Sample records for gene expression technology

  1. Too much data, but little inter-changeability: a lesson learned from mining public data on tissue specificity of gene expression.

    PubMed

    Li, Shuyu; Li, Yiqun Helen; Wei, Tao; Su, Eric Wen; Duffin, Kevin; Liao, Birong

    2006-10-25

    The tissue expression pattern of a gene often provides an important clue to its potential role in a biological process. A vast amount of gene expression data have been and are being accumulated in public repository through different technology platforms. However, exploitations of these rich data sources remain limited in part due to issues of technology standardization. Our objective is to test the data comparability between SAGE and microarray technologies, through examining the expression pattern of genes under normal physiological states across variety of tissues. There are 42-54% of genes showing significant correlations in tissue expression patterns between SAGE and GeneChip, with 30-40% of genes whose expression patterns are positively correlated and 10-15% of genes whose expression patterns are negatively correlated at a statistically significant level (p = 0.05). Our analysis suggests that the discrepancy on the expression patterns derived from technology platforms is not likely from the heterogeneity of tissues used in these technologies, or other spurious correlations resulting from microarray probe design, abundance of genes, or gene function. The discrepancy can be partially explained by errors in the original assignment of SAGE tags to genes due to the evolution of sequence databases. In addition, sequence analysis has indicated that many SAGE tags and Affymetrix array probe sets are mapped to different splice variants or different sequence regions although they represent the same gene, which also contributes to the observed discrepancies between SAGE and array expression data. To our knowledge, this is the first report attempting to mine gene expression patterns across tissues using public data from different technology platforms. Unlike previous similar studies that only demonstrated the discrepancies between the two gene expression platforms, we carried out in-depth analysis to further investigate the cause for such discrepancies. Our study shows that the exploitation of rich public expression resource requires extensive knowledge about the technologies, and experiment. Informatic methodologies for better interoperability among platforms still remain a gap. One of the areas that can be improved practically is the accurate sequence mapping of SAGE tags and array probes to full-length genes.

  2. PanGEA: identification of allele specific gene expression using the 454 technology.

    PubMed

    Kofler, Robert; Teixeira Torres, Tatiana; Lelley, Tamas; Schlötterer, Christian

    2009-05-14

    Next generation sequencing technologies hold great potential for many biological questions. While mainly used for genomic sequencing, they are also very promising for gene expression profiling. Sequencing of cDNA does not only provide an estimate of the absolute expression level, it can also be used for the identification of allele specific gene expression. We developed PanGEA, a tool which enables a fast and user-friendly analysis of allele specific gene expression using the 454 technology. PanGEA allows mapping of 454-ESTs to genes or whole genomes, displaying gene expression profiles, identification of SNPs and the quantification of allele specific gene expression. The intuitive GUI of PanGEA facilitates a flexible and interactive analysis of the data. PanGEA additionally implements a modification of the Smith-Waterman algorithm which deals with incorrect estimates of homopolymer length as occuring in the 454 technology To our knowledge, PanGEA is the first tool which facilitates the identification of allele specific gene expression. PanGEA is distributed under the Mozilla Public License and available at: http://www.kofler.or.at/bioinformatics/PanGEA

  3. PanGEA: Identification of allele specific gene expression using the 454 technology

    PubMed Central

    Kofler, Robert; Teixeira Torres, Tatiana; Lelley, Tamas; Schlötterer, Christian

    2009-01-01

    Background Next generation sequencing technologies hold great potential for many biological questions. While mainly used for genomic sequencing, they are also very promising for gene expression profiling. Sequencing of cDNA does not only provide an estimate of the absolute expression level, it can also be used for the identification of allele specific gene expression. Results We developed PanGEA, a tool which enables a fast and user-friendly analysis of allele specific gene expression using the 454 technology. PanGEA allows mapping of 454-ESTs to genes or whole genomes, displaying gene expression profiles, identification of SNPs and the quantification of allele specific gene expression. The intuitive GUI of PanGEA facilitates a flexible and interactive analysis of the data. PanGEA additionally implements a modification of the Smith-Waterman algorithm which deals with incorrect estimates of homopolymer length as occuring in the 454 technology Conclusion To our knowledge, PanGEA is the first tool which facilitates the identification of allele specific gene expression. PanGEA is distributed under the Mozilla Public License and available at: PMID:19442283

  4. The chemiluminescence based Ziplex automated workstation focus array reproduces ovarian cancer Affymetrix GeneChip expression profiles.

    PubMed

    Quinn, Michael C J; Wilson, Daniel J; Young, Fiona; Dempsey, Adam A; Arcand, Suzanna L; Birch, Ashley H; Wojnarowicz, Paulina M; Provencher, Diane; Mes-Masson, Anne-Marie; Englert, David; Tonin, Patricia N

    2009-07-06

    As gene expression signatures may serve as biomarkers, there is a need to develop technologies based on mRNA expression patterns that are adaptable for translational research. Xceed Molecular has recently developed a Ziplex technology, that can assay for gene expression of a discrete number of genes as a focused array. The present study has evaluated the reproducibility of the Ziplex system as applied to ovarian cancer research of genes shown to exhibit distinct expression profiles initially assessed by Affymetrix GeneChip analyses. The new chemiluminescence-based Ziplex gene expression array technology was evaluated for the expression of 93 genes selected based on their Affymetrix GeneChip profiles as applied to ovarian cancer research. Probe design was based on the Affymetrix target sequence that favors the 3' UTR of transcripts in order to maximize reproducibility across platforms. Gene expression analysis was performed using the Ziplex Automated Workstation. Statistical analyses were performed to evaluate reproducibility of both the magnitude of expression and differences between normal and tumor samples by correlation analyses, fold change differences and statistical significance testing. Expressions of 82 of 93 (88.2%) genes were highly correlated (p < 0.01) in a comparison of the two platforms. Overall, 75 of 93 (80.6%) genes exhibited consistent results in normal versus tumor tissue comparisons for both platforms (p < 0.001). The fold change differences were concordant for 87 of 93 (94%) genes, where there was agreement between the platforms regarding statistical significance for 71 (76%) of 87 genes. There was a strong agreement between the two platforms as shown by comparisons of log2 fold differences of gene expression between tumor versus normal samples (R = 0.93) and by Bland-Altman analysis, where greater than 90% of expression values fell within the 95% limits of agreement. Overall concordance of gene expression patterns based on correlations, statistical significance between tumor and normal ovary data, and fold changes was consistent between the Ziplex and Affymetrix platforms. The reproducibility and ease-of-use of the technology suggests that the Ziplex array is a suitable platform for translational research.

  5. NORMAL NASAL GENE EXPRESSION LEVELS USING CDNA ARRAY TECHNOLOGY

    EPA Science Inventory

    Normal Nasal Gene Expression Levels Using cDNA Array Technology.

    The nasal epithelium is a target site for chemically-induced toxicity and carcinogenicity. To detect and analyze genetic events which contribute to nasal tumor development, we first defined the gene expressi...

  6. Differences in brain gene expression between sleep and waking as revealed by mRNA differential display and cDNA microarray technology.

    PubMed

    Cirelli, C; Tononi, G

    1999-06-01

    The consequences of sleep and sleep deprivation at the molecular level are largely unexplored. Knowledge of such molecular events is essential to understand the restorative processes occurring during sleep as well as the cellular mechanisms of sleep regulation. Here we review the available data about changes in neural gene expression across different behavioural states using candidate gene approaches such as in situ hybridization and immunocytochemistry. We then describe new techniques for systematic screening of gene expression in the brain, such as subtractive hybridization, mRNA differential display, and cDNA microarray technology, outlining advantages and disadvantages of these methods. Finally, we summarize our initial results of a systematic screening of gene expression in the rat brain across behavioural states using mRNA differential display and cDNA microarray technology. The expression pattern of approximately 7000 genes was analysed in the cerebral cortex of rats after 3 h of spontaneous sleep, 3 h of spontaneous waking, or 3 h of sleep deprivation. While the majority of transcripts were expressed at the same level among these three conditions, 14 mRNAs were modulated by sleep and waking. Six transcripts, four more expressed in waking and two more expressed in sleep, corresponded to novel genes. The eight known transcripts were all expressed at higher levels in waking than in sleep and included transcription factors and mitochondrial genes. A possible role for these known transcripts in mediating neural plasticity during waking is discussed.

  7. Recent advances in the development of new transgenic animal technology.

    PubMed

    Miao, Xiangyang

    2013-03-01

    Transgenic animal technology is one of the fastest growing biotechnology areas. It is used to integrate exogenous genes into the animal genome by genetic engineering technology so that these genes can be inherited and expressed by offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors in the production of transgenic animals. A variety of transgenic technologies are available. Each has its own advantages and disadvantages and needs further study because of unresolved technical and safety issues. Further studies will allow transgenic technology to explore gene function, animal genetic improvement, bioreactors, animal disease models, and organ transplantation. This article reviews the recently developed animal transgenic technologies, including the germ line stem cell-mediated method to improve efficiency, gene targeting to improve accuracy, RNA interference-mediated gene silencing technology, zinc-finger nuclease gene targeting technology and induced pluripotent stem cell technology. These new transgenic techniques can provide a better platform to develop transgenic animals for breeding new animal varieties and promote the development of medical sciences, livestock production, and other fields.

  8. Automation of fluorescent differential display with digital readout.

    PubMed

    Meade, Jonathan D; Cho, Yong-Jig; Fisher, Jeffrey S; Walden, Jamie C; Guo, Zhen; Liang, Peng

    2006-01-01

    Since its invention in 1992, differential display (DD) has become the most commonly used technique for identifying differentially expressed genes because of its many advantages over competing technologies such as DNA microarray, serial analysis of gene expression (SAGE), and subtractive hybridization. Despite the great impact of the method on biomedical research, there has been a lack of automation of DD technology to increase its throughput and accuracy for systematic gene expression analysis. Most of previous DD work has taken a "shot-gun" approach of identifying one gene at a time, with a limited number of polymerase chain reaction (PCR) reactions set up manually, giving DD a low-tech and low-throughput image. We have optimized the DD process with a new platform that incorporates fluorescent digital readout, automated liquid handling, and large-format gels capable of running entire 96-well plates. The resulting streamlined fluorescent DD (FDD) technology offers an unprecedented accuracy, sensitivity, and throughput in comprehensive and quantitative analysis of gene expression. These major improvements will allow researchers to find differentially expressed genes of interest, both known and novel, quickly and easily.

  9. Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells.

    PubMed

    Gatto, Sole; Puri, Pier Lorenzo; Malecova, Barbora

    2017-01-01

    Single cell gene expression profiling is a fundamental tool for studying the heterogeneity of a cell population by addressing the phenotypic and functional characteristics of each cell. Technological advances that have coupled microfluidic technologies with high-throughput quantitative RT-PCR analyses have enabled detailed analyses of single cells in various biological contexts. In this chapter, we describe the procedure for isolating the skeletal muscle interstitial cells termed Fibro-Adipogenic Progenitors (FAPs ) and their gene expression profiling at the single cell level. Moreover, we accompany our bench protocol with bioinformatics analysis designed to process raw data as well as to visualize single cell gene expression data. Single cell gene expression profiling is therefore a useful tool in the investigation of FAPs heterogeneity and their contribution to muscle homeostasis.

  10. SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY

    EPA Science Inventory

    Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray Technology
    Hongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...

  11. Principles of gene microarray data analysis.

    PubMed

    Mocellin, Simone; Rossi, Carlo Riccardo

    2007-01-01

    The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.

  12. The application of DNA microarrays in gene expression analysis.

    PubMed

    van Hal, N L; Vorst, O; van Houwelingen, A M; Kok, E J; Peijnenburg, A; Aharoni, A; van Tunen, A J; Keijer, J

    2000-03-31

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.

  13. Proof of Concept Study to Assess Fetal Gene Expression in Amniotic Fluid by NanoArray PCR

    PubMed Central

    Massingham, Lauren J.; Johnson, Kirby L.; Bianchi, Diana W.; Pei, Shermin; Peter, Inga; Cowan, Janet M.; Tantravahi, Umadevi; Morrison, Tom B.

    2011-01-01

    Microarray analysis of cell-free RNA in amniotic fluid (AF) supernatant has revealed differential fetal gene expression as a function of gestational age and karyotype. Once informative genes are identified, research moves to a more focused platform such as quantitative reverse transcriptase-PCR. Standardized NanoArray PCR (SNAP) is a recently developed gene profiling technology that enables the measurement of transcripts from samples containing reduced quantities or degraded nucleic acids. We used a previously developed SNAP gene panel as proof of concept to determine whether fetal functional gene expression could be ascertained from AF supernatant. RNA was extracted and converted to cDNA from 19 AF supernatant samples of euploid fetuses between 15 to 20 weeks of gestation, and transcript abundance of 21 genes was measured. Statistically significant differences in expression, as a function of advancing gestational age, were observed for 5 of 21 genes. ANXA5, GUSB, and PPIA showed decreasing gene expression over time, whereas CASC3 and ZNF264 showed increasing gene expression over time. Statistically significantly increased expression of MTOR and STAT2 was seen in female compared with male fetuses. This study demonstrates the feasibility of focused fetal gene expression analysis using SNAP technology. In the future, this technique could be optimized to examine specific genes instrumental in fetal organ system function, which could be a useful addition to prenatal care. PMID:21827969

  14. Technological advances and genomics in metazoan parasites.

    PubMed

    Knox, D P

    2004-02-01

    Molecular biology has provided the means to identify parasite proteins, to define their function, patterns of expression and the means to produce them in quantity for subsequent functional analyses. Whole genome and expressed sequence tag programmes, and the parallel development of powerful bioinformatics tools, allow the execution of genome-wide between stage or species comparisons and meaningful gene-expression profiling. The latter can be undertaken with several new technologies such as DNA microarray and serial analysis of gene expression. Proteome analysis has come to the fore in recent years providing a crucial link between the gene and its protein product. RNA interference and ballistic gene transfer are exciting developments which can provide the means to precisely define the function of individual genes and, of importance in devising novel parasite control strategies, the effect that gene knockdown will have on parasite survival.

  15. How controlled release technology can aid gene delivery.

    PubMed

    Jo, Jun-Ichiro; Tabata, Yasuhiko

    2015-01-01

    Many types of gene delivery systems have been developed to enhance the level of gene expression. Controlled release technology is a feasible gene delivery system which enables genes to extend the expression duration by maintaining and releasing them at the injection site in a controlled manner. This technology can reduce the adverse effects by the bolus dose administration and avoid the repeated administration. Biodegradable biomaterials are useful as materials for the controlled release-based gene delivery technology and various biodegradable biomaterials have been developed. Controlled release-based gene delivery plays a critical role in a conventional gene therapy and genetic engineering. In the gene therapy, the therapeutic gene is released from biodegradable biomaterial matrices around the tissue to be treated. On the other hand, the intracellular controlled release of gene from the sub-micro-sized matrices is required for genetic engineering. Genetic engineering is feasible for cell transplantation as well as research of stem cells biology and medicine. DNA hydrogel containing a sequence of therapeutic gene and the exosome including the individual specific nucleic acids may become candidates for controlled release carriers. Technologies to deliver genes to cell aggregates will play an important role in the promotion of regenerative research and therapy.

  16. MICROARRAY QUALITY CONTROL PROJECT: A COMPREHENSIVE GENE EXPRESSION TECHNOLOGY SURVEY DEMONSTRATES MEASURABLE CONSISTENCY AND CONCORDANT RESULTS BETWEEN PLATFORMS

    EPA Science Inventory

    Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, h...

  17. [New advances in animal transgenic technology].

    PubMed

    Sun, Zhen-Hong; Miao, Xiang-Yang; Zhu, Rui-Liang

    2010-06-01

    Animal transgenic technology is one of the fastest growing biotechnology in the 21st century. It is used to integrate foreign genes into the animal genome by genetic engineering technology so that foreign genes can be expressed and inherited to the offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors on preparation of transgenic animals. A variety of transgenic techniques are available, each of which has its own advantages and disadvantages and still needs further study because of unresolved technical and safety issues. With the in-depth research, the transgenic technology will have broad application prospects in the fields of exploration of gene function, animal genetic improvement, bioreactor, animal disease models, organ transplantation and so on. This article reviews the recently developed animal gene transfer techniques, including germline stem cell mediated method to improve the efficiency, gene targeting to improve the accuracy, RNA interference (RNAi)-mediated gene silencing technology, and the induced pluripotent stem cells (iPS) transgenic technology. The new transgenic techniques can provide a better platform for the study of trans-genic animals and promote the development of medical sciences, livestock production, and other fields.

  18. STUDIES OF NORMAL GENE EXPRESSION IN THE RAT NASAL EPITHELIUM USNG CDNA ARRAY TECHNOLOGY

    EPA Science Inventory


    Studies of Normal Gene Expression in the Rat Nasal Epithelium Using cDNA Array

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity .Gene expression data are being used increasingly for studies of such conditions. In or...

  19. Transcriptome analysis and identification of induced genes in the response of Harmonia axyridis to cold hardiness.

    PubMed

    Tang, Bin; Liu, Xiao-Jun; Shi, Zuo-Kun; Shen, Qi-Da; Xu, Yan-Xia; Wang, Su; Zhang, Fan; Wang, Shi-Gui

    2017-06-01

    Harmonia axyridis is an important predatory lady beetle that is a natural enemy of agricultural and forestry pests. In this research, the cold hardiness induced genes and their expression changes in H. axyridis were screened and detected by the way of the transcriptome and qualitative real-time PCR under normal and low temperatures, using high-throughput transcriptome and digital gene-expression-tag technologies. We obtained a 10Gb transcriptome and an 8Mb gene expression tag pool using Illumina deep sequencing technology and RNA-Seq analysis (accession number SRX540102). Of the 46,980 non-redundant unigenes identified, 28,037 (59.7%) were matched to known genes in GenBank, 21,604 (46.0%) in Swiss-Prot, 19,482 (41.5%) in Kyoto Encyclopedia of Genes and Genomes and 13,193 (28.1%) in Gene Ontology databases. Seventy-five percent of the unigene sequences had top matches with gene sequences from Tribolium castaneum. Results indicated that 60 genes regulated the entire cold-acclimation response, and, of these, seven genes were always up-regulated and five genes always down-regulated. Further screening revealed that six cold-resistant genes, E3 ubiquitin-protein ligase, transketolase, trehalase, serine/arginine repetitive matrix protein 2, glycerol kinase and sugar transporter SWEET1-like, play key roles in the response. Expression from a number of the differentially expressed genes was confirmed with quantitative real-time PCR (HaCS_Trans). The paper attempted to identify cold-resistance response genes, and study the potential mechanism by which cold acclimation enhances the insect's cold endurance. Information on these cold-resistance response genes will improve the development of low-temperature storage technology of natural enemy insects for future use in biological control. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Transcriptome Profiling of Chironomus kiinensis under Phenol Stress Using Solexa Sequencing Technology

    PubMed Central

    Cao, Chuanwang; Wang, Zhiying; Niu, Changying; Desneux, Nicolas; Gao, Xiwu

    2013-01-01

    Phenol is a major pollutant in aquatic ecosystems due to its chemical stability, water solubility and environmental mobility. To date, little is known about the molecular modifications of invertebrates under phenol stress. In the present study, we used Solexa sequencing technology to investigate the transcriptome and differentially expressed genes (DEGs) of midges (Chironomus kiinensis) in response to phenol stress. A total of 51,518,972 and 51,150,832 clean reads in the phenol-treated and control libraries, respectively, were obtained and assembled into 51,014 non-redundant (Nr) consensus sequences. A total of 6,032 unigenes were classified by Gene Ontology (GO), and 18,366 unigenes were categorized into 238 Kyoto Encyclopedia of Genes and Genomes (KEGG) categories. These genes included representatives from almost all functional categories. A total of 10,724 differentially expressed genes (P value <0.05) were detected in a comparative analysis of the expression profiles between phenol-treated and control C. kiinensis including 8,390 upregulated and 2,334 downregulated genes. The expression levels of 20 differentially expressed genes were confirmed by real-time RT-PCR, and the trends in gene expression that were observed matched the Solexa expression profiles, although the magnitude of the variations was different. Through pathway enrichment analysis, significantly enriched pathways were identified for the DEGs, including metabolic pathways, aryl hydrocarbon receptor (AhR), pancreatic secretion and neuroactive ligand-receptor interaction pathways, which may be associated with the phenol responses of C. kiinensis. Using Solexa sequencing technology, we identified several groups of key candidate genes as well as important biological pathways involved in the molecular modifications of chironomids under phenol stress. PMID:23527048

  1. Development of Sendai Virus Vectors and their Potential Applications in Gene Therapy and Regenerative Medicine

    PubMed Central

    Nakanishi, Mahito; Otsu, Makoto

    2012-01-01

    Gene delivery/expression vectors have been used as fundamental technologies in gene therapy since the 1980s. These technologies are also being applied in regenerative medicine as tools to reprogram cell genomes to a pluripotent state and to other cell lineages. Rapid progress in these new research areas and expectations for their translation into clinical applications have facilitated the development of more sophisticated gene delivery/expression technologies. Since its isolation in 1953 in Japan, Sendai virus (SeV) has been widely used as a research tool in cell biology and in industry, but the application of SeV as a recombinant viral vector has been investigated only recently. Recombinant SeV vectors have various unique characteristics, such as low pathogenicity, powerful capacity for gene expression and a wide host range. In addition, the cytoplasmic gene expression mediated by this vector is advantageous for applications, in that chromosomal integration of exogenous genes can be undesirable. In this review, we introduce a brief historical background on the development of recombinant SeV vectors and describe their current applications in gene therapy. We also describe the application of SeV vectors in advanced nuclear reprogramming and introduce a defective and persistent SeV vector (SeVdp) optimized for such reprogramming. PMID:22920683

  2. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    PubMed

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.

  3. Plant-pathogen interactions: what microarray tells about it?

    PubMed

    Lodha, T D; Basak, J

    2012-01-01

    Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant-pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.

  4. Imaging Transgene Expression with Radionuclide Imaging Technologies1

    PubMed Central

    Gambhir, SS; Herschman, HR; Cherry, SR; Barrio, JR; Satyamurthy, N; Toyokuni, T; Phelps, ME; Larson, SM; Balaton, J; Finn, R; Sadelain, M; Tjuvajev, J

    2000-01-01

    Abstract A variety of imaging technologies are being investigated as tools for studying gene expression in living subjects. Noninvasive, repetitive and quantitative imaging of gene expression will help both to facilitate human gene therapy trials and to allow for the study of animal models of molecular and cellular therapy. Radionuclide approaches using single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the most mature of the current imaging technologies and offer many advantages for imaging gene expression compared to optical and magnetic resonance imaging (MRI)-based approaches. These advantages include relatively high sensitivity, full quantitative capability (for PET), and the ability to extend small animal assays directly into clinical human applications. We describe a PET scanner (micro PET) designed specifically for studies of small animals. We review “marker/reporter gene” imaging approaches using the herpes simplex type 1 virus thymidine kinase (HSV1-tk) and the dopamine type 2 receptor (D2R) genes. We describe and contrast several radiolabeled probes that can be used with the HSV1-tk reporter gene both for SPECT and for PET imaging. We also describe the advantages/disadvantages of each of the assays developed and discuss future animal and human applications. PMID:10933072

  5. Site-specific recombination in the chicken genome using Flipase recombinase-mediated cassette exchange.

    PubMed

    Lee, Hong Jo; Lee, Hyung Chul; Kim, Young Min; Hwang, Young Sun; Park, Young Hyun; Park, Tae Sub; Han, Jae Yong

    2016-02-01

    Targeted genome recombination has been applied in diverse research fields and has a wide range of possible applications. In particular, the discovery of specific loci in the genome that support robust and ubiquitous expression of integrated genes and the development of genome-editing technology have facilitated rapid advances in various scientific areas. In this study, we produced transgenic (TG) chickens that can induce recombinase-mediated gene cassette exchange (RMCE), one of the site-specific recombination technologies, and confirmed RMCE in TG chicken-derived cells. As a result, we established TG chicken lines that have, Flipase (Flp) recognition target (FRT) pairs in the chicken genome, mediated by piggyBac transposition. The transgene integration patterns were diverse in each TG chicken line, and the integration diversity resulted in diverse levels of expression of exogenous genes in each tissue of the TG chickens. In addition, the replaced gene cassette was expressed successfully and maintained by RMCE in the FRT predominant loci of TG chicken-derived cells. These results indicate that targeted genome recombination technology with RMCE could be adaptable to TG chicken models and that the technology would be applicable to specific gene regulation by cis-element insertion and customized expression of functional proteins at predicted levels without epigenetic influence. © FASEB.

  6. Impact of Profiling Technologies in the Understanding of Recombinant Protein Production

    NASA Astrophysics Data System (ADS)

    Vijayendran, Chandran; Flaschel, Erwin

    Since expression profiling methods have been available in a high throughput fashion, the implication of these technologies in the field of biotechnology has increased dramatically. Microarray technology is one such unique and efficient methodology for simultaneous exploration of expression levels of numerous genes. Likewise, two-dimensional gel electrophoresis or multidimensional liquid chromatography coupled with mass spectrometry are extensively utilised for studying expression levels of numerous proteins. In the field of biotechnology these highly parallel analytical methods have paved the way to study and understand various biological phenomena depending on expression patterns. The next phenomenological level is represented by the metabolome and the (metabolic) fluxome. However, this chapter reviews gene and protein profiling and their impact on understanding recombinant protein production. We focus on the computational methods utilised for the analyses of data obtained from these profiling technologies as well as prominent results focusing on recombinant protein expression with Escherichia coli. Owing to the knowledge accumulated with respect to cellular signals triggered during recombinant protein production, this field is on the way to design strategies for developing improved processes. Both gene and protein profiling have exhibited a handful of functional categories to concentrate on in order to identify target genes and proteins, respectively, involved in the signalling network with major impact on recombinant protein production.

  7. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.

    PubMed

    Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong

    2017-03-01

    The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC in the future. ii) Differentially expressed genes may be involved in the occurrence of GC via a variety of mechanisms. iii) CD44, CXXC5, MYH9, MALAT1 and other genes may have important implications for the occurrence and development of GC through the regulation, interaction, and mutual influence of circRNA-miRNA-mRNA via different mechanisms.

  8. Superior Cross-Species Reference Genes: A Blueberry Case Study

    PubMed Central

    Die, Jose V.; Rowland, Lisa J.

    2013-01-01

    The advent of affordable Next Generation Sequencing technologies has had major impact on studies of many crop species, where access to genomic technologies and genome-scale data sets has been extremely limited until now. The recent development of genomic resources in blueberry will enable the application of high throughput gene expression approaches that should relatively quickly increase our understanding of blueberry physiology. These studies, however, require a highly accurate and robust workflow and make necessary the identification of reference genes with high expression stability for correct target gene normalization. To create a set of superior reference genes for blueberry expression analyses, we mined a publicly available transcriptome data set from blueberry for orthologs to a set of Arabidopsis genes that showed the most stable expression in a developmental series. In total, the expression stability of 13 putative reference genes was evaluated by qPCR and a set of new references with high stability values across a developmental series in fruits and floral buds of blueberry were identified. We also demonstrated the need to use at least two, preferably three, reference genes to avoid inconsistencies in results, even when superior reference genes are used. The new references identified here provide a valuable resource for accurate normalization of gene expression in Vaccinium spp. and may be useful for other members of the Ericaceae family as well. PMID:24058469

  9. Applications of Gene Targeting Technology to Mental Retardation and Developmental Disability Research

    ERIC Educational Resources Information Center

    Pimenta, Aurea F.; Levitt, Pat

    2005-01-01

    The human and mouse genome projects elucidated the sequence and position map of innumerous genes expressed in the central nervous system (CNS), advancing our ability to manipulate these sequences and create models to investigate regulation of gene expression and function. In this article, we reviewed gene targeting methodologies with emphasis on…

  10. GENE EXPRESSION PATTERNS ASSOCIATED WITH INFERTILITY IN HUMAN AND RODENT MODELS

    EPA Science Inventory

    Modern genomic technologies such as DNA arrays provide the means to investigate molecular interactions at an unprecedented level, and arrays have been used to carry out gene expression profiling as a means of identifying candidate genes involved in molecular mechanisms underlying...

  11. Missing data and technical variability in single-cell RNA-sequencing experiments.

    PubMed

    Hicks, Stephanie C; Townes, F William; Teng, Mingxiang; Irizarry, Rafael A

    2017-11-06

    Until recently, high-throughput gene expression technology, such as RNA-Sequencing (RNA-seq) required hundreds of thousands of cells to produce reliable measurements. Recent technical advances permit genome-wide gene expression measurement at the single-cell level. Single-cell RNA-Seq (scRNA-seq) is the most widely used and numerous publications are based on data produced with this technology. However, RNA-seq and scRNA-seq data are markedly different. In particular, unlike RNA-seq, the majority of reported expression levels in scRNA-seq are zeros, which could be either biologically-driven, genes not expressing RNA at the time of measurement, or technically-driven, genes expressing RNA, but not at a sufficient level to be detected by sequencing technology. Another difference is that the proportion of genes reporting the expression level to be zero varies substantially across single cells compared to RNA-seq samples. However, it remains unclear to what extent this cell-to-cell variation is being driven by technical rather than biological variation. Furthermore, while systematic errors, including batch effects, have been widely reported as a major challenge in high-throughput technologies, these issues have received minimal attention in published studies based on scRNA-seq technology. Here, we use an assessment experiment to examine data from published studies and demonstrate that systematic errors can explain a substantial percentage of observed cell-to-cell expression variability. Specifically, we present evidence that some of these reported zeros are driven by technical variation by demonstrating that scRNA-seq produces more zeros than expected and that this bias is greater for lower expressed genes. In addition, this missing data problem is exacerbated by the fact that this technical variation varies cell-to-cell. Then, we show how this technical cell-to-cell variability can be confused with novel biological results. Finally, we demonstrate and discuss how batch-effects and confounded experiments can intensify the problem. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Role of RNA interference in plant improvement

    NASA Astrophysics Data System (ADS)

    Jagtap, Umesh Balkrishna; Gurav, Ranjit Gajanan; Bapat, Vishwas Anant

    2011-06-01

    Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.

  13. Malaria Prevention by New Technology: Vectored Delivery of Antibody Genes

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0401 TITLE: Malaria Prevention by New Technology : Vectored Delivery of Antibody Genes PRINCIPAL INVESTIGATOR: Gary...CONTRACT NUMBER Malaria Prevention by New Technology : Vectored Delivery of Antibody Genes 5b. GRANT NUMBER W81XWH-15-1-0401 5c. PROGRAM ELEMENT...whole animals. Using a specific technology originally applied to expression of HIV antibodies, we demonstrated that mice can be protected from

  14. Development of a gene synthesis platform for the efficient large scale production of small genes encoding animal toxins.

    PubMed

    Sequeira, Ana Filipa; Brás, Joana L A; Guerreiro, Catarina I P D; Vincentelli, Renaud; Fontes, Carlos M G A

    2016-12-01

    Gene synthesis is becoming an important tool in many fields of recombinant DNA technology, including recombinant protein production. De novo gene synthesis is quickly replacing the classical cloning and mutagenesis procedures and allows generating nucleic acids for which no template is available. In addition, when coupled with efficient gene design algorithms that optimize codon usage, it leads to high levels of recombinant protein expression. Here, we describe the development of an optimized gene synthesis platform that was applied to the large scale production of small genes encoding venom peptides. This improved gene synthesis method uses a PCR-based protocol to assemble synthetic DNA from pools of overlapping oligonucleotides and was developed to synthesise multiples genes simultaneously. This technology incorporates an accurate, automated and cost effective ligation independent cloning step to directly integrate the synthetic genes into an effective Escherichia coli expression vector. The robustness of this technology to generate large libraries of dozens to thousands of synthetic nucleic acids was demonstrated through the parallel and simultaneous synthesis of 96 genes encoding animal toxins. An automated platform was developed for the large-scale synthesis of small genes encoding eukaryotic toxins. Large scale recombinant expression of synthetic genes encoding eukaryotic toxins will allow exploring the extraordinary potency and pharmacological diversity of animal venoms, an increasingly valuable but unexplored source of lead molecules for drug discovery.

  15. Lex-SVM: exploring the potential of exon expression profiling for disease classification.

    PubMed

    Yuan, Xiongying; Zhao, Yi; Liu, Changning; Bu, Dongbo

    2011-04-01

    Exon expression profiling technologies, including exon arrays and RNA-Seq, measure the abundance of every exon in a gene. Compared with gene expression profiling technologies like 3' array, exon expression profiling technologies could detect alterations in both transcription and alternative splicing, therefore they are expected to be more sensitive in diagnosis. However, exon expression profiling also brings higher dimension, more redundancy, and significant correlation among features. Ignoring the correlation structure among exons of a gene, a popular classification method like L1-SVM selects exons individually from each gene and thus is vulnerable to noise. To overcome this limitation, we present in this paper a new variant of SVM named Lex-SVM to incorporate correlation structure among exons and known splicing patterns to promote classification performance. Specifically, we construct a new norm, ex-norm, including our prior knowledge on exon correlation structure to regularize the coefficients of a linear SVM. Lex-SVM can be solved efficiently using standard linear programming techniques. The advantage of Lex-SVM is that it can select features group-wisely, force features in a subgroup to take equal weihts and exclude the features that contradict the majority in the subgroup. Experimental results suggest that on exon expression profile, Lex-SVM is more accurate than existing methods. Lex-SVM also generates a more compact model and selects genes more consistently in cross-validation. Unlike L1-SVM selecting only one exon in a gene, Lex-SVM assigns equal weights to as many exons in a gene as possible, lending itself easier for further interpretation.

  16. [Differential expression genes of bone tissues surrounding implants in diabetic rats by gene chip].

    PubMed

    Wang, Xin-xin; Ma, Yue; Li, Qing; Jiang, Bao-qi; Lan, Jing

    2012-10-01

    To compare mRNA expression profiles of bone tissues surrounding implants between normal rats and rats with diabetes using microarray technology. Six Wistar rats were randomly selected and divided into normal model group and diabetic group. Diabetic model condition was established by injecting Streptozotocin into peritoneal space. Titanium implants were implanted into the epiphyseal end of the rats' tibia. Bone tissues surrounding implant were harvested and sampled after 3 months to perform comprehensive RNA gene expression profiling, including 17983 for genome-wide association study.GO analysis was used to compare different gene expression and real-time PCR was used to confirm the results on core samples. The results indicated that there were 1084 differential gene expression. In the diabetic model, there were 352 enhanced expression genes, 732 suppressed expression genes. GO analysis involved 1154 different functional type. Osteoblast related gene expressions in bone tissue samples of diabetic rats were decreased, and lipid metabolism pathway related gene expression was increased.

  17. Finding gene regulatory network candidates using the gene expression knowledge base.

    PubMed

    Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin

    2014-12-10

    Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

  18. Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers.

    PubMed

    Irigoyen, Antonio; Jimenez-Luna, Cristina; Benavides, Manuel; Caba, Octavio; Gallego, Javier; Ortuño, Francisco Manuel; Guillen-Ponce, Carmen; Rojas, Ignacio; Aranda, Enrique; Torres, Carolina; Prados, Jose

    2018-01-01

    Applying differentially expressed genes (DEGs) to identify feasible biomarkers in diseases can be a hard task when working with heterogeneous datasets. Expression data are strongly influenced by technology, sample preparation processes, and/or labeling methods. The proliferation of different microarray platforms for measuring gene expression increases the need to develop models able to compare their results, especially when different technologies can lead to signal values that vary greatly. Integrative meta-analysis can significantly improve the reliability and robustness of DEG detection. The objective of this work was to develop an integrative approach for identifying potential cancer biomarkers by integrating gene expression data from two different platforms. Pancreatic ductal adenocarcinoma (PDAC), where there is an urgent need to find new biomarkers due its late diagnosis, is an ideal candidate for testing this technology. Expression data from two different datasets, namely Affymetrix and Illumina (18 and 36 PDAC patients, respectively), as well as from 18 healthy controls, was used for this study. A meta-analysis based on an empirical Bayesian methodology (ComBat) was then proposed to integrate these datasets. DEGs were finally identified from the integrated data by using the statistical programming language R. After our integrative meta-analysis, 5 genes were commonly identified within the individual analyses of the independent datasets. Also, 28 novel genes that were not reported by the individual analyses ('gained' genes) were also discovered. Several of these gained genes have been already related to other gastroenterological tumors. The proposed integrative meta-analysis has revealed novel DEGs that may play an important role in PDAC and could be potential biomarkers for diagnosing the disease.

  19. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolker, Eugene

    Our project focused primarily on analysis of different types of data produced by global high-throughput technologies, data integration of gene annotation, and gene and protein expression information, as well as on getting a better functional annotation of Shewanella genes. Specifically, four of our numerous major activities and achievements include the development of: statistical models for identification and expression proteomics, superior to currently available approaches (including our own earlier ones); approaches to improve gene annotations on the whole-organism scale; standards for annotation, transcriptomics and proteomics approaches; and generalized approaches for data integration of gene annotation, gene and protein expression information.

  1. Biodegradable nanoparticles for gene therapy technology

    NASA Astrophysics Data System (ADS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-07-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes.

  2. Use of Microarray to Analyze Gene Expression Profiles of Acute Effects of Prochloraz on Fathead Minnows Pimephales promelas

    EPA Science Inventory

    Microarray technology is a powerful tool to investigate the gene expression profiles for thousands of genes simultaneously. In recent years, microarrays have been used to characterize environmental pollutants and identify molecular mode(s) of action of chemicals including endocri...

  3. Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

    PubMed Central

    Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  4. Promoter library-based module combination (PLMC) technology for optimization of threonine biosynthesis in Corynebacterium glutamicum.

    PubMed

    Wei, Liang; Xu, Ning; Wang, Yiran; Zhou, Wei; Han, Guoqiang; Ma, Yanhe; Liu, Jun

    2018-05-01

    Due to the lack of efficient control elements and tools, the fine-tuning of gene expression in the multi-gene metabolic pathways is still a great challenge for engineering microbial cell factories, especially for the important industrial microorganism Corynebacterium glutamicum. In this study, the promoter library-based module combination (PLMC) technology was developed to efficiently optimize the expression of genes in C. glutamicum. A random promoter library was designed to contain the putative - 10 (NNTANANT) and - 35 (NNGNCN) consensus motifs, and refined through a three-step screening procedure to achieve numerous genetic control elements with different strength levels, including fluorescence-activated cell sorting (FACS) screening, agar plate screening, and 96-well plate screening. Multiple conventional strategies were employed for further precise characterizations of the promoter library, such as real-time quantitative PCR, sodium dodecyl sulfate polyacrylamide gel electrophoresis, FACS analysis, and the lacZ reporter system. These results suggested that the established promoter elements effectively regulated gene expression and showed varying strengths over a wide range. Subsequently, a multi-module combination technology was created based on the efficient promoter elements for combination and optimization of modules in the multi-gene pathways. Using this technology, the threonine biosynthesis pathway was reconstructed and optimized by predictable tuning expression of five modules in C. glutamicum. The threonine titer of the optimized strain was significantly improved to 12.8 g/L, an approximate 6.1-fold higher than that of the control strain. Overall, the PLMC technology presented in this study provides a rapid and effective method for combination and optimization of multi-gene pathways in C. glutamicum.

  5. An Undergraduate Laboratory Class Using CRISPR/Cas9 Technology to Mutate Drosophila Genes

    ERIC Educational Resources Information Center

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L.; Chechenova, Maria B.; Guerin, Paul; Cripps, Richard M.

    2016-01-01

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using…

  6. TOXICOGENOMICS AND HUMAN DISEASE RISK ASSESSMENT

    EPA Science Inventory


    Toxicogenomics and Human Disease Risk Assessment.

    Complete sequencing of human and other genomes, availability of large-scale gene
    expression arrays with ever-increasing numbers of genes displayed, and steady
    improvements in protein expression technology can hav...

  7. Knockdown of Polyphenol Oxidase Gene Expression in Potato (Solanum tuberosum L.) with Artificial MicroRNAs.

    PubMed

    Chi, Ming; Bhagwat, Basdeo; Tang, Guiliang; Xiang, Yu

    2016-01-01

    It is of great importance and interest to develop crop varieties with low polyphenol oxidase (PPO) activity for the food industry because PPO-mediated oxidative browning is a main cause of post-harvest deterioration and quality loss of fresh produce and processed foods. We recently demonstrated that potato tubers with reduced browning phenotypes can be produced by inhibition of the expression of several PPO gene isoforms using artificial microRNA (amiRNA) technology. The approach introduces a single type of 21-nucleotide RNA population to guide silencing of the PPO gene transcripts in potato tissues. Some advantages of the technology are: small RNA molecules are genetically transformed, off-target gene silencing can be avoided or minimized at the stage of amiRNA designs, and accuracy and efficiency of the processes can be detected at every step using molecular biological techniques. Here we describe the methods for transformation and regeneration of potatoes with amiRNA vectors, detection of the expression of amiRNAs, identification of the cleaved product of the target gene transcripts, and assay of the expression level of PPO gene isoforms in potatoes.

  8. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements

    PubMed Central

    2012-01-01

    Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues. Expression data on four titration pools from two distinct reference RNA samples were generated at multiple test sites using a variety of microarray-based and alternative technology platforms. Here we describe the experimental design and probe mapping efforts behind the MAQC project. We show intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed. This study provides a resource that represents an important first step toward establishing a framework for the use of microarrays in clinical and regulatory settings. PMID:16964229

  9. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging Pseudorabies virus.

    PubMed

    Liang, Xun; Sun, Leqiang; Yu, Teng; Pan, Yongfei; Wang, Dongdong; Hu, Xueying; Fu, Zhenfang; He, Qigai; Cao, Gang

    2016-01-18

    Virus evolves rapidly to escape vaccine-induced immunity, posing a desperate demand for efficient vaccine development biotechnologies. Here we present an express vaccine development strategy based on CRISPR/Cas9 and Cre/Lox system against re-emerging Pseudorabies virus, which caused the recent devastating swine pseudorabies outbreak in China. By CRISPR/Cas9 system, the virulent genes of the newly isolated strain were simultaneously substituted by marker genes, which were subsequently excised using Cre/Lox system for vaccine safety concern. Notably, single cell FACS technology was applied to further promote virus purification efficiency. The combination of these state-of-art technologies greatly accelerated vaccine development. Finally, vaccination and challenge experiments proved this vaccine candidate's protective efficacy in pigs and the promise to control current pseudorabies outbreak. This is, to our knowledge, the first successful vaccine development based on gene edit technologies, demonstrating these technologies leap from laboratory to industry. It may pave the way for future express antiviral vaccine development.

  10. A CRISPR/Cas9 and Cre/Lox system-based express vaccine development strategy against re-emerging Pseudorabies virus

    PubMed Central

    Liang, Xun; Sun, Leqiang; Yu, Teng; Pan, Yongfei; Wang, Dongdong; Hu, Xueying; Fu, Zhenfang; He, Qigai; Cao, Gang

    2016-01-01

    Virus evolves rapidly to escape vaccine-induced immunity, posing a desperate demand for efficient vaccine development biotechnologies. Here we present an express vaccine development strategy based on CRISPR/Cas9 and Cre/Lox system against re-emerging Pseudorabies virus, which caused the recent devastating swine pseudorabies outbreak in China. By CRISPR/Cas9 system, the virulent genes of the newly isolated strain were simultaneously substituted by marker genes, which were subsequently excised using Cre/Lox system for vaccine safety concern. Notably, single cell FACS technology was applied to further promote virus purification efficiency. The combination of these state-of-art technologies greatly accelerated vaccine development. Finally, vaccination and challenge experiments proved this vaccine candidate’s protective efficacy in pigs and the promise to control current pseudorabies outbreak. This is, to our knowledge, the first successful vaccine development based on gene edit technologies, demonstrating these technologies leap from laboratory to industry. It may pave the way for future express antiviral vaccine development. PMID:26777545

  11. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures.

    PubMed

    Duan, Qiaonan; Flynn, Corey; Niepel, Mario; Hafner, Marc; Muhlich, Jeremy L; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Chen, Edward Y; Golub, Todd R; Sorger, Peter K; Subramanian, Aravind; Ma'ayan, Avi

    2014-07-01

    For the Library of Integrated Network-based Cellular Signatures (LINCS) project many gene expression signatures using the L1000 technology have been produced. The L1000 technology is a cost-effective method to profile gene expression in large scale. LINCS Canvas Browser (LCB) is an interactive HTML5 web-based software application that facilitates querying, browsing and interrogating many of the currently available LINCS L1000 data. LCB implements two compacted layered canvases, one to visualize clustered L1000 expression data, and the other to display enrichment analysis results using 30 different gene set libraries. Clicking on an experimental condition highlights gene-sets enriched for the differentially expressed genes from the selected experiment. A search interface allows users to input gene lists and query them against over 100 000 conditions to find the top matching experiments. The tool integrates many resources for an unprecedented potential for new discoveries in systems biology and systems pharmacology. The LCB application is available at http://www.maayanlab.net/LINCS/LCB. Customized versions will be made part of the http://lincscloud.org and http://lincs.hms.harvard.edu websites. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    PubMed Central

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  13. Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress

    PubMed Central

    Li, Changning; Nong, Qian; Solanki, Manoj Kumar; Liang, Qiang; Xie, Jinlan; Liu, Xiaoyan; Li, Yijie; Wang, Weizan; Yang, Litao; Li, Yangrui

    2016-01-01

    Water stress causes considerable yield losses in sugarcane. To investigate differentially expressed genes under water stress, a pot experiment was performed with the sugarcane variety GT21 at three water-deficit levels (mild, moderate, and severe) during the elongation stage and gene expression was analyzed using microarray technology. Physiological parameters of sugarcane showed significant alterations in response to drought stress. Based on the expression profile of 15,593 sugarcane genes, 1,501 (9.6%) genes were differentially expressed under different water-level treatments; 821 genes were upregulated and 680 genes were downregulated. A gene similarity analysis showed that approximately 62.6% of the differentially expressed genes shared homology with functional proteins. In a Gene Ontology (GO) analysis, 901 differentially expressed genes were assigned to 36 GO categories. Moreover, 325 differentially expressed genes were classified into 101 pathway categories involved in various processes, such as the biosynthesis of secondary metabolites, ribosomes, carbon metabolism, etc. In addition, some unannotated genes were detected; these may provide a basis for studies of water-deficit tolerance. The reliability of the observed expression patterns was confirmed by RT-PCR. The results of this study may help identify useful genes for improving drought tolerance in sugarcane. PMID:27170459

  14. Studies of the effects of Vilon and Epithalon on gene expression in mouse heart using DNA-microarray technology.

    PubMed

    Anisimov, S V; Bokheler, K R; Khavinson, V Kh; Anisimov, V N

    2002-03-01

    Expression of 15,247 clones from a cDNA library in the heart of mice receiving Vilon and Epithalon was studied by DNA-microarray technology. We revealed 300 clones (1.94% of the total count), whose expression changed more than by 2 times. Vilon changed expression of 36 clones, while Epithalon modulated expression of 98 clones. Combined treatment with Vilon and Epithalon changed expression of 144 clones. Vilon alone or in combination with Epithalon activated expression of 157 clones (maximally by 6.13 times) and inhibited expression of 23 clones (maximally by 2.79 times). Epithalon alone or in combination with Vilon activated expression of 194 clones (maximally by 6.61 times) and inhibited expression of 48 clones (maximally by 2.71 times). Our results demonstrate the specific effects of Epithalon and Vilon on gene expression.

  15. Silk Gland Gene Expression during Larval-Pupal Transition in the Cotton Leaf Roller Sylepta derogata (Lepidoptera: Pyralidae)

    PubMed Central

    Su, Honghua; Cheng, Yuming; Wang, Zhongyang; Li, Zhong; Stanley, David; Yang, Yizhong

    2015-01-01

    The cotton leaf roller, Sylepta derogata, is a silk-producing insect pest. While young larvae feed on the underside of leaves, the older ones roll cotton leaves and feed on the leaf edges, which defoliates cotton plants. The larvae produce silk to stabilize the rolled leaf and to balloon from used to new leaves. Despite the significance of silk in the biology of pest insect species, there is virtually no information on the genes involved in their silk production. This is a substantial knowledge gap because some of these genes may be valuable targets for developing molecular pest management technologies. We addressed the gap by posing the hypothesis that silk gland gene expression changes during the transition from larvae to pupae. We tested our hypothesis using RNA-seq to investigate changes in silk gland gene expression at three developmental stages, 5th instar larvae (silk producing; 15,445,926 clean reads), prepupae (reduced silk producing; 13,758,154) and pupae (beyond silk producing; 16,787,792). We recorded 60,298 unigenes and mapped 50,158 (larvae), 48,415 (prepupae) and 46,623 (pupae) of them to the NCBI database. Most differentially expressed genes in the 5th instar larvae/prepupae libraries were relevant to nucleotide synthesis and maintenance of silk gland function. We identified down-regulated transcriptional factors and several genes involved in silk formation in the three libraries and verified the expression pattern of eight genes by qPCR. The developmental- and tissue-specific expression patterns of the fibroin light chain gene showed it was highly expressed during the larval silk-producing stage. We recorded highest expression of this gene in the larval silk gland, compared to other tissues, including midgut, hindgut, epidermis, Malpighian tubes, hemolymph and fat body. These data are a genetic resource to guide selection of key genes that may be targeted for in planta and other gene-silencing technologies for sustainable cotton agriculture. PMID:26352931

  16. Silk Gland Gene Expression during Larval-Pupal Transition in the Cotton Leaf Roller Sylepta derogata (Lepidoptera: Pyralidae).

    PubMed

    Su, Honghua; Cheng, Yuming; Wang, Zhongyang; Li, Zhong; Stanley, David; Yang, Yizhong

    2015-01-01

    The cotton leaf roller, Sylepta derogata, is a silk-producing insect pest. While young larvae feed on the underside of leaves, the older ones roll cotton leaves and feed on the leaf edges, which defoliates cotton plants. The larvae produce silk to stabilize the rolled leaf and to balloon from used to new leaves. Despite the significance of silk in the biology of pest insect species, there is virtually no information on the genes involved in their silk production. This is a substantial knowledge gap because some of these genes may be valuable targets for developing molecular pest management technologies. We addressed the gap by posing the hypothesis that silk gland gene expression changes during the transition from larvae to pupae. We tested our hypothesis using RNA-seq to investigate changes in silk gland gene expression at three developmental stages, 5th instar larvae (silk producing; 15,445,926 clean reads), prepupae (reduced silk producing; 13,758,154) and pupae (beyond silk producing; 16,787,792). We recorded 60,298 unigenes and mapped 50,158 (larvae), 48,415 (prepupae) and 46,623 (pupae) of them to the NCBI database. Most differentially expressed genes in the 5th instar larvae/prepupae libraries were relevant to nucleotide synthesis and maintenance of silk gland function. We identified down-regulated transcriptional factors and several genes involved in silk formation in the three libraries and verified the expression pattern of eight genes by qPCR. The developmental- and tissue-specific expression patterns of the fibroin light chain gene showed it was highly expressed during the larval silk-producing stage. We recorded highest expression of this gene in the larval silk gland, compared to other tissues, including midgut, hindgut, epidermis, Malpighian tubes, hemolymph and fat body. These data are a genetic resource to guide selection of key genes that may be targeted for in planta and other gene-silencing technologies for sustainable cotton agriculture.

  17. [Differentially expressed genes of cell signal transduction associated with benzene poisoning by cDNA microarray].

    PubMed

    Wang, Hong; Bi, Yongyi; Tao, Ning; Wang, Chunhong

    2005-08-01

    To detect the differential expression of cell signal transduction genes associated with benzene poisoning, and to explore the pathogenic mechanisms of blood system damage induced by benzene. Peripheral white blood cell gene expression profile of 7 benzene poisoning patients, including one aplastic anemia, was determined by cDNA microarray. Seven chips from normal workers were served as controls. Cluster analysis of gene expression profile was performed. Among the 4265 target genes, 176 genes associated with cell signal transduction were differentially expressed. 35 up-regulated genes including PTPRC, STAT4, IFITM1 etc were found in at least 6 pieces of microarray; 45 down-regulated genes including ARHB, PPP3CB, CDC37 etc were found in at least 5 pieces of microarray. cDNA microarray technology is an effective technique for screening the differentially expressed genes of cell signal transduction. Disorder in cell signal transduction may play certain role in the pathogenic mechanism of benzene poisoning.

  18. APPLICATION OF GENE ARRAY TECHNOLOGY IN THE RESEARCH OF CARDIOPULMONARY TOXICITY INDUCED BY PARTICULATE MATTER (PM) AND ITS CONSTITUENTS.

    EPA Science Inventory

    Because of its ability to provide a "snap-shot" view of expression of large number of genes simultaneously, the microarray technology may be a useful tool to uncover new mechanisms of toxicity. This proposal will use the state-of-the-art gene microarrays and a new bioinformatic t...

  19. Gender-Specific Gene Expression in Post-Mortem Human Brain: Localization to Sex Chromosomes

    PubMed Central

    Vawter, Marquis P; Evans, Simon; Choudary, Prabhakara; Tomita, Hiroaki; Meador-Woodruff, Jim; Molnar, Margherita; Li, Jun; Lopez, Juan F; Myers, Rick; Cox, David; Watson, Stanley J; Akil, Huda; Jones, Edward G; Bunney, William E

    2011-01-01

    Gender differences in brain development and in the prevalence of neuropsychiatric disorders such as depression have been reported. Gender differences in human brain might be related to patterns of gene expression. Microarray technology is one useful method for investigation of gene expression in brain. We investigated gene expression, cell types, and regional expression patterns of differentially expressed sex chromosome genes in brain. We profiled gene expression in male and female dorsolateral prefrontal cortex, anterior cingulate cortex, and cerebellum using the Affymetrix oligonucleotide microarray platform. Differentially expressed genes between males and females on the Y chromosome (DBY, SMCY, UTY, RPS4Y, and USP9Y) and X chromosome (XIST) were confirmed using real-time PCR measurements. In situ hybridization confirmed the differential expression of gender-specific genes and neuronal expression of XIST, RPS4Y, SMCY, and UTY in three brain regions examined. The XIST gene, which silences gene expression on regions of the X chromosome, is expressed in a subset of neurons. Since a subset of neurons express gender-specific genes, neural subpopulations may exhibit a subtle sexual dimorphism at the level of differences in gene regulation and function. The distinctive pattern of neuronal expression of XIST, RPS4Y, SMCY, and UTY and other sex chromosome genes in neuronal subpopulations may possibly contribute to gender differences in prevalence noted for some neuropsychiatric disorders. Studies of the protein expression of these sex- chromosome-linked genes in brain tissue are required to address the functional consequences of the observed gene expression differences. PMID:14583743

  20. Breast imaging technology: Recent advances in imaging endogenous or transferred gene expression utilizing radionuclide technologies in living subjects - applications to breast cancer

    PubMed Central

    Berger, Frank; Sam Gambhir, Sanjiv

    2001-01-01

    A variety of imaging technologies is being investigated as tools for studying gene expression in living subjects. Two technologies that use radiolabeled isotopes are single photon emission computed tomography (SPECT) and positron emission tomography (PET). A relatively high sensitivity, a full quantitative tomographic capability, and the ability to extend small animal imaging assays directly into human applications characterize radionuclide approaches. Various radiolabeled probes (tracers) can be synthesized to target specific molecules present in breast cancer cells. These include antibodies or ligands to target cell surface receptors, substrates for intracellular enzymes, antisense oligodeoxynucleotide probes for targeting mRNA, probes for targeting intracellular receptors, and probes for genes transferred into the cell. We briefly discuss each of these imaging approaches and focus in detail on imaging reporter genes. In a PET reporter gene system for in vivo reporter gene imaging, the protein products of the reporter genes sequester positron emitting reporter probes. PET subsequently measures the PET reporter gene dependent sequestration of the PET reporter probe in living animals. We describe and review reporter gene approaches using the herpes simplex type 1 virus thymidine kinase and the dopamine type 2 receptor genes. Application of the reporter gene approach to animal models for breast cancer is discussed. Prospects for future applications of the transgene imaging technology in human gene therapy are also discussed. Both SPECT and PET provide unique opportunities to study animal models of breast cancer with direct application to human imaging. Continued development of new technology, probes and assays should help in the better understanding of basic breast cancer biology and in the improved management of breast cancer patients. PMID:11250742

  1. APPLICATION OF GENOMICS TO REPRODUCTIVE TOXICOLOGY: WORKING FROM RESEARCH TOWARDS RISK ASSESSMENT

    EPA Science Inventory

    Genomic technologies are available to examine the expression of thousands of genes simultaneously. These technologies represent a paradigm shift from single-gene approaches fundamentally altering the practice of toxicology. The goal of toxicogenomic studies is to improve human ...

  2. Digital gene expression analysis of the zebra finch genome

    PubMed Central

    2010-01-01

    Background In order to understand patterns of adaptation and molecular evolution it is important to quantify both variation in gene expression and nucleotide sequence divergence. Gene expression profiling in non-model organisms has recently been facilitated by the advent of massively parallel sequencing technology. Here we investigate tissue specific gene expression patterns in the zebra finch (Taeniopygia guttata) with special emphasis on the genes of the major histocompatibility complex (MHC). Results Almost 2 million 454-sequencing reads from cDNA of six different tissues were assembled and analysed. A total of 11,793 zebra finch transcripts were represented in this EST data, indicating a transcriptome coverage of about 65%. There was a positive correlation between the tissue specificity of gene expression and non-synonymous to synonymous nucleotide substitution ratio of genes, suggesting that genes with a specialised function are evolving at a higher rate (or with less constraint) than genes with a more general function. In line with this, there was also a negative correlation between overall expression levels and expression specificity of contigs. We found evidence for expression of 10 different genes related to the MHC. MHC genes showed relatively tissue specific expression levels and were in general primarily expressed in spleen. Several MHC genes, including MHC class I also showed expression in brain. Furthermore, for all genes with highest levels of expression in spleen there was an overrepresentation of several gene ontology terms related to immune function. Conclusions Our study highlights the usefulness of next-generation sequence data for quantifying gene expression in the genome as a whole as well as in specific candidate genes. Overall, the data show predicted patterns of gene expression profiles and molecular evolution in the zebra finch genome. Expression of MHC genes in particular, corresponds well with expression patterns in other vertebrates. PMID:20359325

  3. GEOGLE: context mining tool for the correlation between gene expression and the phenotypic distinction.

    PubMed

    Yu, Yao; Tu, Kang; Zheng, Siyuan; Li, Yun; Ding, Guohui; Ping, Jie; Hao, Pei; Li, Yixue

    2009-08-25

    In the post-genomic era, the development of high-throughput gene expression detection technology provides huge amounts of experimental data, which challenges the traditional pipelines for data processing and analyzing in scientific researches. In our work, we integrated gene expression information from Gene Expression Omnibus (GEO), biomedical ontology from Medical Subject Headings (MeSH) and signaling pathway knowledge from sigPathway entries to develop a context mining tool for gene expression analysis - GEOGLE. GEOGLE offers a rapid and convenient way for searching relevant experimental datasets, pathways and biological terms according to multiple types of queries: including biomedical vocabularies, GDS IDs, gene IDs, pathway names and signature list. Moreover, GEOGLE summarizes the signature genes from a subset of GDSes and estimates the correlation between gene expression and the phenotypic distinction with an integrated p value. This approach performing global searching of expression data may expand the traditional way of collecting heterogeneous gene expression experiment data. GEOGLE is a novel tool that provides researchers a quantitative way to understand the correlation between gene expression and phenotypic distinction through meta-analysis of gene expression datasets from different experiments, as well as the biological meaning behind. The web site and user guide of GEOGLE are available at: http://omics.biosino.org:14000/kweb/workflow.jsp?id=00020.

  4. Strategies for comparing gene expression profiles from different microarray platforms: application to a case-control experiment.

    PubMed

    Severgnini, Marco; Bicciato, Silvio; Mangano, Eleonora; Scarlatti, Francesca; Mezzelani, Alessandra; Mattioli, Michela; Ghidoni, Riccardo; Peano, Clelia; Bonnal, Raoul; Viti, Federica; Milanesi, Luciano; De Bellis, Gianluca; Battaglia, Cristina

    2006-06-01

    Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol. Gene expression profiles were obtained using high-density, short-oligonucleotide, single-color microarray platforms: GeneChip (Affymetrix) and CodeLink (Amersham). Interplatform analyses were carried out on 8414 common transcripts represented on both platforms, as identified by LocusLink ID, representing 70.8% and 88.6% of annotated GeneChip and CodeLink features, respectively. We identified 105 differentially expressed genes (DEGs) on CodeLink and 42 DEGs on GeneChip. Among them, only 9 DEGs were commonly identified by both platforms. Multiple analyses (BLAST alignment of probes with target sequences, gene ontology, literature mining, and quantitative real-time PCR) permitted us to investigate the factors contributing to the generation of platform-dependent results in single-color microarray experiments. An effective approach to cross-platform comparison involves microarrays of similar technologies, samples prepared by identical methods, and a standardized battery of bioinformatic and statistical analyses.

  5. Complementary techniques: validation of gene expression data by quantitative real time PCR.

    PubMed

    Provenzano, Maurizio; Mocellin, Simone

    2007-01-01

    Microarray technology can be considered the most powerful tool for screening gene expression profiles of biological samples. After data mining, results need to be validated with highly reliable biotechniques allowing for precise quantitation of transcriptional abundance of identified genes. Quantitative real time PCR (qrt-PCR) technology has recently reached a level of sensitivity, accuracy and practical ease that support its use as a routine bioinstrumentation for gene level measurement. Currently, qrt-PCR is considered by most experts the most appropriate method to confirm or confute microarray-generated data. The knowledge of the biochemical principles underlying qrt-PCR as well as some related technical issues must be beard in mind when using this biotechnology.

  6. NanoString, a novel digital color-coded barcode technology: current and future applications in molecular diagnostics.

    PubMed

    Tsang, Hin-Fung; Xue, Vivian Weiwen; Koh, Su-Pin; Chiu, Ya-Ming; Ng, Lawrence Po-Wah; Wong, Sze-Chuen Cesar

    2017-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissue sample is a gold mine of resources for molecular diagnosis and retrospective clinical studies. Although molecular technologies have expanded the range of mutations identified in FFPE samples, the applications of existing technologies are limited by the low nucleic acids yield and poor extraction quality. As a result, the routine clinical applications of molecular diagnosis using FFPE samples has been associated with many practical challenges. NanoString technologies utilize a novel digital color-coded barcode technology based on direct multiplexed measurement of gene expression and offer high levels of precision and sensitivity. Each color-coded barcode is attached to a single target-specific probe corresponding to a single gene which can be individually counted without amplification. Therefore, NanoString is especially useful for measuring gene expression in degraded clinical specimens. Areas covered: This article describes the applications of NanoString technologies in molecular diagnostics and challenges associated with its applications and the future development. Expert commentary: Although NanoString technology is still in the early stages of clinical use, it is expected that NanoString-based cancer expression panels would play more important roles in the future in classifying cancer patients and in predicting the response to therapy for better personal therapeutic care.

  7. Expression of codon optimized genes in microbial systems: current industrial applications and perspectives

    PubMed Central

    Elena, Claudia; Ravasi, Pablo; Castelli, María E.; Peirú, Salvador; Menzella, Hugo G.

