contrast, SOST, whose protein product inhibits bone formation, significantly increased in response to CdCl(2). Pretreatment with PD98059 had a recovery effect on cadmium-induced changes in gene expression. This research demonstrates cadmium can directly inhibit osteoblasts via ERK signaling pathway and identifies SOST as a target for cadmium-induced osteotoxicity.

  2. A seasonal switch in histone deacetylase gene expression in the hypothalamus and their capacity to modulate nuclear signaling pathways.

    PubMed

    Stoney, Patrick N; Rodrigues, Diana; Helfer, Gisela; Khatib, Thabat; Ashton, Anna; Hay, Elizabeth A; Starr, Robert; Kociszewska, Dagmara; Morgan, Peter; McCaffery, Peter

    2017-03-01

    Seasonal animals undergo changes in physiology and behavior between summer and winter conditions. These changes are in part driven by a switch in a series of hypothalamic genes under transcriptional control by hormones and, of recent interest, inflammatory factors. Crucial to the control of transcription are histone deacetylases (HDACs), generally acting to repress transcription by local histone modification. Seasonal changes in hypothalamic HDAC transcripts were investigated in photoperiod-sensitive F344 rats by altering the day-length (photoperiod). HDAC4, 6 and 9 were found to change in expression. The potential influence of HDACs on two hypothalamic signaling pathways that regulate transcription, inflammatory and nuclear receptor signaling, was investigated. For inflammatory signaling the focus was on NF-κB because of the novel finding made that its expression is seasonally regulated in the rat hypothalamus. For nuclear receptor signaling it was discovered that expression of retinoic acid receptor beta was regulated seasonally. HDAC modulation of NF-κB-induced pathways was examined in a hypothalamic neuronal cell line and primary hypothalamic tanycytes. HDAC4/5/6 inhibition altered the control of gene expression (Fos, Prkca, Prkcd and Ptp1b) by inducers of NF-κB that activate inflammation. These inhibitors also modified the action of nuclear receptor ligands thyroid hormone and retinoic acid. Thus seasonal changes in HDAC4 and 6 have the potential to epigenetically modify multiple gene regulatory pathways in the hypothalamus that could act to limit inflammatory pathways in the hypothalamus during long-day summer-like conditions.

  3. Identification of Inflammatory, Metabolic, and Cell Survival Pathways Contributing to Cerebral Small Vessel Disease by Postmortem Gene Expression Microarray.

    PubMed

    Ritz, Marie-Françoise; Grond-Ginsbach, Caspar; Kloss, Manja; Tolnay, Markus; Fluri, Felix; Bonati, Leo H; Traenka, Christopher; Zeis, Thomas; Schaeren-Wiemers, Nicole; Peters, Nils; Engelter, Stefan Thomas; Lyrer, Philippe Alexandre

    2016-01-01

    Cerebral small-vessel disease (SVD) is characterized by periventricular white matter (WM) changes and general brain atrophy. SVD is prevalent in elderly individuals and is frequently associated with the development of vascular dementia (VaD). Studies of the molecular basis of SVD are sparse. We have to gain further insight into the pathogenic mechanisms of SVD. Therefore, we compared gene expression patterns in the brains of SVD and control patients, in order to identify cellular pathways changed in diseased brains. We compared the expression of mRNA transcripts in postmortem, macroscopically normal-appearing human brain tissues isolated from frontal, temporal and occipital cortical and subcortical regions in 5 SVD and 5 non-SVD control patients. Significant expression changes were determined by fold change F>1.2 in either direction, and p<0.05. We identified 228 genes differentially expressed in cortex (89 up-, 139 down-regulated) and 555 genes in WM (223 up-, 332 down-regulated) in SVD patients. Pathway analyses revealed that upregulated genes were associated with inflammation and apoptosis in WM, suggesting active cell death. Downregulated genes were associated with coagulation and fatty and amino acids metabolisms. In the cortex, down-regulated genes were principally associated with neuronal functions. Our data revealed widespread changes in the transcriptome profiles in the cortex and WM of human SVD brains, with a predominance of changes in WM. We provide for the first time a comprehensive view of the molecular alterations in human SVD brains that seem to contribute to the neuropathogenesis of SVD.

  4. Benzo[a]pyrene and glycine N-methyltransferse Interactions: Gene expression profiles of the liver detoxification pathway

    SciTech Connect

    Lee, C.-M.; Chen, S.-Y.; Lee, Y.-C.G.; Huang, C.-Y.F.; Chen, Y.-M. Arthur . E-mail: arthur@ym.edu.tw

    2006-07-15

    Benzo[a]pyrene (BaP) is one of many polycyclic aromatic hydrocarbons that have been identified as major risk factors for developing various cancers. We previously demonstrated that the liver cancer susceptibility gene glycine N-methyltransferase (GNMT) is capable of binding with BaP and protecting cells from BaP-7,8-diol 9,10-epoxide-DNA adduct formation. In this study, we used a cytotoxicity assay to demonstrate that the higher expression level of GNMT, the lower cytotoxicity occurred in the cells treated with BaP. In addition, a cDNA microarray containing 7,597 human genes was used to examine gene expression patterns in BaP-treated HepG2 (a liver cancer cell line that expresses very low levels of GNMT) and SCG2-1-1 (a stable HepG2 clone that expresses high levels of GNMT) cells. The results showed that among 6,018 readable HepG2 genes, 359 (6.0%) were up-regulated more than 1.5-fold and 768 (12.8%) were down-regulated. Overexpression of GNMT in SCG2-1-1 cells resulted in the down-regulation of genes related to the detoxification, kinase/phosphatase pathways, and oncogenes. Furthermore, real-time PCR was used to validate microarray data from 21 genes belonging to the detoxification pathway. Combining both microarray and real-time PCR data, the results showed that among 89 detoxification pathway genes analyzed, 22 (24.7%) were up-regulated and 6 (6.7%) were down-regulated in BaP-treated HepG2 cells, while in the BaP-treated SCG2-1-1 cells, 12 (13.5%) were up-regulated and 26 (29.2%) were down-regulated (P < 0.001). Therefore, GNMT sequesters BaP, diminishes BaP's effects to the liver detoxification pathway and prevents subsequent cytotoxicity.

  5. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles.

    PubMed

    Zaya, Renee M; Amini, Zakariya; Whitaker, Ashley S; Ide, Charles F

    2011-08-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p=0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule, also

  6. Identification of differentially expressed genes and signalling pathways in bark of Hevea brasiliensis seedlings associated with secondary laticifer differentiation using gene expression microarray.

    PubMed

    Loh, Swee Cheng; Thottathil, Gincy P; Othman, Ahmad Sofiman

    2016-10-01

    The natural rubber of Para rubber tree, Hevea brasiliensis, is the main crop involved in industrial rubber production due to its superior quality. The Hevea bark is commercially exploited to obtain latex, which is produced from the articulated secondary laticifer. The laticifer is well defined in the aspect of morphology; however, only some genes associated with its development have been reported. We successfully induced secondary laticifer in the jasmonic acid (JA)-treated and linolenic acid (LA)-treated Hevea bark but secondary laticifer is not observed in the ethephon (ET)-treated and untreated Hevea bark. In this study, we analysed 27,195 gene models using NimbleGen microarrays based on the Hevea draft genome. 491 filtered differentially expressed (FDE) transcripts that are common to both JA- and LA-treated bark samples but not ET-treated bark samples were identified. In the Eukaryotic Orthologous Group (KOG) analysis, 491 FDE transcripts belong to different functional categories that reflect the diverse processes and pathways involved in laticifer differentiation. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) and KOG analysis, the profile of the FDE transcripts suggest that JA- and LA-treated bark samples have a sufficient molecular basis for secondary laticifer differentiation, especially regarding secondary metabolites metabolism. FDE genes in this category are from the cytochrome (CYP) P450 family, ATP-binding cassette (ABC) transporter family, short-chain dehydrogenase/reductase (SDR) family, or cinnamyl alcohol dehydrogenase (CAD) family. The data includes many genes involved in cell division, cell wall synthesis, and cell differentiation. The most abundant transcript in FDE list was SDR65C, reflecting its importance in laticifer differentiation. Using the Basic Local Alignment Search Tool (BLAST) as part of annotation and functional prediction, several characterised as well as uncharacterized transcription factors and genes were found in the

  7. Expression and regulation by thyroid hormone (TH) of zebrafish IGF-I gene and amphioxus IGFl gene with implication of the origin of TH/IGF signaling pathway.

    PubMed

    Wang, Yanfeng; Zhang, Shicui

    2011-12-01

    Thyroid hormone (TH)/insulin-like growth factor (IGF) signaling pathway has been identified in all the vertebrates, but its evolutionary origin remains elusive. In this study we examined the expression profiles in vitro as well as in vivo of the IGF-I gene of fish Danio rerio (vertebrate) and the IGF-like gene (IGFl) of amphioxus Branchiostoma japonicum (protochordate) following T(3) treatment. Our results showed that T(3) was able to enhance hepatic IGF-I/IGFl gene expression in vitro in both zebrafish and amphioxus in a dose-dependent manner. This T(3)-induced hepatic expression of IGF-I/IGFl genes in both species was significantly inhibited by the T(3)-specific inhibitor DEA, indicating the specificity of IGF-I/IGFl gene regulation by T(3). At 100nM T(3), in both the long (42h) and short (8h) time course experiments, the IGF-I/IGFl gene expression profiles following T(3) treatment in the tissue cultures of both species exhibited closely similar pattern and trend. Moreover, exposure of zebrafish and amphioxus to T(3)in vivo for 72h induced a significant increase in the expression of IGF-I/IGFl genes in both the liver and the hepatic caecum. These data together suggest that amphioxus and zebrafish both share a similar regulatory mechanism of IGF gene expression in response to T(3), providing an evidence for the presence of a vertebrate-like TH/IGF signaling pathway in the protochordate amphioxus.

  8. Expression patterns of NLRC5 and key genes in the STAT1 pathway following infection with Salmonella pullorum.

    PubMed

    Qiu, Lingling; Ma, Teng; Chang, Guobin; Liu, Xiangping; Guo, Xiaomin; Xu, Lu; Zhang, Yang; Zhao, Wenming; Xu, Qi; Chen, Guohong

    2017-01-15

    NLRC5, a protein belonging to the NOD-like receptor protein family (NLRs), is highly expressed in immune tissues and cells. NLRC5 plays an important role in the immune response of humans, where its regulatory mechanism has been elucidated. However, the function and regulation of NLRC5 in chickens remains unclear. In this study, temporal expression characteristics of NLRC5 and associated genes in the STAT1 pathway in chickens following infection with Salmonella pullorum were investigated using quantitative real-time polymerase chain reaction and hierarchical cluster analyses. The role of transcription factor STAT1 in NLRC5 promoter activity was studied via point mutation of the STAT1-binding cis-element and dual-luciferase assays. Our results showed a strong correlation between NLRC5 and NF-κB. In addition, STAT1 played a crucial role in NLRC5 promoter activity, and may be activated via the interferon pathway. There was also a close relationship between CD80 and NF-κB, and CD80 may up-regulate NF-κB expression and enhance its protein activity in chickens. These findings reveal the temporal characteristics of chicken NLRC5 and STAT1 genes during S. pullorum infection, and highlight the role of STAT1 in NLRC5 promoter activity. This information aids our understanding of the regulatory mechanisms of NLRC5 and associated genes, and will help elucidate their function in the immune response of chickens.

  9. The shrimp IKK-NF-κB signaling pathway regulates antimicrobial peptide expression and may be subverted by white spot syndrome virus to facilitate viral gene expression.

    PubMed

    Wang, Pei-Hui; Gu, Zhi-Hua; Wan, Ding-Hui; Liu, Bo-Du; Huang, Xian-De; Weng, Shao-Ping; Yu, Xiao-Qiang; He, Jian-Guo

    2013-09-01

    The IκB kinases IKKα and IKKβ and the IKK-related kinases TANK-binding kinase 1 (TBK1) and IKKε are the master regulators of the NF-κB signaling pathway. Although this pathway has been extensively studied in mammals, less attention has been paid in crustaceans, which have significant economic value. Here, we report the cloning and functional studies of two IKK homologs, LvIKKβ and LvIKKε, from Pacific white shrimp, Litopenaeus vannamei. LvIKKβ and LvIKKε mRNAs are widely expressed in different tissues and are responsive to white spot syndrome virus (WSSV) infection. When overexpressed in Drosophila S2 cells, LvIKKβ but not LvIKKε activates the promoters of NF-κB pathway-controlled antimicrobial peptide genes (AMPs), such as the Penaeidins (PENs). In HEK 293T cells, both LvIKKβ and LvIKKε activate an NF-κB reporter. The silencing of LvIKKβ or LvIKKε using double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) decreases the expression of L. vannamei AMPs, including PENs, lysozyme and crustins. Intriguingly, LvIKKβ- or LvIKKε-silenced L. vannamei are resistant to WSSV infection. We hypothesized that successful infection with WSSV requires the activation of the IKK-NF-κB signaling pathway to modulate viral gene expression. We constructed luciferase reporters for 147 WSSV genes. By screening, we found that the WSV051, WSV059, WSV069, WSV083, WSV090, WSV107, WSV244, WSV303, WSV371 and WSV445 promoters can be activated by LvIKKβ or LvIKKε in Drosophila S2 cells. Taken together, our results reveal that LvIKKβ and LvIKKε may participate in the regulation of shrimp AMPs and that WSSV may subvert the L. vannamei IKK-NF-κB signaling pathway to facilitate viral gene expression.

  10. Identification of Potential Anticancer Activities of Novel Ganoderma lucidum Extracts Using Gene Expression and Pathway Network Analysis

    PubMed Central

    Kao, Chi H.J.; Bishop, Karen S.; Xu, Yuanye; Han, Dug Yeo; Murray, Pamela M.; Marlow, Gareth J.; Ferguson, Lynnette R.

    2016-01-01

    Ganoderma lucidum (lingzhi) has been used for the general promotion of health in Asia for many centuries. The common method of consumption is to boil lingzhi in water and then drink the liquid. In this study, we examined the potential anticancer activities of G. lucidum submerged in two commonly consumed forms of alcohol in East Asia: malt whiskey and rice wine. The anticancer effect of G. lucidum, using whiskey and rice wine-based extraction methods, has not been previously reported. The growth inhibition of G. lucidum whiskey and rice wine extracts on the prostate cancer cell lines, PC3 and DU145, was determined. Using Affymetrix gene expression assays, several biologically active pathways associated with the anticancer activities of G. lucidum extracts were identified. Using gene expression analysis (real-time polymerase chain reaction [RT-PCR]) and protein analysis (Western blotting), we confirmed the expression of key genes and their associated proteins that were initially identified with Affymetrix gene expression analysis. PMID:27006591

  11. Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview.

    PubMed

    Tardito, Daniela; Perez, Jorge; Tiraboschi, Ettore; Musazzi, Laura; Racagni, Giorgio; Popoli, Maurizio

    2006-03-01

    Regulation of gene expression represents a major component in antidepressant drug action. The effect of antidepressant treatments on the function of cAMP-responsive element binding protein (CREB), a transcription factor that regulates expression of several genes involved in neuroplasticity, cell survival, and cognition, has been extensively studied. Although there is general agreement that chronic antidepressants stimulate CREB function, conflicting results suggest that different effects may depend on drug type, drug dosage, and different experimental paradigms. CREB function is activated by a vast array of physiological stimuli, conveyed through a number of signaling pathways acting in concert, but thus far the effects of antidepressants on CREB have been analyzed mostly with regard to the cAMP-protein kinase A pathway. A growing body of data shows that other major pathways, such as the calcium/calmodulin-dependent kinase and the mitogen-activated kinase cascades, are involved in activity-dependent regulation of gene expression and may also be implicated in the mechanism of action of antidepressants. In this article the available evidence is reviewed with an attempt to identify the reasons for experimental discrepancies and possible directions for future research. Particularemphasis is given to the regulation of brain-derived neurotrophic factor (BDNF), a CREB-regulated gene, which has been implicated in both the pathophysiology and pharmacology of mood disorders. The array of different results obtained by various groups is analyzed with an eye on recent advancements in the regulation of BDNF transcription, in an attempt to understand better the mechanisms of drug action and dissect molecular requirements for faster and more efficient antidepressant treatment.

  12. Microarray-based gene expression profiling reveals genes and pathways involved in the oncogenic function of REG3A on pancreatic cancer cells.

    PubMed

    Xu, Qianqian; Fu, Rong; Yin, Guoxiao; Liu, Xiulan; Liu, Yang; Xiang, Ming

    2016-03-10

    We previously reported that regenerating islet-derived protein 3 alpha (REG3A) exacerbates pancreatic malignancies. The mechanism of this effect has not been clearly elucidated. Here we first identified key differentially expressed genes (DEGs) and signal pathways in the pancreatic cancer cell line SW1990, compared to two control cell lines, by microarray analysis. We then identified key genes and pathways regulated by REG3A or the cytokine IL6 in SW1990 cells. Afterwards, these DEGs induced by REG3A or IL6 were subjected to KEGG pathway enrichment analysis and GO function analysis by the DAVID online tool. Ultimately, we constructed protein-protein interaction networks among the DEGs by Cytoscape. Among the three pancreatic cell lines, SW1990 exhibited highly deterioration with the activation of genes and pathways related to proliferation, survival, angiogenesis, and invasion. As a result, 50 DEGs enriched in 11 pathways were identified in REG3A-treated SW1990 cells, and 28 DEGs enriched in 9 pathways were detected in IL6-treated cells. Overall, results of microarray analysis followed by qRT-PCR and Western blotting suggest that REG3A regulates pancreatic cell growth by increasing the expression of at least 8 genes: JAK1, STAT3, IL10, FOXM1, KRAS, MYC, CyclinD1, and c-fos; and activation of at least 4 signal pathways: TGFβ, PDGF, angiogenesis and RAS. Similar results were obtained with IL6 treatment. Regulation network analysis confirmed the cell growth related DEGs, and further uncovered three transcription factor families with immune functions regulated by REG3A.

  13. Analysis of Gene Expression in an Inbred Line of Soft-Shell Clams (Mya arenaria) Displaying Growth Heterosis: Regulation of Structural Genes and the NOD2 Pathway.

    PubMed

    Wilson, John J; Grendler, Janelle; Dunlap-Smith, Azaline; Beal, Brian F; Page, Shallee T

    2016-01-01

    Mya arenaria is a bivalve mollusk of commercial and economic importance, currently impacted by ocean warming, acidification, and invasive species. In order to inform studies on the growth of M. arenaria, we selected and inbred a population of soft-shell clams for a fast-growth phenotype. This population displayed significantly faster growth (p < 0.0001), as measured by 35.4% greater shell size. To assess the biological basis of this growth heterosis, we characterized the complete transcriptomes of six individuals and identified differentially expressed genes by RNAseq. Pathways differentially expressed included structural gene pathways. Also differentially expressed was the nucleotide-binding oligomerization domain 2 (NOD2) receptor pathway that contributes to determination of growth, immunity, apoptosis, and proliferation. NOD2 pathway members that were upregulated included a subset of isoforms of RIPK2 (mean 3.3-fold increase in expression), ERK/MAPK14 (3.8-fold), JNK/MAPK8 (4.1-fold), and NFκB (4.08-fold). These transcriptomes will be useful resources for both the aquaculture community and researchers with an interest in mollusks and growth heterosis.

  14. Analysis of Gene Expression in an Inbred Line of Soft-Shell Clams (Mya arenaria) Displaying Growth Heterosis: Regulation of Structural Genes and the NOD2 Pathway

    PubMed Central

    Dunlap-Smith, Azaline

    2016-01-01

    Mya arenaria is a bivalve mollusk of commercial and economic importance, currently impacted by ocean warming, acidification, and invasive species. In order to inform studies on the growth of M. arenaria, we selected and inbred a population of soft-shell clams for a fast-growth phenotype. This population displayed significantly faster growth (p < 0.0001), as measured by 35.4% greater shell size. To assess the biological basis of this growth heterosis, we characterized the complete transcriptomes of six individuals and identified differentially expressed genes by RNAseq. Pathways differentially expressed included structural gene pathways. Also differentially expressed was the nucleotide-binding oligomerization domain 2 (NOD2) receptor pathway that contributes to determination of growth, immunity, apoptosis, and proliferation. NOD2 pathway members that were upregulated included a subset of isoforms of RIPK2 (mean 3.3-fold increase in expression), ERK/MAPK14 (3.8-fold), JNK/MAPK8 (4.1-fold), and NFκB (4.08-fold). These transcriptomes will be useful resources for both the aquaculture community and researchers with an interest in mollusks and growth heterosis. PMID:27822466

  15. Chronic alcohol consumption from adolescence to adulthood in mice--hypothalamic gene expression changes in insulin-signaling pathway.

    PubMed

    Wang, Ke; Song, Huaiguang; Jin, Meilei; Xiao, Huasheng; Zhao, Guoping; Zou, Hong; Yu, Lei

    2014-09-01

    Adolescence is a developmental stage vulnerable to alcohol drinking-related problems, and alcohol exposure during adolescence may lead to long-lasting consequences. The hypothalamus is a key brain region for food and water intake regulation as well as weight control, and is one of the alcohol-sensitive brain regions. However, it is not known what the alcohol effect is on the hypothalamus following adolescent alcohol intake, chronically over adolescent development, at moderate levels. We employed a model of chronic moderate alcohol intake from adolescence to adulthood in mice, and analyzed the effect of alcohol on growth and weight gain, as well as hypothalamic gene expression patterns. The results indicated that chronic alcohol consumption during adolescence, even at moderate levels, led to both a reduction in weight gain in mice, and considerable gene expression changes in the hypothalamus. Pathway analysis and real-time PCR identified the type II diabetes mellitus and the insulin-signaling pathways as being the hypothalamic pathways affected by chronic alcohol. Our findings from the mouse alcohol consumption study therefore serve as a potential warning against alcohol consumption during adolescence, such as in teens and college students.

  16. Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model

    PubMed Central

    2014-01-01

    Background Obesity is a complex metabolic condition in strong association with various diseases, like type 2 diabetes, resulting in major public health and economic implications. Obesity is the result of environmental and genetic factors and their interactions, including genome-wide genetic interactions. Identification of co-expressed and regulatory genes in RNA extracted from relevant tissues representing lean and obese individuals provides an entry point for the identification of genes and pathways of importance to the development of obesity. The pig, an omnivorous animal, is an excellent model for human obesity, offering the possibility to study in-depth organ-level transcriptomic regulations of obesity, unfeasible in humans. Our aim was to reveal adipose tissue co-expression networks, pathways and transcriptional regulations of obesity using RNA Sequencing based systems biology approaches in a porcine model. Methods We selected 36 animals for RNA Sequencing from a previously created F2 pig population representing three extreme groups based on their predicted genetic risks for obesity. We applied Weighted Gene Co-expression Network Analysis (WGCNA) to detect clusters of highly co-expressed genes (modules). Additionally, regulator genes were detected using Lemon-Tree algorithms. Results WGCNA revealed five modules which were strongly correlated with at least one obesity-related phenotype (correlations ranging from -0.54 to 0.72, P < 0.001). Functional annotation identified pathways enlightening the association between obesity and other diseases, like osteoporosis (osteoclast differentiation, P = 1.4E-7), and immune-related complications (e.g. Natural killer cell mediated cytotoxity, P = 3.8E-5; B cell receptor signaling pathway, P = 7.2E-5). Lemon-Tree identified three potential regulator genes, using confident scores, for the WGCNA module which was associated with osteoclast differentiation: CCR1, MSR1 and SI1 (probability scores respectively 95.30, 62.28, and

  17. The zero-sum game of pathway optimization: emerging paradigms for tuning gene expression.

    PubMed

    Solomon, Kevin V; Prather, Kristala L J

    2011-09-01

    With increasing price volatility and growing awareness of the lack of sustainability of traditional chemical synthesis, microbial chemical production has been tapped as a promising renewable alternative for the generation of diverse, stereospecific compounds. Nonetheless, many attempts to generate them are not yet economically viable. Due to the zero-sum nature of microbial resources, traditional strategies of pathway optimization are attaining minimal returns. This result is in part a consequence of the gross changes in host physiology resulting from such efforts and underscores the need for more precise and subtle forms of gene modulation. In this review, we describe alternative strategies and emerging paradigms to address this problem and highlight potential solutions from the emerging field of synthetic biology.

  18. Inhibition of the mevalonate pathway enhances carvacrol biosynthesis and DXR gene expression in shoot cultures of Satureja khuzistanica Jamzad.

    PubMed

    Ramak, Parvin; Kazempour Osaloo, Shahrokh; Ebrahimzadeh, Hassan; Sharifi, Mozafar; Behmanesh, Mehrdad

    2013-09-01

    Carvacrol is a major component of Satureja khuzistanica Jamzad (≤90%) that has significant antimicrobial and antioxidant properties. Considering the specific capabilities of S. khuzistanica to produce highly pure carvacrol, this plant is an important potential source of carvacrol that could address the abundant consumption and increasing demand for this monoterpene in current world markets. This research was performed to better understand the process of biosynthesis and accumulation of carvacrol in S. khuzistanica. Tests were performed on shoot cultures of S. khuzistanica in Linsmaier-Skoog (LS) medium treated with different concentrations of fosmidomycin (an inhibitor of the non-mevalonate pathway) and mevinolin (an inhibitor of the mevalonate pathway) for 21 days at the following concentrations: 0, 10, 25, 50, 75 and 100 μM. The present study demonstrated that the MEP pathway is the major pathway that provides IPP for the biosynthesis of carvacrol, and the expression and activity levels of the DXR enzyme have a critical effect on carvacrol biosynthesis. Surprisingly, Mevinolin at concentrations of 75 and 100 μM increased the carvacrol content and the DXR activity and gene expression in S. khuzistanica plantlets.

  19. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms

    PubMed Central

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-01-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3–23.3 (n=1), 9q33.1–34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31–36.33 (n=6), 17q21.2–q21.31 (n=5) and 17q25.1–25.3 (n=5) and deletions affecting 18p11.31–11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a ‘HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal. PMID:22829077

  20. Thymoquinone regulates gene expression levels in the estrogen metabolic and interferon pathways in MCF7 breast cancer cells.

    PubMed

    Motaghed, Marjaneh; Al-Hassan, Faisal Muti; Hamid, Shahrul Sahul

    2014-01-01

    New drugs are continuously being developed for the treatment of patients with estrogen receptor-positive breast cancer. Thymoquinone is one of the drugs that exhibits anticancer characteristics based on in vivo and in vitro models. This study further investigates the effects of thymoquinone on human gene expression using cDNA microarray technology. The quantification of RNA samples was carried out using an Agilent 2100 Bioanalyser to determine the RNA integrity number (RIN). The Agilent Low Input Quick Amplification Labelling kit was used to generate cRNA in two-color microarray analysis. Samples with RIN >9.0 were used in this study. The universal human reference RNA was used as the common reference. The samples were labelled with cyanine-3 (cye-3) CTP dye and the universal human reference was labelled with cyanine-5 (cye-5) CTP dye. cRNA was purified with the RNeasy Plus Mini kit and quantified using a NanoDrop 2000c spectrophotometer. The arrays were scanned data analysed using Feature Extraction and GeneSpring software. Two-step qRT-PCR was selected to determine the relative gene expression using the High Capacity RNA-to-cDNA kit. The results from Gene Ontology (GO) analysis, indicated that 8 GO terms were related to biological processes (84%) and molecular functions (16%). A total of 577 entities showed >2-fold change in expression. Of these entities, 45.2% showed an upregulation and 54.7% showed a downregulation in expression. The interpretation of single experiment analysis (SEA) revealed that the cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and UDP glucuronosyltransferase 1 family, polypeptide A8 (UGT1A8) genes in the estrogen metabolic pathway were downregulated significantly by 43- and 11‑fold, respectively. The solute carrier family 7 (anionic amino acid transporter light chain, xc-system), member 11 (SLC7A11) gene in the interferon pathway, reported to be involved in the development of chemoresistance, was downregulated by 15

  1. Decreased T cell ERK pathway signaling may contribute to the development of lupus through effects on DNA methylation and gene expression.

    PubMed

    Oelke, Kurt; Richardson, Bruce

    2004-01-01

    T cells from patients with active lupus have multiple biochemical abnormalities. One of these is DNA hypomethylation, which in model systems alters gene expression and induces lupus-like autoimmunity. Recent reports indicate that DNA methylation is regulated in part by the ERK pathway, and that ERK pathway signaling is diminished in lupus T cells. This suggests a model in which defective T cell ERK pathway signaling contributes to the development of autoimmunity by decreasing DNA methyltransferase expression, modifying DNA methylation patterns and altering gene expression. This mechanism could contribute to idiopathic and drug-induced lupus.

  2. Ingenuity Pathway Analysis of Gene Expression Profiles in Distal Nerve Stump following Nerve Injury: Insights into Wallerian Degeneration

    PubMed Central

    Yu, Jun; Gu, Xiaosong; Yi, Sheng

    2016-01-01

    Nerve injury is a common and difficult clinical problem worldwide with a high disability rate. Different from the central nervous system, the peripheral nervous system is able to regenerate after injury. Wallerian degeneration in the distal nerve stump contributes to the construction of a permissible microenvironment for peripheral nerve regeneration. To gain new molecular insights into Wallerian degeneration, this study aimed to identify differentially expressed genes and elucidate significantly involved pathways and cellular functions in the distal nerve stump following nerve injury. Microarray analysis showed that a few genes were differentially expressed at 0.5 and 1 h post nerve injury and later on a relatively larger number of genes were up-regulated or down-regulated. Ingenuity pathway analysis indicated that inflammation and immune response, cytokine signaling, cellular growth and movement, as well as tissue development and function were significantly activated following sciatic nerve injury. Notably, a cellular function highly related to nerve regeneration, which is called Nervous System Development and Function, was continuously activated from 4 days until 4 weeks post injury. Our results may provide further understanding of Wallerian degeneration from a genetic perspective, thus aiding the development of potential therapies for peripheral nerve injury. PMID:27999531

  3. Gene Expression Analysis Implicates a Death Receptor Pathway in Schizophrenia Pathology

    PubMed Central

    Catts, Vibeke Sørensen; Shannon Weickert, Cynthia

    2012-01-01

    An increase in apoptotic events may underlie neuropathology in schizophrenia. By data-mining approaches, we identified significant expression changes in death receptor signaling pathways in the dorsolateral prefrontal cortex (DLPFC) of patients with schizophrenia, particularly implicating the Tumor Necrosis Factor Superfamily member 6 (FAS) receptor and the Tumor Necrosis Factor [ligand] Superfamily member 13 (TNFSF13) in schizophrenia. We sought to confirm and replicate in an independent tissue collection the noted mRNA changes with quantitative real-time RT-PCR. To test for regional and diagnostic specificity, tissue from orbital frontal cortex (OFC) was examined and a bipolar disorder group included. In schizophrenia, we confirmed and replicated significantly increased expression of TNFSF13 mRNA in the DLPFC. Also, a significantly larger proportion of subjects in the schizophrenia group had elevated FAS receptor expression in the DLPFC relative to unaffected controls. These changes were not observed in the bipolar disorder group. In the OFC, there were no significant differences in TNFSF13 or FAS receptor mRNA expression. Decreases in BH3 interacting domain death agonist (BID) mRNA transcript levels were found in the schizophrenia and bipolar disorder groups affecting both the DLPFC and the OFC. We tested if TNFSF13 mRNA expression correlated with neuronal mRNAs in the DLPFC, and found significant negative correlations with interneuron markers, parvalbumin and somatostatin, and a positive correlation with PPP1R9B (spinophilin), but not DLG4 (PSD-95). The expression of TNFSF13 mRNA in DLPFC correlated negatively with tissue pH, but decreasing pH in cultured cells did not cause increased TNFSF13 mRNA nor did exogenous TNFSF13 decrease pH. We concluded that increased TNFSF13 expression may be one of several cell-death cytokine abnormalities that contribute to the observed brain pathology in schizophrenia, and while increased TNFSF13 may be associated with lower

  4. 4-Nitrophenol exposure alters the AhR signaling pathway and related gene expression in the rat liver.

    PubMed

    Li, Ruonan; Song, Meiyan; Li, Zhi; Li, Yansen; Watanabe, Gen; Nagaoka, Kentaro; Taya, Kazuyoshi; Li, Chunmei

    2017-02-01

    4-Nitrophenol (PNP) is well known as an environmental endocrine disruptor. The aim of this study was to clarify the mechanism of PNP-induced liver damage and determine the regulatory involvement of the aryl hydrocarbon receptor (AhR) signaling pathway and associated gene expression. Immature male Wistar-Imamichi rats (28 days old) were randomly divided into control and PNP groups, which consisted of 1- and 3-day exposure (1 DE and 3 DE, respectively) and 3-day exposure followed by 3-day recovery (3 DE + 3 DR), groups. Each group was administered the vehicle or PNP (200 mg kg(-1) body weight). The body and liver weight were significantly decreased in the 3 DE group. The mRNA expression levels of estrogen receptor-α (ERα), glutathione S-transferase (GST) and AhR exhibited a significant increase in the 1 DE group whereas, in contrast, that of cytochrome P450 (CYP) 1A1 decreased significantly in the 3 DE +3 DR group. AhR and CYP1A1 proteins were detected in the cytoplasm of hepatocytes of the 1 DE and 3 DE +3 DR groups whereas the ERα protein was found in the hepatocyte nuclei of the 1 DE and 3 DE groups. The present study demonstrates that PNP activated the AhR signaling pathway and regulated related CYP1A1 and GST gene expression in the liver. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Cloning of three genes involved in the flavonoid metabolic pathway and their expression during insect resistance in Pinus massoniana Lamb.

    PubMed

    Yang, Z Q; Chen, H; Tan, J H; Xu, H L; Jia, J; Feng, Y H

    2016-12-23

    Pinus massoniana Lamb. is an important timber and turpentine-producing tree species in China. Dendrolimus punctatus and Dasychira axutha are leaf-eating pests that have harmful effects on P. massoniana production. Few studies have focused on the molecular mechanisms underlying pest resistance in P. massoniana. Based on sequencing analysis of the transcriptomes of insect-resistant P. massoniana, three key genes involved in the flavonoid metabolic pathway were identified in the present study (PmF3H, PmF3'5'H, and PmC4H). Structural domain analysis showed that the PmF3H gene contains typical binding sites for the 2OG-Fe (II) oxygenase superfamily, while PmF3'5'H and PmC4H both contain the cytochrome P450 structural domain, which is specific for P450 enzymes. Phylogenetic analysis showed that each of the three P. massoniana genes, and the homologous genes in gymnosperms, clustered into a group. Expression of these three genes was highest in the stems, and was higher in the insect-resistant P. massoniana varieties than in the controls. The extent of the increased expression in the insect-resistant P. massoniana varieties indicated that these three genes are involved in defense mechanisms against pests in this species. In the insect-resistant varieties, rapid induction of PmF3H increased the levels of PmF3'5'H and PmC4H expression. The enhanced anti-pest capability of the insect-resistant varieties could be related to temperature and humidity. In addition, these results suggest that these three genes maycontribute to the change in flower color during female cone development.

  6. Analysis of biochemical compounds and differentially expressed genes of the anthocyanin biosynthetic pathway in variegated peach flowers.

    PubMed

    Hassani, D; Liu, H L; Chen, Y N; Wan, Z B; Zhuge, Q; Li, S X

    2015-10-28

    Variegated plants are highly valuable in the floricultural market, yet the genetic mechanism underlying this attractive phenomenon has not been completely elucidated. In this study, we identified and measured different compounds in pink and white flower petals of peach (Prunus persica) by high-performance liquid chromatography and liquid chromatography/mass spectrometry analyses. No cyanidin-based or pelargonidin-based compounds were detected in white petals, but high levels of these compounds were found in pink petals. Additionally, we sequenced and analyzed the expression of six key structural genes in the anthocyanin biosynthesis pathway (CHI, CHS, DFR, F3'H, ANS, and UFGT) in both white and pink petals. Quantitative real-time polymerase chain reaction revealed all six genes to be expressed at greatly reduced levels in white flower petals, relative to pink. No allelic variations were found in the transcribed sequences. However, alignment of transcribed and genomic sequences of the ANS gene detected alternative splicing, resulting in transcripts of 1.071 and 942 bp. Only the longer transcript was observed in white flower petals. Since ANS is the key intermediate enzyme catalyzing the colorless leucopelargonidin and leucocyanidin to substrates required for completion of anthocyanin biosynthesis, the ANS gene is implicated in flower color variegation and should be explored in future studies. This article, together with a previous transcriptome study, elucidates the mechanism underlying peach flower color variegation in terms of the key structural genes involved in anthocyanin biosynthesis.

  7. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair

    PubMed Central

    Mikhed, Yuliya; Görlach, Agnes; Knaus, Ulla G.; Daiber, Andreas

    2015-01-01

    Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease. PMID:26079210

  8. Differentially co-expressed genes in postmortem prefrontal cortex of individuals with alcohol use disorders: Influence on alcohol metabolism-related pathways

    PubMed Central

    Zhang, Huiping; Wang, Fan; Xu, Hongqin; Liu, Yawen; Liu, Jin; Zhao, Hongyu; Gelernter, Joel

    2014-01-01

    Chronic alcohol consumption may induce gene expression alterations in brain reward regions such as the prefrontal cortex (PFC), modulating the risk of alcohol use disorders (AUDs). Transcriptome profiles of 23 AUD cases and 23 matched controls (16 pairs of males and 7 pairs of females) in postmortem PFC were generated using Illumina’s HumanHT-12 v4 Expression BeadChip. Probe-level differentially expressed genes and gene modules in AUD subjects were identified using multiple linear regression and weighted gene co-expression network analyses. The enrichment of differentially co-expressed genes in alcohol dependence-associated genes identified by genome-wide association studies (GWAS) was examined using gene set enrichment analysis. Biological pathways overrepresented by differentially co-expressed genes were uncovered using DAVID bioinformatics resources. Three AUD-associated gene modules in males [Module 1 (561 probes mapping to 505 genes): r=0.42, Pcorrelation=0.020; Module 2 (815 probes mapping to 713 genes): r=0.41, Pcorrelation=0.020; Module 3 (1,446 probes mapping to 1,305 genes): r=−0.38, Pcorrelation=0.030] and one AUD-associated gene module in females [Module 4 (683 probes mapping to 652 genes): r=0.64, Pcorrelation=0.010] were identified. Differentially expressed genes mapped by significant expression probes (Pnominal≤0.05) clustered in Modules 1 and 2 were enriched in GWAS-identified alcohol dependence-associated genes [Module 1 (134 genes): P=0.028; Module 2 (243 genes): P=0.004]. These differentially expressed genes, including ALDH2, ALDH7A1, and ALDH9A1, are involved in cellular functions such as aldehyde detoxification, mitochondrial function, and fatty acid metabolism. Our study revealed differentially co-expressed genes in postmortem PFC of AUD subjects and demonstrated that some of these differentially co-expressed genes participate in alcohol metabolism. PMID:25073604

  9. Temporal blastemal cell gene expression analysis in the kidney reveals new Wnt and related signaling pathway genes to be essential for Wilms' tumor onset

    PubMed Central

    Maschietto, M; Trapé, A P; Piccoli, F S; Ricca, T I; Dias, A A M; Coudry, R A; Galante, P A; Torres, C; Fahhan, L; Lourenço, S; Grundy, P E; de Camargo, B; de Souza, S; Neves, E J; Soares, F A; Brentani, H; Carraro, D M

    2011-01-01

    Wilms' tumors (WTs) originate from metanephric blastema cells that are unable to complete differentiation, resulting in triphasic tumors composed of epithelial, stromal and blastemal cells, with the latter harboring molecular characteristics similar to those of the earliest kidney development stages. Precise regulation of Wnt and related signaling pathways has been shown to be crucial for correct kidney differentiation. In this study, the gene expression profile of Wnt and related pathways was assessed in laser-microdissected blastemal cells in WTs and differentiated kidneys, in human and in four temporal kidney differentiation stages (i.e. E15.5, E17.5, P1.5 and P7.5) in mice, using an orthologous cDNA microarray platform. A signaling pathway-based gene signature was shared between cells of WT and of earliest kidney differentiation stages, revealing genes involved in the interruption of blastemal cell differentiation in WT. Reverse transcription-quantitative PCR showed high robustness of the microarray data demonstrating 75 and 56% agreement in the initial and independent sample sets, respectively. The protein expression of CRABP2, IGF2, GRK7, TESK1, HDGF, WNT5B, FZD2 and TIMP3 was characterized in WTs and in a panel of human fetal kidneys displaying remarkable aspects of differentiation, which was recapitulated in the tumor. Taken together, this study reveals new genes candidate for triggering WT onset and for therapeutic treatment targets. PMID:22048167

  10. Effects of learning on mTOR pathway gene expression in the brain of zebrafish (Danio rerio) of different ages.

    PubMed

    Peixoto, Carolina da Silva; Parfitt, Gustavo Morrone; Bruch, Gisele Eva; Cordeiro, Marcos Freitas; Almeida, Daniela Volcan; Marins, Luis Fernando Fernandes; Barros, Daniela Martí

    2017-03-01

    Target of rapamycin (TOR) is a protein kinase involved in the modulation of mRNA translation and, therefore, in the regulation of protein synthesis. In neurons, the role of TOR is particularly important in the consolidation of long-term memory (LTM). One of the modulators of TOR is brain-derived neurotrophic factor (BDNF), which activates the TOR signaling pathway to promote protein synthesis, synapse strengthening, and the creation of new neural networks. We investigated the gene expression pattern of this pathway during memory consolidation in zebrafish of different ages. Our findings demonstrate that TOR activation in old animals occurs in the early phase of consolidation, and follows a pattern identical to that of BDNF expression. In younger animals, this increase in activation did not occur, and changes in BDNF expression were also not so remarkable. Furthermore, the expression of the main proteins regulated by the synthesis of TOR (i.e., 4EBP and p70S6K) remained identical to that of TOR in all age groups.

  11. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.

    PubMed

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady

    2017-02-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.

  12. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

    PubMed Central

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya

    2017-01-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390

  13. Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures

    PubMed Central

    Lijavetzky, Diego; Almagro, Lorena; Belchi-Navarro, Sarai; Martínez-Zapater, José M; Bru, Roque; Pedreño, Maria A

    2008-01-01

    Background Plant cell cultures have been shown as feasible systems for the production of secondary metabolites, being the elicitation with biotic or abiotic stimuli the most efficient strategy to increase the production of those metabolites. Vitaceae phytoalexins constitute a group of molecules belonging to the stilbene family which are derivatives of the trans-resveratrol structure and are produced by plants and cell cultures as a response to biotic and abiotic stresses. The potential benefits of resveratrol on human health have made it one of the most thoroughly studied phytochemical molecules. The aim of this study was to evaluate the elicitor effect of both cyclodextrin (CD) and methyljasmonate (MeJA) on grapevine cell cultures by carrying out a quantitative analysis of their role on resveratrol production and on the expression of stilbene biosynthetic genes in Vitis vinifera cv Monastrell albino cell suspension cultures. Findings MeJA and CD significantly but transiently induced the expression of stilbene biosynthetic genes when independently used to treat grapevine cells. This expression correlated with resveratrol production in CD-treated cells but not in MeJA-treated cells, which growth was drastically affected. In the combined treatment of CD and MeJA cell growth was similarly affected, however resveratrol production was almost one order of magnitude higher, in correlation with maximum expression values for stilbene biosynthetic genes. Conclusion The effect of MeJA on cell division combined with a true and strong elicitor like CD could be responsible for the observed synergistic effect of both compounds on resveratrol production and on the expression of genes in the stilbene pathway. PMID:19102745

  14. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana.

    PubMed

    Liu, Ting-Wu; Niu, Li; Fu, Bin; Chen, Juan; Wu, Fei-Hua; Chen, Juan; Wang, Wen-Hua; Hu, Wen-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2013-01-01

    Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.

  15. DHA Production in Escherichia coli by Expressing Reconstituted Key Genes of Polyketide Synthase Pathway from Marine Bacteria

    PubMed Central

    Xiao, Kang; Xu, Lin; Wang, Lian; Wan, Xia

    2016-01-01

    The gene encoding phosphopantetheinyl transferase (PPTase), pfaE, a component of the polyketide synthase (PKS) pathway, is crucial for the production of docosahexaenoic acid (DHA, 22:6ω3), along with the other pfa cluster members pfaA, pfaB, pfaC and pfaD. DHA was produced in Escherichia coli by co-expressing pfaABCD from DHA-producing Colwellia psychrerythraea 34H with one of four pfaE genes from bacteria producing arachidonic acid (ARA, 20:4ω6), eicosapentaenoic acid (EPA, 20:5ω3) or DHA, respectively. Substitution of the pfaE gene from different strain source in E. coli did not influence the function of the PKS pathway producing DHA, although they led to different DHA yields and fatty acid profiles. This result suggested that the pfaE gene could be switchable between these strains for the production of DHA. The DHA production by expressing the reconstituted PKS pathway was also investigated in different E. coli strains, at different temperatures, or with the treatment of cerulenin. The highest DHA production, 2.2 mg of DHA per gram of dry cell weight or 4.1% of total fatty acids, was obtained by co-expressing pfaE(EPA) from the EPA-producing strain Shewanella baltica with pfaABCD in DH5α. Incubation at low temperature (10–15°C) resulted in higher accumulation of DHA compared to higher temperatures. The addition of cerulenin to the medium increased the proportion of DHA and saturated fatty acids, including C12:0, C14:0 and C16:0, at the expense of monounsaturated fatty acids, including C16:1 and C18:1. Supplementation with 1 mg/L cerulenin resulted in the highest DHA yield of 2.4 mg/L upon co-expression of pfaE(DHA) from C. psychrerythraea. PMID:27649078

  16. ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks

    PubMed Central

    Ho, Ritchie; Sances, Samuel; Gowing, Genevieve; Amoroso, Mackenzie Weygandt; O'Rourke, Jacqueline G.; Sahabian, Anais; Wichterle, Hynek; Baloh, Robert H.; Sareen, Dhruv

    2016-01-01

    Modeling Amyotrophic Lateral Sclerosis (ALS) with human induced pluripotent stem cells (iPSCs) aims to reenact embryogenesis, maturation, and aging of spinal motor neurons (spMNs) in vitro. As the maturity of spMNs grown in vitro compared to spMNs in vivo remains largely unaddressed, it is unclear to what extent this in vitro system captures critical aspects of spMN development and molecular signatures associated with ALS. Here, we compared transcriptomes among iPSC-derived spMNs, fetal, and adult spinal tissues. This approach produced a maturation scale revealing that iPSC-derived spMNs were more similar to fetal spinal tissue than to adult spMNs. Additionally, we resolved gene networks and pathways associated with spMN maturation and aging. These networks enriched for pathogenic familial ALS genetic variants and were disrupted in sporadic ALS spMNs. Altogether, our findings suggest that developing strategies to further mature and age iPSC-derived spMNs will provide more effective iPSC models of ALS pathology. PMID:27428653

  17. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPARβ/δ in HepG2 cells.

    PubMed

    Luo, Guanghua; Shi, Yuanping; Zhang, Jun; Mu, Qinfeng; Qin, Li; Zheng, Lu; Feng, Yuehua; Berggren-Söderlund, Maria; Nilsson-Ehle, Peter; Zhang, Xiaoying; Xu, Ning

    2014-02-28

    It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPARβ/δ pathway.

  18. Subpathway-CorSP: Identification of metabolic subpathways via integrating expression correlations and topological features between metabolites and genes of interest within pathways

    PubMed Central

    Feng, Chenchen; Zhang, Jian; Li, Xuecang; Ai, Bo; Han, Junwei; Wang, Qiuyu; Wei, Taiming; Xu, Yong; Li, Meng; Li, Shang; Song, Chao; Li, Chunquan

    2016-01-01

    Metabolic pathway analysis is a popular strategy for comprehensively researching metabolites and genes of interest associated with specific diseases. However, the traditional pathway identification methods do not accurately consider the combined effect of these interesting molecules and neglects expression correlations or topological features embedded in the pathways. In this study, we propose a powerful method, Subpathway-CorSP, for identifying metabolic subpathway regions. This method improved on original pathway identification methods by using a subpathway identification strategy and emphasizing expression correlations between metabolites and genes of interest based on topological features within the metabolic pathways. We analyzed a prostate cancer data set and its metastatic sub-group data set with detailed comparison of Subpathway-CorSP with four traditional pathway identification methods. Subpathway-CorSP was able to identify multiple subpathway regions whose entire corresponding pathways were not detected by traditional pathway identification methods. Further evidences indicated that Subpathway-CorSP provided a robust and efficient way of reliably recalling cancer-related subpathways and locating novel subpathways by the combined effect of metabolites and genes. This was a novel subpathway strategy based on systematically considering expression correlations and topological features between metabolites and genes of interest within given pathways. PMID:27625019

  19. Expression of the lncRNA Maternally Expressed Gene 3 (MEG3) Contributes to the Control of Lung Cancer Cell Proliferation by the Rb Pathway

    PubMed Central

    Kruer, Traci L.; Dougherty, Susan M.; Reynolds, Lindsey; Long, Elizabeth; de Silva, Tanya; Lockwood, William W.; Clem, Brian F.

    2016-01-01

    Maternally expressed gene 3 (MEG3, mouse homolog Gtl2) encodes a long noncoding RNA (lncRNA) that is expressed in many normal tissues, but is suppressed in various cancer cell lines and tumors, suggesting it plays a functional role as a tumor suppressor. Hypermethylation has been shown to contribute to this loss of expression. We now demonstrate that MEG3 expression is regulated by the retinoblastoma protein (Rb) pathway and correlates with a change in cell proliferation. Microarray analysis of mouse embryonic fibroblasts (MEFs) isolated from mice with genetic deletion of all three Rb family members (TKO) revealed a significant silencing of Gtl2/MEG3 expression compared to WT MEFs, and re-expression of Gtl2/MEG3 caused decrease in cell proliferation and increased apoptosis. MEG3 levels also were suppressed in A549 lung cancer cells compared with normal human bronchial epithelial (NHBE) cells, and, similar to the TKO cells, re-constitution of MEG3 led to a decrease in cell proliferation and elevated apoptosis. Activation of pRb by treatment of A549 and SK-MES-1 cells with palbociclib, a CDK4/6 inhibitor, increased the expression of MEG3 in a dose-dependent manner, while knockdown of pRb/p107 attenuated this effect. In addition, expression of phosphorylation-deficient mutant of pRb increased MEG3 levels in both lung cancer cell types. Treatment of these cells with palbociclib also decreased the expression of pRb-regulated DNA methyltransferase 1 (DNMT1), while conversely, knockdown of DNMT1 resulted in increased expression of MEG3. As gene methylation has been suggested for MEG3 regulation, we found that palbociclib resulted in decreased methylation of the MEG3 locus similar to that observed with 5-aza-deoxycytidine. Anti-sense oligonucleotide silencing of drug-induced MEG3 expression in A549 and SK-MES-1 cells partially rescued the palbociclib-mediated decrease in cell proliferation, while analysis of the TCGA database revealed decreased MEG3 expression in human

  20. Safety assessment considerations for food and feed derived from plants with genetic modifications that modulate endogenous gene expression and pathways.

    PubMed

    Kier, Larry D; Petrick, Jay S

    2008-08-01

    The current globally recognized comparative food and feed safety assessment paradigm for biotechnology-derived crops is a robust and comprehensive approach for evaluating the safety of both the inserted gene product and the resulting crop. Incorporating many basic concepts from food safety, toxicology, nutrition, molecular biology, and plant breeding, this approach has been used effectively by scientists and regulatory agencies for 10-15 years. Current and future challenges in agriculture include the need for improved yields, tolerance to biotic and abiotic stresses, and improved nutrition. The next generation of biotechnology-derived crops may utilize regulatory proteins, such as transcription factors that modulate gene expression and/or endogenous plant pathways. In this review, we discuss the applicability of the current safety assessment paradigm to biotechnology-derived crops developed using modifications involving regulatory proteins. The growing literature describing the molecular biology underlying plant domestication and conventional breeding demonstrates the naturally occurring genetic variation found in plants, including significant variation in the classes, expression, and activity of regulatory proteins. Specific examples of plant modifications involving insertion or altered expression of regulatory proteins are discussed as illustrative case studies supporting the conclusion that the current comparative safety assessment process is appropriate for these types of biotechnology-developed crops.

  1. Loss of cone cyclic nucleotide-gated channel leads to alterations in light response modulating system and cellular stress response pathways: a gene expression profiling study

    PubMed Central

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Frank, Mark Barton; Bebak, Melissa; Ding, Xi-Qin

    2013-01-01

    The cone photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Mutations in the channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophy. We investigated the gene expression profiles in mouse retina with CNG channel deficiency using whole genome expression microarrays. As cones comprise only 2 to 3% of the total photoreceptor population in the wild-type mouse retina, the mouse lines with CNG channel deficiency on a cone-dominant background, i.e. Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− mice, were used in our study. Comparative data analysis revealed a total of 105 genes altered in Cnga3−/−/Nrl−/− and 92 in Cngb3−/−/Nrl−/− retinas, relative to Nrl−/− retinas, with 27 genes changed in both genotypes. The differentially expressed genes primarily encode proteins associated with cell signaling, cellular function maintenance and gene expression. Ingenuity pathway analysis (IPA) identified 26 and 9 canonical pathways in Cnga3−/−/Nrl−/− and Cngb3−/−/Nrl−/− retinas, respectively, with 6 pathways being shared. The shared pathways include phototransduction, cAMP/PKA-mediated signaling, endothelin signaling, and EIF2/endoplasmic reticulum (ER) stress, whereas the IL-1, CREB, and purine metabolism signaling were found to specifically associate with Cnga3 deficiency. Thus, CNG channel deficiency differentially regulates genes that affect cell processes such as phototransduction, cellular survival and gene expression, and such regulations play a crucial role(s) in the retinal adaptation to impaired cone phototransduction. Though lack of Cnga3 and Cngb3 shares many common pathways, deficiency of Cnga3 causes more significant alterations in gene expression. This work provides insights into how cones respond to impaired phototransduction at the gene expression levels. PMID:23740940

  2. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline

    PubMed Central

    Chen, Yunshun; Lun, Aaron T. L.; Smyth, Gordon K.

    2016-01-01

    In recent years, RNA sequencing (RNA-seq) has become a very widely used technology for profiling gene expression. One of the most common aims of RNA-seq profiling is to identify genes or molecular pathways that are differentially expressed (DE) between two or more biological conditions. This article demonstrates a computational workflow for the detection of DE genes and pathways from RNA-seq data by providing a complete analysis of an RNA-seq experiment profiling epithelial cell subsets in the mouse mammary gland. The workflow uses R software packages from the open-source Bioconductor project and covers all steps of the analysis pipeline, including alignment of read sequences, data exploration, differential expression analysis, visualization and pathway analysis. Read alignment and count quantification is conducted using the Rsubread package and the statistical analyses are performed using the edgeR package. The differential expression analysis uses the quasi-likelihood functionality of edgeR. PMID:27508061

  3. Gene expression profiles following exposure to a developmental neurotoxicant, Aroclor 1254: Pathway analysis for possible mode(s) of action

    SciTech Connect

    Royland, Joyce E.; Kodavanti, Prasada Rao S.

    2008-09-01

    Epidemiological studies indicate that low levels of polychlorinated biphenyl (PCB) exposure can adversely affect neurocognitive development. In animal models, perturbations in calcium signaling, neurotransmitters, and thyroid hormones have been postulated as potential mechanisms for PCB-induced developmental neurotoxicity. In order to understand the role of these proposed mechanisms and to identify other mechanisms in PCB-induced neurotoxicity, we have chosen a global approach utilizing oligonucleotide microarrays to examine gene expression profiles in the brain following developmental exposure to Aroclor 1254 (0 or 6 mg/kg/day from gestation day 6 through postnatal day (PND) 21) in Long-Evans rats. Gene expression levels in the cerebellum and hippocampus from PNDs 7 and 14 animals were determined on Affymetrix rat 230A{sub 2}.0 chips. In the cerebellum, 87 transcripts were altered at PND7 compared to 27 transcripts at PND14 by Aroclor 1254 exposure, with only one transcript affected at both ages. In hippocampus, 175 transcripts and 50 transcripts were altered at PND7 and PND14, respectively, by Aroclor 1254 exposure with five genes commonly affected. Functional analysis suggests that pathways related to calcium homeostasis (Gng3, Ryr2, Trdn, Cacna1a), intracellular signaling (Camk2d, Stk17b, Pacsin2, Ryr2, Trio, Fert2, Ptk2b), axonal guidance (Lum, Mxd3, Akap11, Gucy1b3), aryl hydrocarbon receptor signaling (Nfia, Col1a2), and transcripts involved in cell proliferation (Gspt2, Cdkn1c, Ptk2b) and differentiation (Ifitm31, Hpca, Zfp260, Igsf4a, Hes5) leading to the development of nervous system were significantly altered by Aroclor 1254 exposure. Of the two brain regions examined, Aroclor 1254-induced genomic changes were greater in the hippocampus than the cerebellum. The genomic data suggests that PCB-induced neurotoxic effects were due to disruption of normal ontogenetic pattern of nervous system growth and development by altering intracellular signaling pathways

  4. A network approach of gene co-expression in the zea mays/Aspergillus flavus pathosystem to map host/pathogen interaction pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gene co-expression network was generated using a dual RNA-seq study with the fungal pathogen A. flavus and its plant host Z. mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network reveal...

  5. Effects of hydrogen sulfide on alternative pathway respiration and induction of alternative oxidase gene expression in rice suspension cells.

    PubMed

    Xiao, Man; Ma, Jun; Li, Hongyu; Jin, Han; Feng, Hanqing

    2010-01-01

    The toxic effects of H2S on plants are well documented. However, the molecular mechanisms reponsible for inhibition of plants by H2S are still not completely understood. We determined the effects of NaHS in the range of 0.5-10 mM on the growth of rice suspension culture cells, as well as on the expression of the alternative oxidase (AOX) gene. AOX is the terminal oxidase of the alternative pathway (AP) and exists in plant mitochondria. The results showed that H2S treatment enhanced the AP activity. During the process of H2S treatment for 4 h, the AP activity increased dramatically and achieved the peak value at a concentration of 2 mM NaHS. Then it declined at higher concentrations of NaHS (5-10 mM) and maintained a steady level. The AOX1 gene transcript level also showed a similar change as the AP activity. Interestingly, different NaHS concentrations seemed to have different effects on the expression of AOX1a, AOX1b, and AOX1c. The induction of AOX expression by low concentrations of NaHS was inferred through a reactive oxygen species (ROS)-independent pathway. At the same time, rice cells grown in culture were very sensitive to H2S, different H2S concentrations induced an increase in the cell viability. These results indicate that the H2S-induced AOX induction might play a role in inhibiting the ROS production and have an influence on cell viability.

  6. Identification of novel molecules and pathogenic pathways in primary biliary cirrhosis: cDNA array analysis of intrahepatic differential gene expression

    PubMed Central

    Shackel, N; McGuinness, P; Abbott, C; Gorrell, M; McCaughan, G

    2001-01-01

    BACKGROUND—Primary biliary cirrhosis (PBC) is an autoimmune disease in which the pathogenesis of progressive liver injury is poorly understood.
AIM—To provide novel insights into the pathogenesis of PBC related liver injury using cDNA array analysis, which simultaneously examines expression of many genes.
METHODS—Utilising cDNA arrays of 874 genes, PBC was compared with primary sclerosing cholangitis (PSC) associated cirrhosis and non-diseased liver. Differential expression of 10 genes was confirmed by real time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR).
RESULTS—Array analysis identified many differentially expressed genes that are important in inflammation, fibrosis, proliferation, signalling, apoptosis, and oxidative stress. PBC was associated with increased expression of both Th1 and Th2 type molecules of the immune response. Fibrosis related gene expression featured upregulation of connective tissue growth factor and transforming growth factor beta3. Many more apoptosis associated molecules exhibited increased expression, consistent with apoptosis being a more active and regulated process, in PSC associated cirrhosis than in PBC. Increased expression of many genes of the Wnt and notch pathways implicated these highly conserved and linked pathways in PBC pathogenesis. The observed increases in expression of c-jun, c-myc, and c-fos related antigen 1 are consistent with increased Wnt pathway activity in PBC. Differential expression of four components of the Wnt pathway, Wnt-5a, Wnt-13, FRITZ, and beta-catenin, was confirmed by quantitative RT-PCR.
CONCLUSION—Many genes implicated in intrahepatic inflammation, fibrosis, and regeneration were upregulated in PBC cirrhosis. In particular, increased expression of a number of Drosophila homologues was seen in PBC.


Keywords: primary sclerosing cholangitis; apoptosis; fibrosis; connective tissue growth factor; Wnt; Th1/Th2; brain derived neurotrophic factor; notch

  7. Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway.

    PubMed

    Tossi, Vanesa; Amenta, Melina; Lamattina, Lorenzo; Cassia, Raúl

    2011-06-01

    The link between ultraviolet (UV)-B, nitric oxide (NO) and phenylpropanoid biosynthetic pathway (PPBP) was studied in maize and Arabidopsis. The transcription factor (TF) ZmP regulates PPBP in maize. A genetic approach using P-rr (ZmP+) and P-ww (ZmP⁻) maize lines demonstrate that: (1) NO protects P-rr leaves but not P-ww from UV-B-induced reactive oxygen species (ROS) and cell damage; (2) NO increases flavonoid and anthocyanin content and prevents chlorophyll loss in P-rr but not in P-ww and (3) the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) blocks the UV-B-induced expression of ZmP and their targets CHS and CHI suggesting that NO plays a key role in the UV-B-regulated PPBP. Involvement of endogenous NO was studied in Arabidopsis nitric oxide dioxygenase (NOD) plants that express a NO dioxygenase gene under the control of a dexamethasone (DEX)-inducible promoter. Expression of HY5 and MYB12, TFs involved in PPBP regulation, was induced by UV-B, reduced by DEX in NOD plants and recovered by subsequent NO treatment. C4H regulates synapate esters synthesis and is UV-B-induced in a NO-independent pathway. Data indicate that UV-B perception increases NO concentration, which protects plant against UV-B by two ways: (1) scavenging ROS; and (2) up-regulating the expression of HY5, MYB12 and ZmP, resulting in the PPBP activation.

  8. Genome-wide gene expression profiling reveals aberrant MAPK and Wnt signaling pathways associated with early parthenogenesis.

    PubMed

    Liu, Na; Enkemann, Steven A; Liang, Ping; Hersmus, Remko; Zanazzi, Claudia; Huang, Junjiu; Wu, Chao; Chen, Zhisheng; Looijenga, Leendert H J; Keefe, David L; Liu, Lin

    2010-12-01

    Mammalian parthenogenesis could not survive but aborted during mid-gestation, presumably because of lack of paternal gene expression. To understand the molecular mechanisms underlying the failure of parthenogenesis at early stages of development, we performed global gene expression profiling and functional analysis of parthenogenetic blastocysts in comparison with those of blastocysts from normally fertilized embryos. Parthenogenetic blastocysts exhibited changes in the expression of 749 genes, of which 214 had lower expression and 535 showed higher expressions than fertilized embryos using a minimal 1.8-fold change as a cutoff. Genes important for placenta development were decreased in their expression in parthenote blastocysts. Some maternally expressed genes were up-regulated and paternal-related genes were down-regulated. Moreover, aberrantly increased Wnt signaling and reduced mitogen-activated protein kinase (MAPK) signaling were associated with early parthenogenesis. The protein level of extracellular signal-regulated kinase 2 (ERK2) was low in parthenogenetic blastocysts compared with that of fertilized blastocysts 120 h after fertilization. 6-Bromoindirubin-3'-oxime, a specific glycogen synthase kinase-3 (GSK-3) inhibitor, significantly decreased embryo hatching. The expression of several imprinted genes was altered in parthenote blastocysts. Gene expression also linked reduced expression of Xist to activation of X chromosome. Our findings suggest that failed X inactivation, aberrant imprinting, decreased ERK/MAPK signaling and possibly elevated Wnt signaling, and reduced expression of genes for placental development collectively may contribute to abnormal placenta formation and failed fetal development in parthenogenetic embryos.

  9. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker).

    PubMed

    Zhang, Ya-Nan; Xia, Yi-Han; Zhu, Jia-Yao; Li, Sheng-Yun; Dong, Shuang-Lin

    2014-05-01

    The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.

  10. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways

    SciTech Connect

    Yu Xiaozhong Robinson, Joshua F.; Gribble, Elizabeth; Hong, Sung Woo; Sidhu, Jaspreet S.; Faustman, Elaine M.

    2008-12-15

    Arsenic (As) is a well-known environmental toxicant and carcinogen as well as an effective chemotherapeutic agent. The underlying mechanism of this dual capability, however, is not fully understood. Tumor suppressor gene p53, a pivotal cell cycle checkpoint signaling protein, has been hypothesized to play a possible role in mediating As-induced toxicity and therapeutic efficiency. In this study, we found that arsenite (As{sup 3+}) induced apoptosis and cell cycle arrest in a dose-dependent manner in both p53{sup +/+} and p53{sup -/-} mouse embryonic fibroblasts (MEFs). There was, however, a distinction between genotypes in the apoptotic response, with a more prominent induction of caspase-3 in the p53{sup -/-} cells than in the p53{sup +/+} cells. To examine this difference further, a systems-based genomic analysis was conducted comparing the critical molecular mechanisms between the p53 genotypes in response to As{sup 3+}. A significant alteration in the Nrf2-mediated oxidative stress response pathway was found in both genotypes. In p53{sup +/+} MEFs, As{sup 3+} induced p53-dependent gene expression alterations in DNA damage and cell cycle regulation genes. However, in the p53{sup -/-} MEFs, As{sup 3+} induced a significant up-regulation of pro-apoptotic genes (Noxa) and down-regulation of genes in immune modulation. Our findings demonstrate that As-induced cell death occurs through a p53-independent pathway in p53 deficient cells while apoptosis induction occurs through p53-dependent pathway in normal tissue. This difference in the mechanism of apoptotic responses between the genotypes provides important information regarding the apparent dichotomy of arsenic's dual mechanisms, and potentially leads to further advancement of its utility as a chemotherapeutic agent.

  11. Carbohydrate Stress Affecting Fruitlet Abscission and Expression of Genes Related to Auxin Signal Transduction Pathway in Litchi

    PubMed Central

    Kuang, Jian-Fei; Wu, Jian-Yang; Zhong, Hai-Ying; Li, Cai-Qin; Chen, Jian-Ye; Lu, Wang-Jin; Li, Jian-Guo

    2012-01-01

    Auxin, a vital plant hormone, regulates a variety of physiological and developmental processes. It is involved in fruit abscission through transcriptional regulation of many auxin-related genes, including early auxin responsive genes (i.e., auxin/indole-3-acetic acid (AUX/IAA), Gretchen Hagen3 (GH3) and small auxin upregulated (SAUR)) and auxin response factors (ARF), which have been well characterized in many plants. In this study, totally five auxin-related genes, including one AUX/IAA (LcAUX/IAA1), one GH3 (LcGH3.1), one SAUR (LcSAUR1) and two ARFs (LcARF1 and LcARF2), were isolated and characterized from litchi fruit. LcAUX/IAA1, LcGH3.1, LcSAUR1, LcARF1 and LcARF2 contain open reading frames (ORFs) encoding polypeptides of 203, 613, 142, 792 and 832 amino acids, respectively, with their corresponding molecular weights of 22.67, 69.20, 11.40, 88.20 and 93.16 kDa. Expression of these genes was investigated under the treatment of girdling plus defoliation which aggravated litchi fruitlet abscission due to the blockage of carbohydrates transport and the reduction of endogenous IAA content. Results showed that transcript levels of LcAUX/IAA1, LcGH3.1 and LcSAUR1 mRNAs were increased after the treatment in abscission zone (AZ) and other tissues, in contrast to the decreasing accumulation of LcARF1 mRNA, suggesting that LcAUX/IAA1, LcSAUR1 and LcARF1 may play more important roles in abscission. Our results provide new insight into the process of fruitlet abscission induced by carbohydrate stress and broaden our understanding of the auxin signal transduction pathway in this process at the molecular level. PMID:23443112

  12. Gene expression in BMPR2 mutation carriers with and without evidence of Pulmonary Arterial Hypertension suggests pathways relevant to disease penetrance

    PubMed Central

    West, James; Cogan, Joy; Geraci, Mark; Robinson, Linda; Newman, John; Phillips, John A; Lane, Kirk; Meyrick, Barbara; Loyd, Jim

    2008-01-01

    Background While BMPR2 mutation strongly predisposes to pulmonary arterial hypertension (PAH), only 20% of mutation carriers develop clinical disease. This finding suggests that modifier genes contribute to FPAH clinical expression. Since modifiers are likely to be common alleles, this problem is not tractable by traditional genetic approaches. Furthermore, examination of gene expression is complicated by confounding effects attributable to drugs and the disease process itself. Methods To resolve these problems, B-cells were isolated, EBV-immortalized, and cultured from familial PAH patients with BMPR2 mutations, mutation positive but disease-free family members, and family members without mutation. This allows examination of differences in gene expression without drug or disease-related effects. These differences were assayed by Affymetrix array, with follow-up by quantitative RT-PCR and additional statistical analyses. Results By gene array, we found consistent alterations in multiple pathways with known relationship to PAH, including actin organization, immune function, calcium balance, growth, and apoptosis. Selected genes were verified by quantitative RT-PCR using a larger sample set. One of these, CYP1B1, had tenfold lower expression than control groups in female but not male PAH patients. Analysis of overrepresented gene ontology groups suggests that risk of disease correlates with alterations in pathways more strongly than with any specific gene within those pathways. Conclusion Disease status in BMPR2 mutation carriers was correlated with alterations in proliferation, GTP signaling, and stress response pathway expression. The estrogen metabolizing gene CYP1B1 is a strong candidate as a modifier gene in female PAH patients. PMID:18823550

  13. Research resource: interactome of human embryo implantation: identification of gene expression pathways, regulation, and integrated regulatory networks.

    PubMed

    Altmäe, Signe; Reimand, Jüri; Hovatta, Outi; Zhang, Pu; Kere, Juha; Laisk, Triin; Saare, Merli; Peters, Maire; Vilo, Jaak; Stavreus-Evers, Anneli; Salumets, Andres

    2012-01-01

    A prerequisite for successful embryo implantation is adequate preparation of receptive endometrium and the establishment and maintenance of a viable embryo. The success of implantation further relies upon a two-way dialogue between the embryo and uterus. However, molecular bases of these preimplantation and implantation processes in humans are not well known. We performed genome expression analyses of human embryos (n = 128) and human endometria (n = 8). We integrated these data with protein-protein interactions in order to identify molecular networks within the endometrium and the embryo, and potential embryo-endometrium interactions at the time of implantation. For that, we applied a novel network profiling algorithm HyperModules, which combines topological module identification and functional enrichment analysis. We found a major wave of transcriptional down-regulation in preimplantation embryos. In receptive-stage endometrium, several genes and signaling pathways were identified, including JAK-STAT signaling and inflammatory pathways. The main curated embryo-endometrium interaction network highlighted the importance of cell adhesion molecules in the implantation process. We also identified cytokine-cytokine receptor interactions involved in implantation, where osteopontin (SPP1), leukemia inhibitory factor (LIF) and leptin (LEP) pathways were intertwining. Further, we identified a number of novel players in human embryo-endometrium interactions, such as apolipoprotein D (APOD), endothelin 1 (END1), fibroblast growth factor 7 (FGF7), gastrin (GAST), kringle containing trnasmembrane protein 1 (KREMEN1), neuropilin 1 (NRP1), serpin peptidase inhibitor clade A member 3 (SERPINA3), versican (VCAN), and others. Our findings provide a fundamental resource for better understanding of the genetic network that leads to successful embryo implantation. We demonstrate the first systems biology approach into the complex molecular network of the implantation process in humans.

  14. Dynamic gene expression patterns in animal models of early and late heart failure reveal biphasic-bidirectional transcriptional activation of signaling pathways.

    PubMed

    Rowell, Janelle; Koitabashi, Norimichi; Kass, David A; Barth, Andreas S

    2014-10-15

    Altered cardiac gene expression in heart failure (HF) has mostly been identified by single-point analysis of end-stage disease. This may miss earlier changes in gene expression that are transient and/or directionally opposite to those observed later. Myocardial datasets from the largest microarray data repository (Gene Expression Omnibus) yielded six HF studies with time-course data. Differentially expressed transcripts between nonfailing controls, early HF (<3 days after cardiac insult) and late HF (usually >2 wk) were determined, and analysis of KEGG pathways and predicted regulatory control elements performed. We found that gene expression followed varying patterns: Downregulation of metabolic pathways occurred early and was sustained into late-stage HF. In contrast, most signaling pathways undergo a complex biphasic pattern: Calcium signaling, p53, apoptosis, and MAPK pathways displayed a bidirectional response, declining early but rising late. These profiles were compatible with specific microRNA (miRNA) and transcription regulators: Estrogen-related receptor-α and myocyte-enhancer factor-2 binding sites were overrepresented in the promoter regions of downregulated transcripts. Concurrently, there were overrepresented binding sites for E2f and ETS family members (E-Twenty Six, including Gabp, Elf1, and Ets2), serum response and interferon regulated factor in biphasic-bidirectional and late-upregulated transcripts. Binding sites for miRNAs downregulated by HF were more common in upregulated transcripts (e.g., miRNA-22,-133a/b, and -150 in early HF and miRNA-1,-9,-499 in late HF). During the development of HF, gene expression is characterized by dynamic overlapping sets of transcripts controlled by specific interrelated regulatory mechanisms. While metabolic gene classes show early and sustained downregulation in HF, signaling pathways undergo a complex biphasic pattern with early down- and more pronounced late upregulation.

  15. Mechanisms of Organophosphorus (OP) Injury: Sarin-Induced Hippocampal Gene Expression Changes and Pathway Perturbation

    DTIC Science & Technology

    2012-01-01

    nigra neurons from Parkinson disease patients. Ddit4 can be induced by DNA alkylation, ionizing radiation, amyloid beta-peptide and hypoxia. b...related to dopaminergic dysfunction, including Parkinson disease , schizophrenia, and manic depression. Nr4a2 is rapidly and transiently expressed...Neurodegenerative Diseases in Hippocampus Following Sarin Treatment .........32 viii

  16. Cloning and expression in Escherichia coli of genes involved in the lysine pathway of Brevibacterium lactofermentum.

    PubMed Central

    Márquez, G; Sousa, J M; Sánchez, F

    1985-01-01

    The Brevibacterium lactofermentum genes which complement Escherichia coli lysA and asd-1 mutants were identified, respectively, as a 1.9-kilobase PstI-ClaI fragment and a 2.5-kilobase PstI fragment by cloning into pBR325. Southern blot transfers show hybridization to chromosomal fragments of identical size. The putative B. lactofermentum asd and lysA products are 44 and 48 kilodaltons, respectively. Images PMID:2864331

  17. Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors

    PubMed Central

    Zhu, Fangjun; Schlupp, Ingo; Tiedemann, Ralph

    2016-01-01

    The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs’ embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess–as most other teleost fish—two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed

  18. Differential expression of cancer pathway-related genes in low-versus high-dose-rate-irradiated AKR/J mice

    NASA Astrophysics Data System (ADS)

    Jong Bong, Jin; Kang, Yu Mi; Shin, Suk Chul; Choi, Moo Hyun; Choi, Seung Jin; Kim, Hee Sun

    2012-11-01

    To understand the biological effects of ionizing radiation on lymphomagenesis, we reared AKR/J mice for 130 days with exposure to either high-dose-rate (HDR, 0.8 Gy/min, a single dose of 4.5 Gy) or low-dose-rate (LDR, 0.7 mGy/h, a cumulative dose of 2.1 Gy) irradiation. After 130 days, we compared the mean thymus weight, analyzed the histological changes, and measured apoptotic cell numbers using the terminal deoxynucleotidyl transferase-mediated dUTP-end labeling (TUNEL) assay. We also used microarrays and quantitative polymerase chain reaction analysis (qPCR) to analyze the expression profiles of cancer pathway-related genes in the thymuses of the mice. The mean thymus weight of the LDR-irradiated mice decreased relative to Sham- and HDR-irradiated mice. Histopathological examination revealed that the neoplastic cells in the thymuses of the Sham- and HDR-irradiated mice were pleomorphic, with marked anisocytosis and anisokaryosis, whereas the cells and their nuclei were relatively small and uniform in size in the LDR-irradiated mice. Furthermore, TUNEL assays showed that the number of apoptotic cells was higher in the LDR-irradiated mice than in the Sham- and HDR-irradiated mice. Microarray analysis showed differentially expressed genes according to carcinogenic stage (DNA repair/genomic instability, DNA damage signaling pathway, cell cycle, cancer pathway, p53 signaling pathway, apoptosis, and T- and B-cell activation). qPCR data for cancer pathway-related genes showed that Cds1 gene expression was upregulated in the LDR-irradiated mice, whereas expression of the Itga4, Myc, and Itgb1 genes was upregulated in the irradiated mice. However, the functions of cancer pathway-related genes require further study and validation.

  19. Hepatocyte nuclear factor 1α downregulates HBV gene expression and replication by activating the NF-κB signaling pathway

    PubMed Central

    Shen, Zhongliang; Liu, Yanfeng; Wang, Wei; Tao, Shuai; Cui, Xiaoxian; Liu, Jing

    2017-01-01

    The role of hepatocyte nuclear factor 1α (HNF1α) in the regulation of gene expression and replication of hepatitis B virus (HBV) is not fully understood. Previous reports have documented the induction of the expression of viral large surface protein (LHBs) by HNF1α through activating viral Sp1 promoter. Large amount of LHBs can block the secretion of hepatitis B surface antigen (HBsAg). Here we found that HNF1α overexpression inhibited HBV gene expression and replication in Huh7 cells, resulting in marked decreases in HBsAg, hepatitis B e antigen (HBeAg) and virion productions. In contrast, knockdown of endogenous HNF1α expression enhanced viral gene expression and replication. This HNF1α-mediated inhibition did not depend on LHBs. Instead, HNF1α promoted the expression of NF-κB p65 and slowed p65 protein degradation, leading to nuclear accumulation of p65 and activation of the NF-κB signaling, which in turn inhibited HBV gene expression and replication. The inhibitor of the NF-κB signaling, IκBα-SR, could abrogate this HNF1α-mediated inhibition. While the dimerization domain of HNF1α was dispensable for the induction of LHBs expression, all the domains of HNF1α was required for the inhibition of HBV gene expression. Our findings identify a novel role of HNF1α in the regulation of HBV gene expression and replication. PMID:28319127

  20. Role of innate immunity-triggered pathways in the pathogenesis of Sickle Cell Disease: a meta-analysis of gene expression studies

    PubMed Central

    Hounkpe, Bidossessi Wilfried; Fiusa, Maiara Marx Luz; Colella, Marina Pereira; Nilkenes Gomes da Costa, Loredana; Benatti, Rafaela de Oliveira; Olalla Saad, Sara T; Costa, Fernando Ferreira; dos Santos, Magnun Nueldo Nunes; De Paula, Erich Vinicius

    2015-01-01

    Despite the detailed characterization of the inflammatory and endothelial changes observed in Sickle Cell Disease (SCD), the hierarchical relationship between elements involved in the pathogenesis of this complex disease is yet to be described. Meta-analyses of gene expression studies from public repositories represent a novel strategy, capable to identify key mediators in complex diseases. We performed several meta-analyses of gene expression studies involving SCD, including studies with patient samples, as well as in-vitro models of the disease. Meta-analyses were performed with the Inmex bioinformatics tool, based on the RankProd package, using raw gene expression data. Functional gene set analysis was performed using more than 60 gene-set libraries. Our results demonstrate that the well-characterized association between innate immunity, hemostasis, angiogenesis and heme metabolism with SCD is also consistently observed at the transcriptomic level, across independent studies. The enrichment of genes and pathways associated with innate immunity and damage repair-associated pathways supports the model of erythroid danger-associated molecular patterns (DAMPs) as key mediators of the pathogenesis of SCD. Our study also generated a novel database of candidate genes, pathways and transcription factors not previously associated with the pathogenesis of SCD that warrant further investigation in models and patients of SCD. PMID:26648000

  1. Not4 enhances JAK/STAT pathway-dependent gene expression in Drosophila and in human cells.

    PubMed

    Grönholm, Juha; Kaustio, Meri; Myllymäki, Henna; Kallio, Jenni; Saarikettu, Juha; Kronhamn, Jesper; Valanne, Susanna; Silvennoinen, Olli; Rämet, Mika

    2012-03-01

    The JAK/STAT pathway is essential for organogenesis, innate immunity, and stress responses in Drosophila melanogaster. The JAK/STAT pathway and its associated regulators have been highly conserved in evolution from flies to humans. We have used a genome-wide RNAi screen in Drosophila S2 cells to identify regulators of the JAK/STAT pathway, and here we report the characterization of Not4 as a positive regulator of the JAK/STAT pathway. Overexpression of Not4 enhanced Stat92E-mediated gene responses in vitro and in vivo in Drosophila. Specifically, Not4 increased Stat92E-mediated reporter gene activation in S2 cells; and in flies, Not4 overexpression resulted in an 8-fold increase in Turandot M (TotM) and in a 4-fold increase in Turandot A (TotA) stress gene activation when compared to wild-type flies. Drosophila Not4 is structurally related to human CNOT4, which was found to regulate interferon-γ- and interleukin-4-induced STAT-mediated gene responses in human HeLa cells. Not4 was found to coimmunoprecipitate with Stat92E but not to affect tyrosine phosphorylation of Stat92E in Drosophila cells. However, Not4 is required for binding of Stat92E to its DNA recognition sequence in the TotM gene promoter. In summary, Not4/CNOT4 is a novel positive regulator of the JAK/STAT pathway in Drosophila and in humans.

  2. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  3. Gene Expression during the Generation and Activation of Mouse Neutrophils: Implication of Novel Functional and Regulatory Pathways

    PubMed Central

    Ericson, Jeffrey A.; Duffau, Pierre; Yasuda, Kei; Ortiz-Lopez, Adriana; Rothamel, Katherine; Rifkin, Ian R.; Monach, Paul A.

    2014-01-01

    As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating) mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes), thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking. However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid. Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64, mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for optimal secretion of IL-10, IP-10, MIP-1α, MIP-1β, and TNF-α by mouse neutrophils in vitro after stimulation through TLR9. This data-set and its analysis using the ImmGen regulatory

  4. Differentiation expression during proliferative activity induced through different pathways: in situ hybridization study of thyroglobulin gene expression in thyroid epithelial cells

    PubMed Central

    1990-01-01

    In canine thyrocytes in primary culture, our previous studies have identified three mitogenic agents and pathways: thyrotropin (TSH) acting through cyclic AMP (cAMP), EGF and its receptor tyrosine protein kinase, and the phorbol esters that stimulate protein kinase C. TSH enhances, while EGF and phorbol esters inhibit, the expression of differentiation. Given that growth and differentiation expression are often considered as mutually exclusive activities of the cells, it was conceivable that the differentiating action of TSH was restricted to noncycling (Go) cells, while the inhibition of the differentiation expression by EGF and phorbol esters only concerned proliferating cells. Therefore, the capacity to express the thyroglobulin (Tg) gene, the most prominent marker of differentiation in thyrocytes, was studied in proliferative cells (with insulin) and in quiescent cells (without insulin). Using cRNA in situ hybridization, we observed that TSH (and, to a lesser extent, insulin and insulin-like growth factor I) restored or maintained the expression of the Tg gene. Without these hormones, the Tg mRNA content became undetectable in most of the cells. EGF and 12-0-tetradecanoyl phorbol-13-acetate (TPA) inhibited the Tg mRNA accumulation induced by TSH (and/or insulin). Most of the cells (up to 90%) responded to both TSH and EGF. Nevertheless, the range of individual response was quite variable. The effects of TSH and EGF on differentiation expression were not dependent on insulin and can therefore be dissociated from their mitogenic effects. Cell cycling did not affect the induction of Tg gene. Indeed, the same cell distribution of Tg mRNA content was observed in quiescent cells stimulated by TSH alone, or in cells approximately 50% of which had performed one mitotic cycle in response to TSH + insulin. Moreover, after proliferation in "dedifferentiating" conditions (EGF + serum + insulin), thyrocytes had acquired a fusiform fibroblast-like morphology, and responded

  5. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways

    PubMed Central

    Musungu, Bryan M.; Bhatnagar, Deepak; Brown, Robert L.; Payne, Gary A.; OBrian, Greg; Fakhoury, Ahmad M.; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus. PMID:27917194

  6. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways.