    2014-01-01

    The efficient production of functional proteins in heterologous hosts is one of the major bases of modern biotechnology. Unfortunately, many genes are difficult to express outside their original context. Due to their apparent “silent” nature, synonymous codon substitutions have long been thought to be trivial. In recent years, this dogma has been refuted by evidence that codon replacement can have a significant impact on gene expression levels and protein folding. In the past decade, considerable advances in the speed and cost of gene synthesis have facilitated the complete redesign of entire gene sequences, dramatically improving the likelihood of high protein expression. This technology significantly impacts the economic feasibility of microbial-based biotechnological processes by, for example, increasing the volumetric productivities of recombinant proteins or facilitating the redesign of novel biosynthetic routes for the production of metabolites. This review discusses the current applications of this technology, particularly those regarding the production of small molecules and industrially relevant recombinant enzymes. Suggestions for future research and potential uses are provided as well. PMID:24550894

  8. NCBI GEO: mining millions of expression profiles--database and tools.

    PubMed

    Barrett, Tanya; Suzek, Tugba O; Troup, Dennis B; Wilhite, Stephen E; Ngau, Wing-Chi; Ledoux, Pierre; Rudnev, Dmitry; Lash, Alex E; Fujibuchi, Wataru; Edgar, Ron

    2005-01-01

    The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) is the largest fully public repository for high-throughput molecular abundance data, primarily gene expression data. The database has a flexible and open design that allows the submission, storage and retrieval of many data types. These data include microarray-based experiments measuring the abundance of mRNA, genomic DNA and protein molecules, as well as non-array-based technologies such as serial analysis of gene expression (SAGE) and mass spectrometry proteomic technology. GEO currently holds over 30,000 submissions representing approximately half a billion individual molecular abundance measurements, for over 100 organisms. Here, we describe recent database developments that facilitate effective mining and visualization of these data. Features are provided to examine data from both experiment- and gene-centric perspectives using user-friendly Web-based interfaces accessible to those without computational or microarray-related analytical expertise. The GEO database is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

  9. SNP discovery in the bovine milk transcriptome using RNA-Seq technology.

    PubMed

    Cánovas, Angela; Rincon, Gonzalo; Islas-Trejo, Alma; Wickramasinghe, Saumya; Medrano, Juan F

    2010-12-01

    High-throughput sequencing of RNA (RNA-Seq) was developed primarily to analyze global gene expression in different tissues. However, it also is an efficient way to discover coding SNPs. The objective of this study was to perform a SNP discovery analysis in the milk transcriptome using RNA-Seq. Seven milk samples from Holstein cows were analyzed by sequencing cDNAs using the Illumina Genome Analyzer system. We detected 19,175 genes expressed in milk samples corresponding to approximately 70% of the total number of genes analyzed. The SNP detection analysis revealed 100,734 SNPs in Holstein samples, and a large number of those corresponded to differences between the Holstein breed and the Hereford bovine genome assembly Btau4.0. The number of polymorphic SNPs within Holstein cows was 33,045. The accuracy of RNA-Seq SNP discovery was tested by comparing SNPs detected in a set of 42 candidate genes expressed in milk that had been resequenced earlier using Sanger sequencing technology. Seventy of 86 SNPs were detected using both RNA-Seq and Sanger sequencing technologies. The KASPar Genotyping System was used to validate unique SNPs found by RNA-Seq but not observed by Sanger technology. Our results confirm that analyzing the transcriptome using RNA-Seq technology is an efficient and cost-effective method to identify SNPs in transcribed regions. This study creates guidelines to maximize the accuracy of SNP discovery and prevention of false-positive SNP detection, and provides more than 33,000 SNPs located in coding regions of genes expressed during lactation that can be used to develop genotyping platforms to perform marker-trait association studies in Holstein cattle.

  10. Perspectives: Gene Expression in Fisheries Management

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  11. Altered DNA methylation and expression of PLAGL1 in cord blood from assisted reproductive technology pregnancies compared with natural conceptions.

    PubMed

    Vincent, Rebecca N; Gooding, Luke D; Louie, Kenny; Chan Wong, Edgar; Ma, Sai

    2016-09-01

    To investigate DNA methylation and expression of imprinted genes and an imprinted gene network (IGN) in neonates conceived via assisted reproductive technology (ART). Case control. Research institution. Two hundred sixty-four cases of cord blood and/or placental villi from neonates (101 IVF, 81 ICSI, 82 naturally conceived). Placentas were obtained at birth for biopsy and cord blood extraction. DNA methylation and expression of imprinted genes. DNA methylation at the PLAGL1 differentially methylated region (DMR) was significantly higher in IVF cord blood (48.0%) compared with controls (46.0%). No differences were found in DNA methylation between conception modes for KvDMR1 and LINE-1 in cord blood and placenta as well as PLAGL1 and PEG10 in placenta villi. PLAGL1 expression was lower in both IVF and ICSI cord blood groups than in controls (relative quantification of 0.65, 0.74, 0.89, respectively). Analyzing the expression of 3 genes in a PLAGL1 regulated IGN revealed different expression between conception modes and a significant correlation to PLAGL1 expression in only one (KCNQ1OT1). Our results suggest a stability of DNA methylation at imprinted DMRs; however, we show PLAGL1 methylation/expression to be altered after ART. As PLAGL1 expression correlated with only one of the three IGN genes in cord blood, we propose there is a more complex mechanism of regulating the IGN that may involve other genes and epigenetic modifications in this tissue. Further research investigating IGN-implicated genes in various neonatal tissues is warranted to elucidate the full effects ART-induced alterations to PLAGL1 and the IGN may have on fetal growth/development. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map.

    PubMed

    Smith, Ian; Greenside, Peyton G; Natoli, Ted; Lahr, David L; Wadden, David; Tirosh, Itay; Narayan, Rajiv; Root, David E; Golub, Todd R; Subramanian, Aravind; Doench, John G

    2017-11-01

    The application of RNA interference (RNAi) to mammalian cells has provided the means to perform phenotypic screens to determine the functions of genes. Although RNAi has revolutionized loss-of-function genetic experiments, it has been difficult to systematically assess the prevalence and consequences of off-target effects. The Connectivity Map (CMAP) represents an unprecedented resource to study the gene expression consequences of expressing short hairpin RNAs (shRNAs). Analysis of signatures for over 13,000 shRNAs applied in 9 cell lines revealed that microRNA (miRNA)-like off-target effects of RNAi are far stronger and more pervasive than generally appreciated. We show that mitigating off-target effects is feasible in these datasets via computational methodologies to produce a consensus gene signature (CGS). In addition, we compared RNAi technology to clustered regularly interspaced short palindromic repeat (CRISPR)-based knockout by analysis of 373 single guide RNAs (sgRNAs) in 6 cells lines and show that the on-target efficacies are comparable, but CRISPR technology is far less susceptible to systematic off-target effects. These results will help guide the proper use and analysis of loss-of-function reagents for the determination of gene function.

  13. iPcc: a novel feature extraction method for accurate disease class discovery and prediction

    PubMed Central

    Ren, Xianwen; Wang, Yong; Zhang, Xiang-Sun; Jin, Qi

    2013-01-01

    Gene expression profiling has gradually become a routine procedure for disease diagnosis and classification. In the past decade, many computational methods have been proposed, resulting in great improvements on various levels, including feature selection and algorithms for classification and clustering. In this study, we present iPcc, a novel method from the feature extraction perspective to further propel gene expression profiling technologies from bench to bedside. We define ‘correlation feature space’ for samples based on the gene expression profiles by iterative employment of Pearson’s correlation coefficient. Numerical experiments on both simulated and real gene expression data sets demonstrate that iPcc can greatly highlight the latent patterns underlying noisy gene expression data and thus greatly improve the robustness and accuracy of the algorithms currently available for disease diagnosis and classification based on gene expression profiles. PMID:23761440

  14. Microarray analysis of genes differentially expressed in HepG2 cells cultured in simulated microgravity: preliminary report

    NASA Technical Reports Server (NTRS)

    Khaoustov, V. I.; Risin, D.; Pellis, N. R.; Yoffe, B.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Developed at NASA, the rotary cell culture system (RCCS) allows the creation of unique microgravity environment of low shear force, high-mass transfer, and enables three-dimensional (3D) cell culture of dissimilar cell types. Recently we demonstrated that a simulated microgravity is conducive for maintaining long-term cultures of functional hepatocytes and promote 3D cell assembly. Using deoxyribonucleic acid (DNA) microarray technology, it is now possible to measure the levels of thousands of different messenger ribonucleic acids (mRNAs) in a single hybridization step. This technique is particularly powerful for comparing gene expression in the same tissue under different environmental conditions. The aim of this research was to analyze gene expression of hepatoblastoma cell line (HepG2) during early stage of 3D-cell assembly in simulated microgravity. For this, mRNA from HepG2 cultured in the RCCS was analyzed by deoxyribonucleic acid microarray. Analyses of HepG2 mRNA by using 6K glass DNA microarray revealed changes in expression of 95 genes (overexpression of 85 genes and downregulation of 10 genes). Our preliminary results indicated that simulated microgravity modifies the expression of several genes and that microarray technology may provide new understanding of the fundamental biological questions of how gravity affects the development and function of individual cells.

  15. A Novel mRNA Level Subtraction Method for Quick Identification of Target-Orientated Uniquely Expressed Genes Between Peanut Immature Pod and Leaf

    PubMed Central

    2010-01-01

    Subtraction technique has been broadly applied for target gene discovery. However, most current protocols apply relative differential subtraction and result in great amount clone mixtures of unique and differentially expressed genes. This makes it more difficult to identify unique or target-orientated expressed genes. In this study, we developed a novel method for subtraction at mRNA level by integrating magnetic particle technology into driver preparation and tester–driver hybridization to facilitate uniquely expressed gene discovery between peanut immature pod and leaf through a single round subtraction. The resulting target clones were further validated through polymerase chain reaction screening using peanut immature pod and leaf cDNA libraries as templates. This study has resulted in identifying several genes expressed uniquely in immature peanut pod. These target genes can be used for future peanut functional genome and genetic engineering research. PMID:21406066

  16. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements

    EPA Science Inventory

    Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, ...

  17. RNAi targeting GPR4 influences HMEC-1 gene expression by microarray analysis

    PubMed Central

    Ren, Juan; Zhang, Yuelang; Cai, Hui; Ma, Hongbing; Zhao, Dongli; Zhang, Xiaozhi; Li, Zongfang; Wang, Shufeng; Wang, Jiangsheng; Liu, Rui; Li, Yi; Qian, Jiansheng; Wei, Hongxia; Niu, Liying; Liu, Yan; Xiao, Lisha; Ding, Muyang; Jiang, Shiwen

    2014-01-01

    G-protein coupled receptor 4 (GPR4) belongs to a protein family comprised of 3 closely related G protein-coupled receptors. Recent studies have shown that GPR4 plays important roles in angiogenesis, proton sensing, and regulating tumor cells as an oncogenic gene. How GPR4 conducts its functions? Rare has been known. In order to detect the genes related to GPR4, microarray technology was employed. GPR4 is highly expressed in human vascular endothelial cell HMEC-1. Small interfering RNA against GPR4 was used to knockdown GPR4 expression in HMEC-1. Then RNA from the GPR4 knockdown cells and control cells were analyzed through genome microarray. Microarray results shown that among the whole genes and expressed sequence tags, 447 differentially expressed genes were identified, containing 318 up-regulated genes and 129 down-regulated genes. These genes whose expression dramatically changed may be involved in the GPR4 functions. These genes were related to cell apoptosis, cytoskeleton and signal transduction, cell proliferation, differentiation and cell-cycle regulation, gene transcription and translation and cell material and energy metabolism. PMID:24753754

  18. Targeted and genome-scale methylomics reveals gene body signatures in human cell lines

    PubMed Central

    Ball, Madeleine Price; Li, Jin Billy; Gao, Yuan; Lee, Je-Hyuk; LeProust, Emily; Park, In-Hyun; Xie, Bin; Daley, George Q.; Church, George M.

    2012-01-01

    Cytosine methylation, an epigenetic modification of DNA, is a target of growing interest for developing high throughput profiling technologies. Here we introduce two new, complementary techniques for cytosine methylation profiling utilizing next generation sequencing technology: bisulfite padlock probes (BSPPs) and methyl sensitive cut counting (MSCC). In the first method, we designed a set of ~10,000 BSPPs distributed over the ENCODE pilot project regions to take advantage of existing expression and chromatin immunoprecipitation data. We observed a pattern of low promoter methylation coupled with high gene body methylation in highly expressed genes. Using the second method, MSCC, we gathered genome-scale data for 1.4 million HpaII sites and confirmed that gene body methylation in highly expressed genes is a consistent phenomenon over the entire genome. Our observations highlight the usefulness of techniques which are not inherently or intentionally biased in favor of only profiling particular subsets like CpG islands or promoter regions. PMID:19329998

  19. Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes

    PubMed Central

    2013-01-01

    Background Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. Results Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. Conclusions Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis. PMID:24564826

  20. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  1. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells.

    PubMed

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001.

  2. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001 PMID:24596151

  3. Independent and high-level dual-gene expression in adult stem-progenitor cells from a single lentiviral vector.

    PubMed

    Tian, J; Andreadis, S T

    2009-07-01

    Expression of multiple genes from the same target cell is required in several technological and therapeutic applications such as quantitative measurements of promoter activity or in vivo tracking of stem cells. In spite of such need, reaching independent and high-level dual-gene expression cannot be reliably accomplished by current gene transfer vehicles. To address this issue, we designed a lentiviral vector carrying two transcriptional units separated by polyadenylation, terminator and insulator sequences. With this design, the expression level of both genes was as high as that yielded from lentiviral vectors containing only a single transcriptional unit. Similar results were observed with several promoters and cell types including epidermal keratinocytes, bone marrow mesenchymal stem cells and hair follicle stem cells. Notably, we demonstrated quantitative dynamic monitoring of gene expression in primary cells with no need for selection protocols suggesting that this optimized lentivirus may be useful in high-throughput gene expression profiling studies.

  4. Using Gene Expression Biomarkers to Identify Chemicals that Induce Key Events in Cancer and Endocrine Disruption AOPs: Androgen Receptor as an Example

    EPA Science Inventory

    High-throughput transcriptomic (HTTr) technologies are increasingly being used to screen environmental chemicals in vitro to provide mechanistic context for regulatory testing. The development of gene expression biomarkers that accurately predict molecular and toxicological effec...

  5. Contributions to Statistical Problems Related to Microarray Data

    ERIC Educational Resources Information Center

    Hong, Feng

    2009-01-01

    Microarray is a high throughput technology to measure the gene expression. Analysis of microarray data brings many interesting and challenging problems. This thesis consists three studies related to microarray data. First, we propose a Bayesian model for microarray data and use Bayes Factors to identify differentially expressed genes. Second, we…

  6. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.

    PubMed

    Robinson, Mark D; McCarthy, Davis J; Smyth, Gordon K

    2010-01-01

    It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org).

  7. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature.

    PubMed

    Ye, Ning; Yin, Hengfu; Liu, Jingjing; Dai, Xiaogang; Yin, Tongming

    2015-01-01

    The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI) toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.

  8. Exploring valid internal-control genes in Porphyra yezoensis (Bangiaceae) during stress response conditions

    NASA Astrophysics Data System (ADS)

    Wang, Wenlei; Wu, Xiaojie; Wang, Chao; Jia, Zhaojun; He, Linwen; Wei, Yifan; Niu, Jianfeng; Wang, Guangce

    2014-07-01

    To screen the stable expression genes related to the stress (strong light, dehydration and temperature shock) we applied Absolute real-time PCR technology to determine the transcription numbers of the selected test genes in P orphyra yezoensis, which has been regarded as a potential model species responding the stress conditions in the intertidal. Absolute real-time PCR technology was applied to determine the transcription numbers of the selected test genes in P orphyra yezoensis, which has been regarded as a potential model species in stress responding. According to the results of photosynthesis parameters, we observed that Y(II) and F v/ F m were significantly affected when stress was imposed on the thalli of P orphyra yezoensis, but underwent almost completely recovered under normal conditions, which were collected for the following experiments. Then three samples, which were treated with different grade stresses combined with salinity, irradiation and temperature, were collected. The transcription numbers of seven constitutive expression genes in above samples were determined after RNA extraction and cDNA synthesis. Finally, a general insight into the selection of internal control genes during stress response was obtained. We found that there were no obvious effects in terms of salinity stress (at salinity 90) on transcription of most genes used in the study. The 18S ribosomal RNA gene had the highest expression level, varying remarkably among different tested groups. RPS8 expression showed a high irregular variance between samples. GAPDH presented comparatively stable expression and could thus be selected as the internal control. EF-1α showed stable expression during the series of multiple-stress tests. Our research provided available references for the selection of internal control genes for transcripts determination of P. yezoensis.

  9. Virus-Derived Gene Expression and RNA Interference Vector for Grapevine

    PubMed Central

    Kurth, Elizabeth G.; Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Kasschau, Kristin D.; Miller, Marilyn; Carrington, James C.

    2012-01-01

    The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests. PMID:22438553

  10. Arabidopsis Gene Family Profiler (aGFP)--user-oriented transcriptomic database with easy-to-use graphic interface.

    PubMed

    Dupl'áková, Nikoleta; Renák, David; Hovanec, Patrik; Honysová, Barbora; Twell, David; Honys, David

    2007-07-23

    Microarray technologies now belong to the standard functional genomics toolbox and have undergone massive development leading to increased genome coverage, accuracy and reliability. The number of experiments exploiting microarray technology has markedly increased in recent years. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are being introduced to simplify their use. Global statistical data analysis methods contribute to the development of overall concepts about gene expression patterns and to query and compose working hypotheses. More recently, these applications are being supplemented with more specialized products offering visualization and specific data mining tools. We present a curated gene family-oriented gene expression database, Arabidopsis Gene Family Profiler (aGFP; http://agfp.ueb.cas.cz), which gives the user access to a large collection of normalised Affymetrix ATH1 microarray datasets. The database currently contains NASC Array and AtGenExpress transcriptomic datasets for various tissues at different developmental stages of wild type plants gathered from nearly 350 gene chips. The Arabidopsis GFP database has been designed as an easy-to-use tool for users needing an easily accessible resource for expression data of single genes, pre-defined gene families or custom gene sets, with the further possibility of keyword search. Arabidopsis Gene Family Profiler presents a user-friendly web interface using both graphic and text output. Data are stored at the MySQL server and individual queries are created in PHP script. The most distinguishable features of Arabidopsis Gene Family Profiler database are: 1) the presentation of normalized datasets (Affymetrix MAS algorithm and calculation of model-based gene-expression values based on the Perfect Match-only model); 2) the choice between two different normalization algorithms (Affymetrix MAS4 or MAS5 algorithms); 3) an intuitive interface; 4) an interactive "virtual plant" visualizing the spatial and developmental expression profiles of both gene families and individual genes. Arabidopsis GFP gives users the possibility to analyze current Arabidopsis developmental transcriptomic data starting with simple global queries that can be expanded and further refined to visualize comparative and highly selective gene expression profiles.

  11. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station

    PubMed Central

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J.; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles. PMID:27029003

  12. Direct multiplexed measurement of gene expression with color-coded probe pairs.

    PubMed

    Geiss, Gary K; Bumgarner, Roger E; Birditt, Brian; Dahl, Timothy; Dowidar, Naeem; Dunaway, Dwayne L; Fell, H Perry; Ferree, Sean; George, Renee D; Grogan, Tammy; James, Jeffrey J; Maysuria, Malini; Mitton, Jeffrey D; Oliveri, Paola; Osborn, Jennifer L; Peng, Tao; Ratcliffe, Amber L; Webster, Philippa J; Davidson, Eric H; Hood, Leroy; Dimitrov, Krassen

    2008-03-01

    We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.

  13. Expression of pathogenicity-related genes of Xylella fastidiosa in vitro and in planta.

    PubMed

    de Souza, Alessandra A; Takita, Marco A; Pereira, Eridan O; Coletta-Filho, Helvécio D; Machado, Marcos A

    2005-04-01

    Xylella fastidiosa is responsible for several economically important plant diseases. It is currently assumed that the symptoms are caused by vascular occlusion due to biofilm formation. Microarray technology was previously used to examine the global gene expression profile of X. fastidiosa freshly isolated from symptomatic plants or after several passages by axenic culture medium, and different pathogenicity profiles have been obtained. In the present study the expression of some pathogenicity-related genes was evaluated in vitro and in planta by RT-PCR. The results suggest that adhesion is important at the beginning of biofilm formation, while the genes related to adaptation are essential for the organism's maintenance in planta. Similar results were observed in vitro mainly for the adhesion genes. The pattern of expression observed suggests that adhesion modulates biofilm formation whereas the expression of some adaptation genes may be related to the environment in which the organism is living.

  14. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station.

    PubMed

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles.

  15. Skin transcriptome profiles associated with coat color in sheep

    PubMed Central

    2013-01-01

    Background Previous molecular genetic studies of physiology and pigmentation of sheep skin have focused primarily on a limited number of genes and proteins. To identify additional genes that may play important roles in coat color regulation, Illumina sequencing technology was used to catalog global gene expression profiles in skin of sheep with white versus black coat color. Results There were 90,006 and 74,533 unigenes assembled from the reads obtained from white and black sheep skin, respectively. Genes encoding for the ribosomal proteins and keratin associated proteins were most highly expressed. A total of 2,235 known genes were differentially expressed in black versus white sheep skin, with 479 genes up-regulated and 1,756 genes down-regulated. A total of 845 novel genes were differentially expressed in black versus white sheep skin, consisting of 107 genes which were up-regulated (including 2 highly expressed genes exclusively expressed in black sheep skin) and 738 genes that were down-regulated. There was also a total of 49 known coat color genes expressed in sheep skin, from which 13 genes showed higher expression in black sheep skin. Many of these up-regulated genes, such as DCT, MATP, TYR and TYRP1, are members of the components of melanosomes and their precursor ontology category. Conclusion The white and black sheep skin transcriptome profiles obtained provide a valuable resource for future research to understand the network of gene expression controlling skin physiology and melanogenesis in sheep. PMID:23758853

  16. GEM-TREND: a web tool for gene expression data mining toward relevant network discovery

    PubMed Central

    Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi

    2009-01-01

    Background DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. Results GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically linked to external data repositories. Conclusion GEM-TREND was developed to retrieve gene expression data by comparing query gene-expression pattern with those of GEO gene expression data. It could be a very useful resource for finding similar gene expression profiles and constructing its gene co-expression networks from a publicly available database. GEM-TREND was designed to be user-friendly and is expected to support knowledge discovery. GEM-TREND is freely available at . PMID:19728865

  17. GEM-TREND: a web tool for gene expression data mining toward relevant network discovery.

    PubMed

    Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi

    2009-09-03

    DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically linked to external data repositories. GEM-TREND was developed to retrieve gene expression data by comparing query gene-expression pattern with those of GEO gene expression data. It could be a very useful resource for finding similar gene expression profiles and constructing its gene co-expression networks from a publicly available database. GEM-TREND was designed to be user-friendly and is expected to support knowledge discovery. GEM-TREND is freely available at http://cgs.pharm.kyoto-u.ac.jp/services/network.

  18. Age-related regulation of genes: slow homeostatic changes and age-dimension technology

    NASA Astrophysics Data System (ADS)

    Kurachi, Kotoku; Zhang, Kezhong; Huo, Jeffrey; Ameri, Afshin; Kuwahara, Mitsuhiro; Fontaine, Jean-Marc; Yamamoto, Kei; Kurachi, Sumiko

    2002-11-01

    Through systematic studies of pro- and anti-blood coagulation factors, we have determined molecular mechanisms involving two genetic elements, age-related stability element (ASE), GAGGAAG and age-related increase element (AIE), a unique stretch of dinucleotide repeats (AIE). ASE and AIE are essential for age-related patterns of stable and increased gene expression patterns, respectively. Such age-related gene regulatory mechanisms are also critical for explaining homeostasis in various physiological reactions as well as slow homeostatic changes in them. The age-related increase expression of the human factor IX (hFIX) gene requires the presence of both ASE and AIE, which apparently function additively. The anti-coagulant factor protein C (hPC) gene uses an ASE (CAGGAG) to produce age-related stable expression. Both ASE sequences (G/CAGAAG) share consensus sequence of the transcriptional factor PEA-3 element. No other similar sequences, including another PEA-3 consensus sequence, GAGGATG, function in conferring age-related gene regulation. The age-regulatory mechanisms involving ASE and AIE apparently function universally with different genes and across different animal species. These findings have led us to develop a new field of research and applications, which we named “age-dimension technology (ADT)”. ADT has exciting potential for modifying age-related expression of genes as well as associated physiological processes, and developing novel, more effective prophylaxis or treatments for age-related diseases.

  19. Differential gene expression in porcine SK6 cells infected with wild-type and SAP domain-mutant foot-and-mouth disease virus.

    PubMed

    Ni, Zixin; Yang, Fan; Cao, Weijun; Zhang, Xiangle; Jin, Ye; Mao, Ruoqing; Du, Xiaoli; Li, Weiwei; Guo, Jianhong; Liu, Xiangtao; Zhu, Zixiang; Zheng, Haixue

    2016-06-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease in livestock. The viral proteinase L(pro) of FMDV is involved in pathogenicity, and mutation of the L(pro) SAP domain reduces FMDV pathogenicity in pigs. To determine the gene expression profiles associated with decreased pathogenicity in porcine cells, we performed transcriptome analysis using next-generation sequencing technology and compared differentially expressed genes in SK6 cells infected with FMDV containing L(pro) with either a wild-type or mutated version of the SAP domain. This analysis yielded 1,853 genes that exhibited a ≥ 2-fold change in expression and was validated by real-time quantitative PCR detection of several differentially expressed genes. Many of the differentially expressed genes correlated with antiviral responses corresponded to genes associated with transcription factors, immune regulation, cytokine production, inflammatory response, and apoptosis. Alterations in gene expression profiles may be responsible for the variations in pathogenicity observed between the two FMDV variants. Our results provided genes of interest for the further study of antiviral pathways and pathogenic mechanisms related to FMDV L(pro).

  20. In Situ Detection of MicroRNA Expression with RNAscope Probes.

    PubMed

    Yin, Viravuth P

    2018-01-01

    Elucidating the spatial resolution of gene transcripts provides important insight into potential gene function. MicroRNAs are short, singled-stranded noncoding RNAs that control gene expression through base-pair complementarity with target mRNAs in the 3' untranslated region (UTR) and inhibiting protein expression. However, given their small size of ~22- to 24-nt and low expression levels, standard in situ hybridization detection methods are not amendable for microRNA spatial resolution. Here, I describe a technique that employs RNAscope probe design and propriety amplification technology that provides simultaneous single molecule detection of individual microRNA and its target gene. This method allows for rapid and sensitive detection of noncoding RNA transcripts in frozen tissue sections.

  1. Generation of novel resistance genes using mutation and targeted gene editing.

    PubMed

    Gal-On, Amit; Fuchs, Marc; Gray, Stewart

    2017-10-01

    Classical breeding for virus resistance is a lengthy process and is restricted by the availability of resistance genes. Precise genome editing is a 'dream technology' to improve plants for virus resistance and these tools have opened new and very promising ways to generate virus resistant plants by disrupting host susceptibility genes, or by increasing the expression of viral resistance genes. However, precise targets must be identified and their roles understood to minimize potential negative effects on the plant. Nonetheless, the opportunities for genome editing are expanding, as are the technologies to generate effective and broad-spectrum resistance against plant viruses. Here we provide insights into recent progress related to gene targets and gene editing technologies. Published by Elsevier B.V.

  2. Genome engineering and gene expression control for bacterial strain development.

    PubMed

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Identifying Stable Reference Genes for qRT-PCR Normalisation in Gene Expression Studies of Narrow-Leafed Lupin (Lupinus angustifolius L.).

    PubMed

    Taylor, Candy M; Jost, Ricarda; Erskine, William; Nelson, Matthew N

    2016-01-01

    Quantitative Reverse Transcription PCR (qRT-PCR) is currently one of the most popular, high-throughput and sensitive technologies available for quantifying gene expression. Its accurate application depends heavily upon normalisation of gene-of-interest data with reference genes that are uniformly expressed under experimental conditions. The aim of this study was to provide the first validation of reference genes for Lupinus angustifolius (narrow-leafed lupin, a significant grain legume crop) using a selection of seven genes previously trialed as reference genes for the model legume, Medicago truncatula. In a preliminary evaluation, the seven candidate reference genes were assessed on the basis of primer specificity for their respective targeted region, PCR amplification efficiency, and ability to discriminate between cDNA and gDNA. Following this assessment, expression of the three most promising candidates [Ubiquitin C (UBC), Helicase (HEL), and Polypyrimidine tract-binding protein (PTB)] was evaluated using the NormFinder and RefFinder statistical algorithms in two narrow-leafed lupin lines, both with and without vernalisation treatment, and across seven organ types (cotyledons, stem, leaves, shoot apical meristem, flowers, pods and roots) encompassing three developmental stages. UBC was consistently identified as the most stable candidate and has sufficiently uniform expression that it may be used as a sole reference gene under the experimental conditions tested here. However, as organ type and developmental stage were associated with greater variability in relative expression, it is recommended using UBC and HEL as a pair to achieve optimal normalisation. These results highlight the importance of rigorously assessing candidate reference genes for each species across a diverse range of organs and developmental stages. With emerging technologies, such as RNAseq, and the completion of valuable transcriptome data sets, it is possible that other potentially more suitable reference genes will be identified for this species in future.

  4. Identifying Stable Reference Genes for qRT-PCR Normalisation in Gene Expression Studies of Narrow-Leafed Lupin (Lupinus angustifolius L.)

    PubMed Central

    Erskine, William; Nelson, Matthew N.

    2016-01-01

    Quantitative Reverse Transcription PCR (qRT-PCR) is currently one of the most popular, high-throughput and sensitive technologies available for quantifying gene expression. Its accurate application depends heavily upon normalisation of gene-of-interest data with reference genes that are uniformly expressed under experimental conditions. The aim of this study was to provide the first validation of reference genes for Lupinus angustifolius (narrow-leafed lupin, a significant grain legume crop) using a selection of seven genes previously trialed as reference genes for the model legume, Medicago truncatula. In a preliminary evaluation, the seven candidate reference genes were assessed on the basis of primer specificity for their respective targeted region, PCR amplification efficiency, and ability to discriminate between cDNA and gDNA. Following this assessment, expression of the three most promising candidates [Ubiquitin C (UBC), Helicase (HEL), and Polypyrimidine tract-binding protein (PTB)] was evaluated using the NormFinder and RefFinder statistical algorithms in two narrow-leafed lupin lines, both with and without vernalisation treatment, and across seven organ types (cotyledons, stem, leaves, shoot apical meristem, flowers, pods and roots) encompassing three developmental stages. UBC was consistently identified as the most stable candidate and has sufficiently uniform expression that it may be used as a sole reference gene under the experimental conditions tested here. However, as organ type and developmental stage were associated with greater variability in relative expression, it is recommended using UBC and HEL as a pair to achieve optimal normalisation. These results highlight the importance of rigorously assessing candidate reference genes for each species across a diverse range of organs and developmental stages. With emerging technologies, such as RNAseq, and the completion of valuable transcriptome data sets, it is possible that other potentially more suitable reference genes will be identified for this species in future. PMID:26872362

  5. Viral and Synthetic RNA Vector Technologies and Applications

    PubMed Central

    Schott, Juliane W; Morgan, Michael; Galla, Melanie; Schambach, Axel

    2016-01-01

    Use of RNA is an increasingly popular method to transiently deliver genetic information for cell manipulation in basic research and clinical therapy. In these settings, viral and nonviral RNA platforms are employed for delivery of small interfering RNA and protein-coding mRNA. Technological advances allowing RNA modification for increased stability, improved translation and reduced immunogenicity have led to increased use of nonviral synthetic RNA, which is delivered in naked form or upon formulation. Alternatively, highly efficient viral entry pathways are exploited to transfer genes of interest as RNA incorporated into viral particles. Current viral RNA transfer technologies are derived from Retroviruses, nonsegmented negative-strand RNA viruses or positive-stranded Alpha- and Flaviviruses. In retroviral particles, the genes of interest can either be incorporated directly into the viral RNA genome or as nonviral RNA. Nonsegmented negative-strand virus-, Alpha- and Flavivirus-derived vectors support prolonged expression windows through replication of viral RNA encoding genes of interest. Mixed technologies combining viral and nonviral components are also available. RNA transfer is ideal for all settings that do not require permanent transgene expression and excludes potentially detrimental DNA integration into the target cell genome. Thus, RNA-based technologies are successfully applied for reprogramming, transdifferentiation, gene editing, vaccination, tumor therapy, and gene therapy. PMID:27377044

  6. Importance of correlation between gene expression levels: application to the type I interferon signature in rheumatoid arthritis.

    PubMed

    Reynier, Frédéric; Petit, Fabien; Paye, Malick; Turrel-Davin, Fanny; Imbert, Pierre-Emmanuel; Hot, Arnaud; Mougin, Bruno; Miossec, Pierre

    2011-01-01

    The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals. Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients. In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.

  7. Analytical workflow profiling gene expression in murine macrophages

    PubMed Central

    Nixon, Scott E.; González-Peña, Dianelys; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; O’Connor, Jason C.; Dantzer, Robert; Kelley, Keith W.

    2015-01-01

    Comprehensive and simultaneous analysis of all genes in a biological sample is a capability of RNA-Seq technology. Analysis of the entire transcriptome benefits from summarization of genes at the functional level. As a cellular response of interest not previously explored with RNA-Seq, peritoneal macrophages from mice under two conditions (control and immunologically challenged) were analyzed for gene expression differences. Quantification of individual transcripts modeled RNA-Seq read distribution and uncertainty (using a Beta Negative Binomial distribution), then tested for differential transcript expression (False Discovery Rate-adjusted p-value < 0.05). Enrichment of functional categories utilized the list of differentially expressed genes. A total of 2079 differentially expressed transcripts representing 1884 genes were detected. Enrichment of 92 categories from Gene Ontology Biological Processes and Molecular Functions, and KEGG pathways were grouped into 6 clusters. Clusters included defense and inflammatory response (Enrichment Score = 11.24) and ribosomal activity (Enrichment Score = 17.89). Our work provides a context to the fine detail of individual gene expression differences in murine peritoneal macrophages during immunological challenge with high throughput RNA-Seq. PMID:25708305

  8. Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation.

    PubMed

    Richard, Arianne C; Lyons, Paul A; Peters, James E; Biasci, Daniele; Flint, Shaun M; Lee, James C; McKinney, Eoin F; Siegel, Richard M; Smith, Kenneth G C

    2014-08-04

    Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study. Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this "gold-standard" comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues. Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently.

  9. A gene expression atlas of developing oat seeds for enhancing nutritional composition

    USDA-ARS?s Scientific Manuscript database

    Oat (Avena sativa L.) genome resources are less abundant than for wheat and barley, but next generation sequencing (NGS) technologies have great potential to accelerate new genome information for oat in a cost-effective manner. We are employing RNA-Seq to develop a gene expression atlas of developin...

  10. Preparation of rAAV9 to Overexpress or Knockdown Genes in Mouse Hearts

    PubMed Central

    Ding, Jian; Lin, Zhi-Qiang; Jiang, Jian-Ming; Seidman, Christine E.; Seidman, Jonathan G.; Pu, William T.; Wang, Da-Zhi

    2016-01-01

    Controlling the expression or activity of specific genes through the myocardial delivery of genetic materials in murine models permits the investigation of gene functions. Their therapeutic potential in the heart can also be determined. There are limited approaches for in vivo molecular intervention in the mouse heart. Recombinant adeno-associated virus (rAAV)-based genome engineering has been utilized as an essential tool for in vivo cardiac gene manipulation. The specific advantages of this technology include high efficiency, high specificity, low genomic integration rate, minimalimmunogenicity, and minimal pathogenicity. Here, a detailed procedure to construct, package, and purify the rAAV9 vectors is described. Subcutaneous injection of rAAV9 into neonatal pups results in robust expression or efficient knockdown of the gene(s) of interest in the mouse heart, but not in the liver and other tissues. Using the cardiac-specific TnnT2 promoter, high expression of GFP gene in the heart was obtained. Additionally, target mRNA was inhibited in the heart when a rAAV9-U6-shRNA was utilized. Working knowledge of rAAV9 technology may be useful for cardiovascular investigations. PMID:28060283

  11. Preparation of rAAV9 to Overexpress or Knockdown Genes in Mouse Hearts.

    PubMed

    Ding, Jian; Lin, Zhi-Qiang; Jiang, Jian-Ming; Seidman, Christine E; Seidman, Jonathan G; Pu, William T; Wang, Da-Zhi

    2016-12-17

    Controlling the expression or activity of specific genes through the myocardial delivery of genetic materials in murine models permits the investigation of gene functions. Their therapeutic potential in the heart can also be determined. There are limited approaches for in vivo molecular intervention in the mouse heart. Recombinant adeno-associated virus (rAAV)-based genome engineering has been utilized as an essential tool for in vivo cardiac gene manipulation. The specific advantages of this technology include high efficiency, high specificity, low genomic integration rate, minimal immunogenicity, and minimal pathogenicity. Here, a detailed procedure to construct, package, and purify the rAAV9 vectors is described. Subcutaneous injection of rAAV9 into neonatal pups results in robust expression or efficient knockdown of the gene(s) of interest in the mouse heart, but not in the liver and other tissues. Using the cardiac-specific TnnT2 promoter, high expression of GFP gene in the heart was obtained. Additionally, target mRNA was inhibited in the heart when a rAAV9-U6-shRNA was utilized. Working knowledge of rAAV9 technology may be useful for cardiovascular investigations.

  12. Analysis of barosensitive mechanisms in yeast for Pressure Regulated Fermentation

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru

    2013-06-01

    Introduction: We are intending to develop a novel food processing technology, Pressure Regulated Fermentation (PReF), using pressure sensitive (barosensitive) fermentation microorganisms. Objectives of our study are to clarify barosensitive mechanisms for application to PReF technology. We isolated Saccharomyces cerevisiae barosensitive mutant a924E1 that was derived from the parent KA31a. Methods: Gene expression levels were analyzed by DNA microarray. The altered genes of expression levels were classified according to the gene function. Mutated genes were estimated by mating and producing diploid strains and confirmed by PCR of mitochondrial DNA (mtDNA). Results and Discussion: Gene expression profiles showed that genes of `Energy' function and that of encoding protein localized in ``Mitochondria'' were significantly down regulated in the mutant. These results suggest the respiratory deficiency and relationship between barosensitivity and respiratory deficiency. Since the respiratory functions of diploids showed non Mendelian inheritance, the respiratory deficiency was indicated to be due to mtDNA mutation. PCR analysis showed that the region of COX1 locus was deleted. COX1 gene encodes the subunit 1 of cytochrome c oxidase. For this reason, barosensitivity is strongly correlated with mitochondrial functions.

  13. APPLICATION OF CDNA MICROARRAY TECHNOLOGY TO IN VITRO TOXICOLOGY AND THE SELECTION OF GENES FOR A REAL TIME RT-PCR-BASED SCREEN FOR OXIDATIVE STRESS IN HEP-G2 CELLS

    EPA Science Inventory

    Large-scale analysis of gene expression using cDNA microarrays promises the
    rapid detection of the mode of toxicity for drugs and other chemicals. cDNA
    microarrays were used to examine chemically-induced alterations of gene
    expression in HepG2 cells exposed to oxidative ...

  14. In vitro manipulation of gene expression in larval Schistosoma: a model for postgenomic approaches in Trematoda

    PubMed Central

    YOSHINO, TIMOTHY P.; DINGUIRARD, NATHALIE; DE MORAES MOURÃO, MARINA

    2013-01-01

    SUMMARY With rapid developments in DNA and protein sequencing technologies, combined with powerful bioinformatics tools, a continued acceleration of gene identification in parasitic helminths is predicted, potentially leading to discovery of new drug and vaccine targets, enhanced diagnostics and insights into the complex biology underlying host-parasite interactions. For the schistosome blood flukes, with the recent completion of genome sequencing and comprehensive transcriptomic datasets, there has accumulated massive amounts of gene sequence data, for which, in the vast majority of cases, little is known about actual functions within the intact organism. In this review we attempt to bring together traditional in vitro cultivation approaches and recent emergent technologies of molecular genomics, transcriptomics and genetic manipulation to illustrate the considerable progress made in our understanding of trematode gene expression and function during development of the intramolluscan larval stages. Using several prominent trematode families (Schistosomatidae, Fasciolidae, Echinostomatidae), we have focused on the current status of in vitro larval isolation/cultivation as a source of valuable raw material supporting gene discovery efforts in model digeneans that include whole genome sequencing, transcript and protein expression profiling during larval development, and progress made in the in vitro manipulation of genes and their expression in larval trematodes using transgenic and RNA interference (RNAi) approaches. PMID:19961646

  15. Gene expression patterns combined with bioinformatics analysis identify genes associated with cholangiocarcinoma.

    PubMed

    Li, Chen; Shen, Weixing; Shen, Sheng; Ai, Zhilong

    2013-12-01

    To explore the molecular mechanisms of cholangiocarcinoma (CC), microarray technology was used to find biomarkers for early detection and diagnosis. The gene expression profiles from 6 patients with CC and 5 normal controls were downloaded from Gene Expression Omnibus and compared. As a result, 204 differentially co-expressed genes (DCGs) in CC patients compared to normal controls were identified using a computational bioinformatics analysis. These genes were mainly involved in coenzyme metabolic process, peptidase activity and oxidation reduction. A regulatory network was constructed by mapping the DCGs to known regulation data. Four transcription factors, FOXC1, ZIC2, NKX2-2 and GCGR, were hub nodes in the network. In conclusion, this study provides a set of targets useful for future investigations into molecular biomarker studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits.

    PubMed

    Adriaens, M E; Bezzina, C R

    2018-06-22

    Genome-wide association studies have shed light on the association between natural genetic variation and cardiovascular traits. However, linking a cardiovascular trait associated locus to a candidate gene or set of candidate genes for prioritization for follow-up mechanistic studies is all but straightforward. Genomic technologies based on next-generation sequencing technology nowadays offer multiple opportunities to dissect gene regulatory networks underlying genetic cardiovascular trait associations, thereby aiding in the identification of candidate genes at unprecedented scale. RNA sequencing in particular becomes a powerful tool when combined with genotyping to identify loci that modulate transcript abundance, known as expression quantitative trait loci (eQTL), or loci modulating transcript splicing known as splicing quantitative trait loci (sQTL). Additionally, the allele-specific resolution of RNA-sequencing technology enables estimation of allelic imbalance, a state where the two alleles of a gene are expressed at a ratio differing from the expected 1:1 ratio. When multiple high-throughput approaches are combined with deep phenotyping in a single study, a comprehensive elucidation of the relationship between genotype and phenotype comes into view, an approach known as systems genetics. In this review, we cover key applications of systems genetics in the broad cardiovascular field.

  17. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation.

    PubMed

    Vera, Maria; Biswas, Jeetayu; Senecal, Adrien; Singer, Robert H; Park, Hye Yoon

    2016-11-23

    Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology.

  18. Biomarker discovery for colon cancer using a 761 gene RT-PCR assay.

    PubMed

    Clark-Langone, Kim M; Wu, Jenny Y; Sangli, Chithra; Chen, Angela; Snable, James L; Nguyen, Anhthu; Hackett, James R; Baker, Joffre; Yothers, Greg; Kim, Chungyeul; Cronin, Maureen T

    2007-08-15

    Reverse transcription PCR (RT-PCR) is widely recognized to be the gold standard method for quantifying gene expression. Studies using RT-PCR technology as a discovery tool have historically been limited to relatively small gene sets compared to other gene expression platforms such as microarrays. We have recently shown that TaqMan RT-PCR can be scaled up to profile expression for 192 genes in fixed paraffin-embedded (FPE) clinical study tumor specimens. This technology has also been used to develop and commercialize a widely used clinical test for breast cancer prognosis and prediction, the Onco typeDX assay. A similar need exists in colon cancer for a test that provides information on the likelihood of disease recurrence in colon cancer (prognosis) and the likelihood of tumor response to standard chemotherapy regimens (prediction). We have now scaled our RT-PCR assay to efficiently screen 761 biomarkers across hundreds of patient samples and applied this process to biomarker discovery in colon cancer. This screening strategy remains attractive due to the inherent advantages of maintaining platform consistency from discovery through clinical application. RNA was extracted from formalin fixed paraffin embedded (FPE) tissue, as old as 28 years, from 354 patients enrolled in NSABP C-01 and C-02 colon cancer studies. Multiplexed reverse transcription reactions were performed using a gene specific primer pool containing 761 unique primers. PCR was performed as independent TaqMan reactions for each candidate gene. Hierarchal clustering demonstrates that genes expected to co-express form obvious, distinct and in certain cases very tightly correlated clusters, validating the reliability of this technical approach to biomarker discovery. We have developed a high throughput, quantitatively precise multi-analyte gene expression platform for biomarker discovery that approaches low density DNA arrays in numbers of genes analyzed while maintaining the high specificity, sensitivity and reproducibility that are characteristics of RT-PCR. Biomarkers discovered using this approach can be transferred to a clinical reference laboratory setting without having to re-validate the assay on a second technology platform.

  19. Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins.

    PubMed

    Luke, Garry A; Ryan, Martin D

    2018-01-01

    To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.

  20. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.

    PubMed

    Cao, Yingxiu; Li, Xiaofei; Li, Feng; Song, Hao

    2017-09-15

    Extracellular electron transfer (EET) in Shewanella oneidensis MR-1, which is one of the most well-studied exoelectrogens, underlies many microbial electrocatalysis processes, including microbial fuel cells, microbial electrolysis cells, and microbial electrosynthesis. However, regulating the efficiency of EET remains challenging due to the lack of efficient genome regulation tools that regulate gene expression levels in S. oneidensis. Here, we systematically established a transcriptional regulation technology, i.e., clustered regularly interspaced short palindromic repeats interference (CRISPRi), in S. oneidensis MR-1 using green fluorescent protein (GFP) as a reporter. We used this CRISPRi technology to repress the expression levels of target genes, individually and in combination, in the EET pathways (e.g., the MtrCAB pathway and genes affecting the formation of electroactive biofilms in S. oneidensis), which in turn enabled the efficient regulation of EET efficiency. We then established a translational regulation technology, i.e., Hfq-dependent small regulatory RNA (sRNA), in S. oneidensis by repressing the GFP reporter and mtrA, which is a critical gene in the EET pathways in S. oneidensis. To achieve coordinated transcriptional and translational regulation at the genomic level, the CRISPRi and Hfq-dependent sRNA systems were incorporated into a single plasmid harbored in a recombinant S. oneidensis strain, which enabled an even higher efficiency of mtrA gene repression in the EET pathways than that achieved by the CRISPRi and Hfq-dependent sRNA system alone, as exhibited by the reduced electricity output. Overall, we developed a combined CRISPRi-sRNA method that enabled the synergistic transcriptional and translational regulation of target genes in S. oneidensis. This technology involving CRISPRi-sRNA transcriptional-translational regulation of gene expression at the genomic level could be applied to other microorganisms.

  1. CRISPR Perturbation of Gene Expression Alters Bacterial Fitness under Stress and Reveals Underlying Epistatic Constraints.

    PubMed

    Otoupal, Peter B; Erickson, Keesha E; Escalas-Bordoy, Antoni; Chatterjee, Anushree

    2017-01-20

    The evolution of antibiotic resistance has engendered an impending global health crisis that necessitates a greater understanding of how resistance emerges. The impact of nongenetic factors and how they influence the evolution of resistance is a largely unexplored area of research. Here we present a novel application of CRISPR-Cas9 technology for investigating how gene expression governs the adaptive pathways available to bacteria during the evolution of resistance. We examine the impact of gene expression changes on bacterial adaptation by constructing a library of deactivated CRISPR-Cas9 synthetic devices to tune the expression of a set of stress-response genes in Escherichia coli. We show that artificially inducing perturbations in gene expression imparts significant synthetic control over fitness and growth during stress exposure. We present evidence that these impacts are reversible; strains with synthetically perturbed gene expression regained wild-type growth phenotypes upon stress removal, while maintaining divergent growth characteristics under stress. Furthermore, we demonstrate a prevailing trend toward negative epistatic interactions when multiple gene perturbations are combined simultaneously, thereby posing an intrinsic constraint on gene expression underlying adaptive trajectories. Together, these results emphasize how CRISPR-Cas9 can be employed to engineer gene expression changes that shape bacterial adaptation, and present a novel approach to synthetically control the evolution of antimicrobial resistance.

  2. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    PubMed

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.

  3. RD2-MolPack-Chim3, a packaging cell line for stable production of lentiviral vectors for anti-HIV gene therapy.

    PubMed

    Stornaiuolo, Anna; Piovani, Bianca Maria; Bossi, Sergio; Zucchelli, Eleonora; Corna, Stefano; Salvatori, Francesca; Mavilio, Fulvio; Bordignon, Claudio; Rizzardi, Gian Paolo; Bovolenta, Chiara

    2013-08-01

    Over the last two decades, several attempts to generate packaging cells for lentiviral vectors (LV) have been made. Despite different technologies, no packaging clone is currently employed in clinical trials. We developed a new strategy for LV stable production based on the HEK-293T progenitor cells; the sequential insertion of the viral genes by integrating vectors; the constitutive expression of the viral components; and the RD114-TR envelope pseudotyping. We generated the intermediate clone PK-7 expressing constitutively gag/pol and rev genes and, by adding tat and rd114-tr genes, the stable packaging cell line RD2-MolPack, which can produce LV carrying any transfer vector (TV). Finally, we obtained the RD2-MolPack-Chim3 producer clone by transducing RD2-MolPack cells with the TV expressing the anti-HIV transgene Chim3. Remarkably, RD114-TR pseudovirions have much higher potency when produced by stable compared with transient technology. Most importantly, comparable transduction efficiency in hematopoietic stem cells (HSC) is obtained with 2-logs less physical particles respect to VSV-G pseudovirions produced by transient transfection. Altogether, RD2-MolPack technology should be considered a valid option for large-scale production of LV to be used in gene therapy protocols employing HSC, resulting in the possibility of downsizing the manufacturing scale by about 10-fold in respect to transient technology.

  4. An RNA-Seq based gene expression atlas of the common bean.

    PubMed

    O'Rourke, Jamie A; Iniguez, Luis P; Fu, Fengli; Bucciarelli, Bruna; Miller, Susan S; Jackson, Scott A; McClean, Philip E; Li, Jun; Dai, Xinbin; Zhao, Patrick X; Hernandez, Georgina; Vance, Carroll P

    2014-10-06

    Common bean (Phaseolus vulgaris) is grown throughout the world and comprises roughly 50% of the grain legumes consumed worldwide. Despite this, genetic resources for common beans have been lacking. Next generation sequencing, has facilitated our investigation of the gene expression profiles associated with biologically important traits in common bean. An increased understanding of gene expression in common bean will improve our understanding of gene expression patterns in other legume species. Combining recently developed genomic resources for Phaseolus vulgaris, including predicted gene calls, with RNA-Seq technology, we measured the gene expression patterns from 24 samples collected from seven tissues at developmentally important stages and from three nitrogen treatments. Gene expression patterns throughout the plant were analyzed to better understand changes due to nodulation, seed development, and nitrogen utilization. We have identified 11,010 genes differentially expressed with a fold change ≥ 2 and a P-value < 0.05 between different tissues at the same time point, 15,752 genes differentially expressed within a tissue due to changes in development, and 2,315 genes expressed only in a single tissue. These analyses identified 2,970 genes with expression patterns that appear to be directly dependent on the source of available nitrogen. Finally, we have assembled this data in a publicly available database, The Phaseolus vulgaris Gene Expression Atlas (Pv GEA), http://plantgrn.noble.org/PvGEA/ . Using the website, researchers can query gene expression profiles of their gene of interest, search for genes expressed in different tissues, or download the dataset in a tabular form. These data provide the basis for a gene expression atlas, which will facilitate functional genomic studies in common bean. Analysis of this dataset has identified genes important in regulating seed composition and has increased our understanding of nodulation and impact of the nitrogen source on assimilation and distribution throughout the plant.

  5. Transgenic Animals.

    ERIC Educational Resources Information Center

    Jaenisch, Rudolf

    1988-01-01

    Describes three methods and their advantages and disadvantages for introducing genes into animals. Discusses the predictability and tissue-specificity of the injected genes. Outlines the applications of transgenic technology for studying gene expression, the early stages of mammalian development, mutations, and the molecular nature of chromosomes.…

  6. Toll like receptors gene expression of human keratinocytes cultured of severe burn injury.

    PubMed

    Cornick, Sarita Mac; Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Cezillo, Marcus V B; Ferreira, Lydia Masako; Gragnani, Alfredo

    2014-01-01

    To evaluate the expression profile of genes related to Toll Like Receptors (TLR) pathways of human Primary Epidermal keratinocytes of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific TLR pathways PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 21% of these genes were differentially expressed, of which 100% were repressed or hyporegulated. Among these, the following genes (fold decrease): HSPA1A (-58), HRAS (-36), MAP2K3 (-23), TOLLIP (-23), RELA (-18), FOS (-16), and TLR1 (-6.0). This study contributes to the understanding of the molecular mechanisms related to TLR pathways and underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.

  7. Hybrid coexpression link similarity graph clustering for mining biological modules from multiple gene expression datasets.

    PubMed

    Salem, Saeed; Ozcaglar, Cagri

    2014-01-01

    Advances in genomic technologies have enabled the accumulation of vast amount of genomic data, including gene expression data for multiple species under various biological and environmental conditions. Integration of these gene expression datasets is a promising strategy to alleviate the challenges of protein functional annotation and biological module discovery based on a single gene expression data, which suffers from spurious coexpression. We propose a joint mining algorithm that constructs a weighted hybrid similarity graph whose nodes are the coexpression links. The weight of an edge between two coexpression links in this hybrid graph is a linear combination of the topological similarities and co-appearance similarities of the corresponding two coexpression links. Clustering the weighted hybrid similarity graph yields recurrent coexpression link clusters (modules). Experimental results on Human gene expression datasets show that the reported modules are functionally homogeneous as evident by their enrichment with biological process GO terms and KEGG pathways.

  8. Gene identification for risk of relapse in stage I lung adenocarcinoma patients: a combined methodology of gene expression profiling and computational gene network analysis.

    PubMed

    Ludovini, Vienna; Bianconi, Fortunato; Siggillino, Annamaria; Piobbico, Danilo; Vannucci, Jacopo; Metro, Giulio; Chiari, Rita; Bellezza, Guido; Puma, Francesco; Della Fazia, Maria Agnese; Servillo, Giuseppe; Crinò, Lucio

    2016-05-24

    Risk assessment and treatment choice remains a challenge in early non-small-cell lung cancer (NSCLC). The aim of this study was to identify novel genes involved in the risk of early relapse (ER) compared to no relapse (NR) in resected lung adenocarcinoma (AD) patients using a combination of high throughput technology and computational analysis. We identified 18 patients (n.13 NR and n.5 ER) with stage I AD. Frozen samples of patients in ER, NR and corresponding normal lung (NL) were subjected to Microarray technology and quantitative-PCR (Q-PCR). A gene network computational analysis was performed to select predictive genes. An independent set of 79 ADs stage I samples was used to validate selected genes by Q-PCR.From microarray analysis we selected 50 genes, using the fold change ratio of ER versus NR. They were validated both in pool and individually in patient samples (ER and NR) by Q-PCR. Fourteen increased and 25 decreased genes showed a concordance between two methods. They were used to perform a computational gene network analysis that identified 4 increased (HOXA10, CLCA2, AKR1B10, FABP3) and 6 decreased (SCGB1A1, PGC, TFF1, PSCA, SPRR1B and PRSS1) genes. Moreover, in an independent dataset of ADs samples, we showed that both high FABP3 expression and low SCGB1A1 expression was associated with a worse disease-free survival (DFS).Our results indicate that it is possible to define, through gene expression and computational analysis, a characteristic gene profiling of patients with an increased risk of relapse that may become a tool for patient selection for adjuvant therapy.

  9. Differential expression of genes in the alate and apterous morphs of the brown citrus aphid, Toxoptera citricida

    PubMed Central

    Shang, Feng; Ding, Bi-Yue; Xiong, Ying; Dou, Wei; Wei, Dong; Jiang, Hong-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2016-01-01

    Winged and wingless morphs in insects represent a trade-off between dispersal ability and reproduction. We studied key genes associated with apterous and alate morphs in Toxoptera citricida (Kirkaldy) using RNAseq, digital gene expression (DGE) profiling, and RNA interference. The de novo assembly of the transcriptome was obtained through Illumina short-read sequencing technology. A total of 44,199 unigenes were generated and 27,640 were annotated. The transcriptomic differences between alate and apterous adults indicated that 279 unigenes were highly expressed in alate adults, whereas 5,470 were expressed at low levels. Expression patterns of the top 10 highly expressed genes in alate adults agreed with wing bud development trends. Silencing of the lipid synthesis and degradation gene (3-ketoacyl-CoA thiolase, mitochondrial-like) and glycogen genes (Phosphoenolpyruvate carboxykinase [GTP]-like and Glycogen phosphorylase-like isoform 2) resulted in underdeveloped wings. This suggests that both lipid and glycogen metabolism provide energy for aphid wing development. The large number of sequences and expression data produced from the transcriptome and DGE sequencing, respectively, increases our understanding of wing development mechanisms. PMID:27577531

  10. Retrovirus-based vectors for transient and permanent cell modification.

    PubMed

    Schott, Juliane W; Hoffmann, Dirk; Schambach, Axel

    2015-10-01

    Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A preliminary result of three-dimensional microarray technology to gene analysis with endoscopic ultrasound-guided fine-needle aspiration specimens and pancreatic juices

    PubMed Central

    2010-01-01

    Background Analysis of gene expression and gene mutation may add information to be different from ordinary pathological tissue diagnosis. Since samples obtained endoscopically are very small, it is desired that more sensitive technology is developed for gene analysis. We investigated whether gene expression and gene mutation analysis by newly developed ultra-sensitive three-dimensional (3D) microarray is possible using small amount samples from endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) specimens and pancreatic juices. Methods Small amount samples from 17 EUS-FNA specimens and 16 pancreatic juices were obtained. After nucleic acid extraction, the samples were amplified with labeling and analyzed by the 3D microarray. Results The analyzable rate with the microarray was 46% (6/13) in EUS-FNA specimens of RNAlater® storage, and RNA degradations were observed in all the samples of frozen storage. In pancreatic juices, the analyzable rate was 67% (4/6) in frozen storage samples and 20% (2/10) in RNAlater® storage. EUS-FNA specimens were classified into cancer and non-cancer by gene expression analysis and K-ras codon 12 mutations were also detected using the 3D microarray. Conclusions Gene analysis from small amount samples obtained endoscopically was possible by newly developed 3D microarray technology. High quality RNA from EUS-FNA samples were obtained and remained in good condition only using RNA stabilizer. In contrast, high quality RNA from pancreatic juice samples were obtained only in frozen storage without RNA stabilizer. PMID:20416107

  12. Using PCR-RFLP Technology to Teach Single Nucleotide Polymorphism for Undergraduates

    ERIC Educational Resources Information Center

    Zhang, Bo; Wang, Yan; Xu, Xiaofeng; Guan, Xingying; Bai, Yun

    2013-01-01

    Recent studies indicated that the aberrant gene expression of peroxiredoxin-6 (prdx6) was found in various kinds of cancers. Because of its biochemical function and gene expression pattern in cancer cells, the association between genetic polymorphism of Prdx6 and cancer onset is interesting. In this report, we have developed and implemented a…

  13. Monitoring the regulation of gene expression in a growing organ using a fluid mechanics formalism

    PubMed Central

    2010-01-01

    Background Technological advances have enabled the accurate quantification of gene expression, even within single cell types. While transcriptome analyses are routinely performed, most experimental designs only provide snapshots of gene expression. Molecular mechanisms underlying cell fate or positional signalling have been revealed through these discontinuous datasets. However, in developing multicellular structures, temporal and spatial cues, known to directly influence transcriptional networks, get entangled as the cells are displaced and expand. Access to an unbiased view of the spatiotemporal regulation of gene expression occurring during development requires a specific framework that properly quantifies the rate of change of a property in a moving and expanding element, such as a cell or an organ segment. Results We show how the rate of change in gene expression can be quantified by combining kinematics and real-time polymerase chain reaction data in a mechanistic model which considers any organ as a continuum. This framework was applied in order to assess the developmental regulation of the two reference genes Actin11 and Elongation Factor 1-β in the apex of poplar root. The growth field was determined by time-lapse photography and transcript density was obtained at high spatial resolution. The net accumulation rates of the transcripts of the two genes were found to display highly contrasted developmental profiles. Actin11 showed pulses of up and down regulation in the accelerating and decelerating parts of the growth zone while the dynamic of EF1β were much slower. This framework provides key information about gene regulation in a developing organ, such as the location, the duration and the intensity of gene induction/repression. Conclusions We demonstrated that gene expression patterns can be monitored using the continuity equation without using mutants or reporter constructions. Given the rise of imaging technologies, this framework in our view opens a new way to dissect the molecular basis of growth regulation, even in non-model species or complex structures. PMID:20202192

  14. Gene selection for tumor classification using neighborhood rough sets and entropy measures.

    PubMed

    Chen, Yumin; Zhang, Zunjun; Zheng, Jianzhong; Ma, Ying; Xue, Yu

    2017-03-01

    With the development of bioinformatics, tumor classification from gene expression data becomes an important useful technology for cancer diagnosis. Since a gene expression data often contains thousands of genes and a small number of samples, gene selection from gene expression data becomes a key step for tumor classification. Attribute reduction of rough sets has been successfully applied to gene selection field, as it has the characters of data driving and requiring no additional information. However, traditional rough set method deals with discrete data only. As for the gene expression data containing real-value or noisy data, they are usually employed by a discrete preprocessing, which may result in poor classification accuracy. In this paper, we propose a novel gene selection method based on the neighborhood rough set model, which has the ability of dealing with real-value data whilst maintaining the original gene classification information. Moreover, this paper addresses an entropy measure under the frame of neighborhood rough sets for tackling the uncertainty and noisy of gene expression data. The utilization of this measure can bring about a discovery of compact gene subsets. Finally, a gene selection algorithm is designed based on neighborhood granules and the entropy measure. Some experiments on two gene expression data show that the proposed gene selection is an effective method for improving the accuracy of tumor classification. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Hepatic gene expression profiling of 5'-AMP-induced hypometabolism in mice.

    PubMed

    Zhao, Zhaoyang; Miki, Takao; Van Oort-Jansen, Anita; Matsumoto, Tomoko; Loose, David S; Lee, Cheng Chi

    2011-04-12

    There is currently much interest in clinical applications of therapeutic hypothermia. Hypothermia can be a consequence of hypometabolism. We have recently established a procedure for the induction of a reversible deep hypometabolic state in mice using 5'-adenosine monophosphate (5'-AMP) in conjunction with moderate ambient temperature. The current study aims at investigating the impact of this technology at the gene expression level in a major metabolic organ, the liver. Our findings reveal that expression levels of the majority of genes in liver are not significantly altered by deep hypometabolism. However, among those affected by hypometabolism, more genes are differentially upregulated than downregulated both in a deep hypometabolic state and in the early arousal state. These altered gene expression levels during 5'-AMP induced hypometabolism are largely restored to normal levels within 2 days of the treatment. Our data also suggest that temporal control of circadian genes is largely stalled during deep hypometabolism.