    PubMed

    Musungu, Bryan M; Bhatnagar, Deepak; Brown, Robert L; Payne, Gary A; OBrian, Greg; Fakhoury, Ahmad M; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus.

  7. Influence of low glycolytic activities in gcr1 and gcr2 mutants on the expression of other metabolic pathway genes in Saccharomyces cerevisiae.

    PubMed

    Sasaki, Hiromi; Uemura, Hiroshi

    2005-01-30

    A complex of the transcription factors Gcr1p and Gcr2p coordinately regulates the expression of glycolytic genes in Saccharomyces cerevisiae. To understand the effects of gcr mutations on other metabolic pathways, genome-wide gene expression profiles in gcr1 and gcr2 mutants were examined. The biggest effects of gcr1 and gcr2 mutations were observed on the glycolytic genes and the expressions of most of the glycolytic genes were substantially decreased compared to those in the wild-type strain in both glucose and glycerol+lactate growth conditions. On the other hand, the expressions of genes encoding the TCA cycle and respiration were increased in gcr mutants when the cells were grown in glucose. RT-PCR analyses revealed that the expression of SIP4 and HAP5, which are known to affect the expression of some of the gluconeogenic, TCA cycle and respiratory genes, were also increased under this condition. The growth of gcr mutants on glucose was impaired by adding respiration inhibitor antimycin A, whereas the growth of the wild-type strain was not. The conversion of glucose to biomass was higher and, to the contrary, ethanol yield was lower in the gcr2 mutant compared to those in the wild-type strain. These results suggest the possibility that the gcr mutants, in which glycolytic activities are low, changed their metabolic patterns under glucose growth condition to enhance the expression of TCA cycle and respiratory genes to produce more energy.

  8. Whole Genome Gene Expression Analysis Reveals Casiopeína-Induced Apoptosis Pathways

    PubMed Central

    Valencia-Cruz, Alejandra Idan; Uribe-Figueroa, Laura I.; Galindo-Murillo, Rodrigo; Baca-López, Karol; Gutiérrez, Anllely G.; Vázquez-Aguirre, Adriana; Ruiz-Azuara, Lena; Hernández-Lemus, Enrique; Mejía, Carmen

    2013-01-01

    Copper-based chemotherapeutic compounds Casiopeínas, have been presented as able to promote selective programmed cell death in cancer cells, thus being proper candidates for targeted cancer therapy. DNA fragmentation and apoptosis–in a process mediated by reactive oxygen species–for a number of tumor cells, have been argued to be the main mechanisms. However, a detailed functional mechanism (a model) is still to be defined and interrogated for a wide variety of cellular conditions before establishing settings and parameters needed for their wide clinical application. In order to shorten the gap in this respect, we present a model proposal centered in the role played by intrinsic (or mitochondrial) apoptosis triggered by oxidative stress caused by the chemotherapeutic agent. This model has been inferred based on genome wide expression profiling in cervix cancer (HeLa) cells, as well as statistical and computational tests, validated via functional experiments (both in the same HeLa cells and also in a Neuroblastoma model, the CHP-212 cell line) and assessed by means of data mining studies. PMID:23382936

  9. Tobacco Nicotine Uptake Permease Regulates the Expression of a Key Transcription Factor Gene in the Nicotine Biosynthesis Pathway1[C][W

    PubMed Central

    2014-01-01

    The down-regulation of a tobacco (Nicotiana tabacum) plasma membrane-localized nicotine uptake permease, NUP1, was previously reported to reduce total alkaloid levels in tobacco plants. However, it was unclear how this nicotine transporter affected the biosynthesis of the alkaloid nicotine. When NUP1 expression was suppressed in cultured tobacco cells treated with jasmonate, which induces nicotine biosynthesis, the NICOTINE2-locus transcription factor gene ETHYLENE RESPONSE FACTOR189 (ERF189) and its target structural genes, which function in nicotine biosynthesis and transport, were strongly suppressed, resulting in decreased total alkaloid levels. Conversely, NUP1 overexpression had the opposite effect. In these experiments, the expression levels of the MYC2 transcription factor gene and its jasmonate-inducible target gene were not altered. Inhibiting tobacco alkaloid biosynthesis by suppressing the expression of genes encoding enzymes in the nicotine pathway did not affect the expression of ERF189 and other nicotine pathway genes, indicating that ERF189 is not regulated by cellular alkaloid levels. Suppressing the expression of jasmonate signaling components in cultured tobacco cells showed that NUP1 acts downstream of the CORONATINE INSENSITIVE1 receptor and MYC2, but upstream of ERF189. These results suggest that although jasmonate-activated expression of MYC2 induces the expression of both NUP1 and ERF189, expression of ERF189 may actually be mediated by NUP1. Furthermore, NUP1 overexpression in tobacco plants inhibited the long-range transport of nicotine from the roots to the aerial parts. Thus, NUP1 not only mediates the uptake of tobacco alkaloids into root cells, but also positively controls the expression of ERF189, a key gene in the biosynthesis of these alkaloids. PMID:25344505

  10. Maternal high-fat diet modulates hepatic glucose, lipid homeostasis and gene expression in the PPAR pathway in the early life of offspring.

    PubMed

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin

    2014-08-25

    Maternal dietary modifications determine the susceptibility to metabolic diseases in adult life. However, whether maternal high-fat feeding can modulate glucose and lipid metabolism in the early life of offspring is less understood. Furthermore, we explored the underlying mechanisms that influence the phenotype. Using C57BL/6J mice, we examined the effects on the offspring at weaning from dams fed with a high-fat diet or normal chow diet throughout pregnancy and lactation. Gene array experiments and quantitative real-time PCR were performed in the liver tissues of the offspring mice. The offspring of the dams fed the high-fat diet had a heavier body weight, impaired glucose tolerance, decreased insulin sensitivity, increased serum cholesterol and hepatic steatosis at weaning. Bioinformatic analyses indicated that all differentially expressed genes of the offspring between the two groups were mapped to nine pathways. Genes in the peroxisome proliferator-activated receptor (PPAR) signaling pathway were verified by quantitative real-time PCR and these genes were significantly up-regulated in the high-fat diet offspring. A maternal high-fat diet during pregnancy and lactation can modulate hepatic glucose, lipid homeostasis, and gene expression in the PPAR signaling in the early life of offspring, and our results suggested that potential mechanisms that influences this phenotype may be related partially to up-regulate some gene expression in the PPAR signalling pathway.

  11. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water

    SciTech Connect

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V.; Costa, Max

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p < 0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females. - Highlights: • Males and females exhibit unique gene expression changes in response to arsenic. • Only 23 genes are common among the differentially expressed genes for the sexes. • Male and female gene lists exhibit common biological

  12. Catabolic cytokines disrupt the circadian clock and the expression of clock-controlled genes in cartilage via an NFкB-dependent pathway

    PubMed Central

    Guo, B.; Yang, N.; Borysiewicz, E.; Dudek, M.; Williams, J.L.; Li, J.; Maywood, E.S.; Adamson, A.; Hastings, M.H.; Bateman, J.F.; White, M.R.H.; Boot-Handford, R.P.; Meng, Q.J.

    2015-01-01

    Summary Objective To define how the catabolic cytokines (Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα)) affect the circadian clock mechanism and the expression of clock-controlled catabolic genes within cartilage, and to identify the downstream pathways linking the cytokines to the molecular clock within chondrocytes. Methods Ex vivo cartilage explants were isolated from the Cry1-luc or PER2::LUC clock reporter mice. Clock gene dynamics were monitored in real-time by bioluminescence photon counting. Gene expression changes were studied by qRT-PCR. Functional luc assays were used to study the function of the core Clock/BMAL1 complex in SW-1353 cells. NFкB pathway inhibitor and fluorescence live-imaging of cartilage were performed to study the underlying mechanisms. Results Exposure to IL-1β severely disrupted circadian gene expression rhythms in cartilage. This effect was reversed by an anti-inflammatory drug dexamethasone, but not by other clock synchronizing agents. Circadian disruption mediated by IL-1β was accompanied by disregulated expression of endogenous clock genes and clock-controlled catabolic pathways. Mechanistically, NFкB signalling was involved in the effect of IL-1β on the cartilage clock in part through functional interference with the core Clock/BMAL1 complex. In contrast, TNFα had little impact on the circadian rhythm and clock gene expression in cartilage. Conclusion In our experimental system (young healthy mouse cartilage), we demonstrate that IL-1β (but not TNFα) abolishes circadian rhythms in Cry1-luc and PER2::LUC gene expression. These data implicate disruption of the chondrocyte clock as a novel aspect of the catabolic responses of cartilage to pro-inflammatory cytokines, and provide an additional mechanism for how chronic joint inflammation may contribute to osteoarthritis (OA). PMID:26521744

  13. Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus

    PubMed Central

    Hu, Qing; Guo, Wei; Li, Dapeng

    2017-01-01

    Background The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus). How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male) from the rice field eel to investigate changes in transcriptional level during the sex reversal process. Results Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes). These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes’ expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary. Conclusion This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms. PMID:28319194

  14. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.

    PubMed

    Manikandan, P; Ramyachitra, D; Banupriya, D

    2016-04-15

    Proteins show their functional activity by interacting with other proteins and forms protein complexes since it is playing an important role in cellular organization and function. To understand the higher order protein organization, overlapping is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Most of the clustering algorithms do not consider the weighted as well as overlapping complexes. In this research, Prorank based Fuzzy algorithm has been proposed to find the overlapping protein complexes. The Fuzzy detection algorithm is incorporated in the Prorank algorithm after ranking step to find the overlapping community. The proposed algorithm executes in an iterative manner to compute the probability of robust clusters. The proposed and the existing algorithms were tested on different datasets such as PPI-D1, PPI-D2, Collins, DIP, Krogan Core and Krogan-Extended, gene expression such as GSE7645, GSE22269, GSE26923, pathways such as Meiosis, MAPK, Cell Cycle, phenotypes such as Yeast Heterogeneous and Yeast Homogeneous datasets. The experimental results show that the proposed algorithm predicts protein complexes with better accuracy compared to other state of art algorithms.

  15. Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L.

    PubMed

    Yadav, Ritesh K; Sangwan, Rajender S; Sabir, Farzana; Srivastava, Awadesh K; Sangwan, Neelam S

    2014-01-01

    Artemisia annua L. accumulates substantial quantities of unique sesquiternoid artemisinin and related phytomolecules and characteristic essential oil in glandular trichomes, present on its leaves and inflorescence. Water stress is a major concern in controlling plant growth and productivity. In this study, our aim was to find out the modulation of artemisinin and essential oil constituents in plants grown under prolonged water stress conditions. A. annua CIM-Arogya plants grown in pots were subjected to mild (60% ± 5) and moderate (40% ± 5) water stress treatment and continued during entire developmental period. Results revealed that artemisinin, arteannuin-B, artemisinic acid, dihydroartemisinic acid and essential oil content were positively controlled by the growth and development however negatively modulated by water deficit stress. Interestingly, some of minor monoterpenes, all sesquiterpenes and other low molecular weight volatiles of essential oil components were induced by water deficit treatment. Camphor which is the major essential oil constituents did not alter much while 1, 8 cineole was modulated during development of plant as well as under water stress conditions. Water deficit stress induces a decrease in glandular trichome density and size as well. The dynamics of various secondary metabolites is discussed in the light of growth responses, trichomes and pathway gene expression in plants grown under two levels of prolonged water stress conditions.

  16. Gene expression profiling of precursor T-cell lymphoblastic leukemia/lymphoma identifies oncogenic pathways that are potential therapeutic targets

    PubMed Central

    Lin, Ying-Wei; Aplan, Peter D.

    2007-01-01

    We compared the gene expression pattern of thymic tumors from precursor T-cell lymphoblastic lymphoma/leukemia (pre-T LBL) that arose in transgenic mice which over-expressed SCL, LMO1, or NUP98-HOXD13 (NHD13) with that of thymocytes from normal littermates. Only two genes, Ccl8 and Mrpl38, were consistently more than 4-fold over-expressed in pre-T LBL from all three genotypes analyzed, and a single gene, Prss16 was consistently under-expressed. However, we identified a number of genes, such as Cfl1, Tcra, Tcrb, Pbx3, Eif4a, Eif4b, and Cox8b that were over or under-expressed in pre-T LBL that arose in specific transgenic lines. Similar to the situation seen with human pre-T LBL, the SCL/LMO1 leukemias displayed an expression profile consistent with mature, late cortical thymocytes, whereas the NHD13 leukemias displayed an expression profile more consistent with immature thymocytes. We evaluated two of the most differentially regulated genes as potential therapeutic targets. Cfl1 was specifically over-expressed in SCL-LMO1 tumors; inactivation of Cfl1 using Okadaic acid resulted in suppression of leukemic cell growth. Overexpression of Ccl8 was a consistent finding in all 3 transgenic lines, and an antagonist for the Ccl8 receptor induced death of leukemic cell lines, suggesting a novel therapeutic approach. PMID:17429429

  17. Integration of gene expression data with network-based analysis to identify signaling and metabolic pathways regulated during the development of osteoarthritis.

    PubMed

    Olex, Amy L; Turkett, William H; Fetrow, Jacquelyn S; Loeser, Richard F

    2014-05-25

    Osteoarthritis (OA) is characterized by remodeling and degradation of joint tissues. Microarray studies have led to a better understanding of the molecular changes that occur in tissues affected by conditions such as OA; however, such analyses are limited to the identification of a list of genes with altered transcript expression, usually at a single time point during disease progression. While these lists have identified many novel genes that are altered during the disease process, they are unable to identify perturbed relationships between genes and gene products. In this work, we have integrated a time course gene expression dataset with network analysis to gain a better systems level understanding of the early events that occur during the development of OA in a mouse model. The subnetworks that were enriched at one or more of the time points examined (2, 4, 8, and 16 weeks after induction of OA) contained genes from several pathways proposed to be important to the OA process, including the extracellular matrix-receptor interaction and the focal adhesion pathways and the Wnt, Hedgehog and TGF-β signaling pathways. The genes within the subnetworks were most active at the 2 and 4 week time points and included genes not previously studied in the OA process. A unique pathway, riboflavin metabolism, was active at the 4 week time point. These results suggest that the incorporation of network-type analyses along with time series microarray data will lead to advancements in our understanding of complex diseases such as OA at a systems level, and may provide novel insights into the pathways and processes involved in disease pathogenesis.

  18. The Gene Expression Status of the PI3K/AKT/mTOR Pathway in Gastric Cancer Tissues and Cell Lines.

    PubMed

    Riquelme, Ismael; Tapia, Oscar; Espinoza, Jaime A; Leal, Pamela; Buchegger, Kurt; Sandoval, Alejandra; Bizama, Carolina; Araya, Juan Carlos; Peek, Richard M; Roa, Juan Carlos

    2016-10-01

    The PI3K/AKT/mTOR pathway plays a crucial role in the regulation of multiple cellular functions including cell growth, proliferation, metabolism and angiogenesis. Emerging evidence has shown that deregulation of this pathway has a role promoting gastric cancer (GC). The aim was to assess the expression of genes involved in this pathway by qPCR in 23 tumor and 23 non-tumor gastric mucosa samples from advanced GC patients, and in AGS, MKN28 and MKN45 gastric cancer cell lines. Results showed a slight overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1, EIF4EBP1 and EIF4E genes, and a slightly decreased PTEN and TSC1 expression. In AGS, MKN28 and MKN45 cells a significant gene overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1 and EIF4E, and a significant repression of PTEN gene expression were observed. Immunoblotting showed that PI3K-β, AKT, p-AKT, PTEN, mTOR, p-mTOR, P70S6K1, p-P70S6K1, 4E-BP1, p-4E-BP1, eIF4E and p-eIF4E proteins were present in cell lines at different levels, confirming activation of this pathway in vitro. This is the first time this extensive panel of 9 genes within PI3K/AKT/mTOR pathway has been studied in GC to clarify the biological role of this pathway in GC and develop new strategies for this malignancy.

  19. Gene expression analysis reveals important pathways for drought response in leaves and roots of a wheat cultivar adapted to rainfed cropping in the Cerrado biome

    PubMed Central

    Poersch-Bortolon, Liane Balvedi; Pereira, Jorge Fernando; Nhani, Antonio; Gonzáles, Hebert Hernán Soto; Torres, Gisele Abigail Montan; Consoli, Luciano; Arenhart, Rafael Augusto; Bodanese-Zanettini, Maria Helena; Margis-Pinheiro, Márcia

    2016-01-01

    Abstract Drought limits wheat production in the Brazilian Cerrado biome. In order to search for candidate genes associated to the response to water deficit, we analyzed the gene expression profiles, under severe drought stress, in roots and leaves of the cultivar MGS1 Aliança, a well-adapted cultivar to the Cerrado. A set of 4,422 candidate genes was found in roots and leaves. The number of down-regulated transcripts in roots was higher than the up-regulated transcripts, while the opposite occurred in leaves. The number of common transcripts between the two tissues was 1,249, while 2,124 were specific to roots and 1,049 specific to leaves. Quantitative RT-PCR analysis revealed a 0.78 correlation with the expression data. The candidate genes were distributed across all chromosomes and component genomes, but a greater number was mapped on the B genome, particularly on chromosomes 3B, 5B and 2B. When considering both tissues, 116 different pathways were induced. One common pathway, among the top three activated pathways in both tissues, was starch and sucrose metabolism. These results pave the way for future marker development and selection of important genes and are useful for understanding the metabolic pathways involved in wheat drought response. PMID:27768155

  20. Identification of Genes in the Phenylalanine Metabolic Pathway by Ectopic Expression of a MYB Transcription Factor in Tomato Fruit[W

    PubMed Central

    Dal Cin, Valeriano; Tieman, Denise M.; Tohge, Takayuki; McQuinn, Ryan; de Vos, Ric C.H.; Osorio, Sonia; Schmelz, Eric A.; Taylor, Mark G.; Smits-Kroon, Miriam T.; Schuurink, Robert C.; Haring, Michel A.; Giovannoni, James; Fernie, Alisdair R.; Klee, Harry J.

    2011-01-01

    Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription factor, Petunia hybrida ODORANT1, to alter Phe and phenylpropanoid metabolism in tomato (Solanum lycopersicum) fruits. Despite the importance of Phe and phenylpropanoids to plant and human health, the pathway for Phe synthesis has not been unambiguously determined. Microarray analysis of ripening fruits from transgenic and control plants permitted identification of a suite of coregulated genes involved in synthesis and further metabolism of Phe. The pattern of coregulated gene expression facilitated discovery of the tomato gene encoding prephenate aminotransferase, which converts prephenate to arogenate. The expression and biochemical data establish an arogenate pathway for Phe synthesis in tomato fruits. Metabolic profiling and 13C flux analysis of ripe fruits further revealed large increases in the levels of a specific subset of phenylpropanoid compounds. However, while increased levels of these human nutrition-related phenylpropanoids may be desirable, there were no increases in levels of Phe-derived flavor volatiles. PMID:21750236

  1. Glucose represses the lactose-galactose regulon in Kluyveromyces lactis through a SNF1 and MIG1- dependent pathway that modulates galactokinase (GAL1) gene expression.

    PubMed Central

    Dong, J; Dickson, R C

    1997-01-01

    Expression of the lactose-galactose regulon in Kluyveromyces lactis is induced by lactose or galactose and repressed by glucose. Some components of the induction and glucose repression pathways have been identified but many remain unknown. We examined the role of the SNF1 (KlSNF1) and MIG1 (KlMIG1) genes in the induction and repression pathways. Our data show that full induction of the regulon requires SNF1; partial induction occurs in a Klsnf1 -deleted strain, indicating that a KlSNF1 -independent pathway(s) also regulates induction. MIG1 is required for full glucose repression of the regulon, but there must be a KlMIG1 -independent repression pathway also. The KlMig1 protein appears to act downstream of the KlSnf1 protein in the glucose repression pathway. Most importantly, the KlSnf1-KIMig repression pathway operates by modulating KlGAL1 expression. Regulating KlGAL1 expression in this manner enables the cell to switch the regulon off in the presence of glucose. Overall, our data show that, while the Snf1 and Mig1 proteins play similar roles in regulating the galactose regulon in Saccharomyces cerevisiae and K.lactis , the way in which these proteins are integrated into the regulatory circuits are unique to each regulon, as is the degree to which each regulon is controlled by the two proteins. PMID:9278487

  2. JAK2V617F/STAT5 signaling pathway promotes cell proliferation through activation of Pituitary Tumor Transforming Gene 1 expression

    SciTech Connect

    Shen, Xu-Liang; Wei, Wu; Xu, Hong-Liang; Zhang, Mei-Xiang; Qin, Xiao-Qi; Shi, Wen-Zhi; Jiang, Zhi-Ping; Chen, Yi-Jian; Chen, Fang-Ping

    2010-08-06

    Research highlights: {yields} AG490, a member of tyrosine kinase inhibitors, could inhibit the JAK2V617F/STAT5 signaling pathway in HEL cell which harbor JAK2V617F mutation. {yields} Inhibition of the JAK2V617F/STAT5 signaling pathway inhibited the growth of HEL cells. {yields} JAK2V617F mutation promotes cell proliferation through activation of PTTG1 expression. {yields} JAK2V617F/STAT5 signaling pathway regulate PTTG1 expression at transcriptional level. -- Abstract: Gain-of-function mutations of JAK2 play crucial roles in the development of myeloproliferative neoplasms; however, the underlying downstream events of this activated signaling pathway are not fully understood. Our experiment was designed and performed to address one aspect of this issue. Here we report that AG490, a potent JAK2V617F kinase inhibitor, effectively inhibits the proliferation of HEL cells. Interestingly, AG490 also decreases the expression of PTTG1, a possible target gene of the aberrant signaling pathway, in a dose- and time-dependent manner. Furthermore, the promoter activity analyses reveal that the inhibition of the PTTG1 expression is affected at the transcriptional level. Thus, our results suggest that the JAK2V617F/STAT5 signaling pathway promotes cell proliferation through the transcriptional activation of PTTG1.

  3. Expression of the Arginine Deiminase Pathway Genes in Lactobacillus sakei Is Strain Dependent and Is Affected by the Environmental pH

    PubMed Central

    Rimaux, T.; Rivière, A.; Illeghems, K.; Weckx, S.; De Vuyst, L.

    2012-01-01

    The adaptation of Lactobacillus sakei to a meat environment is reflected in its metabolic potential. For instance, the ability to utilize arginine through the arginine deiminase (ADI) pathway, resulting in additional ATP, represents a competitive benefit. In L. sakei CTC 494, the arc operon (arcABCTDR) shows the same gene order and organization as that in L. sakei 23K, the genome sequence of which is known. However, differences in relative gene expression were found, and these seemed to be optimal in different growth phases, namely, the highest relative gene expression level was in the end exponential growth phase in the case of L. sakei CTC 494 and in the mid-exponential growth phase of L. sakei 23K. Also, the environmental pH influenced the relative expression level of the arc operon, as shown for L. sakei CTC 494, with the highest relative expression level occurring at the optimal pH for growth (pH 6.0). Deviations from this optimal pH (pH 5.0 and pH 7.0) resulted in an overall decline of the relative expression level of all genes of the arc operon. Furthermore, a differential relative expression of the individual genes of the arc operon was found, with the highest relative gene expression occurring for the first two genes of the arc operon (arcA and arcB). Finally, it was shown that some L. sakei strains were able to convert agmatine into putrescine, suggesting an operational agmatine deiminase pathway in these strains, a metabolic trait that is undesirable in meat fermentations. This study shows that this metabolic trait is most probably encoded by a previously erroneously annotated second putative arc operon. PMID:22544250

  4. Expression of the arginine deiminase pathway genes in Lactobacillus sakei is strain dependent and is affected by the environmental pH.

    PubMed

    Rimaux, T; Rivière, A; Illeghems, K; Weckx, S; De Vuyst, L; Leroy, F

    2012-07-01

    The adaptation of Lactobacillus sakei to a meat environment is reflected in its metabolic potential. For instance, the ability to utilize arginine through the arginine deiminase (ADI) pathway, resulting in additional ATP, represents a competitive benefit. In L. sakei CTC 494, the arc operon (arcABCTDR) shows the same gene order and organization as that in L. sakei 23K, the genome sequence of which is known. However, differences in relative gene expression were found, and these seemed to be optimal in different growth phases, namely, the highest relative gene expression level was in the end exponential growth phase in the case of L. sakei CTC 494 and in the mid-exponential growth phase of L. sakei 23K. Also, the environmental pH influenced the relative expression level of the arc operon, as shown for L. sakei CTC 494, with the highest relative expression level occurring at the optimal pH for growth (pH 6.0). Deviations from this optimal pH (pH 5.0 and pH 7.0) resulted in an overall decline of the relative expression level of all genes of the arc operon. Furthermore, a differential relative expression of the individual genes of the arc operon was found, with the highest relative gene expression occurring for the first two genes of the arc operon (arcA and arcB). Finally, it was shown that some L. sakei strains were able to convert agmatine into putrescine, suggesting an operational agmatine deiminase pathway in these strains, a metabolic trait that is undesirable in meat fermentations. This study shows that this metabolic trait is most probably encoded by a previously erroneously annotated second putative arc operon.

  5. Network analysis of gene expression in mice provides new evidence of involvement of the mTOR pathway in antipsychotic-induced extrapyramidal symptoms.

    PubMed

    Mas, S; Gassó, P; Boloc, D; Rodriguez, N; Mármol, F; Sánchez, J; Bernardo, M; Lafuente, A

    2016-06-01

    To identify potential candidate genes for future pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we used gene expression arrays to analyze changes induced by risperidone in mice strains with different susceptibility to EPS. We proposed a systems biology analytical approach that combined the identification of gene co-expression modules related to AP treatment, the construction of protein-protein interaction networks with genes included in identified modules and finally, gene set enrichment analysis of constructed networks. In response to risperidone, mice strain with susceptibility to develop EPS showed downregulation of genes involved in the mammalian target of rapamycin (mTOR) pathway and biological processes related to this pathway. Moreover, we also showed differences in the phosphorylation pattern of the ribosomal protein S6 (rpS6), which is a major downstream effector of mTOR. The present study provides new evidence of the involvement of the mTOR pathway in AP-induced EPS and offers new and valuable markers for pharmacogenetic studies.

  6. The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays a collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos.

    PubMed Central

    Papalopulu, N; Lovell-Badge, R; Krumlauf, R

    1991-01-01

    In this paper we describe experiments that detail the response of murine Hox-2 genes to cellular differentiation and retinoic acid in cell culture. Hox-2 genes are transiently activated in differentiating ES cells even in the absence of retinoic acid (RA), indicating that their induction is a normal aspect of differentiation. Furthermore, in the continuous presence of RA F9 teratocarcinoma cells show a differential ability to maintain Hox-2 expression depending upon whether the cells follow a visceral or parietal endoderm pathway. These data suggest a clear dependence of Hox-2 expression on the degree and type of differentiation in different cells. However, RA also has dramatic differentiation independent effects on Hox-2 regulation. In ES cells the levels of Hox expression are greatly enhanced by exposure to RA, and in F9 cells of the visceral or parietal phenotype the continuous presence of RA is required to maintain these high levels. Nuclear run-on experiments illustrate that Hox-2 genes are active in F9 stem cells and that a large portion of the RA induction is mediated by post-transcriptional mechanisms. Therefore RA exerts its effects on Hox-2 expression by upregulating or modulating genes which are already active, rather than by turning-on silent genes. All nine Hox-2 genes are induced in F9 cells by RA and there is a direct correlation (collinearity) between gene order and the relative dose response of each gene to RA. In Xenopus embryos treated with RA, homologues of the Hox-2 genes also displayed a temporal and dose response collinearity with gene organisation. Together these findings suggest that the collinear response to RA is highly conserved in vertebrates and combined with the ability of RA to modify expression during cellular differentiation could be an important feature of the Hox-2 cluster itself used to generate the spatially-restricted patterns of gene expression in embryogenesis. Images PMID:1682879

  7. Temporal gene expression profile of human precursor B leukemia cells induced by adhesion receptor: identification of pathways regulating B-cell survival.

    PubMed

    Astier, Anne Laurence; Xu, Ronghui; Svoboda, Marek; Hinds, Esther; Munoz, Olivier; de Beaumont, Rosalie; Crean, Colin Daniel; Gabig, Theodore; Freedman, Arnold Stephen

    2003-02-01

    The physical interactions between B cells and stromal cells from the lymphoid tissue microenvironment are critical to the survival of normal and malignant B cells. They are principally mediated by integrins expressed on B cells and counterreceptors on stromal cells. Specifically, alpha4beta1 integrin engagement rescues B cells from physiological or drug-induced apoptosis. Therefore, in order to understand the mechanisms by which integrins prevent apoptosis in leukemia B cells, we compared the temporal gene expression profiles induced by beta1-integrin ligation with fibronectin (Fn) or adhesion by poly-L-Lysine in serum-starved precursor B leukemia cells. Among the 38 selected differentially expressed genes, 6 genes involved in adhesion (VAV2, EPB41L1, CORO1A), proliferation (FRAP1, CCT4), and intercellular communication (GJB3) were validated by real-time quantitative polymerase chain reaction (RT-Q-PCR). Gene expression modulation could also be validated at the protein level for 5 other genes. We show that integrin stimulation up-regulated FBI-1 expression but inhibited CD79a, Requiem, c-Fos, and caspase 7 induction when the cells underwent apoptosis. We further demonstrate that Fn stimulation also inhibits caspase 3 activation but increases XIAP and survivin expression. Moreover, integrin stimulation also prevents caspase activation induced by doxorubicin. Therefore, we identified genes modulated by adhesion of human precursor B leukemia cells that regulate proliferation and apoptosis, highlighting new pathways that might provide insights into future therapy aiming at targeting apoptosis of leukemia cells.

  8. De Novo Transcriptome and Expression Profile Analysis to Reveal Genes and Pathways Potentially Involved in Cantharidin Biosynthesis in the Blister Beetle Mylabris cichorii

    PubMed Central

    Huang, Yi; Wang, Zhongkang; Zha, Shenfang; Wang, Yu; Jiang, Wei; Liao, Yufeng; Song, Zhangyong; Qi, Zhaoran; Yin, Youping

    2016-01-01

    The dried body of Mylabris cichorii is well-known Chinese traditional medicine. The sesquiterpenoid cantharidin, which is secreted mostly by adult male beetles, has recently been used as an anti-cancer drug. However, little is known about the mechanisms of cantharidin biosynthesis. Furthermore, there is currently no genomic or transcriptomic information for M. cichorii. In this study, we performed de novo assembly transcriptome of M. cichorii using the Illumina Hiseq2000. A single run produced 9.19 Gb of clean nucleotides comprising 29,247 sequences, including 23,739 annotated sequences (about 81%). We also constructed two expression profile libraries (20–25 day-old adult males and 20–25 day-old adult females) and discovered 2,465 significantly differentially-expressed genes. Putative genes and pathways involved in the biosynthesis of cantharidin were then characterized. We also found that cantharidin biosynthesis in M. cichorii might only occur via the mevalonate (MVA) pathway, not via the methylerythritol 4-phosphate/deoxyxylulose 5-phosphate (MEP/DOXP) pathway or a mixture of these. Besides, we considered that cantharidin biosynthesis might be related to the juvenile hormone (JH) biosynthesis or degradation. The results of transcriptome and expression profiling analysis provide a comprehensive sequence resource for M. cichorii that could facilitate the in-depth study of candidate genes and pathways involved in cantharidin biosynthesis, and may thus help to improve our understanding of the mechanisms of cantharidin biosynthesis in blister beetles. PMID:26752526

  9. Functional analysis of the relationship between intestinal microbiota and the expression of hepatic genes and pathways during the course of liver regeneration

    PubMed Central

    Liu, Hui-Xin; Rocha, Clarissa Santos; Dandekar, Satya; Wan, Yu-Jui Yvonne

    2015-01-01

    Background & Aims The pathways regulating liver regeneration have been extensively studied within the liver. However, the signaling contribution derived from the gut microbiota to liver regeneration is poorly understood. Methods Microbiota and expression of hepatic genes in regenerating livers obtained from mice 0 hour to 9 days post 2/3 partial hepatectomy (PHx) were temporally profiled to establish their interactive relationships. Results PHx led to rapid changes in gut microbiota that was reflected in increased abundance of Bacteroidetes S24-7 and Rikenellaceae and decreased abundance of Firmicutes Clostridiales, Lachnospiraceae, and Ruminococcaceae. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to infer biological functional changes of the shifted microbiota. RNA-sequencing data revealed 6,125 genes with more than 2 folds difference in their expression levels during regeneration. By analyzing their expression pattern, six uniquely expressed patterns were observed. In addition, there were significant correlations between hepatic gene expression profiles and shifted bacterial populations during regeneration. Moreover, hepatic metabolism and immune function were closely associated with the abundance of Ruminococcacea, Lachnospiraceae, and S24-7. Bile acid (BA) profile was analyzed because bacterial enzymes produce BAs that significantly impact hepatocyte proliferation. The data revealed that specific bacteria were closely associated with the concentration of certain BAs and expression of hepatic genes. Conclusions The presented data established, for the first time, an intimate relationship between intestinal microbiota and the expression of hepatic genes in regenerating livers. PMID:26453969

  10. Mitochondria-focused gene expression profile reveals common pathways and CPT1B dysregulation in both rodent stress model and human subjects with PTSD.

    PubMed

    Zhang, L; Li, H; Hu, X; Benedek, D M; Fullerton, C S; Forsten, R D; Naifeh, J A; Li, X; Wu, H; Benevides, K N; Le, T; Smerin, S; Russell, D W; Ursano, R J

    2015-06-16

    Posttraumatic stress disorder (PTSD), a trauma-related mental disorder, is associated with mitochondrial dysfunction in the brain. However, the biologic approach to identifying the mitochondria-focused genes underlying the pathogenesis of PTSD is still in its infancy. Previous research, using a human mitochondria-focused cDNA microarray (hMitChip3) found dysregulated mitochondria-focused genes present in postmortem brains of PTSD patients, indicating that those genes might be PTSD-related biomarkers. To further test this idea, this research examines profiles of mitochondria-focused gene expression in the stressed-rodent model (inescapable tail shock in rats), which shows characteristics of PTSD-like behaviors and also in the blood of subjects with PTSD. This study found that 34 mitochondria-focused genes being upregulated in stressed-rat amygdala. Ten common pathways, including fatty acid metabolism and peroxisome proliferator-activated receptors (PPAR) pathways were dysregulated in the amygdala of the stressed rats. Carnitine palmitoyltransferase 1B (CPT1B), an enzyme in the fatty acid metabolism and PPAR pathways, was significantly over-expressed in the amygdala (P < 0.007) and in the blood (P < 0.01) of stressed rats compared with non-stressed controls. In human subjects with (n = 28) or without PTSD (n = 31), significant over-expression of CPT1B in PTSD was also observed in the two common dysregulated pathways: fatty acid metabolism (P = 0.0027, false discovery rate (FDR) = 0.043) and PPAR (P = 0.006, FDR = 0.08). Quantitative real-time polymerase chain reaction validated the microarray findings and the CPT1B result. These findings indicate that blood can be used as a specimen in the search for PTSD biomarkers in fatty acid metabolism and PPAR pathways, and, in addition, that CPT1B may contribute to the pathology of PTSD.

  11. The Effects of Omega-3 Fatty Acids Supplementation on Gene Expression Involved in the Insulin and Lipid Signaling Pathway in Patients with Polycystic Ovary Syndrome.

    PubMed

    Nasri, Khadijeh; Hantoushzadeh, Sedigheh; Aghadavod, Esmat; Taghizadeh, Mohsen; Asemi, Zatollah

    2017-02-24

    Limited data are available evaluating the effects of omega-3 fatty acids supplementation on gene expression involved in the insulin and lipid-signaling pathway in women with polycystic ovary syndrome (PCOS). This study was conducted to evaluate the effects of omega-3 fatty acids supplementation on gene expression involved in the insulin and lipid signaling pathway in women with PCOS. This randomized double blind, placebo-controlled trial was done among 60 women aged 18-40 years old and diagnosed with PCOS according to the Rotterdam criteria. Participants were randomly assigned into 2 groups to receive either 1 000 mg omega-3 fatty acids from flaxseed oil containing 400 mg α-linolenic acid (n=30) or placebo (n=30) twice a day for 12 weeks. Gene expressions involved in the insulin and lipid-signaling pathway were quantified in blood samples of PCOS women with RT-PCR method. Quantitative results of RT-PCR demonstrated that compared with the placebo, omega-3 fatty acids supplementation upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) mRNA (p=0.005) in peripheral blood mononuclear cells of women with PCOS. In addition, compared to the placebo, omega-3 fatty acids supplementation downregulated expressed levels of oxidized low-density lipoprotein receptor (LDLR) mRNA (p=0.002) in peripheral blood mononuclear cells of women with PCOS. We did not observe any significant effect of omega-3 fatty acids supplementation on expressed levels of glucose transporter 1 (GLUT-1) and lipoprotein(a) [Lp(a)] genes in peripheral blood mononuclear cells. Overall, omega-3 fatty acids supplementation for 12 weeks in PCOS women significantly improved gene expression of PPAR-γ and LDLR.

  12. Expression profile of IGF-I-calcineurin-NFATc3-dependent pathway genes in skeletal muscle during early development between duck breeds differing in growth rates.

    PubMed

    Shu, Jingting; Li, Huifang; Shan, Yanju; Xu, Wenjuan; Chen, Wenfeng; Song, Chi; Song, Weitao

    2015-06-01

    The insulin-like growth factor I (IGF-I)-calcineurin (CaN)-NFATc signaling pathways have been implicated in the regulation of myocyte hypertrophy and fiber-type specificity. In the present study, the expression of the CnAα, NFATc3, and IGF-I genes was quantified by RT-PCR for the first time in the breast muscle (BM) and leg muscle (LM) on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days posthatching (PH), in Gaoyou and Jinding ducks, which differ in their muscle growth rates. Consistent expression patterns of CnAα, NFATc3, and IGF-I were found in the same anatomical location at different development stages in both duck breeds, showing significant differences in an age-specific fashion. However, the three genes were differentially expressed in the two different anatomical locations (BM and LM). CnAα, NFATc3, and IGF-I messenger RNA (mRNA) could be detected as early as embryonic day 13 (ED13), and the highest level appeared at this stage in both BM and LM. Significant positive relationships were observed in the expression of the studied genes in the BM and LM of both duck breeds. Also, the expression of these three genes showed a positive relationship with the percentage of type IIb fibers and a negative relationship with the percentage of type I fibers and type IIa fibers. Our data indicate differential expression and coordinated developmental regulation of the selected genes involved in the IGF-I-calcineurin-NFATc3 pathway in duck skeletal muscle during embryonic and early PH growth and development; these data also indicate that this signaling pathway might play a role in the regulation of myofiber type transition.

  13. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways.

    PubMed

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.

  14. Over-expression of DXS gene enhances terpenoidal secondary metabolite accumulation in rose-scented geranium and Withania somnifera: active involvement of plastid isoprenogenic pathway in their biosynthesis.

    PubMed

    Jadaun, Jyoti Singh; Sangwan, Neelam S; Narnoliya, Lokesh K; Singh, Neha; Bansal, Shilpi; Mishra, Bhawana; Sangwan, Rajender Singh

    2017-04-01

    Rose-scented geranium (Pelargonium spp.) is one of the most important aromatic plants and is well known for its diverse perfumery uses. Its economic importance is due to presence of fragrance rich essential oil in its foliage. The essential oil is a mixture of various volatile phytochemicals which are mainly terpenes (isoprenoids) in nature. In this study, on the geranium foliage genes related to isoprenoid biosynthesis (DXS, DXR and HMGR) were isolated, cloned and confirmed by sequencing. Further, the first gene of 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, 1-deoxy-d-xylulose-5-phosphate synthase (GrDXS), was made full length by using rapid amplification of cDNA ends strategy. GrDXS contained a 2157 bp open reading frame that encoded a polypeptide of 792 amino acids having calculated molecular weight 77.5 kDa. This study is first report on heterologous expression and kinetic characterization of any gene from this economically important plant. Expression analysis of these genes was performed in different tissues as well as at different developmental stages of leaves. In response to external elicitors, such as methyl jasmonate, salicylic acid, light and wounding, all the three genes showed differential expression profiles. Further GrDXS was over expressed in the homologous (rose-scented geranium) as well as in heterologous (Withania somnifera) plant systems through genetic transformation approach. The over-expression of GrDXS led to enhanced secondary metabolites production (i.e. essential oil in rose-scented geranium and withanolides in W. somnifera). To the best of our knowledge, this is the first report showing the expression profile of the three genes related to isoprenoid biosynthesis pathways operated in rose-scented geranium as well as functional characterization study of any gene from rose-scented geranium through a genetic transformation system.

  15. Regulating ehrlich and demethiolation pathways for alcohols production by the expression of ubiquitin-protein ligase gene HUWE1

    PubMed Central

    Zhang, Quan; Jia, Kai-Zhi; Xia, Shi-Tao; Xu, Yang-Hua; Liu, Rui-Sang; Li, Hong-Mei; Tang, Ya-Jie

    2016-01-01

    Ehrlich and demethiolation pathways as two competing branches converted amino acid into alcohols. Controlling both pathways offers considerable potential for industrial applications including alcohols overproduction, flavor-quality control and developing new flavors. While how to regulate ehrlich and demethiolation pathways is still not applicable. Taking the conversion of methionine into methionol and methanethiol for example, we constructed two suppression subtractive cDNA libraries of Clonostachys rosea by using suppression subtractive hybridization (SSH) technology for screening regulators controlling the conversion. E3 ubiquitin-protein ligase gene HUWE1 screened from forward SSH library was validated to be related with the biosynthesis of end products. Overexpressing HUWE1 in C. rosea and S. cerevisiae significantly increased the biosynthesis of methanethiol and its derivatives in demethiolation pathway, while suppressed the biosynthesis of methional and methionol in ehrlich pathway. These results attained the directional regulation of both pathways by overexpressing HUWE1. Thus, HUWE1 has potential to be a key target for controlling and enhancing alcohols production by metabolic engineering. PMID:26860895

  16. Expression of key glycosphingolipid biosynthesis-globo series pathway genes in Escherichia coli F18-resistant and Escherichia coli F18-sensitive piglets.

    PubMed

    Dong, W H; Dai, C H; Sun, L; Wang, J; Sun, S Y; Zhu, G Q; Wu, S L; Bao, W B

    2016-08-01

    A pioneering study showed that the glycosphingolipid biosynthesis-globo series pathway genes (FUT1, FUT2, ST3GAL1, HEXA, HEXB, B3GALNT1 and NAGA) may play an important regulatory role in resistance to Escherichia coli F18 in piglets. Therefore, we analysed differential gene expression in 11 tissues of two populations of piglets sensitive and resistant respectively to E. coli F18 and the correlation of differential gene expression in duodenal and jejunal tissues. We found that the mRNA expression of the seven genes was relatively high in spleen, liver, lung, kidney, stomach and intestinal tract; the levels in thymus and lymph nodes were lower, with the lowest levels in heart and muscle. FUT2 gene expression in the duodenum and jejunum of the resistant population was significantly lower than that in the sensitive group (P < 0.01). ST3GAL1 gene expression was also significantly lower in the duodenum of the resistant population than in the sensitive group (P < 0.05). No significant differences were observed among the remaining genes. The expression level of FUT1 was extremely significantly positively correlated with FUT2 and B3GALNT1 expression (P < 0.01) and also had a significant positive correlation with NAGA expression (P < 0.05). The expression level of FUT2 had extremely significant positive correlations with FUT1, ST3GAL1 and B3GALNT1 (P < 0.01). These results suggest that FUT2 plays an important role in E. coli F18 resistance in piglets. FUT1, ST3GAL1, B3GALNT1 and NAGA may also participate in the mechanism of resistance to E. coli F18.

  17. Ectopic Expression of a Basic Helix-Loop-Helix Gene Transactivates Parallel Pathways of Proanthocyanidin Biosynthesis. Structure, Expression Analysis, and Genetic Control of Leucoanthocyanidin 4-Reductase and Anthocyanidin Reductase Genes in Lotus corniculatus1[W

    PubMed Central

    Paolocci, Francesco; Robbins, Mark P.; Madeo, Laura; Arcioni, Sergio; Martens, Stefan; Damiani, Francesco

    2007-01-01

    Proanthocyanidins (PAs) are plant secondary metabolites and are composed primarily of catechin and epicatechin units in higher plant species. Due to the ability of PAs to bind reversibly with plant proteins to improve digestion and reduce bloat, engineering this pathway in leaves is a major goal for forage breeders. Here, we report the cloning and expression analysis of anthocyanidin reductase (ANR) and leucoanthocyanidin 4-reductase (LAR), two genes encoding enzymes committed to epicatechin and catechin biosynthesis, respectively, in Lotus corniculatus. We show the presence of two LAR gene families (LAR1 and LAR2) and that the steady-state levels of ANR and LAR1 genes correlate with the levels of PAs in leaves of wild-type and transgenic plants. Interestingly, ANR and LAR1, but not LAR2, genes produced active proteins following heterologous expression in Escherichia coli and are affected by the same basic helix-loop-helix transcription factor that promotes PA accumulation in cells of palisade and spongy mesophyll. This study provides direct evidence that the same subclass of transcription factors can mediate the expression of the structural genes of both branches of PA biosynthesis. PMID:17098849

  18. Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus.

    PubMed

    Paolocci, Francesco; Robbins, Mark P; Madeo, Laura; Arcioni, Sergio; Martens, Stefan; Damiani, Francesco

    2007-01-01

    Proanthocyanidins (PAs) are plant secondary metabolites and are composed primarily of catechin and epicatechin units in higher plant species. Due to the ability of PAs to bind reversibly with plant proteins to improve digestion and reduce bloat, engineering this pathway in leaves is a major goal for forage breeders. Here, we report the cloning and expression analysis of anthocyanidin reductase (ANR) and leucoanthocyanidin 4-reductase (LAR), two genes encoding enzymes committed to epicatechin and catechin biosynthesis, respectively, in Lotus corniculatus. We show the presence of two LAR gene families (LAR1 and LAR2) and that the steady-state levels of ANR and LAR1 genes correlate with the levels of PAs in leaves of wild-type and transgenic plants. Interestingly, ANR and LAR1, but not LAR2, genes produced active proteins following heterologous expression in Escherichia coli and are affected by the same basic helix-loop-helix transcription factor that promotes PA accumulation in cells of palisade and spongy mesophyll. This study provides direct evidence that the same subclass of transcription factors can mediate the expression of the structural genes of both branches of PA biosynthesis.

  19. Bisphenol A suppresses glucocorticoid target gene (ENaCγ) expression via a novel ERβ/NF-κB/GR signalling pathway in lung epithelial cells.

    PubMed

    Hijazi, Ayten; Guan, Haiyan; Yang, Kaiping

    2016-08-13

    We previously demonstrated that prenatal exposure to Bisphenol A (BPA) disrupts fetal lung maturation likely through the glucocorticoid signalling pathway, but the precise molecular mechanisms remain obscure. Given that BPA diminished the expression of epithelial sodium channel-γ (ENaCγ), a well-known glucocorticoid receptor (GR) target gene, in fetal lungs, we used this GR target gene to delineate the molecular pathway through which BPA exerts its effects on lung cells. The A549 lung epithelial cell line was used as an in vitro model system. As a first step, we validated our in vitro cell model by demonstrating a robust concentration-dependent suppression of ENaCγ expression following BPA exposure. We also showed that both dexamethasone and siRNA-mediated knockdown of GR expression blocked/abrogated the inhibitory effects of BPA on ENaCγ expression, suggesting that BPA repressed ENaCγ expression via inhibition of GR activity. Given the well-known antagonistic interactions between the pro-inflammatory transcriptional factor NF-κB and GR, we then showed that BPA inhibited GR activity through the activation of NF-κB. Lastly, since BPA is known to function as a pro-inflammatory factor via the estrogen receptor β (ERβ), we provided evidence that BPA signals through ERβ to activate the NF-κB signalling pathway. Taken together, these findings demonstrate that BPA acts on ERβ to activate the NF-κB signalling pathway, which in turn leads to diminished GR activity and consequent repression of ENaCγ expression in lung epithelial cells. Thus, our present study reveals a novel BPA signalling pathway that involves ERβ, NF-κB and GR.

  20. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages.

    PubMed

    Gautier, Emmanuel L; Shay, Tal; Miller, Jennifer; Greter, Melanie; Jakubzick, Claudia; Ivanov, Stoyan; Helft, Julie; Chow, Andrew; Elpek, Kutlu G; Gordonov, Simon; Mazloom, Amin R; Ma'ayan, Avi; Chua, Wei-Jen; Hansen, Ted H; Turley, Shannon J; Merad, Miriam; Randolph, Gwendalyn J

    2012-11-01

    We assessed gene expression in tissue macrophages from various mouse organs. The diversity in gene expression among different populations of macrophages was considerable. Only a few hundred mRNA transcripts were selectively expressed by macrophages rather than dendritic cells, and many of these were not present in all macrophages. Nonetheless, well-characterized surface markers, including MerTK and FcγR1 (CD64), along with a cluster of previously unidentified transcripts, were distinctly and universally associated with mature tissue macrophages. TCEF3, C/EBP-α, Bach1 and CREG-1 were among the transcriptional regulators predicted to regulate these core macrophage-associated genes. The mRNA encoding other transcription factors, such as Gata6, was associated with single macrophage populations. We further identified how these transcripts and the proteins they encode facilitated distinguishing macrophages from dendritic cells.

  1. Global gene expression analysis reveals pathway differences between teratogenic and non-teratogenic exposure concentrations of bisphenol A and 17β-estradiol in embryonic zebrafish

    PubMed Central

    Saili, Katerine S.; Tilton, Susan C.; Waters, Katrina M.; Tanguay, Robert L.

    2013-01-01

    Transient developmental exposure to 0.1 μM bisphenol A (BPA) results in larval zebrafish hyperactivity and learning impairments in the adult, while exposure to 80 μM BPA results in teratogenic responses, including craniofacial abnormalities and edema. The mode of action underlying these effects is unclear. We used global gene expression analysis to identify candidate genes and signaling pathways that mediate BPA’s developmental toxicity in zebrafish. Exposure concentrations were selected and anchored to the positive control, 17β-estradiol (E2), based on previously determined behavioral or teratogenic phenotypes. Functional analysis of differentially expressed genes revealed distinct expression profiles at 24 hours post fertilization for 0.1 versus 80 μM BPA and 0.1 versus 15 μM E2 exposure, identification of prothrombin activation as a top canonical pathway impacted by both 0.1 μM BPA and 0.1 μM E2 exposure, and suppressed expression of several genes involved in nervous system development and function following 0.1 μM BPAexposure. PMID:23557687

  2. BDE-47 causes developmental retardation with down-regulated expression profiles of ecdysteroid signaling pathway-involved nuclear receptor (NR) genes in the copepod Tigriopus japonicus.

    PubMed

    Hwang, Dae-Sik; Han, Jeonghoon; Won, Eun-Ji; Kim, Duck-Hyun; Jeong, Chang-Bum; Hwang, Un-Ki; Zhou, Bingsheng; Choe, Joonho; Lee, Jae-Seong

    2016-08-01

    2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is a persistent organic pollutant (POP) in marine environments. Despite its adverse effects (e.g. developmental retardation) in ecdysozoa, the effects of BDE-47 on transcription of ecdysteroid signaling pathway-involved-nuclear receptor (NR) genes and metamorphosis-related genes have not been examined in copepods. To examine the deleterious effect of BDE-47 on copepod molting and metamorphosis, BDE-47 was exposed to the harpacticoid copepod Tigriopus japonicus, followed by monitoring developmental retardation and transcriptional alteration of NR genes. The developmental rate was significantly inhibited (P<0.05) in response to BDE-47 and the agricultural insecticide gamma-hexachlorocyclohexane. Conversely, the ecdysteroid agonist ponasterone A (PoA) led to decreased molting and metamorphosis time (P<0.05) from the nauplius stage to the adult stage. In particular, expression profiles of all NR genes were the highest at naupliar stages 5-6 except for SVP, FTZ-F1, and HR96 genes. Nuclear receptor USP, HR96, and FTZ-F1 genes also showed significant sex differences (P<0.05) in gene expression levels over different developmental stages, indicating that these genes may be involved in vitellogenesis. NR gene expression patterns showed significant decreases (P<0.05) in response to BDE-47 exposure, implying that molting and metamorphosis retardation is likely associated with NR gene expression. In summary, BDE-47 leads to molting and metamorphosis retardation and suppresses transcription of NR genes. This information will be helpful in understanding the molting and metamorphosis delay mechanism in response to BDE-47 exposure.

  3. Heterogeneous gene expression changes in colorectal cancer cells share the WNT pathway in response to growth suppression by APHS-mediated COX-2 inhibition

    PubMed Central

    Humar, Bostjan; McNoe, Les; Dunbier, Anita; Heathcott, Rosemary; Braithwaite, Antony W; Reeve, Anthony E

    2008-01-01

    Cyclooxygenase-2 (COX-2), the prostaglandin (PG)-synthesizing enzyme overexpressed in colorectal cancer (CRC), has pleiotropic, cancer-promoting effects. COX-2 inhibitors (CIBs) interfere with many cancer-associated processes and show promising antineoplastic activity, however, a common mechanism of CIB action has not yet been established. We therefore investigated by microarray the global response towards the CIB APHS at a dose significantly inhibiting the growth of three COX-2-positive CRC but not of two COX-2-negative cell lines. None of the genes significantly (p = 0.005) affected by APHS were common to all three cell lines and 83% of the altered pathways were cell line-specific. Quantitative polymerase chain reaction (QPCR) on selected pathways confirmed cell line-specific expression alterations induced by APHS. A low stringency data analysis approach using BRB array tools coupled with QPCR, however, identified small expression changes shared by all COX-2-positive cell lines in genes related to the WNT pathway, the key driver of colonic carcinogenesis. Our data indicates a substantial cell line-specificity of APHS-induced expression alterations in CRC cells and helps to explain the divergent effects reported for CIBs. Further, the shared inhibition of the WNT pathway by APHS suggests one potential common mechanism behind the antineoplastic effects of COX-2 inhibition. PMID:19707365

  4. Expression pattern of fifteen genes of non-mevalonate (MEP) and mevalonate (MVA) pathways in different tissues of endangered medicinal herb Picrorhiza kurroa with respect to picrosides content.

    PubMed

    Pandit, Saurabh; Shitiz, Kirti; Sood, Hemant; Naik, Pradeep Kumar; Chauhan, Rajinder Singh

    2013-02-01

    Picrorhiza kurroa, has become an endangered medicinal herb due to excessive utilization, therefore it necessitates the understanding of biology and molecular basis of major chemical constituents i.e. Picroside-I (P-I) and Picroside-II (P-II). Estimation of P-I and P-II in different tissues of P. kurroa showed that shoots contain only P-I whereas P-II is present only in roots. Differential conditions with varying concentrations of P-I (0-27 μg/mg) and P-II (0-4 μg/mg) were selected. Four genes of MEP pathway; DXPS, ISPD, ISPE, MECPS and one gene of MVA pathway PMK showed elevated levels of transcripts in shoots (57-166 folds) and stolons (5-15 folds) with P-I contents 0-27 μg/mg and 2.9-19.7 μg/mg, respectively. Further HDS and DXPR genes of MEP pathway showed higher expression ~9-12 folds in roots having P-II (0-4 μg/mg). The expression of ISPH and ISPE was also high ~5 folds in roots accumulating P-II. GDPS was the only gene with high transcript level in roots (9 folds) and shoots (20 folds). Differential biosynthesis and accumulation of picrosides would assist in regulating quality of plant material for herbal drug formulations.

  5. Pathway Analysis using Gene-expression Profiles of HPV-positive and HPV-negative Oropharyngeal Cancer Patients in a Hispanic Population: Methodological Procedures

    PubMed Central

    Suárez, Erick; González, Lorena; Pérez-Mitchell, Carlos; Ortiz, Ana P.; Ramírez-Sola, Maricarmen; Acosta, Jaime; Bernabe-Dones, Raúl D.; González-Aquino, Carlos; Montes-Rodríguez, Ingrid; Cadilla, Carmen L.

    2016-01-01

    Objective The incidence of oral cavity and pharyngeal cancer in Puerto Rican men is higher than it is in the men of any other ethnic/racial group in the United States of America (US). The information regarding the effect of the human papilloma virus (HPV) in the gene-expression profile among patients with this cancer is limited in Hispanic community. We aim to describe the methodology for future studies to identify the molecular networks for determining overrepresented signaling and metabolic canonical pathways, based on the differential gene-expression profiles of HPV+ and HPV− samples from patients with oropharyngeal squamous cell carcinoma in Puerto Rico. Methods We analyzed the RNA expression of 5 tissue samples from subjects diagnosed with oropharyngeal squamous cell carcinoma, 2 HPV+ and 3 HPV−, using Affymetrix GeneChips. The relative difference between the average gene expressions of the HPV+ and HPV− samples was assessed, based on the fold change (log2-scale). Results Our analysis revealed 10 up regulated molecules (Mup1, LRP1, P14KA, ALYREF, and BHMT) and 5 down regulated ones (PSME4, KEAP1, ELK3, FAM186B, and PRELID1), at a cutoff of 1.5-fold change. Ingenuity Pathway Analysis showed the following biological functions to be affected in the HPV+ samples: cancer, hematological disease, and RNA post-transcriptional modification. QRT-PCR analysis confirmed only the differential regulation of ALYREF, KEAP1, and FAM186B genes. Conclusion The relevant methodological procedures described are sufficient to detect the most significant biological functions and pathways according to the HPV status in patients with oropharyngeal cancer in Puerto Rico. PMID:26932277

  6. Gene expression studies demonstrate that the K-ras/Erk MAP kinase signal transduction pathway and other novel pathways contribute to the pathogenesis of cumene-induced lung tumors.

    PubMed

    Wakamatsu, Nobuko; Collins, Jennifer B; Parker, Joel S; Tessema, Mathewos; Clayton, Natasha P; Ton, Thai-Vu T; Hong, Hue-Hua L; Belinsky, Steven; Devereux, Theodora R; Sills, Robert C; Lahousse, Stephanie A

    2008-07-01

    National Toxicology Program (NTP) inhalation studies demonstrated that cumene significantly increased the incidence of alveolar/bronchiolar adenomas and carcinomas in B6C3F1 mice. Cumene or isopropylbenzene is a component of crude oil used primarily in the production of phenol and acetone. The authors performed global gene expression analysis to distinguish patterns of gene regulation between cumene-induced tumors and normal lung tissue and to look for patterns based on the presence or absence of K-ras and p53 mutations in the tumors. Principal component analysis segregated the carcinomas into groups with and without K-ras mutations, but failed to separate the tumors based on p53 mutation status. Expression of genes associated with the Erk MAP kinase signaling pathway was significantly altered in carcinomas with K-ras mutations compared to tumors without K-ras mutations or normal lung. Gene expression analysis also suggested that cumene-induced carcinomas with K-ras mutations have greater malignant potential than those without mutations. In addition, significance analysis of function and expression (SAFE) demonstrated expression changes of genes regulated by histone modification in carcinomas with K-ras mutations. The gene expression analysis suggested the formation of alveolar/bronchiolar carcinomas in cumene-exposed mice typically involves mutation of K-ras, which results in increased Erk MAP kinase signaling and modification of histones.

  7. The Rb/E2F pathway and Ras activation regulate RecQ helicase gene expression.

    PubMed

    Liu, Yongqing; El-Naggar, Shahenda; Clem, Brian; Chesney, Jason; Dean, Douglas C

    2008-06-01

    Disruption of the Rb (retinoblastoma protein)/E2F cell-cycle pathway and Ras activation are two of the most frequent events in cancer, and both of these mutations place oncogenic stress on cells to increase DNA replication. In the present study, we demonstrate that these mutations have an additive effect on induction of members of the RecQ DNA helicase family. RecQ activity is important for genomic stability, initiation of DNA replication and telomere maintenance, and mutation of the BLM (Bloom's syndrome gene), WRN (Werner's syndrome gene) or RECQL4 (Rothmund-Thomson syndrome gene) family members leads to premature aging syndromes characterized by genetic instability and telomere loss. RecQ family members are frequently overexpressed in cancers, and overexpression of BLM has been shown to cause telomere elongation. Concomitant with induction of RecQ genes in response to Rb family mutation and Ras activation, we show an increase in the number of telomeric repeats. We suggest that this induction of RecQ genes in response to common oncogenic mutations may explain the up-regulation of the genes seen in cancers, and it may provide a means for transformed cells to respond to an increased demand for DNA replication.

  8. Differential Gene Expression in the Developing Lateral Geniculate Nucleus and Medial Geniculate Nucleus Reveals Novel Roles for Zic4 and Foxp2 in Visual and Auditory Pathway Development

    PubMed Central

    Horng, Sam; Kreiman, Gabriel; Ellsworth, Charlene; Page, Damon; Blank, Marissa; Millen, Kathleen; Sur, Mriganka

    2010-01-01

    Primary sensory nuclei of the thalamus process and relay parallel channels of sensory input into the cortex. The developmental processes by which these nuclei acquire distinct functional roles are not well understood. To identify novel groups of genes with a potential role in differentiating two adjacent sensory nuclei, we performed a microarray screen comparing perinatal gene expression in the principal auditory relay nucleus, the medial geniculate nucleus (MGN), and principal visual relay nucleus, the lateral geniculate nucleus (LGN). We discovered and confirmed groups of highly ranked, differentially expressed genes with qRT-PCR and in situ hybridization. A functional role for Zic4, a transcription factor highly enriched in the LGN, was investigated using Zic4-null mice, which were found to have changes in topographic patterning of retinogeniculate projections. Foxp2, a transcriptional repressor expressed strongly in the MGN, was found to be positively regulated by activity in the MGN. These findings identify roles for two differentially expressed genes, Zic4 and Foxp2, in visual and auditory pathway development. Finally, to test whether modality-specific patterns of gene expression are influenced by extrinsic patterns of input, we performed an additional microarray screen comparing the normal MGN to “rewired” MGN, in which normal auditory afferents are ablated and novel retinal inputs innervate the MGN. Data from this screen indicate that rewired MGN acquires some patterns of gene expression that are present in the developing LGN, including an upregulation of Zic4 expression, as well as novel patterns of expression which may represent unique processes of cross-modal plasticity. PMID:19864579

  9. Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome.

    PubMed

    Marti, Nesa; Galván, José A; Pandey, Amit V; Trippel, Mafalda; Tapia, Coya; Müller, Michel; Perren, Aurel; Flück, Christa E

    2017-02-05

    Recently, dihydrotestosterone biosynthesis through the backdoor pathway has been implicated for the human testis in addition to the classic pathway for testosterone (T) synthesis. In the human ovary, androgen precursors are crucial for estrogen synthesis and hyperandrogenism in pathologies such as the polycystic ovary syndrome is partially due to ovarian overproduction. However, a role for the backdoor pathway is only established for the testis and the adrenal, but not for the human ovary. To investigate whether the backdoor pathway exists in normal and PCOS ovaries, we performed specific gene and protein expression studies on ovarian tissues. We found aldo-keto reductases (AKR1C1-1C4), 5α-reductases (SRD5A1/2) and retinol dehydrogenase (RoDH) expressed in the human ovary, indicating that the ovary might produce dihydrotestosterone via the backdoor pathway. Immunohistochemical studies showed specific localization of these proteins to the theca cells. PCOS ovaries show enhanced expression, what may account for the hyperandrogenism.

  10. Gene expression factor analysis to differentiate pathways linked to fibromyalgia, chronic fatigue syndrome, and depression in a diverse patient sample

    PubMed Central

    Iacob, Eli; Light, Alan R.; Donaldson, Gary W.; Okifuji, Akiko; Hughen, Ronald W.; White, Andrea T.; Light, Kathleen C.

    2015-01-01

    Objective To determine if independent candidate genes can be grouped into meaningful biological factors and if these factors are associated with the diagnosis of chronic fatigue syndrome (CFS) and fibromyalgia (FMS) while controlling for co-morbid depression, sex, and age. Methods We included leukocyte mRNA gene expression from a total of 261 individuals including healthy controls (n=61), patients with FMS only (n=15), CFS only (n=33), co-morbid CFS and FMS (n=79), and medication-resistant (n=42) or medication-responsive (n=31) depression. We used Exploratory Factor Analysis (EFA) on 34 candidate genes to determine factor scores and regression analysis to examine if these factors were associated with specific diagnoses. Results EFA resulted in four independent factors with minimal overlap of genes between factors explaining 51% of the variance. We labeled these factors by function as: 1) Purinergic and cellular modulators; 2) Neuronal growth and immune function; 3) Nociception and stress mediators; 4) Energy and mitochondrial function. Regression analysis predicting these biological factors using FMS, CFS, depression severity, age, and sex revealed that greater expression in Factors 1 and 3 was positively associated with CFS and negatively associated with depression severity (QIDS score), but not associated with FMS. Conclusion Expression of candidate genes can be grouped into meaningful clusters, and CFS and depression are associated with the same 2 clusters but in opposite directions when controlling for co-morbid FMS. Given high co-morbid disease and interrelationships between biomarkers, EFA may help determine patient subgroups in this population based on gene expression. PMID:26097208

  11. Gene Expression Patterns of Hemizygous and Heterozygous KIT Mutations Suggest Distinct Oncogenic Pathways: A Study in NIH3T3 Cell Lines and GIST Samples

    PubMed Central

    Dessaux, Sophie; Besse, Anthony; Brahimi-Adouane, Sabrina; Emile, Jean-François; Blay, Jean-Yves; Alberti, Laurent

    2013-01-01

    Objective Most gain of function mutations of tyrosine kinase receptors in human tumours are hemizygous. Gastrointestinal stromal tumours (GIST) with homozygous mutations have a worse prognosis. We aimed to identify genes differentially regulated by hemizygous and heterozygous KIT mutations. Materials and Methods Expression of 94 genes and 384 miRNA was analysed with low density arrays in five NIH3T3 cell lines expressing the full-length human KIT cDNA wild-type (WT), hemizygous KIT mutation with del557-558 (D6) or del564-581 (D54) and heterozygous WT/D6 or WT/D54. Expression of 5 of these genes and 384 miRNA was then analysed in GISTs samples. Results Unsupervised and supervised hierarchical clustering of the mRNA and miRNA profiles showed that heterozygous mutants clustered with KIT WT expressing cells while hemizygous mutants were distinct. Among hemizygous cells, D6 and D54 expressing cells clustered separately. Most deregulated genes have been reported as potentially implicated in cancer and severals, as ANXA8 and FBN1, are highlighted by both, mRNA and miRNA analyses. MiRNA and mRNA analyses in GISTs samples confirmed that their expressions varied according to the mutation of the alleles. Interestingly, RGS16, a membrane protein of the regulator of G protein family, correlate with the subcellular localization of KIT mutants and might be responsible for regulation of the PI3K/AKT signalling pathway. Conclusion Patterns of mRNA and miRNA expression in cells and tumours depend on heterozygous/hemizygous status of KIT mutations, and deletion/presence of TYR568 & TYR570 residues. Thus each mutation of KIT may drive specific oncogenic pathways. PMID:23593401

  12. Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer’s disease

    PubMed Central

    2013-01-01

    Background Human Immunodeficiency Virus-1 (HIV) infection frequently results in neurocognitive impairment. While the cause remains unclear, recent gene expression studies have identified genes whose transcription is dysregulated in individuals with HIV-association neurocognitive disorder (HAND). However, the methods for interpretation of such data have lagged behind the technical advances allowing the decoding genetic material. Here, we employ systems biology methods novel to the field of NeuroAIDS to further interrogate extant transcriptome data derived from brains of HIV + patients in order to further elucidate the neuropathogenesis of HAND. Additionally, we compare these data to those derived from brains of individuals with Alzheimer’s disease (AD) in order to identify common pathways of neuropathogenesis. Methods In Study 1, using data from three brain regions in 6 HIV-seronegative and 15 HIV + cases, we first employed weighted gene co-expression network analysis (WGCNA) to further explore transcriptome networks specific to HAND with HIV-encephalitis (HIVE) and HAND without HIVE. We then used a symptomatic approach, employing standard expression analysis and WGCNA to identify networks associated with neurocognitive impairment (NCI), regardless of HIVE or HAND diagnosis. Finally, we examined the association between the CNS penetration effectiveness (CPE) of antiretroviral regimens and brain transcriptome. In Study 2, we identified common gene networks associated with NCI in both HIV and AD by correlating gene expression with pre-mortem neurocognitive functioning. Results Study 1: WGCNA largely corroborated findings from standard differential gene expression analyses, but also identified possible meta-networks composed of multiple gene ontology categories and oligodendrocyte dysfunction. Differential expression analysis identified hub genes highly correlated with NCI, including genes implicated in gliosis, inflammation, and dopaminergic tone. Enrichment

  13. Effects of aged garlic extract and FruArg on gene expression and signaling pathways in lipopolysaccharide-activated microglial cells

    PubMed Central

    Song, Hailong; Lu, Yuan; Qu, Zhe; Mossine, Valeri V.; Martin, Matthew B.; Hou, Jie; Cui, Jiankun; Peculis, Brenda A.; Mawhinney, Thomas P.; Cheng, Jianlin; Greenlief, C. Michael; Fritsche, Kevin; Schmidt, Francis J.; Walter, Ronald B.; Lubahn, Dennis B.; Sun, Grace Y.; Gu, Zezong

    2016-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement on account of its protective effects against oxidative stress and inflammation. But less is known about specific molecular targets of AGE and its bioactive components, including N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). Our recent study showed that both AGE and FruArg significantly attenuate lipopolysaccharide (LPS)-induced neuroinflammatory responses in BV-2 microglial cells. This study aims to unveil effects of AGE and FruArg on gene expression regulation in LPS stimulated BV-2 cells. Results showed that LPS treatment significantly altered mRNA levels from 2563 genes. AGE reversed 67% of the transcriptome alteration induced by LPS, whereas FruArg accounted for the protective effect by reversing expression levels of 55% of genes altered by LPS. Key pro-inflammatory canonical pathways induced by the LPS stimulation included toll-like receptor signaling, IL-6 signaling, and Nrf2-mediated oxidative stress pathway, along with elevated expression levels of genes, such as Il6, Cd14, Casp3, Nfkb1, Hmox1, and Tnf. These effects could be modulated by treatment with both AGE and FruArg. These findings suggests that AGE and FruArg are capable of alleviating oxidative stress and neuroinflammatory responses stimulated by LPS in BV-2 cells. PMID:27734935

  14. Differential age- and disease-related effects on the expression of genes related to the arachidonic acid signaling pathway in schizophrenia.

    PubMed

    Tang, Bin; Capitao, Cristina; Dean, Brian; Thomas, Elizabeth A

    2012-04-30

    We have previously identified differential effects of age on global brain gene expression profiles in subjects with schizophrenia compared to normal controls. Here, we have focused on age-related effects of genes associated with the arachidonic acid-related inflammation pathway. Linear correlation analysis of published microarray expression data reveal strong age- and cell-type- specific-effects on the expression of genes related to the arachidonic acid signaling pathway, which differed in control subjects compared to those with schizophrenia. Using real-time qPCR analysis, we validated age and disease effects of arachidonic acid-related genes in a large cohort of subjects with schizophrenia and matched controls (n=76 subjects in total). We found that levels of prostaglandin-endoperoxide synthase 1 (PTGS1; aka COX-1) and prostaglandin-endoperoxide receptor 3 (PTGER3) mRNA are increased, and levels of prostaglandin-endoperoxide synthase 2 (PTGS2; aka COX-2) mRNA are decreased, in older subjects with schizophrenia (> 40years of age) compared to matched normal controls or younger subjects with schizophrenia (< 40years of age). These findings contribute to the accumulating evidence suggesting that inflammatory processes in the CNS contribute to pathophysiology of schizophrenia and further suggest that age may be an important factor in the potential use of anti-inflammatory therapies.

  15. Estradiol-Estrogen Receptor α Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway

    PubMed Central

    Yaşar, Pelin; Ayaz, Gamze; Muyan, Mesut

    2016-01-01

    17β-estradiol (E2), the primary circulating estrogen hormone, mediates physiological and pathophysiological functions of breast tissue mainly through estrogen receptor α (ERα). Upon binding to E2, ERα modulates the expression of target genes involved in the regulation of cellular proliferation primarily through interactions with specific DNA sequences, estrogen response elements (EREs). Our previous microarray results suggested that E2-ERα modulates CXXC5 expression. Because of the presence of a zinc-finger CXXC domain (ZF-CXXC), CXXC5 is considered to be a member of the ZF-CXXC family, which binds to non-methylated CpG dinucleotides. Although studies are limited, CXXC5 appears to participate as a transcription factor, co-regulator and/or epigenetic factor in the regulation of cellular events induced by various signaling pathways. However, how signaling pathways mediate the expression of CXXC5 is yet unclear. Due to the importance of E2-ERα signaling in breast tissue, changes in the CXXC5 transcription/synthesis could participate in E2-mediated cellular events as well. To address these issues, we initially examined the mechanism whereby E2-ERα regulates CXXC5 expression. We show here that CXXC5 is an E2-ERα responsive gene regulated by the interaction of E2-ERα with an ERE present at a region upstream of the initial translation codon of the gene. PMID:27886276

  16. ARIA/HRG regulates AChR epsilon subunit gene expression at the neuromuscular synapse via activation of phosphatidylinositol 3-kinase and Ras/MAPK pathway

    PubMed Central

    1996-01-01

    AChR-inducing activity (ARIA)/heregulin, a ligand for erbB receptor tyrosine kinases (RTKs), is likely to be one nerve-supplied signal that induces expression of acetylcholine receptor (AChR) genes at the developing neuromuscular junction. Since some RTKs act through Ras and phosphatidylinositol 3-kinase (PI3K), we investigated the role of these pathways in ARIA signaling. Expression of activated Ras or Raf mimicked ARIA-induction of AChR epsilon subunit genes in muscle cells; whereas dominant negative Ras or Raf blocked the effect of ARIA. ARIA rapidly activated erk1 and erk2 and inhibition of both erks also abolished the effect of ARIA. ARIA stimulated association of PI3K with erbB3, expression of an activated PI3K led to ARIA-independent AChR epsilon subunit expression, and inhibition of PI3K abolished the action of ARIA. Thus, synaptic induction of AChR genes requires activation of both Ras/MAPK and PI3K signal transduction pathways. PMID:8707830

  17. Steroidogenic genes expressions are repressed by high levels of leptin and the JAK/STAT signaling pathway in MA-10 Leydig cells.

    PubMed

    Landry, David A; Sormany, François; Haché, Josée; Roumaud, Pauline; Martin, Luc J

    2017-03-25

    The adipose tissue is an important endocrine organ secreting numerous peptide hormones, including leptin. Increased circulating levels of leptin, as a result of hormonal resistance in obese individuals, may contribute to lower androgen production in obese males. However, the molecular mechanisms involved need to be better defined. Androgens are mainly produced by Leydig cells within the testis. In male rodents, activation of the leptin receptor modulates a cascade of intracellular signal transduction pathways which may lead to regulation of transcription factors having influences on steroidogenesis in Leydig cells. Thus, as a result of high leptin levels interacting with its receptor and modulating the activity of the JAK/STAT signaling pathway, the activity of transcription factors important for steroidogenic genes expressions may be inhibited in Leydig cells. Here we show that Lepr is increasingly expressed within Leydig cells according to postnatal development. Although high levels of leptin (corresponding to obesity condition) alone had no effect on Leydig cells' steroidogenic genes expression, it downregulated cAMP-dependent activations of the cholesterol transporter Star and of the rate-limiting steroidogenic enzyme Cyp11a1. Our results suggest that STAT transcriptional activity is downregulated by high levels of leptin, leading to reduced cAMP-dependent steroidogenic genes (Star and Cyp11a1) expressions in MA-10 Leydig cells. However, other transcription factors such as members of the SMAD and NFAT families may be involved and need further investigation to better define how leptin regulates their activities and their relevance for Leydig cells function.

  18. Gene Expression Profiling of Peri-Implant Healing of PLGA-Li+ Implants Suggests an Activated Wnt Signaling Pathway In Vivo

    PubMed Central

    Thorfve, Anna; Bergstrand, Anna; Ekström, Karin; Lindahl, Anders; Thomsen, Peter; Larsson, Anette; Tengvall, Pentti

    2014-01-01

    Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+). The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid) (PLGA) implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl) implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of β-catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors' knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway. PMID:25047349

  19. Gene expression profiling of peri-implant healing of PLGA-Li+ implants suggests an activated Wnt signaling pathway in vivo.

    PubMed

    Thorfve, Anna; Bergstrand, Anna; Ekström, Karin; Lindahl, Anders; Thomsen, Peter; Larsson, Anette; Tengvall, Pentti

    2014-01-01

    Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+). The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid) (PLGA) implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl) implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of β-catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors' knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway.

  20. Changes of Gene Expression in the Apoptosis Pathway in Lncap and PC3 Cells Exposed to X-Rays or Protons

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. In our current studies, we investigated the expressions of apoptosis related gene expression profile (84 genes) in two distinct prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-) before and after exposure to X-rays or protons, using cDNA PCR arrays. In Lncap cells, 10Gy X-ray radiation significantly induced the expression of 19 out of 84 genes at 4h after irradiation. The changed genes were mostly in death and death receptor domain families, TNF ligand and receptor families, and apoptotic group of the BCL2 family, especially in P53 related genes, such as FAS, BAX, BAK1 and GADD45A. In PC3, X-rays only induced the expression of 3 genes, including an increased expression of BIRC3. There was no difference of the X-ray mediated cell killing in both cell lines using the cell cycle analysis. However, these X-ray-induced gene expression differences between PC3 and Lncap may explain the phenotype of PC3 cells that shows more tolerant not only to radiation, but also to other apoptosis inducing and sensitizing reagents. To compare the effectiveness of cell killing with X-rays, we also exposed PC3 cells to 10Gy protons at the Bragg peak region. Protons did not induce more apoptosis than X-rays for the same dose. In comparison to X-rays, protons significantly altered expressions of 13 genes in PC3, which included decreased expressions of anti-apoptosis genes (BCL2 and BCL2L2), and increased expressions of death and death receptor domain family genes, TNF ligand and receptor family and several kinases (FAS, DAPK1 and RIPK2). These data suggest that proton treatment is more effective in influencing the apoptosis pathways in PC3 cells than X-rays, thus protons may be more effective in the treatment of specific prostate tumor.

  1. Separate enrichment analysis of pathways for up- and downregulated genes.

    PubMed

    Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng

    2014-03-06

    Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.

  2. Palmitic acid suppresses apolipoprotein M gene expression via the pathway of PPAR{sub β/δ} in HepG2 cells

    SciTech Connect

    Luo, Guanghua; Shi, Yuanping; Zhang, Jun; Mu, Qinfeng; Qin, Li; Zheng, Lu; Feng, Yuehua; Berggren-Söderlund, Maria; Nilsson-Ehle, Peter; Zhang, Xiaoying; Xu, Ning

    2014-02-28

    Highlights: • Palmitic acid significantly inhibited APOM gene expression in HepG2 cells. • Palmitic acid could obviously increase PPARB/D mRNA levels in HepG2 cells. • PPAR{sub β/δ} antagonist, GSK3787, had no effect on APOM expression. • GSK3787 could reverse the palmitic acid-induced down-regulation of APOM expression. • Palmitic acid induced suppression of APOM expression is mediated via the PPAR{sub β/δ} pathway. - Abstract: It has been demonstrated that apolipoprotein M (APOM) is a vasculoprotective constituent of high density lipoprotein (HDL), which could be related to the anti-atherosclerotic property of HDL. Investigation of regulation of APOM expression is of important for further exploring its pathophysiological function in vivo. Our previous studies indicated that expression of APOM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF), leptin, hyperglycemia and etc., in vivo and/or in vitro. In the present study, we demonstrated that palmitic acid could significantly inhibit APOM gene expression in HepG2 cells. Further study indicated neither PI-3 kinase (PI3K) inhibitor LY294002 nor protein kinase C (PKC) inhibitor GFX could abolish palmitic acid induced down-regulation of APOM expression. In contrast, the peroxisome proliferator-activated receptor beta/delta (PPAR{sub β/δ}) antagonist GSK3787 could totally reverse the palmitic acid-induced down-regulation of APOM expression, which clearly demonstrates that down-regulation of APOM expression induced by palmitic acid is mediated via the PPAR{sub β/δ} pathway.

  3. Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis.

    PubMed

    Boavida, Leonor C; Borges, Filipe; Becker, Jörg D; Feijó, José A

    2011-04-01

    Plant reproduction depends on the concerted activation of many genes to ensure correct communication between pollen and pistil. Here, we queried the whole transcriptome of Arabidopsis (Arabidopsis thaliana) in order to identify genes with specific reproductive functions. We used the Affymetrix ATH1 whole genome array to profile wild-type unpollinated pistils and unfertilized ovules. By comparing the expression profile of pistils at 0.5, 3.5, and 8.0 h after pollination and applying a number of statistical and bioinformatics criteria, we found 1,373 genes differentially regulated during pollen-pistil interactions. Robust clustering analysis grouped these genes in 16 time-course clusters representing distinct patterns of regulation. Coregulation within each cluster suggests the presence of distinct genetic pathways, which might be under the control of specific transcriptional regulators. A total of 78% of the regulated genes were expressed initially in unpollinated pistil and/or ovules, 15% were initially detected in the pollen data sets as enriched or preferentially expressed, and 7% were induced upon pollination. Among those, we found a particular enrichment for unknown transcripts predicted to encode secreted proteins or representing signaling and cell wall-related proteins, which may function by remodeling the extracellular matrix or as extracellular signaling molecules. A strict regulatory control in various metabolic pathways suggests that fine-tuning of the biochemical and physiological cellular environment is crucial for reproductive success. Our study provides a unique and detailed temporal and spatial gene expression profile of in vivo pollen-pistil interactions, providing a framework to better understand the basis of the molecular mechanisms operating during the reproductive process in higher plants.

  4. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance.

    PubMed

    Wickström, Malin; Dyberg, Cecilia; Milosevic, Jelena; Einvik, Christer; Calero, Raul; Sveinbjörnsson, Baldur; Sandén, Emma; Darabi, Anna; Siesjö, Peter; Kool, Marcel; Kogner, Per; Baryawno, Ninib; Johnsen, John Inge

    2015-11-25

    The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment.

  5. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance

    PubMed Central

    Wickström, Malin; Dyberg, Cecilia; Milosevic, Jelena; Einvik, Christer; Calero, Raul; Sveinbjörnsson, Baldur; Sandén, Emma; Darabi, Anna; Siesjö, Peter; Kool, Marcel; Kogner, Per; Baryawno, Ninib; Johnsen, John Inge

    2015-01-01

    The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment. PMID:26603103

  6. WAFs lead molting retardation of naupliar stages with down-regulated expression profiles of chitin metabolic pathway and related genes in the copepod Tigriopus japonicus.