  16. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield

    PubMed Central

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-01-01

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3, a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA-HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing dsHaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera. Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls. PMID:28867769

  17. Regulatory Divergence between Parental Alleles Determines Gene Expression Patterns in Hybrids

    PubMed Central

    Combes, Marie-Christine; Hueber, Yann; Dereeper, Alexis; Rialle, Stéphanie; Herrera, Juan-Carlos; Lashermes, Philippe

    2015-01-01

    Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis- and trans-regulatory divergences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis- and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history. PMID:25819221

  18. De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq

    PubMed Central

    2010-01-01

    Background De novo assembly of transcript sequences produced by short-read DNA sequencing technologies offers a rapid approach to obtain expressed gene catalogs for non-model organisms. A draft genome sequence will be produced in 2010 for a Eucalyptus tree species (E. grandis) representing the most important hardwood fibre crop in the world. Genome annotation of this valuable woody plant and genetic dissection of its superior growth and productivity will be greatly facilitated by the availability of a comprehensive collection of expressed gene sequences from multiple tissues and organs. Results We present an extensive expressed gene catalog for a commercially grown E. grandis × E. urophylla hybrid clone constructed using only Illumina mRNA-Seq technology and de novo assembly. A total of 18,894 transcript-derived contigs, a large proportion of which represent full-length protein coding genes were assembled and annotated. Analysis of assembly quality, length and diversity show that this dataset represent the most comprehensive expressed gene catalog for any Eucalyptus tree. mRNA-Seq analysis furthermore allowed digital expression profiling of all of the assembled transcripts across diverse xylogenic and non-xylogenic tissues, which is invaluable for ascribing putative gene functions. Conclusions De novo assembly of Illumina mRNA-Seq reads is an efficient approach for transcriptome sequencing and profiling in Eucalyptus and other non-model organisms. The transcriptome resource (Eucspresso, http://eucspresso.bi.up.ac.za/) generated by this study will be of value for genomic analysis of woody biomass production in Eucalyptus and for comparative genomic analysis of growth and development in woody and herbaceous plants. PMID:21122097

  19. An Integrated Approach for RNA-seq Data Normalization.

    PubMed

    Yang, Shengping; Mercante, Donald E; Zhang, Kun; Fang, Zhide

    2016-01-01

    DNA copy number alteration is common in many cancers. Studies have shown that insertion or deletion of DNA sequences can directly alter gene expression, and significant correlation exists between DNA copy number and gene expression. Data normalization is a critical step in the analysis of gene expression generated by RNA-seq technology. Successful normalization reduces/removes unwanted nonbiological variations in the data, while keeping meaningful information intact. However, as far as we know, no attempt has been made to adjust for the variation due to DNA copy number changes in RNA-seq data normalization. In this article, we propose an integrated approach for RNA-seq data normalization. Comparisons show that the proposed normalization can improve power for downstream differentially expressed gene detection and generate more biologically meaningful results in gene profiling. In addition, our findings show that due to the effects of copy number changes, some housekeeping genes are not always suitable internal controls for studying gene expression. Using information from DNA copy number, integrated approach is successful in reducing noises due to both biological and nonbiological causes in RNA-seq data, thus increasing the accuracy of gene profiling.

  20. Generation of a Tet-On Expression System to Study Transactivation Ability of Tax-2.

    PubMed

    Bignami, Fabio; Sozzi, Riccardo Alessio; Pilotti, Elisabetta

    2017-01-01

    HTLV Tax proteins (Tax-1 and Tax-2) are known to be able to transactivate several host cellular genes involved in complex molecular pathways. Here, we describe a stable and regulated high-level expression model based on Tet-On system, to study the capacity of Tax-2 to transactivate host genes. In particular, the Jurkat Tet-On cell line suitable for evaluating the ability of Tax-2 to stimulate transactivation of a specific host gene, CCL3L1 (C-C motif chemokine ligand 3 like 1 gene), was selected. Then, a plasmid expressing tax-2 gene under control of a tetracycline-response element was constructed. To avoid the production of a fusion protein between the report gene and the inserted gene, a bidirectional plasmid was designed. Maximum expression and fast response time were achieved by using nucleofection technology as transfection method. After developing an optimized protocol for efficiently transferring tax-2 gene in Jurkat Tet-On cellular model and exposing transfected cells to Dox (doxycycline, a tetracycline derivate), a kinetics of tax-2 expression through TaqMan Real-time PCR assay was determined.

  1. PhotoMorphs™: A Novel Light-Activated Reagent for Controlling Gene Expression in Zebrafish

    PubMed Central

    Tomasini, Amber J.; Schuler, Aaron D.; Zebala, John A.; Mayer, Alan N.

    2009-01-01

    Manipulating gene expression in zebrafish is critical for exploiting the full potential of this vertebrate model organism. Morpholino oligos are the most commonly employed antisense technology for knocking down gene expression. However, morpholinos suffer from a lack of control over the timing and location of knockdown. In this report, we describe a novel light-activatable knockdown reagent called PhotoMorph™. PhotoMorphs can be generated from existing morpholinos by hybridization with a complementary caging strand containing a photocleavable linkage. The caging strand neutralizes the morpholino activity until irradiation of the PhotoMorph with UV light releases the morpholino. We generated PhotoMorphs to target genes encoding enhanced green fluorescent protein (EGFP), No tail, and E-cadherin to illustrate the utility of this approach. Temporal control of gene expression with PhotoMorphs permitted us to circumvent the early lethal phenotype of E-cadherin knockdown. A splice-blocking PhotoMorph directed to the rheb gene showed light-dependent gene knockdown up to 72 hpf. PhotoMorphs thus offer a new class of laboratory reagents suitable for the spatiotemporal control of gene expression in the zebrafish. PMID:19644983

  2. The Importance of Normalization on Large and Heterogeneous Microarray Datasets

    EPA Science Inventory

    DNA microarray technology is a powerful functional genomics tool increasingly used for investigating global gene expression in environmental studies. Microarrays can also be used in identifying biological networks, as they give insight on the complex gene-to-gene interactions, ne...

  3. RNA interference of tubulin genes has lethal effects in Mythimna separate.

    PubMed

    Wang, Jin-da; Wang, Ya-Ru; Wang, Yong-Zhi; Wang, Wei-Zhong; Wang, Rong; Gao, San-Ji

    2018-05-23

    RNAi (RNA interference) is a technology for silencing expression of target genes via sequence-specific double-stranded RNA (dsRNA). Recently, dietary introduction of bacterially expressed dsRNA has shown great potential in the field of pest management. Identification of potential candidate genes for RNAi is the first step in this application. The oriental armyworm, Mythimna separata Walker (Lepidoptera: Noctuidae) is a polyphagous, migratory pest, and outbreaks have led to severe crop damage in China. In the present study, two tubulin genes were chosen as target genes because of their crucial role in insect development. Both Msα-tubulin and Msβ-tubulin genes are expressed across all life stages and are highly expressed in the head and epidermis. Feeding of bacterially expressed dsRNA of Msα-tubulin and Msβ-tubulin to third-instar larvae knocked down target mRNAs. A lethal phenotype was observed with knockdown of Msα-tubulin and Msβ-tubulin concurrent with reduction in body weight. Bacterially expressed dsRNA can be used to control M. separata, and tubulin genes could be effective candidate genes for an RNAi-based control strategy of this pest. Copyright © 2017. Published by Elsevier B.V.

  4. Comparative studies of gene expression and the evolution of gene regulation

    PubMed Central

    Romero, Irene Gallego; Ruvinsky, Ilya; Gilad, Yoav

    2014-01-01

    The hypothesis that differences in gene regulation play an important role in speciation and adaptation is more than 40 years old. With the advent of new sequencing technologies, we are able to characterize and study gene expression levels and associated regulatory mechanisms in a large number of individuals and species at unprecedented resolution and scale. We have thus gained new insights into the evolutionary pressures that shape gene expression levels, as well as developed an appreciation for the relative importance of evolutionary changes in different regulatory genetic and epigenetic mechanisms. The current challenge is to link gene regulatory changes to adaptive evolution of complex phenotypes. Here we mainly focus on comparative studies in primates, and how they are complemented by studies in model organisms. PMID:22705669

  5. Diseases and Molecular Diagnostics: A Step Closer to Precision Medicine.

    PubMed

    Dwivedi, Shailendra; Purohit, Purvi; Misra, Radhieka; Pareek, Puneet; Goel, Apul; Khattri, Sanjay; Pant, Kamlesh Kumar; Misra, Sanjeev; Sharma, Praveen

    2017-10-01

    The current advent of molecular technologies together with a multidisciplinary interplay of several fields led to the development of genomics, which concentrates on the detection of pathogenic events at the genome level. The structural and functional genomics approaches have now pinpointed the technical challenge in the exploration of disease-related genes and the recognition of their structural alterations or elucidation of gene function. Various promising technologies and diagnostic applications of structural genomics are currently preparing a large database of disease-genes, genetic alterations etc., by mutation scanning and DNA chip technology. Further the functional genomics also exploring the expression genetics (hybridization-, PCR- and sequence-based technologies), two-hybrid technology, next generation sequencing with Bioinformatics and computational biology. Advances in microarray "chip" technology as microarrays have allowed the parallel analysis of gene expression patterns of thousands of genes simultaneously. Sequence information collected from the genomes of many individuals is leading to the rapid discovery of single nucleotide polymorphisms or SNPs. Further advances of genetic engineering have also revolutionized immunoassay biotechnology via engineering of antibody-encoding genes and the phage display technology. The Biotechnology plays an important role in the development of diagnostic assays in response to an outbreak or critical disease response need. However, there is also need to pinpoint various obstacles and issues related to the commercialization and widespread dispersal of genetic knowledge derived from the exploitation of the biotechnology industry and the development and marketing of diagnostic services. Implementation of genetic criteria for patient selection and individual assessment of the risks and benefits of treatment emerges as a major challenge to the pharmaceutical industry. Thus this field is revolutionizing current era and further it may open new vistas in the field of disease management.

  6. Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function.

    PubMed

    Stanton, Richard J; McSharry, Brian P; Armstrong, Melanie; Tomasec, Peter; Wilkinson, Gavin W G

    2008-12-01

    With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.

  7. Transcriptome Analysis of Orbital Adipose Tissue in Active Thyroid Eye Disease Using Next Generation RNA Sequencing Technology

    PubMed Central

    Lee, Bradford W.; Kumar, Virender B.; Biswas, Pooja; Ko, Audrey C.; Alameddine, Ramzi M.; Granet, David B.; Ayyagari, Radha; Kikkawa, Don O.; Korn, Bobby S.

    2018-01-01

    Objective: This study utilized Next Generation Sequencing (NGS) to identify differentially expressed transcripts in orbital adipose tissue from patients with active Thyroid Eye Disease (TED) versus healthy controls. Method: This prospective, case-control study enrolled three patients with severe, active thyroid eye disease undergoing orbital decompression, and three healthy controls undergoing routine eyelid surgery with removal of orbital fat. RNA Sequencing (RNA-Seq) was performed on freshly obtained orbital adipose tissue from study patients to analyze the transcriptome. Bioinformatics analysis was performed to determine pathways and processes enriched for the differential expression profile. Quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR) was performed to validate the differential expression of selected genes identified by RNA-Seq. Results: RNA-Seq identified 328 differentially expressed genes associated with active thyroid eye disease, many of which were responsible for mediating inflammation, cytokine signaling, adipogenesis, IGF-1 signaling, and glycosaminoglycan binding. The IL-5 and chemokine signaling pathways were highly enriched, and very-low-density-lipoprotein receptor activity and statin medications were implicated as having a potential role in TED. Conclusion: This study is the first to use RNA-Seq technology to elucidate differential gene expression associated with active, severe TED. This study suggests a transcriptional basis for the role of statins in modulating differentially expressed genes that mediate the pathogenesis of thyroid eye disease. Furthermore, the identification of genes with altered levels of expression in active, severe TED may inform the molecular pathways central to this clinical phenotype and guide the development of novel therapeutic agents. PMID:29760827

  8. From wild wolf to domestic dog: gene expression changes in the brain.

    PubMed

    Saetre, Peter; Lindberg, Julia; Leonard, Jennifer A; Olsson, Kerstin; Pettersson, Ulf; Ellegren, Hans; Bergström, Tomas F; Vilà, Carles; Jazin, Elena

    2004-07-26

    Despite the relatively recent divergence time between domestic dogs (Canis familiaris) and gray wolves (Canis lupus), the two species show remarkable behavioral differences. Since dogs and wolves are nearly identical at the level of DNA sequence, we hypothesize that the two species may differ in patterns of gene expression. We compare gene expression patterns in dogs, wolves and a close relative, the coyote (Canis latrans), in three parts of the brain: hypothalamus, amygdala and frontal cortex, with microarray technology. Additionally, we identify genes with region-specific expression patterns in all three species. Among the wild canids, the hypothalamus has a highly conserved expression profile. This contrasts with a marked divergence in domestic dogs. Real-time PCR experiments confirm the altered expression of two neuropeptides, CALCB and NPY. Our results suggest that strong selection on dogs for behavior during domestication may have resulted in modifications of mRNA expression patterns in a few hypothalamic genes with multiple functions. This study indicates that rapid changes in brain gene expression may not be exclusive to the development of human brains. Instead, they may provide a common mechanism for rapid adaptive changes during speciation, particularly in cases that present strong selective pressures on behavioral characters.

  9. Novel redox nanomedicine improves gene expression of polyion complex vector

    NASA Astrophysics Data System (ADS)

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  10. The use of open source bioinformatics tools to dissect transcriptomic data.

    PubMed

    Nitsche, Benjamin M; Ram, Arthur F J; Meyer, Vera

    2012-01-01

    Microarrays are a valuable technology to study fungal physiology on a transcriptomic level. Various microarray platforms are available comprising both single and two channel arrays. Despite different technologies, preprocessing of microarray data generally includes quality control, background correction, normalization, and summarization of probe level data. Subsequently, depending on the experimental design, diverse statistical analysis can be performed, including the identification of differentially expressed genes and the construction of gene coexpression networks.We describe how Bioconductor, a collection of open source and open development packages for the statistical programming language R, can be used for dissecting microarray data. We provide fundamental details that facilitate the process of getting started with R and Bioconductor. Using two publicly available microarray datasets from Aspergillus niger, we give detailed protocols on how to identify differentially expressed genes and how to construct gene coexpression networks.

  11. Multiple biomarkers in molecular oncology. II. Molecular diagnostics applications in breast cancer management.

    PubMed

    Malinowski, Douglas P

    2007-05-01

    In recent years, the application of genomic and proteomic technologies to the problem of breast cancer prognosis and the prediction of therapy response have begun to yield encouraging results. Independent studies employing transcriptional profiling of primary breast cancer specimens using DNA microarrays have identified gene expression profiles that correlate with clinical outcome in primary breast biopsy specimens. Recent advances in microarray technology have demonstrated reproducibility, making clinical applications more achievable. In this regard, one such DNA microarray device based upon a 70-gene expression signature was recently cleared by the US FDA for application to breast cancer prognosis. These DNA microarrays often employ at least 70 gene targets for transcriptional profiling and prognostic assessment in breast cancer. The use of PCR-based methods utilizing a small subset of genes has recently demonstrated the ability to predict the clinical outcome in early-stage breast cancer. Furthermore, protein-based immunohistochemistry methods have progressed from using gene clusters and gene expression profiling to smaller subsets of expressed proteins to predict prognosis in early-stage breast cancer. Beyond prognostic applications, DNA microarray-based transcriptional profiling has demonstrated the ability to predict response to chemotherapy in early-stage breast cancer patients. In this review, recent advances in the use of multiple markers for prognosis of disease recurrence in early-stage breast cancer and the prediction of therapy response will be discussed.

  12. Gene chips and arrays revealed: a primer on their power and their uses.

    PubMed

    Watson, S J; Akil, H

    1999-03-01

    This article provides an overview and general explanation of the rapidly developing area of gene chips and expression array technology. These are methods targeted at allowing the simultaneous study of thousands of genes or messenger RNAs under various physiological and pathological states. Their technical basis grows from the Human Genome Project. Both methods place DNA strands on glass computer chips (or microscope slides). Expression arrays start with complementary DNA (cDNA) clones derived from the EST data base, whereas Gene Chips synthesize oligonucleotides directly on the chip itself. Both are analyzed using image analysis systems, are capable of reading values from two different individuals at any one site, and can yield quantitative data for thousands of genes or mRNAs per slide. These methods promise to revolutionize molecular biology, cell biology, neuroscience and psychiatry. It is likely that this technology will radically open up our ability to study the actions and structure of the multiple genes involved in the complex genetics of brain disorders.

  13. Implementation of plaid model biclustering method on microarray of carcinoma and adenoma tumor gene expression data

    NASA Astrophysics Data System (ADS)

    Ardaneswari, Gianinna; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    A Tumor is an abnormal growth of cells that serves no purpose. Carcinoma is a tumor that grows from the top of the cell membrane and the organ adenoma is a benign tumor of the gland-like cells or epithelial tissue. In the field of molecular biology, the development of microarray technology is used in the data store of disease genetic expression. For each of microarray gene, an amount of information is stored for each trait or condition. In gene expression data clustering can be done with a bicluster algorithm, thats clustering method which not only the objects to be clustered, but also the properties or condition of the object. This research proposed Plaid Model Biclustering as one of biclustering method. In this study, we discuss the implementation of Plaid Model Biclustering Method on microarray of Carcinoma and Adenoma tumor gene expression data. From the experimental results, we found three biclusters are formed by Carcinoma gene expression data and four biclusters are formed by Adenoma gene expression data.

  14. Highly Multiplexed, Single Cell Transcriptomic Analysis of T-Cells by Microfluidic PCR.

    PubMed

    Dominguez, Maria; Roederer, Mario; Chattopadhyay, Pratip K

    2017-01-01

    Recently, technologies have been developed to measure expression of 96 (or more) mRNA transcripts at once from a single cell. Here we describe methods and important considerations for use of Fluidigm's BioMark platform for multiplexed single cell gene expression. We describe how to qualify primer/probes, select genes to examine in 96-parameter panels, perform the reverse transcription/cDNA synthesis step, and operate the instrument. In addition, we describe data analysis considerations. This technology has enormous value for characterizing the heterogeneity of T-cells, thereby providing a useful tool for immune monitoring.

  15. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface.

    PubMed

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-08-25

    Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms.

  16. dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface

    PubMed Central

    Rot, Gregor; Parikh, Anup; Curk, Tomaz; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaz

    2009-01-01

    Background Bioinformatics often leverages on recent advancements in computer science to support biologists in their scientific discovery process. Such efforts include the development of easy-to-use web interfaces to biomedical databases. Recent advancements in interactive web technologies require us to rethink the standard submit-and-wait paradigm, and craft bioinformatics web applications that share analytical and interactive power with their desktop relatives, while retaining simplicity and availability. Results We have developed dictyExpress, a web application that features a graphical, highly interactive explorative interface to our database that consists of more than 1000 Dictyostelium discoideum gene expression experiments. In dictyExpress, the user can select experiments and genes, perform gene clustering, view gene expression profiles across time, view gene co-expression networks, perform analyses of Gene Ontology term enrichment, and simultaneously display expression profiles for a selected gene in various experiments. Most importantly, these tasks are achieved through web applications whose components are seamlessly interlinked and immediately respond to events triggered by the user, thus providing a powerful explorative data analysis environment. Conclusion dictyExpress is a precursor for a new generation of web-based bioinformatics applications with simple but powerful interactive interfaces that resemble that of the modern desktop. While dictyExpress serves mainly the Dictyostelium research community, it is relatively easy to adapt it to other datasets. We propose that the design ideas behind dictyExpress will influence the development of similar applications for other model organisms. PMID:19706156

  17. Cardiac Gene Therapy: Optimization of Gene Delivery Techniques In Vivo

    PubMed Central

    Katz, Michael G.; Swain, JaBaris D.; White, Jennifer D.; Low, David; Stedman, Hansell

    2010-01-01

    Abstract Vector-mediated cardiac gene therapy holds tremendous promise as a translatable platform technology for treating many cardiovascular diseases. The ideal technique is one that is efficient and practical, allowing for global cardiac gene expression, while minimizing collateral expression in other organs. Here we survey the available in vivo vector-mediated cardiac gene delivery methods—including transcutaneous, intravascular, intramuscular, and cardiopulmonary bypass techniques—with consideration of the relative merits and deficiencies of each. Review of available techniques suggests that an optimal method for vector-mediated gene delivery to the large animal myocardium would ideally employ retrograde and/or anterograde transcoronary gene delivery,extended vector residence time in the coronary circulation, an increased myocardial transcapillary gradient using physical methods, increased endothelial permeability with pharmacological agents, minimal collateral gene expression by isolation of the cardiac circulation from the systemic, and have low immunogenicity. PMID:19947886

  18. Using RNA-seq to determine patterns of sex-bias in gene expression in the brain of the sex-role reversed Gulf Pipefish (Syngnathus scovelli).

    PubMed

    Beal, Andria P; Martin, F Douglas; Hale, Matthew C

    2018-02-01

    Sex-bias in gene expression is a widespread mechanism for controlling the development of phenotypes that differ between males and females. Most studies on sex-bias in gene expression have focused on species that exhibit traditional sex-roles (male-male competition and female parental care). By contrast the Syngnathid fishes (sea horses, pipefish, and sea dragons) are a group of organisms where many species exhibit male brooding and sex-role reversal (female-female competition for mates and paternal parental care), and little is known about how patterns of sex-bias in gene expression vary in species with sex-role reversal. Here we utilize RNA-seq technology to investigate patterns of sex-bias in gene expression in the brain tissue of the Gulf Pipefish (Syngnathus scovelli) a species that exhibits sex-role reversal. Gene expression analysis identified 73 sex-biased genes, 26 genes upregulated in females and 47 genes upregulated in males. Gene ontology analysis found 52 terms enriched for the sex-biased genes in a wide range of pathways suggesting that multiple functions and processes differ between the sexes. We focused on two areas of interest: sex steroids/hormones and circadian rhythms, both of which exhibited sex-bias in gene expression, and are known to influence sexual development in other species. Lastly, the work presented herein contributes to a growing body of genome data available for the Syngnathids, increasing our knowledge on patterns of gene expression in these unusual fishes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Identification of Actinobacillus pleuropneumoniae Genes Preferentially Expressed During Infection Using In Vivo-Induced Antigen Technology (IVIAT).

    PubMed

    Zhang, Fei; Zhang, Yangyi; Wen, Xintian; Huang, Xiaobo; Wen, Yiping; Wu, Rui; Yan, Qigui; Huang, Yong; Ma, Xiaoping; Zhao, Qin; Cao, Sanjie

    2015-10-01

    Porcine pleuropneumonia is an infectious disease caused by Actinobacillus pleuropneumoniae. The identification of A. pleuropneumoniae genes, specially expressed in vivo, is a useful tool to reveal the mechanism of infection. IVIAT was used in this work to identify antigens expressed in vivo during A. pleuropneumoniae infection, using sera from individuals with chronic porcine pleuropneumonia. Sequencing of DNA inserts from positive clones showed 11 open reading frames with high homology to A. pleuropneumoniae genes. Based on sequence analysis, proteins encoded by these genes were involved in metabolism, replication, transcription regulation, and signal transduction. Moreover, three function-unknown proteins were also indentified in this work. Expression analysis using quantitative real-time PCR showed that most of the genes tested were up-regulated in vivo relative to their expression levels in vitro. IVI (in vivoinduced) genes that were amplified by PCR in different A. pleuropneumoniae strains showed that these genes could be detected in almost all of the strains. It is demonstrated that the identified IVI antigen may have important roles in the infection of A. pleuropneumoniae.

  20. Xylella fastidiosa gene expression analysis by DNA microarrays.

    PubMed

    Travensolo, Regiane F; Carareto-Alves, Lucia M; Costa, Maria V C G; Lopes, Tiago J S; Carrilho, Emanuel; Lemos, Eliana G M

    2009-04-01

    Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM(2) and liquid BCYE). All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others). The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.

  1. New and improved tools and methods for enhanced biosynthesis of natural products in microorganisms.

    PubMed

    Wang, Zhiqing; Cirino, Patrick C

    2016-12-01

    Engineering efficient biosynthesis of natural products in microorganisms requires optimizing gene expression levels to balance metabolite flux distributions and to minimize accumulation of toxic intermediates. Such metabolic optimization is challenged with identifying the right gene targets, and then determining and achieving appropriate gene expression levels. After decades of having a relatively limited set of gene regulation tools available, metabolic engineers are recently enjoying an ever-growing repertoire of more precise and tunable gene expression platforms. Here we review recent applications of natural and designed transcriptional and translational regulatory machinery for engineering biosynthesis of natural products in microorganisms. Customized trans-acting RNAs (sgRNA, asRNA and sRNA), along with appropriate accessory proteins, are allowing for unparalleled tuning of gene expression. Meanwhile metabolite-responsive transcription factors and riboswitches have been implemented in strain screening and evolution, and in dynamic gene regulation. Further refinements and expansions on these platform technologies will circumvent many long-term obstacles in natural products biosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Variation of gene expression in Bacillus subtilis samples of fermentation replicates.

    PubMed

    Zhou, Ying; Yu, Wen-Bang; Ye, Bang-Ce

    2011-06-01

    The application of comprehensive gene expression profiling technologies to compare wild and mutated microorganism samples or to assess molecular differences between various treatments has been widely used. However, little is known about the normal variation of gene expression in microorganisms. In this study, an Agilent customized microarray representing 4,106 genes was used to quantify transcript levels of five-repeated flasks to assess normal variation in Bacillus subtilis gene expression. CV analysis and analysis of variance were employed to investigate the normal variance of genes and the components of variance, respectively. The results showed that above 80% of the total variation was caused by biological variance. For the 12 replicates, 451 of 4,106 genes exhibited variance with CV values over 10%. The functional category enrichment analysis demonstrated that these variable genes were mainly involved in cell type differentiation, cell type localization, cell cycle and DNA processing, and spore or cyst coat. Using power analysis, the minimal biological replicate number for a B. subtilis microarray experiment was determined to be six. The results contribute to the definition of the baseline level of variability in B. subtilis gene expression and emphasize the importance of replicate microarray experiments.

  3. Digital gene expression for non-model organisms

    PubMed Central

    Hong, Lewis Z.; Li, Jun; Schmidt-Küntzel, Anne; Warren, Wesley C.; Barsh, Gregory S.

    2011-01-01

    Next-generation sequencing technologies offer new approaches for global measurements of gene expression but are mostly limited to organisms for which a high-quality assembled reference genome sequence is available. We present a method for gene expression profiling called EDGE, or EcoP15I-tagged Digital Gene Expression, based on ultra-high-throughput sequencing of 27-bp cDNA fragments that uniquely tag the corresponding gene, thereby allowing direct quantification of transcript abundance. We show that EDGE is capable of assaying for expression in >99% of genes in the genome and achieves saturation after 6–8 million reads. EDGE exhibits very little technical noise, reveals a large (106) dynamic range of gene expression, and is particularly suited for quantification of transcript abundance in non-model organisms where a high-quality annotated genome is not available. In a direct comparison with RNA-seq, both methods provide similar assessments of relative transcript abundance, but EDGE does better at detecting gene expression differences for poorly expressed genes and does not exhibit transcript length bias. Applying EDGE to laboratory mice, we show that a loss-of-function mutation in the melanocortin 1 receptor (Mc1r), recognized as a Mendelian determinant of yellow hair color in many different mammals, also causes reduced expression of genes involved in the interferon response. To illustrate the application of EDGE to a non-model organism, we examine skin biopsy samples from a cheetah (Acinonyx jubatus) and identify genes likely to control differences in the color of spotted versus non-spotted regions. PMID:21844123

  4. Regulatory divergence between parental alleles determines gene expression patterns in hybrids.

    PubMed

    Combes, Marie-Christine; Hueber, Yann; Dereeper, Alexis; Rialle, Stéphanie; Herrera, Juan-Carlos; Lashermes, Philippe

    2015-03-29

    Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis- and trans-regulatory divergences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis- and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE

    PubMed Central

    Wang, Xin; Zhao, Yongjun; Wong, Kim; Ehlers, Peter; Kohara, Yuji; Jones, Steven J; Marra, Marco A; Holt, Robert A; Moerman, Donald G; Hansen, Dave

    2009-01-01

    Background Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm) or female (oocyte) fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. Results We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Conclusion Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution. PMID:19426519

  6. Gene expression profiling reveals two separate mechanisms regulating apoptosis in rectal carcinomas in vivo

    PubMed Central

    de Bruin, Elza C.; van de Pas, Simone; van de Velde, Cornelis J. H.; van Krieken, J. Han J. M.; Peltenburg, Lucy T. C.; Marijnen, Corrie A. M.

    2007-01-01

    The level of apoptosis in rectal carcinomas of patients treated by surgery only predicts local failure; patients with intrinsically high-apoptotic tumors develop less local recurrences than patients with low levels of apoptosis. To identify genes involved in this intrinsic apoptotic process in vivo, 47 rectal tumors with known apoptotic phenotype (24 low- and 23 high-apoptotic) were analyzed by oligonucleotide microarray technology. We identified several genes differentially expressed between low- and high-apoptotic tumors. Unsupervised clustering of the tumors based on expression levels of these genes separated the low-apoptotic from the high-apoptotic tumors, indicating a gene expression-dependent regulation. In addition, this clustering revealed two subgroups of high-apoptotic tumors. One high-apoptotic subgroup showed subtle differences in mRNA and protein expression of the known apoptotic regulators BAX, cIAP2 and ARC compared to the low-apoptotic tumors. The other subgroup of high-apoptotic tumors showed high expression of immune-related genes; predominantly HLA class II and chemokines, but also HLA class I and interferon-inducible genes were highly expressed. Immunohistochemistry revealed HLA-DR expression in epithelial tumor cells in 70% of these high-apoptotic tumors. The expression data suggest that high levels of apoptosis in rectal carcinoma patients can be the result of either slightly altered expression of known pro- and anti-apoptotic genes or high expression of immune-related genes. Electronic supplementary material The online version of this article (doi: 10.1007/s10495-007-0088-2) contains supplementary material, which is available to authorized users. PMID:17610066

  7. Innate and adaptive immunity gene expression of human keratinocytes cultured of severe burn injury.

    PubMed

    Noronha, Silvana Aparecida Alves Corrêa de; Noronha, Samuel Marcos Ribeiro de; Lanziani, Larissa Elias; Ferreira, Lydia Masako; Gragnani, Alfredo

    2014-01-01

    Evaluate the expression profile of genes related to Innate and Adaptive Immune System (IAIS) of human Primary Epidermal keratinocytes (hPEKP) of patients with severe burns. After obtaining viable fragments of skin with and without burning, culture hKEP was initiated by the enzymatic method using Dispase (Sigma-Aldrich). These cells were treated with Trizol(r) (Life Technologies) for extraction of total RNA. This was quantified and analyzed for purity for obtaining cDNA for the analysis of gene expression using specific IAIS PCR Arrays plates (SA Biosciences). After the analysis of gene expression we found that 63% of these genes were differentially expressed, of which 77% were repressed and 23% were hyper-regulated. Among these, the following genes (fold increase or decrease): IL8 (41), IL6 (32), TNF (-92), HLA-E (-86), LYS (-74), CCR6 (- 73), CD86 (-41) and HLA-A (-35). This study contributes to the understanding of the molecular mechanisms underlying wound infection caused by the burn. Furthermore, it may provide new strategies to restore normal expression of these genes and thereby change the healing process and improve clinical outcome.

  8. Gene expression profile change and growth inhibition in Drosophila larvae treated with azadirachtin.

    PubMed

    Lai, Duo; Jin, Xiaoyong; Wang, Hao; Yuan, Mei; Xu, Hanhong

    2014-09-20

    Azadirachtin is a botanical insecticide that affects various biological processes. The effects of azadirachtin on the digital gene expression profile and growth inhibition in Drosophila larvae have not been investigated. In this study, we applied high-throughput sequencing technology to detect the differentially expressed genes of Drosophila larvae regulated by azadirachtin. A total of 15,322 genes were detected, and 28 genes were found to be significantly regulated by azadirachtin. Biological process and pathway analysis showed that azadirachtin affected starch and sucrose metabolism, defense response, signal transduction, instar larval or pupal development, and chemosensory behavior processes. The genes regulated by azadirachtin were mainly enriched in starch and sucrose metabolism. This study provided a general digital gene expression profile of dysregulated genes in response to azadirachtin and showed that azadirachtin provoked potent growth inhibitory effects in Drosophila larvae by regulating the genes of cuticular protein, amylase, and odorant-binding protein. Finally, we propose a potential mechanism underlying the dysregulation of the insulin/insulin-like growth factor signaling pathway by azadirachtin. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray

    PubMed Central

    Carter, Mark G; Sharov, Alexei A; VanBuren, Vincent; Dudekula, Dawood B; Carmack, Condie E; Nelson, Charlie; Ko, Minoru SH

    2005-01-01

    The ability to quantitatively measure the expression of all genes in a given tissue or cell with a single assay is an exciting promise of gene-expression profiling technology. An in situ-synthesized 60-mer oligonucleotide microarray designed to detect transcripts from all mouse genes was validated, as well as a set of exogenous RNA controls derived from the yeast genome (made freely available without restriction), which allow quantitative estimation of absolute endogenous transcript abundance. PMID:15998450

  10. Golden Gate Assembly of CRISPR gRNA expression array for simultaneously targeting multiple genes.

    PubMed

    Vad-Nielsen, Johan; Lin, Lin; Bolund, Lars; Nielsen, Anders Lade; Luo, Yonglun

    2016-11-01

    The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting. Using this method, the generation of CRISPR gRNA expression array can be accomplished in 2 weeks, and contains up to 30 gRNA expression cassettes. We demonstrated in the study that simultaneously targeting 10 genomic loci or simultaneously inhibition of multiple endogenous genes could be achieved using the multiplexed gRNA expression array vector in human cells. The complete set of plasmids is available through the non-profit plasmid repository Addgene.

  11. Helper-Dependent Adenoviral Vectors.

    PubMed

    Rosewell, Amanda; Vetrini, Francesco; Ng, Philip

    2011-10-29

    Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology.

  12. Helper-Dependent Adenoviral Vectors

    PubMed Central

    Rosewell, Amanda; Vetrini, Francesco; Ng, Philip

    2012-01-01

    Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology. PMID:24533227

  13. Transcriptome Sequencing of Gracilariopsis lemaneiformis to Analyze the Genes Related to Optically Active Phycoerythrin Synthesis.

    PubMed

    Huang, Xiaoyun; Zang, Xiaonan; Wu, Fei; Jin, Yuming; Wang, Haitao; Liu, Chang; Ding, Yating; He, Bangxiang; Xiao, Dongfang; Song, Xinwei; Liu, Zhu

    2017-01-01

    Gracilariopsis lemaneiformis (aka Gracilaria lemaneiformis) is a red macroalga rich in phycoerythrin, which can capture light efficiently and transfer it to photosystemⅡ. However, little is known about the synthesis of optically active phycoerythrinin in G. lemaneiformis at the molecular level. With the advent of high-throughput sequencing technology, analysis of genetic information for G. lemaneiformis by transcriptome sequencing is an effective means to get a deeper insight into the molecular mechanism of phycoerythrin synthesis. Illumina technology was employed to sequence the transcriptome of two strains of G. lemaneiformis- the wild type and a green-pigmented mutant. We obtained a total of 86915 assembled unigenes as a reference gene set, and 42884 unigenes were annotated in at least one public database. Taking the above transcriptome sequencing as a reference gene set, 4041 differentially expressed genes were screened to analyze and compare the gene expression profiles of the wild type and green mutant. By GO and KEGG pathway analysis, we concluded that three factors, including a reduction in the expression level of apo-phycoerythrin, an increase of chlorophyll light-harvesting complex synthesis, and reduction of phycoerythrobilin by competitive inhibition, caused the reduction of optically active phycoerythrin in the green-pigmented mutant.

  14. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment.

    PubMed Central

    Yang, N S; Burkholder, J; Roberts, B; Martinell, B; McCabe, D

    1990-01-01

    Chimeric chloramphenicol acetyltransferase and beta-galactosidase marker genes were coated onto fine gold particles and used to bombard a variety of mammalian tissues and cells. Transient expression of the genes was obtained in liver, skin, and muscle tissues of rat and mouse bombarded in vivo. Similar results were obtained with freshly isolated ductal segments of rat and human mammary glands and primary cultures derived from these explants. Gene transfer and transient expression were also observed in eight human cell culture lines, including cells of epithelial, endothelial, fibroblast, and lymphocyte origin. Using CHO and MCF-7 cell cultures as models, we obtained stable gene transfer at frequencies of 1.7 x 10(-3) and 6 x 10(-4), respectively. The particle bombardment technology thus provides a useful means to transfer foreign genes into a variety of mammalian somatic cell systems. The method is applicable to tissues in vivo as well as to isolated cells in culture and has proven effective with all cell or tissue types tested thus far. This technology may therefore prove to be applicable in various aspects of gene therapy. Images PMID:2175906

  15. Hybrid coexpression link similarity graph clustering for mining biological modules from multiple gene expression datasets

    PubMed Central

    2014-01-01

    Background Advances in genomic technologies have enabled the accumulation of vast amount of genomic data, including gene expression data for multiple species under various biological and environmental conditions. Integration of these gene expression datasets is a promising strategy to alleviate the challenges of protein functional annotation and biological module discovery based on a single gene expression data, which suffers from spurious coexpression. Results We propose a joint mining algorithm that constructs a weighted hybrid similarity graph whose nodes are the coexpression links. The weight of an edge between two coexpression links in this hybrid graph is a linear combination of the topological similarities and co-appearance similarities of the corresponding two coexpression links. Clustering the weighted hybrid similarity graph yields recurrent coexpression link clusters (modules). Experimental results on Human gene expression datasets show that the reported modules are functionally homogeneous as evident by their enrichment with biological process GO terms and KEGG pathways. PMID:25221624

  16. Conservation of transcription factor binding events predicts gene expression across species

    PubMed Central

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  17. Cellular Factors Shape 3D Genome Landscape

    Cancer.gov

    Researchers, using novel large-scale imaging technology, have mapped the spatial location of individual genes in the nucleus of human cells and identified 50 cellular factors required for the proper 3D positioning of genes. These spatial locations play important roles in gene expression, DNA repair, genome stability, and other cellular activities.

  18. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambhir, Sanjiv; Pritha, Ray

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  19. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir, Sanjiv; Pritha, Ray

    2015-07-14

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  20. Immunologic applications of conditional gene modification technology in the mouse.

    PubMed

    Sharma, Suveena; Zhu, Jinfang

    2014-04-02

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. Copyright © 2014 John Wiley & Sons, Inc.

  1. High-Throughput Screening to Identify Regulators of Meiosis-Specific Gene Expression in Saccharomyces cerevisiae.

    PubMed

    Kassir, Yona

    2017-01-01

    Meiosis and gamete formation are processes that are essential for sexual reproduction in all eukaryotic organisms. Multiple intracellular and extracellular signals feed into pathways that converge on transcription factors that induce the expression of meiosis-specific genes. Once triggered the meiosis-specific gene expression program proceeds in a cascade that drives progress through the events of meiosis and gamete formation. Meiosis-specific gene expression is tightly controlled by a balance of positive and negative regulatory factors that respond to a plethora of signaling pathways. The budding yeast Saccharomyces cerevisiae has proven to be an outstanding model for the dissection of gametogenesis owing to the sophisticated genetic manipulations that can be performed with the cells. It is possible to use a variety selection and screening methods to identify genes and their functions. High-throughput screening technology has been developed to allow an array of all viable yeast gene deletion mutants to be screened for phenotypes and for regulators of gene expression. This chapter describes a protocol that has been used to screen a library of homozygous diploid yeast deletion strains to identify regulators of the meiosis-specific IME1 gene.

  2. Daytime soybean transcriptome fluctuations during water deficit stress.

    PubMed

    Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Marcolino-Gomes, Juliana; Nakayama, Thiago Jonas; Molinari, Hugo Bruno Correa; Lobo, Francisco Pereira; Harmon, Frank G; Nepomuceno, Alexandre Lima

    2015-07-07

    Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression. We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55% were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52% exhibited expression oscillations in a 24 h period. This number increased to 39.23% when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period. Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.

  3. Connectivity Mapping for Candidate Therapeutics Identification Using Next Generation Sequencing RNA-Seq Data

    PubMed Central

    McArt, Darragh G.; Dunne, Philip D.; Blayney, Jaine K.; Salto-Tellez, Manuel; Van Schaeybroeck, Sandra; Hamilton, Peter W.; Zhang, Shu-Dong

    2013-01-01

    The advent of next generation sequencing technologies (NGS) has expanded the area of genomic research, offering high coverage and increased sensitivity over older microarray platforms. Although the current cost of next generation sequencing is still exceeding that of microarray approaches, the rapid advances in NGS will likely make it the platform of choice for future research in differential gene expression. Connectivity mapping is a procedure for examining the connections among diseases, genes and drugs by differential gene expression initially based on microarray technology, with which a large collection of compound-induced reference gene expression profiles have been accumulated. In this work, we aim to test the feasibility of incorporating NGS RNA-Seq data into the current connectivity mapping framework by utilizing the microarray based reference profiles and the construction of a differentially expressed gene signature from a NGS dataset. This would allow for the establishment of connections between the NGS gene signature and those microarray reference profiles, alleviating the associated incurring cost of re-creating drug profiles with NGS technology. We examined the connectivity mapping approach on a publicly available NGS dataset with androgen stimulation of LNCaP cells in order to extract candidate compounds that could inhibit the proliferative phenotype of LNCaP cells and to elucidate their potential in a laboratory setting. In addition, we also analyzed an independent microarray dataset of similar experimental settings. We found a high level of concordance between the top compounds identified using the gene signatures from the two datasets. The nicotine derivative cotinine was returned as the top candidate among the overlapping compounds with potential to suppress this proliferative phenotype. Subsequent lab experiments validated this connectivity mapping hit, showing that cotinine inhibits cell proliferation in an androgen dependent manner. Thus the results in this study suggest a promising prospect of integrating NGS data with connectivity mapping. PMID:23840550

  4. Comparison of quantitative real-time polymerase chain reaction with NanoString® methodology using adipose and liver tissues from rats fed seaweed.

    PubMed

    Bentley-Hewitt, Kerry L; Hedderley, Duncan I; Monro, John; Martell, Sheridan; Smith, Hannah; Mishra, Suman

    2016-05-25

    Experimental methods are constantly being improved by new technology. Recently a new technology, NanoString®, has been introduced to the market for the analysis of gene expression. Our experiments used adipose and liver samples collected from a rat feeding trial to explore gene expression changes resulting from a diet of 7.5% seaweed. Both quantitative real-time polymerase chain reaction (qPCR) and NanoString methods were employed to look at expression of genes related to fat and glucose metabolism and this paper compares results from both methods. We conclude that NanoString offers a valuable alternative to qPCR and our data suggest that results are more accurate because of the reduced sample handling and direct quantification of gene copy number without the need for enzymatic amplification. However, we have highlighted a potential challenge for both methods, which needs to be addressed when designing primers or probes. We suggest a literature search for known splice variants of a particular gene to be completed so that primers or probes can be designed that do not span exons which may be affected by alternative gene sequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.

  6. Comparisons between Arabidopsis thaliana and Drosophila melanogaster in relation to Coding and Noncoding Sequence Length and Gene Expression

    PubMed Central

    Caldwell, Rachel; Lin, Yan-Xia; Zhang, Ren

    2015-01-01

    There is a continuing interest in the analysis of gene architecture and gene expression to determine the relationship that may exist. Advances in high-quality sequencing technologies and large-scale resource datasets have increased the understanding of relationships and cross-referencing of expression data to the large genome data. Although a negative correlation between expression level and gene (especially transcript) length has been generally accepted, there have been some conflicting results arising from the literature concerning the impacts of different regions of genes, and the underlying reason is not well understood. The research aims to apply quantile regression techniques for statistical analysis of coding and noncoding sequence length and gene expression data in the plant, Arabidopsis thaliana, and fruit fly, Drosophila melanogaster, to determine if a relationship exists and if there is any variation or similarities between these species. The quantile regression analysis found that the coding sequence length and gene expression correlations varied, and similarities emerged for the noncoding sequence length (5′ and 3′ UTRs) between animal and plant species. In conclusion, the information described in this study provides the basis for further exploration into gene regulation with regard to coding and noncoding sequence length. PMID:26114098

  7. Analysis of differentially expressed genes between fluoride-sensitive and fluoride-endurable individuals in midgut of silkworm, Bombyx mori.

    PubMed

    Qian, Heying; Li, Gang; He, Qingling; Zhang, Huaguang; Xu, Anying

    2016-08-15

    Fluoride tolerance is an economically important trait of silkworm. Near-isogenic lines (NILs) of the dominant endurance to fluoride (Def) gene in Bombyx mori has been constructed before. Here, we analyzed the gene expression profiles of midgut of fluoride-sensitive and fluoride-endurable individuals of Def NILs by using high-throughput Illumina sequencing technology and bioinformatics tools, and identified differentially expressed genes between these individuals. A total of 3,612,399 and 3,567,631 clean tags for the libraries of fluoride-endurable and fluoride-sensitive individuals were obtained, which corresponded to 32,933 and 43,976 distinct clean tags, respectively. Analysis of differentially expressed genes indicates that 241 genes are differentially expressed between the two libraries. Among the 241 genes, 30 are up-regulated and 211 are down-regulated in fluoride-endurable individuals. Pathway enrichment analysis demonstrates that genes related to ribosomes, pancreatic secretion, steroid biosynthesis, glutathione metabolism, steroid biosynthesis, and glycerolipid metabolism are down-regulated in fluoride-endurable individuals. qRT-PCR was conducted to confirm the results of the DGE. The present study analyzed differential expression of related genes and tried to find out whether the crucial genes were related to fluoride detoxification which might elucidate fluoride effect and provide a new way in the fluorosis research. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Using Poisson mixed-effects model to quantify transcript-level gene expression in RNA-Seq.

    PubMed

    Hu, Ming; Zhu, Yu; Taylor, Jeremy M G; Liu, Jun S; Qin, Zhaohui S

    2012-01-01

    RNA sequencing (RNA-Seq) is a powerful new technology for mapping and quantifying transcriptomes using ultra high-throughput next-generation sequencing technologies. Using deep sequencing, gene expression levels of all transcripts including novel ones can be quantified digitally. Although extremely promising, the massive amounts of data generated by RNA-Seq, substantial biases and uncertainty in short read alignment pose challenges for data analysis. In particular, large base-specific variation and between-base dependence make simple approaches, such as those that use averaging to normalize RNA-Seq data and quantify gene expressions, ineffective. In this study, we propose a Poisson mixed-effects (POME) model to characterize base-level read coverage within each transcript. The underlying expression level is included as a key parameter in this model. Since the proposed model is capable of incorporating base-specific variation as well as between-base dependence that affect read coverage profile throughout the transcript, it can lead to improved quantification of the true underlying expression level. POME can be freely downloaded at http://www.stat.purdue.edu/~yuzhu/pome.html. yuzhu@purdue.edu; zhaohui.qin@emory.edu Supplementary data are available at Bioinformatics online.

  9. Hepatic gene expression profiling of 5′-AMP-induced hypometabolism in mice

    PubMed Central

    Miki, Takao; Van Oort-Jansen, Anita; Matsumoto, Tomoko; Loose, David S.; Lee, Cheng Chi

    2011-01-01

    There is currently much interest in clinical applications of therapeutic hypothermia. Hypothermia can be a consequence of hypometabolism. We have recently established a procedure for the induction of a reversible deep hypometabolic state in mice using 5′-adenosine monophosphate (5′-AMP) in conjunction with moderate ambient temperature. The current study aims at investigating the impact of this technology at the gene expression level in a major metabolic organ, the liver. Our findings reveal that expression levels of the majority of genes in liver are not significantly altered by deep hypometabolism. However, among those affected by hypometabolism, more genes are differentially upregulated than downregulated both in a deep hypometabolic state and in the early arousal state. These altered gene expression levels during 5′-AMP induced hypometabolism are largely restored to normal levels within 2 days of the treatment. Our data also suggest that temporal control of circadian genes is largely stalled during deep hypometabolism. PMID:21224422

  10. Multiclass classification for skin cancer profiling based on the integration of heterogeneous gene expression series.

    PubMed

    Gálvez, Juan Manuel; Castillo, Daniel; Herrera, Luis Javier; San Román, Belén; Valenzuela, Olga; Ortuño, Francisco Manuel; Rojas, Ignacio

    2018-01-01

    Most of the research studies developed applying microarray technology to the characterization of different pathological states of any disease may fail in reaching statistically significant results. This is largely due to the small repertoire of analysed samples, and to the limitation in the number of states or pathologies usually addressed. Moreover, the influence of potential deviations on the gene expression quantification is usually disregarded. In spite of the continuous changes in omic sciences, reflected for instance in the emergence of new Next-Generation Sequencing-related technologies, the existing availability of a vast amount of gene expression microarray datasets should be properly exploited. Therefore, this work proposes a novel methodological approach involving the integration of several heterogeneous skin cancer series, and a later multiclass classifier design. This approach is thus a way to provide the clinicians with an intelligent diagnosis support tool based on the use of a robust set of selected biomarkers, which simultaneously distinguishes among different cancer-related skin states. To achieve this, a multi-platform combination of microarray datasets from Affymetrix and Illumina manufacturers was carried out. This integration is expected to strengthen the statistical robustness of the study as well as the finding of highly-reliable skin cancer biomarkers. Specifically, the designed operation pipeline has allowed the identification of a small subset of 17 differentially expressed genes (DEGs) from which to distinguish among 7 involved skin states. These genes were obtained from the assessment of a number of potential batch effects on the gene expression data. The biological interpretation of these genes was inspected in the specific literature to understand their underlying information in relation to skin cancer. Finally, in order to assess their possible effectiveness in cancer diagnosis, a cross-validation Support Vector Machines (SVM)-based classification including feature ranking was performed. The accuracy attained exceeded the 92% in overall recognition of the 7 different cancer-related skin states. The proposed integration scheme is expected to allow the co-integration with other state-of-the-art technologies such as RNA-seq.

  11. Approximate geodesic distances reveal biologically relevant structures in microarray data.

    PubMed

    Nilsson, Jens; Fioretos, Thoas; Höglund, Mattias; Fontes, Magnus

    2004-04-12

    Genome-wide gene expression measurements, as currently determined by the microarray technology, can be represented mathematically as points in a high-dimensional gene expression space. Genes interact with each other in regulatory networks, restricting the cellular gene expression profiles to a certain manifold, or surface, in gene expression space. To obtain knowledge about this manifold, various dimensionality reduction methods and distance metrics are used. For data points distributed on curved manifolds, a sensible distance measure would be the geodesic distance along the manifold. In this work, we examine whether an approximate geodesic distance measure captures biological similarities better than the traditionally used Euclidean distance. We computed approximate geodesic distances, determined by the Isomap algorithm, for one set of lymphoma and one set of lung cancer microarray samples. Compared with the ordinary Euclidean distance metric, this distance measure produced more instructive, biologically relevant, visualizations when applying multidimensional scaling. This suggests the Isomap algorithm as a promising tool for the interpretation of microarray data. Furthermore, the results demonstrate the benefit and importance of taking nonlinearities in gene expression data into account.

  12. Exploration of new perspectives and limitations in Agrobacterium-mediated gene transfer technology. Final report, June 1, 1992--May 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marton, L.

    1996-02-01

    Genetic manipulation of plants often involves the introduction of homologous or partly homologous genes. Ectropic introduction of homologous sequences into plant genomes may trigger epigenetic changes, making expression of the genes unpredictable. The main project objective was to examine the feasibility of using Agrobacterium-mediated gene transfer for homologous gene targeting in plants.

  13. Enhancer Linking by Methylation/Expression Relationships (ELMER) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    R tool for analysis of DNA methylation and expression datasets. Integrative analysis allows reconstruction of in vivo transcription factor networks altered in cancer along with identification of the underlying gene regulatory sequences.

  14. Networking of differentially expressed genes in human cancer cells resistant to methotrexate

    PubMed Central

    2009-01-01

    Background The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). Methods Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. Results Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. Conclusions Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX. PMID:19732436

  15. Vegetables affect the expression of genes involved in anticarcinogenic processes in the colonic mucosa of C57BL/6 female mice.

    PubMed

    van Breda, Simone G J; van Agen, Ebienus; van Sanden, Suzy; Burzykowski, Tomasz; Kienhuis, Anne S; Kleinjans, Jos C S; van Delft, Joost H M

    2005-08-01

    There is abundant epidemiological evidence that vegetable consumption decreases colorectal cancer (CRC) risk. However, the molecular targets in the genome are mostly unknown. The present study investigated the effects of vegetable consumption on gene expression in the colon mucosa of female C57Bl/6 mice using cDNA microarray technology. Mice were fed one of 8 diets: a control diet containing no vegetables (diet 1); a diet containing 100 g/kg (diet 2, 10% dose), 200 g/kg (diet 3, 20% dose), or 400 g/kg (diet 4, 40% dose) of a vegetable mixture; or a diet containing 70 g/kg of cauliflower (diet 5, 7% dose), 73 g/kg of carrots (diet 6, 7.3% dose), 226 g/kg of peas (diet 7, 22.6% dose); or 31 g/kg of onions (diet 8, 3.1% dose). The vegetable mixture used in diets 2 to 4 consisted of the 4 individual vegetables used in diets 5 to 8: cauliflower (30% wet wt), carrots (30% wet wt), peas (30% wet wt), and onions (10% wet wt). To assess gene expression changes, colonic mucosal cells were collected after the mice were killed. Total RNA was isolated and microarray technology was used to measure the expression levels of 602 genes simultaneously. For 39 genes, significant dose-dependent effects were found, although in general the relations were not linear. For 15 genes, the altered expression could indeed explain reduced cancer risk at various stages of CRC development. Eleven genes were modulated by the vegetable mixture as well as by one or more of the individual vegetables. For 7 of the genes, the modulation by the mixture was due to the effect of a particular vegetable. These genes are of particular interest because they were consistently affected and could be involved in the prevention of CRC by vegetable consumption.

  16. Advanced colorectal adenoma related gene expression signature may predict prognostic for colorectal cancer patients with adenoma-carcinoma sequence.

    PubMed

    Li, Bing; Shi, Xiao-Yu; Liao, Dai-Xiang; Cao, Bang-Rong; Luo, Cheng-Hua; Cheng, Shu-Jun

    2015-01-01

    There are still no absolute parameters predicting progression of adenoma into cancer. The present study aimed to characterize functional differences on the multistep carcinogenetic process from the adenoma-carcinoma sequence. All samples were collected and mRNA expression profiling was performed by using Agilent Microarray high-throughput gene-chip technology. Then, the characteristics of mRNA expression profiles of adenoma-carcinoma sequence were described with bioinformatics software, and we analyzed the relationship between gene expression profiles of adenoma-adenocarcinoma sequence and clinical prognosis of colorectal cancer. The mRNA expressions of adenoma-carcinoma sequence were significantly different between high-grade intraepithelial neoplasia group and adenocarcinoma group. The biological process of gene ontology function enrichment analysis on differentially expressed genes between high-grade intraepithelial neoplasia group and adenocarcinoma group showed that genes enriched in the extracellular structure organization, skeletal system development, biological adhesion and itself regulated growth regulation, with the P value after FDR correction of less than 0.05. In addition, IPR-related protein mainly focused on the insulin-like growth factor binding proteins. The variable trends of gene expression profiles for adenoma-carcinoma sequence were mainly concentrated in high-grade intraepithelial neoplasia and adenocarcinoma. The differentially expressed genes are significantly correlated between high-grade intraepithelial neoplasia group and adenocarcinoma group. Bioinformatics analysis is an effective way to study the gene expression profiles in the adenoma-carcinoma sequence, and may provide an effective tool to involve colorectal cancer research strategy into colorectal adenoma or advanced adenoma.

  17. Vascularization and VEGF expression altered in bovine yolk sacs from IVF and NT technologies.

    PubMed

    Mess, Andrea Maria; Carreira, Ana Claudia Oliveira; Marinovic de Oliveira, Cláudia; Fratini, Paula; Favaron, Phelipe Oliveira; Barreto, Rodrigo da Silva Nunes; Pfarrer, Christiane; Meirelles, Flávio Vieira; Miglino, Maria Angelica

    2017-01-01

    Reproductive technologies are widely used in cattle, although many are associated with high-embryonic mortality, especially during early gestation, when the yolk sac undergoes macroscopic changes in structure. We hypothesized that vasculogenesis and angiogenesis are affected, thereby affecting embryonic and placental differentiation. To test this, we studied yolk sac development and gene expression of the vascular endothelial growth factor system (VEGF-A, VEGFR-1/Flt-1, VEGFR-2/KDR). Samples from Days 25 to 40/41 of pregnancy from control cattle (n = 8) and from pregnancies established with IVF, (n = 7) or somatic cell nuclear transfer/clones (n = 5) were examined by histology, immunohistochemistry, and quantitative reverse transcriptase PCR. Yolk sacs in IVF- and nuclear transfer-derived pregnancies were immature. Development of villi was sparse in IVF yolk sacs, whereas vascularization was barely formed in clones and was associated, in part, with thin or interrupted endothelium. Transcript levels of the genes characterized exceed minimum detection limits for all groups, except in the mentioned clone with interrupted endothelium. Levels of mRNA for VEGF-A and VEGFR-2 were significantly higher in IVF yolk sacs. Clones had substantial individual variation in gene expression (both upregulation and downregulation). Our data confirmed the broad range in expression of VEGF genes. Furthermore, overexpression in IVF yolk sacs may compensate for an immature yolk sac structure, whereas in clones, patchy expression may cause structural alterations of blood vessels. In conclusion, we inferred that disturbances of yolk sac vasculature contributed to increased early embryonic mortality of bovine pregnancies established with reproductive technologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics

    PubMed Central

    House, John S.; Grimm, Fabian A.; Jima, Dereje D.; Zhou, Yi-Hui; Rusyn, Ivan; Wright, Fred A.

    2017-01-01

    Cell-based assays are an attractive option to measure gene expression response to exposure, but the cost of whole-transcriptome RNA sequencing has been a barrier to the use of gene expression profiling for in vitro toxicity screening. In addition, standard RNA sequencing adds variability due to variable transcript length and amplification. Targeted probe-sequencing technologies such as TempO-Seq, with transcriptomic representation that can vary from hundreds of genes to the entire transcriptome, may reduce some components of variation. Analyses of high-throughput toxicogenomics data require renewed attention to read-calling algorithms and simplified dose–response modeling for datasets with relatively few samples. Using data from induced pluripotent stem cell-derived cardiomyocytes treated with chemicals at varying concentrations, we describe here and make available a pipeline for handling expression data generated by TempO-Seq to align reads, clean and normalize raw count data, identify differentially expressed genes, and calculate transcriptomic concentration–response points of departure. The methods are extensible to other forms of concentration–response gene-expression data, and we discuss the utility of the methods for assessing variation in susceptibility and the diseased cellular state. PMID:29163636

  19. Gene expression analysis of colorectal cancer by bioinformatics strategy.

    PubMed

    Cui, Meng; Yuan, Junhua; Li, Jun; Sun, Bing; Li, Tao; Li, Yuantao; Wu, Guoliang

    2014-10-01

    We used bioinformatics technology to analyze gene expression profiles involved in colorectal cancer tissue samples and healthy controls. In this paper, we downloaded the gene expression profile GSE4107 from Gene Expression Omnibus (GEO) database, in which a total of 22 chips were available, including normal colonic mucosa tissue from normal healthy donors (n=10), colorectal cancer tissue samples from colorectal patients (n=33). To further understand the biological functions of the screened DGEs, the KEGG pathway enrichment analysis were conducted. Then we built a transcriptome network to study differentially co-expressed links. A total of 3151 DEGs of CRC were selected. Besides, total 164 DCGs (Differentially Coexpressed Gene, DCG) and 29279 DCLs (Differentially Co-expressed Link, DCL) were obtained. Furthermore, the significantly enriched KEGG pathways were Endocytosis, Calcium signaling pathway, Vascular smooth muscle contraction, Linoleic acid metabolism, Arginine and proline metabolism, Inositol phosphate metabolism and MAPK signaling pathway. Our results show that the generation of CRC involves multiple genes, TFs and pathways. Several signal and immune pathways are linked to CRC and give us more clues in the process of CRC. Hence, our work would pave ways for novel diagnosis of CRC, and provided theoretical guidance into cancer therapy.

  20. Genome Engineering with TALE and CRISPR Systems in Neuroscience

    PubMed Central

    Lee, Han B.; Sundberg, Brynn N.; Sigafoos, Ashley N.; Clark, Karl J.

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience. PMID:27092173

  1. Genome Engineering with TALE and CRISPR Systems in Neuroscience.

    PubMed

    Lee, Han B; Sundberg, Brynn N; Sigafoos, Ashley N; Clark, Karl J

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience.

  2. Molecular dissection of the roles of the SOD genes in mammalian response to low dose irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Y. Chuang

    2006-08-31

    It has been long recognized that a significant fraction of the radiation-induced genetic damage to cells are caused by secondary oxidative species. Internal cellular defense systems against oxidative stress play significant roles in countering genetic damage induced by ionizing radiation. The role of the detoxifying enzymes may be even more prominent in the case of low-dose, low-LET irradiation, as the majority of genetic damage may be caused by secondary oxidative species. In this study we have attempted to decipher the roles of the superoxide dismutase (SOD) genes, which are responsible for detoxifying the superoxide anions. We used adenovirus vectors tomore » deliver RNA interference (RNAi or siRNA) technology to down-regulate the expression levels of the SOD genes. We have also over-expressed the SOD genes by use of recombinant adenovirus vectors. Cells infected with the vectors were then subjected to low dose γ-irradiation. Total RNA were extracted from the exposed cells and the expression of 9000 genes were profiled by use of cDNA microarrays. The result showed that low dose radiation had clear effects on gene expression in HCT116 cells. Both over-expression and down-regulation of the SOD1 gene can change the expression profiles of sub-groups of genes. Close to 200 of the 9000 genes examined showed over two-fold difference in expression under various conditions. Genes with changed expression pattern belong to many categories that include: early growth response, DNA-repair, ion transport, apoptosis, and cytokine response.« less

  3. Combining cell sheet technology and electrospun scaffolding for engineered tubular, aligned, and contractile blood vessels.

    PubMed

    Rayatpisheh, Shahrzad; Heath, Daniel E; Shakouri, Amir; Rujitanaroj, Pim-On; Chew, Sing Yian; Chan-Park, Mary B

    2014-03-01

    Herein we combine cell sheet technology and electrospun scaffolding to rapidly generate circumferentially aligned tubular constructs of human aortic smooth muscles cells with contractile gene expression for use as tissue engineered blood vessel media. Smooth muscle cells cultured on micropatterned and N-isopropylacrylamide-grafted (pNIPAm) polydimethylsiloxane (PDMS), a small portion of which was covered by aligned electrospun scaffolding, resulted in a single sheet of unidirectionally aligned cells. Upon cooling to room temperature, the scaffold, its adherent cells, and the remaining cell sheet detached and were collected on a mandrel to generating tubular constructs with circumferentially aligned smooth muscle cells which possess contractile gene expression and a single layer of electrospun scaffold as an analogue to a small diameter blood vessel's internal elastic lamina (IEL). This method improves cell sheet handling, results in rapid circumferential alignment of smooth muscle cells which immediately express contractile genes, and introduction of an analogue to small diameter blood vessel IEL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks

    PubMed Central

    Saini, Camille; Liani, André; Curie, Thomas; Gos, Pascal; Kreppel, Florian; Emmenegger, Yann; Bonacina, Luigi; Wolf, Jean-Pierre; Poget, Yves-Alain; Franken, Paul; Schibler, Ueli

    2013-01-01

    The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) in the hypothalamus, which is thought to set the phase of slave oscillators in virtually all body cells. However, due to the lack of appropriate in vivo recording technologies, it has been difficult to study how the SCN synchronizes oscillators in peripheral tissues. Here we describe the real-time recording of bioluminescence emitted by hepatocytes expressing circadian luciferase reporter genes in freely moving mice. The technology employs a device dubbed RT-Biolumicorder, which consists of a cylindrical cage with reflecting conical walls that channel photons toward a photomultiplier tube. The monitoring of circadian liver gene expression revealed that hepatocyte oscillators of SCN-lesioned mice synchronized more rapidly to feeding cycles than hepatocyte clocks of intact mice. Hence, the SCN uses signaling pathways that counteract those of feeding rhythms when their phase is in conflict with its own phase. PMID:23824542

  5. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass

    PubMed Central

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  6. Generation of cell lines for drug discovery through random activation of gene expression: application to the human histamine H3 receptor.

    PubMed

    Song, J; Doucette, C; Hanniford, D; Hunady, K; Wang, N; Sherf, B; Harrington, J J; Brunden, K R; Stricker-Krongrad, A

    2005-06-01

    Target-based high-throughput screening (HTS) plays an integral role in drug discovery. The implementation of HTS assays generally requires high expression levels of the target protein, and this is typically accomplished using recombinant cDNA methodologies. However, the isolated gene sequences to many drug targets have intellectual property claims that restrict the ability to implement drug discovery programs. The present study describes the pharmacological characterization of the human histamine H3 receptor that was expressed using random activation of gene expression (RAGE), a technology that over-expresses proteins by up-regulating endogenous genes rather than introducing cDNA expression vectors into the cell. Saturation binding analysis using [125I]iodoproxyfan and RAGE-H3 membranes revealed a single class of binding sites with a K(D) value of 0.77 nM and a B(max) equal to 756 fmol/mg of protein. Competition binding studies showed that the rank order of potency for H3 agonists was N(alpha)-methylhistamine approximately (R)-alpha- methylhistamine > histamine and that the rank order of potency for H3 antagonists was clobenpropit > iodophenpropit > thioperamide. The same rank order of potency for H3 agonists and antagonists was observed in the functional assays as in the binding assays. The Fluorometic Imaging Plate Reader assays in RAGE-H3 cells gave high Z' values for agonist and antagonist screening, respectively. These results reveal that the human H3 receptor expressed with the RAGE technology is pharmacologically comparable to that expressed through recombinant methods. Moreover, the level of expression of the H3 receptor in the RAGE-H3 cells is suitable for HTS and secondary assays.

  7. Cashmere growth control in Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 and decorin genes

    PubMed Central

    2018-01-01

    Objective The study investigated the biological functions and mechanisms for controlling cashmere growth of Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) and decorin (DCN) genes. Methods cDNA library of Liaoning cashmere goat was constructed in early stages. OCIAD2 and DCN genes related to cashmere growth were identified by homology analysis comparison. The expression location of OCIAD2 and DCN genes in primary and secondary hair follicles (SF) was performed using in situ hybridization. The expression of OCIAD2 and DCN genes in primary and SF was performed using real-time polymerase chain reaction (PCR). Results In situ hybridization revealed that OCIAD2 and DCN were expressed in the inner root sheath of Liaoning cashmere goat hair follicles. Real-time quantitative PCR showed that these genes were highly expressed in SF during anagen, while these genes were highly expressed in primary hair follicle in catagen phase. Melatonin (MT) inhibited the expression of OCIAD2 and promoted the expression of DCN. Insulin-like growth factors-1 (IGF-1) inhibited the expression of OCIAD2 and DCN, while fibroblast growth factors 5 (FGF5) promoted the expression of these genes. MT and IGF-1 promoted OCIAD2 synergistically, while MT and FGF5 inhibited the genes simultaneously. MT+IGF-1/MT+FGF5 inhibited DCN gene. RNAi technology showed that OCIAD2 expression was promoted, while that of DCN was inhibited. Conclusion Activation of bone morphogenetic protein (BMP) signaling pathway up-regulated OCIAD2 expression and stimulated SF to control cell proliferation. DCN gene affected hair follicle morphogenesis and periodic changes by promoting transforming growth factor-β (TGF-β) and BMP signaling pathways. OCIAD2 and DCN genes have opposite effects on TGF-β signaling pathway and inhibit each other to affect the hair growth. PMID:29514440

  8. Transcriptional profiles of bovine in vivo pre-implantation development.

    PubMed

    Jiang, Zongliang; Sun, Jiangwen; Dong, Hong; Luo, Oscar; Zheng, Xinbao; Obergfell, Craig; Tang, Yong; Bi, Jinbo; O'Neill, Rachel; Ruan, Yijun; Chen, Jingbo; Tian, Xiuchun Cindy

    2014-09-04

    During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology. Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo. Surprisingly, more than half of the estimated 22,000 bovine genes, 11,488 to 12,729 involved in more than 100 pathways, is expressed in oocytes and early embryos. Despite the similarity in the total numbers of genes expressed across stages, the nature of the expressed genes is dramatically different. A total of 2,845 genes were differentially expressed among different stages, of which the largest change was observed between the 4- and 8-cell stages, demonstrating that the bovine embryonic genome is activated at this transition. Additionally, 774 genes were identified as only expressed/highly enriched in particular stages of development, suggesting their stage-specific roles in embryogenesis. Using weighted gene co-expression network analysis, we found 12 stage-specific modules of co-expressed genes that can be used to represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the bovine expressed gene networks. Their vast association with other embryonic genes suggests that they may have important regulatory roles in embryo development; yet, the majority of the hub genes are relatively unknown/under-studied in embryos. We also conducted the first comparison of embryonic expression profiles across three mammalian species, human, mouse and bovine, for which RNA-seq data are available. We found that the three species share more maternally deposited genes than embryonic genome activated genes. More importantly, there are more similarities in embryonic transcriptomes between bovine and humans than between humans and mice, demonstrating that bovine embryos are better models for human embryonic development. This study provides a comprehensive examination of gene activities in bovine embryos and identified little-known potential master regulators of pre-implantation development.

  9. Regulators of gene expression as biomarkers for prostate cancer

    PubMed Central

    Willard, Stacey S; Koochekpour, Shahriar

    2012-01-01

    Recent technological advancements in gene expression analysis have led to the discovery of a promising new group of prostate cancer (PCa) biomarkers that have the potential to influence diagnosis and the prediction of disease severity. The accumulation of deleterious changes in gene expression is a fundamental mechanism of prostate carcinogenesis. Aberrant gene expression can arise from changes in epigenetic regulation or mutation in the genome affecting either key regulatory elements or gene sequences themselves. At the epigenetic level, a myriad of abnormal histone modifications and changes in DNA methylation are found in PCa patients. In addition, many mutations in the genome have been associated with higher PCa risk. Finally, over- or underexpression of key genes involved in cell cycle regulation, apoptosis, cell adhesion and regulation of transcription has been observed. An interesting group of biomarkers are emerging from these studies which may prove more predictive than the standard prostate specific antigen (PSA) serum test. In this review, we discuss recent results in the field of gene expression analysis in PCa including the most promising biomarkers in the areas of epigenetics, genomics and the transcriptome, some of which are currently under investigation as clinical tests for early detection and better prognostic prediction of PCa. PMID:23226612

  10. A multiplex branched DNA assay for parallel quantitative gene expression profiling.

    PubMed

    Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling

    2006-05-01

    We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.

  11. Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism.

    PubMed

    Zhang, Zhenyu; Zhao, Wei; Li, Deshan; Yang, Jinlong; Zsak, Laszlo; Yu, Qingzhong

    2015-08-01

    In the present study, we developed a novel approach for foreign gene expression by Newcastle disease virus (NDV) from a second ORF through an internal ribosomal entry site (IRES). Six NDV LaSota strain-based recombinant viruses vectoring the IRES and a red fluorescence protein (RFP) gene behind the nucleocapsid (NP), phosphoprotein (P), matrix (M), fusion (F), haemagglutinin-neuraminidase (HN) or large polymerase (L) gene ORF were generated using reverse genetics technology. The insertion of the second ORF slightly attenuated virus pathogenicity, but did not affect ability of the virus to grow. Quantitative measurements of RFP expression in virus-infected DF-1 cells revealed that the abundance of viral mRNAs and red fluorescence intensity were positively correlated with the gene order of NDV, 3'-NP-P-M-F-HN-L-5', proving the sequential transcription mechanism for NDV. The results herein suggest that the level of foreign gene expression could be regulated by selecting the second ORF insertion site to maximize the efficacy of vaccine and gene therapy.

  12. Microarray analysis of thyroid stimulating hormone, insulin-like growth factor-1, and insulin-induced gene expression in FRTL-5 thyroid cells.

    PubMed

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Park, Young Joo; Cho, Bo Youn

    2007-10-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation.

  13. Microarray Analysis of Thyroid Stimulating Hormone, Insulin-Like Growth Factor-1, and Insulin-Induced Gene Expression in FRTL-5 Thyroid Cells

    PubMed Central

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Cho, Bo Youn

    2007-01-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation. PMID:17982240

  14. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    PubMed

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Characterization of the altered gene expression profile in early porcine embryos generated from parthenogenesis and somatic cell chromatin transfer.

    PubMed

    Zhou, Chi; Dobrinsky, John; Tsoi, Stephen; Foxcroft, George R; Dixon, Walter T; Stothard, Paul; Verstegen, John; Dyck, Michael K

    2014-01-01

    The in vitro production of early porcine embryos is of particular scientific and economic interest. In general, embryos produced from in vitro Assisted Reproductive Technologies (ART) manipulations, such as somatic cell chromatin transfer (CT) and parthenogenetic activation (PA), are less developmentally competent than in vivo-derived embryos. The mechanisms underlying the deficiencies of embryos generated from PA and CT have not been completely understood. To characterize the altered genes and gene networks in embryos generated from CT and PA, comparative transcriptomic analyses of in vivo (IVV) expanded blastocysts (XB), IVV hatched blastocyst (HB), PA XB, PA HB, and CT HB were performed using a custom microarray platform enriched for genes expressed during early embryonic development. Differential expressions of 1492 and 103 genes were identified in PA and CT HB, respectively, in comparison with IVV HB. The "eIF2 signalling", "mitochondrial dysfunction", "regulation of eIF4 and p70S6K signalling", "protein ubiquitination", and "mTOR signalling" pathways were down-regulated in PA HB. Dysregulation of notch signalling-associated genes were observed in both PA and CT HB. TP53 was predicted to be activated in both PA and CT HB, as 136 and 23 regulation targets of TP53 showed significant differential expression in PA and CT HB, respectively, in comparison with IVV HB. In addition, dysregulations of several critical pluripotency, trophoblast development, and implantation-associated genes (NANOG, GATA2, KRT8, LGMN, and DPP4) were observed in PA HB during the blastocyst hatching process. The critical genes that were observed to be dysregulated in CT and PA embryos could be indicative of underlying developmental deficiencies of embryos produced from these technologies.

  16. [Construction and expression analysis of the zebrafish heart-specific transgenetic vector based on Tol2 transposable element].

    PubMed

    Chen, Tingfang; Luo, Na; Xie, Huaping; Wu, Xiushan; Deng, Yun

    2010-02-01

    In an effort to generate a desired expression construct for making heart-specific expression transgenic zebrafish, a Tol2 plasmid, which can drive EGFP reporter gene specifically expressed in the heart, was modified using subcloning technology. An IRES fragment bearing multiple cloning site (MCS) was amplified directly from pIRES2-EGFP plasmid and was inserted between the CMLC2 promoter and EGFP fragment of the pDestTol2CG vector. This recombinant expression plasmid pTol2-CMLC2-IRES-EGFP can drive any interested gene specifically expressed in the zebrafish heart along with EGFP reporter gene. To test the effectiveness of this new expression plasmid, we constructed pTol2-CMLC2-RED-IRES-EGFP plasmid by inserting another reporter gene DsRed-Monome into MCS downstream of the CMLC2 promoter and injected this transgenic recombinant plasmid into one-cell stage embryos of zebrafish. Under fluorescence microscope, both the red fluorescence and the green fluorescence produced by pTol2-CMLC2-RED-IRES-EGFP were detected specifically in the heart tissue in the same expression pattern. This novel expression construct pTol2-CMLC2-IRES-EGFP will become an important tool for our research on identifying heart development candidate genes' function using zebrafish as a model.

  17. Applications of Proteomic Technologies to Toxicology

    EPA Science Inventory

    Proteomics is the large-scale study of gene expression at the protein level. This cutting edge technology has been extensively applied to toxicology research recently. The up-to-date development of proteomics has presented the toxicology community with an unprecedented opportunit...

  18. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray

    PubMed Central

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-01-01

    AIM: To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. METHODS: The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. RESULTS: Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. CONCLUSION: Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators. PMID:12632483

  19. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray.

    PubMed

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-03-01

    To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators.

  20. Identification and validation of reference genes for quantitative real-time PCR normalization and its applications in lycium.

    PubMed

    Zeng, Shaohua; Liu, Yongliang; Wu, Min; Liu, Xiaomin; Shen, Xiaofei; Liu, Chunzhao; Wang, Ying

    2014-01-01

    Lycium barbarum and L. ruthenicum are extensively used as traditional Chinese medicinal plants. Next generation sequencing technology provides a powerful tool for analyzing transcriptomic profiles of gene expression in non-model species. Such gene expression can then be confirmed with quantitative real-time polymerase chain reaction (qRT-PCR). Therefore, use of systematically identified suitable reference genes is a prerequisite for obtaining reliable gene expression data. Here, we calculated the expression stability of 18 candidate reference genes across samples from different tissues and grown under salt stress using geNorm and NormFinder procedures. The geNorm-determined rank of reference genes was similar to those defined by NormFinder with some differences. Both procedures confirmed that the single most stable reference gene was ACNTIN1 for L. barbarum fruits, H2B1 for L. barbarum roots, and EF1α for L. ruthenicum fruits. PGK3, H2B2, and PGK3 were identified as the best stable reference genes for salt-treated L. ruthenicum leaves, roots, and stems, respectively. H2B1 and GAPDH1+PGK1 for L. ruthenicum and SAMDC2+H2B1 for L. barbarum were the best single and/or combined reference genes across all samples. Finally, expression of salt-responsive gene NAC, fruit ripening candidate gene LrPG, and anthocyanin genes were investigated to confirm the validity of the selected reference genes. Suitable reference genes identified in this study provide a foundation for accurately assessing gene expression and further better understanding of novel gene function to elucidate molecular mechanisms behind particular biological/physiological processes in Lycium.

  1. Network Security via Biometric Recognition of Patterns of Gene Expression

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT (Information Technology) organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time assays of gene expression products.

  2. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides

    PubMed Central

    Kole, Ryszard; Krainer, Adrian R.; Altman, Sidney

    2016-01-01

    Here we discuss three RNA therapeutic technologies exploiting various oligonucleotides that bind RNA by base-pairing in a sequence-specific manner yet have different mechanisms of action and effects. RNA interference and antisense oligonucleotides downregulate gene expression by enzyme-dependent degradation of targeted mRNA. Steric blocking oligonucleotides block access of cellular machinery to pre-mRNA and mRNA without degrading the RNA. Through this mechanism, blocking oligonucleotides can redirect alternative splicing, repair defective RNA, restore protein production or also downregulate gene expression. Moreover, they can be extensively chemically modified, resulting in more drug-like properties. The ability of RNA blocking oligonucleotides to restore gene function makes them suited for treatment of genetic disorders. Positive results from clinical trials for the treatment of Duchenne muscular dystrophy show that this technology is close to realizing its clinical potential. PMID:22262036

  3. Germ line transmission of a yeast artificial chromosome spanning the murine [alpha][sub 1](I) collagen locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, W.M.; Dausman, J.; Beard, C.

    Molecular complementation of mutant phenotypes by transgenic technology is a potentially important tool for gene identification. A technology was developed to allow the transfer of a physically intact yeast artificial chromosome (YAC) into the germ line of the mouse. A purified 150-kilobase YAC encompassing the murine gene Col1a1 was efficiently introduced into embryonic stem (ES) cells via lipofection. Chimeric founder mice were derived from two transfected ES cell clones. These chimeras transmitted the full length transgene through the germ line, generating two transgenic mouse strains. Transgene expression was visualized as nascent transcripts in interphase nuclei and quantitated by ribonuclease protectionmore » analysis. Both assays indicated that the transgene was expressed at levels comparable to the endogenous collagen gene. 32 refs., 3 figs., 1 tab.« less

  4. iGC-an integrated analysis package of gene expression and copy number alteration.

    PubMed

    Lai, Yi-Pin; Wang, Liang-Bo; Wang, Wei-An; Lai, Liang-Chuan; Tsai, Mong-Hsun; Lu, Tzu-Pin; Chuang, Eric Y

    2017-01-14

    With the advancement in high-throughput technologies, researchers can simultaneously investigate gene expression and copy number alteration (CNA) data from individual patients at a lower cost. Traditional analysis methods analyze each type of data individually and integrate their results using Venn diagrams. Challenges arise, however, when the results are irreproducible and inconsistent across multiple platforms. To address these issues, one possible approach is to concurrently analyze both gene expression profiling and CNAs in the same individual. We have developed an open-source R/Bioconductor package (iGC). Multiple input formats are supported and users can define their own criteria for identifying differentially expressed genes driven by CNAs. The analysis of two real microarray datasets demonstrated that the CNA-driven genes identified by the iGC package showed significantly higher Pearson correlation coefficients with their gene expression levels and copy numbers than those genes located in a genomic region with CNA. Compared with the Venn diagram approach, the iGC package showed better performance. The iGC package is effective and useful for identifying CNA-driven genes. By simultaneously considering both comparative genomic and transcriptomic data, it can provide better understanding of biological and medical questions. The iGC package's source code and manual are freely available at https://www.bioconductor.org/packages/release/bioc/html/iGC.html .

  5. Cutaneous gene expression of plasmid DNA in excised human skin following delivery via microchannels created by radio frequency ablation.

    PubMed

    Birchall, James; Coulman, Sion; Anstey, Alexander; Gateley, Chris; Sweetland, Helen; Gershonowitz, Amikam; Neville, Lewis; Levin, Galit

    2006-04-07

    The skin is a valuable organ for the development and exploitation of gene medicines. Delivering genes to skin is restricted however by the physico-chemical properties of DNA and the stratum corneum (SC) barrier. In this study, we demonstrate the utility of an innovative technology that creates transient microconduits in human skin, allowing DNA delivery and resultant gene expression within the epidermis and dermis layers. The radio frequency (RF)-generated microchannels were of sufficient morphology and depth to permit the epidermal delivery of 100 nm diameter nanoparticles. Model fluorescent nanoparticles were used to confirm the capacity of the channels for augmenting diffusion of macromolecules through the SC. An ex vivo human organ culture model was used to establish the gene expression efficiency of a beta-galactosidase reporter plasmid DNA applied to ViaDerm treated skin. Skin treated with ViaDerm using 50 microm electrode arrays promoted intense levels of gene expression in the viable epidermis. The intensity and extent of gene expression was superior when ViaDerm was used following a prior surface application of the DNA formulation. In conclusion, the RF-microchannel generator (ViaDerm) creates microchannels amenable for delivery of nanoparticles and gene therapy vectors to the viable region of skin.

  6. [DNA microarray reveals changes in gene expression of endothelial cells under shear stress].

    PubMed

    Cheng, Min; Zhang, Wensheng; Chen, Huaiqing; Wu, Wenchao; Huang, Hua

    2004-04-01

    cDNA microarray technology is used as a powerful tool for rapid, comprehensive, and quantitative analysis of gene profiles of cultured human umbilical vein endothelial cells(HUVECs) in the normal static group and the shear stressed (4.20 dyne/cm2, 2 h) group. The total RNA from normal static cultured HUVECs was labeled by Cy3-dCTP, and total RNA of HUVECs from the paired shear stressed experiment was labeled by Cy5-dCTP. The expression ratios reported are the average from the two separate experiments. After bioinformatics analysis, we identified a total of 108 genes (approximately 0.026%) revealing differential expression. Of these 53 genes expressions were up-regulated, the most enhanced ones being human homolog of yeast IPP isomerase, human low density lipoprotein receptor gene, Squalene epoxidase gene, 7-dehydrocholesterol reductase, and 55 were down-regulated, the most decreased ones being heat shock 70 kD protein 1, TCB gene encoding cytosolic thyroid hormone-binding protein in HUVECs exposed to low shear stress. These results indicate that the cDNA microarray technique is effective in screening the differentially expressed genes in endothelial cells induced by various experimental conditions and the data may serve as stimuli to further researches.

  7. Crx broadly modulates the pineal transcriptome

    PubMed Central

    Rovsing, Louise; Clokie, Samuel; Bustos, Diego M.; Rohde, Kristian; Coon, Steven L.; Litman, Thomas; Rath, Martin F.; Møller, Morten; Klein, David C.

    2011-01-01

    Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. Here, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use of microarray and qRTPCR technology, thereby extending previous studies on selected genes (Furukawa et al. 1999). Deletion of Crx was not found to alter pineal morphology, but was found to broadly modulate the mouse pineal transcriptome, characterized by a >2-fold downregulation of 543 genes and a >2-fold upregulation of 745 genes (p < 0.05). Of these, one of the most highly upregulated (18-fold) is Hoxc4, a member of the Hox gene family, members of which are known to control gene expression cascades. During a 24-hour period, a set of 51 genes exhibited differential day/night expression in pineal glands of wild-type animals; only eight of these were also day/night expressed in the Crx−/− pineal gland. However, in the Crx−/− pineal gland 41 genes exhibit differential night/day expression that is not seen in wild-type animals. These findings indicate that Crx broadly modulates the pineal transcriptome and also influences differential night/day gene expression in this tissue. Some effects of Crx deletion on the pineal transcriptome might be mediated by Hoxc4 upregulation. PMID:21797868

  8. Gene Expression Omnibus (GEO): Microarray data storage, submission, retrieval, and analysis

    PubMed Central

    Barrett, Tanya

    2006-01-01

    The Gene Expression Omnibus (GEO) repository at the National Center for Biotechnology Information (NCBI) archives and freely distributes high-throughput molecular abundance data, predominantly gene expression data generated by DNA microarray technology. The database has a flexible design that can handle diverse styles of both unprocessed and processed data in a MIAME- (Minimum Information About a Microarray Experiment) supportive infrastructure that promotes fully annotated submissions. GEO currently stores about a billion individual gene expression measurements, derived from over 100 organisms, submitted by over 1,500 laboratories, addressing a wide range of biological phenomena. To maximize the utility of these data, several user-friendly Web-based interfaces and applications have been implemented that enable effective exploration, query, and visualization of these data, at the level of individual genes or entire studies. This chapter describes how the data are stored, submission procedures, and mechanisms for data retrieval and query. GEO is publicly accessible at http://www.ncbi.nlm.nih.gov/projects/geo/. PMID:16939800

  9. Differential global gene expression in red and white skeletal muscle

    NASA Technical Reports Server (NTRS)

    Campbell, W. G.; Gordon, S. E.; Carlson, C. J.; Pattison, J. S.; Hamilton, M. T.; Booth, F. W.

    2001-01-01

    The differences in gene expression among the fiber types of skeletal muscle have long fascinated scientists, but for the most part, previous experiments have only reported differences of one or two genes at a time. The evolving technology of global mRNA expression analysis was employed to determine the potential differential expression of approximately 3,000 mRNAs between the white quad (white muscle) and the red soleus muscle (mixed red muscle) of female ICR mice (30-35 g). Microarray analysis identified 49 mRNA sequences that were differentially expressed between white and mixed red skeletal muscle, including newly identified differential expressions between muscle types. For example, the current findings increase the number of known, differentially expressed mRNAs for transcription factors/coregulators by nine and signaling proteins by three. The expanding knowledge of the diversity of mRNA expression between white and mixed red muscle suggests that there could be quite a complex regulation of phenotype between muscles of different fiber types.

  10. Turning the gene tap off; implications of regulating gene expression for cancer therapeutics

    PubMed Central

    Curtin, James F.; Candolfi, Marianela; Xiong, Weidong; Lowenstein, Pedro R.; Castro, Maria G.

    2008-01-01

    Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. Anticancer gene therapy strategies currently used in preclinical models, and in some cases in the clinic, include proapoptotic genes, oncolytic/replicative vectors, conditional cytotoxic approaches, inhibition of angiogenesis, inhibition of growth factor signaling, inactivation of oncogenes, inhibition of tumor invasion and stimulation of the immune system. The translation of these novel therapeutic modalities from the preclinical setting to the clinic has been driven by encouraging preclinical efficacy data and advances in gene delivery technologies. One area of intense research involves the ability to accurately regulate the levels of therapeutic gene expression to achieve enhanced efficacy and provide the capability to switch gene expression off completely if adverse side effects should arise. This feature could also be implemented to switch gene expression off when a successful therapeutic outcome ensues. Here, we will review recent developments related to the engineering of transcriptional switches within gene delivery systems, which could be implemented in clinical gene therapy applications directed at the treatment of cancer. PMID:18347132

  11. Digital gene expression approach over multiple RNA-Seq data sets to detect neoblast transcriptional changes in Schmidtea mediterranea.

    PubMed

    Rodríguez-Esteban, Gustavo; González-Sastre, Alejandro; Rojo-Laguna, José Ignacio; Saló, Emili; Abril, Josep F

    2015-05-08

    The freshwater planarian Schmidtea mediterranea is recognised as a valuable model for research into adult stem cells and regeneration. With the advent of the high-throughput sequencing technologies, it has become feasible to undertake detailed transcriptional analysis of its unique stem cell population, the neoblasts. Nonetheless, a reliable reference for this type of studies is still lacking. Taking advantage of digital gene expression (DGE) sequencing technology we compare all the available transcriptomes for S. mediterranea and improve their annotation. These results are accessible via web for the community of researchers. Using the quantitative nature of DGE, we describe the transcriptional profile of neoblasts and present 42 new neoblast genes, including several cancer-related genes and transcription factors. Furthermore, we describe in detail the Smed-meis-like gene and the three Nuclear Factor Y subunits Smed-nf-YA, Smed-nf-YB-2 and Smed-nf-YC. DGE is a valuable tool for gene discovery, quantification and annotation. The application of DGE in S. mediterranea confirms the planarian stem cells or neoblasts as a complex population of pluripotent and multipotent cells regulated by a mixture of transcription factors and cancer-related genes.

  12. Robust, synergistic regulation of human gene expression using TALE activators.

    PubMed

    Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith

    2013-03-01

    Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

  13. Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.

    PubMed

    Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A

    2017-01-25

    With the current microarray and RNA-seq technologies, two-sample genome-wide expression data have been widely collected in biological and medical studies. The related differential expression analysis and gene set enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical interest. In this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter space when the number of data sets is increased. The model-based probability of discordance enrichment can be calculated for gene set detection. We apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive). We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis, we observed overall similar results and the above two pathways are still the most significant detections. More interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway analysis of genome-wide association study (GWAS) data. This study illustrates that some disease-related pathways can be enriched in discordant molecular behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data collected by the recent RNA-seq technology.

  14. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline.

    PubMed

    Chen, Yunshun; Lun, Aaron T L; Smyth, Gordon K

    2016-01-01

    In recent years, RNA sequencing (RNA-seq) has become a very widely used technology for profiling gene expression. One of the most common aims of RNA-seq profiling is to identify genes or molecular pathways that are differentially expressed (DE) between two or more biological conditions. This article demonstrates a computational workflow for the detection of DE genes and pathways from RNA-seq data by providing a complete analysis of an RNA-seq experiment profiling epithelial cell subsets in the mouse mammary gland. The workflow uses R software packages from the open-source Bioconductor project and covers all steps of the analysis pipeline, including alignment of read sequences, data exploration, differential expression analysis, visualization and pathway analysis. Read alignment and count quantification is conducted using the Rsubread package and the statistical analyses are performed using the edgeR package. The differential expression analysis uses the quasi-likelihood functionality of edgeR.

  15. Configurations of a two-tiered amplified gene expression system in adenoviral vectors designed to improve the specificity of in vivo prostate cancer imaging

    PubMed Central

    Sato, M; Figueiredo, ML; Burton, JB; Johnson, M; Chen, M; Powell, R; Gambhir, SS; Carey, M; Wu, L

    2009-01-01

    Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer. PMID:18305574

  16. Epigenetic mechanisms of nutrient-induced modulation of gene expression and cellular functions

    USDA-ARS?s Scientific Manuscript database

    Utilizing next-generation sequencing technology in combination with chromatin immunoprecipitation (ChIP) technology, our study provides systematic and novel insights into the relationships between nutrition and epigenetics. One paradigmatic example of nutrient-epigenetic-phenotype relationship is th...

  17. De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissues

    PubMed Central

    Wu, Shuanghua; Lei, Jianjun; Chen, Guoju; Chen, Hancai; Cao, Bihao; Chen, Changming

    2017-01-01

    Chinese kale, a vegetable of the cruciferous family, is a popular crop in southern China and Southeast Asia due to its high glucosinolate content and nutritional qualities. However, there is little research on the molecular genetics and genes involved in glucosinolate metabolism and its regulation in Chinese kale. In this study, we sequenced and characterized the transcriptomes and expression profiles of genes expressed in 11 tissues of Chinese kale. A total of 216 million 150-bp clean reads were generated using RNA-sequencing technology. From the sequences, 98,180 unigenes were assembled for the whole plant, and 49,582~98,423 unigenes were assembled for each tissue. Blast analysis indicated that a total of 80,688 (82.18%) unigenes exhibited similarity to known proteins. The functional annotation and classification tools used in this study suggested that genes principally expressed in Chinese kale, were mostly involved in fundamental processes, such as cellular and molecular functions, the signal transduction, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in various tissues of Chinese kale. A large number of candidate genes involved in glucosinolate metabolism and its regulation were identified, and the expression patterns of these genes were analyzed. We found that most of the genes involved in glucosinolate biosynthesis were highly expressed in the root, petiole, and in senescent leaves. The expression patterns of ten glucosinolate biosynthetic genes from RNA-seq were validated by quantitative RT-PCR in different tissues. These results provided an initial and global overview of Chinese kale gene functions and expression activities in different tissues. PMID:28228764

  18. Inhibition of the binding of MSG-intermolt-specific complex, MIC, to the sericin-1 gene promoter and sericin-1 gene expression by POU-M1/SGF-3.

    PubMed

    Kimoto, Mai; Kitagawa, Tsuyuki; Kobayashi, Isao; Nakata, Tomohiro; Kuroiwa, Asato; Takiya, Shigeharu

    2012-11-01

    The sericin-1 gene encoding a glue protein is expressed in the middle silk gland (MSG) of the silkworm, Bombyx mori. A member of the class III POU domain transcription factors, POU-M1, was cloned as the factor bound to the SC site of the sericin-1 promoter and has been proposed to be a positive transcription factor. In this study, we analyzed the expression pattern of the POU-M1 gene in fourth and fifth instars in comparison with the pattern of the sericin-1 gene. The POU-M1 gene was expressed strongly in the region anterior to the sericin-1-expressing portion of the silk gland at both feeding stages. As the sericin-1-expressing region expands from the posterior to middle portions of the MSG in the fifth instar, the POU-M1-expressing region retreated from the middle to anterior portion. Introduction of the expression vector of POU-M1 into the silk glands by gene gun technology repressed promoter activity of the sericin-1 gene, suggesting that POU-M1 regulates the sericin-1 gene negatively. An in vitro binding assay showed that POU-M1 bound not only to the SC site but also to other promoter elements newly detected in vivo. Another spatiotemporal specific factor MIC binds to these elements, and POU-M1 competed with MIC to bind at the -70 site essential for promoter activity. These results suggest that POU-M1 is involved in restricting the anterior boundary of the sericin-1-expressing region in the silk gland by inhibiting the binding of the transcriptional activator to the promoter elements.

  19. Discovering high-resolution patterns of differential DNA methylation that correlate with gene expression changes

    PubMed Central

    VanderKraats, Nathan D.; Hiken, Jeffrey F.; Decker, Keith F.; Edwards, John R.

    2013-01-01

    Methylation of the CpG-rich region (CpG island) overlapping a gene’s promoter is a generally accepted mechanism for silencing expression. While recent technological advances have enabled measurement of DNA methylation and expression changes genome-wide, only modest correlations between differential methylation at gene promoters and expression have been found. We hypothesize that stronger associations are not observed because existing analysis methods oversimplify their representation of the data and do not capture the diversity of existing methylation patterns. Recently, other patterns such as CpG island shore methylation and long partially hypomethylated domains have also been linked with gene silencing. Here, we detail a new approach for discovering differential methylation patterns associated with expression change using genome-wide high-resolution methylation data: we represent differential methylation as an interpolated curve, or signature, and then identify groups of genes with similarly shaped signatures and corresponding expression changes. Our technique uncovers a diverse set of patterns that are conserved across embryonic stem cell and cancer data sets. Overall, we find strong associations between these methylation patterns and expression. We further show that an extension of our method also outperforms other approaches by generating a longer list of genes with higher quality associations between differential methylation and expression. PMID:23748561

  20. Clinical applications of retinal gene therapy.

    PubMed

    Lipinski, Daniel M; Thake, Miriam; MacLaren, Robert E

    2013-01-01

    Many currently incurable forms of blindness affecting the retina have a genetic etiology and several others, such as those resulting from retinal vascular disturbances, respond to repeated, potentially indefinite administration of molecular based treatments. The recent clinical advances in retinal gene therapy have shown that viral vectors can deliver genes safely to the retina and the promising initial results from a number of clinical trials suggest that certain diseases may potentially be treatable. Gene therapy provides a means of expressing proteins within directly transduced cells with far greater efficacy than might be achieved by traditional systemic pharmacological approaches. Recent developments have demonstrated how vector gene expression may be regulated and further improvements to vector design have limited side effects and improved safety profiles. These recent steps have been most significant in bringing gene therapy into the mainstream of ophthalmology. Nevertheless translating retinal gene therapy from animal research into clinical trials is still a lengthy process, including complexities in human retinal diseases that have been difficult to model in the laboratory. The focus of this review is to summarize the genetic background of the most common retinal diseases, highlight current concepts of gene delivery technology, and relate those technologies to pre-clinical and clinical gene therapy studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. NCBI GEO: archive for functional genomics data sets--10 years on.

    PubMed

    Barrett, Tanya; Troup, Dennis B; Wilhite, Stephen E; Ledoux, Pierre; Evangelista, Carlos; Kim, Irene F; Tomashevsky, Maxim; Marshall, Kimberly A; Phillippy, Katherine H; Sherman, Patti M; Muertter, Rolf N; Holko, Michelle; Ayanbule, Oluwabukunmi; Yefanov, Andrey; Soboleva, Alexandra

    2011-01-01

    A decade ago, the Gene Expression Omnibus (GEO) database was established at the National Center for Biotechnology Information (NCBI). The original objective of GEO was to serve as a public repository for high-throughput gene expression data generated mostly by microarray technology. However, the research community quickly applied microarrays to non-gene-expression studies, including examination of genome copy number variation and genome-wide profiling of DNA-binding proteins. Because the GEO database was designed with a flexible structure, it was possible to quickly adapt the repository to store these data types. More recently, as the microarray community switches to next-generation sequencing technologies, GEO has again adapted to host these data sets. Today, GEO stores over 20,000 microarray- and sequence-based functional genomics studies, and continues to handle the majority of direct high-throughput data submissions from the research community. Multiple mechanisms are provided to help users effectively search, browse, download and visualize the data at the level of individual genes or entire studies. This paper describes recent database enhancements, including new search and data representation tools, as well as a brief review of how the community uses GEO data. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/.

  2. Modern Genome Editing Technologies in Huntington's Disease Research.

    PubMed

    Malankhanova, Tuyana B; Malakhova, Anastasia A; Medvedev, Sergey P; Zakian, Suren M

    2017-01-01

    The development of new revolutionary technologies for directed gene editing has made it possible to thoroughly model and study NgAgo human diseases at the cellular and molecular levels. Gene editing tools like ZFN, TALEN, CRISPR-based systems, NgAgo and SGN can introduce different modifications. In gene sequences and regulate gene expression in different types of cells including induced pluripotent stem cells (iPSCs). These tools can be successfully used for Huntington's disease (HD) modeling, for example, to generate isogenic cell lines bearing different numbers of CAG repeats or to correct the mutation causing the disease. This review presents common genome editing technologies and summarizes the progress made in using them in HD and other hereditary diseases. Furthermore, we will discuss prospects and limitations of genome editing in understanding HD pathology.

  3. Part I: Minicircle vector technology limits DNA size restrictions on ex vivo gene delivery using nanoparticle vectors: Overcoming a translational barrier in neural stem cell therapy.

    PubMed

    Fernandes, Alinda R; Chari, Divya M

    2016-09-28

    Genetically engineered neural stem cell (NSC) transplant populations offer key benefits in regenerative neurology, for release of therapeutic biomolecules in ex vivo gene therapy. NSCs are 'hard-to-transfect' but amenable to 'magnetofection'. Despite the high clinical potential of this approach, the low and transient transfection associated with the large size of therapeutic DNA constructs is a critical barrier to translation. We demonstrate for the first time that DNA minicircles (small DNA vectors encoding essential gene expression components but devoid of a bacterial backbone, thereby reducing construct size versus conventional plasmids) deployed with magnetofection achieve the highest, safe non-viral DNA transfection levels (up to 54%) reported so far for primary NSCs. Minicircle-functionalized magnetic nanoparticle (MNP)-mediated gene delivery also resulted in sustained gene expression for up to four weeks. All daughter cell types of engineered NSCs (neurons, astrocytes and oligodendrocytes) were transfected (in contrast to conventional plasmids which usually yield transfected astrocytes only), offering advantages for targeted cell engineering. In addition to enhancing MNP functionality as gene delivery vectors, minicircle technology provides key benefits from safety/scale up perspectives. Therefore, we consider the proof-of-concept of fusion of technologies used here offers high potential as a clinically translatable genetic modification strategy for cell therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Development of a Universal RNA Beacon for Exogenous Gene Detection

    PubMed Central

    Guo, Yuanjian; Lu, Zhongju; Cohen, Ira Stephen

    2015-01-01

    Stem cell therapy requires a nontoxic and high-throughput method to achieve a pure cell population to prevent teratomas that can occur if even one cell in the implant has not been transformed. A promising method to detect and separate cells expressing a particular gene is RNA beacon technology. However, developing a successful, specific beacon to a particular transfected gene can take months to develop and in some cases is impossible. Here, we report on an off-the-shelf universal beacon that decreases the time and cost of applying beacon technology to select any living cell population transfected with an exogenous gene. PMID:25769653

  5. Development of a universal RNA beacon for exogenous gene detection.

    PubMed

    Guo, Yuanjian; Lu, Zhongju; Cohen, Ira Stephen; Scarlata, Suzanne

    2015-05-01

    Stem cell therapy requires a nontoxic and high-throughput method to achieve a pure cell population to prevent teratomas that can occur if even one cell in the implant has not been transformed. A promising method to detect and separate cells expressing a particular gene is RNA beacon technology. However, developing a successful, specific beacon to a particular transfected gene can take months to develop and in some cases is impossible. Here, we report on an off-the-shelf universal beacon that decreases the time and cost of applying beacon technology to select any living cell population transfected with an exogenous gene. ©AlphaMed Press.

  6. Whole Genome Gene Expression Meta-Analysis of Inflammatory Bowel Disease Colon Mucosa Demonstrates Lack of Major Differences between Crohn's Disease and Ulcerative Colitis

    PubMed Central

    Østvik, Ann E.; Drozdov, Ignat; Gustafsson, Bjørn I.; Kidd, Mark; Beisvag, Vidar; Torp, Sverre H.; Waldum, Helge L.; Martinsen, Tom Christian; Damås, Jan Kristian; Espevik, Terje; Sandvik, Arne K.

    2013-01-01

    Background In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn’s disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Methods Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Results Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. Conclusions There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology. PMID:23468882

  7. Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn's disease and ulcerative colitis.

    PubMed

    Granlund, Atle van Beelen; Flatberg, Arnar; Østvik, Ann E; Drozdov, Ignat; Gustafsson, Bjørn I; Kidd, Mark; Beisvag, Vidar; Torp, Sverre H; Waldum, Helge L; Martinsen, Tom Christian; Damås, Jan Kristian; Espevik, Terje; Sandvik, Arne K

    2013-01-01

    In inflammatory bowel disease (IBD), genetic susceptibility together with environmental factors disturbs gut homeostasis producing chronic inflammation. The two main IBD subtypes are Ulcerative colitis (UC) and Crohn's disease (CD). We present the to-date largest microarray gene expression study on IBD encompassing both inflamed and un-inflamed colonic tissue. A meta-analysis including all available, comparable data was used to explore important aspects of IBD inflammation, thereby validating consistent gene expression patterns. Colon pinch biopsies from IBD patients were analysed using Illumina whole genome gene expression technology. Differential expression (DE) was identified using LIMMA linear model in the R statistical computing environment. Results were enriched for gene ontology (GO) categories. Sets of genes encoding antimicrobial proteins (AMP) and proteins involved in T helper (Th) cell differentiation were used in the interpretation of the results. All available data sets were analysed using the same methods, and results were compared on a global and focused level as t-scores. Gene expression in inflamed mucosa from UC and CD are remarkably similar. The meta-analysis confirmed this. The patterns of AMP and Th cell-related gene expression were also very similar, except for IL23A which was consistently higher expressed in UC than in CD. Un-inflamed tissue from patients demonstrated minimal differences from healthy controls. There is no difference in the Th subgroup involvement between UC and CD. Th1/Th17 related expression, with little Th2 differentiation, dominated both diseases. The different IL23A expression between UC and CD suggests an IBD subtype specific role. AMPs, previously little studied, are strongly overexpressed in IBD. The presented meta-analysis provides a sound background for further research on IBD pathobiology.

  8. Comparative Temporal Transcriptome Profiling of Wheat near Isogenic Line Carrying Lr57 under Compatible and Incompatible Interactions

    PubMed Central

    Yadav, Inderjit S.; Sharma, Amandeep; Kaur, Satinder; Nahar, Natasha; Bhardwaj, Subhash C.; Sharma, Tilak R.; Chhuneja, Parveen

    2016-01-01

    Leaf rust caused by Puccinia triticina (Pt) is one of the most important diseases of bread wheat globally. Recent advances in sequencing technologies have provided opportunities to analyse the complete transcriptomes of the host as well as pathogen for studying differential gene expression during infection. Pathogen induced differential gene expression was characterized in a near isogenic line carrying leaf rust resistance gene Lr57 and susceptible recipient genotype WL711. RNA samples were collected at five different time points 0, 12, 24, 48, and 72 h post inoculation (HPI) with Pt 77-5. A total of 3020 transcripts were differentially expressed with 1458 and 2692 transcripts in WL711 and WL711+Lr57, respectively. The highest number of differentially expressed transcripts was detected at 12 HPI. Functional categorization using Blast2GO classified the genes into biological processes, molecular function and cellular components. WL711+Lr57 showed much higher number of differentially expressed nucleotide binding and leucine rich repeat genes and expressed more protein kinases and pathogenesis related proteins such as chitinases, glucanases and other PR proteins as compared to susceptible genotype. Pathway annotation with KEGG categorized genes into 13 major classes with carbohydrate metabolism being the most prominent followed by amino acid, secondary metabolites, and nucleotide metabolism. Gene co-expression network analysis identified four and eight clusters of highly correlated genes in WL711 and WL711+Lr57, respectively. Comparative analysis of the differentially expressed transcripts led to the identification of some transcripts which were specifically expressed only in WL711+Lr57. It was apparent from the whole transcriptome sequencing that the resistance gene Lr57 directed the expression of different genes involved in building the resistance response in the host to combat invading pathogen. The RNAseq data and differentially expressed transcripts identified in present study is a genomic resource which can be used for further studying the host pathogen interaction for Lr57 and wheat transcriptome in general. PMID:28066494

  9. Characterization of specialized flocculent yeasts to improve sparkling wine fermentation.

    PubMed

    Tofalo, R; Perpetuini, G; Di Gianvito, P; Arfelli, G; Schirone, M; Corsetti, A; Suzzi, G

    2016-06-01

    Flocculent wine yeasts were characterized for the expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes, growth kinetics and physicochemical properties of the cell surface during a 6-month sparkling wine fermentation period. The expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes was determined by RT-qPCR. The physicochemical characterization of yeast surface properties was evaluated by the microbial adhesion to solvents method. FLO5 gene was the most expressed one and a linear correlation with the flocculent degree was found. Flocculent strains were more hydrophobic than the commercial wine strain EC1118. Gene expressions and the ability to face secondary wine fermentation conditions were strain dependent. The importance of FLO5 gene in developing the high flocculent characteristic of wine yeasts was highlighted. Cell surface properties depended on the time of fermentation. Better knowledge about the expression of some genes encoding the flocculent phenotype which could be useful to select suitable starter cultures to improve sparkling wine technology was achieved. A step forward in understanding the complexity and strain-specific nature of flocculation phenotype was done. © 2016 The Society for Applied Microbiology.

  10. Transcriptome analysis of the Tan sheep testes: Differential expression of antioxidant enzyme-related genes and proteins in response to dietary vitamin E supplementation.

    PubMed

    Xu, Chenchen; Zuo, Zhaoyun; Liu, Kun; Jia, Huina; Zhang, Yuwei; Luo, Hailing

    2016-03-15

    Gene-chip technology was employed to study the effect of dietary vitamin E on gene expression in sheep testes based on our previous research. Thirty-five male Tan sheep (20-30 days after weaning) with similar body weight were randomly allocated into five groups and supplemented 0, 20, 100, 200 and 2,000 IU sheep(-1)day(-1) vitamin E (treatments denoted as E0, E20, E100, E200, and E2000, respectively) for 120 days. At the end of the study the sheep were slaughtered and the testis samples were immediately collected and stored in liquid nitrogen. Differences in gene expression between different treated groups were identified. Based on GO enrichment analysis and the KEGG database to evaluate the gene expression data we found that vitamin E might affect genes in the testes by modulating the oxidation level, by affecting the expression of various receptors and transcription factors in biological pathways, and by regulating the expression of metabolism-associated genes. The effect of vitamin E supplementation on the expression of oxidative enzyme-related genes was detected by quantitative real-time PCR (qRT-PCR) and Western blot. The results show that dietary vitamin E, at various doses, can significantly increase (P<0.05) the mRNA and protein expression of Glutathione peroxidase 3 and Glutathione S-transferase alpha 1. In addition, the results of qRT-PCR of the antioxidant enzyme genes were consistent with those obtained using the gene chip microarray analysis. In summary, the dietary vitamin E treatment altered the expression of a number of genes in sheep testes. The increase in the mRNA and protein levels of antioxidant enzyme genes, coupled with the elevation in the activity of the antioxidant enzymes were primarily responsible for the improved reproductive performance promoted by dietary vitamin E. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. In Vivo Gene Therapy of Hemophilia B: Sustained Partial Correction in Factor IX-Deficient Dogs

    NASA Astrophysics Data System (ADS)

    Kay, Mark A.; Rothenberg, Steven; Landen, Charles N.; Bellinger, Dwight A.; Leland, Frances; Toman, Carol; Finegold, Milton; Thompson, Arthur R.; Read, M. S.; Brinkhous, Kenneth M.; Woo, Savio L. C.

    1993-10-01

    The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting. factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.

  12. Challenges of microarray applications for microbial detection and gene expression profiling in food

    USDA-ARS?s Scientific Manuscript database

    Microarray technology represents one of the latest advances in molecular biology. The diverse types of microarrays have been applied to clinical and environmental microbiology, microbial ecology, and in human, veterinary, and plant diagnostics. Since multiple genes can be analyzed simultaneously, ...

  13. Changes in expression of genes involved in apoptosis in activated human T-cells in response to modeled microgravity

    NASA Astrophysics Data System (ADS)

    Ward, Nancy E.; Pellis, Neal R.; Risin, Diana; Risin, Semyon A.; Liu, Wenbin

    2006-09-01

    Space flights result in remarkable effects on various physiological systems, including a decline in cellular immune functions. Previous studies have shown that exposure to microgravity, both true and modeled, can cause significant changes in numerous lymphocyte functions. The purpose of this study was to search for microgravity-sensitive genes, and specifically for apoptotic genes influenced by the microgravity environment and other genes related to immune response. The experiments were performed on anti-CD3 and IL-2 activated human T cells. To model microgravity conditions we have utilized the NASA rotating wall vessel bioreactor. Control lymphocytes were cultured in static 1g conditions. To assess gene expression we used DNA microarray chip technology. We had shown that multiple genes (approximately 3-8% of tested genes) respond to microgravity conditions by 1.5 and more fold change in expression. There is a significant variability in the response. However, a certain reproducible pattern in gene response could be identified. Among the genes showing reproducible changes in expression in modeled microgravity, several genes involved in apoptosis as well as in immune response were identified. These are IL-7 receptor, Granzyme B, Beta-3-endonexin, Apo2 ligand and STAT1. Possible functional consequences of these changes are discussed.

  14. Detecting differentially expressed genes in heterogeneous diseases using half Student's t-test.

    PubMed

    Hsu, Chun-Lun; Lee, Wen-Chung

    2010-12-01

    Microarray technology provides information about hundreds and thousands of gene-expression data in a single experiment. To search for disease-related genes, researchers test for those genes that are differentially expressed between the case subjects and the control subjects. The authors propose a new test, the 'half Student's t-test', specifically for detecting differentially expressed genes in heterogeneous diseases. Monte-Carlo simulation shows that the test maintains the nominal α level quite well for both normal and non-normal distributions. Power of the half Student's t is higher than that of the conventional 'pooled' Student's t when there is heterogeneity in the disease under study. The power gain by using the half Student's t can reach ∼10% when the standard deviation of the case group is 50% larger than that of the control group. Application to a colon cancer data reveals that when the false discovery rate (FDR) is controlled at 0.05, the half Student's t can detect 344 differentially expressed genes, whereas the pooled Student's t can detect only 65 genes. Or alternatively, if only 50 genes are to be selected, the FDR for the pooled Student's t has to be set at 0.0320 (false positive rate of ∼3%), but for the half Student's t, it can be at as low as 0.0001 (false positive rate of about one per ten thousands). The half Student's t-test is to be recommended for the detection of differentially expressed genes in heterogeneous diseases.

  15. Microarray gene expression profiling using core biopsies of renal neoplasia.

    PubMed

    Rogers, Craig G; Ditlev, Jonathon A; Tan, Min-Han; Sugimura, Jun; Qian, Chao-Nan; Cooper, Jeff; Lane, Brian; Jewett, Michael A; Kahnoski, Richard J; Kort, Eric J; Teh, Bin T

    2009-01-01

    We investigate the feasibility of using microarray gene expression profiling technology to analyze core biopsies of renal tumors for classification of tumor histology. Core biopsies were obtained ex-vivo from 7 renal tumors-comprised of four histological subtypes-following radical nephrectomy using 18-gauge biopsy needles. RNA was isolated from these samples and, in the case of biopsy samples, amplified by in vitro transcription. Microarray analysis was then used to quantify the mRNA expression patterns in these samples relative to non-diseased renal tissue mRNA. Genes with significant variation across all non-biopsy tumor samples were identified, and the relationship between tumor and biopsy samples in terms of expression levels of these genes was then quantified in terms of Euclidean distance, and visualized by complete linkage clustering. Final pathologic assessment of kidney tumors demonstrated clear cell renal cell carcinoma (4), oncocytoma (1), angiomyolipoma (1) and adrenalcortical carcinoma (1). Five of the seven biopsy samples were most similar in terms of gene expression to the resected tumors from which they were derived in terms of Euclidean distance. All seven biopsies were assigned to the correct histological class by hierarchical clustering. We demonstrate the feasibility of gene expression profiling of core biopsies of renal tumors to classify tumor histology.

  16. Microarray gene expression profiling using core biopsies of renal neoplasia

    PubMed Central

    Rogers, Craig G.; Ditlev, Jonathon A.; Tan, Min-Han; Sugimura, Jun; Qian, Chao-Nan; Cooper, Jeff; Lane, Brian; Jewett, Michael A.; Kahnoski, Richard J.; Kort, Eric J.; Teh, Bin T.

    2009-01-01

    We investigate the feasibility of using microarray gene expression profiling technology to analyze core biopsies of renal tumors for classification of tumor histology. Core biopsies were obtained ex-vivo from 7 renal tumors—comprised of four histological subtypes—following radical nephrectomy using 18-gauge biopsy needles. RNA was isolated from these samples and, in the case of biopsy samples, amplified by in vitro transcription. Microarray analysis was then used to quantify the mRNA expression patterns in these samples relative to non-diseased renal tissue mRNA. Genes with significant variation across all non-biopsy tumor samples were identified, and the relationship between tumor and biopsy samples in terms of expression levels of these genes was then quantified in terms of Euclidean distance, and visualized by complete linkage clustering. Final pathologic assessment of kidney tumors demonstrated clear cell renal cell carcinoma (4), oncocytoma (1), angiomyolipoma (1) and adrenalcortical carcinoma (1). Five of the seven biopsy samples were most similar in terms of gene expression to the resected tumors from which they were derived in terms of Euclidean distance. All seven biopsies were assigned to the correct histological class by hierarchical clustering. We demonstrate the feasibility of gene expression profiling of core biopsies of renal tumors to classify tumor histology. PMID:19966938

  17. Gene expression patterns in formalin-fixed, paraffin-embedded core biopsies predict docetaxel chemosensitivity in breast cancer patients.

    PubMed

    Chang, Jenny C; Makris, Andreas; Gutierrez, M Carolina; Hilsenbeck, Susan G; Hackett, James R; Jeong, Jennie; Liu, Mei-Lan; Baker, Joffre; Clark-Langone, Kim; Baehner, Frederick L; Sexton, Krsytal; Mohsin, Syed; Gray, Tara; Alvarez, Laura; Chamness, Gary C; Osborne, C Kent; Shak, Steven

    2008-03-01

    Previously, we had identified gene expression patterns that predicted response to neoadjuvant docetaxel. Other studies have validated that a high Recurrence Score (RS) by the 21-gene RT-PCR assay is predictive of worse prognosis but better response to chemotherapy. We investigated whether tumor expression of these 21 genes and other candidate genes can predict response to docetaxel. Core biopsies from 97 patients were obtained before treatment with neoadjuvant docetaxel (4 cycles, 100 mg/m2 q3 weeks). Three 10-microm FFPE sections were submitted for quantitative RT-PCR assays of 192 genes that were selected from our previous work and the literature. Of the 97 patients, 81 (84%) had sufficient invasive cancer, 80 (82%) had sufficient RNA for QRTPCR assay, and 72 (74%) had clinical response data. Mean age was 48.5 years, and the median tumor size was 6 cm. Clinical complete responses (CR) were observed in 12 (17%), partial responses in 41 (57%), stable disease in 17 (24%), and progressive disease in 2 patients (3%). A significant relationship (P<0.05) between gene expression and CR was observed for 14 genes, including CYBA. CR was associated with lower expression of the ER gene group and higher expression of the proliferation gene group from the 21 gene assay. Of note, CR was more likely with a high RS (P=0.008). We have established molecular profiles of sensitivity to docetaxel. RT-PCR technology provides a potential platform for a predictive test of docetaxel chemosensitivity using small amounts of routinely processed material.

  18. AAV Gene Therapy for Alcoholism: Inhibition of Mitochondrial Aldehyde Dehydrogenase Enzyme Expression in Hepatoma Cells.

    PubMed

    Sanchez, Anamaria C; Li, Chengwen; Andrews, Barbara; Asenjo, Juan A; Samulski, R Jude

    2017-09-01

    Most ethanol is broken down in the liver in two steps by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH2) enzymes, which metabolize down ethanol into acetaldehyde and then acetate. Some individuals from the Asian population who carry a mutation in the aldehyde dehydrogenase gene (ALDH2*2) cannot metabolize acetaldehyde as efficiently, producing strong effects, including facial flushing, dizziness, hypotension, and palpitations. This results in an aversion to alcohol intake and protection against alcoholism. The large prevalence of this mutation in the human population strongly suggests that modulation of ALDH2 expression by genetic technologies could result in a similar phenotype. scAAV2 vectors encoding ALDH2 small hairpin RNA (shRNA) were utilized to validate this hypothesis by silencing ALDH2 gene expression in human cell lines. Human cell lines HEK-293 and HepG2 were transduced with scAAV2/shRNA, showing a reduction in ALDH2 RNA and protein expression with the two viral concentration assayed (1 × 10 4 and 1 × 10 5 vg/cell) at two different time points. In both cell lines, ALDH2 RNA levels were reduced by 90% and protein expression was inhibited by 90% and 52%, respectively, 5 days post infection. Transduced HepG2 VL17A cells (ADH+) exposed to ethanol resulted in a 50% increase in acetaldehyde levels. These results suggest that gene therapy could be a useful tool for the treatment of alcoholism by knocking down ALDH2 expression using shRNA technology delivered by AAV vectors.

  19. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus

    PubMed Central

    Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang

    2017-01-01

    Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures. PMID:29131867

  20. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus.

    PubMed

    Cui, Mingming; Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang

    2017-01-01

    Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures.

  1. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression.

    PubMed

    Dobon, Albor; Bunting, Daniel C E; Cabrera-Quio, Luis Enrique; Uauy, Cristobal; Saunders, Diane G O

    2016-05-20

    Understanding how plants and pathogens modulate gene expression during the host-pathogen interaction is key to uncovering the molecular mechanisms that regulate disease progression. Recent advances in sequencing technologies have provided new opportunities to decode the complexity of such interactions. In this study, we used an RNA-based sequencing approach (RNA-seq) to assess the global expression profiles of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici (PST) and its host during infection. We performed a detailed RNA-seq time-course for a susceptible and a resistant wheat host infected with PST. This study (i) defined the global gene expression profiles for PST and its wheat host, (ii) substantially improved the gene models for PST, (iii) evaluated the utility of several programmes for quantification of global gene expression for PST and wheat, and (iv) identified clusters of differentially expressed genes in the host and pathogen. By focusing on components of the defence response in susceptible and resistant hosts, we were able to visualise the effect of PST infection on the expression of various defence components and host immune receptors. Our data showed sequential, temporally coordinated activation and suppression of expression of a suite of immune-response regulators that varied between compatible and incompatible interactions. These findings provide the framework for a better understanding of how PST causes disease and support the idea that PST can suppress the expression of defence components in wheat to successfully colonize a susceptible host.

  2. Comparison of gene expression responses to hypoxia in viviparous (Xiphophorus) and oviparous (Oryzias) fishes using a medaka microarray.

    PubMed

    Boswell, Mikki G; Wells, Melissa C; Kirk, Lyndsey M; Ju, Zhenlin; Zhang, Ziping; Booth, Rachell E; Walter, Ronald B

    2009-03-01

    Gene expression profiling using DNA microarray technology is a useful tool for assessing gene transcript level responses after an organism is exposed to environmental stress. Herein, we detail results from studies using an 8 k medaka (Oryzias latipes) microarray to assess modulated gene expression patterns upon hypoxia exposure of the live-bearing aquaria fish, Xiphophorus maculatus. To assess the reproducibility and reliability of using the medaka array in cross-genus hybridization, a two-factor ANOVA analysis of gene expression was employed. The data show the tissue source of the RNA used for array hybridization contributed more to the observed response of modulated gene targets than did the species source of the RNA. In addition, hierarchical clustering via heat map analyses of groupings of tissues and species (Xiphophorus and medaka) suggests that hypoxia induced similar responses in the same tissues from these two diverse aquatic model organisms. Our Xiphophorus results indicate 206 brain, 37 liver, and 925 gill gene targets exhibit hypoxia induced expression changes. Analysis of the Xiphophorus data to determine those features exhibiting a significant (p<0.05)+/-3 fold change produced only two gene targets within brain tissue and 80 features within gill tissue. Of these 82 characterized features, 39 were identified via homology searching (cut-off E-value of 1 x 10(-5)) and placed into one or more biological process gene ontology groups. Among these 39 genes, metabolic energy changes and manipulation was the most affected biological pathway (13 genes).

  3. Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast.

    PubMed

    Jesch, Stephen A; Zhao, Xin; Wells, Martin T; Henry, Susan A

    2005-03-11

    In the yeast Saccharomyces cerevisiae, the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was used to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination of inositol and choline increased the number of repressed genes compared with inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild-type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another nonoverlapping set of genes was coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but was not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, whereas choline plays a minor role.

  4. Genome Wide Analysis Reveals Inositol, not Choline, as the Major Effector of Ino2p-Ino4p and Unfolded Protein Response Target Gene Expression in Yeast

    PubMed Central

    Jesch, Stephen A.; Zhao, Xin; Wells, Martin T.; Henry, Susan A.

    2005-01-01

    SUMMARY In the yeast Saccharomyces cerevisiae the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was utilized to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination inositol and choline increased the number of repressed genes compared to inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another non-overlapping set of genes were coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but were not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, while choline plays a minor role. PMID:15611057

  5. Solexa-Sequencing Based Transcriptome Study of Plaice Skin Phenotype in Rex Rabbits (Oryctolagus cuniculus)

    PubMed Central

    Pan, Lei; Liu, Yan; Wei, Qiang; Xiao, Chenwen; Ji, Quanan; Bao, Guolian; Wu, Xinsheng

    2015-01-01

    Background Fur is an important genetically-determined characteristic of domestic rabbits; rabbit furs are of great economic value. We used the Solexa sequencing technology to assess gene expression in skin tissues from full-sib Rex rabbits of different phenotypes in order to explore the molecular mechanisms associated with fur determination. Methodology/Principal Findings Transcriptome analysis included de novo assembly, gene function identification, and gene function classification and enrichment. We obtained 74,032,912 and 71,126,891 short reads of 100 nt, which were assembled into 377,618 unique sequences by Trinity strategy (N50=680 nt). Based on BLAST results with known proteins, 50,228 sequences were identified at a cut-off E-value ≥ 10-5. Using Blast to Gene Ontology (GO), Clusters of Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG), we obtained several genes with important protein functions. A total of 308 differentially expressed genes were obtained by transcriptome analysis of plaice and un-plaice phenotype animals; 209 additional differentially expressed genes were not found in any database. These genes included 49 that were only expressed in plaice skin rabbits. The novel genes may play important roles during skin growth and development. In addition, 99 known differentially expressed genes were assigned to PI3K-Akt signaling, focal adhesion, and ECM-receptor interactin, among others. Growth factors play a role in skin growth and development by regulating these signaling pathways. We confirmed the altered expression levels of seven target genes by qRT-PCR. And chosen a key gene for SNP to found the differentially between plaice and un-plaice phenotypes rabbit. Conclusions/Significance The rabbit transcriptome profiling data provide new insights in understanding the molecular mechanisms underlying rabbit skin growth and development. PMID:25955442

  6. Differential expression of genes and proteins associated with wool follicle cycling.

    PubMed

    Liu, Nan; Li, Hegang; Liu, Kaidong; Yu, Juanjuan; Cheng, Ming; De, Wei; Liu, Jifeng; Shi, Shuyan; He, Yanghua; Zhao, Jinshan

    2014-08-01

    Sheep are valuable resources for the wool industry. Wool growth of Aohan fine wool sheep has cycled during different seasons in 1 year. Therefore, identifying genes that control wool growth cycling might lead to ways for improving the quality and yield of fine wool. In this study, we employed Agilent sheep gene expression microarray and proteomic technology to compare the gene expression patterns of the body side skins at August and December time points in Aohan fine wool sheep (a Chinese indigenous breed). Microarray study revealed that 2,223 transcripts were differentially expressed, including 1,162 up-regulated and 1,061 down-regulated transcripts, comparing body side skin at the August time point to the December one (A/D) in Aohan fine wool sheep. Then seven differentially expressed genes were selected to validated the reliability of the gene chip data. The majority of the genes possibly related to follicle development and wool growth could be assigned into the categories including regulation of receptor binding, extracellular region, protein binding and extracellular space. Proteomic study revealed that 84 protein spots showed significant differences in expression levels. Of the 84, 63 protein spots were upregulated and 21 were downregulated in A/D. Finally, 55 protein points were determined through MALDI-TOF/MS analyses. Furthermore, the regulation mechanism of hair follicle might resemble that of fetation.

  7. “Stealth” Adenoviruses Blunt Cell-Mediated and Humoral Immune Responses against the Virus and Allow for Significant Gene Expression upon Readministration in the Lung

    PubMed Central

    Croyle, Maria A.; Chirmule, Narendra; Zhang, Yi; Wilson, James M.