    PubMed

    Hwang, Dae-Sik; Lee, Min-Chul; Kyung, Do-Hyun; Kim, Hui-Su; Han, Jeonghoon; Kim, Il-Chan; Puthumana, Jayesh; Lee, Jae-Seong

    2017-03-01

    Oil pollution is considered being disastrous to marine organisms and ecosystems. As molting is critical in the developmental process of arthropods in general and copepods, in particular, the impact will be adverse if the target of spilled oil is on molting. Thus, we investigated the harmful effects of water accommodated fractions (WAFs) of crude oil with an emphasis on inhibition of chitin metabolic pathways related genes and developmental retardation in the copepod Tigriopus japonicus. Also, we analysed the ontology and domain of chitin metabolic pathway genes and mRNA expression patterns of developmental stage-specific genes. Further, the developmental retardation followed by transcriptional modulations in nuclear receptor genes (NR) and chitin metabolic pathway-related genes were observed in the WAFs-exposed T. japonicus. As a result, the developmental time was found significantly (P<0.05) delayed in response to 40% WAFs in comparison with that of control. Moreover, the NR gene, HR3 and chitinases (CHT9 and CHT10) were up-regulated in N4-5 stages, while chitin synthase genes (CHS-1, CHS-2-1, and CHS-2-2) down-regulated in response to WAFs. In brief, a high concentration of WAFs repressed nuclear receptor genes but elicited activation of some of the transcription factors at low concentration of WAFs, resulting in suppression of chitin synthesis. Thus, we suggest that WAF can lead molting retardation of naupliar stages in T. japonicus through down-regulations of chitin metabolism. These findings will provide a better understanding of the mode of action of chitin biosynthesis associated with molting mechanism in WAF-exposed T. japonicus.

  7. Resveratrol increases anti-aging Klotho gene expression via the activating transcription factor 3/c-Jun complex-mediated signaling pathway.

    PubMed

    Hsu, Shih-Che; Huang, Shih-Ming; Chen, Ann; Sun, Chiao-Yin; Lin, Shih-Hua; Chen, Jin-Shuen; Liu, Shu-Ting; Hsu, Yu-Juei

    2014-08-01

    The Klotho gene functions as an aging suppressor gene. Evidence from animal models suggests that induction of Klotho expression may be a potential treatment for age-associated diseases. However, the molecular mechanism involved in regulating renal Klotho gene expression remains unclear. In this study, we determined that resveratrol, a natural polyphenol, induced renal Klotho expression both in vivo and in vitro. In the mouse kidney, resveratrol administration markedly increased both Klotho mRNA and protein expression. In resveratrol-treated NRK-52E cells, increased Klotho expression was accompanied by the upregulation and nuclear translocation of activating transcription factor 3 (ATF3) and c-Jun. ATF3 or c-Jun overexpression enhanced the transcriptional activation of Klotho. Conversely, resveratrol-induced Klotho expression was attenuated in the presence of dominant-negative ATF3 or c-Jun. Coimmunoprecipitation and a chromatin immunoprecipitation assay revealed that ATF3 physically interacted with c-Jun and that the ATF3/c-Jun complex directly bound to the Klotho promoter through ATF3- and AP-1-binding elements. c-Jun cotransfection augmented the effects of ATF3 on Klotho transcription in vitro. Although Sirtuin 1 mRNA expression was induced by resveratrol and involved in regulating Klotho mRNA expression, it was not the primary cause for the aforementioned ATF3/c-Jun pathway. In summary, resveratrol enhances the renal expression of the anti-aging Klotho gene, and the transcriptional factors ATF3 and c-Jun functionally interact and coordinately regulate the resveratrol-mediated transcriptional activation of Klotho.

  8. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis.

    PubMed

    Campos-Soriano, Lidia; Segundo, Blanca San

    2011-04-01

    Mycorrhizal fungi form a mutualistic relationship with the roots of most plant species. This association provides the arbuscular mycorrhizal (AM) fungus with sugars while the fungus improves the uptake of water and mineral nutrients in the host plant. Moreover, the induction of defence gene expression in mycorrhizal roots has been described. While salicylic acid (SA)-regulated Pathogenesis-Related (PR) proteins accumulate in rice roots colonized by the AM fungus G. intraradices, the SA content is not significantly altered in the mycorrhizal roots. Sugars, in addition to being a source of carbon for the fungus, might act as signals for the control of defence gene expression. We hypothesize that increased demands for sugars by the fungus might be responsible for the activation of the host defence responses which will then contribute to the stabilization of root colonization by the AM fungus. An excessive root colonization might change a mutualistic association into a parasitic association.

  9. Gene Expression Dynamics in Major Endocrine Regulatory Pathways along the Transition from Solitary to Social Life in a Bumblebee, Bombus terrestris

    PubMed Central

    Jedlička, Pavel; Ernst, Ulrich R.; Votavová, Alena; Hanus, Robert; Valterová, Irena

    2016-01-01

    Understanding the social evolution leading to insect eusociality requires, among other, a detailed insight into endocrine regulatory mechanisms that have been co-opted from solitary ancestors to play new roles in the complex life histories of eusocial species. Bumblebees represent well-suited models of a relatively primitive social organization standing on the mid-way to highly advanced eusociality and their queens undergo both, a solitary and a social phase, separated by winter diapause. In the present paper, we characterize the gene expression levels of major endocrine regulatory pathways across tissues, sexes, and life-stages of the buff-tailed bumblebee, Bombus terrestris, with special emphasis on critical stages of the queen's transition from solitary to social life. We focused on fundamental genes of three pathways: (1) Forkhead box protein O and insulin/insulin-like signaling, (2) Juvenile hormone (JH) signaling, and (3) Adipokinetic hormone signaling. Virgin queens were distinguished by higher expression of forkhead box protein O and downregulated insulin-like peptides and JH signaling, indicated by low expression of methyl farnesoate epoxidase (MFE) and transcription factor Krüppel homolog 1 (Kr-h1). Diapausing queens showed the expected downregulation of JH signaling in terms of low MFE and vitellogenin (Vg) expressions, but an unexpectedly high expression of Kr-h1. By contrast, reproducing queens revealed an upregulation of MFE and Vg together with insulin signaling. Surprisingly, the insulin growth factor 1 (IGF-1) turned out to be a queen-specific hormone. Workers exhibited an expression pattern of MFE and Vg similar to that of reproducing queens. Males were characterized by high Kr-h1 expression and low Vg level. The tissue comparison unveiled an unexpected resemblance between the fat body and hypopharyngeal glands across all investigated genes, sexes, and life stages. PMID:27932998

  10. Elevated expression of steroidogenesis pathway genes; CYP17, GATA6 and StAR in prenatally androgenized rats.

    PubMed

    Jahromi, Marziyeh Salehi; Tehrani, Fahimeh Ramezani; Noroozzadeh, Mahsa; Zarkesh, Maryam; Ghasemi, Asghar; Zadeh-Vakili, Azita

    2016-11-15

    It is believed that excess androgen exposure of the fetus, via altered gene expression, causes hyperandrogenism a key feature of polycystic ovary syndrome (PCOS). The aim of this study was to evaluate expression of Cytochrome P450-17 (CYP17), GATA-binding protein (GAGT6) and Steroidogenic acute regulatory protein (StAR), genes of adult female rats prenatally exposed to androgen excess, closely reflect endocrine and ovarian disturbances of PCOS in women, by comparing them during different phases of estrus cycle with those of non-treated rats. Both the adult prenatally testosterone exposed and control rats (n=23, each) were divided into four groups based on their observed vaginal smear (proestrus, estrus, metestrus and diestrus) and the relative expression of CYP17, GATA6 and StAR genes was measured in ovarian theca cells using Cyber-green Real-Time PCR. Serum sex steroid hormones and gonadotropins levels were measured using the ELISA method; a comparison of these two groups showed that there was an overall increase in the studied genes (CYP17; 2.39 fold change, 95% CI: 1.23-3.55; P<0.05, GATA6; 2.08 fold change, 95% CI: 1.62-2.55; P<0.0001, and StAR; 1.4 fold change, 95% CI: 1.02-1.78; P<0.05), despite variations in different phases with maximum elevation for all genes in diestrus. The changes observed may impair the normal development of ovaries that mediate the programming of adult PCOS.

  11. Gene Expression Profiling and Pathway Network Analysis Predicts a Novel Antitumor Function for a Botanical-Derived Drug, PG2

    PubMed Central

    Kuo, Yu-Lun; Chen, Chun-Houh; Chuang, Tsung-Hsien; Hua, Wei-Kai; Lin, Wey-Jinq; Hsu, Wei-Hsiang; Chang, Peter Mu-Hsin; Hsu, Shih-Lan; Huang, Tse-Hung; Kao, Cheng-Yan; Huang, Chi-Ying F.

    2015-01-01

    PG2 is a botanical drug that is mostly composed of Astragalus polysaccharides (APS). Its role in hematopoiesis and relieving cancer-related fatigue has recently been clinically investigated in cancer patients. However, systematic analyses of its functions are still limited. The aim of this study was to use microarray-based expression profiling to evaluate the quality and consistency of PG2 from three different product batches and to study biological mechanisms of PG2. An integrative molecular analysis approach has been designed to examine significant PG2-induced signatures in HL-60 leukemia cells. A quantitative analysis of gene expression signatures was conducted for PG2 by hierarchical clustering of correlation coefficients. The results showed that PG2 product batches were consistent and of high quality. These batches were also functionally equivalent to each other with regard to how they modulated the immune and hematopoietic systems. Within the PG2 signature, there were five genes associated with doxorubicin: IL-8, MDM4, BCL2, PRODH2, and BIRC5. Moreover, the combination of PG2 and doxorubicin had a synergistic effect on induced cell death in HL-60 cells. Together with the bioinformatics-based approach, gene expression profiling provided a quantitative measurement for the quality and consistency of herbal medicines and revealed new roles (e.g., immune modulation) for PG2 in cancer treatment. PMID:25972907

  12. Leptin induces ADAMTS-4, ADAMTS-5, and ADAMTS-9 genes expression by mitogen-activated protein kinases and NF-ĸB signaling pathways in human chondrocytes.

    PubMed

    Yaykasli, Kursat Oguz; Hatipoglu, Omer Faruk; Yaykasli, Emine; Yildirim, Kubra; Kaya, Ertugrul; Ozsahin, Mustafa; Uslu, Mustafa; Gunduz, Esra

    2015-01-01

    Elucidation of the causes of inflammation has vital importance in the development of new approaches for the treatment of arthritic diseases. The degradation of aggrecan by upregulated disintegrin and metalloproteinase with trombospondin motifs (ADAMTSs) is the key event in the development of both rheumatoid arthritis (RA) and osteoarthritis (OA). Increased levels of leptin in both RA and OA have been demonstrated, thus linking leptin to arthritic diseases, but the mechanism has not been clarified. This study investigated the putative role of signaling pathways (p38, JNK, MEK1, NF-ĸB, and PI3) involved in leptin-induced cartilage destruction. Normal human articular chondrocytes were cultured with recombinant human leptin at 100, 250, 500, and 1000 ng/mL doses for 6, 12, 24, and 48 h, after which ADAMTS-4, -5, and -9 genes expression were determined by real time-polymerase chain reaction (RT-PCR) and Western Blot methods. The signaling pathways involved in leptin-induced ADAMTSs upregulation were also investigated by using inhibitors of signaling pathways. It was demonstrated that ADAMTSs expression level was peaked at 1000 ng/mL doses for 48 hours, and MAPKs (p38, JNK, and MEK) and NF-ĸB signaling pathways involving in leptin triggered ADAMTSs upregulation. Obesity as a risk for RA and OA may contribute to the inflammation of both RA and OA diseases by secreting adipokines like leptin. We hypothesize that leptin is involved in the development of RA and OA accompanied with obesity by increasing ADAMTS-4, -5, and -9 genes expression via MAPKs and NF-ĸB signaling pathways.

  13. Differential expression of genes involved in the degeneration and regeneration pathways in mouse models for muscular dystrophies.

    PubMed

    Onofre-Oliveira, P C G; Santos, A L F; Martins, P M; Ayub-Guerrieri, D; Vainzof, M

    2012-03-01

    The genetically determined muscular dystrophies are caused by mutations in genes coding for muscle proteins. Differences in the phenotypes are mainly the age of onset and velocity of progression. Muscle weakness is the consequence of myofiber degeneration due to an imbalance between successive cycles of degeneration/regeneration. While muscle fibers are lost, a replacement of the degraded muscle fibers by adipose and connective tissues occurs. Major investigation points are to elicit the involved pathophysiological mechanisms to elucidate how each mutation can lead to a specific degenerative process and how the regeneration is stimulated in each case. To answer these questions, we used four mouse models with different mutations causing muscular dystrophies, Dmd (mdx), SJL/J, Large (myd) and Lama2 (dy2J) /J, and compared the histological changes of regeneration and fibrosis to the expression of genes involved in those processes. For regeneration, the MyoD, Myf5 and myogenin genes related to the proliferation and differentiation of satellite cells were studied, while for degeneration, the TGF-β1 and Pro-collagen 1α2 genes, involved in the fibrotic cascade, were analyzed. The result suggests that TGF-β1 gene is activated in the dystrophic process in all the stages of degeneration, while the activation of the expression of the pro-collagen gene possibly occurs in mildest stages of this process. We also observed that each pathophysiological mechanism acted differently in the activation of regeneration, with distinctions in the induction of proliferation of satellite cells, but with no alterations in stimulation to differentiation. Dysfunction of satellite cells can, therefore, be an important additional mechanism of pathogenesis in the dystrophic muscle.

  14. Human Lacrimal Gland Gene Expression

    PubMed Central

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  15. Molecular Regulation of Human Placental Growth Factor (PlGF) Gene Expression in Placental Villi and Trophoblast Cells is Mediated via the Protein Kinase A Pathway

    PubMed Central

    Depoix, Christophe; Tee, Meng Kian; Taylor, Robert N.

    2011-01-01

    Cyclic 3',5'-adenosine monophosphate (cAMP) is a critical second messenger for human trophoblasts and regulates the expression of numerous genes. It is known to stimulate in vitro the fusion and differentiation of BeWo choriocarcinoma cells, which acquire characteristics of syncytiotrophoblasts. A DNA microarray analysis of BeWo cells undergoing forskolin-induced syncytialization revealed that among the induced genes, placental growth factor (PlGF) was 10-fold upregulated. We verified this result in two choriocarcinoma cell lines, BeWo and JEG-3, and also in first trimester placental villous explants by quantifying PlGF mRNA (real time PCR) and PlGF protein secreted into the supernatant (ELISA). Similar effects were noted for vascular endothelial growth factor (VEGF) mRNA and protein expression. Treatment with cholera toxin and the use of a specific inhibitor of protein kinase A (PKA) blocked these effects, indicating that the cAMP/PKA pathway is responsible for the cAMP-induced upregulation of PlGF and that one or more G protein coupled receptor(s) was involved. We identified two functional cAMP responsive elements (CRE) in the PlGF promoter and demonstrated that the CRE binding protein, CREB, contributes to the regulation of PlGF gene expression. We speculate that defects in this signaling pathway may lead to abnormal secretion of PlGF protein as observed in the pregnancy-related diseases preeclampsia and intrauterine growth restriction. PMID:21135203

  16. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits.

    PubMed

    Smita, Shuchi; Rajwanshi, Ravi; Lenka, Sangram Keshari; Katiyar, Amit; Chinnusamy, Viswanathan; Bansal, Kailash Chander

    2013-12-01

    Fruit ripening process is associated with change in carotenoid profile and accumulation of lycopene in tomato (Solanum lycopersicum L.). In this study, we quantified the beta-carotene and lycopene content at green, breaker and red-ripe stages of fruit ripening in eight tomato genotypes by using high-performance liquid chromatography. Among the genotypes, lycopene content was found highest in Pusa Rohini and lowest in VRT-32-1. To gain further insight into the regulation of lycopene biosynthesis and accumulation during fruit ripening, expression analysis of nine carotenoid pathway-related genes was carried out in the fruits of high lycopene genotype-Pusa Rohini. We found that expression of phytoene synthase and beta-carotene hydroxylase-1 was four and thirty-fold higher, respectively, at breaker stage as compared to red-ripe stage of fruit ripening. Changes in the expression level of these genes were associated with a 40% increase in lycopene content at red-ripe stage as compared with breaker stage. Thus, the results from our study suggest the role of specific carotenoid pathway-related genes in accumulation of high lycopene during the fruit ripening processes.

  17. Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells

    PubMed Central

    Seo, Hyo-Seok; Sikder, Mohamed Asaduzzaman; Lee, Hyun Jae; Ryu, Jiho; Lee, Choong Jae

    2014-01-01

    In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-α (TNF-α)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-α for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-α in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-α-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-κB activation induced by TNF-α. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha (IκBα) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-κB signaling pathway in airway epithelial cells. PMID:25489420

  18. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures

    PubMed Central

    Sakamoto, Yuri; Kanatsu, Junko; Toh, Mariko; Naka, Ayano; Kondo, Kazuo; Iida, Kaoruko

    2016-01-01

    Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs) regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist), and GW9662 (a PPARγ antagonist). Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif) ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1)) and interleukin 6 (Il6) mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM) from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue. PMID:26901838

  19. Placental gene-expression profiles of intrahepatic cholestasis of pregnancy reveal involvement of multiple molecular pathways in blood vessel formation and inflammation

    PubMed Central

    2014-01-01

    Background Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-associated liver disease with potentially deleterious consequences for the fetus, particularly when maternal serum bile-acid concentration >40 μM. However, the etiology and pathogenesis of ICP remain elusive. To reveal the underlying molecular mechanisms for the association of maternal serum bile-acid level and fetal outcome in ICP patients, DNA microarray was applied to characterize the whole-genome expression profiles of placentas from healthy women and women diagnosed with ICP. Methods Thirty pregnant women recruited in this study were categorized evenly into three groups: healthy group; mild ICP, with serum bile-acid concentration ranging from 10–40 μM; and severe ICP, with bile-acid concentration >40 μM. Gene Ontology analysis in combination with construction of gene-interaction and gene co-expression networks were applied to identify the core regulatory genes associated with ICP pathogenesis, which were further validated by quantitative real-time PCR and histological staining. Results The core regulatory genes were mainly involved in immune response, VEGF signaling pathway and G-protein-coupled receptor signaling, implying essential roles of immune response, vasculogenesis and angiogenesis in ICP pathogenesis. This implication was supported by the observed aggregated immune-cell infiltration and deficient blood vessel formation in ICP placentas. Conclusions Our study provides a system-level insight into the placental gene-expression profiles of women with mild or severe ICP, and reveals multiple molecular pathways in immune response and blood vessel formation that might contribute to ICP pathogenesis. PMID:25001852

  20. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.

    PubMed

    Hirokawa, Yasutaka; Maki, Yuki; Hanai, Taizo

    2017-01-01

    The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and Klebsiella pneumoniae. This pathway enabled 1,3-propanediol (1,3-PDO) production from cellular DHAP via glycerol in the cyanobacterium, Synechococcus elongatus PCC 7942. The production of 1,3-PDO (3.79mM, 0.29g/l) directly from carbon dioxide by engineered S. elongatus PCC 7942 was successfully accomplished. However, the constructed strain accumulated a remarkable amount of glycerol (12.6mM, 1.16g/l), an intermediate metabolite in 1,3-PDO production. Notably, enhancement of latter reactions of synthetic metabolic pathway for conversion of glycerol to 1,3-PDO increases 1,3-PDO production. In this study, we aimed to increase the observed 1,3-PDO production titer. First, the weaker S. elongatus PCC 7942 promoter, PLlacO1, was replaced with a stronger promoter (Ptrc) to regulate genes involved in the conversion of glycerol to 1,3-PDO. Second, the induction timing for gene expression and medium composition were optimized. Promoter replacement resulted in higher 1,3-PDO production than glycerol accumulation, and the amount of products (1,3-PDO and glycerol) generated via the synthetic metabolic pathway increased with optimization of medium composition. Accordingly, we achieved the highest titer of 1,3-PDO (16.1mM, 1.22g/l) and this was higher than glycerol accumulation (9.46mM, 0.87g/l). The improved titer was over 4-fold higher than that of our previous study.

  1. Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma (Royle) Johnston

    PubMed Central

    2010-01-01

    Background Geranyl pyrophosphate (GPP) and p-hydroxybenzoate (PHB) are the basic precursors involved in shikonins biosynthesis. GPP is derived from mevalonate (MVA) and/or 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway(s), depending upon the metabolite and the plant system under consideration. PHB, however, is synthesized by only phenylpropanoid (PP) pathway. GPP and PHB are central moieties to yield shikonins through the synthesis of m-geranyl-p-hydroxybenzoate (GHB). Enzyme p-hydroxybenzoate-m-geranyltransferase (PGT) catalyses the coupling of GPP and PHB to yield GHB. The present research was carried out in shikonins yielding plant arnebia [Arnebia euchroma (Royle) Johnston], wherein no molecular work has been reported so far. The objective of the work was to identify the preferred GPP synthesizing pathway for shikonins biosynthesis, and to determine the regulatory genes involved in the biosynthesis of GPP, PHB and GHB. Results A cell suspension culture-based, low and high shikonins production systems were developed to facilitate pathway identification and finding the regulatory gene. Studies with mevinolin and fosmidomycin, inhibitors of MVA and MEP pathway, respectively suggested MVA as a preferred route of GPP supply for shikonins biosynthesis in arnebia. Accordingly, genes of MVA pathway (eight genes), PP pathway (three genes), and GHB biosynthesis were cloned. Expression studies showed down-regulation of all the genes in response to mevinolin treatment, whereas gene expression was not influenced by fosmidomycin. Expression of all the twelve genes vis-à-vis shikonins content in low and high shikonins production system, over a period of twelve days at frequent intervals, identified critical genes of shikonins biosynthesis in arnebia. Conclusion A positive correlation between shikonins content and expression of 3-hydroxy-3-methylglutaryl-CoA reductase (AeHMGR) and AePGT suggested critical role played by these genes in shikonins biosynthesis. Higher

  2. Transcriptomics of traumatic brain injury: gene expression and molecular pathways of different grades of insult in a rat organotypic hippocampal culture model.

    PubMed

    Di Pietro, Valentina; Amin, Daven; Pernagallo, Salvatore; Lazzarino, Giuseppe; Tavazzi, Barbara; Vagnozzi, Roberto; Pringle, Ashley; Belli, Antonio

    2010-02-01

    Traumatic brain injury (TBI) is the one of the most common forms of head trauma, and it remains a leading cause of death and disability. It is known that the initial mechanical axonal injury triggers a complex cascade of neuroinflammatory and metabolic events, the understanding of which is essential for clinical, translational, and pharmacological research. These can occur even in mild TBI, and are associated with several post-concussion manifestations, including transiently heightened vulnerability to a second insult. Recent studies have challenged the tenet that ischemia is the ultimate modality of tissue damage following TBI, as metabolic dysfunction can develop in the presence of normal perfusion and before intracranial hypertension. In order to elucidate the cellular and molecular changes occurring in TBI as a direct result of neuronal injury and in the absence of ischemic damage, we performed a microarray analysis of expressed genes and molecular interaction pathways for different levels of severity of trauma using an in-vitro model. A stretch injury, equivalent to human diffuse axonal injury, was delivered to rat organotypic hippocampal slice cultures, and mRNA levels following a 10% (mild) and 50% (severe) stretch were compared with controls at 24 h. More genes were differentially expressed following 10% stretch than 50% stretch, indicating the early activation of complex cellular mechanisms. The data revealed remarkable differential gene expression following mTBI, even in the absence of cell damage. Pathway analysis revealed that molecular interactions in both levels of injury were similar, with IL-1beta playing a central role. Additional pathways of neurodegeneration involving RhoA (ras homolog gene family, member A) were found in 50% stretch.

  3. Transcriptome analysis of Hpa1Xoo transformed cotton revealed constitutive expression of genes in multiple signalling pathways related to disease resistance.

    PubMed

    Miao, Weiguo; Wang, Xiben; Song, Congfeng; Wang, Yu; Ren, Yonghong; Wang, Jinsheng

    2010-10-01

    The transcriptome profile in leaves and roots of the transgenic cotton line T-34 expressing hpa1(Xoo) from Xanthomonas oryzae pv. oryzae was analysed using a customized 12k cotton cDNA microarray. A total of 530 cDNA transcripts involved in 34 pathways were differentially expressed in the transgenic line T-34, in which 123 differentially expressed genes were related to the cotton defence responses including the hypersensitive reaction, defence responses associated with the recognition of pathogen-derived elicitors, and defence signalling pathways mediated by salicylic acid, jasmonic acid, ethylene, auxin, abscicic acid, and Ca(2+). Furthermore, transcripts encoding various leucine-rich protein kinases and mitogen-activated protein kinases were up-regulated in the transgenic line T-34 and expression of transcripts related to the energy producing and consuming pathway was also increased, which suggested that the enhanced metabolism related to the host defence response in the transgenic line T-34 imposed an increased energy demand on the transgenic plant.

  4. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth.

    PubMed

    Guo, Zhaojiang; Kang, Shi; Chen, Defeng; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhu, Xun; Baxter, Simon W; Zhou, Xuguo; Jurat-Fuentes, Juan Luis; Zhang, Youjun

    2015-04-01

    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.

  5. In Utero Fine Particle Air Pollution and Placental Expression of Genes in the Brain-Derived Neurotrophic Factor Signaling Pathway: An ENVIRONAGE Birth Cohort Study

    PubMed Central

    Saenen, Nelly D.; Plusquin, Michelle; Bijnens, Esmée; Janssen, Bram G.; Gyselaers, Wilfried; Cox, Bianca; Fierens, Frans; Molenberghs, Geert; Penders, Joris; Vrijens, Karen; De Boever, Patrick

    2015-01-01

    Background Developmental processes in the placenta and the fetal brain are shaped by the same biological signals. Recent evidence suggests that adaptive responses of the placenta to the maternal environment may influence central nervous system development. Objectives We studied the association between in utero exposure to fine particle air pollution with a diameter ≤ 2.5 μm (PM2.5) and placental expression of genes implicated in neural development. Methods Expression of 10 target genes in the brain-derived neurotrophic factor (BDNF) signaling pathway were quantified in placental tissue of 90 mother–infant pairs from the ENVIRONAGE birth cohort using quantitative real-time polymerase chain reaction. Trimester-specific PM2.5 exposure levels were estimated for each mother’s home address using a spatiotemporal model. Mixed-effects models were used to evaluate the association between the target genes and PM2.5 exposure measured in different time windows of pregnancy. Results A 5-μg/m3 increase in residential PM2.5 exposure during the first trimester of pregnancy was associated with a 15.9% decrease [95% confidence interval (CI): –28.7, –3.2%, p = 0.015] in expression of placental BDNF at birth. The corresponding estimate for synapsin 1 (SYN1) was a 24.3% decrease (95% CI: –42.8, –5.8%, p = 0.011). Conclusions Placental expression of BDNF and SYN1, two genes implicated in normal neurodevelopmental trajectories, decreased with increasing in utero exposure to PM2.5. Future studies are needed to confirm our findings and evaluate the potential relevance of associations between PM2.5 and placental expression of BDNF and SYN1 on neurodevelopment. We provide the first molecular epidemiological evidence concerning associations between in utero fine particle air pollution exposure and the expression of genes that may influence neurodevelopmental processes. Citation Saenen ND, Plusquin M, Bijnens E, Janssen BG, Gyselaers W, Cox B, Fierens F, Molenberghs G, Penders

  6. Regulation of the Nitrogen Transfer Pathway in the Arbuscular Mycorrhizal Symbiosis: Gene Characterization and the Coordination of Expression with Nitrogen Flux1[W][OA

    PubMed Central

    Tian, Chunjie; Kasiborski, Beth; Koul, Raman; Lammers, Peter J.; Bücking, Heike; Shachar-Hill, Yair

    2010-01-01

    The arbuscular mycorrhiza (AM) brings together the roots of over 80% of land plant species and fungi of the phylum Glomeromycota and greatly benefits plants through improved uptake of mineral nutrients. AM fungi can take up both nitrate and ammonium from the soil and transfer nitrogen (N) to host roots in nutritionally substantial quantities. The current model of N handling in the AM symbiosis includes the synthesis of arginine in the extraradical mycelium and the transfer of arginine to the intraradical mycelium, where it is broken down to release N for transfer to the host plant. To understand the mechanisms and regulation of N transfer from the fungus to the plant, 11 fungal genes putatively involved in the pathway were identified from Glomus intraradices, and for six of them the full-length coding sequence was functionally characterized by yeast complementation. Two glutamine synthetase isoforms were found to have different substrate affinities and expression patterns, suggesting different roles in N assimilation. The spatial and temporal expression of plant and fungal N metabolism genes were followed after nitrate was added to the extraradical mycelium under N-limited growth conditions using hairy root cultures. In parallel experiments with 15N, the levels and labeling of free amino acids were measured to follow transport and metabolism. The gene expression pattern and profiling of metabolites involved in the N pathway support the idea that the rapid uptake, translocation, and transfer of N by the fungus successively trigger metabolic gene expression responses in the extraradical mycelium, intraradical mycelium, and host plant. PMID:20448102

  7. Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle.

    PubMed

    Haren, M T; Siddiqui, A M; Armbrecht, H J; Kevorkian, R T; Kim, M J; Haas, M J; Mazza, A; Kumar, Vijaya B; Green, M; Banks, W A; Morley, J E

    2011-02-01

    Testosterone regulates energy metabolism and skeletal muscle mass in males, but the molecular mechanisms are not fully understood. This study investigated the response of skeletal muscle to castration and testosterone replacement in 8-week-old male mice. Using microarray analyses of mRNA levels in gastrocnemius muscle, 91 genes were found to be negatively regulated by testosterone and 68 genes were positively regulated. The mRNA levels of the insulin signalling suppressor molecule Grb10 and the glycogen synthesis inhibitors, protein phosphatase inhibitor-1 and phosphorylase kinase-γ, were negatively regulated by testosterone. The insulin-sensitive glucose and amino acid transporters, Glut3 and SAT2, the lipodystrophy gene, Lpin1 and protein targeting to glycogen were positively regulated. These changes would be expected to increase nutrient availability and sensing within skeletal muscle, increase metabolic rate and carbohydrate utilization and promote glycogen accumulation. The observed positive regulation of atrogin-1 (Fbxo32) by testosterone could be explained by the phosphorylation of Akt and Foxo3a, as determined by Western blotting. Testosterone prevented the castration-induced increase in interleukin-1α, the decrease in interferon-γ and the atrophy of the levator ani muscle, which were all correlated with testosterone-regulated gene expression. These findings identify specific mechanisms by which testosterone may regulate skeletal muscle glucose and protein metabolism.

  8. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    PubMed

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  9. Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways.

    PubMed

    Tuñón, M J; García-Mediavilla, M V; Sánchez-Campos, S; González-Gallego, J

    2009-03-01

    Flavonoids are a large class of naturally occurring compounds widely present in fruits, vegetables, and beverages derived from plants. Reports have suggested that these compounds might be useful for the prevention of a number of diseases, partly due to their anti-inflammatory properties. It has been demonstrated that flavonoids are able to inhibit expression of isoforms of inducible nitric oxide synthase, ciclooxygenase and lipooxygenase, which are responsible for the production of a great amount of nitric oxide, prostanoids and leukotrienes, as well as other mediators of the inflammatory process such as cytokines, chemokines or adhesion molecules. Modulation of the cascade of molecular events leading to the over-expression of those mediators include inhibition of transcription factors such as nuclear factor kappa B, activator protein 1, signal transducers and activators of transcription, CCAAT/enhancer binding protein and others. Effects on the binding capacity of transcription factors may be regulated through the inhibition of protein kinases involved in signal transduction, such as mitogen activated protein kinases. Although the numerous studies published with in vitro approaches allow identifying molecular mechanisms of flavonoid effects, the limited bioavailability of these molecules makes necessary validation in humans. Whatever the case, the data available make clear the potential utility of dietary flavonoids or new flavonoid-based agents for the possible treatment of inflammatory diseases. The present review summarizes recent research data focusing on the modulation of the expression of different inflammatory mediators by flavonoids and the effects on cell signaling pathways responsible for their anti-inflammatory activity.

  10. Synergistic effects of parabens on the induction of calbindin-D(9k) gene expression act via a progesterone receptor-mediated pathway in GH3 cells.

    PubMed

    Yang, H; Nguyen, T-T; An, B-S; Choi, K-C; Jeung, Eui-Bae

    2012-02-01

    Although the endocrine-disrupting bioactivity of parabens is weakly estrogenic (parabens are xenoestrogens), their combined synergistic effect is unknown. The aim of this study was to investigate the effects of methyl paraben (MP), ethyl paraben (EP), propyl paraben (PP), isopropyl paraben (IPP), butyl paraben (BP), and isobutyl paraben (IBP), either alone or in combination (MP + EP + PP + BP; PP + IPP; and BP + IBP) on the induction of the estrogenic biomarker gene, calbindin-D(9k) (CaBP-9k), in rat pituitary lactosomatotrophic GH3 cells. The expression of CaBP-9k mRNA and protein was analyzed using real-time PCR and Western blot analysis, respectively. After 24 h of treatment, a significant increase in CaBP-9k expression was observed. This was dependent upon the length of the paraben alkyl chains (shortest in MP and longest in IBP). Interestingly, the synergistic effects of these paraben combinations were observed at a dose (10(-5) M) of these parabens, which induced the highest expression of CaBP-9k mRNA and protein. To investigate the involvement of estrogen receptors (ERs) and progesterone receptors (PRs), through which parabens exert their effects, the expression levels of ERα and PR-B were also examined. The expression of ERα mRNA and protein fluctuated after paraben treatment in GH3 cells, which was not significant. However, the expression level of ERα gene was induced when cotreated with 17β-estradiol (E2) and ICI 182, 780 (estrogen receptor antagonist). The different combinations of parabens induced the expression of the PR-B gene, which was abolished by cotreatment with ICI 182,780. The expression patterns of CaBP-9k and PR-B genes appeared to be similar in response to paraben treatments. This implied that CaBP-9k expression in GH3 cells may be induced by parabens via a PR-mediated pathway. Taken together, these results suggest that exposure to multiple parabens at low concentrations may increase their synergistic estrogenic activities in GH3 cells

  11. ESCRT components regulate the expression of the ER/Golgi calcium pump gene PMR1 through the Rim101/Nrg1 pathway in budding yeast.

    PubMed

    Zhao, Yunying; Du, Jingcai; Xiong, Bing; Xu, Huihui; Jiang, Linghuo

    2013-10-01

    The endosomal sorting complex required for transport (ESCRT) complexes function to form multivesicular bodies for sorting of proteins destined for the yeast vacuole or the mammalian lysosome. ESCRT components are well conserved in eukaryotes, and their mutations cause neurodegenerative diseases and other cellular pathologies in humans. PMR1 is the orthologous gene of two human genes for calcium pumps secretory pathway Ca(2+)-ATPase (SPCA1, ATP2C1) and sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA, ATP2A2), which are mutated in Hailey-Hailey and Darier genetic diseases, respectively. Here we show that deletion mutation of ESCRT components Snf7, Snf8, Stp22, Vps20, Vps25, Vps28, or Vps36 activates the calcium/calcineurin signaling in yeast cells, but surprisingly leads to a nearly 50% reduction in expression of the ER/Golgi calcium pump gene PMR1 independent of calcium stress. These ESCRT mutants are known to have a defect in Rim101 activation. Ectopic expression of a constitutively active form of Rim101 or further deletion of NRG1 in these mutants partially suppresses their calcium hypersensitivity. Deletion of NRG1 also completely rescues the expression of PMR1 in these mutants to the level of the wild type. Promoter mutagenesis, gel electrophoretic mobility shift assay, and chromatin immunoprecipitation analysis demonstrate that Nrg1 binds to two motifs in the PMR1 promoter. In addition, expression of PMR1 under the control of its promoters with mutated Nrg1-binding motifs suppresses the calcium hypersensitivity of these ESCRT mutants. Collectively, these data have uncovered a function of ESCRT components in regulating PMR1 expression through the Nrg1/Rim101 pathway. Our findings provide important clues for understanding human diseases related to calcium homeostasis.

  12. Altered Expression of Genes in Signaling Pathways Regulating Proliferation of Hematopoietic Stem and Progenitor Cells in Mice with Subchronic Benzene Exposure.

    PubMed

    Sun, Rongli; Zhang, Juan; Xiong, Mengzhen; Wei, Haiyan; Tan, Kehong; Yin, Lihong; Pu, Yuepu

    2015-08-07

    Leukemias and hematopoietic disorders induced by benzene may arise from the toxicity of benzene to hematopoietic stem or progenitor cells (HS/PCs). Since there is a latency period between initial benzene exposure and the development of leukemia, subsequent impact of benzene on HS/PCs are crucial for a deeper understanding of the carcinogenicity and hematotoxicity in post-exposure stage. This study aims to explore the effects of benzene on HS/PCs and gene-expression in Wnt, Notch and Hh signaling pathways in post-exposure stage. The C3H/He mice were injected subcutaneously with benzene (0, 150, 300 mg/kg/day) for three months and were monitored for another 10 months post-exposure. The body weights were monitored, the relative organ weights, blood parameters and bone marrow smears were examined. Frequency of lineage(-) sca-1(+) c-kit(+) (LSK) cells, capability of colony forming and expression of genes in Wnt, Notch and Hedghog (Hh) signaling pathways were also analyzed. The colony formation of the progenitor cells for BFU-E, CFU-GEMM and CFU-GM was significantly decreased with increasing benzene exposure relative to controls, while no significant difference was observed in colonies for CFU-G and CFU-M. The mRNA level of cyclin D1 was increased and Notch 1 and p53 were decreased in LSK cells in mice exposed to benzene but with no statistical significance. These results suggest that subsequent toxic effects of benzene on LSK cells and gene expression in Wnt, Notch and Hh signaling pathways persist in post-exposure stage and may play roles in benzene-induced hematotoxicity.

  13. The constitutive active/androstane receptor facilitates unique phenobarbital-induced expression changes of genes involved in key pathways in precancerous liver and liver tumors.

    PubMed

    Phillips, Jennifer M; Burgoon, Lyle D; Goodman, Jay I

    2009-08-01

    Our overall goal is to elucidate progressive changes, in expression and methylation status, of genes which play key roles in phenobarbital (PB)-induced liver tumorigenesis, with an emphasis on their potential to affect signaling through critical pathways involved in the regulation of cell growth and differentiation. PB-elicited unique expression changes of genes, including some of those identified previously as exhibiting regions of altered DNA methylation, were discerned in precancerous liver tissue and/or individual liver tumors from susceptible constitutive active/androstane receptor (CAR) wild-type (WT) compared with resistant CAR knockout (KO) mice. Many of these function in crucial cancer-related processes, for example, angiogenesis, apoptosis, cell cycle, DNA methylation, Hedgehog signaling, invasion/metastasis, Notch signaling, and Wnt signaling. Furthermore, a subset of the uniquely altered genes contained CAR response elements (CAREs). This included Gadd45b, a coactivator of CAR and inhibitor of apoptosis, and two DNA methyltransferases (Dnmt1, Dnmt3a). The presence of CAREs in Dnmts suggests a potential direct link between PB and altered DNA methylation. The current data are juxtaposed with the effects of PB on DNA methylation and gene expression which occurred uniquely in liver tumor-prone B6C3F1 mice, as compared with the resistant C57BL/6, following 2 or 4 weeks of treatment. Collectively, these data reveal a comprehensive view of PB-elicited molecular alterations (i.e., changes in gene expression and DNA methylation) that can facilitate hepatocarcinogenesis. Notably, candidate genes for initial "fingerprints" of early and late stages of PB-induced tumorigenesis are proposed.

  14. The Constitutive Active/Androstane Receptor Facilitates Unique Phenobarbital-Induced Expression Changes of Genes Involved in Key Pathways in Precancerous Liver and Liver Tumors

    PubMed Central

    Phillips, Jennifer M.; Burgoon, Lyle D.; Goodman, Jay I.

    2009-01-01

    Our overall goal is to elucidate progressive changes, in expression and methylation status, of genes which play key roles in phenobarbital (PB)–induced liver tumorigenesis, with an emphasis on their potential to affect signaling through critical pathways involved in the regulation of cell growth and differentiation. PB-elicited unique expression changes of genes, including some of those identified previously as exhibiting regions of altered DNA methylation, were discerned in precancerous liver tissue and/or individual liver tumors from susceptible constitutive active/androstane receptor (CAR) wild-type (WT) compared with resistant CAR knockout (KO) mice. Many of these function in crucial cancer-related processes, for example, angiogenesis, apoptosis, cell cycle, DNA methylation, Hedgehog signaling, invasion/metastasis, Notch signaling, and Wnt signaling. Furthermore, a subset of the uniquely altered genes contained CAR response elements (CAREs). This included Gadd45b, a coactivator of CAR and inhibitor of apoptosis, and two DNA methyltransferases (Dnmt1, Dnmt3a). The presence of CAREs in Dnmts suggests a potential direct link between PB and altered DNA methylation. The current data are juxtaposed with the effects of PB on DNA methylation and gene expression which occurred uniquely in liver tumor-prone B6C3F1 mice, as compared with the resistant C57BL/6, following 2 or 4 weeks of treatment. Collectively, these data reveal a comprehensive view of PB-elicited molecular alterations (i.e., changes in gene expression and DNA methylation) that can facilitate hepatocarcinogenesis. Notably, candidate genes for initial “fingerprints” of early and late stages of PB-induced tumorigenesis are proposed. PMID:19482888

  15. Molecular characterization and expression analysis of GlHMGS, a gene encoding hydroxymethylglutaryl-CoA synthase from Ganoderma lucidum (Ling-zhi) in ganoderic acid biosynthesis pathway.

    PubMed

    Ren, Ang; Ouyang, Xiang; Shi, Liang; Jiang, Ai-Liang; Mu, Da-Shuai; Li, Meng-Jiao; Han, Qin; Zhao, Ming-Wen

    2013-03-01

    A hydroxymethylglutaryl-CoA synthase gene, designated as GlHMGS (GenBank accession No. JN391469) involved in ganoderic acid (GA) biosynthesis pathway was cloned from Ganoderma lucidum. The full-length cDNA of GlHMGS (GenBank accession No. JN391468) was found to contain an open reading frame of 1,413 bp encoding a polypeptide of 471 amino acid residues. The deduced amino acid sequence of GlHMGS shared high homology with other known hydroxymethylglutaryl-CoA synthase (HMGS) enzymes. In addition, functional complementation of GlHMGS in a mutant yeast strain YSC1021 lacking HMGS activity demonstrated that the cloned cDNA encodes a functional HMGS. A 1,561 bp promoter sequence was isolated and its putative regulatory elements and potential specific transcription factor binding sites were analyzed. GlHMGS expression profile analysis revealed that salicylic acid, abscisic acid and methyl jasmonate up-regulated GlHMGS transcript levels over the control. Further expression analysis revealed that the developmental stage and carbon source had significant effects on GlHMGS transcript levels. GlHMGS expression peaked on day 16 before decreasing with prolonged culture time. The highest mRNA level was observed when the carbon source was maltose. Overexpression of GlHMGS enhanced GA content in G. lucidum. This study provides useful information for further studying this gene and on its function in the ganoderic acid biosynthetic pathway in G. lucidum.

  16. Molecular mechanism of anticancer effect of Sclerotium rolfsii lectin in HT29 cells involves differential expression of genes associated with multiple signaling pathways: A microarray analysis.

    PubMed

    Barkeer, Srikanth; Guha, Nilanjan; Hothpet, Vishwanathreddy; Saligrama Adavigowda, Deepak; Hegde, Prajna; Padmanaban, Arunkumar; Yu, Lu-Gang; Swamy, Bale M; Inamdar, Shashikala R

    2015-12-01

    Sclerotium rolfsii lectin (SRL) is a lectin isolated from fungus S. rolfsii and has high binding specificity toward the oncofetal Thomsen-Friedenreich carbohydrate antigen (Galβ1-3GalNAc-α-O-Ser/Thr, T or TF), which is expressed in more than 90% of human cancers. Our previous studies have shown that binding of SRL to human colon, breast and ovarian cancer cells induces cell apoptosis in vitro and suppresses tumor growth in vivo. This study investigated the SRL-mediated cell signaling in human colon cancer HT29 cells by mRNA and miRNA microarrays. It was found that SRL treatment results in altered expression of several hundred molecules including mitogen-activated protein kinase (MAPK) and c-JUN-associated, apoptosis-associated and cell cycle and DNA replication-associated signaling molecules. Pathway analysis using GeneSpring 12.6.1 revealed that SRL treatment induces changes of MAPK and c-JUN-associated signaling pathways as early as 2 h while changes of cell cycle, DNA replication and apoptosis pathways were significantly affected only after 24 h. A significant change of cell miRNA expression was also observed after 12 h treatment of the cells with SRL. These changes were further validated by quantitative real time polymerase chain reaction and immunoblotting. This study thus suggests that the presence of SRL affects multiple signaling pathways in cancer cells with early effects on cell proliferation pathways associated with MAPK and c-JUN, followed by miRNA-associated cell activity and apoptosis. This provides insight information into the molecular mechanism of the anticancer activity of this fungal lectin.

  17. Negative feedback contributes to the stochastic expression of the interferon-β gene in virus-triggered type I interferon signaling pathways.

    PubMed

    Zhang, Wei; Tian, Tianhai; Zou, Xiufen

    2015-07-01

    Type I interferon (IFN) signaling pathways play an essential role in the defense against early viral infections; however, the diverse and intricate molecular mechanisms of virus-triggered type I IFN responses are still poorly understood. In this study, we analyzed and compared two classes of models i.e., deterministic ordinary differential equations (ODEs) and stochastic models to elucidate the dynamics and stochasticity of type I IFN signaling pathways. Bifurcation analysis based on an ODE model reveals that the system exhibits a bistable switch and a one-way switch at high or low levels when the strengths of the negative and positive feedbacks are tuned. Furthermore, we compared the stochastic simulation results under the Master and Langevin equations. Both of the stochastic equations generate the bistable switch phenomenon, and the distance between two stable states are smaller than normal under the simulation of the Langevin equation. The quantitative computations also show that a moderate ratio between positive and negative feedback strengths is required to ensure a reliable switch between the different IFN concentrations that regulate the immune response. Moreover, we propose a multi-state stochastic model based on the above deterministic model to describe the multi-cellular system coupled with the diffusion of IFNs. The perturbation and inhibition analysis showed that the positive feedback, as well as noises, has little effect on the stochastic expression of IFNs, but the negative feedback of ISG56 on the activation of IRF7 has a great influence on IFN stochastic expression. Together, these results reveal that positive feedback stabilizes IFN gene expression, and negative feedback may be the main contribution to the stochastic expression of the IFN gene in the virus-triggered type I IFN response. These findings will provide new insight into the molecular mechanisms of virus-triggered type I IFN signaling pathways.

  18. Hypothalamic differences in expression of genes involved in monoamine synthesis and signaling pathways after insulin injection in chickens from lines selected for high and low body weight.

    PubMed

    Zhang, Wei; Kim, Sungwon; Settlage, Robert; McMahon, Wyatt; Sumners, Lindsay H; Siegel, Paul B; Dorshorst, Benjamin J; Cline, Mark A; Gilbert, Elizabeth R

    2015-04-01

    Long-term selection for juvenile body weight from a common founder population resulted in two divergent chicken lines (low-weight selected line (LWS), high-weight selected line (HWS)) that display distinct food intake and blood glucose responses to exogenous neuropeptides and insulin. The objective of this study was to elucidate putative targets affecting food intake and energy homeostasis by sequencing hypothalamic RNA from LWS and HWS chickens after insulin injection. Ninety-day-old female LWS and HWS chickens were injected with either vehicle or insulin and hypothalamus collected at 1 h postinjection. Through RNA sequencing, a total of 361 differentially expressed genes (DEGs) were identified. There was greater expression of genes, mainly tyrosine hydroxylase (TH), L-aromatic amino acid decarboxylase (DDC), and vesicular monoamine transporter (VMAT), involved in serotonin and dopamine biosynthesis and signaling in LWS than in HWS vehicle-injected chickens. In contrast, after insulin injection, these genes were more highly expressed in HWS than in LWS. We identified 90 single nucleotide polymorphisms (SNPs) existing only in the HWS and 121 SNPs specific to LWS and 5119 SNPs close to fixation (with absolute frequency difference ≥0.9). Four were located in genes encoding enzymes associated with serotonergic and dopaminergic pathways, such as DDC, TH, and solute carrier family 18, member 2 (VMAT). These data implicate differences in biogenic amines such as serotonin and dopamine in hypothalamic physiology between the chicken lines, and these differences might be associated with polymorphisms during long-term selection. Changes in serotonergic and dopaminergic signaling pathways in response to insulin injection suggest a role in whole-body energy homeostasis.

  19. Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: implications for PD-1 pathway blockade

    PubMed Central

    Taube, Janis M.; Young, Geoffrey D.; McMiller, Tracee L.; Chen, Shuming; Salas, January T.; Pritchard, Theresa S.; Xu, Haiying; Meeker, Alan K.; Fan, Jinshui; Cheadle, Chris; Berger, Alan E.; Pardoll, Drew M.; Topalian, Suzanne L.

    2015-01-01

    Purpose Blocking the immunosuppressive PD-1/PD-L1 pathway has anti-tumor activity in multiple cancer types, and PD-L1 expression on tumor cells and infiltrating myeloid cells correlates with the likelihood of response. We previously found that IFNG (interferon-gamma) was over-expressed by TILs in PD-L1+ vs. PD-L1(−) melanomas, creating adaptive immune resistance by promoting PD-L1 display. The current study was undertaken to identify additional factors in the PD-L1+ melanoma microenvironment coordinately contributing to immunosuppression. Experimental design Archived, formalin-fixed paraffin-embedded melanoma specimens were assessed for PD-L1 protein expression at the tumor cell surface with immunohistochemistry (IHC). Whole genome expression analysis, quantitative (q)RT-PCR, immunohistochemistry, and functional in vitro validation studies were employed to assess factors differentially expressed in PD-L1+ versus PD-L1(−) melanomas. Results Functional annotation clustering based on whole genome expression profiling revealed pathways up-regulated in PD-L1+ melanomas, involving immune cell activation, inflammation, and antigen processing and presentation. Analysis by qRT-PCR demonstrated over-expression of functionally related genes in PD-L1+ melanomas, involved in CD8+ T cell activation (CD8A, IFNG, PRF1, CCL5), antigen presentation (CD163, TLR3, CXCL1, LYZ), and immunosuppression [PDCD1 (PD-1), CD274(PD-L1), LAG3, IL10]. Functional studies demonstrated that some factors, including IL-10 and IL-32-gamma, induced PD-L1 expression on monocytes but not tumor cells. Conclusions These studies elucidate the complexity of immune checkpoint regulation in the tumor microenvironment, identifying multiple factors likely contributing to coordinated immunosuppression. These factors may provide tumor escape mechanisms from anti-PD-1/PD-L1 therapy, and should be considered for co-targeting in combinatorial immunomodulation treatment strategies. PMID:25944800

  20. CaaX-prenyltransferases are essential for expression of genes involvedin the early stages of monoterpenoid biosynthetic pathway in Catharanthus roseus cells.

    PubMed

    Courdavault, Vincent; Thiersault, Martine; Courtois, Martine; Gantet, Pascal; Oudin, Audrey; Doireau, Pierre; St-Pierre, Benoit; Giglioli-Guivarc'h, Nathalie

    2005-04-01

    CaaX-prenyltransferases (CaaX-PTases) catalyse the covalent attachment of isoprenyl groups to conserved cysteine residues located at the C-terminal CaaX motif of a protein substrate. This post-translational modification is required for the function and/or subcellular localization of some transcription factors and components of signal transduction and membrane trafficking machinery. CaaX-PTases, including protein farnesyltransferase (PFT) and type-I protein geranylgeranyltransferase (PGGT-I), are heterodimeric enzymes composed of a common alpha subunit and a specific beta subunit. We have established RNA interference cell lines targeting the beta subunits of PFT and PGGT-I, respectively, in the Catharanthus roseus C20D cell line, which synthesizes monoterpenoid indole alkaloids in response to auxin depletion from the culture medium. In both types of RNAi cell lines, expression of a subset of genes involved in the early stage of monoterpenoid biosynthetic pathway (ESMB genes), including the MEP pathway, is strongly decreased. The role of CaaX-PTases in ESMB gene regulation was confirmed by using the general prenyltransferase inhibitor s-perillyl alcohol (SP) and the specific PFT inhibitor Manumycin A on the wild type line. Furthermore, supplementation of SP inhibited cells with monoterpenoid intermediates downstream of the steps encoded by the ESMB genes restores monoterpenoid indole alkaloids biosynthesis. We conclude that protein targets for both PFT and PGGT-I are required for the expression of ESMB genes and monoterpenoid biosynthesis in C. roseus, this represents a non previously described role for protein prenyltransferase in plants.

  1. Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray.

    PubMed

    Shang, Hung-Sheng; Shih, Yung-Luen; Lee, Ching-Hsiao; Hsueh, Shu-Ching; Liu, Jia-You; Liao, Nien-Chieh; Chen, Yung-Liang; Huang, Yi-Ping; Lu, Hsu-Feng; Chung, Jing-Gung

    2017-01-01

    Sulforaphane (SFN), one of the isothiocyanates, is a biologically active compound extracted from cruciferous vegetables, and has been shown to induce cytotoxic effects on many human cancer cells including human leukemia cells. However, the exact molecular mechanism and altered gene expression associated with apoptosis is unclear. In this study, we investigated SFN-induced cytotoxic effects and whether or not they went through cell-cycle arrest and induction of apoptosis and further examined molecular mechanism and altered gene expression in human leukemia HL-60 cells. Cell viability, cell-cycle distribution, sub-G1 (apoptosis), reactive oxygen species (ROS) and Ca(2+) production, levels of mitochondrial membrane potential (ΔΨm ), and caspase-3, -8, and -9 activities were assayed by flow cytometry. Apoptosis-associated proteins levels and gene expressions were examined by Western blotting and cDNA microarray assays, respectively. Results indicated that SFN decreased viable cells, induced G2/M phase arrest and apoptosis based on sub-G1 phase development. Furthermore, SFN increased ROS and Ca(2+) production and decreased the levels of ΔΨm and activated caspase-3, -8, and -9 activities in HL-60 cells. SFN significantly upregulated the expression of BAX, Bid, Fas, Fas-L, caspase-8, Endo G, AIF, and cytochrome c, and inhibited the antiapoptotic proteins such as Bcl-x and XIAP, that is associated with apoptosis. We also used cDNA microarray to confirm several gene expressions such as caspase -8, -3, -4, -6, and -7 that are affected by SFN. Those results indicated that SFN induced apoptosis in HL-60 cells via Fas- and mitochondria-dependent pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 311-328, 2017.

  2. Sequence and expression variations in 23 genes involved in mitochondrial and non-mitochondrial apoptotic pathways and risk of oral leukoplakia and cancer.

    PubMed

    Datta, Sayantan; Ray, Anindita; Singh, Richa; Mondal, Pinaki; Basu, Analabha; De Sarkar, Navonil; Majumder, Mousumi; Maiti, Guruparasad; Baral, Aradhita; Jha, Ganga Nath; Mukhopadhyay, Indranil; Panda, Chinmay; Chowdhury, Shantanu; Ghosh, Saurabh; Roychoudhury, Susanta; Roy, Bidyut

    2015-11-01

    Oral cancer is usually preceded by pre-cancerous lesion and related to tobacco abuse. Tobacco carcinogens damage DNA and cells harboring such damaged DNA normally undergo apoptotic death, but cancer cells are exceptionally resistant to apoptosis. Here we studied association between sequence and expression variations in apoptotic pathway genes and risk of oral cancer and precancer. Ninety nine tag SNPs in 23 genes, involved in mitochondrial and non-mitochondrial apoptotic pathways, were genotyped in 525 cancer and 253 leukoplakia patients and 538 healthy controls using Illumina Golden Gate assay. Six SNPs (rs1473418 at BCL2; rs1950252 at BCL2L2; rs8190315 at BID; rs511044 at CASP1; rs2227310 at CASP7 and rs13010627 at CASP10) significantly modified risk of oral cancer but SNPs only at BCL2, CASP1and CASP10 modulated risk of leukoplakia. Combination of SNPs showed a steep increase in risk of cancer with increase in "effective" number of risk alleles. In silico analysis of published data set and our unpublished RNAseq data suggest that change in expression of BID and CASP7 may have affected risk of cancer. In conclusion, three SNPs, rs1473418 in BCL2, rs1950252 in BCL2L2 and rs511044 in CASP1, are being implicated for the first time in oral cancer. Since SNPs at BCL2, CASP1 and CASP10 modulated risk of both leukoplakia and cancer, so, they should be studied in more details for possible biomarkers in transition of leukoplakia to cancer. This study also implies importance of mitochondrial apoptotic pathway gene (such as BCL2) in progression of leukoplakia to oral cancer.

  3. Inhibitory effect of eugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxin biosynthetic pathway.

    PubMed

    Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Allameh, Abdolamir; Razzaghi-Abyaneh, Mehdi

    2015-07-01

    Aflatoxin contamination of grains and agro-products is a serious food safety issue and a significant economic concern worldwide. In the present study, the effects of eugenol on Aspergillus parasiticus growth and aflatoxin production were studied in relation to the expression of some essential genes involved in aflatoxin biosynthetic pathway. The fungus was cultured in presence of serial two-fold concentrations of eugenol (15.62-500 μg mL(-1)) for 3 days at 28 °C. Mycelia dry weight was determined as an index of fungal growth, while aflatoxin production was assessed by high performance liquid chromatography. The expression of aflatoxin biosynthetic genes including ver-1, nor-1, pksA, omtA and aflR were evaluated by real-time PCR. Eugenol strongly inhibited A. parasiticus growth in the range of 19.16-95.83 % in a dose-dependent manner. Aflatoxin B1 production was also inhibited by the compound in the range of 15.07-98.0 %. The expressions of ver-1, nor-1, pksA, omtA and aflR genes were significantly suppressed by eugenol at concentrations of 62.5 and 125 μg mL(-1). These results indicate that eugenol may be considered as a good candidate to control toxigenic fungal growth and the subsequent contamination of food, feed and agricultural commodities by carcinogenic aflatoxins.

  4. The fungal opsin gene nop-1 is negatively-regulated by a component of the blue light sensing pathway and influences conidiation-specific gene expression in Neurospora crassa.

    PubMed

    Bieszke, Jennifer A; Li, Liande; Borkovich, Katherine A

    2007-09-01

    We previously demonstrated that the nop-1 gene encodes a putative green-light opsin photoreceptor that is highly expressed in cultures that support asexual sporulation (conidiation) in Neurospora crassa. In this study, we demonstrate that nop-1 is a late-stage conidiation gene, through analysis of nop-1 transcript levels in wild-type strains and mutants blocked at various stages of conidiation. nop-1 message amounts are similar with constant illumination or darkness during conidiation, consistent with developmental, but not light, regulation of nop-1 expression. Furthermore, photoinduction experiments using wild type and mutants defective in components of the blue light sensing pathway (wc-1 and wc-2) indicate that nop-1 mRNA levels are not appreciably affected by brief light exposure during conidiation. Surprisingly, nop-1 message amounts are greatly elevated in wc-2 mutants in light or dark, suggesting that the wc-2 gene product regulates nop-1 expression in a light-independent manner. Analysis of expression patterns for al-2, con-10 and con-13, genes regulated by conidiation and/or blue light, showed that nop-1 has significant and reproducible effects on all three genes during various stages of conidiation. The results suggest that NOP-1 directly or indirectly modulates carotenogenesis and repression of conidiation-specific gene expression in N. crassa.

  5. The Shared Crosstalk of Multiple Pathways Involved in the Inflammation between Rheumatoid Arthritis and Coronary Artery Disease Based on a Digital Gene Expression Profile

    PubMed Central

    Zhang, Zhiguo; Jiang, Miao; He, Dan; Bian, Yanqin; Zhang, Ge; Bian, Zhaoxiang; Lu, Aiping

    2014-01-01

    Rheumatoid arthritis (RA) and coronary artery disease (CAD) are both complex inflammatory diseases, and an increased prevalence of CAD and a high rate of mortality have been observed in RA patients. But the molecular mechanism of inflammation that is shared between the two disorders is unclear. High-throughput techniques, such as transcriptome analysis, are becoming important tools for genetic biomarker discovery in highly complex biological samples, which is critical for the diagnosis, prognosis, and treatment of disease. In the present study, we reported one type of transcriptome analysis method: digital gene expression profiling of peripheral blood mononuclear cells of 10 RA patients, 10 CAD patients and 10 healthy people. In all, 213 and 152 differently expressed genes (DEGs) were identified in RA patients compared with normal controls (RA vs. normal) and CAD patients compared with normal controls (CAD vs. normal), respectively, with 73 shared DEGs between them. Using this technique in combination with Ingenuity Pathways Analysis software, the effects on inflammation of four shared canonical pathways, three shared activated predicted upstream regulators and three shared molecular interaction networks were identified and explored. These shared molecular mechanisms may provide the genetic basis and potential targets for optimizing the application of current drugs to more effectively treat these diseases simultaneously and for preventing one when the other is diagnosed. PMID:25514790

  6. Gene Expression of Mesothelioma in Vinylidene Chloride-Exposed F344/N Rats Reveals Immune Dysfunction, Tissue Damage, and Inflammation Pathways

    PubMed Central

    Blackshear, Pamela E.; Pandiri, Arun R.; Nagai, Hiroaki; Bhusari, Sachin; Hong, Lily; Ton, Thai-Vu T.; Clayton, Natasha P.; Wyde, Michael; Shockley, Keith R.; Peddada, Shyamal D.; Gerrish, Kevin E.; Sills, Robert C.; Hoenerhoff, Mark J.

    2014-01-01

    A majority (~80%) of human malignant mesotheliomas are asbestos-related. However, non-asbestos risk factors (radiation, chemicals, genetic factors) account for up to 30% of cases. A recent two-year National Toxicology Program carcinogenicity bioassay showed that male F344/N rats exposed to the industrial toxicant vinylidene chloride (VDC) resulted in a marked increase in malignant mesothelioma. Global gene expression profiles of these tumors were compared to spontaneous mesotheliomas and the F344/N rat mesothelial cell line (Fred-PE) in order to characterize the molecular features and chemical-specific profiles of mesothelioma in VDC-exposed rats. As expected, mesotheliomas from control and vinylidene chloride-exposed rats shared pathways associated with tumorigenesis, including cellular and tissue development, organismal injury, embryonic development, inflammatory response, cell cycle regulation, and cellular growth and proliferation, while mesotheliomas from vinylidene chloride-exposed rats alone showed overrepresentation of pathways associated with pro-inflammatory pathways and immune dysfunction such as the NF-kB signaling pathway, IL-8 and IL-12 signaling, interleukin responses, Fc receptor signaling, and NK and DC signaling, as well as overrepresentation of DNA damage and repair. These data suggest that a chronic, proinflammatory environment associated with VDC exposure may exacerbate disturbances in oncogene, growth factor and cell cycle regulation, resulting in an increased incidence of mesothelioma. PMID:24958746

  7. Heavy Metal Ion Regulation of Gene Expression: MECHANISMS BY WHICH LEAD INHIBITS OSTEOBLASTIC BONE-FORMING ACTIVITY THROUGH MODULATION OF THE Wnt/β-CATENIN SIGNALING PATHWAY.

    PubMed

    Beier, Eric E; Sheu, Tzong-Jen; Dang, Deborah; Holz, Jonathan D; Ubayawardena, Resika; Babij, Philip; Puzas, J Edward

    2015-07-17

    Exposure to lead (Pb) from environmental sources remains an overlooked and serious public health risk. Starting in childhood, Pb in the skeleton can disrupt epiphyseal plate function, constrain the growth of long bones, and prevent attainment of a high peak bone mass, all of which will increase susceptibility to osteoporosis later in life. We hypothesize that the effects of Pb on bone mass, in part, come from depression of Wnt/β-catenin signaling, a critical anabolic pathway for osteoblastic bone formation. In this study, we show that depression of Wnt signaling by Pb is due to increased sclerostin levels in vitro and in vivo. Downstream activation of the β-catenin pathway using a pharmacological inhibitor of GSK-3β ameliorates the Pb inhibition of Wnt signaling activity in the TOPGAL reporter mouse. The effect of Pb was determined to be dependent on sclerostin expression through use of the SOST gene knock-out mice, which are resistant to Pb-induced trabecular bone loss and maintain their mechanical bone strength. Moreover, isolated bone marrow cells from the sclerostin null mice show improved bone formation potential even after exposure to Pb. Also, our data suggest that the TGFβ canonical signaling pathway is the mechanism by which Pb controls sclerostin production. Taken together these results support our hypothesis that the osteoporotic-like phenotype observed after Pb exposure is, in part, regulated through modulation of the Wnt/β-catenin pathway.

  8. Intestinotrophic Glucagon-Like Peptide-2 (GLP-2) Activates Intestinal Gene Expression and Growth Factor-Dependent Pathways Independent of the Vasoactive Intestinal Peptide Gene in Mice

    PubMed Central

    Yusta, Bernardo; Holland, Dianne; Waschek, James A.

    2012-01-01

    The enteroendocrine and enteric nervous systems convey signals through an overlapping network of regulatory peptides that act either as circulating hormones or as localized neurotransmitters within the gastrointestinal tract. Because recent studies invoke an important role for vasoactive intestinal peptide (VIP) as a downstream mediator of glucagon-like peptide-2 (GLP-2) action in the gut, we examined the importance of the VIP-GLP-2 interaction through analysis of Vip−/− mice. Unexpectedly, we detected abnormal villous architecture, expansion of the crypt compartment, increased crypt cell proliferation, enhanced Igf1 and Kgf gene expression, and reduced expression of Paneth cell products in the Vip−/− small bowel. These abnormalities were not reproduced by antagonizing VIP action in wild-type mice, and VIP administration did not reverse the intestinal phenotype of Vip−/− mice. Exogenous administration of GLP-2 induced the expression of ErbB ligands and immediate-early genes to similar levels in Vip+/+ vs. Vip−/− mice. Moreover, GLP-2 significantly increased crypt cell proliferation and small bowel growth to comparable levels in Vip+/+ vs. Vip−/− mice. Unexpectedly, exogenous GLP-2 administration had no therapeutic effect in mice with dextran sulfate-induced colitis; the severity of colonic injury and weight loss was modestly reduced in female but not male Vip−/− mice. Taken together, these findings extend our understanding of the complex intestinal phenotype arising from loss of the Vip gene. Furthermore, although VIP action may be important for the antiinflammatory actions of GLP-2, the Vip gene is not required for induction of a gene expression program linked to small bowel growth after enhancement of GLP-2 receptor signaling. PMID:22535770

  9. Differential expression of genes involved in alternative glycolytic pathways, phosphorus scavenging and recycling in response to aluminum and phosphorus interactions in Citrus roots.

    PubMed

    Yang, Lin-Tong; Jiang, Huan-Xin; Qi, Yi-Ping; Chen, Li-Song

    2012-05-01

    The objective was to determine the possible links between the expression levels of genes involved in alternative glycolytic pathways, phosphorus (P) scavenging and recycling and Citrus tolerance to aluminum (Al) and/or P-deficiency. 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 0 and 1.2 mM AlCl(3)·6H(2)O × 0, 50 and 200 μM KH(2)PO(4). C. sinensis displayed more tolerant to Al and P-deficiency than C. grandis. Under Al stress, C. sinensis accumulated more Al in roots and less Al in shoots than C. grandis. P concentration was higher in C. sinensis shoots and roots than in C. grandis ones. C. sinensis roots secreted more malate and citrate than C. grandis ones when exposed to Al. Al-induced-secretion of malate and citrate by excised roots from Al-treated seedlings decreased with increasing P supply. Al-induced-secretion of malate and citrate from roots and Al precipitation by P in roots might be responsible for Al-tolerance of C. sinensis. qRT-PCR analysis showed that Al-activated malate transporter (ALMT1), ATP-dependent phosphofructokinase (ATP-PFK), pyrophosphate-dependent phosphofructokinase (PPi-PFK), tonoplast adenosine-triphosphatase subunit A (V-ATPase A), tonoplast pyrophosphatase (V-PPiase), pyruvate kinase (PK), acid phosphatase (APase), phosphoenolpyruvate carboxylase (PEPC), malic enzyme (ME) and malate dehydrogenase (MDH) genes might contribute to the tolerance of Citrus to Al and/or P-deficiency, but any single gene could not explain the differences between the two species. Citrus tolerance to Al and/or P-deficiency might be caused by the coordinated regulation of gene expression involved in alternative glycolytic pathways, P scavenging and recycling.

  10. Down-Regulation of TLR and JAK/STAT Pathway Genes Is Associated with Diffuse Cutaneous Leishmaniasis: A Gene Expression Analysis in NK Cells from Patients Infected with Leishmania mexicana

    PubMed Central

    Castillo-Fernández, Juan E.; Miranda-Ortíz, Haydee; Fernández-López, Juan C.; Becker, Ingeborg; Rangel-Escareño, Claudia

    2016-01-01

    An important NK-cell inhibition with reduced TNF-α, IFN-γ and TLR2 expression had previously been identified in patients with diffuse cutaneous leishmaniasis (DCL) infected with Leishmania mexicana. In an attempt to pinpoint alterations in the signaling pathways responsible for the NK-cell dysfunction in patients with DCL, this study aimed at identifying differences in the NK-cell response towards Leishmania mexicana lipophosphoglycan (LPG) between patients with localized and diffuse cutaneous leishmaniasis through gene expression profiling. Our results indicate that important genes involved in the innate immune response to Leishmania are down-regulated in NK cells from DCL patients, particularly TLR and JAK/STAT signaling pathways. This down-regulation showed to be independent of LPG stimulation. The study sheds new light for understanding the mechanisms that undermine the correct effector functions of NK cells in patients with diffuse cutaneous leishmaniasis contributing to a better understanding of the pathobiology of leishmaniasis. PMID:27031998

  11. Identification of cellular genes induced in human cells after activation of the OAS/RNaseL pathway by vaccinia virus recombinants expressing these antiviral enzymes.

    PubMed

    Domingo-Gil, Elena; González, José Manuel; Esteban, Mariano

    2010-03-01

    Interferon (IFN) type I induces the expression of antiviral proteins such as 2',5'-oligoadenylate synthetases (OAS). The enzyme OAS is activated by dsRNA to produce 5'-phosphorylated, 2-5-linked oligoadenylates (2-5A) that activate RNaseL which, in turn, triggers RNA breakdown, leading to multiple biological functions. Although RNaseL is required for IFN antiviral function, there are many aspects of the molecular mechanisms that remain obscure. Here, we have used microarray analyses from human HeLa cells infected with vaccinia virus (VACV) recombinants expressing OAS-RNaseL enzymes (referred as 2-5A system) with the aim to identify host genes that are up- or down-regulated in the course of infection by the activation of this antiviral pathway. We found that activation of the 2-5A system from VACV recombinants produces a remarkable stimulation of transcription for genes that regulate many cellular processes, like those that promote cell growth arrest, GADD45B and KCTD11, apoptosis as CUL2, PDCD6, and TNFAIP8L2, IFN-stimulated genes as IFI6, and related to tumor suppression as PLA2G2A. The 2-5A system activation produces down-regulation of transcription of some genes that promote cell growth as RUNX2 and ESR2 and of genes in charge to maintain mitochondria homeostasis as MIPEP and COX5A. These results reveal new genes induced in response to the activation of the 2-5A system with roles in apoptosis, translational control, cell growth arrest, and tumor suppression.

  12. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity.

    PubMed

    Wang, Jian; Lv, Mengting; Islam, Faisal; Gill, Rafaqat A; Yang, Chong; Ali, Basharat; Yan, Guijun; Zhou, Weijun

    2016-11-01

    The auxin herbicide quinclorac is widely used for controlling weeds in transplanted and direct-seeded rice fields. However, its phytotoxic responses on rice are still unknown. Therefore, in the present investigation we studied the effects of different concentrations (0, 0.1 and 0.5g/L) of quinclorac herbicide on the physiological and biochemical changes of two rice cultivars (XS 134 and ZJ 88) and further analyzed the ameliorating role of salicylic acid (SA) on quinclorac toxicity in rice plants. The results revealed that exogenous application of SA significantly increased plant biomass and total chlorophyll contents in herbicide stressed plants. The lipid peroxidation and ROS (H2O2, O2(-.), (-)OH) production were significantly increased in roots and leaves of both rice cultivars under quinclorac stress, demonstrating an oxidative burst in rice plants. Whereas, application of SA significantly lowered ROS contents under quinclorac stress. Further, exogenous SA treatment significantly modulated antioxidant enzymes and enhanced GSH concentration in stress plants. Anatomical observations of leaf and root revealed that herbicide affected internal structures, while SA played a vital role in protection from toxic effects. Expression analysis of stress hormone ABA genes (OsABA8oxs, OsNCEDs) revealed that quinclorac application enhanced stress condition in cultivar ZJ 88, while SA treatment downregulated ABA genes more in cultivar XS 134, which correlated with the enhanced tolerance to quinclorac induced oxidative stress in this cultivar. The present study delineated that SA played a critical role under quinclorac stress in both rice cultivars by regulating antioxidant defense system, reducing ROS formation and preventing the degradation of internal cell organelles.

  13. Modification of Leaf Glucosinolate Contents in Brassica oleracea by Divergent Selection and Effect on Expression of Genes Controlling Glucosinolate Pathway

    PubMed Central

    Sotelo, Tamara; Velasco, Pablo; Soengas, Pilar; Rodríguez, Víctor M.; Cartea, María E.

    2016-01-01

    Modification of the content of secondary metabolites opens the possibility of obtaining vegetables enriched in these compounds related to plant defense and human health. We report the first results of a divergent selection for glucosinolate (GSL) content of the three major GSL in leaves: sinigrin (SIN), glucoiberin (GIB), and glucobrassicin (GBS) in order to develop six kale genotypes (Brassica oleracea var. acephala) with high (HSIN, HIGIB, HGBS) and low (LSIN, LGIB, LGBS) content. The aims were to determine if the three divergent selections were successful in leaves, how each divergent selection affected the content of the same GSLs in flower buds and seeds and to determine which genes would be involved in the modification of the content of the three GSL studied. The content of SIN and GIB after three cycles of divergent selection increased 52.5% and 77.68%, and decreased 51.9% and 45.33%, respectively. The divergent selection for GBS content was only successful and significant for decreasing the concentration, with a reduction of 39.04%. Mass selection is an efficient way of modifying the concentration of individual GSLs. Divergent selections realized in leaves had a side effect in the GSL contents of flower buds and seeds due to the novo synthesis in these organs and/or translocation from leaves. The results obtained suggest that modification in the SIN and GIB concentration by selection is related to the GSL-ALK locus. We suggest that this locus could be related with the indirect response found in the GBS concentration. Meantime, variations in the CYP81F2 gene expression could be the responsible of the variations in GBS content. The genotypes obtained in this study can be used as valuable materials for undertaking basic studies about the biological effects of the major GSLs present in kales. PMID:27471510

  14. Modification of Leaf Glucosinolate Contents in Brassica oleracea by Divergent Selection and Effect on Expression of Genes Controlling Glucosinolate Pathway.

    PubMed

    Sotelo, Tamara; Velasco, Pablo; Soengas, Pilar; Rodríguez, Víctor M; Cartea, María E

    2016-01-01

    Modification of the content of secondary metabolites opens the possibility of obtaining vegetables enriched in these compounds related to plant defense and human health. We report the first results of a divergent selection for glucosinolate (GSL) content of the three major GSL in leaves: sinigrin (SIN), glucoiberin (GIB), and glucobrassicin (GBS) in order to develop six kale genotypes (Brassica oleracea var. acephala) with high (HSIN, HIGIB, HGBS) and low (LSIN, LGIB, LGBS) content. The aims were to determine if the three divergent selections were successful in leaves, how each divergent selection affected the content of the same GSLs in flower buds and seeds and to determine which genes would be involved in the modification of the content of the three GSL studied. The content of SIN and GIB after three cycles of divergent selection increased 52.5% and 77.68%, and decreased 51.9% and 45.33%, respectively. The divergent selection for GBS content was only successful and significant for decreasing the concentration, with a reduction of 39.04%. Mass selection is an efficient way of modifying the concentration of individual GSLs. Divergent selections realized in leaves had a side effect in the GSL contents of flower buds and seeds due to the novo synthesis in these organs and/or translocation from leaves. The results obtained suggest that modification in the SIN and GIB concentration by selection is related to the GSL-ALK locus. We suggest that this locus could be related with the indirect response found in the GBS concentration. Meantime, variations in the CYP81F2 gene expression could be the responsible of the variations in GBS content. The genotypes obtained in this study can be used as valuable materials for undertaking basic studies about the biological effects of the major GSLs present in kales.

  15. The Gene YALI0E20207g from Yarrowia lipolytica Encodes an N-Acetylglucosamine Kinase Implicated in the Regulated Expression of the Genes from the N-Acetylglucosamine Assimilatory Pathway

    PubMed Central

    Flores, Carmen-Lisset; Gancedo, Carlos

    2015-01-01

    The non-conventional yeast Yarrowia lipolytica possesses an ORF, YALI0E20207g, which encodes a protein with an amino acid sequence similar to hexokinases from different organisms. We have cloned that gene and determined several enzymatic properties of its encoded protein showing that it is an N-acetylglucosamine (NAGA) kinase. This conclusion was supported by the lack of growth in NAGA of a strain carrying a YALI0E20207g deletion. We named this gene YlNAG5. Expression of YlNAG5 as well as that of the genes encoding the enzymes of the NAGA catabolic pathway—identified by a BLAST search—was induced by this sugar. Deletion of YlNAG5 rendered that expression independent of the presence of NAGA in the medium and reintroduction of the gene restored the inducibility, indicating that YlNag5 participates in the transcriptional regulation of the NAGA assimilatory pathway genes. Expression of YlNAG5 was increased during sporulation and homozygous Ylnag5/Ylnag5 diploid strains sporulated very poorly as compared with a wild type isogenic control strain pointing to a participation of the protein in the process. Overexpression of YlNAG5 allowed growth in glucose of an Ylhxk1glk1 double mutant and produced, in a wild type background, aberrant morphologies in different media. Expression of the gene in a Saccharomyces cerevisiae hxk1 hxk2 glk1 triple mutant restored ability to grow in glucose. PMID:25816199

  16. Network analysis of gene expression in peripheral blood identifies mTOR and NF-κB pathways involved in antipsychotic-induced extrapyramidal symptoms.

    PubMed

    Mas, S; Gassó, P; Parellada, E; Bernardo, M; Lafuente, A

    2015-10-01

    To identify the candidate genes for pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we propose a systems biology analytical approach, based on protein-protein interaction network construction and functional annotation analysis, of changes in gene expression (Human Genome U219 Array Plate) induced by treatment with risperidone or paliperidone in peripheral blood. 12 AP-naïve patients with first-episode psychosis participated in the present study. Our analysis revealed that, in response to AP treatment, constructed networks were enriched for different biological processes in patients without EPS (ubiquitination, protein folding and adenosine triphosphate (ATP) metabolism) compared with those presenting EPS (insulin receptor signaling, lipid modification, regulation of autophagy and immune response). Moreover, the observed differences also involved specific pathways, such as anaphase promoting complex /cdc20, prefoldin/CCT/triC and ATP synthesis in no-EPS patients, and mammalian target of rapamycin and NF-κB kinases in patients with EPS. Our results showing different patterns of gene expression in EPS patients, offer new and valuable markers for pharmacogenetic studies.

  17. SYBR® Green and TaqMan® quantitative PCR arrays: expression profile of genes relevant to a pathway or a disease state.

    PubMed

    Alvarez, M Lucrecia; Doné, Stefania Cotta

    2014-01-01

    Quantitative PCR arrays are the most reliable and accurate tool for analyzing the expression of a focused panel of genes relevant to a pathway or a disease state. PCR arrays allow gene expression analysis with the sensitivity, dynamic range, and specificity of a real-time PCR as well as the multi-gene profiling capability of a microarray. Differences among real-time PCR kits used in PCR arrays are largely restricted to the DNA polymerases and the detection methods used. In this chapter, we provide a step-by-step protocol for the two detection methods most commonly used in PCR arrays, known as SYBR(®) Green and TaqMan(®), which are based on two different approaches to detect PCR products. While SYBR(®) Green uses a binding dye that intercalates nonspecifically into double-stranded DNA, the TaqMan(®) approach relies on a fluorogenic oligonucleotide probe that binds only the DNA sequence between the two PCR primers. Therefore, only specific PCR product can generate a fluorescent signal in TaqMan(®) PCR. Here we also provide a comparison of the SYBR(®) Green and TaqMan(®) approaches and highlight their advantages and disadvantages to help the user to choose the best platform.

  18. High Expression of Antiviral and Vitamin D Pathway Genes Are a Natural Characteristic of a Small Cohort of HIV-1-Exposed Seronegative Individuals.

    PubMed

    Aguilar-Jimenez, Wbeimar; Saulle, Irma; Trabattoni, Daria; Vichi, Francesca; Lo Caputo, Sergio; Mazzotta, Francesco; Rugeles, Maria T; Clerici, Mario; Biasin, Mara

    2017-01-01

    Natural resistance to HIV-1 infection is influenced by genetics, viral-exposure, and endogenous immunomodulators such as vitamin D (VitD), being a multifactorial phenomenon that characterizes HIV-1-exposed seronegative individuals (HESNs). We compared mRNA expression of 10 antivirals, 5 immunoregulators, and 3 VitD pathway genes by qRT-PCR in cells of a small cohort of 11 HESNs, 16 healthy-controls (HCs), and 11 seropositives (SPs) at baseline, in response to calcidiol (VitD precursor) and/or aldithriol-2-(AT2)-inactivated HIV-1. In addition, the expression of TIM-3 on T and NK cells of six HCs after calcidiol and calcitriol (active VitD) treatments was evaluated by flow cytometry. Calcidiol increased the mRNA expression of HAVCR2 (TIM-3; Th1-cells inhibitor) in HCs and HESNs. AT2-HIV-1 increased the mRNA expression of the activating VitD enzyme CYP27B1, of the endogenous antiviral proteins MX2, TRIM22, APOBEC3G, and of immunoregulators ERAP2 and HAVCR2, but reduced the mRNA expression of VitD receptor (VDR) and antiviral peptides PI3 and CAMP in all groups. Remarkably, higher mRNA levels of VDR, CYP27B1, PI3, CAMP, SLPI, and of ERAP2 were found in HESNs compared to HCs either at baseline or after stimuli. Furthermore, calcitriol increases the percentage of CD4+ T cells expressing TIM-3 protein compared to EtOH controls. These results suggest that high mRNA expression of antiviral and VitD pathway genes could be genetically determined in HESNs more than viral-induced at least in peripheral blood mononuclear cells. Moreover, the virus could potentiate bio-activation and use of VitD, maintaining the homeostasis of the immune system. Interestingly, VitD-induced TIM-3 on T cells, a T cell inhibitory and anti-HIV-1 molecule, requires further studies to analyze the functional outcomes during HIV-1 infection.

  19. High Expression of Antiviral and Vitamin D Pathway Genes Are a Natural Characteristic of a Small Cohort of HIV-1-Exposed Seronegative Individuals

    PubMed Central

    Aguilar-Jimenez, Wbeimar; Saulle, Irma; Trabattoni, Daria; Vichi, Francesca; Lo Caputo, Sergio; Mazzotta, Francesco; Rugeles, Maria T.; Clerici, Mario; Biasin, Mara

    2017-01-01

    Natural resistance to HIV-1 infection is influenced by genetics, viral-exposure, and endogenous immunomodulators such as vitamin D (VitD), being a multifactorial phenomenon that characterizes HIV-1-exposed seronegative individuals (HESNs). We compared mRNA expression of 10 antivirals, 5 immunoregulators, and 3 VitD pathway genes by qRT-PCR in cells of a small cohort of 11 HESNs, 16 healthy-controls (HCs), and 11 seropositives (SPs) at baseline, in response to calcidiol (VitD precursor) and/or aldithriol-2-(AT2)-inactivated HIV-1. In addition, the expression of TIM-3 on T and NK cells of six HCs after calcidiol and calcitriol (active VitD) treatments was evaluated by flow cytometry. Calcidiol increased the mRNA expression of HAVCR2 (TIM-3; Th1-cells inhibitor) in HCs and HESNs. AT2-HIV-1 increased the mRNA expression of the activating VitD enzyme CYP27B1, of the endogenous antiviral proteins MX2, TRIM22, APOBEC3G, and of immunoregulators ERAP2 and HAVCR2, but reduced the mRNA expression of VitD receptor (VDR) and antiviral peptides PI3 and CAMP in all groups. Remarkably, higher mRNA levels of VDR, CYP27B1, PI3, CAMP, SLPI, and of ERAP2 were found in HESNs compared to HCs either at baseline or after stimuli. Furthermore, calcitriol increases the percentage of CD4+ T cells expressing TIM-3 protein compared to EtOH controls. These results suggest that high mRNA expression of antiviral and VitD pathway genes could be genetically determined in HESNs more than viral-induced at least in peripheral blood mononuclear cells. Moreover, the virus could potentiate bio-activation and use of VitD, maintaining the homeostasis of the immune system. Interestingly, VitD-induced TIM-3 on T cells, a T cell inhibitory and anti-HIV-1 molecule, requires further studies to analyze the functional outcomes during HIV-1 infection. PMID:28243241

  20. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro

    PubMed Central

    Leung, Ada W. Y.; Hung, Stacy S.; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A.; Aparicio, Samuel; Stirling, Peter C.; Steidl, Christian; Bally, Marcel B.