    2001-01-01

    Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy. PMID:11312351

  8. The Genomic Impact of DNA CpG Methylation on Gene Expression; Relationships in Prostate Cancer.

    PubMed

    Long, Mark D; Smiraglia, Dominic J; Campbell, Moray J

    2017-02-14

    The process of DNA CpG methylation has been extensively investigated for over 50 years and revealed associations between changing methylation status of CpG islands and gene expression. As a result, DNA CpG methylation is implicated in the control of gene expression in developmental and homeostasis processes, as well as being a cancer-driver mechanism. The development of genome-wide technologies and sophisticated statistical analytical approaches has ushered in an era of widespread analyses, for example in the cancer arena, of the relationships between altered DNA CpG methylation, gene expression, and tumor status. The remarkable increase in the volume of such genomic data, for example, through investigators from the Cancer Genome Atlas (TCGA), has allowed dissection of the relationships between DNA CpG methylation density and distribution, gene expression, and tumor outcome. In this manner, it is now possible to test that the genome-wide correlations are measurable between changes in DNA CpG methylation and gene expression. Perhaps surprisingly is that these associations can only be detected for hundreds, but not thousands, of genes, and the direction of the correlations are both positive and negative. This, perhaps, suggests that CpG methylation events in cancer systems can act as disease drivers but the effects are possibly more restricted than suspected. Additionally, the positive and negative correlations suggest direct and indirect events and an incomplete understanding. Within the prostate cancer TCGA cohort, we examined the relationships between expression of genes that control DNA methylation, known targets of DNA methylation and tumor status. This revealed that genes that control the synthesis of S -adenosyl-l-methionine (SAM) associate with altered expression of DNA methylation targets in a subset of aggressive tumors.

  9. Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens

    PubMed Central

    2011-01-01

    Background Avian pathogenic Escherichia coli (APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level. Results There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast. Conclusions More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of pathology associated with that infection. This study will allow for greater discovery into host mechanisms for disease resistance, providing targets for marker assisted selection and advanced drug development. PMID:21951686

  10. Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens.

    PubMed

    Sandford, Erin E; Orr, Megan; Balfanz, Emma; Bowerman, Nate; Li, Xianyao; Zhou, Huaijun; Johnson, Timothy J; Kariyawasam, Subhashinie; Liu, Peng; Nolan, Lisa K; Lamont, Susan J

    2011-09-27

    Avian pathogenic Escherichia coli (APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level. There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast. More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of pathology associated with that infection. This study will allow for greater discovery into host mechanisms for disease resistance, providing targets for marker assisted selection and advanced drug development.

  11. Gene Expression Analyses of Subchondral Bone in Early Experimental Osteoarthritis by Microarray

    PubMed Central

    Chen, YuXian; Shen, Jun; Lu, HuaDing; Zeng, Chun; Ren, JianHua; Zeng, Hua; Li, ZhiFu; Chen, ShaoMing; Cai, DaoZhang; Zhao, Qing

    2012-01-01

    Osteoarthritis (OA) is a degenerative joint disease that affects both cartilage and bone. A better understanding of the early molecular changes in subchondral bone may help elucidate the pathogenesis of OA. We used microarray technology to investigate the time course of molecular changes in the subchondral bone in the early stages of experimental osteoarthritis in a rat model. We identified 2,234 differentially expressed (DE) genes at 1 week, 1,944 at 2 weeks and 1,517 at 4 weeks post-surgery. Further analyses of the dysregulated genes indicated that the events underlying subchondral bone remodeling occurred sequentially and in a time-dependent manner at the gene expression level. Some of the identified dysregulated genes that were identified have suspected roles in bone development or remodeling; these genes include Alp, Igf1, Tgf β1, Postn, Mmp3, Tnfsf11, Acp5, Bmp5, Aspn and Ihh. The differences in the expression of these genes were confirmed by real-time PCR, and the results indicated that our microarray data accurately reflected gene expression patterns characteristic of early OA. To validate the results of our microarray analysis at the protein level, immunohistochemistry staining was used to investigate the expression of Mmp3 and Aspn protein in tissue sections. These analyses indicate that Mmp3 protein expression completely matched the results of both the microarray and real-time PCR analyses; however, Aspn protein expression was not observed to differ at any time. In summary, our study demonstrated a simple method of separation of subchondral bone sample from the knee joint of rat, which can effectively avoid bone RNA degradation. These findings also revealed the gene expression profiles of subchondral bone in the rat OA model at multiple time points post-surgery and identified important DE genes with known or suspected roles in bone development or remodeling. These genes may be novel diagnostic markers or therapeutic targets for OA. PMID:22384228

  12. Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer.

    PubMed Central

    Bandara, G; Mueller, G M; Galea-Lauri, J; Tindal, M H; Georgescu, H I; Suchanek, M K; Hung, G L; Glorioso, J C; Robbins, P D; Evans, C H

    1993-01-01

    Gene therapy offers a radical different approach to the treatment of arthritis. Here we have demonstrated that two marker genes (lacZ and neo) and cDNA coding for a potentially therapeutic protein (human interleukin 1-receptor-antagonist protein; IRAP or IL-1ra) can be delivered, by ex vivo techniques, to the synovial lining of joints; intraarticular expression of IRAP inhibited intraarticular responses to interleukin 1. To achieve this, lapine synoviocytes were first transduced in culture by retroviral infection. The genetically modified synovial cells were then transplanted by intraarticular injection into the knee joints of rabbits, where they efficiently colonized the synovium. Assay of joint lavages confirmed the in vivo expression of biologically active human IRAP. With allografted cells, IRAP expression was lost by 12 days after transfer. In contrast, autografted synoviocytes continued to express IRAP for approximately 5 weeks. Knee joints expressing human IRAP were protected from the leukocytosis that otherwise follows the intraarticular injection of recombinant human interleukin 1 beta. Thus, we report the intraarticular expression and activity of a potentially therapeutic protein by gene-transfer technology; these experiments demonstrate the feasibility of treating arthritis and other joint disorders with gene therapy. Images Fig. 1 Fig. 2 PMID:8248169

  13. Establishment of a phenotypical model of adverse outcomes associated with assisted reproductive technologies

    USDA-ARS?s Scientific Manuscript database

    Genomic imprinting is an epigenetic modification that directs parent-specific gene expression. Imprinted genes are involved in regulating growth and development of the conceptus (fetus and placenta). Beckwith-Wiedemann Syndrome (BWS) is an overgrowth condition that is associated with loss-of-imprint...

  14. Integrative Analysis Reveals Relationships of Genetic and Epigenetic Alterations in Osteosarcoma

    PubMed Central

    Skårn, Magne; Namløs, Heidi M.; Barragan-Polania, Ana H.; Cleton-Jansen, Anne-Marie; Serra, Massimo; Liestøl, Knut; Hogendoorn, Pancras C. W.; Hovig, Eivind; Myklebost, Ola; Meza-Zepeda, Leonardo A.

    2012-01-01

    Background Osteosarcomas are the most common non-haematological primary malignant tumours of bone, and all conventional osteosarcomas are high-grade tumours showing complex genomic aberrations. We have integrated genome-wide genetic and epigenetic profiles from the EuroBoNeT panel of 19 human osteosarcoma cell lines based on microarray technologies. Principal Findings The cell lines showed complex patterns of DNA copy number changes, where genomic copy number gains were significantly associated with gene-rich regions and losses with gene-poor regions. By integrating the datasets, 350 genes were identified as having two types of aberrations (gain/over-expression, hypo-methylation/over-expression, loss/under-expression or hyper-methylation/under-expression) using a recurrence threshold of 6/19 (>30%) cell lines. The genes showed in general alterations in either DNA copy number or DNA methylation, both within individual samples and across the sample panel. These 350 genes are involved in embryonic skeletal system development and morphogenesis, as well as remodelling of extracellular matrix. The aberrations of three selected genes, CXCL5, DLX5 and RUNX2, were validated in five cell lines and five tumour samples using PCR techniques. Several genes were hyper-methylated and under-expressed compared to normal osteoblasts, and expression could be reactivated by demethylation using 5-Aza-2′-deoxycytidine treatment for four genes tested; AKAP12, CXCL5, EFEMP1 and IL11RA. Globally, there was as expected a significant positive association between gain and over-expression, loss and under-expression as well as hyper-methylation and under-expression, but gain was also associated with hyper-methylation and under-expression, suggesting that hyper-methylation may oppose the effects of increased copy number for detrimental genes. Conclusions Integrative analysis of genome-wide genetic and epigenetic alterations identified dependencies and relationships between DNA copy number, DNA methylation and mRNA expression in osteosarcomas, contributing to better understanding of osteosarcoma biology. PMID:23144859

  15. Constitutional downregulation of SEMA5A expression in autism.

    PubMed

    Melin, M; Carlsson, B; Anckarsater, H; Rastam, M; Betancur, C; Isaksson, A; Gillberg, C; Dahl, N

    2006-01-01

    There is strong evidence for the importance of genetic factors in idiopathic autism. The results from independent twin and family studies suggest that the disorder is caused by the action of several genes, possibly acting epistatically. We have used cDNA microarray technology for the identification of constitutional changes in the gene expression profile associated with idiopathic autism. Samples were obtained and analyzed from 6 affected subjects belonging to multiplex autism families and from 6 healthy controls. We assessed the expression levels for approximately 7,700 genes by cDNA microarrays using mRNA derived from Epstein-Barr virus-transformed B lymphocytes. The microarray data were analyzed in order to identify up- or downregulation of specific genes. A common pattern with nine downregulated genes was identified among samples derived from individuals with autism when compared to controls. Four of these nine genes encode proteins involved in biological processes associated with brain function or the immune system, and are consequently considered as candidates for genes associated with autism. Quantitative real-time PCR confirms the downregulation of the gene encoding SEMA5A, a protein involved in axonal guidance. Epstein-Barr virus should be considered as a possible source for altered expression, but our consistent results make us suggest SEMA5A as a candidate gene in the etiology of idiopathic autism.

  16. Constitutional downregulation of SEMA5A expression in autism

    PubMed Central

    Melin, Malin; Carlsson, Birgit; Anckarsäter, Henrik; Rastam, Maria; Betancur, Catalina; Isaksson, Anders; Gillberg, Christopher; Dahl, Niklas

    2006-01-01

    There is strong evidence for the importance of genetic factors in idiopathic autism. The results from independent twin and family studies suggest that the disorder is caused by the action of several genes, possibly acting epistatically. We have used cDNA microarray technology for the identification of constitutional changes in the gene expression profile associated with idiopathic autism. Samples were obtained and analyzed from six affected subjects belonging to multiplex autism families and from six healthy controls. We assessed the expression levels for approximately 7,700 genes by cDNA microarrays using mRNA derived from Epstein Barr virus (EBV)-transformed B-lymphocytes. The microarray data was analyzed in order to identify up- or down-regulation of specific genes. A common pattern with nine down-regulated genes was identified among samples derived from individuals with autism when compared to controls. Four of these nine genes encode proteins involved in biological processes associated with brain function or the immune system, and are consequently considered as candidates for genes associated with autism. Quantitative realtime PCR confirms the down-regulation of the gene encoding SEMA5A, a protein involved in axonal guidance. EBV should be considered as a possible source for altered expression but our consistent results make us suggest SEMA5A a candidate gene in the etiology of idiopathic autism. PMID:17028446

  17. Gene coexpression measures in large heterogeneous samples using count statistics.

    PubMed

    Wang, Y X Rachel; Waterman, Michael S; Huang, Haiyan

    2014-11-18

    With the advent of high-throughput technologies making large-scale gene expression data readily available, developing appropriate computational tools to process these data and distill insights into systems biology has been an important part of the "big data" challenge. Gene coexpression is one of the earliest techniques developed that is still widely in use for functional annotation, pathway analysis, and, most importantly, the reconstruction of gene regulatory networks, based on gene expression data. However, most coexpression measures do not specifically account for local features in expression profiles. For example, it is very likely that the patterns of gene association may change or only exist in a subset of the samples, especially when the samples are pooled from a range of experiments. We propose two new gene coexpression statistics based on counting local patterns of gene expression ranks to take into account the potentially diverse nature of gene interactions. In particular, one of our statistics is designed for time-course data with local dependence structures, such as time series coupled over a subregion of the time domain. We provide asymptotic analysis of their distributions and power, and evaluate their performance against a wide range of existing coexpression measures on simulated and real data. Our new statistics are fast to compute, robust against outliers, and show comparable and often better general performance.

  18. Cloning and expression of L-asparaginase gene in Escherichia coli.

    PubMed

    Wang, Y; Qian, S; Meng, G; Zhang, S

    2001-08-01

    The L-asparaginase (ASN) from Escherichia coli AS1.357 was cloned as a DNA fragment generated using polymerase chain reaction technology and primers derived from conserved regions of published ASN gene sequences. Recombinant plasmid pASN containing ASN gene and expression vector pBV220 was transformed in different E. coli host strains. The activity and expression level of ASN in the engineering strains could reach 228 IU/mL of culture fluid and about 50% of the total soluble cell protein respectively, more than 40-fold the enzyme activity of the wild strain. The recombinant plasmid in E. coli AS1.357 remained stable after 72 h of cultivation and 5 h of heat induction without selective pressure. The ASN gene of E. coli AS1.357 was sequenced and had high homology compared to the reported data.

  19. Case-based retrieval framework for gene expression data.

    PubMed

    Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R; Braytee, Ali; Kennedy, Paul J

    2015-01-01

    The process of retrieving similar cases in a case-based reasoning system is considered a big challenge for gene expression data sets. The huge number of gene expression values generated by microarray technology leads to complex data sets and similarity measures for high-dimensional data are problematic. Hence, gene expression similarity measurements require numerous machine-learning and data-mining techniques, such as feature selection and dimensionality reduction, to be incorporated into the retrieval process. This article proposes a case-based retrieval framework that uses a k-nearest-neighbor classifier with a weighted-feature-based similarity to retrieve previously treated patients based on their gene expression profiles. The herein-proposed methodology is validated on several data sets: a childhood leukemia data set collected from The Children's Hospital at Westmead, as well as the Colon cancer, the National Cancer Institute (NCI), and the Prostate cancer data sets. Results obtained by the proposed framework in retrieving patients of the data sets who are similar to new patients are as follows: 96% accuracy on the childhood leukemia data set, 95% on the NCI data set, 93% on the Colon cancer data set, and 98% on the Prostate cancer data set. The designed case-based retrieval framework is an appropriate choice for retrieving previous patients who are similar to a new patient, on the basis of their gene expression data, for better diagnosis and treatment of childhood leukemia. Moreover, this framework can be applied to other gene expression data sets using some or all of its steps.

  20. Population transcriptomics with single-cell resolution: a new field made possible by microfluidics: a technology for high throughput transcript counting and data-driven definition of cell types.

    PubMed

    Plessy, Charles; Desbois, Linda; Fujii, Teruo; Carninci, Piero

    2013-02-01

    Tissues contain complex populations of cells. Like countries, which are comprised of mixed populations of people, tissues are not homogeneous. Gene expression studies that analyze entire populations of cells from tissues as a mixture are blind to this diversity. Thus, critical information is lost when studying samples rich in specialized but diverse cells such as tumors, iPS colonies, or brain tissue. High throughput methods are needed to address, model and understand the constitutive and stochastic differences between individual cells. Here, we describe microfluidics technologies that utilize a combination of molecular biology and miniaturized labs on chips to study gene expression at the single cell level. We discuss how the characterization of the transcriptome of each cell in a sample will open a new field in gene expression analysis, population transcriptomics, that will change the academic and biomedical analysis of complex samples by defining them as quantified populations of single cells. Copyright © 2013 WILEY Periodicals, Inc.

  1. A real-time control system of gene expression using ligand-bound nucleic acid aptamer for metabolic engineering.

    PubMed

    Wang, Jing; Cui, Xun; Yang, Le; Zhang, Zhe; Lv, Liping; Wang, Haoyuan; Zhao, Zhenmin; Guan, Ningzi; Dong, Lichun; Chen, Rachel

    2017-07-01

    Artificial control of bio-functions through regulating gene expression is one of the most important and attractive technologies to build novel living systems that are useful in the areas of chemical synthesis, nanotechnology, pharmacology, cell biology. Here, we present a novel real-time control system of gene regulation that includes an enhancement element by introducing duplex DNA aptamers upstream promoter and a repression element by introducing a RNA aptamer upstream ribosome binding site. With the presence of ligands corresponding to the DNA aptamers, the expression of the target gene can be potentially enhanced at the transcriptional level by strengthening the recognition capability of RNAP to the recognition region and speeding up the separation efficiency of the unwinding region due to the induced DNA bubble around the thrombin-bound aptamers; while with the presence of RNA aptamer ligand, the gene expression can be repressed at the translational level by weakening the recognition capability of ribosome to RBS due to the shielding of RBS by the formed aptamer-ligand complex upstream RBS. The effectiveness and potential utility of the developed gene regulation system were demonstrated by regulating the expression of ecaA gene in the cell-free systems. The realistic metabolic engineering application of the system has also tested by regulating the expression of mgtC gene and thrombin cDNA in Escherichia coli JD1021 for controlling metabolic flux and improving thrombin production, verifying that the real-time control system of gene regulation is able to realize the dynamic regulation of gene expression with potential applications in bacterial physiology studies and metabolic engineering. Copyright © 2017. Published by Elsevier Inc.

  2. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    PubMed

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  3. Transcriptomes of Mouse Olfactory Epithelium Reveal Sexual Differences in Odorant Detection

    PubMed Central

    Shiao, Meng-Shin; Chang, Andrew Ying-Fei; Liao, Ben-Yang; Ching, Yung-Hao; Lu, Mei-Yeh Jade; Chen, Stella Maris; Li, Wen-Hsiung

    2012-01-01

    To sense numerous odorants and chemicals, animals have evolved a large number of olfactory receptor genes (Olfrs) in their genome. In particular, the house mouse has ∼1,100 genes in the Olfr gene family. This makes the mouse a good model organism to study Olfr genes and olfaction-related genes. To date, whether male and female mice possess the same ability in detecting environmental odorants is still unknown. Using the next generation sequencing technology (paired-end mRNA-seq), we detected 1,088 expressed Olfr genes in both male and female olfactory epithelium. We found that not only Olfr genes but also odorant-binding protein (Obp) genes have evolved rapidly in the mouse lineage. Interestingly, Olfr genes tend to express at a higher level in males than in females, whereas the Obp genes clustered on the X chromosome show the opposite trend. These observations may imply a more efficient odorant-transporting system in females, whereas a more active Olfr gene expressing system in males. In addition, we detected the expression of two genes encoding major urinary proteins, which have been proposed to bind and transport pheromones or act as pheromones in mouse urine. This observation suggests a role of main olfactory system (MOS) in pheromone detection, contrary to the view that only accessory olfactory system (AOS) is involved in pheromone detection. This study suggests the sexual differences in detecting environmental odorants in MOS and demonstrates that mRNA-seq provides a powerful tool for detecting genes with low expression levels and with high sequence similarities. PMID:22511034

  4. Differential gene expression in Staphylococcus aureus exposed to Orange II and Sudan III azo dyes

    PubMed Central

    Pan, Hongmiao; Xu, Joshua; Kweon, Oh-Gew; Zou, Wen; Feng, Jinhui; He, Gui-Xin; Cerniglia, Carl E.

    2018-01-01

    We previously demonstrated the effects of azo dyes and their reduction metabolites on bacterial cell growth and cell viability. In this report, the effects of Orange II and Sudan III on gene expression profiling in Staphylococcus aureus ATCC BAA 1556 were analyzed using microarray and quantitative RT-PCR technology. Upon exposure to 6 μg/ml Orange II for 18 h, 21 genes were found to be differently expressed. Among them, 8 and 13 genes were up- and down-regulated, respectively. Most proteins encoded by these differentially expressed genes involve stress response caused by drug metabolism, oxidation, and alkaline shock indicating that S. aureus could adapt to Orange II exposure through a balance between up and down regulated gene expression. Whereas, after exposure to 6 μg/ml Sudan III for 18 h, 57 genes were differentially expressed. In which, 51 genes were up-regulated and 6 were down-regulated. Most proteins encoded by these differentially expressed genes involve in cell wall/membrane biogenesis and biosynthesis, nutrient uptake, transport and metabolite, and stress response, suggesting that Sudan III damages the bacterial cell wall or/and membrane due to binding of the dye. Further analysis indicated that all differentially expressed genes encoded membrane proteins were up-regulated and most of them serve as transporters. The result suggested that these genes might contribute to survival, persistence and growth in the presence of Sudan III. Only one gene msrA, which plays an important role in oxidative stress resistance, was found to be down-regulated after exposure to both Orange II and Sudan III. The present results suggested that both these two azo dyes can cause stress in S. aureus and the response of the bacterium to the stress is mainly related to characteristics of the azo dyes. PMID:25720844

  5. Digital gene expression profiling analysis and its application in the identification of genes associated with improved response to neoadjuvant chemotherapy in breast cancer.

    PubMed

    Liu, Xiaozhen; Jin, Gan; Qian, Jiacheng; Yang, Hongjian; Tang, Hongchao; Meng, Xuli; Li, Yongfeng

    2018-04-23

    This study aimed to screen sensitive biomarkers for the efficacy evaluation of neoadjuvant chemotherapy in breast cancer. In this study, Illumina digital gene expression sequencing technology was applied and differentially expressed genes (DEGs) between patients presenting pathological complete response (pCR) and non-pathological complete response (NpCR) were identified. Further, gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then performed. The genes in significant enriched pathways were finally quantified by quantitative real-time PCR (qRT-PCR) to confirm that they were differentially expressed. Additionally, GSE23988 from Gene Expression Omnibus database was used as the validation dataset to confirm the DEGs. After removing the low-quality reads, 715 DEGs were finally detected. After mapping to KEGG pathways, 10 DEGs belonging to the ubiquitin proteasome pathway (HECTD3, PSMB10, UBD, UBE2C, and UBE2S) and cytokine-cytokine receptor interactions (CCL2, CCR1, CXCL10, CXCL11, and IL2RG) were selected for further analysis. These 10 genes were finally quantified by qRT-PCR to confirm that they were differentially expressed (the log 2 fold changes of selected genes were - 5.34, 7.81, 6.88, 5.74, 3.11, 19.58, 8.73, 8.88, 7.42, and 34.61 for HECTD3, PSMB10, UBD, UBE2C, UBE2S, CCL2, CCR1, CXCL10, CXCL11, and IL2RG, respectively). Moreover, 53 common genes were confirmed by the validation dataset, including downregulated UBE2C and UBE2S. Our results suggested that these 10 genes belonging to these two pathways might be useful as sensitive biomarkers for the efficacy evaluation of neoadjuvant chemotherapy in breast cancer.

  6. Selection of the internal control gene for real-time quantitative rt-PCR assays in temperature treated Leptospira.

    PubMed

    Carrillo-Casas, Erika Margarita; Hernández-Castro, Rigoberto; Suárez-Güemes, Francisco; de la Peña-Moctezuma, Alejandro

    2008-06-01

    Analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. To avoid bias, real-time RT-PCR is referred to one or several internal control genes. Here, we sought to identify a gene to be used as normalizer by analyzing three functional distinct housekeeping genes (lipL41, flaB, and 16S rRNA) for their expression level and stability in temperature treated Leptospira cultures. Leptospira interrogans serovar Hardjo subtype Hardjoprajitno was cultured at 30 degrees C for 7 days until a density of 10(6) cells/ml was reached and then shifted to physiological temperatures (37 degrees C and 42 degrees C) and to environmental temperatures (25 degrees C and 30 degrees C) during a 24 h period. cDNA was amplified by quantitative PCR using SYBR Green I technology and gene-specific primers for lipL41, flaB, and 16S rRNA. Expression stability (M) was assessed by geNorm and Normfinder v.18. 16S rRNA registered an average expression stability of M = 1.1816, followed by flaB (M = 1.682) and lipL41 (M = 1.763). 16S rRNA was identified as the most stable gene and can be used as a normalizer, as it showed greater expression stability than lipL41 and flaB in the four temperature treatments. Hence, comparisons of gene expression will have a higher sensitivity and specificity.

  7. Featured Article: Transcriptional landscape analysis identifies differently expressed genes involved in follicle-stimulating hormone induced postmenopausal osteoporosis.

    PubMed

    Maasalu, Katre; Laius, Ott; Zhytnik, Lidiia; Kõks, Sulev; Prans, Ele; Reimann, Ene; Märtson, Aare

    2017-01-01

    Osteoporosis is a disorder associated with bone tissue reorganization, bone mass, and mineral density. Osteoporosis can severely affect postmenopausal women, causing bone fragility and osteoporotic fractures. The aim of the current study was to compare blood mRNA profiles of postmenopausal women with and without osteoporosis, with the aim of finding different gene expressions and thus targets for future osteoporosis biomarker studies. Our study consisted of transcriptome analysis of whole blood serum from 12 elderly female osteoporotic patients and 12 non-osteoporotic elderly female controls. The transcriptome analysis was performed with RNA sequencing technology. For data analysis, the edgeR package of R Bioconductor was used. Two hundred and fourteen genes were expressed differently in osteoporotic compared with non-osteoporotic patients. Statistical analysis revealed 20 differently expressed genes with a false discovery rate of less than 1.47 × 10 -4 among osteoporotic patients. The expression of 10 genes were up-regulated and 10 down-regulated. Further statistical analysis identified a potential osteoporosis mRNA biomarker pattern consisting of six genes: CACNA1G, ALG13, SBK1, GGT7, MBNL3, and RIOK3. Functional ingenuity pathway analysis identified the strongest candidate genes with regard to potential involvement in a follicle-stimulating hormone activated network of increased osteoclast activity and hypogonadal bone loss. The differentially expressed genes identified in this study may contribute to future research of postmenopausal osteoporosis blood biomarkers.

  8. Tumour necrosis factor α (TNF)–TNF receptor 1-inducible cytoprotective proteins in the mouse liver: relevance of suppressors of cytokine signalling

    PubMed Central

    Sass, Gabriele; Shembade, Noula D.; Tiegs, Gisa

    2004-01-01

    TNF (tumour necrosis factor α) induces tolerance towards itself in experimental liver injury. Tolerance induction has been shown to be dependent on TNFR1 (TNF receptor 1) signalling, but mechanisms and mediators of TNF-induced hepatic tolerance are unknown. We investigated the TNF-inducible gene-expression profile in livers of TNFR2−/− mice, using cDNA array technology. We found that, out of 793 investigated genes involved in inflammation, cell cycle and signal transduction, 282 were expressed in the mouse liver in response to TNF via TNFR1. Among those, expression of 78 genes was induced, while expression of 60 genes was reduced. We investigated further the cellular expression of the 27 most prominently induced genes, and found that 20 of these genes were up-regulated directly in parenchymal liver cells, representing potentially protective proteins and possible mediators of TNF tolerance. In vitro experiments revealed that overexpression of SOCS1 (silencer of cytokine signalling 1), a member of the SOCS family of proteins, as well as of HO-1 (haem oxygenase-1), but not of SOCS2 or SOCS3, protected isolated primary mouse hepatocytes from TNF-induced apoptosis. The identification of protective genes in hepatocytes is the prerequisite for future development of gene therapies for immune-mediated liver diseases. PMID:15554901

  9. Integrating Colon Cancer Microarray Data: Associating Locus-Specific Methylation Groups to Gene Expression-Based Classifications.

    PubMed

    Barat, Ana; Ruskin, Heather J; Byrne, Annette T; Prehn, Jochen H M

    2015-11-23

    Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype.

  10. Integrating Colon Cancer Microarray Data: Associating Locus-Specific Methylation Groups to Gene Expression-Based Classifications

    PubMed Central

    Barat, Ana; Ruskin, Heather J.; Byrne, Annette T.; Prehn, Jochen H. M.

    2015-01-01

    Recently, considerable attention has been paid to gene expression-based classifications of colorectal cancers (CRC) and their association with patient prognosis. In addition to changes in gene expression, abnormal DNA-methylation is known to play an important role in cancer onset and development, and colon cancer is no exception to this rule. Large-scale technologies, such as methylation microarray assays and specific sequencing of methylated DNA, have been used to determine whole genome profiles of CpG island methylation in tissue samples. In this article, publicly available microarray-based gene expression and methylation data sets are used to characterize expression subtypes with respect to locus-specific methylation. A major objective was to determine whether integration of these data types improves previously characterized subtypes, or provides evidence for additional subtypes. We used unsupervised clustering techniques to determine methylation-based subgroups, which are subsequently annotated with three published expression-based classifications, comprising from three to six subtypes. Our results showed that, while methylation profiles provide a further basis for segregation of certain (Inflammatory and Goblet-like) finer-grained expression-based subtypes, they also suggest that other finer-grained subtypes are not distinctive and can be considered as a single subtype. PMID:27600244

  11. Regulation of miRNA Processing and miRNA Mediated Gene Repression in Cancer

    PubMed Central

    Bajan, Sarah; Hutvagner, Gyorgy

    2014-01-01

    The majority of human protein-coding genes are predicted to be targets of miRNA-mediated post-transcriptional regulation. The widespread influence of miRNAs is illustrated by their essential roles in all biological processes. Regulated miRNA expression is essential for maintaining cellular differentiation; therefore alterations in miRNA expression patterns are associated with several diseases, including various cancers. High-throughput sequencing technologies revealed low level expressing miRNA isoforms, termed isomiRs. IsomiRs may differ in sequence, length, target preference and expression patterns from their parental miRNA and can arise from differences in miRNA biosynthesis, RNA editing, or SNPs inherent to the miRNA gene. The association between isomiR expression and disease progression is largely unknown. Misregulated miRNA expression is thought to contribute to the formation and/or progression of cancer. However, due to the diversity of targeted transcripts, miRNAs can function as both tumor-suppressor genes and oncogenes as defined by cellular context. Despite this, miRNA profiling studies concluded that the differential expression of particular miRNAs in diseased tissue could aid the diagnosis and treatment of some cancers. PMID:25069508

  12. Simultaneous Overexpression of Functional Human HO-1, E5NT and ENTPD1 Protects Murine Fibroblasts against TNF-α-Induced Injury In Vitro

    PubMed Central

    Cinti, Alessandro; De Giorgi, Marco; Chisci, Elisa; Arena, Claudia; Galimberti, Gloria; Farina, Laura; Bugarin, Cristina; Rivolta, Ilaria; Gaipa, Giuseppe; Smolenski, Ryszard Tom; Cerrito, Maria Grazia; Lavitrano, Marialuisa; Giovannoni, Roberto

    2015-01-01

    Several biomedical applications, such as xenotransplantation, require multiple genes simultaneously expressed in eukaryotic cells. Advances in genetic engineering technologies have led to the development of efficient polycistronic vectors based on the use of the 2A self-processing oligopeptide. The aim of this work was to evaluate the protective effects of the simultaneous expression of a novel combination of anti-inflammatory human genes, ENTPD1, E5NT and HO-1, in eukaryotic cells. We produced an F2A system-based multicistronic construct to express three human proteins in NIH3T3 cells exposed to an inflammatory stimulus represented by tumor necrosis factor alpha (TNF-α), a pro-inflammatory cytokine which plays an important role during inflammation, cell proliferation, differentiation and apoptosis and in the inflammatory response during ischemia/reperfusion injury in several organ transplantation settings. The protective effects against TNF-α-induced cytotoxicity and cell death, mediated by HO-1, ENTPD1 and E5NT genes were better observed in cells expressing the combination of genes as compared to cells expressing each single gene and the effect was further improved by administrating enzymatic substrates of the human genes to the cells. Moreover, a gene expression analyses demonstrated that the expression of the three genes has a role in modulating key regulators of TNF-α signalling pathway, namely Nemo and Tnfaip3, that promoted pro-survival phenotype in TNF-α injured cells. These results could provide new insights in the research of protective mechanisms in transplantation settings. PMID:26513260

  13. Exercise-induced differential changes in gene expression among arterioles of skeletal muscles of obese rats.

    PubMed

    Laughlin, M Harold; Padilla, Jaume; Jenkins, Nathan T; Thorne, Pamela K; Martin, Jeffrey S; Rector, R Scott; Akter, Sadia; Davis, J Wade

    2015-09-15

    Using next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology we assessed the effects of exercise training on transcriptional profiles in skeletal muscle arterioles isolated from the soleus and gastrocnemius muscles of Otsuka Long Evans Tokushima Fatty (OLETF) rats that underwent an endurance exercise training program (EX; n = 13), interval sprint training program (SPRINT; n = 14), or remained sedentary (Sed; n = 12). We hypothesized that the greatest effects of exercise would be in the gastrocnemius arterioles. Results show that EX caused the largest number of changes in gene expression in the soleus and white gastrocnemius 2a arterioles with little to no changes in the feed arteries. In contrast, SPRINT caused substantial changes in gene expression in the feed arteries. IPA canonical pathway analysis revealed 18 pathways with significant changes in gene expression when analyzed across vessels and revealed that EX induces increased expression of the following genes in all arterioles examined: Shc1, desert hedgehog protein (Dhh), adenylate cyclase 4 (Adcy4), G protein binding protein, alpha (Gnat1), and Bcl2l1 and decreased expression of ubiquitin D (Ubd) and cAMP response element modulator (Crem). EX increased expression of endothelin converting enzyme (Ece1), Hsp90b, Fkbp5, and Cdcl4b in four of five arterioles. SPRINT had effects on expression of Crem, Dhh, Bcl2l1, and Ubd that were similar to EX. SPRINT also increased expression of Nfkbia, Hspa5, Tubb 2a and Tubb 2b, and Fkbp5 in all five arterioles and increased expression of Gnat1 in all but the soleus second-order arterioles. Many contractile and/or structural protein genes were increased by SPRINT in the gastrocnemius feed artery, but the same genes exhibited decreased expression in red gastrocnemius arterioles. We conclude that training-induced changes in arteriolar gene expression patterns differ by muscle fiber type composition and along the arteriolar tree.

  14. Choosing the Right Tool for the Job: RNAi, TALEN or CRISPR

    PubMed Central

    Boettcher, Michael; McManus, Michael T.

    2015-01-01

    The most widely used approach for defining a genes’ function is to reduce or completely disrupt its normal expression. For over a decade, RNAi has ruled the lab, offering a magic bullet to disrupt gene expression in many organisms. However, new biotechnological tools - specifically CRISPR-based technologies - have become available and are squeezing out RNAi dominance in mammalian cell studies. These seemingly competing technologies leave research investigators with the question: ‘Which technology should I use in my experiment?’ This review offers a practical resource to compare and contrast these technologies, guiding the investigator when and where to use this fantastic array of powerful tools. PMID:26000843

  15. Microarrays Made Simple: "DNA Chips" Paper Activity

    ERIC Educational Resources Information Center

    Barnard, Betsy

    2006-01-01

    DNA microarray technology is revolutionizing biological science. DNA microarrays (also called DNA chips) allow simultaneous screening of many genes for changes in expression between different cells. Now researchers can obtain information about genes in days or weeks that used to take months or years. The paper activity described in this article…

  16. 75 FR 51823 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... applications. Transforming Growth Factor Beta-1 (TGF-[beta]1) Transgenic Mouse Model Description of Technology... developed a transgenic mouse model, designated [beta]1\\glo\\, which permits conditional, gene-specific... gene by Cre recombinase allows expression of TGF-[beta]1. Thus, these mice may be cross-bred with a...

  17. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    USDA-ARS?s Scientific Manuscript database

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  18. The plastid genome as a platform for the expression of microbial resistance genes

    USDA-ARS?s Scientific Manuscript database

    In recent years, our fundamental understanding of host-microbe interaction has developed considerably. We have begun to tease out the genetic components that influence host resistance to microbial colonization. The use of advancing molecular technologies such as microarray expression profiling and...

  19. Construction of Pará rubber tree genome and multi-transcriptome database accelerates rubber researches.

    PubMed

    Makita, Yuko; Kawashima, Mika; Lau, Nyok Sean; Othman, Ahmad Sofiman; Matsui, Minami

    2018-01-19

    Natural rubber is an economically important material. Currently the Pará rubber tree, Hevea brasiliensis is the main commercial source. Little is known about rubber biosynthesis at the molecular level. Next-generation sequencing (NGS) technologies brought draft genomes of three rubber cultivars and a variety of RNA sequencing (RNA-seq) data. However, no current genome or transcriptome databases (DB) are organized by gene. A gene-oriented database is a valuable support for rubber research. Based on our original draft genome sequence of H. brasiliensis RRIM600, we constructed a rubber tree genome and transcriptome DB. Our DB provides genome information including gene functional annotations and multi-transcriptome data of RNA-seq, full-length cDNAs including PacBio Isoform sequencing (Iso-Seq), ESTs and genome wide transcription start sites (TSSs) derived from CAGE technology. Using our original and publically available RNA-seq data, we calculated co-expressed genes for identifying functionally related gene sets and/or genes regulated by the same transcription factor (TF). Users can access multi-transcriptome data through both a gene-oriented web page and a genome browser. For the gene searching system, we provide keyword search, sequence homology search and gene expression search; users can also select their expression threshold easily. The rubber genome and transcriptome DB provides rubber tree genome sequence and multi-transcriptomics data. This DB is useful for comprehensive understanding of the rubber transcriptome. This will assist both industrial and academic researchers for rubber and economically important close relatives such as R. communis, M. esculenta and J. curcas. The Rubber Transcriptome DB release 2017.03 is accessible at http://matsui-lab.riken.jp/rubber/ .

  20. Statistical Test of Expression Pattern (STEPath): a new strategy to integrate gene expression data with genomic information in individual and meta-analysis studies.

    PubMed

    Martini, Paolo; Risso, Davide; Sales, Gabriele; Romualdi, Chiara; Lanfranchi, Gerolamo; Cagnin, Stefano

    2011-04-11

    In the last decades, microarray technology has spread, leading to a dramatic increase of publicly available datasets. The first statistical tools developed were focused on the identification of significant differentially expressed genes. Later, researchers moved toward the systematic integration of gene expression profiles with additional biological information, such as chromosomal location, ontological annotations or sequence features. The analysis of gene expression linked to physical location of genes on chromosomes allows the identification of transcriptionally imbalanced regions, while, Gene Set Analysis focuses on the detection of coordinated changes in transcriptional levels among sets of biologically related genes. In this field, meta-analysis offers the possibility to compare different studies, addressing the same biological question to fully exploit public gene expression datasets. We describe STEPath, a method that starts from gene expression profiles and integrates the analysis of imbalanced region as an a priori step before performing gene set analysis. The application of STEPath in individual studies produced gene set scores weighted by chromosomal activation. As a final step, we propose a way to compare these scores across different studies (meta-analysis) on related biological issues. One complication with meta-analysis is batch effects, which occur because molecular measurements are affected by laboratory conditions, reagent lots and personnel differences. Major problems occur when batch effects are correlated with an outcome of interest and lead to incorrect conclusions. We evaluated the power of combining chromosome mapping and gene set enrichment analysis, performing the analysis on a dataset of leukaemia (example of individual study) and on a dataset of skeletal muscle diseases (meta-analysis approach). In leukaemia, we identified the Hox gene set, a gene set closely related to the pathology that other algorithms of gene set analysis do not identify, while the meta-analysis approach on muscular disease discriminates between related pathologies and correlates similar ones from different studies. STEPath is a new method that integrates gene expression profiles, genomic co-expressed regions and the information about the biological function of genes. The usage of the STEPath-computed gene set scores overcomes batch effects in the meta-analysis approaches allowing the direct comparison of different pathologies and different studies on a gene set activation level.

  1. Phage-mediated Delivery of Targeted sRNA Constructs to Knock Down Gene Expression in E. coli.

    PubMed

    Bernheim, Aude G; Libis, Vincent K; Lindner, Ariel B; Wintermute, Edwin H

    2016-03-20

    RNA-mediated knockdowns are widely used to control gene expression. This versatile family of techniques makes use of short RNA (sRNA) that can be synthesized with any sequence and designed to complement any gene targeted for silencing. Because sRNA constructs can be introduced to many cell types directly or using a variety of vectors, gene expression can be repressed in living cells without laborious genetic modification. The most common RNA knockdown technology, RNA interference (RNAi), makes use of the endogenous RNA-induced silencing complex (RISC) to mediate sequence recognition and cleavage of the target mRNA. Applications of this technique are therefore limited to RISC-expressing organisms, primarily eukaryotes. Recently, a new generation of RNA biotechnologists have developed alternative mechanisms for controlling gene expression through RNA, and so made possible RNA-mediated gene knockdowns in bacteria. Here we describe a method for silencing gene expression in E. coli that functionally resembles RNAi. In this system a synthetic phagemid is designed to express sRNA, which may designed to target any sequence. The expression construct is delivered to a population of E. coli cells with non-lytic M13 phage, after which it is able to stably replicate as a plasmid. Antisense recognition and silencing of the target mRNA is mediated by the Hfq protein, endogenous to E. coli. This protocol includes methods for designing the antisense sRNA, constructing the phagemid vector, packaging the phagemid into M13 bacteriophage, preparing a live cell population for infection, and performing the infection itself. The fluorescent protein mKate2 and the antibiotic resistance gene chloramphenicol acetyltransferase (CAT) are targeted to generate representative data and to quantify knockdown effectiveness.

  2. A comparison of CRISPR/Cas9 and siRNA-mediated ALDH2 gene silencing in human cell lines.

    PubMed

    Wang, Fei; Guo, Tao; Jiang, Hongmei; Li, Ruobi; Wang, Ting; Zeng, Ni; Dong, Guanghui; Zeng, Xiaowen; Li, Daochuan; Xiao, Yongmei; Hu, Qiansheng; Chen, Wen; Xing, Xiumei; Wang, Qing

    2018-06-01

    Gene knockdown and knockout using RNAi and CRISPR/Cas9 allow for efficient evaluation of gene function, but it is unclear how the choice of technology can influence the results. To compare the phenotypes obtained using siRNA and CRISPR/Cas9 technologies, aldehyde dehydrogenase 2 (ALDH2) was selected as an example. In this study, we constructed one HepG2 cell line with a homozygous mutation in the fifth exon of ALDH2 (ALDH2-KO1 cell) using the eukaryotic CRISPR/Cas9 expression system followed by the limited dilution method and one HepG2 cell line with different mutations in the ALDH2 gene (ALDH2-KO2 cell) using the lentivirus CRISPR/Cas9 system. Additionally, one ALDH2-knockdown (KD) HepG2 cell line was created using siRNA. The reproducibility of these methods was further verified in the HEK293FT cell line. We found that the mRNA expression level of ALDH2 was significantly decreased and the protein expression level of ALDH2 was completely abolished in the ALDH2-KO cell lines, but not in ALDH2-KD cells. Furthermore, the functional activity of ALDH2 was also markedly disrupted in the two ALDH2-KO cell lines compared with ALDH2-KD and wild-type cells. The lack of ALDH2 expression mediated by CRIPSR/Cas9 resulted in a more dramatic increase in the cellular susceptibility to chemical-induced reactive oxygen species generation, cytotoxicity, apoptosis, and inflammation, especially at low concentrations compared with ALDH2-KD and WT cells. Therefore, we consider the gene knockout cell line created by CRISPR/Cas9 to be a more useful tool for identifying the function of a gene.

  3. Revitalizing Personalized Medicine: Respecting Biomolecular Complexities Beyond Gene Expression

    PubMed Central

    Jayachandran, D; Ramkrishna, U; Skiles, J; Renbarger, J; Ramkrishna, D

    2014-01-01

    Despite recent advancements in “omic” technologies, personalized medicine has not realized its fullest potential due to isolated and incomplete application of gene expression tools. In many instances, pharmacogenomics is being interchangeably used for personalized medicine, when actually it is one of the many facets of personalized medicine. Herein, we highlight key issues that are hampering the advancement of personalized medicine and highlight emerging predictive tools that can serve as a decision support mechanism for physicians to personalize treatments. PMID:24739991

  4. Identification of Differentially Expressed Genes in Blood Cells of Narcolepsy Patients

    PubMed Central

    Tanaka, Susumu; Honda, Yutaka; Honda, Makoto

    2007-01-01

    Study Objective: A close association between the human leukocyte antigen (HLA)-DRB1*1501/DQB1*0602 and abnormalities in some inflammatory cytokines have been demonstrated in narcolepsy. Specific alterations in the immune system have been suggested to occur in this disorder. We attempted to identify alterations in gene expression underlying the abnormalities in the blood cells of narcoleptic patients. Designs: Total RNA from 12 narcolepsy-cataplexy patients and from 12 age- and sex-matched healthy controls were pooled. The pooled samples were initially screened for candidate genes for narcolepsy by differential display analysis using annealing control primers (ACP). The second screening of the samples was carried out by semiquantitative PCR using gene-specific primers. Finally, the expression levels of the candidate genes were further confirmed by quantitative real-time PCR using a new set of samples (20 narcolepsy-cataplexy patients and 20 healthy controls). Results: The second screening revealed differential expression of 4 candidate genes. Among them, MX2 was confirmed as a significantly down-regulated gene in the white blood cells of narcoleptic patients by quantitative real-time PCR. Conclusion: We found the MX2 gene to be significantly less expressed in comparison with normal subjects in the white blood cells of narcoleptic patients. This gene is relevant to the immune system. Although differential display analysis using ACP technology has a limitation in that it does not help in determining the functional mechanism underlying sleep/wakefulness dysregulation, it is useful for identifying novel genetic factors related to narcolepsy, such as HLA molecules. Further studies are required to explore the functional relationship between the MX2 gene and narcolepsy pathophysiology. Citation: Tanaka S; Honda Y; Honda M. Identification of differentially expressed genes in blood cells of narcolepsy patients. SLEEP 2007;30(8):974-979. PMID:17702266

  5. A versatile genetic tool for post-translational control of gene expression in Drosophila melanogaster

    PubMed Central

    Sethi, Sachin

    2017-01-01

    Several techniques have been developed to manipulate gene expression temporally in intact neural circuits. However, the applicability of current tools developed for in vivo studies in Drosophila is limited by their incompatibility with existing GAL4 lines and side effects on physiology and behavior. To circumvent these limitations, we adopted a strategy to reversibly regulate protein degradation with a small molecule by using a destabilizing domain (DD). We show that this system is effective across different tissues and developmental stages. We further show that this system can be used to control in vivo gene expression levels with low background, large dynamic range, and in a reversible manner without detectable side effects on the lifespan or behavior of the animal. Additionally, we engineered tools for chemically controlling gene expression (GAL80-DD) and recombination (FLP-DD). We demonstrate the applicability of this technology in manipulating neuronal activity and for high-efficiency sparse labeling of neuronal populations. PMID:29140243

  6. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/.

  7. Gene Expression Profiling in Fish Toxicology: A Review.

    PubMed

    Kumar, Girish; Denslow, Nancy D

    In this review, we present an overview of transcriptomic responses to chemical exposures in a variety of fish species. We have discussed the use of several molecular approaches such as northern blotting, differential display reverse transcription-polymerase chain reaction (DDRT-PCR), suppression subtractive hybridization (SSH), real time quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS) for measuring gene expression. These techniques have been mainly used to measure the toxic effects of single compounds or simple mixtures in laboratory conditions. In addition, only few studies have been conducted to examine the biological significance of differentially expressed gene sets following chemical exposure. Therefore, future studies should focus more under field conditions using a multidisciplinary approach (genomics, proteomics and metabolomics) to understand the synergetic effects of multiple environmental stressors and to determine the functional significance of differentially expressed genes. Nevertheless, recent developments in NGS technologies and decreasing costs of sequencing holds the promise to uncover the complexity of anthropogenic impacts and biological effects in wild fish populations.

  8. The Gene Expression Omnibus database

    PubMed Central

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  9. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus.

    PubMed

    Devi, Kamalakshi; Mishra, Surajit K; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K; Sen, Priyabrata

    2016-02-15

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop.

  10. Verification and Optimal Control of Context-Sensitive Probabilistic Boolean Networks Using Model Checking and Polynomial Optimization

    PubMed Central

    Hiraishi, Kunihiko

    2014-01-01

    One of the significant topics in systems biology is to develop control theory of gene regulatory networks (GRNs). In typical control of GRNs, expression of some genes is inhibited (activated) by manipulating external stimuli and expression of other genes. It is expected to apply control theory of GRNs to gene therapy technologies in the future. In this paper, a control method using a Boolean network (BN) is studied. A BN is widely used as a model of GRNs, and gene expression is expressed by a binary value (ON or OFF). In particular, a context-sensitive probabilistic Boolean network (CS-PBN), which is one of the extended models of BNs, is used. For CS-PBNs, the verification problem and the optimal control problem are considered. For the verification problem, a solution method using the probabilistic model checker PRISM is proposed. For the optimal control problem, a solution method using polynomial optimization is proposed. Finally, a numerical example on the WNT5A network, which is related to melanoma, is presented. The proposed methods provide us useful tools in control theory of GRNs. PMID:24587766

  11. Integrative functional transcriptomic analyses implicate specific molecular pathways in pulmonary toxicity from exposure to aluminum oxide nanoparticles.

    PubMed

    Li, Xiaobo; Zhang, Chengcheng; Bian, Qian; Gao, Na; Zhang, Xin; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Xia, Yankai; Chen, Rui

    2016-09-01

    Gene expression profiling has developed rapidly in recent years and it can predict and define mechanisms underlying chemical toxicity. Here, RNA microarray and computational technology were used to show that aluminum oxide nanoparticles (Al2O3 NPs) were capable of triggering up-regulation of genes related to the cell cycle and cell death in a human A549 lung adenocarcinoma cell line. Gene expression levels were validated in Al2O3 NPs exposed A549 cells and mice lung tissues, most of which showed consistent trends in regulation. Gene-transcription factor network analysis coupled with cell- and animal-based assays demonstrated that the genes encoding PTPN6, RTN4, BAX and IER play a role in the biological responses induced by the nanoparticle exposure, which caused cell death and cell cycle arrest in the G2/S phase. Further, down-regulated PTPN6 expression demonstrated a core role in the network, thus expression level of PTPN6 was rescued by plasmid transfection, which showed ameliorative effects of A549 cells against cell death and cell cycle arrest. These results demonstrate the feasibility of using gene expression profiling to predict cellular responses induced by nanomaterials, which could be used to develop a comprehensive knowledge of nanotoxicity.

  12. Whole-transcriptome, high-throughput RNA sequence analysis of the bovine macrophage response to Mycobacterium bovis infection in vitro.

    PubMed

    Nalpas, Nicolas C; Park, Stephen D E; Magee, David A; Taraktsoglou, Maria; Browne, John A; Conlon, Kevin M; Rue-Albrecht, Kévin; Killick, Kate E; Hokamp, Karsten; Lohan, Amanda J; Loftus, Brendan J; Gormley, Eamonn; Gordon, Stephen V; MacHugh, David E

    2013-04-08

    Mycobacterium bovis, the causative agent of bovine tuberculosis, is an intracellular pathogen that can persist inside host macrophages during infection via a diverse range of mechanisms that subvert the host immune response. In the current study, we have analysed and compared the transcriptomes of M. bovis-infected monocyte-derived macrophages (MDM) purified from six Holstein-Friesian females with the transcriptomes of non-infected control MDM from the same animals over a 24 h period using strand-specific RNA sequencing (RNA-seq). In addition, we compare gene expression profiles generated using RNA-seq with those previously generated by us using the high-density Affymetrix® GeneChip® Bovine Genome Array platform from the same MDM-extracted RNA. A mean of 7.2 million reads from each MDM sample mapped uniquely and unambiguously to single Bos taurus reference genome locations. Analysis of these mapped reads showed 2,584 genes (1,392 upregulated; 1,192 downregulated) and 757 putative natural antisense transcripts (558 upregulated; 119 downregulated) that were differentially expressed based on sense and antisense strand data, respectively (adjusted P-value ≤ 0.05). Of the differentially expressed genes, 694 were common to both the sense and antisense data sets, with the direction of expression (i.e. up- or downregulation) positively correlated for 693 genes and negatively correlated for the remaining gene. Gene ontology analysis of the differentially expressed genes revealed an enrichment of immune, apoptotic and cell signalling genes. Notably, the number of differentially expressed genes identified from RNA-seq sense strand analysis was greater than the number of differentially expressed genes detected from microarray analysis (2,584 genes versus 2,015 genes). Furthermore, our data reveal a greater dynamic range in the detection and quantification of gene transcripts for RNA-seq compared to microarray technology. This study highlights the value of RNA-seq in identifying novel immunomodulatory mechanisms that underlie host-mycobacterial pathogen interactions during infection, including possible complex post-transcriptional regulation of host gene expression involving antisense RNA.

  13. A Survey for Novel Imprinted Genes in the Mouse Placenta by mRNA-seq

    PubMed Central

    Wang, Xu; Soloway, Paul D.; Clark, Andrew G.

    2011-01-01

    Many questions about the regulation, functional specialization, computational prediction, and evolution of genomic imprinting would be better addressed by having an exhaustive genome-wide catalog of genes that display parent-of-origin differential expression. As a first-pass scan for novel imprinted genes, we performed mRNA-seq experiments on embryonic day 17.5 (E17.5) mouse placenta cDNA samples from reciprocal cross F1 progeny of AKR and PWD mouse strains and quantified the allele-specific expression and the degree of parent-of-origin allelic imbalance. We confirmed the imprinting status of 23 known imprinted genes in the placenta and found that 12 genes reported previously to be imprinted in other tissues are also imprinted in mouse placenta. Through a well-replicated design using an orthogonal allelic-expression technology, we verified 5 novel imprinted genes that were not previously known to be imprinted in mouse (Pde10, Phf17, Phactr2, Zfp64, and Htra3). Our data suggest that most of the strongly imprinted genes have already been identified, at least in the placenta, and that evidence supports perhaps 100 additional weakly imprinted genes. Despite previous appearance that the placenta tends to display an excess of maternally expressed imprinted genes, with the addition of our validated set of placenta-imprinted genes, this maternal bias has disappeared. PMID:21705755

  14. Estrogen regulation of uterine genes in vivo detected by complementary DNA array.

    PubMed

    Andrade, P M; Silva, I D C G; Borra, R C; de Lima, G R; Baracat, E C

    2002-05-01

    In the present study, our aim was to identify differentially expressed genes involved in estrogen actions at the endometrium level in rats. Thirty adult rats were ovariectomized four days prior to drug administration for 48 days. Rats were divided in 2 groups: I, control and II, conjugated equine estrogens (CCE). Total RNA was isolated from uterus, and differential expression was analyzed by array technology and RT-PCR. A total of 32 candidate genes were shown to be upregulated or downregulated in groups I or II. Among them, differential expression was already confirmed by RT-PCR for IGFBP5, S12, c-kit, and VEGF, genes whose expression was up regulated during CCE therapy, and casein kinase II and serine kinase expression was the same level in both groups. We have demonstrated that cDNA array represents a powerful approach to identify key molecules in the estrogens therapy. A number of the candidates reported here should provide new markers that may contribute to the detection of target estrogen receptor. This information may also aid the development of new approaches to therapeutic intervention.

  15. Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation.

    PubMed

    Wall, Christopher E; Cozza, Steven; Riquelme, Cecilia A; McCombie, W Richard; Heimiller, Joseph K; Marr, Thomas G; Leinwand, Leslie A

    2011-01-01

    The infrequently feeding Burmese python (Python molurus) experiences significant and rapid postprandial cardiac hypertrophy followed by regression as digestion is completed. To begin to explore the molecular mechanisms of this response, we have sequenced and assembled the fasted and postfed Burmese python heart transcriptomes with Illumina technology using the chicken (Gallus gallus) genome as a reference. In addition, we have used RNA-seq analysis to identify differences in the expression of biological processes and signaling pathways between fasted, 1 day postfed (DPF), and 3 DPF hearts. Out of a combined transcriptome of ∼2,800 mRNAs, 464 genes were differentially expressed. Genes showing differential expression at 1 DPF compared with fasted were enriched for biological processes involved in metabolism and energetics, while genes showing differential expression at 3 DPF compared with fasted were enriched for processes involved in biogenesis, structural remodeling, and organization. Moreover, we present evidence for the activation of physiological and not pathological signaling pathways in this rapid, novel model of cardiac growth in pythons. Together, our data provide the first comprehensive gene expression profile for a reptile heart.

  16. Illuminating the gateway of gene silencing: perspective of RNA interference technology in clinical therapeutics.

    PubMed

    Sindhu, Annu; Arora, Pooja; Chaudhury, Ashok

    2012-07-01

    A novel laboratory revolution for disease therapy, the RNA interference (RNAi) technology, has adopted a new era of molecular research as the next generation "Gene-targeted prophylaxis." In this review, we have focused on the chief technological challenges associated with the efforts to develop RNAi-based therapeutics that may guide the biomedical researchers. Many non-curable maladies, like neurodegenerative diseases and cancers have effectively been cured using this technology. Rapid advances are still in progress for the development of RNAi-based technologies that will be having a major impact on medical research. We have highlighted the recent discoveries associated with the phenomenon of RNAi, expression of silencing molecules in mammals along with the vector systems used for disease therapeutics.

  17. Transcriptome database resource and gene expression atlas for the rose

    PubMed Central

    2012-01-01

    Background For centuries roses have been selected based on a number of traits. Little information exists on the genetic and molecular basis that contributes to these traits, mainly because information on expressed genes for this economically important ornamental plant is scarce. Results Here, we used a combination of Illumina and 454 sequencing technologies to generate information on Rosa sp. transcripts using RNA from various tissues and in response to biotic and abiotic stresses. A total of 80714 transcript clusters were identified and 76611 peptides have been predicted among which 20997 have been clustered into 13900 protein families. BLASTp hits in closely related Rosaceae species revealed that about half of the predicted peptides in the strawberry and peach genomes have orthologs in Rosa dataset. Digital expression was obtained using RNA samples from organs at different development stages and under different stress conditions. qPCR validated the digital expression data for a selection of 23 genes with high or low expression levels. Comparative gene expression analyses between the different tissues and organs allowed the identification of clusters that are highly enriched in given tissues or under particular conditions, demonstrating the usefulness of the digital gene expression analysis. A web interface ROSAseq was created that allows data interrogation by BLAST, subsequent analysis of DNA clusters and access to thorough transcript annotation including best BLAST matches on Fragaria vesca, Prunus persica and Arabidopsis. The rose peptides dataset was used to create the ROSAcyc resource pathway database that allows access to the putative genes and enzymatic pathways. Conclusions The study provides useful information on Rosa expressed genes, with thorough annotation and an overview of expression patterns for transcripts with good accuracy. PMID:23164410

  18. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. PMID:22096593

  19. The significance of alternative transcripts for Caenorhabditis elegans transcription factor genes, based on expression pattern analysis

    PubMed Central

    2013-01-01

    Background Sequence-specific DNA-binding proteins, with their paramount importance in the regulation of expression of the genetic material, are encoded by approximately 5% of the genes in an animal’s genome. But it is unclear to what extent alternative transcripts from these genes may further increase the complexity of the transcription factor complement. Results Of the 938 potential C. elegans transcription factor genes, 197 were annotated in WormBase as encoding at least two distinct isoforms. Evaluation of prior evidence identified, with different levels of confidence, 50 genes with alternative transcript starts, 23 with alternative transcript ends, 35 with alternative splicing and 34 with alternative transcripts generated by a combination of mechanisms, leaving 55 that were discounted. Expression patterns were determined for transcripts for a sample of 29 transcription factor genes, concentrating on those with alternative transcript starts for which the evidence was strongest. Seamless fosmid recombineering was used to generate reporter gene fusions with minimal modification to assay expression of specific transcripts while maintaining the broad genomic DNA context and alternative transcript production. Alternative transcription factor gene transcripts were typically expressed with identical or substantially overlapping distributions rather than in distinct domains. Conclusions Increasingly sensitive sequencing technologies will reveal rare transcripts but many of these are clearly non-productive. The majority of the transcription factor gene alternative transcripts that are productive may represent tolerable noise rather than encoding functionally distinct isoforms. PMID:23586691

  20. Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding.

    PubMed

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes.

  1. Brain selective transgene expression in zebrafish using an NRSE derived motif

    PubMed Central

    Bergeron, Sadie A.; Hannan, Markus C.; Codore, Hiba; Fero, Kandice; Li, Grace H.; Moak, Zachary; Yokogawa, Tohei; Burgess, Harold A.

    2012-01-01

    Transgenic technologies enable the manipulation and observation of circuits controlling behavior by permitting expression of genetically encoded reporter genes in neurons. Frequently though, neuronal expression is accompanied by transgene expression in non-neuronal tissues, which may preclude key experimental manipulations, including assessment of the contribution of neurons to behavior by ablation. To better restrict transgene expression to the nervous system in zebrafish larvae, we have used DNA sequences derived from the neuron-restrictive silencing element (NRSE). We find that one such sequence, REx2, when used in conjunction with several basal promoters, robustly suppresses transgene expression in non-neuronal tissues. Both in transient transgenic experiments and in stable enhancer trap lines, suppression is achieved without compromising expression within the nervous system. Furthermore, in REx2 enhancer trap lines non-neuronal expression can be de-repressed by knocking down expression of the NRSE binding protein RE1-silencing transcription factor (Rest). In one line, we show that the resulting pattern of reporter gene expression coincides with that of the adjacent endogenous gene, hapln3. We demonstrate that three common basal promoters are susceptible to the effects of the REx2 element, suggesting that this method may be useful for confining expression from many other promoters to the nervous system. This technique enables neural specific targeting of reporter genes and thus will facilitate the use of transgenic methods to manipulate circuit function in freely behaving larvae. PMID:23293587

  2. The road ahead: working towards effective clinical translation of myocardial gene therapies

    PubMed Central

    Katz, Michael G; Fargnoli, Anthony S; Williams, Richard D; Bridges, Charles R

    2014-01-01

    During the last two decades the fields of molecular and cellular cardiology, and more recently molecular cardiac surgery, have developed rapidly. The concept of delivering cDNA encoding a therapeutic gene to cardiomyocytes using a vector system with substantial cardiac tropism, allowing for long-term expression of a therapeutic protein, has moved from hypothesis to bench to clinical application. However, the clinical results to date are still disappointing. The ideal gene transfer method should be explored in clinically relevant animal models of heart disease to evaluate the relative roles of specific molecular pathways in disease pathogenesis, helping to validate the potential targets for therapeutic intervention. Successful clinical cardiovascular gene therapy also requires the use of nonimmunogenic cardiotropic vectors capable of expressing the requisite amount of therapeutic protein in vivo and in situ. Depending on the desired application either regional or global myocardial gene delivery is required. Cardiac-specific delivery techniques incorporating mapping technologies for regional delivery and highly efficient methodologies for global delivery should improve the precision and specificity of gene transfer to the areas of interest and minimize collateral organ gene expression. PMID:24341816

  3. NCBI GEO: archive for functional genomics data sets—10 years on

    PubMed Central

    Barrett, Tanya; Troup, Dennis B.; Wilhite, Stephen E.; Ledoux, Pierre; Evangelista, Carlos; Kim, Irene F.; Tomashevsky, Maxim; Marshall, Kimberly A.; Phillippy, Katherine H.; Sherman, Patti M.; Muertter, Rolf N.; Holko, Michelle; Ayanbule, Oluwabukunmi; Yefanov, Andrey; Soboleva, Alexandra

    2011-01-01

    A decade ago, the Gene Expression Omnibus (GEO) database was established at the National Center for Biotechnology Information (NCBI). The original objective of GEO was to serve as a public repository for high-throughput gene expression data generated mostly by microarray technology. However, the research community quickly applied microarrays to non-gene-expression studies, including examination of genome copy number variation and genome-wide profiling of DNA-binding proteins. Because the GEO database was designed with a flexible structure, it was possible to quickly adapt the repository to store these data types. More recently, as the microarray community switches to next-generation sequencing technologies, GEO has again adapted to host these data sets. Today, GEO stores over 20 000 microarray- and sequence-based functional genomics studies, and continues to handle the majority of direct high-throughput data submissions from the research community. Multiple mechanisms are provided to help users effectively search, browse, download and visualize the data at the level of individual genes or entire studies. This paper describes recent database enhancements, including new search and data representation tools, as well as a brief review of how the community uses GEO data. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/. PMID:21097893

  4. SpliceCenter: A suite of web-based bioinformatic applications for evaluating the impact of alternative splicing on RT-PCR, RNAi, microarray, and peptide-based studies

    PubMed Central

    Ryan, Michael C; Zeeberg, Barry R; Caplen, Natasha J; Cleland, James A; Kahn, Ari B; Liu, Hongfang; Weinstein, John N

    2008-01-01

    Background Over 60% of protein-coding genes in vertebrates express mRNAs that undergo alternative splicing. The resulting collection of transcript isoforms poses significant challenges for contemporary biological assays. For example, RT-PCR validation of gene expression microarray results may be unsuccessful if the two technologies target different splice variants. Effective use of sequence-based technologies requires knowledge of the specific splice variant(s) that are targeted. In addition, the critical roles of alternative splice forms in biological function and in disease suggest that assay results may be more informative if analyzed in the context of the targeted splice variant. Results A number of contemporary technologies are used for analyzing transcripts or proteins. To enable investigation of the impact of splice variation on the interpretation of data derived from those technologies, we have developed SpliceCenter. SpliceCenter is a suite of user-friendly, web-based applications that includes programs for analysis of RT-PCR primer/probe sets, effectors of RNAi, microarrays, and protein-targeting technologies. Both interactive and high-throughput implementations of the tools are provided. The interactive versions of SpliceCenter tools provide visualizations of a gene's alternative transcripts and probe target positions, enabling the user to identify which splice variants are or are not targeted. The high-throughput batch versions accept user query files and provide results in tabular form. When, for example, we used SpliceCenter's batch siRNA-Check to process the Cancer Genome Anatomy Project's large-scale shRNA library, we found that only 59% of the 50,766 shRNAs in the library target all known splice variants of the target gene, 32% target some but not all, and 9% do not target any currently annotated transcript. Conclusion SpliceCenter provides unique, user-friendly applications for assessing the impact of transcript variation on the design and interpretation of RT-PCR, RNAi, gene expression microarrays, antibody-based detection, and mass spectrometry proteomics. The tools are intended for use by bench biologists as well as bioinformaticists. PMID:18638396

  5. Genetically engineered livestock for agriculture: a generation after the first transgenic animal research conference.

    PubMed

    Murray, James D; Maga, Elizabeth A

    2016-06-01

    At the time of the first Transgenic Animal Research Conference, the lack of knowledge about promoter, enhancer and coding regions of genes of interest greatly hampered our efforts to create transgenes that would express appropriately in livestock. Additionally, we were limited to gene insertion by pronuclear microinjection. As predicted then, widespread genome sequencing efforts and technological advancements have profoundly altered what we can do. There have been many developments in technology to create transgenic animals since we first met at Granlibakken in 1997, including the advent of somatic cell nuclear transfer-based cloning and gene editing. We can now create new transgenes that will express when and where we want and can target precisely in the genome where we want to make a change or insert a transgene. With the large number of sequenced genomes, we have unprecedented access to sequence information including, control regions, coding regions, and known allelic variants. These technological developments have ushered in new and renewed enthusiasm for the production of transgenic animals among scientists and animal agriculturalists around the world, both for the production of more relevant biomedical research models as well as for agricultural applications. However, even though great advancements have been made in our ability to control gene expression and target genetic changes in our animals, there still are no genetically engineered animal products on the market for food. World-wide there has been a failure of the regulatory processes to effectively move forward. Estimates suggest the world will need to increase our current food production 70 % by 2050; that is we will have to produce the total amount of food each year that has been consumed by mankind over the past 500 years. The combination of transgenic animal technology and gene editing will become increasingly more important tools to help feed the world. However, to date the practical benefits of these technologies have not yet reached consumers in any country and in the absence of predictable, science-based regulatory programs it is unlikely that the benefits will be realized in the short to medium term.

  6. Genome-Wide Screens Reveal New Gene Products That Influence Genetic Competence in Streptococcus mutans

    PubMed Central

    O'Brien, Greg; Maricic, Natalie; Kesterson, Alexandria; Grace, Megan

    2017-01-01

    ABSTRACT A network of genes and at least two peptide signaling molecules tightly control when Streptococcus mutans becomes competent to take up DNA from its environment. Widespread changes in the expression of genes occur when S. mutans is presented with competence signal peptides in vitro, including the increased production of the alternative sigma factor, ComX, which activates late competence genes. Still, the way that gene products that are regulated by competence peptides influence DNA uptake and cellular physiology are not well understood. Here, we developed and employed comprehensive transposon mutagenesis of the S. mutans genome, with a screen to identify mutants that aberrantly expressed comX, coupled with transposon sequencing (Tn-seq) to gain a more thorough understanding of the factors modulating comX expression and progression to the competent state. The screens effectively identified genes known to affect competence, e.g., comR, comS, comD, comE, cipB, clpX, rcrR, and ciaH, but disclosed an additional 20 genes that were not previously competence associated. The competence phenotypes of mutants were characterized, including by fluorescence microscopy to determine at which stage the mutants were impaired for comX activation. Among the novel genes studied were those implicated in cell division, the sensing of cell envelope stress, cell envelope biogenesis, and RNA stability. Our results provide a platform for determining the specific chemical and physical cues that are required for genetic competence in S. mutans, while highlighting the effectiveness of using Tn-seq in S. mutans to discover and study novel biological processes. IMPORTANCE Streptococcus mutans acquires DNA from its environment by becoming genetically competent, a physiologic state triggered by cell-cell communication using secreted peptides. Competence is important for acquiring novel genetic traits and has a strong influence on the expression of virulence-associated traits of S. mutans. Here, we used transposon mutagenesis and genomic technologies to identify novel genes involved in competence development. In addition to identifying genes previously known to be required for comX expression, 20 additional genes were identified and characterized. The findings create opportunities to diminish the pathogenic potential of S. mutans, while validating technologies that can rapidly advance our understanding of the physiology, biology, and genetics of S. mutans and related pathogens. PMID:29109185

  7. Genome-wide screens reveal new gene products that influence genetic competence in Streptococcus mutans.

    PubMed

    Shields, Robert C; O'Brien, Greg; Maricic, Natalie; Kesterson, Alexandria; Grace, Megan; Hagen, Stephen J; Burne, Robert A

    2017-11-06

    A network of genes and at least two peptide signaling molecules tightly control when Streptococcus mutans becomes competent to take up DNA from its environment. Widespread changes in the expression of genes occur when S. mutans is presented with competence signal peptides in vitro , including increased production of the alternative sigma factor, ComX, which activates late competence genes. Still, the way that gene products that are regulated by competence peptides influence DNA uptake and cellular physiology are not well understood. Here, we developed and employed comprehensive transposon mutagenesis of the S. mutans genome with a screen to identify mutants that aberrantly expressed comX , coupled with transposon sequencing (Tn-seq) to gain a more thorough understanding of the factors modulating comX expression and progression to the competent state. The screens effectively identified genes known to affect competence, e.g. comR , comS , comD , comE , cipB , clpX , rcrR , ciaH , but disclosed an additional 20 genes that were not previously competence-associated. The competence phenotypes of mutants were characterized, including using fluorescence microscopy to determine at which stage the mutants were impaired for comX activation. Among the novel genes studied were those implicated in cell division, sensing of cell envelope stress, cell envelope biogenesis, and RNA stability. Our results provide a platform for determining the specific chemical and physical cues that are required for genetic competence in S. mutans , while highlighting the effectiveness of using Tn-seq in S. mutans to discover and study novel biological processes. IMPORTANCE Streptococcus mutans acquires DNA from its environment by becoming genetically competent, a physiologic state triggered by cell-cell communication using secreted peptides. Competence is important for acquiring novel genetic traits and has a strong influence on the expression of virulence-associated traits of S. mutans Here, we used transposon mutagenesis and genomic technologies to identify novel genes involved in competence development. In addition to identifying genes previously known to be required for comX expression, 20 additional genes were identified and characterized. The findings create opportunities to diminish the pathogenic potential of S. mutans , while validating technologies that can rapidly advance our understanding of the physiology, biology and genetics of S. mutans and related pathogens. Copyright © 2017 American Society for Microbiology.

  8. High copy and stable expression of the xylanase XynHB in Saccharomyces cerevisiae by rDNA-mediated integration.

    PubMed

    Fang, Cheng; Wang, Qinhong; Selvaraj, Jonathan Nimal; Zhou, Yuling; Ma, Lixin; Zhang, Guimin; Ma, Yanhe

    2017-08-18

    Xylanase is a widely-used additive in baking industry for enhancing dough and bread quality. Several xylanases used in baking industry were expressed in different systems, but their expression in antibiotic free vector system is highly essential and safe. In the present study, an alternative rDNA-mediated technology was developed to increase the copy number of target gene by integrating it into Saccharomyces cerevisiae genome. A xylanase-encoding gene xynHB from Bacillus sp. was cloned into pHBM367H and integrated into S. cerevisiae genome through rDNA-mediated recombination. Exogenous XynHB expressed by recombinant S. cerevisiae strain A13 exhibited higher degradation activity towards xylan than other transformants. The real-time PCR analysis on A13 genome revealed the presence of 13.64 copies of xynHB gene. Though no antibiotics have been used, the genetic stability and the xylanase activity of xynHB remained stable up to 1,011 generations of cultivation. S. cerevisiae strain A13 expressing xylanase reduced the required kneading time and increased the height and diameter of the dough size, which would be safe and effective in baking industry as no antibiotics-resistance risk. The new effective rDNA-mediated technology without using antibiotics here provides a way to clone other food related industrial enzymes for applications.

  9. Gene expression profiling of Listeria monocytogenes strain F2365 during growth in ultrahigh-temperature-processed skim milk.

    PubMed

    Liu, Yanhong; Ream, Amy

    2008-11-01

    To study how Listeria monocytogenes survives and grows in ultrahigh-temperature-processed (UHT) skim milk, microarray technology was used to monitor the gene expression profiles of strain F2365 in UHT skim milk. Total RNA was isolated from strain F2365 in UHT skim milk after 24 h of growth at 4 degrees C, labeled with fluorescent dyes, and hybridized to "custom-made" commercial oligonucleotide (35-mers) microarray chips containing the whole genome of L. monocytogenes strain F2365. Compared to L. monocytogenes grown in brain heart infusion (BHI) broth for 24 h at 4 degrees C, 26 genes were upregulated (more-than-twofold increase) in UHT skim milk, whereas 14 genes were downregulated (less-than-twofold decrease). The upregulated genes included genes encoding transport and binding proteins, transcriptional regulators, proteins in amino acid biosynthesis and energy metabolism, protein synthesis, cell division, and hypothetical proteins. The downregulated genes included genes that encode transport and binding proteins, protein synthesis, cellular processes, cell envelope, energy metabolism, a transcriptional regulator, and an unknown protein. The gene expression changes determined by microarray assays were confirmed by real-time reverse transcriptase PCR analyses. Furthermore, cells grown in UHT skim milk displayed the same sensitivity to hydrogen peroxide as cells grown in BHI, demonstrating that the elevated levels of expression of genes encoding manganese transporter complexes in UHT skim milk did not result in changes in the oxidative stress sensitivity. To our knowledge, this report represents a novel study of global transcriptional gene expression profiling of L. monocytogenes in a liquid food.

  10. CRTP-13: ABC-GCB Expression Signatures in Human B-cell Lymphoma on the NanoString Platform | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The CLIA Molecular Diagnostics Laboratory within the Cancer Research Technology Program will perform messenger RNA isolation and expression analysis specific to a 20-gene panel on formalin-fixed paraffin-embedded (FFPE) patient samples using the Nano

  11. Use of keyword hierarchies to interpret gene expression patterns.

    PubMed

    Masys, D R; Welsh, J B; Lynn Fink, J; Gribskov, M; Klacansky, I; Corbeil, J

    2001-04-01

    High-density microarray technology permits the quantitative and simultaneous monitoring of thousands of genes. The interpretation challenge is to extract relevant information from this large amount of data. A growing variety of statistical analysis approaches are available to identify clusters of genes that share common expression characteristics, but provide no information regarding the biological similarities of genes within clusters. The published literature provides a potential source of information to assist in interpretation of clustering results. We describe a data mining method that uses indexing terms ('keywords') from the published literature linked to specific genes to present a view of the conceptual similarity of genes within a cluster or group of interest. The method takes advantage of the hierarchical nature of Medical Subject Headings used to index citations in the MEDLINE database, and the registry numbers applied to enzymes.

  12. Fuzzy Neural Network Applied to Gene Expression Profiling for Predicting the Prognosis of Diffuse Large B‐cell Lymphoma

    PubMed Central

    Ando, Tatsuya; Suguro, Miyuki; Hanai, Taizo; Kobayashi, Takeshi; Seto, Masao

    2002-01-01

    Diffuse large B‐cell lymphoma (DLBCL) is the largest category of aggressive lymphomas. Less than 50% of patients can be cured by combination chemotherapy. Microarray technologies have recently shown that the response to chemotherapy reflects the molecular heterogeneity in DLBCL. On the basis of published microarray data, we attempted to develop a long‐overdue method for the precise and simple prediction of survival of DLBCL patients. We developed a fuzzy neural network (FNN) model to analyze gene expression profiling data for DLBCL. From data on 5857 genes, this model identified four genes (CD10, AA807551, AA805611 and IRF‐4) that could be used to predict prognosis with 93% accuracy. FNNs are powerful tools for extracting significant biological markers affecting prognosis, and are applicable to various kinds of expression profiling data for any malignancy. PMID:12460461

  13. Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas.

    PubMed Central

    Cerutti, H; Johnson, A M; Gillham, N W; Boynton, J E

    1997-01-01

    The unstable expression of introduced genes poses a serious problem for the application of transgenic technology in plants. In transformants of the unicellular green alga Chlamydomonas reinhardtii, expression of a eubacterial aadA gene, conferring spectinomycin resistance, is transcriptionally suppressed by a reversible epigenetic mechanism(s). Variations in the size and frequency of colonies surviving on different concentrations of spectinomycin as well as the levels of transcriptional activity of the introduced transgene(s) suggest the existence of intermediate expression states in genetically identical cells. Gene silencing does not correlate with methylation of the integrated DNA and does not involve large alterations in its chromatin structure, as revealed by digestion with restriction endonucleases and DNase I. Transgene repression is enhanced by lower temperatures, similar to position effect variegation in Drosophila. By analogy to epigenetic phenomena in several eukaryotes, our results suggest a possible role for (hetero)chromatic chromosomal domains in transcriptional inactivation. PMID:9212467

  14. A Robust Unified Approach to Analyzing Methylation and Gene Expression Data

    PubMed Central

    Khalili, Abbas; Huang, Tim; Lin, Shili

    2009-01-01

    Microarray technology has made it possible to investigate expression levels, and more recently methylation signatures, of thousands of genes simultaneously, in a biological sample. Since more and more data from different biological systems or technological platforms are being generated at an incredible rate, there is an increasing need to develop statistical methods that are applicable to multiple data types and platforms. Motivated by such a need, a flexible finite mixture model that is applicable to methylation, gene expression, and potentially data from other biological systems, is proposed. Two major thrusts of this approach are to allow for a variable number of components in the mixture to capture non-biological variation and small biases, and to use a robust procedure for parameter estimation and probe classification. The method was applied to the analysis of methylation signatures of three breast cancer cell lines. It was also tested on three sets of expression microarray data to study its power and type I error rates. Comparison with a number of existing methods in the literature yielded very encouraging results; lower type I error rates and comparable/better power were achieved based on the limited study. Furthermore, the method also leads to more biologically interpretable results for the three breast cancer cell lines. PMID:20161265

  15. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity

    PubMed Central

    Bazakos, Christos; Manioudaki, Maria E.; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive. PMID:26576008

  16. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity.

    PubMed

    Bazakos, Christos; Manioudaki, Maria E; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive.

  17. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai

    PubMed Central

    Choi, Mi-Jin; Kim, Gun-Do; Kim, Jong-Myoung; Lim, Han Kyu

    2015-01-01

    The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%–3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones. PMID:26593905

  18. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai.

    PubMed

    Choi, Mi-Jin; Kim, Gun-Do; Kim, Jong-Myoung; Lim, Han Kyu

    2015-11-18

    The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%-3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.

  19. De-novo assembly and characterization of the transcriptome of Metschnikowia fructicola reveals differences in gene expression following interaction with Penicillium digitatum and grapefruit peel

    PubMed Central

    2013-01-01

    Background The yeast Metschnikowia fructicola is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penicillium digitatum. Results More than 26 million sequencing reads were assembled into 9,674 unigenes. Approximately 50% of the unigenes could be annotated based on homology matches in the NCBI database. Based on homology, sequences were annotated with a gene description, gene ontology (GO term), and clustered into functional groups. An analysis of differential expression when the yeast was interacting with the fruit vs. the pathogen revealed more than 250 genes with specific expression responses. In the antagonist-pathogen interaction, genes related to transmembrane, multidrug transport and to amino acid metabolism were induced. In the antagonist-fruit interaction, expression of genes involved in oxidative stress, iron homeostasis, zinc homeostasis, and lipid metabolism were induced. Patterns of gene expression in the two interactions were examined at the individual transcript level by quantitative real-time PCR analysis (RT-qPCR). Conclusion This study provides new insight into the biology of the tritrophic interactions that occur in a biocontrol system such as the use of the yeast, M. fructicola for the control of green mold on citrus caused by P. digitatum. PMID:23496978

  20. Comparative transcriptome analysis of papilla and skin in the sea cucumber, Apostichopus japonicus.

    PubMed

    Zhou, Xiaoxu; Cui, Jun; Liu, Shikai; Kong, Derong; Sun, He; Gu, Chenlei; Wang, Hongdi; Qiu, Xuemei; Chang, Yaqing; Liu, Zhanjiang; Wang, Xiuli

    2016-01-01

    Papilla and skin are two important organs of the sea cucumber. Both tissues have ectodermic origin, but they are morphologically and functionally very different. In the present study, we performed comparative transcriptome analysis of the papilla and skin from the sea cucumber (Apostichopus japonicus) in order to identify and characterize gene expression profiles by using RNA-Seq technology. We generated 30.6 and 36.4 million clean reads from the papilla and skin and de novo assembled in 156,501 transcripts. The Gene Ontology (GO) analysis indicated that cell part, metabolic process and catalytic activity were the most abundant GO category in cell component, biological process and molecular funcation, respectively. Comparative transcriptome analysis between the papilla and skin allowed the identification of 1,059 differentially expressed genes, of which 739 genes were expressed at higher levels in papilla, while 320 were expressed at higher levels in skin. In addition, 236 differentially expressed unigenes were not annotated with any database, 160 of which were apparently expressed at higher levels in papilla, 76 were expressed at higher levels in skin. We identified a total of 288 papilla-specific genes, 171 skin-specific genes and 600 co-expressed genes. Also, 40 genes in papilla-specific were not annotated with any database, 2 in skin-specific. Development-related genes were also enriched, such as fibroblast growth factor, transforming growth factor-β, collagen-α2 and Integrin-α2, which may be related to the formation of the papilla and skin in sea cucumber. Further pathway analysis identified ten KEGG pathways that were differently enriched between the papilla and skin. The findings on expression profiles between two key organs of the sea cucumber should be valuable to reveal molecular mechanisms involved in the development of organs that are related but with morphological differences in the sea cucumber.

  1. Global analysis of gene expression in mineralizing fish vertebra-derived cell lines: new insights into anti-mineralogenic effect of vanadate

    PubMed Central

    2011-01-01

    Background Fish has been deemed suitable to study the complex mechanisms of vertebrate skeletogenesis and gilthead seabream (Sparus aurata), a marine teleost with acellular bone, has been successfully used in recent years to study the function and regulation of bone and cartilage related genes during development and in adult animals. Tools recently developed for gilthead seabream, e.g. mineralogenic cell lines and a 4 × 44K Agilent oligo-array, were used to identify molecular determinants of in vitro mineralization and genes involved in anti-mineralogenic action of vanadate. Results Global analysis of gene expression identified 4,223 and 4,147 genes differentially expressed (fold change - FC > 1.5) during in vitro mineralization of VSa13 (pre-chondrocyte) and VSa16 (pre-osteoblast) cells, respectively. Comparative analysis indicated that nearly 45% of these genes are common to both cell lines and gene ontology (GO) classification is also similar for both cell types. Up-regulated genes (FC > 10) were mainly associated with transport, matrix/membrane, metabolism and signaling, while down-regulated genes were mainly associated with metabolism, calcium binding, transport and signaling. Analysis of gene expression in proliferative and mineralizing cells exposed to vanadate revealed 1,779 and 1,136 differentially expressed genes, respectively. Of these genes, 67 exhibited reverse patterns of expression upon vanadate treatment during proliferation or mineralization. Conclusions Comparative analysis of expression data from fish and data available in the literature for mammalian cell systems (bone-derived cells undergoing differentiation) indicate that the same type of genes, and in some cases the same orthologs, are involved in mechanisms of in vitro mineralization, suggesting their conservation throughout vertebrate evolution and across cell types. Array technology also allowed identification of genes differentially expressed upon exposure of fish cell lines to vanadate and likely involved in its anti-mineralogenic activity. Many were found to be unknown or they were never associated to bone homeostasis previously, thus providing a set of potential candidates whose study will likely bring insights into the complex mechanisms of tissue mineralization and bone formation. PMID:21668972

  2. Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate

    PubMed Central

    Pascal, Laura E; True, Lawrence D; Campbell, David S; Deutsch, Eric W; Risk, Michael; Coleman, Ilsa M; Eichner, Lillian J; Nelson, Peter S; Liu, Alvin Y

    2008-01-01

    Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD) genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63). Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50) but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers. PMID:18501003

  3. Insulated hsp70B' promoter: stringent heat-inducible activity in replication-deficient, but not replication-competent adenoviruses.

    PubMed

    Rohmer, Stanimira; Mainka, Astrid; Knippertz, Ilka; Hesse, Andrea; Nettelbeck, Dirk M

    2008-04-01

    Key to the realization of gene therapy is the development of efficient and targeted gene transfer vectors. Therapeutic gene transfer by replication-deficient or more recently by conditionally replication-competent/oncolytic adenoviruses has shown much promise. For specific applications, however, it will be advantageous to provide vectors that allow for external control of gene expression. The efficient cellular heat shock system in combination with available technology for focused and controlled hyperthermia suggests heat-regulated transcription control as a promising tool for this purpose. We investigated the feasibility of a short fragment of the human hsp70B' promoter, with and without upstream insulator elements, for the regulation of transgene expression by replication-deficient or oncolytic adenoviruses. Two novel adenoviral vectors with an insulated hsp70B' promoter were developed and showed stringent heat-inducible gene expression with induction ratios up to 8000-fold. In contrast, regulation of gene expression from the hsp70B' promoter without insulation was suboptimal. In replication-competent/oncolytic adenoviruses regulation of the hsp70B' promoter was lost specifically during late replication in permissive cells and could not be restored by the insulators. We developed novel adenovirus gene transfer vectors that feature improved and stringent regulation of transgene expression from the hsp70B' promoter using promoter insulation. These vectors have potential for gene therapy applications that benefit from external modulation of therapeutic gene expression or for combination therapy with hyperthermia. Furthermore, our study reveals that vector replication can deregulate inserted cellular promoters, an observation which is of relevance for the development of replication-competent/oncolytic gene transfer vectors. (c) 2008 John Wiley & Sons, Ltd.

  4. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei.

    PubMed

    Coram, Tristan E; Pang, Edwin C K

    2006-11-01

    Using microarray technology and a set of chickpea (Cicer arietinum L.) unigenes, grasspea (Lathyrus sativus L.) expressed sequence tags (ESTs) and lentil (Lens culinaris Med.) resistance gene analogues, the ascochyta blight (Ascochyta rabiei (Pass.) L.) resistance response was studied in four chickpea genotypes, including resistant, moderately resistant, susceptible and wild relative (Cicer echinospermum L.) genotypes. The experimental system minimized environmental effects and was conducted in reference design, in which samples from mock-inoculated controls acted as reference against post-inoculation samples. Robust data quality was achieved through the use of three biological replicates (including a dye swap), the inclusion of negative controls and strict selection criteria for differentially expressed genes, including a fold change cut-off determined by self-self hybridizations, Student's t-test and multiple testing correction (P < 0.05). Microarray observations were also validated by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The time course expression patterns of 756 microarray features resulted in the differential expression of 97 genes in at least one genotype at one time point. k-means clustering grouped the genes into clusters of similar observations for each genotype, and comparisons between A. rabiei-resistant and A. rabiei-susceptible genotypes revealed potential gene 'signatures' predictive of effective A. rabiei resistance. These genes included several pathogenesis-related proteins, SNAKIN2 antimicrobial peptide, proline-rich protein, disease resistance response protein DRRG49-C, environmental stress-inducible protein, leucine-zipper protein, polymorphic antigen membrane protein, Ca-binding protein and several unknown proteins. The potential involvement of these genes and their pathways of induction are discussed. This study represents the first large-scale gene expression profiling in chickpea, and future work will focus on the functional validation of the genes of interest.

  5. Gene expression profiling in rat kidney after intratracheal exposure to cadmium-doped nanoparticles

    NASA Astrophysics Data System (ADS)

    Coccini, Teresa; Roda, Elisa; Fabbri, Marco; Sacco, Maria Grazia; Gribaldo, Laura; Manzo, Luigi

    2012-08-01

    While nephrotoxicity of cadmium is well documented, very limited information exists on renal effects of exposure to cadmium-containing nanomaterials. In this work, "omics" methodologies have been used to assess the action of cadmium-containing silica nanoparticles (Cd-SiNPs) in the kidney of Sprague-Dawley rats exposed intratracheally. Groups of animals received a single dose of Cd-SiNPs (1 mg/rat), CdCl2 (400 μg/rat) or 0.1 ml saline (control). Renal gene expression was evaluated 7 and 30 days post exposure by DNA microarray technology using the Agilent Whole Rat Genome Microarray 4x44K. Gene modulating effects were observed in kidney at both time periods after treatment with Cd-SiNPs. The number of differentially expressed genes being 139 and 153 at the post exposure days 7 and 30, respectively. Renal gene expression changes were also observed in the kidney of CdCl2-treated rats with a total of 253 and 70 probes modulated at 7 and 30 days, respectively. Analysis of renal gene expression profiles at day 7 indicated in both Cd-SiNP and CdCl2 groups downregulation of several cluster genes linked to immune function, oxidative stress, and inflammation processes. Differing from day 7, the majority of cluster gene categories modified by nanoparticles in kidney 30 days after dosing were genes implicated in cell regulation and apoptosis. Modest renal gene expression changes were observed at day 30 in rats treated with CdCl2. These results indicate that kidney may be a susceptible target for subtle long-lasting molecular alterations produced by cadmium nanoparticles locally instilled in the lung.

  6. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity.

    PubMed

    Xie, Tao; Tong, Liqiong; Barrett, Tanya; Yuan, Jie; Hatzidimitriou, George; McCann, Una D; Becker, Kevin G; Donovan, David M; Ricaurte, George A

    2002-01-01

    The purpose of these studies was to examine the role of gene expression in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. First, the effects of the mRNA synthesis inhibitor, actinomycin-D, and the protein synthesis inhibitor, cycloheximide, were examined. Both agents afforded complete protection against METH-induced DA neurotoxicity and did so independently of effects on core temperature, DA transporter function, or METH brain levels, suggesting that gene transcription and mRNA translation play a role in METH neurotoxicity. Next, microarray technology, in combination with an experimental approach designed to facilitate recognition of relevant gene expression patterns, was used to identify gene products linked to METH-induced DA neurotoxicity. This led to the identification of several genes in the ventral midbrain associated with the neurotoxic process, including genes for energy metabolism [cytochrome c oxidase subunit 1 (COX1), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase chain 2, and phosphoglycerate mutase B], ion regulation (members of sodium/hydrogen exchanger and sodium/bile acid cotransporter family), signal transduction (adenylyl cyclase III), and cell differentiation and degeneration (N-myc downstream-regulated gene 3 and tau protein). Of these differentially expressed genes, we elected to further examine the increase in COX1 expression, because of data implicating energy utilization in METH neurotoxicity and the known role of COX1 in energy metabolism. On the basis of time course studies, Northern blot analyses, in situ hybridization results, and temperature studies, we now report that increased COX1 expression in the ventral midbrain is linked to METH-induced DA neuronal injury. The precise role of COX1 and other genes in METH neurotoxicity remains to be elucidated.

  7. Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-κB and other signal transcription factors in head and neck squamous cell carcinoma

    PubMed Central

    Yan, Bin; Yang, Xinping; Lee, Tin-Lap; Friedman, Jay; Tang, Jun; Van Waes, Carter; Chen, Zhong

    2007-01-01

    Background Differentially expressed gene profiles have previously been observed among pathologically defined cancers by microarray technologies, including head and neck squamous cell carcinomas (HNSCCs). However, the molecular expression signatures and transcriptional regulatory controls that underlie the heterogeneity in HNSCCs are not well defined. Results Genome-wide cDNA microarray profiling of ten HNSCC cell lines revealed novel gene expression signatures that distinguished cancer cell subsets associated with p53 status. Three major clusters of over-expressed genes (A to C) were defined through hierarchical clustering, Gene Ontology, and statistical modeling. The promoters of genes in these clusters exhibited different patterns and prevalence of transcription factor binding sites for p53, nuclear factor-κB (NF-κB), activator protein (AP)-1, signal transducer and activator of transcription (STAT)3 and early growth response (EGR)1, as compared with the frequency in vertebrate promoters. Cluster A genes involved in chromatin structure and function exhibited enrichment for p53 and decreased AP-1 binding sites, whereas clusters B and C, containing cytokine and antiapoptotic genes, exhibited a significant increase in prevalence of NF-κB binding sites. An increase in STAT3 and EGR1 binding sites was distributed among the over-expressed clusters. Novel regulatory modules containing p53 or NF-κB concomitant with other transcription factor binding motifs were identified, and experimental data supported the predicted transcriptional regulation and binding activity. Conclusion The transcription factors p53, NF-κB, and AP-1 may be important determinants of the heterogeneous pattern of gene expression, whereas STAT3 and EGR1 may broadly enhance gene expression in HNSCCs. Defining these novel gene signatures and regulatory mechanisms will be important for establishing new molecular classifications and subtyping, which in turn will promote development of targeted therapeutics for HNSCC. PMID:17498291

  8. Subcutaneous and gonadal adipose tissue transcriptome differences in lean and obese female dogs.

    PubMed

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2013-12-01

    Canine obesity leads to shortened life span and increased disease incidence. Adipose tissue depots are known to have unique metabolic and gene expression profiles in rodents and humans, but few comparisons of depot gene expression have been performed in the dog. Using microarray technology, our objective was to identify differentially expressed genes and enriched functional pathways between subcutaneous and gonadal adipose of lean and obese dogs to better understand the pathogenesis of obesity in the dog. Because no depot × body weight status interactions were identified in the microarray data, depot differences were the primary focus. A total of 946 and 703 transcripts were differentially expressed (FDR P < 0.05) between gonadal and subcutaneous adipose tissue in obese and lean dogs respectively. Of the adipose depot-specific differences in gene expression, 162 were present in both lean and obese dogs, with the majority (85%) expressed in the same direction. Both lean and obese dog gene lists had enrichment of the complement and coagulation cascade and systemic lupus erythematosus pathways. Obese dogs had enrichment of lysosome, extracellular matrix-receptor interaction, renin-angiotensin system and hematopoietic cell lineage pathways. Lean dogs had enrichment of glutathione metabolism and synthesis and degradation of ketone bodies. We have identified a core set of genes differentially expressed between subcutaneous and gonadal adipose tissue in dogs regardless of body weight. These genes contribute to depot-specific differences in immune function, extracellular matrix remodeling and lysosomal function and may contribute to the physiological differences noted between depots. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  9. Statistical Analysis of Microarray Data with Replicated Spots: A Case Study with Synechococcus WH8102

    PubMed Central

    Thomas, E. V.; Phillippy, K. H.; Brahamsha, B.; Haaland, D. M.; Timlin, J. A.; Elbourne, L. D. H.; Palenik, B.; Paulsen, I. T.

    2009-01-01

    Until recently microarray experiments often involved relatively few arrays with only a single representation of each gene on each array. A complete genome microarray with multiple spots per gene (spread out spatially across the array) was developed in order to compare the gene expression of a marine cyanobacterium and a knockout mutant strain in a defined artificial seawater medium. Statistical methods were developed for analysis in the special situation of this case study where there is gene replication within an array and where relatively few arrays are used, which can be the case with current array technology. Due in part to the replication within an array, it was possible to detect very small changes in the levels of expression between the wild type and mutant strains. One interesting biological outcome of this experiment is the indication of the extent to which the phosphorus regulatory system of this cyanobacterium affects the expression of multiple genes beyond those strictly involved in phosphorus acquisition. PMID:19404483

  10. Statistical Analysis of Microarray Data with Replicated Spots: A Case Study with Synechococcus WH8102

    DOE PAGES

    Thomas, E. V.; Phillippy, K. H.; Brahamsha, B.; ...

    2009-01-01

    Until recently microarray experiments often involved relatively few arrays with only a single representation of each gene on each array. A complete genome microarray with multiple spots per gene (spread out spatially across the array) was developed in order to compare the gene expression of a marine cyanobacterium and a knockout mutant strain in a defined artificial seawater medium. Statistical methods were developed for analysis in the special situation of this case study where there is gene replication within an array and where relatively few arrays are used, which can be the case with current array technology. Due in partmore » to the replication within an array, it was possible to detect very small changes in the levels of expression between the wild type and mutant strains. One interesting biological outcome of this experiment is the indication of the extent to which the phosphorus regulatory system of this cyanobacterium affects the expression of multiple genes beyond those strictly involved in phosphorus acquisition.« less

  11. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy

    PubMed Central

    Robinson-Hamm, Jacqueline N.; Gersbach, Charles A.

    2016-01-01

    Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development. PMID:27542949

  12. Reverse engineering of gene regulatory networks.

    PubMed

    Cho, K H; Choo, S M; Jung, S H; Kim, J R; Choi, H S; Kim, J

    2007-05-01

    Systems biology is a multi-disciplinary approach to the study of the interactions of various cellular mechanisms and cellular components. Owing to the development of new technologies that simultaneously measure the expression of genetic information, systems biological studies involving gene interactions are increasingly prominent. In this regard, reconstructing gene regulatory networks (GRNs) forms the basis for the dynamical analysis of gene interactions and related effects on cellular control pathways. Various approaches of inferring GRNs from gene expression profiles and biological information, including machine learning approaches, have been reviewed, with a brief introduction of DNA microarray experiments as typical tools for measuring levels of messenger ribonucleic acid (mRNA) expression. In particular, the inference methods are classified according to the required input information, and the main idea of each method is elucidated by comparing its advantages and disadvantages with respect to the other methods. In addition, recent developments in this field are introduced and discussions on the challenges and opportunities for future research are provided.

  13. Automatic Control of Gene Expression in Mammalian Cells.

    PubMed

    Fracassi, Chiara; Postiglione, Lorena; Fiore, Gianfranco; di Bernardo, Diego

    2016-04-15

    Automatic control of gene expression in living cells is paramount importance to characterize both endogenous gene regulatory networks and synthetic circuits. In addition, such a technology can be used to maintain the expression of synthetic circuit components in an optimal range in order to ensure reliable performance. Here we present a microfluidics-based method to automatically control gene expression from the tetracycline-inducible promoter in mammalian cells in real time. Our approach is based on the negative-feedback control engineering paradigm. We validated our method in a monoclonal population of cells constitutively expressing a fluorescent reporter protein (d2EYFP) downstream of a minimal CMV promoter with seven tet-responsive operator motifs (CMV-TET). These cells also constitutively express the tetracycline transactivator protein (tTA). In cells grown in standard growth medium, tTA is able to bind the CMV-TET promoter, causing d2EYFP to be maximally expressed. Upon addition of tetracycline to the culture medium, tTA detaches from the CMV-TET promoter, thus preventing d2EYFP expression. We tested two different model-independent control algorithms (relay and proportional-integral (PI)) to force a monoclonal population of cells to express an intermediate level of d2EYFP equal to 50% of its maximum expression level for up to 3500 min. The control input is either tetracycline-rich or standard growth medium. We demonstrated that both the relay and PI controllers can regulate gene expression at the desired level, despite oscillations (dampened in the case of the PI controller) around the chosen set point.

  14. An undergraduate laboratory class using CRISPR/Cas9 technology to mutate drosophila genes.

    PubMed

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L; Chechenova, Maria B; Guerin, Paul; Cripps, Richard M

    2016-05-06

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a three-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:263-275, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  15. A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data.

    PubMed

    Zhang, L; Liu, X J

    2016-06-03

    With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.

  16. Bacterial infection as assessed by in vivo gene expression

    PubMed Central

    Heithoff, Douglas M.; Conner, Christopher P.; Hanna, Philip C.; Julio, Steven M.; Hentschel, Ute; Mahan, Michael J.

    1997-01-01

    In vivo expression technology (IVET) has been used to identify >100 Salmonella typhimurium genes that are specifically expressed during infection of BALB/c mice and/or murine cultured macrophages. Induction of these genes is shown to be required for survival in the animal under conditions of the IVET selection. One class of in vivo induced (ivi) genes, iviVI-A and iviVI-B, constitute an operon that resides in a region of the Salmonella genome with low G+C content and presumably has been acquired by horizontal transfer. These ivi genes encode predicted proteins that are similar to adhesins and invasins from prokaryotic and eukaryotic pathogens (Escherichia coli [tia], Plasmodium falciparum [PfEMP1]) and have coopted the PhoPQ regulatory circuitry of Salmonella virulence genes. Examination of the in vivo induction profile indicates (i) many ivi genes encode regulatory functions (e.g., phoPQ and pmrAB) that serve to enhance the sensitivity and amplitude of virulence gene expression (e.g., spvB); (ii) the biochemical function of many metabolic genes may not represent their sole contribution to virulence; (iii) the host ecology can be inferred from the biochemical functions of ivi genes; and (iv) nutrient limitation plays a dual signaling role in pathogenesis: to induce metabolic functions that complement host nutritional deficiencies and to induce virulence functions required for immediate survival and spread to subsequent host sites. PMID:9023360

  17. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands.

    PubMed

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-02-08

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription-activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock.

  18. MacroBac: New Technologies for Robust and Efficient Large-Scale Production of Recombinant Multiprotein Complexes.

    PubMed

    Gradia, Scott D; Ishida, Justin P; Tsai, Miaw-Sheue; Jeans, Chris; Tainer, John A; Fuss, Jill O

    2017-01-01

    Recombinant expression of large, multiprotein complexes is essential and often rate limiting for determining structural, biophysical, and biochemical properties of DNA repair, replication, transcription, and other key cellular processes. Baculovirus-infected insect cell expression systems are especially well suited for producing large, human proteins recombinantly, and multigene baculovirus systems have facilitated studies of multiprotein complexes. In this chapter, we describe a multigene baculovirus system called MacroBac that uses a Biobricks-type assembly method based on restriction and ligation (Series 11) or ligation-independent cloning (Series 438). MacroBac cloning and assembly is efficient and equally well suited for either single subcloning reactions or high-throughput cloning using 96-well plates and liquid handling robotics. MacroBac vectors are polypromoter with each gene flanked by a strong polyhedrin promoter and an SV40 poly(A) termination signal that minimize gene order expression level effects seen in many polycistronic assemblies. Large assemblies are robustly achievable, and we have successfully assembled as many as 10 genes into a single MacroBac vector. Importantly, we have observed significant increases in expression levels and quality of large, multiprotein complexes using a single, multigene, polypromoter virus rather than coinfection with multiple, single-gene viruses. Given the importance of characterizing functional complexes, we believe that MacroBac provides a critical enabling technology that may change the way that structural, biophysical, and biochemical research is done. © 2017 Elsevier Inc. All rights reserved.

  19. Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA

    NASA Astrophysics Data System (ADS)

    Chen, Lijue; She, Xiaodong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2018-02-01

    The technology of RNA interference (RNAi) that uses small interfering RNA (siRNA) to silence the gene expression with complementary messenger RNA (mRNA) sequence has great potential for the treatment of cancer in which certain genes were usually found overexpressed. However, the carry and delivery of siRNA to the target site in the human body can be challenging for this technology to be used clinically to silence the cancer-related gene expression. In this work, rod shaped mesoporous silica nanoparticles (MSNs) were developed as siRNA delivery system for specific intracellular delivery. The rod MSNs with an aspect ratio of 1.5 had a high surface area of 934.28 m2/g and achieved a siRNA loading of more than 80 mg/g. With the epidermal growth factor (EGF) grafted on the surface of the MSNs, siRNA can be delivered to the epidermal growth factor receptor (EGFR) overexpressed colorectal cancer cells with high intracellular concentration compared to MSNs without EGF and lead to survivin gene knocking down to less than 30%.

  20. Development of Cre-loxP technology in zebrafish to study the regulation of fish reproduction.

    PubMed

    Lin, Heng-Ju; Lee, Shu-Hua; Wu, Jen-Leih; Duann, Yeh-Fang; Chen, Jyh-Yih

    2013-12-01

    One cannot seek permission to market transgenic fish mainly because there is no field test or any basic research on technological developments for evaluating their biosafety. Infertility is a necessary adjunct to exploiting transgenic fish unless completely secure land-locked facilities are available. In this study, we report the generation of a Cre transgenic zebrafish line using a cytomegalovirus promoter. We also produced fish carrying the Bax1 and Bax2 plasmids; these genes were separated by two loxP sites under a zona pellucida C promoter or were driven by an anti-Müllerian hormone promoter. We inserted a red fluorescent protein gene between the two loxP sites. After obtaining transgenic lines with the two transgenic fish crossed with each other (Cre transgenic zebrafish x loxP transgenic zebrafish), the floxed DNA was found to be specifically eliminated from the female or male zebrafish, and apoptosis gene expressions caused ovarian and testicular growth cessation and degeneration. Overexpression of the Bax1 and Bax2 genes caused various expression levels of apoptosis-related genes. Accordingly, this transgenic zebrafish model system provides a method to produce infertile fish and may be useful for application to genetically modified fish.

  1. Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning.

    PubMed

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.

  2. Identification of Temporal and Region-Specific Myocardial Gene Expression Patterns in Response to Infarction in Swine

    PubMed Central

    Nonell, Lara; Puigdecanet, Eulàlia; Astier, Laura; Solé, Francesc; Bayes-Genis, Antoni

    2013-01-01

    Molecular mechanisms associated with pathophysiological changes in ventricular remodelling due to myocardial infarction (MI) remain poorly understood. We analyzed changes in gene expression by microarray technology in porcine myocardial tissue at 1, 4, and 6 weeks post-MI. MI was induced by coronary artery ligation in 9 female pigs (30–40 kg). Animals were randomly sacrificed at 1, 4, or 6 weeks post-MI (n = 3 per group) and 3 healthy animals were also included as control group. Total RNA from myocardial samples was hybridized to GeneChip® Porcine Genome Arrays. Functional analysis was obtained with the Ingenuity Pathway Analysis (IPA) online tool. Validation of microarray data was performed by quantitative real-time PCR (qRT-PCR). More than 8,000 different probe sets showed altered expression in the remodelling myocardium at 1, 4, or 6 weeks post-MI. Ninety-seven percent of altered transcripts were detected in the infarct core and 255 probe sets were differentially expressed in the remote myocardium. Functional analysis revealed 28 genes de-regulated in the remote myocardial region in at least one of the three temporal analyzed stages, including genes associated with heart failure (HF), systemic sclerosis and coronary artery disease. In the infarct core tissue, eight major time-dependent gene expression patterns were recognized among 4,221 probe sets commonly altered over time. Altered gene expression of ACVR2B, BID, BMP2, BMPR1A, LMNA, NFKBIA, SMAD1, TGFB3, TNFRSF1A, and TP53 were further validated. The clustering of similar expression patterns for gene products with related function revealed molecular footprints, some of them described for the first time, which elucidate changes in biological processes at different stages after MI. PMID:23372767

  3. Genome-Wide Transcriptome and Expression Profile Analysis of Phalaenopsis during Explant Browning

    PubMed Central

    Xu, Chuanjun; Zeng, Biyu; Huang, Junmei; Huang, Wen; Liu, Yumei

    2015-01-01

    Background Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level. Methodology/Principal Findings We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis. Conclusions/Significance Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning. PMID:25874455

  4. Transcriptional profiling of Haemophilus parasuis SH0165 response to tilmicosin.

    PubMed

    Liu, Yingyu; Chen, Pin; Wang, Yang; Li, Wentao; Cheng, Shuang; Wang, Chunmei; Zhang, Anding; He, Qigai

    2012-12-01

    The Haemophilus parasuis respiratory tract pathogen poses a severe threat to the swine industry despite available antimicrobial therapies. To gain a more detailed understanding of the molecular mechanisms underlying H. parasuis response to tilmicosin treatment, microarray technology was applied to analyze the variation in gene expression of isolated H. parasuis SH0165 treated in vitro with subinhibitory (0.25 μg/ml) and inhibitory (8 μg/ml) concentrations. Tilmicosin treatment induced differential expression of 405 genes, the encoded products of which are mainly involved in the heat shock response, protein synthesis, and intracellular transportation. The subinhibitory and inhibitory concentrations of tilmicosin induced distinctive gene expression profiles of shared and unique changes, respectively. These changes included 302 genes mainly involved in protein export and the phosphotransferase system to sustain cell growth, and 198 genes mainly related to RNA polymerase, recombination, and repair to inhibit cell growth. In silico analysis of functions related to the differentially expressed genes suggested that adaptation of H. parasuis SH0165 to tilmicosin involves modulation of protein synthesis and membrane transport. Collectively, the genes comprising each transcriptional profile of H. parasuis response to tilmicosin provide novel insights into the physiological functions of this economically significant bacterium and may represent targets of future molecular therapeutic strategies.

  5. Identification of host genes leading to West Nile virus encephalitis in mice brain using RNA-seq analysis

    PubMed Central

    Kumar, Mukesh; Belcaid, Mahdi; Nerurkar, Vivek R.

    2016-01-01

    Differential host responses may be critical determinants of distinct pathologies of West Nile virus (WNV) NY99 (pathogenic) and WNV Eg101 (non-pathogenic) strains. We employed RNA-seq technology to analyze global differential gene expression in WNV-infected mice brain and to identify the host cellular factors leading to lethal encephalitis. We identified 1,400 and 278 transcripts, which were differentially expressed after WNV NY99 and WNV Eg101 infections, respectively, and 147 genes were common to infection with both the viruses. Genes that were up-regulated in infection with both the viruses were mainly associated with interferon signaling. Genes associated with inflammation and cell death/apoptosis were only expressed after WNV NY99 infection. We demonstrate that differences in the activation of key pattern recognition receptors resulted in the induction of unique innate immune profiles, which corresponded with the induction of interferon and inflammatory responses. Pathway analysis of differentially expressed genes indicated that after WNV NY99 infection, TREM-1 mediated activation of toll-like receptors leads to the high inflammatory response. In conclusion, we have identified both common and specific responses to WNV NY99 and WNV Eg101 infections as well as genes linked to potential resistance to infection that may be targets for therapeutics. PMID:27211830

  6. Exercise training causes differential changes in gene expression in diaphragm arteries and 2A arterioles of obese rats.

    PubMed

    Laughlin, M Harold; Padilla, Jaume; Jenkins, Nathan T; Thorne, Pamela K; Martin, Jeffrey S; Rector, R Scott; Akter, Sadia; Davis, J Wade

    2015-09-15

    We employed next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology to assess the effects of two different exercise training protocols on transcriptional profiles in diaphragm second-order arterioles (D2a) and in the diaphragm feed artery (DFA) from Otsuka Long Evans Tokushima Fatty (OLETF) rats. Arterioles were isolated from the diaphragm of OLETF rats that underwent an endurance exercise training program (EX; n = 13), interval sprint training program (SPRINT; n = 14), or remained sedentary (Sed; n = 12). Our hypothesis was that exercise training would have similar effects on gene expression in the diaphragm and soleus muscle arterioles because diaphragm blood flow increases during exercise to a similar extent as in soleus. Results reveal that several canonical pathways that were significantly altered by exercise in limb skeletal muscles were not among the pathways significantly changed in the diaphragm arterioles including actin cytoskeleton signaling, role of NFAT in regulation of immune response, protein kinase A signaling, and protein ubiquitination pathway. EX training altered the expression of a smaller number of genes than did SPRINT in the DFA but induced a larger number of genes with altered expression in the D2a than did SPRINT. In fact, FDR differential expression analysis (FDR, 10%) indicated that only two genes exhibited altered expression in D2a of SPRINT rats. Very few of the genes that exhibited altered expression in the DFA or D2a were also altered in limb muscle arterioles. Finally, results indicate that the 2a arterioles of soleus muscle (S2a) from endurance-trained animals and the DFA of SPRINT animals exhibited the largest number of genes with altered expression.

  7. GEO2Enrichr: browser extension and server app to extract gene sets from GEO and analyze them for biological functions.

    PubMed

    Gundersen, Gregory W; Jones, Matthew R; Rouillard, Andrew D; Kou, Yan; Monteiro, Caroline D; Feldmann, Axel S; Hu, Kevin S; Ma'ayan, Avi

    2015-09-15

    Identification of differentially expressed genes is an important step in extracting knowledge from gene expression profiling studies. The raw expression data from microarray and other high-throughput technologies is deposited into the Gene Expression Omnibus (GEO) and served as Simple Omnibus Format in Text (SOFT) files. However, to extract and analyze differentially expressed genes from GEO requires significant computational skills. Here we introduce GEO2Enrichr, a browser extension for extracting differentially expressed gene sets from GEO and analyzing those sets with Enrichr, an independent gene set enrichment analysis tool containing over 70 000 annotated gene sets organized into 75 gene-set libraries. GEO2Enrichr adds JavaScript code to GEO web-pages; this code scrapes user selected accession numbers and metadata, and then, with one click, users can submit this information to a web-server application that downloads the SOFT files, parses, cleans and normalizes the data, identifies the differentially expressed genes, and then pipes the resulting gene lists to Enrichr for downstream functional analysis. GEO2Enrichr opens a new avenue for adding functionality to major bioinformatics resources such GEO by integrating tools and resources without the need for a plug-in architecture. Importantly, GEO2Enrichr helps researchers to quickly explore hypotheses with little technical overhead, lowering the barrier of entry for biologists by automating data processing steps needed for knowledge extraction from the major repository GEO. GEO2Enrichr is an open source tool, freely available for installation as browser extensions at the Chrome Web Store and FireFox Add-ons. Documentation and a browser independent web application can be found at http://amp.pharm.mssm.edu/g2e/. avi.maayan@mssm.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Polyphenism in social insects: insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris

    PubMed Central

    2011-01-01

    Background Understanding polyphenism, the ability of a single genome to express multiple morphologically and behaviourally distinct phenotypes, is an important goal for evolutionary and developmental biology. Polyphenism has been key to the evolution of the Hymenoptera, and particularly the social Hymenoptera where the genome of a single species regulates distinct larval stages, sexual dimorphism and physical castes within the female sex. Transcriptomic analyses of social Hymenoptera will therefore provide unique insights into how changes in gene expression underlie such complexity. Here we describe gene expression in individual specimens of the pre-adult stages, sexes and castes of the key pollinator, the buff-tailed bumblebee Bombus terrestris. Results cDNA was prepared from mRNA from five life cycle stages (one larva, one pupa, one male, one gyne and two workers) and a total of 1,610,742 expressed sequence tags (ESTs) were generated using Roche 454 technology, substantially increasing the sequence data available for this important species. Overlapping ESTs were assembled into 36,354 B. terrestris putative transcripts, and functionally annotated. A preliminary assessment of differences in gene expression across non-replicated specimens from the pre-adult stages, castes and sexes was performed using R-STAT analysis. Individual samples from the life cycle stages of the bumblebee differed in the expression of a wide array of genes, including genes involved in amino acid storage, metabolism, immunity and olfaction. Conclusions Detailed analyses of immune and olfaction gene expression across phenotypes demonstrated how transcriptomic analyses can inform our understanding of processes central to the biology of B. terrestris and the social Hymenoptera in general. For example, examination of immunity-related genes identified high conservation of important immunity pathway components across individual specimens from the life cycle stages while olfactory-related genes exhibited differential expression with a wider repertoire of gene expression within adults, especially sexuals, in comparison to immature stages. As there is an absence of replication across the samples, the results of this study are preliminary but provide a number of candidate genes which may be related to distinct phenotypic stage expression. This comprehensive transcriptome catalogue will provide an important gene discovery resource for directed programmes in ecology, evolution and conservation of a key pollinator. PMID:22185240

  9. Global Analysis of Gene Expression Profiles in Physic Nut (Jatropha curcas L.) Seedlings Exposed to Salt Stress

    PubMed Central

    Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2014-01-01

    Background Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many “biological processes” were affected by salt stress, particular those categories belong to “metabolic process”, such as “primary metabolism process”, “cellular metabolism process” and “macromolecule metabolism process”. The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. Conclusions/Significance The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future. PMID:24837971

  10. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress.

    PubMed

    Zhang, Lin; Zhang, Chao; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2014-01-01

    Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many "biological processes" were affected by salt stress, particular those categories belong to "metabolic process", such as "primary metabolism process", "cellular metabolism process" and "macromolecule metabolism process". The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future.

  11. Prediction of epigenetically regulated genes in breast cancer cell lines.

    PubMed

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria E H; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-06-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profiles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profiles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fixed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically significant negative correlation between methylation profiles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identified 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators.

  12. Early developments in gene-expression profiling of breast tumors: potential for increasing black-white patient disparities in breast cancer outcomes?

    PubMed

    Odierna, Donna H; Afable-Munsuz, Aimee; Ikediobi, Ogechi; Beattie, Mary; Knight, Sara; Ko, Michelle; Wilson, Adrienne; Ponce, Ninez A

    2011-11-01

    New prognostic tests, such as gene-expression profiling (GEP) of breast tumors, are expected to prolong survival and improve the quality of life for many breast cancer patients. In this article, we argue that GEP has not been adequately validated in minority populations, and that both biological and social factors might affect the broad utility of these tests in diverse populations. We suggest that the widespread use of this technology could potentially lead to suboptimal treatment for black women, resulting in a further increase in black-white patient disparities in treatment response, morbidity and mortality rates. We argue for the need to build a large and diverse evidence base for GEP and other emerging technologies in personalized medicine.

  13. Stable zymomonas mobilis xylose and arabinose fermenting strains

    DOEpatents

    Zhang, Min [Lakewood, CO; Chou, Yat-Chen [Taipei, TW

    2008-04-08

    The present invention briefly includes a transposon for stable insertion of foreign genes into a bacterial genome, comprising at least one operon having structural genes encoding enzymes selected from the group consisting of xylAxylB, araBAD and tal/tkt, and at least one promoter for expression of the structural genes in the bacterium, a pair of inverted insertion sequences, the operons contained inside the insertion sequences, and a transposase gene located outside of the insertion sequences. A plasmid shuttle vector for transformation of foreign genes into a bacterial genome, comprising at least one operon having structural genes encoding enzymes selected from the group consisting of xylAxylB, araBAD and tal/tkt, at least one promoter for expression of the structural genes in the bacterium, and at least two DNA fragments having homology with a gene in the bacterial genome to be transformed, is also provided.The transposon and shuttle vectors are useful in constructing significantly different Zymomonas mobilis strains, according to the present invention, which are useful in the conversion of the cellulose derived pentose sugars into fuels and chemicals, using traditional fermentation technology, because they are stable for expression in a non-selection medium.

  14. Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells

    NASA Astrophysics Data System (ADS)

    Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.

    2006-01-01

    Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions.

  15. Effect of simulated microgravity on oxidation-sensitive gene expression in PC12 cells

    PubMed Central

    Kwon, Ohwon; Sartor, Maureen; Tomlinson, Craig R.; Millard, Ronald W.; Olah, Mark E.; Sankovic, John M.; Banerjee, Rupak K.

    2008-01-01

    Oxygen utilization by and oxygen dependence of cellular processes may be different in biological systems that are exposed to microgravity (micro-g). A baseline in which cellular changes in oxygen sensitive molecular processes occur during micro-g conditions would be important to pursue this question. The objective of this research is to analyze oxidation-sensitive gene expression in a model cell line [rat pheochromocytoma (PC12)] under simulated micro-g conditions. The PC12 cell line is well characterized in its response to oxygen, and is widely recognized as a sensitive model for studying the responses of oxygen-sensitive molecular and cellular processes. This study uses the rotating wall vessel bioreactor (RWV) designed at NASA to simulate micro-g. Gene expression in PC12 cells in response to micro-g was analyzed by DNA microarray technology. The microarray analysis of PC12 cells cultured for 4 days under simulated micro-g under standardized oxygen environment conditions revealed more than 100 genes whose expression levels were changed at least twofold (up-regulation of 65 genes and down-regulation of 39 genes) compared with those from cells in the unit gravity (unit-g) control. This study observed that genes involved in the oxidoreductase activity category were most significantly differentially expressed under micro-g conditions. Also, known oxidation-sensitive transcription factors such as hypoxia-inducible factor-2α, c-myc, and the peroxisome proliferator-activated receptor-γ were changed significantly. Our initial results from the gene expression microarray studies may provide a context in which to evaluate the effect of varying oxygen environments on the background of differential gene regulation of biological processes under variable gravity conditions. PMID:19081771

  16. Digital Gene Expression Analysis Provides Insight into the Transcript Profile of the Genes Involved in Aporphine Alkaloid Biosynthesis in Lotus (Nelumbo nucifera)

    PubMed Central

    Yang, Mei; Zhu, Lingping; Li, Ling; Li, Juanjuan; Xu, Liming; Feng, Ji; Liu, Yanling

    2017-01-01

    The predominant alkaloids in lotus leaves are aporphine alkaloids. These are the most important active components and have many pharmacological properties, but little is known about their biosynthesis. We used digital gene expression (DGE) technology to identify differentially-expressed genes (DEGs) between two lotus cultivars with different alkaloid contents at four leaf development stages. We also predicted potential genes involved in aporphine alkaloid biosynthesis by weighted gene co-expression network analysis (WGCNA). Approximately 335 billion nucleotides were generated; and 94% of which were aligned against the reference genome. Of 22 thousand expressed genes, 19,000 were differentially expressed between the two cultivars at the four stages. Gene Ontology (GO) enrichment analysis revealed that catalytic activity and oxidoreductase activity were enriched significantly in most pairwise comparisons. In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, dozens of DEGs were assigned to the categories of biosynthesis of secondary metabolites, isoquinoline alkaloid biosynthesis, and flavonoid biosynthesis. The genes encoding norcoclaurine synthase (NCS), norcoclaurine 6-O-methyltransferase (6OMT), coclaurine N-methyltransferase (CNMT), N-methylcoclaurine 3′-hydroxylase (NMCH), and 3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase (4′OMT) in the common pathways of benzylisoquinoline alkaloid biosynthesis and the ones encoding corytuberine synthase (CTS) in aporphine alkaloid biosynthetic pathway, which have been characterized in other plants, were identified in lotus. These genes had positive effects on alkaloid content, albeit with phenotypic lag. The WGCNA of DEGs revealed that one network module was associated with the dynamic change of alkaloid content. Eleven genes encoding proteins with methyltransferase, oxidoreductase and CYP450 activities were identified. These were surmised to be genes involved in aporphine alkaloid biosynthesis. This transcriptomic database provides new directions for future studies on clarifying the aporphine alkaloid pathway. PMID:28197160

  17. Unstable genomes elevate transcriptome dynamics

    PubMed Central

    Stevens, Joshua B.; Liu, Guo; Abdallah, Batoul Y.; Horne, Steven D.; Ye, Karen J.; Bremer, Steven W.; Ye, Christine J.; Krawetz, Stephen A.; Heng, Henry H.

    2015-01-01

    The challenge of identifying common expression signatures in cancer is well known, however the reason behind this is largely unclear. Traditionally variation in expression signatures has been attributed to technological problems, however recent evidence suggests that chromosome instability (CIN) and resultant karyotypic heterogeneity may be a large contributing factor. Using a well-defined model of immortalization, we systematically compared the pattern of genome alteration and expression dynamics during somatic evolution. Co-measurement of global gene expression and karyotypic alteration throughout the immortalization process reveals that karyotype changes influence gene expression as major structural and numerical karyotypic alterations result in large gene expression deviation. Replicate samples from stages with stable genomes are more similar to each other than are replicate samples with karyotypic heterogeneity. Karyotypic and gene expression change during immortalization is dynamic as each stage of progression has a unique expression pattern. This was further verified by comparing global expression in two replicates grown in one flask with known karyotypes. Replicates with higher karyotypic instability were found to be less similar than replicates with stable karyotypes. This data illustrates the karyotype, transcriptome, and transcriptome determined pathways are in constant flux during somatic cellular evolution (particularly during the macroevolutionary phase) and this flux is an inextricable feature of CIN and essential for cancer formation. The findings presented here underscore the importance of understanding the evolutionary process of cancer in order to design improved treatment modalities. PMID:24122714

  18. High-Density Real-Time PCR-Based in Vivo Toxicogenomic Screen to Predict Organ-Specific Toxicity

    PubMed Central

    Fabian, Gabriella; Farago, Nora; Feher, Liliana Z.; Nagy, Lajos I.; Kulin, Sandor; Kitajka, Klara; Bito, Tamas; Tubak, Vilmos; Katona, Robert L.; Tiszlavicz, Laszlo; Puskas, Laszlo G.

    2011-01-01

    Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg, which were down-regulated by estradiol treatment. PMID:22016648

  19. BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris

    PubMed Central

    Lin, Sue; Dong, Heng; Zhang, Fang; Qiu, Lin; Wang, Fangzhan; Cao, Jiashu; Huang, Li

    2014-01-01

    Background and Aims The arabinogalactan protein (AGP) gene family is involved in plant reproduction. However, little is known about the function of individual AGP genes in pollen development and pollen tube growth. In this study, Brassica campestris male fertility 8 (BcMF8), a putative AGP-encoding gene previously found to be pollen specific in Chinese cabbage (B. campestris ssp. chinensis), was investigated. Methods Real-time reverse transcription–PCR and in situ hybridization were used to analyse the expression pattern of BcMF8 in pistils. Prokaryotic expression and western blots were used to ensure that BcMF8 could encode a protein. Antisense RNA technology was applied to silence gene expression, and morphological and cytological approaches (e.g. scanning electron microscopy and transmission electron microscopy) were used to reveal abnormal phenotypes caused by gene silencing. Key Results The BcMF8 gene encoded a putative AGP protein that was located in the cell wall, and was expressed in pollen grains and pollen tubes. The functional interruption of BcMF8 by antisense RNA technology resulted in slipper-shaped and bilaterally sunken pollen with abnormal intine development and aperture formation. The inhibition of BcMF8 led to a decrease in the percentage of in vitro pollen germination. In pollen that did germinate, the pollen tubes were unstable, abnormally shaped and burst more frequently relative to controls, which corresponded to an in vivo arrest of pollen germination at the stigma surface and retarded pollen tube growth in the stylar transmitting tissues. Conclusions The phenotypic defects of antisense BcMF8 RNA lines (bcmf8) suggest a crucial function of BcMF8 in modulating the physical nature of the pollen wall and in helping in maintaining the integrity of the pollen tube wall matrix. PMID:24489019

  20. Stem cell senescence. Effects of REAC technology on telomerase-independent and telomerase-dependent pathways.

    PubMed

    Rinaldi, S; Maioli, M; Pigliaru, G; Castagna, A; Santaniello, S; Basoli, V; Fontani, V; Ventura, C

    2014-09-16

    Decline in the gene expression of senescence repressor Bmi1, and telomerase, together with telomere shortening, underlay senescence of stem cells cultured for multiple passages. Here, we investigated whether the impairment of senescence preventing mechanisms can be efficiently counteracted by exposure of human adipose-derived stem cells to radio electric asymmetrically conveyed fields by an innovative technology, named Radio Electric Asymmetric Conveyer (REAC). Due to REAC exposure, the number of stem cells positively stained for senescence associated β-galactosidase was significantly reduced along multiple culturing passages. After a 90-day culture, REAC-treated cells exhibited significantly higher transcription of Bmi1 and enhanced expression of other stem cell pluripotency genes and related proteins, compared to unexposed cells. Transcription of the catalytic telomerase subunit (TERT) was also increased in REAC-treated cells at all passages. Moreover, while telomere shortening occurred at early passages in both REAC-treated and untreated cells, a significant rescue of telomere length could be observed at late passages only in REAC-exposed cells. Thus, REAC-asymmetrically conveyed radio electric fields acted on a gene and protein expression program of both telomerase-independent and telomerase-dependent patterning to optimize stem cell ability to cope with senescence progression.