    2016-01-01

    Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell’s ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both

  1. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro.

    PubMed

    Leung, Ada W Y; Hung, Stacy S; Backstrom, Ian; Ricaurte, Daniel; Kwok, Brian; Poon, Steven; McKinney, Steven; Segovia, Romulo; Rawji, Jenna; Qadir, Mohammed A; Aparicio, Samuel; Stirling, Peter C; Steidl, Christian; Bally, Marcel B

    2016-01-01

    Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell's ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both

  2. Gene expression associated with in vivo induction of early phase-long-term potentiation (LTP) in the hippocampal mossy fiber-Cornus Ammonis (CA)3 pathway.

    PubMed

    Thompson, K J; Orfila, J E; Achanta, P; Martinez, J L

    2003-12-01

    Affymetrix microarray technology was used to characterize whole-hippocampus gene expression associated with in vivo N-methyl-D-aspartate (NMDA)-R-independent long-term potentiation (LTP) in the mossy fiber (MF)-Cornus Ammonis (CA)3 pathway of adult male F344 rats. Acute MF responses were evoked by stimulation of the MF bundle and recorded in stratum lucidum of CA3. Following recording of baseline responses at 0.05 Hz, animals received either CPP (NMDA-R antagonist, 10 mg/kg) or naloxone (opioid-R antagonist, 10 mg/kg). LTP was induced by two 100 Hz 1-sec trains at the intensity sufficient to evoke 50% of the maximal response. Responses were collected for an additional hour. In controls, MF responses were collected at 0.05 Hz for 1 hr, but 100 Hz trains were not delivered. Hippocampi were harvested prior to total RNA isolation. Fragmented cRNA was hybridized to a rat U34 neurobiology array. F344 rats exhibited characteristic LTP in the presence of CPP and LTP blockade in the presence of naloxone. As a result, genes associated with both NMDA-independent LTP and naloxone-induced blockade were identified. These include genes involved in transmitter transport, intracellular messengers, growth factors and ion channels. Up-regulated include NMDA-R2D, neuropeptide Y (NPY), proenkephalin, BDNF and NGFR. Down-regulated genes include IGF-1 and GABA-B.

  3. Expression of genes associated with cholesterol and lipid metabolism identified as a novel pathway in the early pathogenesis of Mycobacterium avium subspecies paratuberculosis-infection in cattle.

    PubMed

    Thirunavukkarasu, Shyamala; Plain, Karren M; de Silva, Kumudika; Begg, Douglas; Whittington, Richard J; Purdie, Auriol C

    2014-08-15

    Johne's disease (JD) is a chronic disease affecting ruminants and other species caused by the pathogenic mycobacterium, Mycobacterium avium subsp. paratuberculosis (MAP). MAP has developed a multitude of mechanisms to persist within the host, and these in turn are counteracted by the host through various immune pathways. Identifying and characterising the different strategies employed by MAP to alter the host immune system in its favour, and thereby persist intracellularly, could hold the key to developing strategies to fight this disease. In this study we analysed a subset of bovine microarray data derived from early time points after experimental infection with MAP. A specifically developed integrated approach was used to identify and validate host genes involved in cholesterol homeostasis (24DHCR, LDLR, SCD-1), calcium homeostasis and anti-bacterial defence mechanisms, (CD38, GIMAP6) which were downregulated in response to MAP exposure. A trend for upregulation of granulysin gene expression in MAP-exposed cattle in comparison to unexposed cattle was also observed. From these analyses, a model of potential pathogen-host interactions involving these novel pathways was developed which indicates an important role for host lipids in mycobacterial survival and persistence.

  4. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes.

    PubMed

    Battaglia, Evy; Zhou, Miaomiao; de Vries, Ronald P

    2014-09-01

    The pentose catabolic pathway (PCP) and the pentose phosphate pathway (PPP) are required for the conversion of pentose sugars in fungi and are linked via d-xylulose-5-phosphate. Previously, it was shown that the PCP is regulated by the transcriptional activators XlnR and AraR in Aspergillus niger. Here we assessed whether XlnR and AraR also regulate the PPP. Expression of two genes, rpiA and talB, was reduced in the ΔaraR/ΔxlnR strain and increased in the xylulokinase negative strain (xkiA1) on d-xylose and/or l-arabinose. Bioinformatic analysis of the 1 kb promoter regions of rpiA and talB showed the presence of putative XlnR binding sites. Combining all results in this study, it strongly suggests that these two PPP genes are under regulation of XlnR in A. niger.

  5. Disruption of period gene expression alters the inductive effects of dioxin on the AhR signaling pathway in the mouse liver

    SciTech Connect

    Qu Xiaoyu; Metz, Richard P.; Porter, Weston W.; Cassone, Vincent M.; Earnest, David J.

    2009-02-01

    The aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) are transcription factors that express Per-Arnt-Sim (PAS) DNA-binding motifs and mediate the metabolism of drugs and environmental toxins in the liver. Because these transcription factors interact with other PAS genes in molecular feedback loops forming the mammalian circadian clockworks, we determined whether targeted disruption or siRNA inhibition of Per1 and Per2 expression alters toxin-mediated regulation of the AhR signaling pathway in the mouse liver and Hepa1c1c7 hepatoma cells in vitro. Treatment with the prototypical Ahr ligand, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), had inductive effects on the primary targets of AhR signaling, Cyp1A1 and Cyp1B1, in the liver of all animals, but genotype-based differences were evident such that the toxin-mediated induction of Cyp1A1 expression was significantly greater (2-fold) in mice with targeted disruption of Per1 (Per1{sup ldc} and Per1{sup ldc}/Per2{sup ldc}). In vitro experiments yielded similar results demonstrating that siRNA inhibition of Per1 significantly increases the TCDD-induced expression of Cyp1A1 and Cyp1B1 in Hepa1c1c7 cells. Per2 inhibition in siRNA-infected Hepa1c1c7 cells had the opposite effect and significantly decreased both the induction of these p450 genes as well as AhR and Arnt expression in response to TCDD treatment. These findings suggest that Per1 may play a distinctive role in modulating AhR-regulated responses to TCDD in the liver.

  6. Gene expression of insulin signal-transduction pathway intermediates is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet.

    PubMed

    Kim, Y B; Nakajima, R; Matsuo, T; Inoue, T; Sekine, T; Komuro, M; Tamura, T; Tokuyama, K; Suzuki, M

    1996-09-01

    To elucidate the effects of dietary fatty acid composition on the insulin signaling pathway, we measured the gene expression of the earliest steps in the insulin action pathway in skeletal muscle of rats fed a safflower oil diet or a beef tallow diet. Rats were meal-fed an isoenergetic diet based on either safflower oil or beef tallow for 8 weeks. Both diets provided 45%, 35%, and 20% of energy as fat, carbohydrate, and protein, respectively. Insulin resistance, assessed from the diurnal rhythm of plasma glucose and insulin and the oral glucose tolerance test (OGTT), developed in rats fed a beef tallow diet. Body fat content was greater in rats fed a beef tallow diet versus a safflower oil diet. The level of insulin receptor mRNA, relative expression of the insulin receptor mRNA isoforms, and receptor protein were not affected by the composition of dietary fatty acids. The abundance of insulin receptor substrate-1 (IRS-1) and phosphatidylinositol (PI) 3-kinase mRNA and protein was significantly lower in rats fed a beef tallow diet versus a safflower oil diet. We conclude that long-term feeding of a high-fat diet with saturated fatty acids induces decrease in IRS-1 and PI 3-kinase mRNA and protein levels, causing insulin resistance in skeletal muscle.

  7. A chain reaction approach to modelling gene pathways

    PubMed Central

    Cheng, Gary C.; Chen, Dung-Tsa; Chen, James J.; Soong, Seng-jaw; Lamartiniere, Coral; Barnes, Stephen

    2012-01-01

    Background Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. Results In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By

  8. A chain reaction approach to modelling gene pathways.

    PubMed

    Cheng, Gary C; Chen, Dung-Tsa; Chen, James J; Soong, Seng-Jaw; Lamartiniere, Coral; Barnes, Stephen

    2012-08-01

    BACKGROUND: Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. RESULTS: In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By

  9. Effects of 4-nitrophenol on expression of the ER-α and AhR signaling pathway-associated genes in the small intestine of rats.

    PubMed

    Tang, Juan; Song, Meiyan; Watanabe, Gen; Nagaoka, Kentaro; Rui, Xiaoli; Li, ChunMei

    2016-09-01

    4-Nitrophenol (PNP) is a persistent organic pollutant that was proven to be an environmental endocrine disruptor. The aim of this study was to evaluate the role of the estrogen receptor-α (ER-α) and aryl hydrocarbon receptor (AhR) signaling pathway in regulating the damage response to PNP in the small intestine of rats. Wistar-Imamichi male rats (21 d) were randomly divided into two groups: the control group and PNP group. Each group had three processes that were gavaged with PNP or vehicle daily: single dose (1 d), repeated dose (3 consecutive days) (3 d), and repeated dose with recovery (3 consecutive days and 3 recovery days) (6 d). The weight of the body, the related viscera, and small intestine were examined. Histological parameters of the small intestine and the quantity of mucus proteins secreted by small goblet cells were determined using HE staining and PAS staining. The mRNA expression of AhR, ER-α, CYP1A1, and GST was measured by real-time qPCR. In addition, we also analyzed the AhR, ER-α, and CYP1A1 expression in the small intestine by immunohistochemical staining. The small intestines histologically changed in the PNP-treated rat and the expression of AhR, CYP1A1, and GST was increased. While ER-α was significantly decreased in the small intestine, simultaneously, when rats were exposed to a longer PNP treatment, the damages disappeared. Our results demonstrate that PNP has an effect on the expression of AhR signaling pathway genes, AhR, CYP1A1, and GST, and ER-α in the rat small intestine.

  10. Folate deprivation modulates the expression of autophagy- and circadian-related genes in HT-22 hippocampal neuron cells through GR-mediated pathway.

    PubMed

    Sun, Qinwei; Yang, Yang; Li, Xi; He, Bin; Jia, Yimin; Zhang, Nana; Zhao, Ruqian

    2016-08-01

    Folic acid (FA) is an extremely important nutrient for brain formation and development. FA deficiency is highly linked to brain degeneration and age-related diseases, which are also associated with autophagic activities and circadian rhythm in hippocampal neurons. However, little is known how autophagy- and circadian-related genes in hippocampal neurons are regulated under FA deficiency. Here, hippocampal neuroncells (HT-22) were employed to determine the effect of FA deprivation (FD) on the expression of relevant genes and to reveal the potential role of glucocorticoid receptor (GR). FD increased autophagic activities in HT-22 cells, associated with significantly (P<0.05) enhanced GR activation indicated by higher ratio of GR phosphorylation. Out of 17 autophagy-related genes determined, 8 was significantly (P<0.05) up-regulated in FD group, which includes ATG2b, ATG3, ATG4c, ATG5, ATG10, ATG12, ATG13 and ATG14. Meanwhile, 4 out of 7 circadian-related genes detected, Clock, Cry1, Cry2 and Per2, were significantly (P<0.05) up-regulated. The protein content of autophagy markers, LC3A and LC3B, was also increased significantly (P<0.05). ChIP assay showed that FD promoted (P<0.05) GR binding to the promoter sequence of ATG3 and Per2. Moreover, MeDIP analysis demonstrated significant (P<0.05) hypomethylation in the promoter sequence of ATG12, ATG13 and Per2 genes. Together, we speculate that FD increases the transcription of autophagy- and circadian-related genes through, at least partly, GR-mediated pathway. Our results provide a basis for future investigations into the intracellular regulatory network in response to folate deficiency.

  11. Fucoidan reduces oxidative stress by regulating the gene expression of HO‑1 and SOD‑1 through the Nrf2/ERK signaling pathway in HaCaT cells.

    PubMed

    Ryu, Min Ju; Chung, Ha Sook

    2016-10-01

    Fucoidan, a sulfated polysaccharide, is found in edible brown algae. In the present study, the molecular mechanisms of fucoidan against mild oxidative stress in human keratinocytes were investigated. The current study indicated that fucoidan significantly augmented the antioxidants heme oxygenase‑1 (HO‑1) and superoxide dismutase‑1 (SOD‑1) via the upregulation of nuclear factor erythroid 2‑related factor 2 (Nrf2) and markedly reduced the cytoplasmic stability of kelch‑like ECH‑associated protein 1. The upregulation of HO‑1 and SOD‑1 detected in the fucoidan‑treated cells may be responsible for the increased resistance to mild oxidative stress, indicating that fucoidan may augment the activities of antioxidant enzymes via stimulating Nrf2. This is the first report, to the best of our knowledge, to demonstrate that fucoidan attenuates oxidative stress by regulating the gene expression of SOD‑1 and HO‑1 via the Nrf2/extracellular signal‑regulated kinase signaling pathway.

  12. Shared gene expression patterns in mesenchymal progenitors derived from lung and epidermis in pulmonary arterial hypertension: identifying key pathways in pulmonary vascular disease

    PubMed Central

    Gaskill, Christa; Marriott, Shennea; Pratap, Sidd; Menon, Swapna; Hedges, Lora K.; Fessel, Joshua P.; Kropski, Jonathan A.; Ames, DeWayne; Wheeler, Lisa; Loyd, James E.; Hemnes, Anna R.; Roop, Dennis R.; Klemm, Dwight J.; Austin, Eric D.

    2016-01-01

    Abstract Rapid access to lung-derived cells from stable subjects is a major challenge in the pulmonary hypertension field, given the relative contraindication of lung biopsy. In these studies, we sought to demonstrate the importance of evaluating a cell type that actively participates in disease processes, as well as the potential to translate these findings to vascular beds in other nonlung tissues, in this instance perivascular skin mesenchymal cells (MCs). We utilized posttransplant or autopsy lung explant–derived cells (ABCG2-expressing mesenchymal progenitor cells [MPCs], fibroblasts) and skin-derived MCs to test the hypothesis that perivascular ABCG2 MPCs derived from pulmonary arterial hypertension (PAH) patient lung and skin would express a gene profile reflective of ongoing vascular dysfunction. By analyzing the genetic signatures and pathways associated with abnormal ABCG2 lung MPC phenotypes during PAH and evaluating them in lung- and skin-derived MCs, we have identified potential predictor genes for detection of PAH as well as a targetable mechanism to restore MPCs and microvascular function. These studies are the first to explore the utility of expanding the study of ABCG2 MPC regulation of the pulmonary microvasculature to the epidermis, in order to identify potential markers for adult lung vascular disease, such as PAH. PMID:28090290

  13. Shared gene expression patterns in mesenchymal progenitors derived from lung and epidermis in pulmonary arterial hypertension: identifying key pathways in pulmonary vascular disease.

    PubMed

    Gaskill, Christa; Marriott, Shennea; Pratap, Sidd; Menon, Swapna; Hedges, Lora K; Fessel, Joshua P; Kropski, Jonathan A; Ames, DeWayne; Wheeler, Lisa; Loyd, James E; Hemnes, Anna R; Roop, Dennis R; Klemm, Dwight J; Austin, Eric D; Majka, Susan M

    2016-12-01

    Rapid access to lung-derived cells from stable subjects is a major challenge in the pulmonary hypertension field, given the relative contraindication of lung biopsy. In these studies, we sought to demonstrate the importance of evaluating a cell type that actively participates in disease processes, as well as the potential to translate these findings to vascular beds in other nonlung tissues, in this instance perivascular skin mesenchymal cells (MCs). We utilized posttransplant or autopsy lung explant-derived cells (ABCG2-expressing mesenchymal progenitor cells [MPCs], fibroblasts) and skin-derived MCs to test the hypothesis that perivascular ABCG2 MPCs derived from pulmonary arterial hypertension (PAH) patient lung and skin would express a gene profile reflective of ongoing vascular dysfunction. By analyzing the genetic signatures and pathways associated with abnormal ABCG2 lung MPC phenotypes during PAH and evaluating them in lung- and skin-derived MCs, we have identified potential predictor genes for detection of PAH as well as a targetable mechanism to restore MPCs and microvascular function. These studies are the first to explore the utility of expanding the study of ABCG2 MPC regulation of the pulmonary microvasculature to the epidermis, in order to identify potential markers for adult lung vascular disease, such as PAH.

  14. Sex Reversal in C57BL/6J XY Mice Caused by Increased Expression of Ovarian Genes and Insufficient Activation of the Testis Determining Pathway

    PubMed Central

    Correa, Stephanie M.; Washburn, Linda L.; Kahlon, Ravi S.; Musson, Michelle C.; Bouma, Gerrit J.; Eicher, Eva M.; Albrecht, Kenneth H.

    2012-01-01

    Sex reversal can occur in XY humans with only a single functional WT1 or SF1 allele or a duplication of the chromosome region containing WNT4. In contrast, XY mice with only a single functional Wt1, Sf1, or Wnt4 allele, or mice that over-express Wnt4 from a transgene, reportedly are not sex-reversed. Because genetic background plays a critical role in testis differentiation, particularly in C57BL/6J (B6) mice, we tested the hypothesis that Wt1, Sf1, and Wnt4 are dosage sensitive in B6 XY mice. We found that reduced Wt1 or Sf1 dosage in B6 XYB6 mice impaired testis differentiation, but no ovarian tissue developed. If, however, a YAKR chromosome replaced the YB6 chromosome, these otherwise genetically identical B6 XY mice developed ovarian tissue. In contrast, reduced Wnt4 dosage increased the amount of testicular tissue present in Sf1+/− B6 XYAKR, Wt1+/− B6 XYAKR, B6 XYPOS, and B6 XYAKR fetuses. We propose that Wt1B6 and Sf1B6 are hypomorphic alleles of testis-determining pathway genes and that Wnt4B6 is a hypermorphic allele of an ovary-determining pathway gene. The latter hypothesis is supported by the finding that expression of Wnt4 and four other genes in the ovary-determining pathway are elevated in normal B6 XX E12.5 ovaries. We propose that B6 mice are sensitive to XY sex reversal, at least in part, because they carry Wt1B6 and/or Sf1B6 alleles that compromise testis differentiation and a Wnt4B6 allele that promotes ovary differentiation and thereby antagonizes testis differentiation. Addition of a “weak” Sry allele, such as the one on the YPOS chromosome, to the sensitized B6 background results in inappropriate development of ovarian tissue. We conclude that Wt1, Sf1, and Wnt4 are dosage-sensitive in mice, this dosage-sensitivity is genetic background-dependant, and the mouse strains described here are good models for the investigation of human dosage-sensitive XY sex reversal. PMID:22496664

  15. Overexpression of the wip1 gene abrogates the p38 MAPK/p53/Wip1 pathway and silences p16 expression in human breast cancers.

    PubMed

    Yu, Eunsil; Ahn, Yeon Sun; Jang, Se Jin; Kim, Mi-Jung; Yoon, Ho Sung; Gong, Gyungyub; Choi, Jene

    2007-03-01

    Wild-type p53-induced phosphatase (Wip1 or PPM1D) is a serine/threonine protein phosphatase expressed under various stress conditions, which selectively inactivates p38 MAPK. The finding that this gene is amplified in association with frequent gain of 17q21-24 in breast cancers supports its role as a driver oncogene. However, the pathogenetic mechanism of the wip1 gene expression in breast carcinogenesis remains to be elucidated. In this study, we examine Wip1 mRNA and protein expression in 20 breast cancer tissues and six cell lines. We additionally investigate the relationship among Wip1, active p38 MAPK, p53, and p16 proteins. In our experiments, Wip1 mRNA was significantly upregulated in 7 of 20 (35%) invasive breast cancer samples. Overexpression of Wip1 was inversely correlated with that of active (phosphor-) p38 MAPK (P = 0.007). Furthermore, Wip1-overexpressing tumors exhibited no or low levels of p16, which normally accumulates upon p38 MAPK activation (P = 0.057). Loss of p16 expression was not associated with hypermethylation of its promoter or loss of heterozygosity on 9p21. Among the 135 primary breast carcinomas further examined, a significant association was found between the Wip1 overexpression and negative staining for p53 (P value = 0.057), indicating that the tumors are wild-type for p53. This is first report showing that Wip1 overexpression abrogates the homeostatic balance maintained through the p38-p53-Wip1 pathway, and contributes to malignant progression by inactivating wild-type p53 and p38 MAPK as well as decreasing p16 protein levels in human breast tissues.

  16. Differential expression of Toll-like receptor pathway genes in chicken embryo fibroblasts from chickens resistant and susceptible to Marek's disease.

    PubMed

    Haunshi, Santosh; Cheng, Hans H

    2014-03-01

    The Toll-like receptor (TLR) signaling pathway is one of the innate immune defense mechanisms against pathogens in vertebrates and invertebrates. However, the role of TLR in non-MHC genetic resistance or susceptibility to Marek's disease (MD) in the chicken is yet to be elucidated. Chicken embryo fibroblast (CEF) cells from MD susceptible and resistant lines were infected either with Marek's disease virus (MDV) or treated with polyionosinic-polycytidylic acid, a synthetic analog of dsRNA, and the expression of TLR and pro-inflammatory cytokines was studied at 8 and 36 h posttreatment by quantitative reverse transcriptase PCR. Findings of the present study reveal that MDV infection and polyionosinic-polycytidylic acid treatment significantly elevated the mRNA expression of TLR3, IL6, and IL8 in both susceptible and resistant lines. Furthermore, basal expression levels in uninfected CEF for TLR3, TLR7, and IL8 genes were significantly higher in resistant chickens compared with those of susceptible chickens. Our results suggest that TLR3 together with pro-inflammatory cytokines may play a significant role in genetic resistance to MD.

  17. A short pulse of mechanical force induces gene expression and growth in MC3T3-E1 osteoblasts via an ERK 1/2 pathway

    NASA Technical Reports Server (NTRS)

    Hatton, Jason P.; Pooran, Milad; Li, Chai-Fei; Luzzio, Chris; Hughes-Fulford, Millie

    2003-01-01

    Physiological mechanical loading is crucial for maintenance of bone integrity and architecture. We have calculated the strain caused by gravity stress on osteoblasts and found that 4-30g corresponds to physiological levels of 40-300 microstrain. Short-term gravity loading (15 minutes) induced a 15-fold increase in expression of growth-related immediate early gene c-fos, a 5-fold increase in egr-1, and a 3-fold increase in autocrine bFGF. The non-growth-related genes EP-1, TGF-beta, and 18s were unaffected by gravity loading. Short-term physiological loading induced extracellular signal-regulated kinase (ERK 1/2) phosphorylation in a dose-dependent manner with maximum phosphorylation saturating at mechanical loading levels of 12g (p < 0.001) with no effect on total ERK. The phosphorylation of focal adhesion kinase (FAK) was unaffected by mechanical force. g-Loading did not activate P38 MAPK or c-jun N-terminal kinase (JNK). Additionally, a gravity pulse resulted in the localization of phosphorylated ERK 1/2 to the nucleus; this did not occur in unloaded cells. The induction of c-fos was inhibited 74% by the MEK1/2 inhibitor U0126 (p < 0.001) but was not affected by MEK1 or p38 MAPK-specific inhibitors. The long-term consequence of a single 15-minute gravity pulse was a 64% increase in cell growth (p < 0.001). U0126 significantly inhibited gravity-induced growth by 50% (p < 0.001). These studies suggest that short periods of physiological mechanical stress induce immediate early gene expression and growth in MC3T3-E1 osteoblasts primarily through an ERK 1/2-mediated pathway.

  18. A cell wall extract from Piriformospora indica promotes tuberization in potato (Solanum tuberosum L.) via enhanced expression of Ca(+2) signaling pathway and lipoxygenase gene.

    PubMed

    Upadhyaya, Chandrama Prakash; Gururani, Mayank Anand; Prasad, Ram; Verma, Ajit

    2013-06-01

    Piriformospora indica is an axenically cultivable phytopromotional endosymbiont that mimics capabilities of arbuscular mycorrhizal fungi. This is a basidiomycete of the Sebacinaceae family, which promotes growth, development, and seed production in a variety of plant species. We report that the cell wall extract (CWE) from P. indica induces tuberization in vitro and promotes tuber growth and yield in potato. The CWE altered the calcium signaling pathway that regulates tuberization process. An increase in tuber number and size was correlated with increased transcript expression of the two Ca(2+)-dependant proteins (CaM1 and St-CDPK1) and the lipoxygenase (LOX) mRNA, which are known to play distinct roles in potato tuberization. External supplementation of Ca(2+) ions induced a similar set of tuberization pathway genes, indicating presence of an active Ca(2+) in the CWE of P. indica. Since potato tuberization is directly influenced by the presence of microflora in nature, the present study provides an insight into the novel mechanism of potato tuberization in relation to plant-microbe association. Ours is the first report on an in vitro tuber-inducing beneficial fungus.

  19. Low-dose Bisphenol A Activates Cyp11a1 Gene Expression and Corticosterone Secretion in Adrenal Gland via the JNK Signaling Pathway.

    PubMed

    Lan, Hsin-Chieh; Lin, I-Wen; Yang, Zhi-Jie; Lin, Jyun-Hong

    2015-11-01

    Certain commonly used compounds that interfere with the functions of the endocrine system are classified as endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is an EDC that is widely used in food containers. BPA levels in human sera are commonly observed to be approximately 1-100 nM. Compared with the effects of BPA on the gonads, its effects on the adrenal gland are poorly understood. To investigate the influence of BPA on steroidogenesis, we examined the activity of the steroidogenic gene Cyp11a1 and its regulatory pathways in mouse Y1 adrenal cortex cells. Treatment with BPA at < 100 µM did not cause cell death. However, increased promoter activity and protein expression of Cyp11a1 were induced by low doses of BPA (10-1000 nM). Moreover, BPA induced c-Jun phosphorylation, and a specific inhibitor of c-Jun N-terminal kinase (JNK) significantly suppressed BPA-induced steroidogenesis. Thus, treatment of adrenal cells with low doses of BPA activated Cyp11a1 and increased corticosterone production through the JNK/c-Jun signaling pathway. Identical results were observed in rats after BPA injection. The abnormal induction of hormone synthesis by BPA in the adrenal gland might be linked to human metabolic defects and neuropsychiatric disorders.

  20. Eugenol ameliorates hepatic steatosis and fibrosis by down-regulating SREBP1 gene expression via AMPK-mTOR-p70S6K signaling pathway.

    PubMed

    Jo, Hee Kyung; Kim, Go Woon; Jeong, Kyung Ju; Kim, Do Yeon; Chung, Sung Hyun

    2014-01-01

    Beneficial effect of eugenol on fatty liver was examined in hepatocytes and liver tissue of high fat diet (HFD)-fed C57BL/6J mice. To induce a fatty liver, palmitic acid or isolated hepatocytes from HFD-fed Sprague-Dawley (SD) rats were used in vitro studies, and C57BL/6J mice were fed HFD for 10 weeks. Lipid contents were markedly decreased when hepatocytes were treated with eugenol for up to 24 h. Gene expressions of sterol regulatory element binding protein 1 (SREBP1) and its target enzymes were suppressed but those of lipolysis-related proteins were increased. As a regulatory kinase for lipogenic transcriptional factors, the AMP-activated protein kinase (AMPK) signaling pathway was examined. Protein expressions of phosphorylated Ca(2+)-calmodulin dependent protein kinase kinase (CAMKK), AMPK and acetyl-CoA carboxylase (ACC) were significantly increased and those of phosphorylated mammalian target of rapamycin (mTOR) and p70S6K were suppressed when the hepatocytes were treated with eugenol at up to 100 µM. These effects were all reversed in the presence of specific inhibitors of CAMKK, AMPK or mTOR. In vivo studies, hepatic triglyceride (TG) levels and steatosis score were decreased by 45% and 72%, respectively, in eugenol-treated mice. Gene expressions of fibrosis marker protein such as α-smooth muscle actin (α-SMA), collagen type I (Col-I) and plasminogen activator inhibitor-1 (PAI-1) were also significantly reduced by 36%, 63% and 40% in eugenol-treated mice. In summary, eugenol may represent a potential intervention in populations at high risk for fatty liver.

  1. Adrenergic activation of steroid 5alpha-reductase gene expression in rat C6 glioma cells: involvement of cyclic amp/protein kinase A-mediated signaling pathway.

    PubMed

    Morita, Kyoji; Arimochi, Hideki; Tsuruo, Yoshihiro

    2004-01-01

    Steroid 5alpha-reductase (5alpha-R) is well known as the enzyme converting progesterone and other steroid hormones to their 5alpha-reduced metabolites and has been reported to be localized in both neuronal and glial cells in the brain. Previously, the enzyme activity in glial cells has been shown to be enhanced either by coculturing with neuronal cells or by adding the conditioned medium of neuronal cells, suggesting a possible implication of neuro-glial interactions in the regulation of neurosteroid metabolism in the brain. In the present studies, the effects of adrenergic agonists on 5alpha-R mRNA and protein levels in rat C6 glioma cells were examined as one of the model experiments for investigating the influence of neuronal activity on the expression of 5alpha-R gene in the glial cell. The direct challenge of beta-adrenergic agonists to glioma cells resulted in the rapid and transient elevation of 5alpha-R mRNA levels through the activation of the cyclic AMP (cAMP)/protein kinase A-mediated signaling pathway. Further studies showed that cAMP-induced 5alpha-R mRNA expression was completely abolished by pretreatment of cells with actinomycin D and also indicated that the elevation of 5alpha-R mRNA levels was accompanied by an increase in enzyme protein in the cells. These findings provide strong evidence that the stimulation of beta-adrenergic receptors might induce the transcriptional activation of 5alpha-R gene expression in glial cells, proposing the possibility that neuronal activity might be involved in the production of neuroactive 5alpha-reduced steroids in the brain.

  2. Effects of porcine MyD88 knockdown on the expression of TLR4 pathway-related genes and proinflammatory cytokines.

    PubMed

    Dai, Chaohui; Sun, Li; Yu, Lihuai; Zhu, Guoqiang; Wu, Shenglong; Bao, Wenbin

    2016-12-01

    As a critical adapter protein in Toll-like receptor (TLR)/Interleukin (IL)-1R signalling pathway, myeloid differentiation protein 88 (MyD88) plays an important role in immune responses and host defence against pathogens. The present study was designed to provide a foundation and an important reagent for the mechanistic study of MyD88 and its role TLR/IL-1R signalling pathways in porcine immunity. Lentivirus-mediated RNAi was used to generate a porcine PK15 cell line with a silenced MyD88 gene and quantitative real-time PCR (qPCR) and Western blotting were used to detect changes in the expression of critical genes in the Toll-like receptor 4 (TLR4) signalling pathway. ELISA was used to measure the levels of seven proinflammatory cytokines-interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), IL-6, IL-8, IL-12, macrophage inflammatory protein (MIP)-1α and MIP-1β-in cell culture supernatants after MyD88 silencing. We successfully obtained a PK15 cell line with 61% MyD88 mRNA transcript down-regulated. In PK15 cells with MyD88 silencing, the transcript levels of TLR4 and IL-1β were significantly reduced, whereas there were no significant changes in the expression levels of cluster of differentiation antigen 14 (CD14), interferon-α (IFN-α) or TNF-α The ELISA results showed that the levels of most cytokines were not significantly changed apart from IL-8 without stimulation, which was significantly up-regulated. When cells were induced by lipopolysaccharide (LPS) (0.1 μg/ml) for 6 h, the global level of seven proinflammatory cytokines up-regulated and the level of IL-1β, TNF-α, IL-6, IL-8 and IL-12 of Blank and negative control (NC) group up-regulated more significantly than RNAi group (P<0.05), which revealed that the MyD88 silencing could reduce the TLR4 signal transduction which inhibited the release of proinflammatory cytokines and finally leaded to immunosuppression.

  3. Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L.

    PubMed

    Bose, Subir K; Yadav, Ritesh Kumar; Mishra, Smrati; Sangwan, Rajender S; Singh, A K; Mishra, B; Srivastava, A K; Sangwan, Neelam S

    2013-05-01

    Extensive research is going on throughout the world to find out new molecules from natural sources to be used as plant growth promoter. Mentha arvensis L. is the main source of menthol rich essential oil used commercially in various food, pharmaceutical and other preparations. Experiments were conducted on field grown plants for understanding the effect of calliterpenone (CA), a stereo-isomer of abbeokutone, in comparison to gibberellic acid (GA3) on growth attributes, trichomes, essential oil biosynthesis and expression of some oil biosynthetic pathway genes. The exogenous application of CA (1 μM, 10 μM and 100 μM) was found to be better in improving plant biomass and stolon yield, leaf area, branching and leaf stem ratio than with counterpart GA3 at the same concentrations. CA treated plants showed higher glandular trichome number, density and diameter and also correlated with enhanced oil biogenetic capacity as revealed by feeding labeled (14)C-sucrose for 72 h to excised shoots. Semi-quantitative PCR analysis of key pathway genes revealed differential up regulation under CA treatments. Transcript level of menthol dehydrogenase/menthone reductase was found highly up regulated in CA treated plants with increased content of menthone and menthol in oil. These findings demonstrate that CA positively regulated the yields by enhanced branching and higher density of trichomes resulting into higher accumulation of essential oil. The results suggest CA as a novel plant derived diterpenoid with growth promoting action and opens up new possibilities for improving the crop yields and essential oil biosynthesis in qualitative and quantitative manner.

  4. Suppression of NF-κB and NF-κB-Regulated Gene Expression by Apigenin through IκBα and IKK Pathway in TRAMP Mice.

    PubMed

    Shukla, Sanjeev; Shankar, Eswar; Fu, Pingfu; MacLennan, Gregory T; Gupta, Sanjay

    2015-01-01

    Aberrant Nuclear Factor-κappaB (NF-κB) activation due to rapid IκBα turnover and high basal IκBα kinase (IKK) activity has been frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits anti-proliferative, anti-inflammatory and anti-carcinogenic activities by inhibiting NF-κB pathway, through a mechanism not fully understood. We found that apigenin feeding in microgram doses (bioavailable in humans) inhibited prostate tumorigenesis in TRAMP mice by interfering with NF-κB signaling. Apigenin feeding to TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate and completely abolished metastasis, which correlated with inhibition of NF-κB activation and binding to the DNA. Apigenin intake blocked phosphorylation and degradation of IκBα by inhibiting IKK activation, which in turn led to suppression of NF-κB activation. The expression of NF-κB-regulated gene products involved in proliferation (cyclin D1, and COX-2), anti-apoptosis (Bcl-2 and Bcl-xL), and angiogenesis (vascular endothelial growth factor) were also downregulated after apigenin feeding. These events correlated with the induction of apoptosis in tumor cells, as evident by increased cleaved caspase-3 labeling index in the dorsolateral prostate. Our results provide convincing evidence that apigenin inhibits IKK activation and restores the expression of IκBα, preventing it's phosphorylation in a fashion similar to that elicited by IKK and proteasomal inhibitors through suppression of NF-κB signaling pathway.

  5. Leucine Leucine-37 Uses Formyl Peptide Receptor–Like 1 to Activate Signal Transduction Pathways, Stimulate Oncogenic Gene Expression, and Enhance the Invasiveness of Ovarian Cancer Cells

    PubMed Central

    Coffelt, Seth B.; Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Danka, Elizabeth S.; Scandurro, Aline B.

    2009-01-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor–like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein–coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37–induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37–stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37–treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1. PMID:19491199

  6. Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells.

    PubMed

    Coffelt, Seth B; Tomchuck, Suzanne L; Zwezdaryk, Kevin J; Danka, Elizabeth S; Scandurro, Aline B

    2009-06-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor-like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein-coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37-induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37-stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37-treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1.

  7. Identification of key target genes and pathways in laryngeal carcinoma

    PubMed Central

    Liu, Feng; Du, Jintao; Liu, Jun; Wen, Bei

    2016-01-01

    The purpose of the present study was to screen the key genes associated with laryngeal carcinoma and to investigate the molecular mechanism of laryngeal carcinoma progression. The gene expression profile of GSE10935 [Gene Expression Omnibus (GEO) accession number], including 12 specimens from laryngeal papillomas and 12 specimens from normal laryngeal epithelia controls, was downloaded from the GEO database. Differentially expressed genes (DEGs) were screened in laryngeal papillomas compared with normal controls using Limma package in R language, followed by Gene Ontology (GO) enrichment analysis and pathway enrichment analysis. Furthermore, the protein-protein interaction (PPI) network of DEGs was constructed using Cytoscape software and modules were analyzed using MCODE plugin from the PPI network. Furthermore, significant biological pathway regions (sub-pathway) were identified by using iSubpathwayMiner analysis. A total of 67 DEGs were identified, including 27 up-regulated genes and 40 down-regulated genes and they were involved in different GO terms and pathways. PPI network analysis revealed that Ras association (RalGDS/AF-6) domain family member 1 (RASSF1) was a hub protein. The sub-pathway analysis identified 9 significantly enriched sub-pathways, including glycolysis/gluconeogenesis and nitrogen metabolism. Genes such as phosphoglycerate kinase 1 (PGK1), carbonic anhydrase II (CA2), and carbonic anhydrase XII (CA12) whose node degrees were >10 were identified in the disease risk sub-pathway. Genes in the sub-pathway, such as RASSF1, PGK1, CA2 and CA12 were presumed to serve critical roles in laryngeal carcinoma. The present study identified DEGs and their sub-pathways in the disease, which may serve as potential targets for treatment of laryngeal carcinoma. PMID:27446427

  8. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana.

    PubMed

    Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z

    2015-09-01

    miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana.

  9. Expression of bvg-repressed genes in Bordetella pertussis is controlled by RisA through a novel c-di-GMP signaling pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The BvgAS two component system of Bordetella pertussis controls virulence factor expression. In addition, BvgAS controls expression of the bvg-repressed genes through the action of the repressor, BvgR. The transcription factor RisA is inhibited by BvgR, and when BvgR is not expressed RisA induces th...

  10. Expression of important pathway genes involved in withanolides biosynthesis in hairy root culture of Withania somnifera upon treatment with Gracilaria edulis and Sargassum wightii.

    PubMed

    Sivanandhan, Ganeshan; Arunachalam, Chinnathambi; Selvaraj, Natesan; Sulaiman, Ali Alharbi; Lim, Yong Pyo; Ganapathi, Andy

    2015-06-01

    The investigation of seaweeds, Gracilaria edulis and Sargassum wightii extracts was carried out for the estimation of growth characteristics and major withanolides production in hairy root culture of Withania somnifera. The extract of G. edulis (50%) in MS liquid basal medium enabled maximum production of dry biomass (5.46 g DW) and withanolides contents (withanolide A 5.23 mg/g DW; withaferin A 2.24 mg/g DW and withanone 4.83 mg/g DW) in hairy roots after 40 days of culture with 48 h contact time. The obtained withanolides contents were significantly higher (2.32-fold-2.66-fold) in hairy root culture when compared to the control. RT PCR analysis of important pathway genes such as SE, SS, HMGR and FPPS exhibited substantial higher expression upon the seaweed extracts treatment in hairy root culture. This experiment would paw a platform for withanolides production in hairy root culture with the influence of sea weed extracts for pharmaceutical companies in the future.

  11. Stratified gene expression analysis identifies major amyotrophic lateral sclerosis genes.

    PubMed

    Jones, Ashley R; Troakes, Claire; King, Andrew; Sahni, Vibhu; De Jong, Simone; Bossers, Koen; Papouli, Efterpi; Mirza, Muddassar; Al-Sarraj, Safa; Shaw, Christopher E; Shaw, Pamela J; Kirby, Janine; Veldink, Jan H; Macklis, Jeffrey D; Powell, John F; Al-Chalabi, Ammar

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of motor neurons resulting in progressive paralysis. Gene expression studies of ALS only rarely identify the same gene pathways as gene association studies. We hypothesized that analyzing tissues by matching on degree of disease severity would identify different patterns of gene expression from a traditional case-control comparison. We analyzed gene expression changes in 4 postmortem central nervous system regions, stratified by severity of motor neuron loss. An overall comparison of cases (n = 6) and controls (n = 3) identified known ALS gene, SOX5, as showing differential expression (log2 fold change = 0.09, p = 5.5 × 10(-5)). Analyses stratified by disease severity identified expression changes in C9orf72 (p = 2.77 × 10(-3)), MATR3 (p = 3.46 × 10(-3)), and VEGFA (p = 8.21 × 10(-4)), all implicated in ALS through genetic studies, and changes in other genes in pathways involving RNA processing and immune response. These findings suggest that analysis of gene expression stratified by disease severity can identify major ALS genes and may be more efficient than traditional case-control comparison.

  12. Gene microarray assessment of multiple genes and signal pathways involved in androgen-dependent prostate cancer becoming androgen independent.