  1. Semantic integration of gene expression analysis tools and data sources using software connectors

    PubMed Central

    2013-01-01

    Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data. PMID:24341380

  2. Geometry of the Gene Expression Space of Individual Cells

    PubMed Central

    Korem, Yael; Szekely, Pablo; Hart, Yuval; Sheftel, Hila; Hausser, Jean; Mayo, Avi; Rothenberg, Michael E.; Kalisky, Tomer; Alon, Uri

    2015-01-01

    There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes) in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a polyhedron, in which the vertices represent specialists at key tasks. PMID:26161936

  3. Semantic integration of gene expression analysis tools and data sources using software connectors.

    PubMed

    Miyazaki, Flávia A; Guardia, Gabriela D A; Vêncio, Ricardo Z N; de Farias, Cléver R G

    2013-10-25

    The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heterogeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.

  4. Direct Capture Technologies for Genomics-Guided Discovery of Natural Products.

    PubMed

    Chan, Andrew N; Santa Maria, Kevin C; Li, Bo

    2016-01-01

    Microbes are important producers of natural products, which have played key roles in understanding biology and treating disease. However, the full potential of microbes to produce natural products has yet to be realized; the overwhelming majority of natural product gene clusters encoded in microbial genomes remain "cryptic", and have not been expressed or characterized. In contrast to the fast-growing number of genomic sequences and bioinformatic tools, methods to connect these genes to natural product molecules are still limited, creating a bottleneck in genome-mining efforts to discover novel natural products. Here we review developing technologies that leverage the power of homologous recombination to directly capture natural product gene clusters and express them in model hosts for isolation and structural characterization. Although direct capture is still in its early stages of development, it has been successfully utilized in several different classes of natural products. These early successes will be reviewed, and the methods will be compared and contrasted with existing traditional technologies. Lastly, we will discuss the opportunities for the development of direct capture in other organisms, and possibilities to integrate direct capture with emerging genome-editing techniques to accelerate future study of natural products.

  5. Estimation of Dynamic Systems for Gene Regulatory Networks from Dependent Time-Course Data.

    PubMed

    Kim, Yoonji; Kim, Jaejik

    2018-06-15

    Dynamic system consisting of ordinary differential equations (ODEs) is a well-known tool for describing dynamic nature of gene regulatory networks (GRNs), and the dynamic features of GRNs are usually captured through time-course gene expression data. Owing to high-throughput technologies, time-course gene expression data have complex structures such as heteroscedasticity, correlations between genes, and time dependence. Since gene experiments typically yield highly noisy data with small sample size, for a more accurate prediction of the dynamics, the complex structures should be taken into account in ODE models. Hence, this study proposes an ODE model considering such data structures and a fast and stable estimation method for the ODE parameters based on the generalized profiling approach with data smoothing techniques. The proposed method also provides statistical inference for the ODE estimator and it is applied to a zebrafish retina cell network.

  6. Network of proteins, enzymes and genes linked to biomass degradation shared by Trichoderma species.

    PubMed

    Horta, Maria Augusta Crivelente; Filho, Jaire Alves Ferreira; Murad, Natália Faraj; de Oliveira Santos, Eidy; Dos Santos, Clelton Aparecido; Mendes, Juliano Sales; Brandão, Marcelo Mendes; Azzoni, Sindelia Freitas; de Souza, Anete Pereira

    2018-01-22

    Understanding relationships between genes responsible for enzymatic hydrolysis of cellulose and synergistic reactions is fundamental for improving biomass biodegradation technologies. To reveal synergistic reactions, the transcriptome, exoproteome, and enzymatic activities of extracts from Trichoderma harzianum, Trichoderma reesei and Trichoderma atroviride under biodegradation conditions were examined. This work revealed co-regulatory networks across carbohydrate-active enzyme (CAZy) genes and secreted proteins in extracts. A set of 80 proteins and respective genes that might correspond to a common system for biodegradation from the studied species were evaluated to elucidate new co-regulated genes. Differences such as one unique base pair between fungal genomes might influence enzyme-substrate binding sites and alter fungal gene expression responses, explaining the enzymatic activities specific to each species observed in the corresponding extracts. These differences are also responsible for the different architectures observed in the co-expression networks.

  7. Synthetic Gene Expression Circuits for Designing Precision Tools in Oncology

    PubMed Central

    Re, Angela

    2017-01-01

    Precision medicine in oncology needs to enhance its capabilities to match diagnostic and therapeutic technologies to individual patients. Synthetic biology streamlines the design and construction of functionalized devices through standardization and rational engineering of basic biological elements decoupled from their natural context. Remarkable improvements have opened the prospects for the availability of synthetic devices of enhanced mechanism clarity, robustness, sensitivity, as well as scalability and portability, which might bring new capabilities in precision cancer medicine implementations. In this review, we begin by presenting a brief overview of some of the major advances in the engineering of synthetic genetic circuits aimed to the control of gene expression and operating at the transcriptional, post-transcriptional/translational, and post-translational levels. We then focus on engineering synthetic circuits as an enabling methodology for the successful establishment of precision technologies in oncology. We describe significant advancements in our capabilities to tailor synthetic genetic circuits to specific applications in tumor diagnosis, tumor cell- and gene-based therapy, and drug delivery. PMID:28894736

  8. Fine-grained parallelization of fitness functions in bioinformatics optimization problems: gene selection for cancer classification and biclustering of gene expression data.

    PubMed

    Gomez-Pulido, Juan A; Cerrada-Barrios, Jose L; Trinidad-Amado, Sebastian; Lanza-Gutierrez, Jose M; Fernandez-Diaz, Ramon A; Crawford, Broderick; Soto, Ricardo

    2016-08-31

    Metaheuristics are widely used to solve large combinatorial optimization problems in bioinformatics because of the huge set of possible solutions. Two representative problems are gene selection for cancer classification and biclustering of gene expression data. In most cases, these metaheuristics, as well as other non-linear techniques, apply a fitness function to each possible solution with a size-limited population, and that step involves higher latencies than other parts of the algorithms, which is the reason why the execution time of the applications will mainly depend on the execution time of the fitness function. In addition, it is usual to find floating-point arithmetic formulations for the fitness functions. This way, a careful parallelization of these functions using the reconfigurable hardware technology will accelerate the computation, specially if they are applied in parallel to several solutions of the population. A fine-grained parallelization of two floating-point fitness functions of different complexities and features involved in biclustering of gene expression data and gene selection for cancer classification allowed for obtaining higher speedups and power-reduced computation with regard to usual microprocessors. The results show better performances using reconfigurable hardware technology instead of usual microprocessors, in computing time and power consumption terms, not only because of the parallelization of the arithmetic operations, but also thanks to the concurrent fitness evaluation for several individuals of the population in the metaheuristic. This is a good basis for building accelerated and low-energy solutions for intensive computing scenarios.

  9. Interpretable Early Classification of Multivariate Time Series

    ERIC Educational Resources Information Center

    Ghalwash, Mohamed F.

    2013-01-01

    Recent advances in technology have led to an explosion in data collection over time rather than in a single snapshot. For example, microarray technology allows us to measure gene expression levels in different conditions over time. Such temporal data grants the opportunity for data miners to develop algorithms to address domain-related problems,…

  10. Integration of multi-omics data for integrative gene regulatory network inference.

    PubMed

    Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun; Kang, Mingon

    2017-01-01

    Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called 'multi-omics data', that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN's capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed.

  11. Integration of multi-omics data for integrative gene regulatory network inference

    PubMed Central

    Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun

    2017-01-01

    Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called ‘multi-omics data’, that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN’s capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed. PMID:29354189

  12. Emerging Use of Gene Expression Microarrays in Plant Physiology

    DOE PAGES

    Wullschleger, Stan D.; Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology weremore » selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.« less

  13. Global Gene Expression Patterns and Somatic Mutations in Sporadic Intracranial Aneurysms.

    PubMed

    Li, Zhili; Tan, Haibin; Shi, Yi; Huang, Guangfu; Wang, Zhenyu; Liu, Ling; Yin, Cheng; Wang, Qi

    2017-04-01

    High-throughput sequencing technologies can expand our understanding of the pathologic basis of intracranial aneurysms (IAs). Our study was aimed to decipher the gene expression signature and genetic factors associated with IAs. We determined the gene expression levels of 3 cases of IAs by RNA sequencing. Bioinformatics analysis was conducted to identify the differentially expressed genes (DEGs) and uncover their biological function. In addition, whole genome sequencing was performed on an additional 6 cases of IAs to detect the potential somatic alterations in DEGs. Compared with the normal arterial tissue, 1709 genes were differentially expressed in IAs arterial tissue. The most significantly up-regulated gene and down-regulated gene, H19 and HIST1H3J, may be essential for tumorigenesis of IAs. Hub protein of IKBKG in protein-protein interaction network was probably involved in the inflammation process in aneurysms. Another 2 hub proteins, ACTB and MKI67IP, as well as up-regulated genes, might be abnormally activated in aneurysms and involved in the pathogenesis of IAs. Further whole genome sequencing and filtering yielded 4 candidate somatic single nucleotide variants including MUC3B, and BLM may be involved in the pathogenesis of IAs. Even though, our results do not support the hypothesis of somatic mutations occurred in the DEGs. Two-dimensional genomic data from transcriptome and whole genome sequencing indicated that no somatic mutations occurred in DEGs. In addition, 3 DEGs (IKBKG, ACTB, and MKI67IP) and 2 mutant genes (MUC3B and BLM) were essential in IAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Gene Expression in Bone

    NASA Astrophysics Data System (ADS)

    D'Ambrogio, A.

    Skeletal system has two main functions, to provide mechanical integrity for both locomotion and protection and to play an important role in mineral homeostasis. There is extensive evidence showing loss of bone mass during long-term Space-Flights. The loss is due to a break in the equilibrium between the activity of osteoblasts (the cells that forms bone) and the activity of osteoclasts (the cells that resorbs bone). Surprisingly, there is scanty information about the possible altered gene expression occurring in cells that form bone in microgravity.(Just 69 articles result from a "gene expression in microgravity" MedLine query.) Gene-chip or microarray technology allows to screen thousands of genes at the same time: the use of this technology on samples coming from cells exposed to microgravity could provide us with many important informations. For example, the identification of the molecules or structures which are the first sensors of the mechanical stress derived from lack of gravity, could help in understanding which is the first event leading to bone loss due to long-term exposure to microgravity. Consequently, this structure could become a target for a custom-designed drug. It is evident that bone mass loss, observed during long-time stay in Space, represents an accelerated model of what happens in aging osteoporosis. Therefore, the discovery and design of drugs able to interfere with the bone-loss process, could help also in preventing negative physiological processes normally observed on Earth. Considering the aims stated above, my research is designed to:

  15. Spatio-temporal control of gene expression and cancer treatment using magnetic resonance imaging-guided focused ultrasound.

    PubMed

    Moonen, Chrit T W

    2007-06-15

    Local temperature elevation may be used for tumor ablation, gene expression, drug activation, and gene and/or drug delivery. High-intensity focused ultrasound (HIFU) is the only clinically viable technology that can be used to achieve a local temperature increase deep inside the human body in a noninvasive way. Magnetic resonance imaging (MRI) guidance of the procedure allows in situ target definition and identification of nearby healthy tissue to be spared. In addition, MRI can be used to provide continuous temperature mapping during HIFU for spatial and temporal control of the heating procedure and prediction of the final lesion based on the received thermal dose. The primary purpose of the development of MRI-guided HIFU was to achieve safe noninvasive tissue ablation. The technique has been tested extensively in preclinical studies and is now accepted in the clinic for ablation of uterine fibroids. MRI-guided HIFU for ablation shows conceptual similarities with radiation therapy. However, thermal damage generally shows threshold-like behavior, with necrosis above the critical thermal dose and full recovery below. MRI-guided HIFU is being clinically evaluated in the cancer field. The technology also shows great promise for a variety of advanced therapeutic methods, such as gene therapy. MR-guided HIFU, together with the use of a temperature-sensitive promoter, provides local, physical, and spatio-temporal control of transgene expression. Specially designed contrast agents, together with the combined use of MRI and ultrasound, may be used for local gene and drug delivery.

  16. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels.

    PubMed

    Gilbert, Matthew K; Majumdar, Rajtilak; Rajasekaran, Kanniah; Chen, Zhi-Yuan; Wei, Qijian; Sickler, Christine M; Lebar, Matthew D; Cary, Jeffrey W; Frame, Bronwyn R; Wang, Kan

    2018-06-01

    Expressing an RNAi construct in maize kernels that targets the gene for alpha-amylase in Aspergillus flavus resulted in suppression of alpha-amylase (amy1) gene expression and decreased fungal growth during in situ infection resulting in decreased aflatoxin production. Aspergillus flavus is a saprophytic fungus and pathogen to several important food and feed crops, including maize. Once the fungus colonizes lipid-rich seed tissues, it has the potential to produce toxic secondary metabolites, the most dangerous of which is aflatoxin. The pre-harvest control of A. flavus contamination and aflatoxin production is an area of intense research, which includes breeding strategies, biological control, and the use of genetically-modified crops. Host-induced gene silencing, whereby the host crop produces siRNA molecules targeting crucial genes in the invading fungus and targeting the gene for degradation, has shown to be promising in its ability to inhibit fungal growth and decrease aflatoxin contamination. Here, we demonstrate that maize inbred B104 expressing an RNAi construct targeting the A. flavus alpha-amylase gene amy1 effectively reduces amy1 gene expression resulting in decreased fungal colonization and aflatoxin accumulation in kernels. This work contributes to the development of a promising technology for reducing the negative economic and health impacts of A. flavus growth and aflatoxin contamination in food and feed crops.

  17. A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets.

    PubMed

    Liu, Li-Zhi; Wu, Fang-Xiang; Zhang, Wen-Jun

    2014-01-01

    As an abstract mapping of the gene regulations in the cell, gene regulatory network is important to both biological research study and practical applications. The reverse engineering of gene regulatory networks from microarray gene expression data is a challenging research problem in systems biology. With the development of biological technologies, multiple time-course gene expression datasets might be collected for a specific gene network under different circumstances. The inference of a gene regulatory network can be improved by integrating these multiple datasets. It is also known that gene expression data may be contaminated with large errors or outliers, which may affect the inference results. A novel method, Huber group LASSO, is proposed to infer the same underlying network topology from multiple time-course gene expression datasets as well as to take the robustness to large error or outliers into account. To solve the optimization problem involved in the proposed method, an efficient algorithm which combines the ideas of auxiliary function minimization and block descent is developed. A stability selection method is adapted to our method to find a network topology consisting of edges with scores. The proposed method is applied to both simulation datasets and real experimental datasets. It shows that Huber group LASSO outperforms the group LASSO in terms of both areas under receiver operating characteristic curves and areas under the precision-recall curves. The convergence analysis of the algorithm theoretically shows that the sequence generated from the algorithm converges to the optimal solution of the problem. The simulation and real data examples demonstrate the effectiveness of the Huber group LASSO in integrating multiple time-course gene expression datasets and improving the resistance to large errors or outliers.

  18. [Analysis of EML4-ALK gene fusion mutation in patients 
with non-small cell lung cancer].

    PubMed

    Wang, Xuzhou; Chen, Weisheng; Yu, Yinghao

    2015-02-01

    Non-small cell lung cancer (NSCLC) is the main type of lung cancer, and the related locus mutation detection research has become a hot direction of molecular targeted therapy, studying on gene mutation status of echinodem microtubule associated protein like 4-Anaplastic lymphoma kinase (EML4-ALK) and epidermal growth factor receptor (EGFR), detecting the sensitivity of EML4-ALK gene fusion and gene mutation of EGFR. EML4-ALK gene fusion in 85 cases of paraffin embedded tumor tissue and adjacent lung tissue was detected with the application of immunohistochemistry (IHC), Scorpions amplification refractory mutation system (Scorpions ARMS) fluorescence quantitative PCR and fluorescence in situ hybridization (FISH) technology, and EGFR gene in 18, 19, 20 and 21 exon mutation status was detected with the application of ARMS method. In 115 cases of NSCLC, IHC showed 32 cases with ALK (D5F3) expression, the expression rate was 27.8%; ARMS showed 27 cases with EML4-ALK fusion gene mutation, the mutation detection rate was 23.5%; 53 cases were detected with EGFR mutation, the mutation rate was 46%. While FISH showed 23 cases with EML4-ALK fusion gene mutation, the detection rate was 20%, slightly lower than the ARMS detection results, suggesting that ARMS more sensitive. The application of IHC, ARMS fluorescence quantitative PCR and FISH technology can make a rapid and accurate evaluation of EML4-ALK gene fusion.

  19. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis.

    PubMed

    Li, Wenli; Turner, Amy; Aggarwal, Praful; Matter, Andrea; Storvick, Erin; Arnett, Donna K; Broeckel, Ulrich

    2015-12-16

    Whole transcriptome sequencing (RNA-seq) represents a powerful approach for whole transcriptome gene expression analysis. However, RNA-seq carries a few limitations, e.g., the requirement of a significant amount of input RNA and complications led by non-specific mapping of short reads. The Ion AmpliSeq Transcriptome Human Gene Expression Kit (AmpliSeq) was recently introduced by Life Technologies as a whole-transcriptome, targeted gene quantification kit to overcome these limitations of RNA-seq. To assess the performance of this new methodology, we performed a comprehensive comparison of AmpliSeq with RNA-seq using two well-established next-generation sequencing platforms (Illumina HiSeq and Ion Torrent Proton). We analyzed standard reference RNA samples and RNA samples obtained from human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs). Using published data from two standard RNA reference samples, we observed a strong concordance of log2 fold change for all genes when comparing AmpliSeq to Illumina HiSeq (Pearson's r = 0.92) and Ion Torrent Proton (Pearson's r = 0.92). We used ROC, Matthew's correlation coefficient and RMSD to determine the overall performance characteristics. All three statistical methods demonstrate AmpliSeq as a highly accurate method for differential gene expression analysis. Additionally, for genes with high abundance, AmpliSeq outperforms the two RNA-seq methods. When analyzing four closely related hiPSC-CM lines, we show that both AmpliSeq and RNA-seq capture similar global gene expression patterns consistent with known sources of variations. Our study indicates that AmpliSeq excels in the limiting areas of RNA-seq for gene expression quantification analysis. Thus, AmpliSeq stands as a very sensitive and cost-effective approach for very large scale gene expression analysis and mRNA marker screening with high accuracy.

  20. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

    PubMed

    Kogelman, Lisette J A; Zhernakova, Daria V; Westra, Harm-Jan; Cirera, Susanna; Fredholm, Merete; Franke, Lude; Kadarmideen, Haja N

    2015-10-20

    Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential expression analysis was performed using the Obesity Index as a continuous variable in a linear model. eQTL mapping was then performed to integrate 60 K porcine SNP chip data with the RNA sequencing data. Results were restricted based on genome-wide significant single nucleotide polymorphisms, detected differentially expressed genes, and previously detected co-expressed gene modules. Further data integration was performed by detecting co-expression patterns among eQTLs and integration with protein data. Differential expression analysis of RNA sequencing data revealed 458 differentially expressed genes. The eQTL mapping resulted in 987 cis-eQTLs and 73 trans-eQTLs (false discovery rate < 0.05), of which the cis-eQTLs were associated with metabolic pathways. We reduced the eQTL search space by focusing on differentially expressed and co-expressed genes and disease-associated single nucleotide polymorphisms to detect obesity-related genes and pathways. Building a co-expression network using eQTLs resulted in the detection of a module strongly associated with lipid pathways. Furthermore, we detected several obesity candidate genes, for example, ENPP1, CTSL, and ABHD12B. To our knowledge, this is the first study to perform an integrated genomics and transcriptomics (eQTL) study using, and modeling, genomic and subcutaneous adipose tissue RNA sequencing data on obesity in a porcine model. We detected several pathways and potential causal genes for obesity. Further validation and investigation may reveal their exact function and association with obesity.

  1. Gene Expression Profile Analysis as a Prognostic Indicator of Normal Tissue Response to Simulated Space Radiations

    NASA Technical Reports Server (NTRS)

    Story, Michael; Stivers, David N.

    2004-01-01

    This project was funded as a pilot project to determine the feasibility of using gene expression profiles to characterize the response of human cells to exposure to particulate radiations such as those encountered in the spaceflight environment. We proposed to use microarray technology to examine the gene expression patterns of a bank of well-characterized human fibroblast cell cultures. These fibroblast cultures were derived from breast or head and neck cancer patients who exhibited normal, minimal, or severe normal tissue reactions following low LET radiation exposure via radiotherapy. Furthermore, determination of SF2 values from fibroblasts cultured from these individuals were predictive of risk for severe late reactions. We hypothesized that by determining the expression of thousands of genes we could identify gene expression patterns that reflect how normal tissues respond to high Z and energy (HZE) particles, that is, that there are molecular signatures for HZE exposures. We also hypothesized that individuals who are intrinsically radiosensitive may elicit a unique response. Because this was funded as a pilot project we focused our initial studies on logistics and appropriate experimental design, and then to test our hypothesis that there is a unique molecular response to specific particles, in this case C and Fe, for primary human skin fibroblasts.

  2. Quantum changes in Helicobacter pylori gene expression accompany host-adaptation

    PubMed Central

    Wise, Michael J.; Khosravi, Yalda; Seow, Shih-Wee; Amoyo, Arlaine A.; Pettersson, Sven; Peters, Fanny; Tay, Chin-Yen; Perkins, Timothy T.; Loke, Mun-Fai; Marshall, Barry J.; Vadivelu, Jamuna

    2017-01-01

    Abstract Helicobacter pylori is a highly successful gastric pathogen. High genomic plasticity allows its adaptation to changing host environments. Complete genomes of H. pylori clinical isolate UM032 and its mice-adapted serial derivatives 298 and 299, generated using both PacBio RS and Illumina MiSeq sequencing technologies, were compared to identify novel elements responsible for host-adaptation. The acquisition of a jhp0562-like allele, which encodes for a galactosyltransferase, was identified in the mice-adapted strains. Our analysis implies a new β-1,4-galactosyltransferase role for this enzyme, essential for Ley antigen expression. Intragenomic recombination between babA and babB genes was also observed. Further, we expanded on the list of candidate genes whose expression patterns have been mediated by upstream homopolymer-length alterations to facilitate host adaption. Importantly, greater than four-fold reduction of mRNA levels was demonstrated in five genes. Among the down-regulated genes, three encode for outer membrane proteins, including BabA, BabB and HopD. As expected, a substantial reduction in BabA protein abundance was detected in mice-adapted strains 298 and 299 via Western analysis. Our results suggest that the expression of Ley antigen and reduced outer membrane protein expressions may facilitate H. pylori colonisation of mouse gastric epithelium. PMID:27803027

  3. Utility of MicroRNAs and siRNAs in Cervical Carcinogenesis

    PubMed Central

    Díaz-González, Sacnite del Mar; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3′-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer. PMID:25874209

  4. Modulation of Immune Signaling and Metabolism Highlights Host and Fungal Transcriptional Responses in Mouse Models of Invasive Pulmonary Aspergillosis.

    PubMed

    Kale, Shiv D; Ayubi, Tariq; Chung, Dawoon; Tubau-Juni, Nuria; Leber, Andrew; Dang, Ha X; Karyala, Saikumar; Hontecillas, Raquel; Lawrence, Christopher B; Cramer, Robert A; Bassaganya-Riera, Josep

    2017-12-06

    Incidences of invasive pulmonary aspergillosis, an infection caused predominantly by Aspergillus fumigatus, have increased due to the growing number of immunocompromised individuals. While A. fumigatus is reliant upon deficiencies in the host to facilitate invasive disease, the distinct mechanisms that govern the host-pathogen interaction remain enigmatic, particularly in the context of distinct immune modulating therapies. To gain insights into these mechanisms, RNA-Seq technology was utilized to sequence RNA derived from lungs of 2 clinically relevant, but immunologically distinct murine models of IPA on days 2 and 3 post inoculation when infection is established and active disease present. Our findings identify notable differences in host gene expression between the chemotherapeutic and steroid models at the interface of immunity and metabolism. RT-qPCR verified model specific and nonspecific expression of 23 immune-associated genes. Deep sequencing facilitated identification of highly expressed fungal genes. We utilized sequence similarity and gene expression to categorize the A. fumigatus putative in vivo secretome. RT-qPCR suggests model specific gene expression for nine putative fungal secreted proteins. Our analysis identifies contrasting responses by the host and fungus from day 2 to 3 between the two models. These differences may help tailor the identification, development, and deployment of host- and/or fungal-targeted therapeutics.

  5. Utility of microRNAs and siRNAs in cervical carcinogenesis.

    PubMed

    Díaz-González, Sacnite del Mar; Deas, Jessica; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3'-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer.

  6. [From gene cloning to expressional analysis--practice and experience from educational reform of experimental gene engineering].

    PubMed

    Wu, Yan-Hua; Guo, Bin; Lou, Hui-Ling; Cui, Yu-Liang; Gu, Hui-Juan; Qiao, Shou-Yi

    2012-02-01

    Experimental gene engineering is a laboratory course focusing on the molecular structure, expression pattern and biological function of genes. Providing our students with a solid knowledge base and correct ways to conduct research is very important for high-quality education of genetic engineering. Inspired by recent progresses in this field, we improved the experimental gene engineering course by adding more updated knowledge and technologies and emphasizing on the combination of teaching and research, with the aim of offering our students a good start in their scientific careers.

  7. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.

    PubMed

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  8. DEXTER: Disease-Expression Relation Extraction from Text.

    PubMed

    Gupta, Samir; Dingerdissen, Hayley; Ross, Karen E; Hu, Yu; Wu, Cathy H; Mazumder, Raja; Vijay-Shanker, K

    2018-01-01

    Gene expression levels affect biological processes and play a key role in many diseases. Characterizing expression profiles is useful for clinical research, and diagnostics and prognostics of diseases. There are currently several high-quality databases that capture gene expression information, obtained mostly from large-scale studies, such as microarray and next-generation sequencing technologies, in the context of disease. The scientific literature is another rich source of information on gene expression-disease relationships that not only have been captured from large-scale studies but have also been observed in thousands of small-scale studies. Expression information obtained from literature through manual curation can extend expression databases. While many of the existing databases include information from literature, they are limited by the time-consuming nature of manual curation and have difficulty keeping up with the explosion of publications in the biomedical field. In this work, we describe an automated text-mining tool, Disease-Expression Relation Extraction from Text (DEXTER) to extract information from literature on gene and microRNA expression in the context of disease. One of the motivations in developing DEXTER was to extend the BioXpress database, a cancer-focused gene expression database that includes data derived from large-scale experiments and manual curation of publications. The literature-based portion of BioXpress lags behind significantly compared to expression information obtained from large-scale studies and can benefit from our text-mined results. We have conducted two different evaluations to measure the accuracy of our text-mining tool and achieved average F-scores of 88.51 and 81.81% for the two evaluations, respectively. Also, to demonstrate the ability to extract rich expression information in different disease-related scenarios, we used DEXTER to extract information on differential expression information for 2024 genes in lung cancer, 115 glycosyltransferases in 62 cancers and 826 microRNA in 171 cancers. All extractions using DEXTER are integrated in the literature-based portion of BioXpress.Database URL: http://biotm.cis.udel.edu/DEXTER.

  9. Gene expression of commensal Lactobacillus johnsonii strain NCC533 during in vitro growth and in the murine gut.

    PubMed

    Denou, Emmanuel; Berger, Bernard; Barretto, Caroline; Panoff, Jean-Michel; Arigoni, Fabrizio; Brüssow, Harald

    2007-11-01

    Work with pathogens like Vibrio cholerae has shown major differences between genes expressed in bacteria grown in vitro and in vivo. To explore this subject for commensals, we investigated the transcription of the Lactobacillus johnsonii NCC533 genome during in vitro and in vivo growth using the microarray technology. During broth growth, 537, 626, and 277 of the 1,756 tested genes were expressed during exponential phase, "adaptation" (early stationary phase), and stationary phase, respectively. One hundred one, 150, and 33 genes, respectively, were specifically transcribed in these three phases. To explore the in vivo transcription program, we fed L. johnsonii containing a resistance plasmid to antibiotic-treated mice. After a 2-day washout phase, we determined the viable-cell counts of lactobacilli that were in the lumina and associated with the mucosae of different gut segments. While the cell counts showed a rather uniform distribution along the gut, we observed marked differences with respect to the expression of the Lactobacillus genome. The largest number of transcribed genes was in the stomach (n = 786); the next-largest numbers occurred in the cecum (n = 391) and the jejunum (n = 296), while only 26 Lactobacillus genes were transcribed in the colon. In vitro and in vivo transcription programs overlapped only partially. One hundred ninety-one of the transcripts from the lactobacilli in the stomach were not detected during in vitro growth; 202 and 213 genes, respectively, were transcribed under all in vitro and in vivo conditions; but the core transcriptome for all growth conditions comprised only 103 genes. Forty-four percent of the NCC533 genes were not detectably transcribed under any of the investigated conditions. Nontranscribed genes were clustered on the genome and enriched in the variable-genome part. Our data revealed not only major differences between in vitro- and in vivo-expressed genes in a Lactobacillus gut commensal organism but also marked changes in the expression of genes along the digestive tract.

  10. Molecular-genetic imaging based on reporter gene expression.

    PubMed

    Kang, Joo Hyun; Chung, June-Key

    2008-06-01

    Molecular imaging includes proteomic, metabolic, cellular biologic process, and genetic imaging. In a narrow sense, molecular imaging means genetic imaging and can be called molecular-genetic imaging. Imaging reporter genes play a leading role in molecular-genetic imaging. There are 3 major methods of molecular-genetic imaging, based on optical, MRI, and nuclear medicine modalities. For each of these modalities, various reporter genes and probes have been developed, and these have resulted in successful transitions from bench to bedside applications. Each of these imaging modalities has its unique advantages and disadvantages. Fluorescent and bioluminescent optical imaging modalities are simple, less expensive, more convenient, and more user friendly than other imaging modalities. Another advantage, especially of bioluminescence imaging, is its ability to detect low levels of gene expression. MRI has the advantage of high spatial resolution, whereas nuclear medicine methods are highly sensitive and allow data from small-animal imaging studies to be translated to clinical practice. Moreover, multimodality imaging reporter genes will allow us to choose the imaging technologies that are most appropriate for the biologic problem at hand and facilitate the clinical application of reporter gene technologies. Reporter genes can be used to visualize the levels of expression of particular exogenous and endogenous genes and several intracellular biologic phenomena, including specific signal transduction pathways, nuclear receptor activities, and protein-protein interactions. This technique provides a straightforward means of monitoring tumor mass and can visualize the in vivo distributions of target cells, such as immune cells and stem cells. Molecular imaging has gradually evolved into an important tool for drug discovery and development, and transgenic mice with an imaging reporter gene can be useful during drug and stem cell therapy development. Moreover, instrumentation improvements, the identification of novel targets and genes, and imaging probe developments suggest that molecular-genetic imaging is likely to play an increasingly important role in the diagnosis and therapy of cancer.

  11. Hybrid Sequencing of Full-Length cDNA Transcripts of Stems and Leaves in Dendrobium officinale

    PubMed Central

    He, Liu; Fu, Shuhua; Xu, Zhichao; Yan, Jun; Xu, Jiang; Zhou, Hong; Zhou, Jianguo; Chen, Xinlian; Li, Ying; Au, Kin Fai; Yao, Hui

    2017-01-01

    Dendrobium officinale is an extremely valuable orchid used in traditional Chinese medicine, so sought after that it has a higher market value than gold. Although the expression profiles of some genes involved in the polysaccharide synthesis have previously been investigated, little research has been carried out on their alternatively spliced isoforms in D. officinale. In addition, information regarding the translocation of sugars from leaves to stems in D. officinale also remains limited. We analyzed the polysaccharide content of D. officinale leaves and stems, and completed in-depth transcriptome sequencing of these two diverse tissue types using second-generation sequencing (SGS) and single-molecule real-time (SMRT) sequencing technology. The results of this study yielded a digital inventory of gene and mRNA isoform expressions. A comparative analysis of both transcriptomes uncovered a total of 1414 differentially expressed genes, including 844 that were up-regulated and 570 that were down-regulated in stems. Of these genes, one sugars will eventually be exported transporter (SWEET) and one sucrose transporter (SUT) are expressed to a greater extent in D. officinale stems than in leaves. Two glycosyltransferase (GT) and four cellulose synthase (Ces) genes undergo a distinct degree of alternative splicing. In the stems, the content of polysaccharides is twice as much as that in the leaves. The differentially expressed GT and transcription factor (TF) genes will be the focus of further study. The genes DoSWEET4 and DoSUT1 are significantly expressed in the stem, and are likely to be involved in sugar loading in the phloem. PMID:28981454

  12. Scenario drafting to anticipate future developments in technology assessment.

    PubMed

    Retèl, Valesca P; Joore, Manuela A; Linn, Sabine C; Rutgers, Emiel J T; van Harten, Wim H

    2012-08-16

    Health Technology Assessment (HTA) information, and in particular cost-effectiveness data is needed to guide decisions, preferably already in early stages of technological development. However, at that moment there is usually a high degree of uncertainty, because evidence is limited and different development paths are still possible. We developed a multi-parameter framework to assess dynamic aspects of a technology -still in development-, by means of scenario drafting to determine the effects, costs and cost-effectiveness of possible future diffusion patterns. Secondly, we explored the value of this method on the case of the clinical implementation of the 70-gene signature for breast cancer, a gene expression profile for selecting patients who will benefit most from chemotherapy. To incorporate process-uncertainty, ten possible scenarios regarding the introduction of the 70-gene signature were drafted with European experts. Out of 5 most likely scenarios, 3 drivers of diffusion (non-compliance, technical failure, and uptake) were quantitatively integrated in a decision-analytical model. For these scenarios, the cost-effectiveness of the 70-gene signature expressed in Incremental Cost-Effectiveness Ratios (ICERs) was compared to clinical guidelines, calculated from the past (2005) until the future (2020). In 2005 the ICER was €1,9 million/quality-adjusted-life-year (QALY), meaning that the 70-gene signature was not yet cost-effective compared to the current clinical guideline. The ICER for the 70-gene signature improved over time with a range of €1,9 million to €26,145 in 2010 and €1,9 million to €11,123/QALY in 2020 depending on the separate scenario used. From 2010, the 70-gene signature should be cost-effective, based on the combined scenario. The uptake-scenario had strongest influence on the cost-effectiveness. When optimal diffusion of a technology is sought, incorporating process-uncertainty by means of scenario drafting into a decision model may reveal unanticipated developments and can demonstrate a range of possible cost-effectiveness outcomes. The effect of scenarios give additional information on the speed with cost effectiveness might be reached and thus provide a more realistic picture for policy makers, opinion leaders and manufacturers.

  13. Scenario drafting to anticipate future developments in technology assessment

    PubMed Central

    2012-01-01

    Background Health Technology Assessment (HTA) information, and in particular cost-effectiveness data is needed to guide decisions, preferably already in early stages of technological development. However, at that moment there is usually a high degree of uncertainty, because evidence is limited and different development paths are still possible. We developed a multi-parameter framework to assess dynamic aspects of a technology -still in development-, by means of scenario drafting to determine the effects, costs and cost-effectiveness of possible future diffusion patterns. Secondly, we explored the value of this method on the case of the clinical implementation of the 70-gene signature for breast cancer, a gene expression profile for selecting patients who will benefit most from chemotherapy. Methods To incorporate process-uncertainty, ten possible scenarios regarding the introduction of the 70-gene signature were drafted with European experts. Out of 5 most likely scenarios, 3 drivers of diffusion (non-compliance, technical failure, and uptake) were quantitatively integrated in a decision-analytical model. For these scenarios, the cost-effectiveness of the 70-gene signature expressed in Incremental Cost-Effectiveness Ratios (ICERs) was compared to clinical guidelines, calculated from the past (2005) until the future (2020). Results In 2005 the ICER was €1,9 million/quality-adjusted-life-year (QALY), meaning that the 70-gene signature was not yet cost-effective compared to the current clinical guideline. The ICER for the 70-gene signature improved over time with a range of €1,9 million to €26,145 in 2010 and €1,9 million to €11,123/QALY in 2020 depending on the separate scenario used. From 2010, the 70-gene signature should be cost-effective, based on the combined scenario. The uptake-scenario had strongest influence on the cost-effectiveness. Conclusions When optimal diffusion of a technology is sought, incorporating process-uncertainty by means of scenario drafting into a decision model may reveal unanticipated developments and can demonstrate a range of possible cost-effectiveness outcomes. The effect of scenarios give additional information on the speed with cost effectiveness might be reached and thus provide a more realistic picture for policy makers, opinion leaders and manufacturers. PMID:22894140

  14. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy

    PubMed Central

    Martínez-Andújar, Cristina; Ordiz, M. Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N.; Nonogaki, Hiroyuki

    2011-01-01

    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism. PMID:21969557

  15. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy.

    PubMed

    Martínez-Andújar, Cristina; Ordiz, M Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N; Nonogaki, Hiroyuki

    2011-10-11

    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism.

  16. Identification of a core set of rhizobial infection genes using data from single cell-types.

    PubMed

    Chen, Da-Song; Liu, Cheng-Wu; Roy, Sonali; Cousins, Donna; Stacey, Nicola; Murray, Jeremy D

    2015-01-01

    Genome-wide expression studies on nodulation have varied in their scale from entire root systems to dissected nodules or root sections containing nodule primordia (NP). More recently efforts have focused on developing methods for isolation of root hairs from infected plants and the application of laser-capture microdissection technology to nodules. Here we analyze two published data sets to identify a core set of infection genes that are expressed in the nodule and in root hairs during infection. Among the genes identified were those encoding phenylpropanoid biosynthesis enzymes including Chalcone-O-Methyltransferase which is required for the production of the potent Nod gene inducer 4',4-dihydroxy-2-methoxychalcone. A promoter-GUS analysis in transgenic hairy roots for two genes encoding Chalcone-O-Methyltransferase isoforms revealed their expression in rhizobially infected root hairs and the nodule infection zone but not in the nitrogen fixation zone. We also describe a group of Rhizobially Induced Peroxidases whose expression overlaps with the production of superoxide in rhizobially infected root hairs and in nodules and roots. Finally, we identify a cohort of co-regulated transcription factors as candidate regulators of these processes.

  17. Molecular profiling of multiple myeloma: from gene expression analysis to next-generation sequencing.

    PubMed

    Agnelli, Luca; Tassone, Pierfrancesco; Neri, Antonino

    2013-06-01

    Multiple myeloma is a fatal malignant proliferation of clonal bone marrow Ig-secreting plasma cells, characterized by wide clinical, biological, and molecular heterogeneity. Herein, global gene and microRNA expression, genome-wide DNA profilings, and next-generation sequencing technology used to investigate the genomic alterations underlying the bio-clinical heterogeneity in multiple myeloma are discussed. High-throughput technologies have undoubtedly allowed a better comprehension of the molecular basis of the disease, a fine stratification, and early identification of high-risk patients, and have provided insights toward targeted therapy studies. However, such technologies are at risk of being affected by laboratory- or cohort-specific biases, and are moreover influenced by high number of expected false positives. This aspect has a major weight in myeloma, which is characterized by large molecular heterogeneity. Therefore, meta-analysis as well as multiple approaches are desirable if not mandatory to validate the results obtained, in line with commonly accepted recommendation for tumor diagnostic/prognostic biomarker studies.

  18. OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid.

    PubMed

    Poehlman, William L; Rynge, Mats; Branton, Chris; Balamurugan, D; Feltus, Frank A

    2016-01-01

    High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments.

  19. OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid

    PubMed Central

    Poehlman, William L.; Rynge, Mats; Branton, Chris; Balamurugan, D.; Feltus, Frank A.

    2016-01-01

    High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments. PMID:27499617

  20. Comparative RNA-sequencing of the acarbose producer Actinoplanes sp. SE50/110 cultivated in different growth media.

    PubMed

    Schwientek, Patrick; Wendler, Sergej; Neshat, Armin; Eirich, Christina; Rückert, Christian; Klein, Andreas; Wehmeier, Udo F; Kalinowski, Jörn; Stoye, Jens; Pühler, Alfred

    2013-08-20

    Actinoplanes sp. SE50/110 is known as the producer of the alpha-glucosidase inhibitor acarbose, a potent drug in the treatment of type-2 diabetes mellitus. We conducted the first whole transcriptome analysis of Actinoplanes sp. SE50/110, using RNA-sequencing technology for comparative gene expression studies between cells grown in maltose minimal medium, maltose minimal medium with trace elements, and glucose complex medium. We first studied the behavior of Actinoplanes sp. SE50/110 cultivations in these three media and found that the different media had significant impact on growth rate and in particular on acarbose production. It was demonstrated that Actinoplanes sp. SE50/110 grew well in all three media, but acarbose biosynthesis was only observed in cultures grown in maltose minimal medium with and without trace elements. When comparing the expression profiles between the maltose minimal media with and without trace elements, only few significantly differentially expressed genes were found, which mainly code for uptake systems of metal ions provided in the trace element solution. In contrast, the comparison of expression profiles from maltose minimal medium and glucose complex medium revealed a large number of differentially expressed genes, of which the most conspicuous genes account for iron storage and uptake. Furthermore, the acarbose gene cluster was found to be highly expressed in maltose-containing media and almost silent in the glucose-containing medium. In addition, a putative antibiotic biosynthesis gene cluster was found to be similarly expressed as the acarbose cluster. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The aquaglyceroporin AQP9 contributes to the sex-specific effects of in utero arsenic exposure on placental gene expression.

    PubMed

    Winterbottom, Emily F; Koestler, Devin C; Fei, Dennis Liang; Wika, Eric; Capobianco, Anthony J; Marsit, Carmen J; Karagas, Margaret R; Robbins, David J

    2017-06-14

    Sex-specific factors play a major role in human health and disease, including responses to environmental stresses such as toxicant exposure. Increasing evidence suggests that such sex differences also exist during fetal development. In a previous report using the resources of the New Hampshire Birth Cohort Study (NHBCS), we found that low-to-moderate in utero exposure to arsenic, a highly toxic and widespread pollutant, was associated with altered expression of several key developmental genes in the fetal portion of the placenta. These associations were sex-dependent, suggesting that in utero arsenic exposure differentially impacts male and female fetuses. In the present study, we investigated the molecular basis for these sex-specific responses to arsenic. Using NanoString technology, we further analyzed the fetal placenta samples from the NHBCS for the expression of genes encoding arsenic transporters and metabolic enzymes. Multivariable linear regression analysis was used to examine their relationship with arsenic exposure and with key developmental genes, after stratification by fetal sex. We found that maternal arsenic exposure was strongly associated with expression of the AQP9 gene, encoding an aquaglyceroporin transporter, in female but not male fetal placenta. Moreover, AQP9 expression associated with that of a subset of female-specific arsenic-responsive genes. Our results suggest that AQP9 is upregulated in response to arsenic exposure in female, but not male, fetal placenta. Based on these results and prior studies, increased AQP9 expression may lead to increased arsenic transport in the female fetal placenta, which in turn may alter the expression patterns of key developmental genes that we have previously shown to be associated with arsenic exposure. Thus, this study suggests that AQP9 may play a role in the sex-specific effects of in utero arsenic exposure.

  2. Transcriptome analysis and gene expression profiling of abortive and developing ovules during fruit development in hazelnut.

    PubMed

    Cheng, Yunqing; Liu, Jianfeng; Zhang, Huidi; Wang, Ju; Zhao, Yixin; Geng, Wanting

    2015-01-01

    A high ratio of blank fruit in hazelnut (Corylus heterophylla Fisch) is a very common phenomenon that causes serious yield losses in northeast China. The development of blank fruit in the Corylus genus is known to be associated with embryo abortion. However, little is known about the molecular mechanisms responsible for embryo abortion during the nut development stage. Genomic information for C. heterophylla Fisch is not available; therefore, data related to transcriptome and gene expression profiling of developing and abortive ovules are needed. In this study, de novo transcriptome sequencing and RNA-seq analysis were conducted using short-read sequencing technology (Illumina HiSeq 2000). The results of the transcriptome assembly analysis revealed genetic information that was associated with the fruit development stage. Two digital gene expression libraries were constructed, one for a full (normally developing) ovule and one for an empty (abortive) ovule. Transcriptome sequencing and assembly results revealed 55,353 unigenes, including 18,751 clusters and 36,602 singletons. These results were annotated using the public databases NR, NT, Swiss-Prot, KEGG, COG, and GO. Using digital gene expression profiling, gene expression differences in developing and abortive ovules were identified. A total of 1,637 and 715 unigenes were significantly upregulated and downregulated, respectively, in abortive ovules, compared with developing ovules. Quantitative real-time polymerase chain reaction analysis was used in order to verify the differential expression of some genes. The transcriptome and digital gene expression profiling data of normally developing and abortive ovules in hazelnut provide exhaustive information that will improve our understanding of the molecular mechanisms of abortive ovule formation in hazelnut.

  3. Transcriptome Characterization Analysis of Bactrocera minax and New Insights into Its Pupal Diapause Development with Gene Expression Analysis

    PubMed Central

    Dong, Yongcheng; Desneux, Nicolas; Lei, Chaoliang; Niu, Changying

    2014-01-01

    Bactrocera minax is a major citrus pest distributed in China, Bhutan and India. The long pupal diapause duration of this fly is a major bottleneck for artificial rearing and underlying mechanisms remain unknown. Genetic information on B. minax transcriptome and gene expression profiles are needed to understand its pupal diapause. High-throughput RNA-seq technology was used to characterize the B. minax transcriptome and to identify differentially expressed genes during pupal diapause development. A total number of 52,519,948 reads were generated and assembled into 47,217 unigenes. 26,843 unigenes matched to proteins in the NCBI database using the BLAST search. Four digital gene expression (DGE) libraries were constructed for pupae at early diapause, late diapause, post-diapause and diapause terminated developmental status. 4,355 unigenes showing the differences expressed across four libraries revealed major shifts in cellular functions of cell proliferation, protein processing and export, metabolism and stress response in pupal diapause. When diapause was terminated by 20-hydroxyecdysone (20E), many genes involved in ribosome and metabolism were differentially expressed which may mediate diapause transition. The gene sets involved in protein and energy metabolisms varied throughout early-, late- and post-diapause. A total of 15 genes were selected to verify the DGE results through quantitative real-time PCR (qRT-PCR); qRT-PCR expression levels strongly correlated with the DGE data. The results provided the extensive sequence resources available for B. minax and increased our knowledge on its pupal diapause development and they shed new light on the possible mechanisms involved in pupal diapause in this species. PMID:25285037

  4. Adaptation of a RAS pathway activation signature from FF to FFPE tissues in colorectal cancer.

    PubMed

    Omolo, Bernard; Yang, Mingli; Lo, Fang Yin; Schell, Michael J; Austin, Sharon; Howard, Kellie; Madan, Anup; Yeatman, Timothy J

    2016-10-19

    The KRAS gene is mutated in about 40 % of colorectal cancer (CRC) cases, which has been clinically validated as a predictive mutational marker of intrinsic resistance to anti-EGFR inhibitor (EGFRi) therapy. Since nearly 60 % of patients with a wild type KRAS fail to respond to EGFRi combination therapies, there is a need to develop more reliable molecular signatures to better predict response. Here we address the challenge of adapting a gene expression signature predictive of RAS pathway activation, created using fresh frozen (FF) tissues, for use with more widely available formalin fixed paraffin-embedded (FFPE) tissues. In this study, we evaluated the translation of an 18-gene RAS pathway signature score from FF to FFPE in 54 CRC cases, using a head-to-head comparison of five technology platforms. FFPE-based technologies included the Affymetrix GeneChip (Affy), NanoString nCounter™ (NanoS), Illumina whole genome RNASeq (RNA-Acc), Illumina targeted RNASeq (t-RNA), and Illumina stranded Total RNA-rRNA-depletion (rRNA). Using Affy_FF as the "gold" standard, initial analysis of the 18-gene RAS scores on all 54 samples shows varying pairwise Spearman correlations, with (1) Affy_FFPE (r = 0.233, p = 0.090); (2) NanoS_FFPE (r = 0.608, p < 0.0001); (3) RNA-Acc_FFPE (r = 0.175, p = 0.21); (4) t-RNA_FFPE (r = -0.237, p = 0.085); (5) and t-RNA (r = -0.012, p = 0.93). These results suggest that only NanoString has successful FF to FFPE translation. The subsequent removal of identified "problematic" samples (n = 15) and genes (n = 2) further improves the correlations of Affy_FF with three of the five technologies: Affy_FFPE (r = 0.672, p < 0.0001); NanoS_FFPE (r = 0.738, p < 0.0001); and RNA-Acc_FFPE (r = 0.483, p = 0.002). Of the five technology platforms tested, NanoString technology provides a more faithful translation of the RAS pathway gene expression signature from FF to FFPE than the Affymetrix GeneChip and multiple RNASeq technologies. Moreover, NanoString was the most forgiving technology in the analysis of samples with presumably poor RNA quality. Using this approach, the RAS signature score may now be reasonably applied to FFPE clinical samples.

  5. Genome-wide analysis of miRNAs in the ovaries of Jining Grey and Laiwu Black goats to explore the regulation of fecundity.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Zhao, Huijing; Qin, Xiaoyu

    2016-11-29

    Goat fecundity is important for agriculture and varies depending on the genetic background of the goat. Two excellent domestic breeds in China, the Jining Grey and Laiwu Black goats, have different fecundity and prolificacies. To explore the potential miRNAs that regulate the expression of the genes involved in these prolific differences and to potentially discover new miRNAs, we performed a genome-wide analysis of the miRNAs in the ovaries from these two goats using RNA-Seq technology. Thirty miRNAs were differentially expressed between the Jining Grey and Laiwu Black goats. Gene Ontology and KEGG pathway analyses revealed that the target genes of the differentially expressed miRNAs were significantly enriched in several biological processes and pathways. A protein-protein interaction analysis indicated that the miRNAs and their target genes were related to the reproduction complex regulation network. The differential miRNA expression profiles found in the ovaries between the two distinctive breeds of goats studied here provide a unique resource for addressing fecundity differences in goats.

  6. Design and construction of 2A peptide-linked multicistronic vectors.

    PubMed

    Szymczak-Workman, Andrea L; Vignali, Kate M; Vignali, Dario A A

    2012-02-01

    The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. This article describes the design and construction of 2A peptide-linked multicistronic vectors, which can be used to express multiple proteins from a single open reading frame (ORF). The small 2A peptide sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. Expression of more than two genes using conventional approaches has several limitations, most notably imbalanced protein expression and large size. The use of 2A peptide sequences alleviates these concerns. They are small (18-22 amino acids) and have divergent amino-terminal sequences, which minimizes the chance for homologous recombination and allows for multiple, different 2A peptide sequences to be used within a single vector. Importantly, separation of genes placed between 2A peptide sequences is nearly 100%, which allows for stoichiometric and concordant expression of the genes, regardless of the order of placement within the vector.

  7. Functional characterization of the vitellogenin promoter in the silkworm, Bombyx mori.

    PubMed

    Xu, J; Wang, Y Q; Li, Z Q; Ling, L; Zeng, B S; You, L; Chen, Y Z; Aslam, A F M; Huang, Y P; Tan, A J

    2014-10-01

    Genetic transformation and genome editing technologies have been successfully established in the lepidopteran insect model, the domesticated silkworm, Bombyx mori, providing great potential for functional genomics and practical applications. However, the current lack of cis-regulatory elements in B. mori gene manipulation research limits further exploitation in functional gene analysis. In the present study, we characterized a B. mori endogenous promoter, Bmvgp, which is a 798-bp DNA sequence adjacent to the 5'-end of the vitellogenin gene (Bmvg). PiggyBac-based transgenic analysis shows that Bmvgp precisely directs expression of a reporter gene, enhanced green fluorescent protein (EGFP), in a sex-, tissue- and stage-specific manner. In transgenic animals, EGFP expression can be detected in the female fat body from larval-pupal ecdysis to the following pupal and adult stage. Furthermore, in vitro and in vivo experiments revealed that EGFP expression can be activated by 20-hydroxyecdysone, which is consistent with endogenous Bmvg expression. These data indicate that Bmvgp is an effective endogenous cis-regulatory element in B. mori. © 2014 The Royal Entomological Society.

  8. Generation of 2A-linked multicistronic cassettes by recombinant PCR.

    PubMed

    Szymczak-Workman, Andrea L; Vignali, Kate M; Vignali, Dario A A

    2012-02-01

    The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. It is now possible to express multiple proteins from a single open reading frame (ORF) using 2A peptide-linked multicistronic vectors. These small sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. Expression of more than two genes using conventional approaches has several limitations, most notably imbalanced protein expression and large size. The use of 2A peptide sequences alleviates these concerns. They are small (18-22 amino acids) and have divergent amino-terminal sequences, which minimizes the chance for homologous recombination and allows for multiple, different 2A peptide sequences to be used within a single vector. Importantly, separation of genes placed between 2A peptide sequences is nearly 100%, which allows for stoichiometric and concordant expression of the genes, regardless of the order of placement within the vector. This protocol describes the use of recombinant polymerase chain reaction (PCR) to connect multiple 2A-linked protein sequences. The final construct is subcloned into an expression vector.

  9. High hydrostatic pressure induces pro-osteoarthritic changes in cartilage precursor cells: A transcriptome analysis.

    PubMed

    Montagne, Kevin; Onuma, Yasuko; Ito, Yuzuru; Aiki, Yasuhiko; Furukawa, Katsuko S; Ushida, Takashi

    2017-01-01

    Due to the high water content of cartilage, hydrostatic pressure is likely one of the main physical stimuli sensed by chondrocytes. Whereas, in the physiological range (0 to around 10 MPa), hydrostatic pressure exerts mostly pro-chondrogenic effects in chondrocyte models, excessive pressures have been reported to induce detrimental effects on cartilage, such as increased apoptosis and inflammation, and decreased cartilage marker expression. Though some genes modulated by high pressure have been identified, the effects of high pressure on the global gene expression pattern have still not been investigated. In this study, using microarray technology and real-time PCR validation, we analyzed the transcriptome of ATDC5 chondrocyte progenitors submitted to a continuous pressure of 25 MPa for up to 24 h. Several hundreds of genes were found to be modulated by pressure, including some not previously known to be mechano-sensitive. High pressure markedly increased the expression of stress-related genes, apoptosis-related genes and decreased that of cartilage matrix genes. Furthermore, a large set of genes involved in the progression of osteoarthritis were also induced by high pressure, suggesting that hydrostatic pressure could partly mimic in vitro some of the genetic alterations occurring in osteoarthritis.

  10. Transcriptome profiles of embryos before and after cleavage in Eriocheir sinensis: identification of developmental genes at the earliest stages

    NASA Astrophysics Data System (ADS)

    Hui, Min; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen

    2017-07-01

    In crab, embryogenesis is a complicated developmental program marked by a series of critical events. RNA-Sequencing technology offers developmental biologists a way to identify many more developmental genes than ever before. Here, we present a comprehensive analysis of the transcriptomes of Eriocheir sinensis oosperms (Os) and embryos at the 2-4 cell stage (Cs), which are separated by a cleavage event. A total of 18 923 unigenes were identified, and 403 genes matched with gene ontology (GO) terms related to developmental processes. In total, 432 differentially expressed genes (DEGs) were detected between the two stages. Nine DEGs were specifically expressed at only one stage. These DEGs may be relevant to stage-specific molecular events during development. A number of DEGs related to `hedgehog signaling pathway', `Wnt signaling pathway' `germplasm', `nervous system', `sensory perception' and `segment polarity' were identified as being up-regulated at the Cs stage. The results suggest that these embryonic developmental events begin before the early cleavage event in crabs, and that many of the genes expressed in the two transcriptomes might be maternal genes. Our study provides ample information for further research on the molecular mechanisms underlying crab development.

  11. Optimizing antibody expression: The nuts and bolts.

    PubMed

    Ayyar, B Vijayalakshmi; Arora, Sushrut; Ravi, Shiva Shankar

    2017-03-01

    Antibodies are extensively utilized entities in biomedical research, and in the development of diagnostics and therapeutics. Many of these applications require high amounts of antibodies. However, meeting this ever-increasing demand of antibodies in the global market is one of the outstanding challenges. The need to maintain a balance between demand and supply of antibodies has led the researchers to discover better means and methods for optimizing their expression. These strategies aim to increase the volumetric productivity of the antibodies along with the reduction of associated manufacturing costs. Recent years have witnessed major advances in recombinant protein technology, owing to the introduction of novel cloning strategies, gene manipulation techniques, and an array of cell and vector engineering techniques, together with the progress in fermentation technologies. These innovations were also highly beneficial for antibody expression. Antibody expression depends upon the complex interplay of multiple factors that may require fine tuning at diverse levels to achieve maximum yields. However, each antibody is unique and requires individual consideration and customization for optimizing the associated expression parameters. This review provides a comprehensive overview of several state-of-the-art approaches, such as host selection, strain engineering, codon optimization, gene optimization, vector modification and process optimization that are deemed suitable for enhancing antibody expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Constitutive Expression of Short Hairpin RNA in Vivo Triggers Buildup of Mature Hairpin Molecules

    PubMed Central

    Ahn, M.; Witting, S.R.; Ruiz, R.; Saxena, R.

    2011-01-01

    Abstract RNA interference (RNAi) has become the cornerstone technology for studying gene function in mammalian cells. In addition, it is a promising therapeutic treatment for multiple human diseases. Virus-mediated constitutive expression of short hairpin RNA (shRNA) has the potential to provide a permanent source of silencing molecules to tissues, and it is being devised as a strategy for the treatment of liver conditions such as hepatitis B and hepatitis C virus infection. Unintended interaction between silencing molecules and cellular components, leading to toxic effects, has been described in vitro. Despite the enormous interest in using the RNAi technology for in vivo applications, little is known about the safety of constitutively expressing shRNA for multiple weeks. Here we report the effects of in vivo shRNA expression, using helper-dependent adenoviral vectors. We show that gene-specific knockdown is maintained for at least 6 weeks after injection of 1 × 1011 viral particles. Nonetheless, accumulation of mature shRNA molecules was observed up to weeks 3 and 4, and then declined gradually, suggesting the buildup of mature shRNA molecules induced cell death with concomitant loss of viral DNA and shRNA expression. No evidence of well-characterized innate immunity activation (such as interferon production) or saturation of the exportin-5 pathway was observed. Overall, our data suggest constitutive expression of shRNA results in accumulation of mature shRNA molecules, inducing cellular toxicity at late time points, despite the presence of gene silencing. PMID:21780944

  13. Transgenic mouse models in the study of reproduction: insights into GATA protein function.

    PubMed

    Tevosian, Sergei G

    2014-07-01

    For the past 2 decades, transgenic technology in mice has allowed for an unprecedented insight into the transcriptional control of reproductive development and function. The key factor among the mouse genetic tools that made this rapid advance possible is a conditional transgenic approach, a particularly versatile method of creating gene deletions and substitutions in the mouse genome. A centerpiece of this strategy is an enzyme, Cre recombinase, which is expressed from defined DNA regulatory elements that are active in the tissue of choice. The regulatory DNA element (either genetically engineered or natural) assures Cre expression only in predetermined cell types, leading to the guided deletion of genetically modified (flanked by loxP or 'floxed' by loxP) gene loci. This review summarizes and compares the studies in which genes encoding GATA family transcription factors were targeted either globally or by Cre recombinases active in the somatic cells of ovaries and testes. The conditional gene loss experiments require detailed knowledge of the spatial and temporal expression of Cre activity, and the challenges in interpreting the outcomes are highlighted. These studies also expose the complexity of GATA-dependent regulation of gonadal gene expression and suggest that gene function is highly context dependent. © 2014 Society for Reproduction and Fertility.

  14. Comprehensive analysis of transcriptome variation uncovers known and novel driver events in T-cell acute lymphoblastic leukemia.

    PubMed

    Atak, Zeynep Kalender; Gianfelici, Valentina; Hulselmans, Gert; De Keersmaecker, Kim; Devasia, Arun George; Geerdens, Ellen; Mentens, Nicole; Chiaretti, Sabina; Durinck, Kaat; Uyttebroeck, Anne; Vandenberghe, Peter; Wlodarska, Iwona; Cloos, Jacqueline; Foà, Robin; Speleman, Frank; Cools, Jan; Aerts, Stein

    2013-01-01

    RNA-seq is a promising technology to re-sequence protein coding genes for the identification of single nucleotide variants (SNV), while simultaneously obtaining information on structural variations and gene expression perturbations. We asked whether RNA-seq is suitable for the detection of driver mutations in T-cell acute lymphoblastic leukemia (T-ALL). These leukemias are caused by a combination of gene fusions, over-expression of transcription factors and cooperative point mutations in oncogenes and tumor suppressor genes. We analyzed 31 T-ALL patient samples and 18 T-ALL cell lines by high-coverage paired-end RNA-seq. First, we optimized the detection of SNVs in RNA-seq data by comparing the results with exome re-sequencing data. We identified known driver genes with recurrent protein altering variations, as well as several new candidates including H3F3A, PTK2B, and STAT5B. Next, we determined accurate gene expression levels from the RNA-seq data through normalizations and batch effect removal, and used these to classify patients into T-ALL subtypes. Finally, we detected gene fusions, of which several can explain the over-expression of key driver genes such as TLX1, PLAG1, LMO1, or NKX2-1; and others result in novel fusion transcripts encoding activated kinases (SSBP2-FER and TPM3-JAK2) or involving MLLT10. In conclusion, we present novel analysis pipelines for variant calling, variant filtering, and expression normalization on RNA-seq data, and successfully applied these for the detection of translocations, point mutations, INDELs, exon-skipping events, and expression perturbations in T-ALL.

  15. Down-regulated energy metabolism genes associated with mitochondria oxidative phosphorylation and fatty acid metabolism in viral cardiomyopathy mouse heart.