    PubMed

    Liu, Jun-Bao; Dai, Chun-Mei; Su, Xiao-Yun; Cao, Lu; Qin, Rui; Kong, Qing-Bo

    2014-01-01

    To study the gene expression change and possible signal pathway during androgen-dependent prostate cancer (ADPC) becoming androgen-independent prostate cancer (AIPC), an LNCaP cell model of AIPC was established using flutamide in combination with androgen-free environment inducement, and differential expression genes were screened by microarray. Then the biological process, molecular function and KEGG pathway of differential expression genes are analyzed by Molecule Annotation System (MAS). By comparison of 12,207 expression genes, 347 expression genes were acquired, of which 156 were up-ragulated and 191 down-regulated. After analyzing the biological process and molecule function of differential expression genes, these genes are found to play crucial roles in cell proliferation, differntiation, cell cycle control, protein metabolism and modification and other biological process, serve as signal molecules, enzymes, peptide hormones, cytokines, cytoskeletal proteins and adhesion molecules. The analysis of KEGG show that the relevant genes of AIPC transformation participate in glutathione metabolism, cell cycle, P53 signal pathway, cytochrome P450 metabolism, Hedgehog signal pathway, MAPK signal pathway, adipocytokines signal pathway, PPAR signal pathway, TGF-β signal pathway and JAK-STAT signal pathway. In conclusion, during the process of ADPC becoming AIPC, it is not only one specific gene or pathway, but multiple genes and pathways that change. The findings above lay the foundation for study of AIPC mechanism and development of AIPC targeting drugs.

  13. Biomarkers of Exposure to Toxic Substances. Volume 2: Genomics: Unique Patterns of Differential Gene Expression and Pathway Perturbation Resulting from Exposure to Nephrotoxins with Regional Specific Toxicity

    DTIC Science & Technology

    2009-05-01

    Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy ,” American Journal of Kidney Diseases., 43, 4, Apr 2004 pp...3 2.1. Animal Treatment and Tissue Collection...5 3.1.1. Hippuric acid (HPA) Treatment

  14. Exposure of neonatal rats to maternal cafeteria feeding during suckling alters hepatic gene expression and DNA methylation in the insulin signalling pathway.

    PubMed

    Daniel, Zoe C; Akyol, Asli; McMullen, Sarah; Langley-Evans, Simon C

    2014-01-01

    Nutrition in early life is a determinant of lifelong physiological and metabolic function. Diseases that are associated with ageing may, therefore, have their antecedents in maternal nutrition during pregnancy and lactation. Rat mothers were fed either a standard laboratory chow diet (C) or a cafeteria diet (O) based upon a varied panel of highly palatable human foods, during lactation. Their offspring were then weaned onto chow or cafeteria diet giving four groups of animals (CC, CO, OC, OO n = 9-10). Livers were harvested 10 weeks post-weaning for assessment of gene and protein expression, and DNA methylation. Cafeteria feeding post-weaning impaired glucose tolerance and was associated with sex-specific altered mRNA expression of peroxisome proliferator activated receptor gamma and components of the insulin signalling pathway (Irs2, Akt1 and IrB). Exposure to the cafeteria diet during the suckling period modified the later response to the dietary challenge. Post-weaning cafeteria feeding only down-regulated IrB when associated with cafeteria feeding during suckling (group OO, interaction of diet in weaning and lactation P = 0.041). Responses to cafeteria diet during both phases of the experiment varied between males and females. Global DNA methylation was altered in the liver following cafeteria feeding in the post-weaning period, in males but not females. Methylation of the IrB promoter was increased in group OC, but not OO (P = 0.036). The findings of this study add to a growing evidence base that suggests tissue function across the lifespan a product of cumulative modifications to the epigenome and transcriptome, which may be both tissue and sex-specific.

  15. The gene expression landscape of thermogenic skunk cabbage suggests critical roles for mitochondrial and vacuolar metabolic pathways in the regulation of thermogenesis.

    PubMed

    Ito-Inaba, Yasuko; Hida, Yamato; Matsumura, Hideo; Masuko, Hiromi; Yazu, Fumiko; Terauchi, Ryohei; Watanabe, Masao; Inaba, Takehito

    2012-03-01

    Floral thermogenesis has been described in several plant species. Because of the lack of comprehensive gene expression profiles in thermogenic plants, the molecular mechanisms by which floral thermogenesis is regulated remain to be established. We examined the gene expression landscape of skunk cabbage (Symplocarpus renifolius) during thermogenic and post-thermogenic stages and identified expressed sequence tags from different developmental stages of the inflorescences using super serial analysis of gene expression (SuperSAGE). In-depth analysis suggested that cellular respiration and mitochondrial functions are significantly enhanced during the thermogenic stage. In contrast, genes involved in stress responses and protein degradation were significantly up-regulated during post-thermogenic stages. Quantitative comparisons indicated that the expression levels of genes involved in cellular respiration were higher in thermogenic spadices than in Arabidopsis inflorescences. Thermogenesis-associated genes seemed to be expressed abundantly in the peripheral tissues of the spadix. Our results suggest that cellular respiration and mitochondrial metabolism play key roles in heat production during floral thermogenesis. On the other hand, vacuolar cysteine protease and other degradative enzymes seem to accelerate senescence and terminate thermogenesis in the post-thermogenic stage.

  16. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi Tomita, Shuhei; Ohsaki, Yusuke; Haketa, Keiichi; Tooi, Osamu; Santo, Noriaki; Tohkin, Masahiro; Furukawa, Yuji; Gonzalez, Frank J.; Komai, Michio

    2008-05-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a common environmental contaminant. TCDD binds and activates the transcription factor aryl hydrocarbon receptor (AHR), leading to adverse biological responses via the alteration of the expression of various AHR target genes. Although small amounts of TCDD are consumed via contaminated daily foodstuffs and environmental exposures, the effects of low-dose TCDD on gene expression in animal tissues have not been clarified, while a number of genes affected by high-dose TCDD were reported. In this study, we comprehensively analyzed gene expression profiles in livers of C57BL/6N mice that were orally administered relatively low doses of TCDD (5, 50, or 500 ng/kg body weight (bw) day{sup -1}) for 18 days. The hepatic TCDD concentrations, measured by gas chromatography-mass spectrometry, were 1.2, 17, and 1063 pg toxicity equivalent quantity (TEQ)/g, respectively. The mRNA level of the cytochrome P450 CYP1A1 was significantly increased by treatment with only TCDD 500 ng/kg bw day{sup -1}. DNA microarray and quantitative RT-PCR analyses revealed changes in the expression of genes involved in the circadian rhythm, cholesterol biosynthesis, fatty acid synthesis, and glucose metabolism in the liver with at all doses of TCDD employed. However, repression of expression of genes involved in energy metabolism was not observed in the livers of Ahr-null mice that were administered the same dose of TCDD. These results indicate that changes in gene expression by TCDD are mediated by AHR and that exposure to low-dose TCDD could affect energy metabolism via alterations of gene expression.

  17. Cerebellin and des-cerebellin exert ACTH-like effects on corticosterone secretion and the intracellular signaling pathway gene expression in cultured rat adrenocortical cells--DNA microarray and QPCR studies.

    PubMed

    Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Malendowicz, Ludwik K

    2009-04-01

    Precerebellins (Cbln) belong to the C1q/TNF superfamily of secreted proteins which have diverse functions. They are abundantly expressed in the cerebellum, however, three of them are also expressed in the rat adrenal gland. All members of the Cbln family form homomeric and heteromeric complexes with each other in vitro and it was suggested that such complexes play a crucial role in normal development of the cerebellum. The aim of our study was to investigate whether Cbln1-derived peptides, cerebellin (CER) and des-Ser1-cerebellin (desCER) are involved in regulating biological functions of rat adrenocortical cells. In the primary culture of rat adrenocortical cells, 24 h exposure to CER or desCER notably stimulated corticosterone output and inhibited proliferative activity and similar effects were evoked by ACTH. To study gene transcript regulation by CER, desCER and ACTH, we applied Oligo GEArray DNA Microarray: Rat Signal Transduction Pathway Finder. In relation to the control culture, 13 of the 113 transcripts present on the array were differentially expressed. These transcripts were either up- or down-regulated by ACTH and/or CER or desCER treatment. Validation of DNA Microarray data by QPCR revealed that only 5 of 13 genes studied were differentially expressed. Of those genes, Fos and Icam1 were up-regulated and Egr1 was down-regulated by ACTH, CER and desCER. The remaining two genes, Fasn (insulin signaling pathway) and Hspb1 (HSP27) (stress signaling pathway), were regulated only by CER and desCER, but not by ACTH. Thus, both CER and desCER have effects similar to and different from corticotrophin on the intracellular signaling pathway gene expression in cultured rat adrenocortical cells.

  18. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    PubMed

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-09-09

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection.

  19. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    PubMed

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  20. Gene Expression and Silencing Studies in Phytophthora infestans Reveal Infection-Specific Nutrient Transporters and a Role for the Nitrate Reductase Pathway in Plant Pathogenesis

    PubMed Central

    Ah-Fong, Audrey M. V.; Davis, Carol; Andreeva, Kalina; Judelson, Howard S.

    2016-01-01

    To help learn how phytopathogens feed from their hosts, genes for nutrient transporters from the hemibiotrophic potato and tomato pest Phytophthora infestans were annotated. This identified 453 genes from 19 families. Comparisons with a necrotrophic oomycete, Pythium ultimum var. ultimum, and a hemibiotrophic fungus, Magnaporthe oryzae, revealed diversity in the size of some families although a similar fraction of genes encoded transporters. RNA-seq of infected potato tubers, tomato leaves, and several artificial media revealed that 56 and 207 transporters from P. infestans were significantly up- or down-regulated, respectively, during early infection timepoints of leaves or tubers versus media. About 17 were up-regulated >4-fold in both leaves and tubers compared to media and expressed primarily in the biotrophic stage. The transcription pattern of many genes was host-organ specific. For example, the mRNA level of a nitrate transporter (NRT) was about 100-fold higher during mid-infection in leaves, which are nitrate-rich, than in tubers and three types of artificial media, which are nitrate-poor. The NRT gene is physically linked with genes encoding nitrate reductase (NR) and nitrite reductase (NiR), which mobilize nitrate into ammonium and amino acids. All three genes were coregulated. For example, the three genes were expressed primarily at mid-stage infection timepoints in both potato and tomato leaves, but showed little expression in potato tubers. Transformants down-regulated for all three genes were generated by DNA-directed RNAi, with silencing spreading from the NR target to the flanking NRT and NiR genes. The silenced strains were nonpathogenic on leaves but colonized tubers. We propose that the nitrate assimilation genes play roles both in obtaining nitrogen for amino acid biosynthesis and protecting P. infestans from natural or fertilization-induced nitrate and nitrite toxicity. PMID:27936244

  1. Autism: many genes, common pathways?

    PubMed

    Geschwind, Daniel H

    2008-10-31

    Autism is a heterogeneous neurodevelopmental syndrome with a complex genetic etiology. It is still not clear whether autism comprises a vast collection of different disorders akin to intellectual disability or a few disorders sharing common aberrant pathways. Unifying principles among cases of autism are likely to be at the level of brain circuitry in addition to molecular pathways.

  2. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water.

    PubMed

    Muñoz, Alexandra; Chervona, Yana; Hall, Megan; Kluz, Thomas; Gamble, Mary V; Costa, Max

    2015-05-01

    Arsenic contamination of drinking water occurs globally and is associated with numerous diseases including skin, lung and bladder cancers, and cardiovascular disease. Recent research indicates that arsenic may be an endocrine disruptor. This study was conducted to evaluate the nature of gene expression changes among males and females exposed to arsenic contaminated water in Bangladesh at high and low doses. Twenty-nine (55% male) Bangladeshi adults with water arsenic exposure ranging from 50 to 1000 μg/L were selected from the Folic Acid Creatinine Trial. RNA was extracted from peripheral blood mononuclear cells for gene expression profiling using Affymetrix 1.0 ST arrays. Differentially expressed genes were assessed between high and low exposure groups for males and females separately and findings were validated using quantitative real-time PCR. There were 534 and 645 differentially expressed genes (p<0.05) in the peripheral blood mononuclear cells of males and females, respectively, when high and low water arsenic exposure groups were compared. Only 43 genes overlapped between the two sexes, with 29 changing in opposite directions. Despite the difference in gene sets both males and females exhibited common biological changes including deregulation of 17β-hydroxysteroid dehydrogenase enzymes, deregulation of genes downstream of Sp1 (specificity protein 1) transcription factor, and prediction of estrogen receptor alpha as a key hub in cardiovascular networks. Arsenic-exposed adults exhibit sex-specific gene expression profiles that implicate involvement of the endocrine system. Due to arsenic's possible role as an endocrine disruptor, exposure thresholds for arsenic may require different parameters for males and females.

  3. Strain-specific variation in a soilborne phytopathogenic fungus for the expression of genes involved in pH signal transduction pathway, pathogenesis and saprophytic survival in response to environmental pH changes.

    PubMed

    Daval, Stéphanie; Lebreton, Lionel; Gracianne, Cécile; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Marchi, Muriel; Gazengel, Kévin; Sarniguet, Alain

    2013-12-01

    The soilborne fungus Gaeumannomyces graminis var. tritici (Ggt) causes take-all, a wheat root disease. In an original strain-specific way, a previous study indicates that inside the Ggt species, some strains grow preferentially at acidic pH and other strains at neutral/alkaline pH. The most important mechanism for a fungal response to the environmental pH is the Pal pathway which integrates the products of the six pal genes and the transcription factor PacC. To evaluate whether the Ggt strain-specific growth in function of the ambient pH is mediated via the Pal pathway, a transcriptional study of the genes encoding this pathway was carried out. This study provided the first evidence that the pH signalling pathway similar to those described in other fungi operated in Ggt. The pacC gene was induced at neutral pH whatever the strain. In an original way, the expression of Ggt genes coding for the different Pal proteins depended on the strain and on the ambient pH. In the strain growing better at acidic pH, few pal genes were pH-regulated, and some were overexpressed at neutral pH when regulated. In the strain growing better at neutral pH, underexpression of most of the pal genes at neutral pH occurred. The strains displayed higher gene expression in the ambient pH that unfavoured their growth as if it was a compensation system. All pH taken together, a globally weaker Pal transcript level occurred in the strains that were less sensitive to acidic pH, and on the contrary, the strain growing better on neutral pH showed higher Pal mRNA levels. The expression of genes involved in pathogenesis and saprophytic growth was also regulated by the ambient pH and the strain: each gene displayed a specific pH-regulation that was similar between strains. But all pH taken together, the global transcript levels of four out of six genes were higher in the strain growing better on neutral pH. Altogether, for the first time, the results show that inside a species, conditions affecting

  4. Gene network and pathway generation and analysis: Editorial

    SciTech Connect

    Zhao, Zhongming; Sanfilippo, Antonio P.; Huang, Kun

    2011-02-18

    The past decade has witnessed an exponential growth of biological data including genomic sequences, gene annotations, expression and regulation, and protein-protein interactions. A key aim in the post-genome era is to systematically catalogue gene networks and pathways in a dynamic living cell and apply them to study diseases and phenotypes. To promote the research in systems biology and its application to disease studies, we organized a workshop focusing on the reconstruction and analysis of gene networks and pathways in any organisms from high-throughput data collected through techniques such as microarray analysis and RNA-Seq.

  5. Fibroblast growth factor receptor-3 (FGFR-3) regulates expression of paneth cell lineage-specific genes in intestinal epithelial cells through both TCF4/beta-catenin-dependent and -independent signaling pathways.

    PubMed

    Brodrick, Brooks; Vidrich, Alda; Porter, Edith; Bradley, Leigh; Buzan, Jenny M; Cohn, Steven M

    2011-05-27

    Fibroblast growth factor receptor-3 (FGFR-3) expression in the developing intestine is restricted to the undifferentiated epithelial cells within the lower portion of the crypt. We previously showed that mice lacking functional FGFR-3 have a significant decrease in the number of Paneth cells in the small intestine. Here, we used Caco2 cells to investigate whether FGFR-3 signaling can directly modulate expression of Paneth cell differentiation markers through its effects on TCF4/β-catenin or through other signaling pathways downstream of this receptor. Caco2 cells treated with FGFR-3 ligands or expressing FGFR-3(K650E), a constitutively active mutant, resulted in a significantly increased expression of genes characteristic of mature Paneth cells, including human α-defensins 5 and 6 (HD5 and HD6) and Paneth cell lysozyme, whereas enterocytic differentiation markers were reduced. Activation of FGFR-3 signaling sustained high levels of β-catenin mRNA expression, leading to increased TCF4/β-catenin-regulated transcriptional activity in Caco2 cells. Sustained activity of the TCF4/β-catenin pathway was required for the induction of Paneth cell markers. Activation of the MAPK pathway by FGFR-3 is also required for the induction of Paneth cell markers in addition to and independent of the effect of FGFR-3 on TCF4/β-catenin activity. These studies suggest that coordinate activation of multiple independent signaling pathways downstream of FGFR-3 is involved in regulation of Paneth cell differentiation.

  6. Simvastatin and Dipentyl Phthalate Lower Ex vivo Testicular Testosterone Production and Exhibit Additive Effects on Testicular Testosterone and Gene Expression Via Distinct Mechanistic Pathways in the Fetal Rat

    EPA Science Inventory

    Sex differentiation of the male reproductive tract in mammals is driven, in part, by fetal androgen production. In utero, some phthalate esters (PEs) alter fetal Leydig cell differentiation, reducing the expression of several genes associated with steroid synthesis/transport, and...

  7. A novel benzofuran, 4-methoxybenzofuran-5-carboxamide, from Tephrosia purpurea suppressed histamine H1 receptor gene expression through a protein kinase C-δ-dependent signaling pathway.

    PubMed

    Shill, Manik Chandra; Mizuguchi, Hiroyuki; Karmakar, Sanmoy; Kadota, Takuya; Mukherjee, Pulok K; Kitamura, Yoshiaki; Kashiwada, Yoshiki; Nemoto, Hisao; Takeda, Noriaki; Fukui, Hiroyuki

    2016-01-01

    Histamine H1 receptor (H1R) gene is upregulated in patients with allergic rhinitis (AR), and its expression level is strongly correlated with the severity of allergic symptoms. We previously reported isolation of the putative anti-allergic compound, 4-methoxybenzofuran-5-carboxamide (MBCA) from Tephrosia purpurea and its chemical synthesis (Shill et al., Bioorg Med Chem 2015;23:6869-6874). However, the mechanism underlying its anti-allergic activity remains to be elucidated. Here, we report the mechanism of MBCA on phorbol 12-myristate-13-acetate (PMA)- or histamine-induced upregulation of H1R gene expression in HeLa cells, and in vivo effects of MBCA were also determined in toluene-2,4-diisocyanate (TDI)-sensitized rats. MBCA suppressed PMA- and histamine-induced upregulation of H1R expression at both mRNA and protein levels and inhibited PMA-induced phosphorylation of PKCδ at Tyr(311) and subsequent translocation to the Golgi. Furthermore, MBCA ameliorated allergic symptoms and suppressed the elevation of H1R and helper T cell type 2 (Th2) cytokine mRNAs in TDI-sensitized rats. Data suggest that MBCA alleviates nasal symptoms in TDI-sensitized rats through the inhibition of H1R and Th2 cytokine gene expression. The mechanism of its H1R gene suppression underlies the inhibition of PKCδ activation.

  8. Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both ...

  9. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: cross-talk regulation of secondary metabolite pathways.

    PubMed

    Martín, Juan F

    2016-08-26

    Penicillium chrysogenum is an excellent model fungus to study the molecular mechanisms of control of expression of secondary metabolite genes. A key global regulator of the biosynthesis of secondary metabolites is the LaeA protein that interacts with other components of the velvet complex (VelA, VelB, VelC, VosA). These components interact with LaeA and regulate expression of penicillin and PR-toxin biosynthetic genes in P. chrysogenum. Both LaeA and VelA are positive regulators of the penicillin and PR-toxin biosynthesis, whereas VelB acts as antagonist of the effect of LaeA and VelA. Silencing or deletion of the laeA gene has a strong negative effect on penicillin biosynthesis and overexpression of laeA increases penicillin production. Expression of the laeA gene is enhanced by the P. chrysogenum autoinducers 1,3 diaminopropane and spermidine. The PR-toxin gene cluster is very poorly expressed in P. chrysogenum under penicillin-production conditions (i.e. it is a near-silent gene cluster). Interestingly, the downregulation of expression of the PR-toxin gene cluster in the high producing strain P. chrysogenum DS17690 was associated with mutations in both the laeA and velA genes. Analysis of the laeA and velA encoding genes in this high penicillin producing strain revealed that both laeA and velA acquired important mutations during the strain improvement programs thus altering the ratio of different secondary metabolites (e.g. pigments, PR-toxin) synthesized in the high penicillin producing mutants when compared to the parental wild type strain. Cross-talk of different secondary metabolite pathways has also been found in various Penicillium spp.: P. chrysogenum mutants lacking the penicillin gene cluster produce increasing amounts of PR-toxin, and mutants of P. roqueforti silenced in the PR-toxin genes produce large amounts of mycophenolic acid. The LaeA-velvet complex mediated regulation and the pathway cross-talk phenomenon has great relevance for improving the

  10. Standardized Markerless Gene Integration for Pathway Engineering in Yarrowia lipolytica.

    PubMed

    Schwartz, Cory; Shabbir-Hussain, Murtaza; Frogue, Keith; Blenner, Mark; Wheeldon, Ian

    2016-12-22

    The yeast Yarrowia lipolytica is a promising microbial host due to its native capacity to produce lipid-based chemicals. Engineering stable production strains requires genomic integration of modified genes, avoiding episomal expression that requires specialized media to maintain selective pressures. Here, we develop a CRISPR-Cas9-based tool for targeted, markerless gene integration into the Y. lipolytica genome. A set of genomic loci was screened to identify sites that were accepting of gene integrations without impacting cell growth. Five sites were found to meet these criteria. Expression levels from a GFP expression cassette were consistent when inserted into AXP, XPR2, A08, and D17, with reduced expression from MFE1. The standardized tool is comprised of five pairs of plasmids (one homologous donor plasmid and a CRISPR-Cas9 expression plasmid), with each pair targeting gene integration into one of the characterized sites. To demonstrate the utility of the tool we rapidly engineered a semisynthetic lycopene biosynthesis pathway by integrating four different genes at different loci. The capability to integrate multiple genes without the need for marker recovery and into sites with known expression levels will enable more rapid and reliable pathway engineering in Y. lipolytica.

  11. Gene Expression, Protein Function and Pathways of Arabidopsis thaliana Responding to Silver Nanoparticles in Comparison to Silver Ions, Cold, Salt, Drought, and Heat

    PubMed Central

    Kohan-Baghkheirati, Eisa; Geisler-Lee, Jane

    2015-01-01

    Silver nanoparticles (AgNPs) have been widely used in industry due to their unique physical and chemical properties. However, AgNPs have caused environmental concerns. To understand the risks of AgNPs, Arabidopsis microarray data for AgNP, Ag+, cold, salt, heat and drought stresses were analyzed. Up- and down-regulated genes of more than two-fold expression change were compared, while the encoded proteins of shared and unique genes between stresses were subjected to differential enrichment analyses. AgNPs affected the fewest genes (575) in the Arabidopsis genome, followed by Ag+ (1010), heat (1374), drought (1435), salt (4133) and cold (6536). More genes were up-regulated than down-regulated in AgNPs and Ag+ (438 and 780, respectively) while cold down-regulated the most genes (4022). Responses to AgNPs were more similar to those of Ag+ (464 shared genes), cold (202), and salt (163) than to drought (50) or heat (30); the genes in the first four stresses were enriched with 32 PFAM domains and 44 InterPro protein classes. Moreover, 111 genes were unique in AgNPs and they were enriched in three biological functions: response to fungal infection, anion transport, and cell wall/plasma membrane related. Despite shared similarity to Ag+, cold and salt stresses, AgNPs are a new stressor to Arabidopsis. PMID:28347022

  12. Gene Expression Profile of Patients with Mayer-Rokitansky-Küster-Hauser Syndrome: New Insights into the Potential Role of Developmental Pathways

    PubMed Central

    Giuliano, Mariateresa; Cammarota, Marcella; D’Amici, Sirio; Vescarelli, Enrica; Maffucci, Diana; Bellati, Filippo; Panici, Pierluigi Benedetti; Romano, Ferdinando; Angeloni, Antonio; Marchese, Cinzia

    2014-01-01

    Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is a rare disease characterized by congenital aplasia of uterus and vagina. Although many studies have investigated several candidate genes, up to now none of them seem to be responsible for the aetiology of the syndrome. In our study, we identified differences in gene expression profile of in vitro cultured vaginal tissue of MRHKS patients using whole-genome microarray analysis. A group of eight out of sixteen MRKHS patients that underwent reconstruction of neovagina with an autologous in vitro cultured vaginal tissue were subjected to microarray analysis and compared with five healthy controls. Results obtained by array were confirmed by qRT-PCR and further extended to other eight MRKHS patients. Gene profiling of MRKHS patients delineated 275 differentially expressed genes, of which 133 downregulated and 142 upregulated. We selected six deregulated genes (MUC1, HOXC8, HOXB2, HOXB5, JAG1 and DLL1) on the basis of their fold change, their differential expression in most patients and their relevant role in embryological development. All patients showed upregulation of MUC1, while HOXB2 and HOXB5 were downregulated, as well as Notch ligands JAG1 and DLL1 in the majority of them. Interestingly, HOXC8 was significantly upregulated in 47% of patients, with a differential expression only in MRKHS type I patients. Taken together, our results highlighted the dysregulation of developmental genes, thus suggesting a potential alteration of networks involved in the formation of the female reproductive tract and providing a useful clue for understanding the pathophysiology of MRKHS. PMID:24608967

  13. Digital Gene Expression Tag Profiling Analysis of the Gene Expression Patterns Regulating the Early Stage of Mouse Spermatogenesis

    PubMed Central

    Meng, Lijun; Liu, Meiling; Zhao, Lina; Hu, Fen; Ding, Cunbao; Wang, Yang; He, Baoling; Pan, Yuxin; Fang, Wei; Chen, Jing; Hu, Songnian; Jia, Mengchun

    2013-01-01

    Detailed characterization of the gene expression patterns in spermatogonia and primary spermatocytes is critical to understand the processes which occur prior to meiosis during normal spermatogenesis. The genome-wide expression profiles of mouse type B spermatogonia and primary spermatocytes were investigated using the Solexa/Illumina digital gene expression (DGE) system, a tag based high-throughput transcriptome sequencing method, and the developmental processes which occur during early spermatogenesis were systematically analyzed. Gene expression patterns vary significantly between mouse type B spermatogonia and primary spermatocytes. The functional analysis revealed that genes related to junction assembly, regulation of the actin cytoskeleton and pluripotency were most significantly differently expressed. Pathway analysis indicated that the Wnt non-canonical signaling pathway played a central role and interacted with the actin filament organization pathway during the development of spermatogonia. This study provides a foundation for further analysis of the gene expression patterns and signaling pathways which regulate the molecular mechanisms of early spermatogenesis. PMID:23554914

  14. EXPRESSION PROFILING OF FIVE RAT STRAINS REVEAL TRANSCRIPTIONAL MODES IN THE ANTIGEN PROCESSING PATHWAY

    EPA Science Inventory

    Comparative gene expression profiling of rat strains with genetic predisposition to diverse cardiovascular diseases can help decode the transcriptional program that governs cellular behavior. We hypothesized that co-transcribed, intra-pathway, functionally coherent genes can be r...

  15. Effect of unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway on GABA(A) receptor subunit gene expression in the rodent basal ganglia and thalamus.

    PubMed

    Chadha, A; Dawson, L G; Jenner, P G; Duty, S

    2000-01-01

    In Parkinson's disease, changes in GABAergic activity occurring downstream of the striatal dopamine loss are accompanied by reciprocal changes in GABA(A) receptor binding, the underlying molecular mechanisms for which are unknown. This study examined whether changes in expression of the genes encoding known GABA(A) receptor subunits (alpha(1-4), beta(1-3), gamma(1-3) and delta) could account for this receptor plasticity using a rodent model of Parkinson's disease with a 6-hydroxydopamine-induced nigrostriatal lesion. Analysis of autoradiograms of the basal ganglia and thalamus revealed changes in expression of only four of the 11 subunits studied. Expression of alpha1 and beta2 subunit genes was altered in a parallel manner following a 6-hydroxydopamine lesion; messenger RNA levels for both were significantly increased in the substantia nigra pars reticulata (11 +/- 4% and 17 +/- 1%, respectively), and significantly reduced in the globus pallidus (18 +/- 3% and 16 +/- 3%, respectively) and parafascicular nucleus (19 +/- 3% and 16 +/- 5%, respectively). Smaller changes in the messenger RNA levels encoding the alpha1 subunit in the lateral amygdala (8 +/- 1% decrease) and the alpha4 and gamma2 subunits in the striatum (10 +/- 2% and 6 +/- 1% increase, respectively) were also observed. No changes in expression were noted for any other subunits in any region studied. Clearly, both region- and subunit-specific regulation of GABA(A) receptor subunit gene expression occurs following a nigrostriatal tract lesion. The changes in expression of the alpha1 and beta2 subunit genes probably contribute to the documented changes in GABA(A) receptor binding following striatal dopamine depletion. Moreover, they provide a molecular basis by which the pathological changes in GABAergic activity in Parkinson's disease may be partially compensated.

  16. Gene expression in the etiology of schizophrenia.

    PubMed

    Bray, Nicholas J

    2008-05-01

    Gene expression represents a fundamental interface between genes and environment in the development and ongoing plasticity of the human brain. Individual differences in gene expression are likely to underpin much of human diversity, including psychiatric illness. In the past decade, the development of microarray and proteomic technology has enabled global description of gene expression in schizophrenia. However, it is difficult on the basis of gene expression assays alone to distinguish between those changes that constitute primary etiology and those that reflect secondary pathology, compensatory mechanisms, or confounding influences. In this respect, tests of genetic association with schizophrenia will be instructive because changes in gene expression that result from gene variants that are associated with the disorder are likely to be of primary etiological significance. However, regulatory polymorphism is extremely difficult to recognize on the basis of sequence interrogation alone. Functional assays at the messenger RNA and/or protein level will be essential in elucidating the molecular mechanisms underlying genetic association with schizophrenia and are likely to become increasingly important in the identification of regulatory variants with which to test for association with the disorder and related traits. Once established, etiologically relevant changes in gene expression can be recapitulated in model systems in order to elucidate the molecular and physiological pathways that may ultimately give rise to the condition.

  17. EXPath: a database of comparative expression analysis inferring metabolic pathways for plants

    PubMed Central

    2015-01-01

    Background In general, the expression of gene alters conditionally to catalyze a specific metabolic pathway. Microarray-based datasets have been massively produced to monitor gene expression levels in parallel with numerous experimental treatments. Although several studies facilitated the linkage of gene expression data and metabolic pathways, none of them are amassed for plants. Moreover, advanced analysis such as pathways enrichment or how genes express under different conditions is not rendered. Description Therefore, EXPath was developed to not only comprehensively congregate the public microarray expression data from over 1000 samples in biotic stress, abiotic stress, and hormone secretion but also allow the usage of this abundant resource for coexpression analysis and differentially expression genes (DEGs) identification, finally inferring the enriched KEGG pathways and gene ontology (GO) terms of three model plants: Arabidopsis thaliana, Oryza sativa, and Zea mays. Users can access the gene expression patterns of interest under various conditions via five main functions (Gene Search, Pathway Search, DEGs Search, Pathways/GO Enrichment, and Coexpression analysis) in EXPath, which are presented by a user-friendly interface and valuable for further research. Conclusions In conclusion, EXPath, freely available at http://expath.itps.ncku.edu.tw, is a database resource that collects and utilizes gene expression profiles derived from microarray platforms under various conditions to infer metabolic pathways for plants. PMID:25708775

  18. Comparison of the gene expression profiles of human fetal cortical astrocytes with pluripotent stem cell derived neural stem cells identifies human astrocyte markers and signaling pathways and transcription factors active in human astrocytes.

    PubMed

    Malik, Nasir; Wang, Xiantao; Shah, Sonia; Efthymiou, Anastasia G; Yan, Bin; Heman-Ackah, Sabrina; Zhan, Ming; Rao, Mahendra

    2014-01-01

    Astrocytes are the most abundant cell type in the central nervous system (CNS) and have a multitude of functions that include maintenance of CNS homeostasis, trophic support of neurons, detoxification, and immune surveillance. It has only recently been appreciated that astrocyte dysfunction is a primary cause of many neurological disorders. Despite their importance in disease very little is known about global gene expression for human astrocytes. We have performed a microarray expression analysis of human fetal astrocytes to identify genes and signaling pathways that are important for astrocyte development and maintenance. Our analysis confirmed that the fetal astrocytes express high levels of the core astrocyte marker GFAP and the transcription factors from the NFI family which have been shown to play important roles in astrocyte development. A group of novel markers were identified that distinguish fetal astrocytes from pluripotent stem cell-derived neural stem cells (NSCs) and NSC-derived neurons. As in murine astrocytes, the Notch signaling pathway appears to be particularly important for cell fate decisions between the astrocyte and neuronal lineages in human astrocytes. These findings unveil the repertoire of genes expressed in human astrocytes and serve as a basis for further studies to better understand astrocyte biology, especially as it relates to disease.

  19. EPO gene expression induces the proliferation, migration and invasion of bladder cancer cells through the p21WAF1‑mediated ERK1/2/NF-κB/MMP-9 pathway.

    PubMed

    Park, Sung Lyea; Won, Se Yeon; Song, Jun-Hui; Kim, Wun-Jae; Moon, Sung-Kwon

    2014-11-01

    Erythropoietin (EPO) is a cytokine that modulates the production of red blood cells. Previous studies have contradicted the assumed role of EPO in tumor cell proliferation. In the present study, we investigated the effect of EPO in the proliferation, migration and invasion that is involved in the signaling pathways and cell-cycle regulation of bladder cancer 5637 cells. The results showed that an overexpression of the EPO gene has a potent stimulatory effect on DNA synthesis, migration and invasion. EPO gene expression increased the expression of matrix metalloproteinase (MMP)-9 via the binding activity of NF-κB, AP-1 and Sp-1 in 5637 cells. The transfection of 5637 cells with the EPO gene induced the phosphorylation of ERK1/2. Treatment with ERK1/2 inhibitor U0126 significantly inhibited the increased proliferation, migration and invasion of EPO gene-transfected cells. U0126 treatment suppressed the induction of MMP-9 expression through NF-κB binding activity in EPO gene transfectants. In addition, EPO gene expression was correlated with the upregulation of cyclins/CDKs and the upregulation of the CDK inhibitor p21WAF1 expression. Finally, the inhibition of p21WAF1 function by siRNA blocked the proliferation, migration, invasion and phosphorylation of ERK1/2 signaling, as well as MMP-9 expression and activation of NF-κB in EPO gene-transfected cells. These novel findings suggest that the molecular mechanisms of EPO contribute to the progression and development of bladder tumors.

  20. Identification of novel pathways and molecules able to down-regulate PHOX2B gene expression by in vitro drug screening approaches in neuroblastoma cells.

    PubMed

    Di Zanni, Eleonora; Fornasari, Diego; Ravazzolo, Roberto; Ceccherini, Isabella; Bachetti, Tiziana

    2015-08-01

    PHOX2B is a transcription factor involved in the regulation of neurogenesis and in the correct differentiation of the autonomic nervous system. The pathogenetic role of PHOX2B in neuroblastoma (NB) is supported by mutations in familial, sporadic and syndromic cases of NB and overexpression of PHOX2B and its target ALK in tumor samples and NB cell lines. Starting from these observations, we have performed in vitro drug screening approaches targeting PHOX2B overexpression as a potential pharmacological means in NB. In particular, in order to identify molecules able to decrease PHOX2B expression, we have evaluated the effects of 70 compounds in IMR-32 cell line stably expressing the luciferase gene under the control of the PHOX2B promoter. Curcumin, SAHA and trichostatin A showed to down-regulate the PHOX2B promoter activity which resulted in a decrease of both protein and mRNA expressions. In addition, we have observed that curcumin acts by interfering with PBX-1/MEIS-1, NF-κB and AP-1 complexes, in this work demonstrated for the first time to regulate the transcription of the PHOX2B gene. Finally, combined drug treatments showed successful effects in down-regulating the expression of both PHOX2B and its target ALK genes, thus supporting the notion of the effectiveness of molecule combination in tumor therapy.

  1. Induction of CYP3A4 and MDR1 gene expression by baicalin, baicalein, chlorogenic acid, and ginsenoside Rf through constitutive androstane receptor- and pregnane X receptor-mediated pathways.

    PubMed

    Li, Yue; Wang, Qi; Yao, Xiaomin; Li, Yan

    2010-08-25

    The herbal products baicalin, baicalein, chlorogenic acid, and ginsenoside Rf have multiple pharmacological effects and are extensively used in alternative and/or complementary therapies. The present study investigated whether baicalin, baicalein, chlorogenic acid, and ginsenoside Rf induced the expression of the cytochrome P450 3A4 (CYP3A4) and multi-drug resistance 1 (MDR1) genes through the pregnane X receptor and constitutive androstane receptor pathways. Real time PCR, western blotting, and a luminescent assay were used to assess the induction of gene expression and activity of CYP3A4 and MDR1 by the test compounds. The interactions of baicalein/chlorogenic acid/ginsenoside Rf with constitutive androstane receptor and pregnane X receptor were evaluated using luciferase reporter and gel shift assays. Baicalein induced the expression of CYP3A4 and MDR1 mRNA by activating pregnane X receptor and constitutive androstane receptor. Chlorogenic acid and ginsenoside Rf showed a relatively weak effect on CYP3A4 promoter activation only in HepG2 cells cotransfected with constitutive androstane receptor and demonstrated no effects on MDR1 via either the constitutive androstane receptor or pregnane X receptor pathway. Baicalin had no effect on either CYP3A4 or MDR1 gene expression. In conclusion, baicalein has the potential to up-regulate CYP3A4 and MDR1 through the direct activation of the constitutive androstane receptor and pregnane X receptor pathways. Chlorogenic acid and ginsenoside Rf only induced constitutive androstane receptor-mediated CYP3A4 expression.

  2. Expression of genes involved in the salicylic acid pathway in type h1 thioredoxin transiently silenced pepper plants during a begomovirus compatible interaction.

    PubMed

    Luna-Rivero, Marianne S; Hernández-Zepeda, Cecilia; Villanueva-Alonzo, Hernán; Minero-García, Yereni; Castell-González, Salvador E; Moreno-Valenzuela, Oscar A

    2016-04-01

    The type-h thioredoxins (TRXs) play a fundamental role in oxidative stress tolerance and defense responses against pathogens. In pepper plants, type-h TRXs participate in the defense mechanism against Cucumber mosaic virus. The goal of this study was to analyze the role of the CaTRXh1-cicy gene in pepper plants during compatible interaction with a DNA virus, the Euphorbia mosaic virus-Yucatan Peninsula (EuMV-YP). The effects of a transient silencing of the CaTRXh1-cicy gene in pepper plants wëre evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants under different treatments. The accumulation of salicylic acid (SA) and the relative expression of the defense genes NPR1 and PR10 were also evaluated. Results showed that viral DNA accumulation was higher in transiently CaTRXh1-cicy silenced plants that were also infected with EuMV-YP. Symptoms in these plants were more severe compared to the non-silenced plants infected with EuMV-YP. The SA levels in the EuMV-YP-infected plants were rapidly induced at 1 h post infection (hpi) in comparison to the non-silenced plants inoculated with EuMV-YP. Additionally, in pepper plants infected with EuMV-YP, the expression of NPR1 decreased by up to 41 and 58 % at 28 days post infection (dpi) compared to the non-silenced pepper plants infected with only EuMV-YP and healthy non-inoculated pepper plants, respectively. PR10 gene expression decreased by up to 70 % at 28 dpi. Overall, the results indicate that the CaTRXh1-cicy gene participates in defense mechanisms during the compatible interaction of pepper plants with the EuMV-YP DNA virus.

  3. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis

    PubMed Central

    Yap, Hui-Yeng Y.; Chooi, Yit-Heng; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong

    2015-01-01

    Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications. PMID:26606395

  4. Salvianolic acid B protects against acetaminophen hepatotoxicity by inducing Nrf2 and phase II detoxification gene expression via activation of the PI3K and PKC signaling pathways.

    PubMed

    Lin, Musen; Zhai, Xiaohan; Wang, Guangzhi; Tian, Xiaofeng; Gao, Dongyan; Shi, Lei; Wu, Hang; Fan, Qing; Peng, Jinyong; Liu, Kexin; Yao, Jihong

    2015-02-01

    Acetaminophen (APAP) is used drugs worldwide for treating pain and fever. However, APAP overdose is the principal cause of acute liver failure in Western countries. Salvianolic acid B (SalB), a major water-soluble compound extracted from Radix Salvia miltiorrhiza, has well-known antioxidant and anti-inflammatory actions. We aimed to evaluate the ability of SalB to protect against APAP-induced acute hepatotoxicity by inducing nuclear factor-erythroid-2-related factor 2 (Nrf2) expression. SalB pretreatment ameliorated acute liver injury caused by APAP, as indicated by blood aspartate transaminase levels and histological findings. Moreover, SalB pretreatment increased the expression of Nrf2, Heme oxygenase-1 (HO-1) and glutamate-l-cysteine ligase catalytic subunit (GCLC). Furthermore, the HO-1 inhibitor zinc protoporphyrin and the GCLC inhibitor buthionine sulfoximine reversed the protective effect of SalB. Additionally, siRNA-mediated depletion of Nrf2 reduced the induction of HO-1 and GCLC by SalB, and SalB pretreatment activated the phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC) signaling pathways. Both inhibitors (PI3K and PKC) blocked the protective effect of SalB against APAP-induced cell death, abolishing the SalB-induced Nrf2 activation and decreasing HO-1 and GCLC expression. These results indicated that SalB induces Nrf2, HO-1 and GCLC expression via activation of the PI3K and PKC pathways, thereby protecting against APAP-induced liver injury.

  5. The presence of two distinct prolactin receptors in seabream with different tissue distribution patterns, signal transduction pathways and regulation of gene expression by steroid hormones.

    PubMed

    Huang, Xigui; Jiao, Baowei; Fung, Chun Kit; Zhang, Yong; Ho, Walter K K; Chan, Chi Bun; Lin, Haoran; Wang, Deshou; Cheng, Christopher H K

    2007-08-01

    Two prolactin receptors (PRLRs) encoded by two different genes were identified in the fugu and zebrafish genomes but not