    PubMed

    Xu, Jing; Nie, Hong-gang; Zhang, Xiao-dong; Tian, Ye; Yu, Bo

    2011-08-01

    The majority of experimental and clinical studies indicates that the hypertrophied and failing myocardium are characterized by changes in energy and substrate metabolism that attributed to failing heart changes at the genomic level, in fact, heart failure is caused by various diseases, their energy metabolism and substrate are in different genetic variations, then the potential significance of the molecular mechanisms for the aetiology of heart failure is necessary to be evaluated. Persistent viral infection (especially coxsackievirus group B3) of the myocardium in viral myocarditis and viral dilated cardiomyopathy has never been neglected by experts. This study aimed to explore the role and regulatory mechanism of the altered gene expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism in viral dilated cardiomyopathy. cDNA Microarray technology was used to evaluate the expression of >35,852 genes in a mice model of viral dilated cardiomyopathy. In total 1385 highly different genes expression, we analyzed 33 altered genes expression for energy metabolism involved in mitochondrial oxidative phosphorylation, fatty acid metabolism and further selected real-time-PCR for quantity one of regulatory mechanisms for energy including fatty acid metabolism-the UCP2 and assayed cytochrome C oxidase activity by Spectrophotometer to explore mitochondrial oxidative phosphorylation function. We found obviously different expression of 33 energy metabolism genes associated with mitochondria oxidative phosphorylation, fatty acid metabolism in cardiomyopathy mouse heart, the regulatory gene for energy metabolism: UCP2 was down-regulated and cytochrome C oxidase activity was decreased. Genes involved in both fatty acid metabolism and mitochondrial oxidative phosphorylation were down-regulated, mitochondrial uncoupling proteins (UCP2) expression did not increase but decrease which might be a kind of adaptive protection response to regulate energy metabolism for ATP produce.

  16. Gravity-regulated gene expression in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  17. [Construction of EZH2 Knockout Animal Model by CRISPR/Cas9 Technology].

    PubMed

    Meng, Fanrong; Zhao, Dan; Zhou, Qinghua; Liu, Zhe

    2018-05-20

    It has been proven that CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9) system was the modern gene-editing technology through the constitutive expression of nucleases Cas9 in the mammalian, which binds to the specific site in the genome mediated by single-guide RNA (sgRNA) at desired genomic loci. The aim of this study is that the animal model of EZH2 gene knockout was constructed using CRISPR/Cas9 technology. In this study, we designed two single-guide RNAs targeting the Exon3 and Exon4 of EZH2 gene. Then, their gene-targeting efficiency were detected by SURVEYOR assay. The lentivirus was perfused into the lungs of mice by using a bronchial tube and detected by immunohistochemistry and qRT-PCR. The experimental results of NIH-3T3 cells verify that the designed sgEZH2 can efficiently effect the cleavage of target DNA by Cas9 in vitro. The immunohistochemistry and qRT-PCR results showed that the EZH2 expression in experimental group was significantly decreased in the mouse lung tissue. The study successfully designed two sgRNA which can play a knock-out EZH2 function. An EZH2 knockout animal model was successfully constructed by CRISPR/Cas9 system, and it will be an effective animal model for studying the functions and mechanisms of EZH2.

  18. [Novel therapy for malignant lymphoma: adoptive immuno-gene therapy using chimeric antigen receptor(CAR)-expressing T lymphocytes].

    PubMed

    Ozawa, Keiya

    2014-03-01

    Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed.

  19. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    PubMed

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have been shown to be activated in cells exposed to radiation from photons (like cell cycle arrest in G1/S), and that supplementation with SeM abolishes HZE particle-induced differential expression of many genes. Understanding the roles that these genes play in the radiation-induced transformation of cells may help to decipher the origins of radiation-induced cancer.

  20. BioVLAB-mCpG-SNP-EXPRESS: A system for multi-level and multi-perspective analysis and exploration of DNA methylation, sequence variation (SNPs), and gene expression from multi-omics data.

    PubMed

    Chae, Heejoon; Lee, Sangseon; Seo, Seokjun; Jung, Daekyoung; Chang, Hyeonsook; Nephew, Kenneth P; Kim, Sun

    2016-12-01

    Measuring gene expression, DNA sequence variation, and DNA methylation status is routinely done using high throughput sequencing technologies. To analyze such multi-omics data and explore relationships, reliable bioinformatics systems are much needed. Existing systems are either for exploring curated data or for processing omics data in the form of a library such as R. Thus scientists have much difficulty in investigating relationships among gene expression, DNA sequence variation, and DNA methylation using multi-omics data. In this study, we report a system called BioVLAB-mCpG-SNP-EXPRESS for the integrated analysis of DNA methylation, sequence variation (SNPs), and gene expression for distinguishing cellular phenotypes at the pairwise and multiple phenotype levels. The system can be deployed on either the Amazon cloud or a publicly available high-performance computing node, and the data analysis and exploration of the analysis result can be conveniently done using a web-based interface. In order to alleviate analysis complexity, all the process are fully automated, and graphical workflow system is integrated to represent real-time analysis progression. The BioVLAB-mCpG-SNP-EXPRESS system works in three stages. First, it processes and analyzes multi-omics data as input in the form of the raw data, i.e., FastQ files. Second, various integrated analyses such as methylation vs. gene expression and mutation vs. methylation are performed. Finally, the analysis result can be explored in a number of ways through a web interface for the multi-level, multi-perspective exploration. Multi-level interpretation can be done by either gene, gene set, pathway or network level and multi-perspective exploration can be explored from either gene expression, DNA methylation, sequence variation, or their relationship perspective. The utility of the system is demonstrated by performing analysis of phenotypically distinct 30 breast cancer cell line data set. BioVLAB-mCpG-SNP-EXPRESS is available at http://biohealth.snu.ac.kr/software/biovlab_mcpg_snp_express/. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Alternate Bearing in Citrus: Changes in the Expression of Flowering Control Genes and in Global Gene Expression in ON- versus OFF-Crop Trees

    PubMed Central

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Zemach, Hanita; Weissberg, Mira; Ophir, Ron; Blumwald, Eduardo; Sadka, Avi

    2012-01-01

    Alternate bearing (AB) is the process in fruit trees by which cycles of heavy yield (ON crop) one year are followed by a light yield (OFF crop) the next. Heavy yield usually reduces flowering intensity the following year. Despite its agricultural importance, how the developing crop influences the following year's return bloom and yield is not fully understood. It might be assumed that an ‘AB signal’ is generated in the fruit, or in another organ that senses fruit presence, and moves into the bud to determine its fate—flowering or vegetative growth. The bud then responds to fruit presence by altering regulatory and metabolic pathways. Determining these pathways, and when they are altered, might indicate the nature of this putative AB signal. We studied bud morphology, the expression of flowering control genes, and global gene expression in ON- and OFF-crop buds. In May, shortly after flowering and fruit set, OFF-crop buds were already significantly longer than ON-crop buds. The number of differentially expressed genes was higher in May than at the other tested time points. Processes differentially expressed between ON- and OFF-crop trees included key metabolic and regulatory pathways, such as photosynthesis and secondary metabolism. The expression of genes of trehalose metabolism and flavonoid metabolism was validated by nCounter technology, and the latter was confirmed by metabolomic analysis. Among genes induced in OFF-crop trees was one homologous to SQUAMOSA PROMOTER BINDING-LIKE (SPL), which controls juvenile-to-adult and annual phase transitions, regulated by miR156. The expression pattern of SPL-like, miR156 and other flowering control genes suggested that fruit load affects bud fate, and therefore development and metabolism, a relatively long time before the flowering induction period. Results shed light on some of the metabolic and regulatory processes that are altered in ON and OFF buds. PMID:23071667

  2. Transcriptome and Gene Expression Analysis of the Rice Leaf Folder, Cnaphalocrosis medinalis

    PubMed Central

    Li, Shang-Wei; Yang, Hong; Liu, Yue-Feng; Liao, Qi-Rong; Du, Juan; Jin, Dao-Chao

    2012-01-01

    Background The rice leaf folder (RLF), Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae), is one of the most destructive pests affecting rice in Asia. Although several studies have been performed on the ecological and physiological aspects of this species, the molecular mechanisms underlying its developmental regulation, behavior, and insecticide resistance remain largely unknown. Presently, there is a lack of genomic information for RLF; therefore, studies aimed at profiling the RLF transcriptome expression would provide a better understanding of its biological function at the molecular level. Principal Findings De novo assembly of the RLF transcriptome was performed via the short read sequencing technology (Illumina). In a single run, we produced more than 23 million sequencing reads that were assembled into 44,941 unigenes (mean size = 474 bp) by Trinity. Through a similarity search, 25,281 (56.82%) unigenes matched known proteins in the NCBI Nr protein database. The transcriptome sequences were annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). Additionally, we profiled gene expression during RLF development using a tag-based digital gene expression (DGE) system. Five DGE libraries were constructed, and variations in gene expression were compared between collected samples: eggs vs. 3rd instar larvae, 3rd instar larvae vs. pupae, pupae vs. adults. The results demonstrated that thousands of genes were significantly differentially expressed during various developmental stages. A number of the differentially expressed genes were confirmed by quantitative real-time PCR (qRT-PCR). Conclusions The RLF transcriptome and DGE data provide a comprehensive and global gene expression profile that would further promote our understanding of the molecular mechanisms underlying various biological characteristics, including development, elevated fecundity, flight, sex differentiation, olfactory behavior, and insecticide resistance in RLF. Therefore, these findings could help elucidate the intrinsic factors involved in the RLF-mediated destruction of rice and offer sustainable insect pest management. PMID:23185238

  3. The Global Error Assessment (GEA) model for the selection of differentially expressed genes in microarray data.

    PubMed

    Mansourian, Robert; Mutch, David M; Antille, Nicolas; Aubert, Jerome; Fogel, Paul; Le Goff, Jean-Marc; Moulin, Julie; Petrov, Anton; Rytz, Andreas; Voegel, Johannes J; Roberts, Matthew-Alan

    2004-11-01

    Microarray technology has become a powerful research tool in many fields of study; however, the cost of microarrays often results in the use of a low number of replicates (k). Under circumstances where k is low, it becomes difficult to perform standard statistical tests to extract the most biologically significant experimental results. Other more advanced statistical tests have been developed; however, their use and interpretation often remain difficult to implement in routine biological research. The present work outlines a method that achieves sufficient statistical power for selecting differentially expressed genes under conditions of low k, while remaining as an intuitive and computationally efficient procedure. The present study describes a Global Error Assessment (GEA) methodology to select differentially expressed genes in microarray datasets, and was developed using an in vitro experiment that compared control and interferon-gamma treated skin cells. In this experiment, up to nine replicates were used to confidently estimate error, thereby enabling methods of different statistical power to be compared. Gene expression results of a similar absolute expression are binned, so as to enable a highly accurate local estimate of the mean squared error within conditions. The model then relates variability of gene expression in each bin to absolute expression levels and uses this in a test derived from the classical ANOVA. The GEA selection method is compared with both the classical and permutational ANOVA tests, and demonstrates an increased stability, robustness and confidence in gene selection. A subset of the selected genes were validated by real-time reverse transcription-polymerase chain reaction (RT-PCR). All these results suggest that GEA methodology is (i) suitable for selection of differentially expressed genes in microarray data, (ii) intuitive and computationally efficient and (iii) especially advantageous under conditions of low k. The GEA code for R software is freely available upon request to authors.

  4. Alternate bearing in citrus: changes in the expression of flowering control genes and in global gene expression in ON- versus OFF-crop trees.

    PubMed

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Zemach, Hanita; Weissberg, Mira; Ophir, Ron; Blumwald, Eduardo; Sadka, Avi

    2012-01-01

    Alternate bearing (AB) is the process in fruit trees by which cycles of heavy yield (ON crop) one year are followed by a light yield (OFF crop) the next. Heavy yield usually reduces flowering intensity the following year. Despite its agricultural importance, how the developing crop influences the following year's return bloom and yield is not fully understood. It might be assumed that an 'AB signal' is generated in the fruit, or in another organ that senses fruit presence, and moves into the bud to determine its fate-flowering or vegetative growth. The bud then responds to fruit presence by altering regulatory and metabolic pathways. Determining these pathways, and when they are altered, might indicate the nature of this putative AB signal. We studied bud morphology, the expression of flowering control genes, and global gene expression in ON- and OFF-crop buds. In May, shortly after flowering and fruit set, OFF-crop buds were already significantly longer than ON-crop buds. The number of differentially expressed genes was higher in May than at the other tested time points. Processes differentially expressed between ON- and OFF-crop trees included key metabolic and regulatory pathways, such as photosynthesis and secondary metabolism. The expression of genes of trehalose metabolism and flavonoid metabolism was validated by nCounter technology, and the latter was confirmed by metabolomic analysis. Among genes induced in OFF-crop trees was one homologous to SQUAMOSA PROMOTER BINDING-LIKE (SPL), which controls juvenile-to-adult and annual phase transitions, regulated by miR156. The expression pattern of SPL-like, miR156 and other flowering control genes suggested that fruit load affects bud fate, and therefore development and metabolism, a relatively long time before the flowering induction period. Results shed light on some of the metabolic and regulatory processes that are altered in ON and OFF buds.

  5. Transformation of an edible crop with the pagA gene of Bacillus anthracis.

    PubMed

    Aziz, Mohammad Azhar; Sikriwal, Deepa; Singh, Samer; Jarugula, Sridhar; Kumar, P Anand; Bhatnagar, Rakesh

    2005-09-01

    Vaccination against anthrax is the most important strategy to combat the disease. This study describes a generation of edible transgenic crop expressing, functional protective antigen (PA). In vitro studies showed that the plant-expressed antigen is qualitatively similar to recombinant PA. Immunization studies in mouse animal models indicated the generation of PA-specific neutralizing antibodies and stressed the need for improving expression levels to generate higher antibody titers. Genetic engineering of a plant organelle offers immense scope for increasing levels of antigen expression. An AT-rich PA gene (pagA) coding for the 83-kDa PA molecule was thus cloned and expressed in tobacco chloroplasts. Biolistics was used for the transformation of a chloroplast genome under a set of optimized conditions. The expression of the pagA gene with 69% AT content was highly favored by an AT-rich chloroplast genome. A multifold expression level of functional PA was obtained as compared with the nuclear transgenic tobacco plants. This report describes for the first time a comprehensive study on generating transgenic plants expressing PA, which may serve as a source of an edible vaccine against anthrax. Two important achievements of expressing PA in an edible crop and use of chloroplast technology to enhance the expression levels are discussed here.

  6. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)

    PubMed Central

    2014-01-01

    Background Basic leucine zipper (bZIP) transcription factor gene family is one of the largest and most diverse families in plants. Current studies have shown that the bZIP proteins regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant bZIP family members remains very limited. Results We identified 55 bZIP transcription factor-encoding genes in the grapevine (Vitis vinifera) genome, and divided them into 10 groups according to the phylogenetic relationship with those in Arabidopsis. The chromosome distribution and the collinearity analyses suggest that expansion of the grapevine bZIP (VvbZIP) transcription factor family was greatly contributed by the segment/chromosomal duplications, which may be associated with the grapevine genome fusion events. Nine intron/exon structural patterns within the bZIP domain and the additional conserved motifs were identified among all VvbZIP proteins, and showed a high group-specificity. The predicted specificities on DNA-binding domains indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. The expression patterns of VvbZIP genes across the grapevine gene expression atlas, based on microarray technology, suggest that VvbZIP genes are involved in grapevine organ development, especially seed development. Expression analysis based on qRT-PCR indicated that VvbZIP genes are extensively involved in drought- and heat-responses, with possibly different mechanisms. Conclusions The genome-wide identification, chromosome organization, gene structures, evolutionary and expression analyses of grapevine bZIP genes provide an overall insight of this gene family and their potential involvement in growth, development and stress responses. This will facilitate further research on the bZIP gene family regarding their evolutionary history and biological functions. PMID:24725365

  7. Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogribny, Igor P.; Bagnyukova, Tetyana V.; Tryndyak, Volodymyr P.

    2007-11-15

    Tamoxifen is a widely used anti-estrogenic drug for chemotherapy and, more recently, for the chemoprevention of breast cancer. Despite the indisputable benefits of tamoxifen in preventing the occurrence and re-occurrence of breast cancer, the use of tamoxifen has been shown to induce non-alcoholic steatohepatitis, which is a life-threatening fatty liver disease with a risk of progression to cirrhosis and hepatocellular carcinoma. In recent years, the high-throughput microarray technology for large-scale analysis of gene expression has become a powerful tool for increasing the understanding of the molecular mechanisms of carcinogenesis and for identifying new biomarkers with diagnostic and predictive values. Inmore » the present study, we used the high-throughput microarray technology to determine the gene expression profiles in the liver during early stages of tamoxifen-induced rat hepatocarcinogenesis. Female Fisher 344 rats were fed a 420 ppm tamoxifen containing diet for 12 or 24 weeks, and gene expression profiles were determined in liver of control and tamoxifen-exposed rats. The results indicate that early stages of tamoxifen-induced liver carcinogenesis are characterized by alterations in several major cellular pathways, specifically those involved in the tamoxifen metabolism, lipid metabolism, cell cycle signaling, and apoptosis/cell proliferation control. One of the most prominent changes during early stages of tamoxifen-induced hepatocarcinogenesis is dysregulation of signaling pathways in cell cycle progression from the G{sub 1} to S phase, evidenced by the progressive and sustained increase in expression of the Pdgfc, Calb3, Ets1, and Ccnd1 genes accompanied by the elevated level of the PI3K, p-PI3K, Akt1/2, Akt3, and cyclin B, D1, and D3 proteins. The early appearance of these alterations suggests their importance in the mechanism of neoplastic cell transformation induced by tamoxifen.« less

  8. CRISPR-Cas9 technology: applications and human disease modelling.

    PubMed

    Torres-Ruiz, Raul; Rodriguez-Perales, Sandra

    2017-01-01

    Genome engineering is a powerful tool for a wide range of applications in biomedical research and medicine. The development of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has revolutionized the field of gene editing, thus facilitating efficient genome editing through the creation of targeted double-strand breaks of almost any organism and cell type. In addition, CRISPR-Cas9 technology has been used successfully for many other purposes, including regulation of endogenous gene expression, epigenome editing, live-cell labelling of chromosomal loci, edition of single-stranded RNA and high-throughput gene screening. The implementation of the CRISPR-Cas9 system has increased the number of available technological alternatives for studying gene function, thus enabling generation of CRISPR-based disease models. Although many mechanistic questions remain to be answered and several challenges have yet to be addressed, the use of CRISPR-Cas9-based genome engineering technologies will increase our knowledge of disease processes and their treatment in the near future. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness.

    PubMed

    Fonseca, Larissa Fernanda Simielli; Gimenez, Daniele Fernanda Jovino; Dos Santos Silva, Danielly Beraldo; Barthelson, Roger; Baldi, Fernando; Ferro, Jesus Aparecido; Albuquerque, Lucia Galvão

    2017-12-04

    Meat tenderness is the consumer's most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness.

  10. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.

    PubMed

    Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu

    2015-01-01

    The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.

  11. Linking Genes to Cardiovascular Diseases: Gene Action and Gene–Environment Interactions

    PubMed Central

    2016-01-01

    A unique myocardial characteristic is its ability to grow/remodel in order to adapt; this is determined partly by genes and partly by the environment and the milieu intérieur. In the “post-genomic” era, a need is emerging to elucidate the physiologic functions of myocardial genes, as well as potential adaptive and maladaptive modulations induced by environmental/epigenetic factors. Genome sequencing and analysis advances have become exponential lately, with escalation of our knowledge concerning sometimes controversial genetic underpinnings of cardiovascular diseases. Current technologies can identify candidate genes variously involved in diverse normal/abnormal morphomechanical phenotypes, and offer insights into multiple genetic factors implicated in complex cardiovascular syndromes. The expression profiles of thousands of genes are regularly ascertained under diverse conditions. Global analyses of gene expression levels are useful for cataloging genes and correlated phenotypes, and for elucidating the role of genes in maladies. Comparative expression of gene networks coupled to complex disorders can contribute insights as to how “modifier genes” influence the expressed phenotypes. Increasingly, a more comprehensive and detailed systematic understanding of genetic abnormalities underlying, for example, various genetic cardiomyopathies is emerging. Implementing genomic findings in cardiology practice may well lead directly to better diagnosing and therapeutics. There is currently evolving a strong appreciation for the value of studying gene anomalies, and doing so in a non-disjointed, cohesive manner. However, it is challenging for many—practitioners and investigators—to comprehend, interpret, and utilize the clinically increasingly accessible and affordable cardiovascular genomics studies. This survey addresses the need for fundamental understanding in this vital area. PMID:26545598

  12. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    PubMed

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  13. Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts.

    PubMed

    Chen, Jian; Lin, Mingyan; Foxe, John J; Pedrosa, Erika; Hrabovsky, Anastasia; Carroll, Reed; Zheng, Deyou; Lachman, Herbert M

    2013-01-01

    Induced pluripotent stem cell (iPSC) technology is providing an opportunity to study neuropsychiatric disorders through the capacity to grow patient-specific neurons in vitro. Skin fibroblasts obtained by biopsy have been the most reliable source of cells for reprogramming. However, using other somatic cells obtained by less invasive means would be ideal, especially in children with autism spectrum disorders (ASD) and other neurodevelopmental conditions. In addition to fibroblasts, iPSCs have been developed from cord blood, lymphocytes, hair keratinocytes, and dental pulp from deciduous teeth. Of these, dental pulp would be a good source for neurodevelopmental disorders in children because obtaining material is non-invasive. We investigated its suitability for disease modeling by carrying out gene expression profiling, using RNA-seq, on differentiated neurons derived from iPSCs made from dental pulp extracted from deciduous teeth (T-iPSCs) and fibroblasts (F-iPSCs). This is the first RNA-seq analysis comparing gene expression profiles in neurons derived from iPSCs made from different somatic cells. For the most part, gene expression profiles were quite similar with only 329 genes showing differential expression at a nominally significant p-value (p<0.05), of which 63 remained significant after correcting for genome-wide analysis (FDR <0.05). The most striking difference was the lower level of expression detected for numerous members of the all four HOX gene families in neurons derived from T-iPSCs. In addition, an increased level of expression was seen for several transcription factors expressed in the developing forebrain (FOXP2, OTX1, and LHX2, for example). Overall, pathway analysis revealed that differentially expressed genes that showed higher levels of expression in neurons derived from T-iPSCs were enriched for genes implicated in schizophrenia (SZ). The findings suggest that neurons derived from T-iPSCs are suitable for disease-modeling neuropsychiatric disorder and may have some advantages over those derived from F-iPSCs.

  14. We can't all be supermodels: the value of comparative transcriptomics to the study of non-model insects

    PubMed Central

    Oppenheim, Sara J; Baker, Richard H; Simon, Sabrina; DeSalle, Rob

    2015-01-01

    Insects are the most diverse group of organisms on the planet. Variation in gene expression lies at the heart of this biodiversity and recent advances in sequencing technology have spawned a revolution in researchers' ability to survey tissue-specific transcriptional complexity across a wide range of insect taxa. Increasingly, studies are using a comparative approach (across species, sexes and life stages) that examines the transcriptional basis of phenotypic diversity within an evolutionary context. In the present review, we summarize much of this research, focusing in particular on three critical aspects of insect biology: morphological development and plasticity; physiological response to the environment; and sexual dimorphism. A common feature that is emerging from these investigations concerns the dynamic nature of transcriptome evolution as indicated by rapid changes in the overall pattern of gene expression, the differential expression of numerous genes with unknown function, and the incorporation of novel, lineage-specific genes into the transcriptional profile. PMID:25524309

  15. In Vitro Cytotoxic Evaluation of MgO Nanoparticles and Their Effect on the Expression of ROS Genes

    PubMed Central

    Kumaran, Rangarajulu Senthil; Choi, Yong-Keun; Singh, Vijay; Song, Hak-Jin; Song, Kyung-Guen; Kim, Kwang Jin; Kim, Hyung Joo

    2015-01-01

    Water-dispersible MgO nanoparticles were tested to investigate their cytotoxic effects on oxidative stress gene expression. In this in vitro study, genes related to reactive oxygen species (ROS), glutathione S-transferase (GST) and catalase, were quantified using real-time polymerase chain reactions (molecular level) and molecular beacon technologies (cellular level). The monodispersed MgO nanoparticles, 20 nm in size, were used to treat human cancer cell lines (liver cancer epithelial cells) at different concentrations (25, 75 and 150 µg/mL) and incubation times (24, 48 and 72 h). Both the genetic and cellular cytotoxic screening methods produced consistent results, showing that GST and catalase ROS gene expression was maximized at 150 µg/mL nanoparticle treatment with 48 h incubation. However, the genotoxic effect of MgO nanoparticles was not significant compared with control experiments, which indicates its significant potential applications in nanomedicine as a diagnostic and therapeutic tool. PMID:25854426

  16. Genetic engineering with T cell receptors.

    PubMed

    Zhang, Ling; Morgan, Richard A

    2012-06-01

    In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.

  17. A detailed gene expression study of the Miscanthus genus reveals changes in the transcriptome associated with the rejuvenation of spring rhizomes.

    PubMed

    Barling, Adam; Swaminathan, Kankshita; Mitros, Therese; James, Brandon T; Morris, Juliette; Ngamboma, Ornella; Hall, Megan C; Kirkpatrick, Jessica; Alabady, Magdy; Spence, Ashley K; Hudson, Matthew E; Rokhsar, Daniel S; Moose, Stephen P

    2013-12-09

    The Miscanthus genus of perennial C4 grasses contains promising biofuel crops for temperate climates. However, few genomic resources exist for Miscanthus, which limits understanding of its interesting biology and future genetic improvement. A comprehensive catalog of expressed sequences were generated from a variety of Miscanthus species and tissue types, with an emphasis on characterizing gene expression changes in spring compared to fall rhizomes. Illumina short read sequencing technology was used to produce transcriptome sequences from different tissues and organs during distinct developmental stages for multiple Miscanthus species, including Miscanthus sinensis, Miscanthus sacchariflorus, and their interspecific hybrid Miscanthus × giganteus. More than fifty billion base-pairs of Miscanthus transcript sequence were produced. Overall, 26,230 Sorghum gene models (i.e., ~ 96% of predicted Sorghum genes) had at least five Miscanthus reads mapped to them, suggesting that a large portion of the Miscanthus transcriptome is represented in this dataset. The Miscanthus × giganteus data was used to identify genes preferentially expressed in a single tissue, such as the spring rhizome, using Sorghum bicolor as a reference. Quantitative real-time PCR was used to verify examples of preferential expression predicted via RNA-Seq. Contiguous consensus transcript sequences were assembled for each species and annotated using InterProScan. Sequences from the assembled transcriptome were used to amplify genomic segments from a doubled haploid Miscanthus sinensis and from Miscanthus × giganteus to further disentangle the allelic and paralogous variations in genes. This large expressed sequence tag collection creates a valuable resource for the study of Miscanthus biology by providing detailed gene sequence information and tissue preferred expression patterns. We have successfully generated a database of transcriptome assemblies and demonstrated its use in the study of genes of interest. Analysis of gene expression profiles revealed biological pathways that exhibit altered regulation in spring compared to fall rhizomes, which are consistent with their different physiological functions. The expression profiles of the subterranean rhizome provides a better understanding of the biological activities of the underground stem structures that are essentials for perenniality and the storage or remobilization of carbon and nutrient resources.

  18. Low-level expression of human ACAT2 gene in monocytic cells is regulated by the C/EBP transcription factors

    PubMed Central

    Guo, Dongqing; Lu, Ming; Hu, Xihan; Xu, Jiajia; Hu, Guangjing; Zhu, Ming; Zhang, Xiaowei; Li, Qin; Chang, Catherine C. Y.; Chang, Tayuan; Song, Baoliang; Xiong, Ying; Li, Boliang

    2016-01-01

    Acyl-coenzyme A:cholesterol acyltransferases (ACATs) are the exclusive intracellular enzymes that catalyze the formation of cholesteryl/steryl esters (CE/SE). In our previous work, we found that the high-level expression of human ACAT2 gene with the CpG hypomethylation of its whole promoter was synergistically regulated by two transcription factors Cdx2 and HNF1α in the intestine and fetal liver. Here, we first observed that the specific CpG-hypomethylated promoter was correlated with the low expression of human ACAT2 gene in monocytic cell line THP-1. Then, two CCAAT/enhancer binding protein (C/EBP) elements within the activation domain in the specific CpG-hypomethylation promoter region were identified, and the expression of ACAT2 in THP-1 cells was evidently decreased when the C/EBP transcription factors were knock-downed using RNAi technology. Furthermore, ChIP assay confirmed that C/EBPs directly bind to their elements for low-level expression of human ACAT2 gene in THP-1 cells. Significantly, the increased expressions of ACAT2 and C/EBPs were also found in macrophages differentiated from both ATRA-treated THP-1 cells and cultured human blood monocytes. These results demonstrate that the low-level expression of human ACAT2 gene with specific CpG-hypomethylated promoter is regulated by the C/EBP transcription factors in monocytic cells, and imply that the lowly expressed ACAT2 catalyzes the synthesis of certain CE/SE that are assembled into lipoproteins for the secretion. PMID:27688151

  19. Application of the laser capture microdissection technique for molecular definition of skeletal cell differentiation in vivo.

    PubMed

    Benayahu, Dafna; Socher, Rina; Shur, Irena

    2008-01-01

    Laser capture microdissection (LCM) method allows selection of individual or clustered cells from intact tissues. This technology enables one to pick cells from tissues that are difficult to study individually, sort the anatomical complexity of these tissues, and make the cells available for molecular analyses. Following the cells' extraction, the nucleic acids and proteins can be isolated and used for multiple applications that provide an opportunity to uncover the molecular control of cellular fate in the natural microenvironment. Utilization of LCM for the molecular analysis of cells from skeletal tissues will enable one to study differential patterns of gene expression in the native intact skeletal tissue with reliable interpretation of function for known genes as well as to discover novel genes. Variability between samples may be caused either by differences in the tissue samples (different areas isolated from the same section) or some variances in sample handling. LCM is a multi-task technology that combines histology, microscopy work, and dedicated molecular biology. The LCM application will provide results that will pave the way toward high throughput profiling of tissue-specific gene expression using Gene Chip arrays. Detailed description of in vivo molecular pathways will make it possible to elaborate on control systems to apply for the repair of genetic or metabolic diseases of skeletal tissues.

  20. Prediction of epigenetically regulated genes in breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines,more » which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identifed 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators.« less

  1. Development and validation of a gene expression oligo microarray for the gilthead sea bream (Sparus aurata).

    PubMed

    Ferraresso, Serena; Vitulo, Nicola; Mininni, Alba N; Romualdi, Chiara; Cardazzo, Barbara; Negrisolo, Enrico; Reinhardt, Richard; Canario, Adelino V M; Patarnello, Tomaso; Bargelloni, Luca

    2008-12-03

    Aquaculture represents the most sustainable alternative of seafood supply to substitute for the declining marine fisheries, but severe production bottlenecks remain to be solved. The application of genomic technologies offers much promise to rapidly increase our knowledge on biological processes in farmed species and overcome such bottlenecks. Here we present an integrated platform for mRNA expression profiling in the gilthead sea bream (Sparus aurata), a marine teleost of great importance for aquaculture. A public data base was constructed, consisting of 19,734 unique clusters (3,563 contigs and 16,171 singletons). Functional annotation was obtained for 8,021 clusters. Over 4,000 sequences were also associated with a GO entry. Two 60mer probes were designed for each gene and in-situ synthesized on glass slides using Agilent SurePrint technology. Platform reproducibility and accuracy were assessed on two early stages of sea bream development (one-day and four days old larvae). Correlation between technical replicates was always > 0.99, with strong positive correlation between paired probes. A two class SAM test identified 1,050 differentially expressed genes between the two developmental stages. Functional analysis suggested that down-regulated transcripts (407) in older larvae are mostly essential/housekeeping genes, whereas tissue-specific genes are up-regulated in parallel with the formation of key organs (eye, digestive system). Cross-validation of microarray data was carried out using quantitative qRT-PCR on 11 target genes, selected to reflect the whole range of fold-change and both up-regulated and down-regulated genes. A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates. Good concordance between qRT-PCR and microarray data was observed between 2- and 7-fold change, while fold-change compression in the microarray was present for differences greater than 10-fold in the qRT-PCR. A highly reliable oligo-microarray platform was developed and validated for the gilthead sea bream despite the presently limited knowledge of the species transcriptome. Because of the flexible design this array will be able to accommodate additional probes as soon as novel unique transcripts are available.

  2. High activity and stability of codon-optimized phosphoenolpyruvate carboxylase from Photobacterium profundum SS9 at low temperatures and its application for in vitro production of oxaloacetate.

    PubMed

    Park, Soohyun; Hong, Soohye; Pack, Seung Pil; Lee, Jinwon

    2014-02-01

    Phosphoenolpyruvate carboxylase (PEPC) of Photobacterium profundum SS9 can be expressed and purified using the Escherichia coli expression system. In this study, a codon-optimized PEPC gene (OPPP) was used to increase expression levels. We confirmed OPPP expression and purified it from extracts of recombinant E. coli SGJS117 harboring the OPPP gene. The purified OPPP showed a specific activity value of 80.3 U/mg protein. The OPPP was stable under low temperature (5-30 °C) and weakly basic conditions (pH 8.5-10). The enzymatic ability of OPPP was investigated for in vitro production of oxaloacetate using phosphoenolpyruvate (PEP) and bicarbonate. Only samples containing the OPPP, PEP, and bicarbonate resulted in oxaloacetate production. OPPP production system using E. coli could be a platform technology to produce high yields of heterogeneous gene and provide the PEPC enzyme, which has high enzyme activity.

  3. Gene expression profiling and pathway analysis in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin

    USDA-ARS?s Scientific Manuscript database

    The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene ex...

  4. Gene Signature for Predicting Solid Tumors Patient Prognosis | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Laboratory of Human Carcinogenesis seeks parties to license or co-develop a method of predicting the prognosis of a patient diagnosed with hepatocellular carcinoma (HCC) or breast cancer by detecting expression of one or more cancer-associated genes, and a method of identifying an agent for use in treating HCC.

  5. Time-series RNA-seq analysis package (TRAP) and its application to the analysis of rice, Oryza sativa L. ssp. Japonica, upon drought stress.

    PubMed

    Jo, Kyuri; Kwon, Hawk-Bin; Kim, Sun

    2014-06-01

    Measuring expression levels of genes at the whole genome level can be useful for many purposes, especially for revealing biological pathways underlying specific phenotype conditions. When gene expression is measured over a time period, we have opportunities to understand how organisms react to stress conditions over time. Thus many biologists routinely measure whole genome level gene expressions at multiple time points. However, there are several technical difficulties for analyzing such whole genome expression data. In addition, these days gene expression data is often measured by using RNA-sequencing rather than microarray technologies and then analysis of expression data is much more complicated since the analysis process should start with mapping short reads and produce differentially activated pathways and also possibly interactions among pathways. In addition, many useful tools for analyzing microarray gene expression data are not applicable for the RNA-seq data. Thus a comprehensive package for analyzing time series transcriptome data is much needed. In this article, we present a comprehensive package, Time-series RNA-seq Analysis Package (TRAP), integrating all necessary tasks such as mapping short reads, measuring gene expression levels, finding differentially expressed genes (DEGs), clustering and pathway analysis for time-series data in a single environment. In addition to implementing useful algorithms that are not available for RNA-seq data, we extended existing pathway analysis methods, ORA and SPIA, for time series analysis and estimates statistical values for combined dataset by an advanced metric. TRAP also produces visual summary of pathway interactions. Gene expression change labeling, a practical clustering method used in TRAP, enables more accurate interpretation of the data when combined with pathway analysis. We applied our methods on a real dataset for the analysis of rice (Oryza sativa L. Japonica nipponbare) upon drought stress. The result showed that TRAP was able to detect pathways more accurately than several existing methods. TRAP is available at http://biohealth.snu.ac.kr/software/TRAP/. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Vibration mechanosignals superimposed to resistive exercise result in baseline skeletal muscle transcriptome profiles following chronic disuse in bed rest.

    PubMed

    Salanova, Michele; Gambara, Guido; Moriggi, Manuela; Vasso, Michele; Ungethuem, Ute; Belavý, Daniel L; Felsenberg, Dieter; Cerretelli, Paolo; Gelfi, Cecilia; Blottner, Dieter

    2015-11-24

    Disuse-induced muscle atrophy is a major concern in aging, in neuromuscular diseases, post-traumatic injury and in microgravity life sciences affecting health and fitness also of crew members in spaceflight. By using a laboratory analogue to body unloading we perform for the first time global gene expression profiling joined to specific proteomic analysis to map molecular adaptations in disused (60 days of bed rest) human soleus muscle (CTR) and in response to a resistive exercise (RE) countermeasure protocol without and with superimposed vibration mechanosignals (RVE). Adopting Affymetrix GeneChip technology we identified 235 differently transcribed genes in the CTR group (end- vs. pre-bed rest). RE comprised 206 differentially expressed genes, whereas only 51 changed gene transcripts were found in RVE. Most gene transcription and proteomic changes were linked to various key metabolic pathways (glycolysis, oxidative phosphorylation, tricarboxylic acid (TCA) cycle, lipid metabolism) and to functional contractile structures. Gene expression profiling in bed rest identified a novel set of genes explicitly responsive to vibration mechanosignals in human soleus. This new finding highlights the efficacy of RVE protocol in reducing key signs of disuse maladaptation and atrophy, and to maintain a close-to-normal skeletal muscle quality outcome following chronic disuse in bed rest.

  7. Mining genes involved in insecticide resistance of Liposcelis bostrychophila Badonnel by transcriptome and expression profile analysis.

    PubMed

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids.

  8. Mining Genes Involved in Insecticide Resistance of Liposcelis bostrychophila Badonnel by Transcriptome and Expression Profile Analysis

    PubMed Central

    Dou, Wei; Shen, Guang-Mao; Niu, Jin-Zhi; Ding, Tian-Bo; Wei, Dan-Dan; Wang, Jin-Jun

    2013-01-01

    Background Recent studies indicate that infestations of psocids pose a new risk for global food security. Among the psocids species, Liposcelis bostrychophila Badonnel has gained recognition in importance because of its parthenogenic reproduction, rapid adaptation, and increased worldwide distribution. To date, the molecular data available for L. bostrychophila is largely limited to genes identified through homology. Also, no transcriptome data relevant to psocids infection is available. Methodology and Principal Findings In this study, we generated de novo assembly of L. bostrychophila transcriptome performed through the short read sequencing technology (Illumina). In a single run, we obtained more than 51 million sequencing reads that were assembled into 60,012 unigenes (mean size = 711 bp) by Trinity. The transcriptome sequences from different developmental stages of L. bostrychophila including egg, nymph and adult were annotated with non-redundant (Nr) protein database, gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). The analysis revealed three major enzyme families involved in insecticide metabolism as differentially expressed in the L. bostrychophila transcriptome. A total of 49 P450-, 31 GST- and 21 CES-specific genes representing the three enzyme families were identified. Besides, 16 transcripts were identified to contain target site sequences of resistance genes. Furthermore, we profiled gene expression patterns upon insecticide (malathion and deltamethrin) exposure using the tag-based digital gene expression (DGE) method. Conclusion The L. bostrychophila transcriptome and DGE data provide gene expression data that would further our understanding of molecular mechanisms in psocids. In particular, the findings of this investigation will facilitate identification of genes involved in insecticide resistance and designing of new compounds for control of psocids. PMID:24278202

  9. Phytoremediation: novel approaches to cleaning up polluted soils.

    PubMed

    Krämer, Ute

    2005-04-01

    Environmental pollution with metals and xenobiotics is a global problem, and the development of phytoremediation technologies for the plant-based clean-up of contaminated soils is therefore of significant interest. Phytoremediation technologies are currently available for only a small subset of pollution problems, such as arsenic. Arsenic removal employs naturally selected hyperaccumulator ferns, which accumulate very high concentrations of arsenic specifically in above-ground tissues. Elegant two-gene transgenic approaches have been designed for the development of mercury or arsenic phytoremediation technologies. In a plant that naturally hyperaccumulates zinc in leaves, approximately ten key metal homeostasis genes are expressed at very high levels. This outlines the extent of change in gene activities needed in the engineering of transgenic plants for soil clean-up. Further analysis and discovery of genes for phytoremediation will benefit from the recent development of segregating populations for a genetic analysis of naturally selected metal hyperaccumulation in plants, and from comprehensive ionomics data--multi-element concentration profiles from a large number of Arabidopsis mutants.

  10. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase

    PubMed Central

    Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W. W.; Hankoua, Bertrand B.

    2018-01-01

    To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability. PMID:29541080

  11. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase.

    PubMed

    Ligaba-Osena, Ayalew; Jones, Jenna; Donkor, Emmanuel; Chandrayan, Sanjeev; Pole, Farris; Wu, Chang-Hao; Vieille, Claire; Adams, Michael W W; Hankoua, Bertrand B

    2018-01-01

    To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava ( Manihot esculenta ), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus , together with the gene encoding a modified ADP-glucose pyrophosphorylase ( glgC ) from Escherichia coli , were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.

  12. Tailor-made gene silencing of Staphylococcus aureus clinical isolates by CRISPR interference

    PubMed Central

    Sato’o, Yusuke; Hisatsune, Junzo; Yu, Liansheng; Sakuma, Tetsushi; Yamamoto, Takashi

    2018-01-01

    Preparing the genetically modified organisms have required much time and labor, making it the rate-limiting step but CRISPR/Cas9 technology appearance has changed this difficulty. Although reports on CRISPR/Cas9 technology such as genome editing and CRISPR interference (CRISPRi) in eukaryotes increased, those in prokaryotes especially in Staphylococci were limited. Thus, its potential in the bacteriology remains unexplored. This is attributed to ecological difference between eukaryotes and prokaryotes. Here, we constructed a novel CRISPRi plasmid vector, pBACi for Staphylococcus aureus. The transformation efficiency of S. aureus was ~104 CFU/μg DNA using a vector extracted from dcm negative, which encoded one of DNA modification genes, E. coli. Further, pBACi was introduced into various clinical isolates including that not accepting the conventional temperature-sensitive vector. dcas9 in the vector was expressed throughout the growth phases of S. aureus and this vector decreased various gene mRNA expressions based on the crRNA targeting sequences and altered the knockdown strains’ phenotypes. The targeted genes included various virulence and antibiotic resistant genes. Bioinformatics suggest this vector can be introduced into wide range of low-GC Gram-positive bacteria. Because this new CRISPR/Cas9-based vector can easily prepare knockdown strains, we believe the novel vector will facilitate the characterization of the function of genes from S. aureus and other Gram-positive bacteria. PMID:29377933

  13. The Model-Based Study of the Effectiveness of Reporting Lists of Small Feature Sets Using RNA-Seq Data.

    PubMed

    Kim, Eunji; Ivanov, Ivan; Hua, Jianping; Lampe, Johanna W; Hullar, Meredith Aj; Chapkin, Robert S; Dougherty, Edward R

    2017-01-01

    Ranking feature sets for phenotype classification based on gene expression is a challenging issue in cancer bioinformatics. When the number of samples is small, all feature selection algorithms are known to be unreliable, producing significant error, and error estimators suffer from different degrees of imprecision. The problem is compounded by the fact that the accuracy of classification depends on the manner in which the phenomena are transformed into data by the measurement technology. Because next-generation sequencing technologies amount to a nonlinear transformation of the actual gene or RNA concentrations, they can potentially produce less discriminative data relative to the actual gene expression levels. In this study, we compare the performance of ranking feature sets derived from a model of RNA-Seq data with that of a multivariate normal model of gene concentrations using 3 measures: (1) ranking power, (2) length of extensions, and (3) Bayes features. This is the model-based study to examine the effectiveness of reporting lists of small feature sets using RNA-Seq data and the effects of different model parameters and error estimators. The results demonstrate that the general trends of the parameter effects on the ranking power of the underlying gene concentrations are preserved in the RNA-Seq data, whereas the power of finding a good feature set becomes weaker when gene concentrations are transformed by the sequencing machine.

  14. Framework for reanalysis of publicly available Affymetrix® GeneChip® data sets based on functional regions of interest.

    PubMed

    Saka, Ernur; Harrison, Benjamin J; West, Kirk; Petruska, Jeffrey C; Rouchka, Eric C

    2017-12-06

    Since the introduction of microarrays in 1995, researchers world-wide have used both commercial and custom-designed microarrays for understanding differential expression of transcribed genes. Public databases such as ArrayExpress and the Gene Expression Omnibus (GEO) have made millions of samples readily available. One main drawback to microarray data analysis involves the selection of probes to represent a specific transcript of interest, particularly in light of the fact that transcript-specific knowledge (notably alternative splicing) is dynamic in nature. We therefore developed a framework for reannotating and reassigning probe groups for Affymetrix® GeneChip® technology based on functional regions of interest. This framework addresses three issues of Affymetrix® GeneChip® data analyses: removing nonspecific probes, updating probe target mapping based on the latest genome knowledge and grouping probes into gene, transcript and region-based (UTR, individual exon, CDS) probe sets. Updated gene and transcript probe sets provide more specific analysis results based on current genomic and transcriptomic knowledge. The framework selects unique probes, aligns them to gene annotations and generates a custom Chip Description File (CDF). The analysis reveals only 87% of the Affymetrix® GeneChip® HG-U133 Plus 2 probes uniquely align to the current hg38 human assembly without mismatches. We also tested new mappings on the publicly available data series using rat and human data from GSE48611 and GSE72551 obtained from GEO, and illustrate that functional grouping allows for the subtle detection of regions of interest likely to have phenotypical consequences. Through reanalysis of the publicly available data series GSE48611 and GSE72551, we profiled the contribution of UTR and CDS regions to the gene expression levels globally. The comparison between region and gene based results indicated that the detected expressed genes by gene-based and region-based CDFs show high consistency and regions based results allows us to detection of changes in transcript formation.

  15. Transcriptome profile analysis of floral sex determination in cucumber.

    PubMed

    Wu, Tao; Qin, Zhiwei; Zhou, Xiuyan; Feng, Zhuo; Du, Yalin

    2010-07-15

    Cucumber has been widely studied as a model for floral sex determination. In this investigation, we performed genome-wide transcriptional profiling of apical tissue of a gynoecious mutant (Csg-G) and the monoecious wild-type (Csg-M) of cucumber in an attempt to isolate genes involved in sex determination, using the Solexa technology. The profiling analysis revealed numerous changes in gene expression attributable to the mutation, which resulted in the down-regulation of 600 genes and the up-regulation of 143 genes. The Solexa data were confirmed by reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative RT-PCR (qRT-PCR). Gene ontology (GO) analysis revealed that the differentially expressed genes were mainly involved in biogenesis, transport and organization of cellular component, macromolecular and cellular biosynthesis, localization, establishment of localization, translation and other processes. Furthermore, the expression of some of these genes depended upon the tissue and the developmental stage of the flowers of gynoecious mutant. The results of this study suggest two important concepts, which govern sex determination in cucumber. First, the differential expression of genes involved in plant hormone signaling pathways, such as ACS, Asr1, CsIAA2, CS-AUX1 and TLP, indicate that phytohormones and their crosstalk might play a critical role in the sex determination. Second, the regulation of some transcription factors, including EREBP-9, may also be involved in this developmental process. Copyright (c) 2010 Elsevier GmbH. All rights reserved.

  16. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the Southern bluefin tuna (Thunnus maccoyii).

    PubMed

    Bar, Ido; Cummins, Scott; Elizur, Abigail

    2016-03-10

    Controlling and managing the breeding of bluefin tuna (Thunnus spp.) in captivity is an imperative step towards obtaining a sustainable supply of these fish in aquaculture production systems. Germ cell transplantation (GCT) is an innovative technology for the production of inter-species surrogates, by transplanting undifferentiated germ cells derived from a donor species into larvae of a host species. The transplanted surrogates will then grow and mature to produce donor-derived seed, thus providing a simpler alternative to maintaining large-bodied broodstock such as the bluefin tuna. Implementation of GCT for new species requires the development of molecular tools to follow the fate of the transplanted germ cells. These tools are based on key reproductive and germ cell-specific genes. RNA-Sequencing (RNA-Seq) provides a rapid, cost-effective method for high throughput gene identification in non-model species. This study utilized RNA-Seq to identify key genes expressed in the gonads of Southern bluefin tuna (Thunnus maccoyii, SBT) and their specific expression patterns in male and female gonad cells. Key genes involved in the reproductive molecular pathway and specifically, germ cell development in gonads, were identified using analysis of RNA-Seq transcriptomes of male and female SBT gonad cells. Expression profiles of transcripts from ovary and testis cells were compared, as well as testis germ cell-enriched fraction prepared with Percoll gradient, as used in GCT studies. Ovary cells demonstrated over-expression of genes related to stem cell maintenance, while in testis cells, transcripts encoding for reproduction-associated receptors, sex steroids and hormone synthesis and signaling genes were over-expressed. Within the testis cells, the Percoll-enriched fraction showed over-expression of genes that are related to post-meiosis germ cell populations. Gonad development and germ cell related genes were identified from SBT gonads and their expression patterns in ovary and testis cells were determined. These expression patterns correlate with the reproductive developmental stage of the sampled fish. The majority of the genes described in this study were sequenced for the first time in T. maccoyii. The wealth of SBT gonadal and germ cell-related gene sequences made publicly available by this study provides an extensive resource for further GCT and reproductive molecular biology studies of this commercially valuable fish.

  17. Quantitative Differential Expression Analysis Reveals Mir-7 As Major Islet MicroRNA

    PubMed Central

    Bravo-Egana, Valia; Rosero, Samuel; Molano, R. Damaris; Pileggi, Antonello; Ricordi, Camillo; Domínguez-Bendala, Juan; Pastori, Ricardo L.

    2008-01-01

    MicroRNAs (miRNAs) are non-coding gene products that regulate gene expression through specific binding to target mRNAs. Cell-specific patterns of miRNAs are associated with the acquisition and maintenance of a given phenotype, such as endocrine pancreas (islets). We hypothesized that a subset of miRNAs could be differentially expressed in the islets. Using miRNA microarray technology and quantitative RT-PCR we identified a subset of miRNAs that are the most differentially expressed islet miRNAs (ratio islet/acinar >150-fold), mir-7 being the most abundant. A similarly high ratio for mir-7 was observed in human islets. The ratio islet/acinar for mir-375, a previously described islet miRNA, was <10, and is 2.5X more abundant in the islets than mir-7. Therefore, we conclude that mir-7 is the most abundant endocrine miRNA in islets while mir-375 is the most abundant intra-islet miRNA. Our results may offer new insights into regulatory pathways of islet gene expression. PMID:18086561

  18. Bench-to-bedside review: Future novel diagnostics for sepsis - a systems biology approach

    PubMed Central

    2013-01-01

    The early, accurate diagnosis and risk stratification of sepsis remains an important challenge in the critically ill. Since traditional biomarker strategies have not yielded a gold standard marker for sepsis, focus is shifting towards novel strategies that improve assessment capabilities. The combination of technological advancements and information generated through the human genome project positions systems biology at the forefront of biomarker discovery. While previously available, developments in the technologies focusing on DNA, gene expression, gene regulatory mechanisms, protein and metabolite discovery have made these tools more feasible to implement and less costly, and they have taken on an enhanced capacity such that they are ripe for utilization as tools to advance our knowledge and clinical research. Medicine is in a genome-level era that can leverage the assessment of thousands of molecular signals beyond simply measuring selected circulating proteins. Genomics is the study of the entire complement of genetic material of an individual. Epigenetics is the regulation of gene activity by reversible modifications of the DNA. Transcriptomics is the quantification of the relative levels of messenger RNA for a large number of genes in specific cells or tissues to measure differences in the expression levels of different genes, and the utilization of patterns of differential gene expression to characterize different biological states of a tissue. Proteomics is the large-scale study of proteins. Metabolomics is the study of the small molecule profiles that are the terminal downstream products of the genome and consists of the total complement of all low-molecular-weight molecules that cellular processes leave behind. Taken together, these individual fields of study may be linked during a systems biology approach. There remains a valuable opportunity to deploy these technologies further in human research. The techniques described in this paper not only have the potential to increase the spectrum of diagnostic and prognostic biomarkers in sepsis, but they may also enable the discovery of new disease pathways. This may in turn lead us to improved therapeutic targets. The objective of this paper is to provide an overview and basic framework for clinicians and clinical researchers to better understand the 'omics technologies' to enhance further use of these valuable tools. PMID:24093155

  19. Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds

    PubMed Central

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Background Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29–41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. Conclusions/Significance The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production. PMID:22574177

  20. Lung Metabolic Activation as an Early Biomarker of the Acute Respiratory Distress Syndrome and Local Gene Expression Heterogeneity

    PubMed Central

    Wellman, Tyler J.; de Prost, Nicolas; Tucci, Mauro; Winkler, Tilo; Baron, Rebecca M.; Filipczak, Piotr; Raby, Benjamin; Chu, Jen-hwa; Harris, R. Scott; Musch, Guido; dos Reis Falcao, Luiz F.; Capelozzi, Vera; Venegas, Jose; Melo, Marcos F. Vidal

    2016-01-01

    Background The acute respiratory distress syndrome (ARDS) is an inflammatory condition comprising diffuse lung edema and alveolar damage. ARDS frequently results from regional injury mechanisms. However, it is unknown whether detectable inflammation precedes lung edema and opacification, and whether topographically differential gene expression consistent with heterogeneous injury occurs in early ARDS. We aimed to determine the temporal relationship between pulmonary metabolic activation and density in a large animal model of early ARDS, and to assess gene expression in differentially activated regions. Methods We produced ARDS in sheep with intravenous LPS (10ng/kg/h) and mechanical ventilation for 20h. Using positron emission tomography, we assessed regional cellular metabolic activation with 2-deoxy-2-[(18)F]fluoro-D-glucose, perfusion and ventilation with 13NN-saline, and aeration using transmission scans. Species-specific micro-array technology was used to assess regional gene expression. Results Metabolic activation preceded detectable increases in lung density (as required for clinical diagnosis) and correlated with subsequent histological injury, suggesting its predictive value for severity of disease progression. Local time-courses of metabolic activation varied, with highly perfused and less aerated dependent lung regions activated earlier than non-dependent regions. These regions of distinct metabolic trajectories demonstrated differential gene expression for known and potential novel candidates for ARDS pathogenesis. Conclusions Heterogeneous lung metabolic activation precedes increases in lung density in the development of ARDS due to endotoxemia and mechanical ventilation. Local differential gene expression occurs in these early stages and reveals molecular pathways relevant to ARDS biology and of potential use as treatment targets. PMID:27611185

  1. Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis

    PubMed Central

    Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao

    2013-01-01

    Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127

  2. Very Low Abundance Single-Cell Transcript Quantification with 5-Plex ddPCRTM Assays.

    PubMed

    Karlin-Neumann, George; Zhang, Bin; Litterst, Claudia

    2018-01-01

    Gene expression studies have provided one of the most accessible windows for understanding the molecular basis of cell and tissue phenotypes and how these change in response to stimuli. Current PCR-based and next generation sequencing methods offer great versatility in allowing the focused study of the roles of small numbers of genes or comprehensive profiling of the entire transcriptome of a sample at one time. Marrying of these approaches to various cell sorting technologies has recently enabled the profiling of expression in single cells, thereby increasing the resolution and sensitivity and strengthening the inferences from observed expression levels and changes. This chapter presents a quick and efficient 1-day workflow for sorting single cells with a small laboratory cell-sorter followed by an ultrahigh sensitivity, multiplexed digital PCR method for quantitative tracking of changes in 5-10 genes per single cell.

  3. Viral delivery of genome-modifying proteins for cellular reprogramming.

    PubMed

    Mikkelsen, Jacob Giehm

    2018-06-18

    Following the successful development of virus-based gene vehicles for genetic therapies, exploitation of viruses as carriers of genetic tools for cellular reprogramming and genome editing should be right up the street. However, whereas persistent, potentially life-long gene expression is the main goal of conventional genetic therapies, tools and bits for genome engineering should ideally be short-lived and active only for a limited time. Although viral vector systems have already been adapted for potent genome editing both in vitro and in vivo, regulatable gene expression systems or self-limiting expression circuits need to be implemented limiting exposure of chromatin to genome-modifying enzymes. As an alternative approach, emerging virus-based protein delivery technologies support direct protein delivery, providing a short, robust boost of enzymatic activity in transduced cells. Is this potentially the perfect way of shipping loads of cargo to many recipients and still maintain short-term activity? Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Cell-Free Optogenetic Gene Expression System.

    PubMed

    Jayaraman, Premkumar; Yeoh, Jing Wui; Jayaraman, Sudhaghar; Teh, Ai Ying; Zhang, Jingyun; Poh, Chueh Loo

    2018-04-20

    Optogenetic tools provide a new and efficient way to dynamically program gene expression with unmatched spatiotemporal precision. To date, their vast potential remains untapped in the field of cell-free synthetic biology, largely due to the lack of simple and efficient light-switchable systems. Here, to bridge the gap between cell-free systems and optogenetics, we studied our previously engineered one component-based blue light-inducible Escherichia coli promoter in a cell-free environment through experimental characterization and mathematical modeling. We achieved >10-fold dynamic expression and demonstrated rapid and reversible activation of the target gene to generate oscillatory response. The deterministic model developed was able to recapitulate the system behavior and helped to provide quantitative insights to optimize dynamic response. This in vitro optogenetic approach could be a powerful new high-throughput screening technology for rapid prototyping of complex biological networks in both space and time without the need for chemical induction.

  5. Drug-Path: a database for drug-induced pathways

    PubMed Central

    Zeng, Hui; Cui, Qinghua

    2015-01-01

    Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. Database URL: http://www.cuilab.cn/drugpath PMID:26130661

  6. Drug-Path: a database for drug-induced pathways.

    PubMed

    Zeng, Hui; Qiu, Chengxiang; Cui, Qinghua

    2015-01-01

    Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. © The Author(s) 2015. Published by Oxford University Press.

  7. X-ray irradiation has positive effects for the recovery of peripheral nerve injury maybe through the vascular smooth muscle contraction signaling pathway.

    PubMed

    Jiang, Bo; Zhang, Yong; She, Chang; Zhao, Jiaju; Zhou, Kailong; Zuo, Zhicheng; Zhou, Xiaozhong; Wang, Peiji; Dong, Qirong

    2017-09-01

    It is well known that moderate to high doses of ionizing radiation have a toxic effect on the organism. However, there are few experimental studies on the mechanisms of LDR ionizing radiation on nerve regeneration after peripheral nerve injury. We established the rats' peripheral nerve injury model via repaired Peripheral nerve injury nerve, vascular endothelial growth factor a and Growth associated protein-43 were detected from different treatment groups. We performed transcriptome sequencing focusing on investigating the differentially expressed genes and gene functions between the control group and 1Gy group. Sequencing was done by using high-throughput RNA-sequencing (RNA-seq) technologies. The results showed the 1Gy group to be the most effective promoting repair. RNA-sequencing identified 619 differently expressed genes between control and treated groups. A Gene Ontology analysis of the differentially expressed genes revealed enrichment in the functional pathways. Among them, candidate genes associated with nerve repair were identified. Pathways involved in cell-substrate adhesion, vascular smooth muscle contraction and cell adhesion molecule signaling may be involved in recovery from peripheral nerve injury. Copyright © 2017. Published by Elsevier B.V.

  8. A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites

    PubMed Central

    Sajid, Mohammed; Chevalley-Maurel, Séverine; Ramesar, Jai; Klop, Onny; Franke-Fayard, Blandine M. D.; Janse, Chris J.; Khan, Shahid M.

    2011-01-01

    Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel ‘gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research. PMID:22216235

  9. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua.

    PubMed

    Manousaki, Tereza; Hull, Pincelli M; Kusche, Henrik; Machado-Schiaffino, Gonzalo; Franchini, Paolo; Harrod, Chris; Elmer, Kathryn R; Meyer, Axel

    2013-02-01

    The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)-from two Great Lakes and two crater lakes in Nicaragua-to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (δ(13)C and δ(15)N) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution. © 2012 Blackwell Publishing Ltd.

  10. CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development

    PubMed Central

    Kesavan, Gokul; Chekuru, Avinash; Machate, Anja; Brand, Michael

    2017-01-01

    The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a. The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development. PMID:28713249

  11. CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development.

    PubMed

    Kesavan, Gokul; Chekuru, Avinash; Machate, Anja; Brand, Michael

    2017-01-01

    The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a . The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development.

  12. Artificial intelligence in hematology.

    PubMed

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.

  13. Natural antisense RNAs as mRNA regulatory elements in bacteria: a review on function and applications.

    PubMed

    Saberi, Fatemeh; Kamali, Mehdi; Najafi, Ali; Yazdanparast, Alavieh; Moghaddam, Mehrdad Moosazadeh

    2016-01-01

    Naturally occurring antisense RNAs are small, diffusible, untranslated transcripts that pair to target RNAs at specific regions of complementarity to control their biological function by regulating gene expression at the post-transcriptional level. This review focuses on known cases of antisense RNA control in prokaryotes and provides an overview of some natural RNA-based mechanisms that bacteria use to modulate gene expression, such as mRNA sensors, riboswitches and antisense RNAs. We also highlight recent advances in RNA-based technology. The review shows that studies on both natural and synthetic systems are reciprocally beneficial.

  14. Comprehensive transcriptome-based characterization of differentially expressed genes involved in microsporogenesis of radish CMS line and its maintainer.

    PubMed

    Xie, Yang; Zhang, Wei; Wang, Yan; Xu, Liang; Zhu, Xianwen; Muleke, Everlyne M; Liu, Liwang

    2016-09-01

    Microsporogenesis is an indispensable period for investigating microspore development and cytoplasmic male sterility (CMS) occurrence. Radish CMS line plays a critical role in elite F1 hybrid seed production and heterosis utilization. However, the molecular mechanisms of microspore development and CMS occurrence have not been thoroughly uncovered in radish. In this study, a comparative analysis of radish floral buds from a CMS line (NAU-WA) and its maintainer (NAU-WB) was conducted using next generation sequencing (NGS) technology. Digital gene expression (DGE) profiling revealed that 3504 genes were significantly differentially expressed between NAU-WA and NAU-WB library, among which 1910 were upregulated and 1594 were downregulated. Gene ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly enriched in extracellular region, catalytic activity, and response to stimulus. KEGG enrichment analysis revealed that the DEGs were predominantly associated with flavonoid biosynthesis, glycolysis, and biosynthesis of secondary metabolites. Real-time quantitative PCR analysis showed that the expression profiles of 13 randomly selected DEGs were in high agreement with results from Illumina sequencing. Several candidate genes encoding ATP synthase, auxin response factor (ARF), transcription factors (TFs), chalcone synthase (CHS), and male sterility (MS) were responsible for microsporogenesis. Furthermore, a schematic diagram for functional interaction of DEGs from NAU-WA vs. NAU-WB library in radish plants was proposed. These results could provide new information on the dissection of the molecular mechanisms underlying microspore development and CMS occurrence in radish.

  15. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies.

    PubMed

    O'Rourke, Jamie A; Fu, Fengli; Bucciarelli, Bruna; Yang, S Sam; Samac, Deborah A; Lamb, JoAnn F S; Monteros, Maria J; Graham, Michelle A; Gronwald, John W; Krom, Nick; Li, Jun; Dai, Xinbin; Zhao, Patrick X; Vance, Carroll P

    2015-07-07

    Alfalfa (Medicago sativa L.) is the primary forage legume crop species in the United States and plays essential economic and ecological roles in agricultural systems across the country. Modern alfalfa is the result of hybridization between tetraploid M. sativa ssp. sativa and M. sativa ssp. falcata. Due to its large and complex genome, there are few genomic resources available for alfalfa improvement. A de novo transcriptome assembly from two alfalfa subspecies, M. sativa ssp. sativa (B47) and M. sativa ssp. falcata (F56) was developed using Illumina RNA-seq technology. Transcripts from roots, nitrogen-fixing root nodules, leaves, flowers, elongating stem internodes, and post-elongation stem internodes were assembled into the Medicago sativa Gene Index 1.2 (MSGI 1.2) representing 112,626 unique transcript sequences. Nodule-specific and transcripts involved in cell wall biosynthesis were identified. Statistical analyses identified 20,447 transcripts differentially expressed between the two subspecies. Pair-wise comparisons of each tissue combination identified 58,932 sequences differentially expressed in B47 and 69,143 sequences differentially expressed in F56. Comparing transcript abundance in floral tissues of B47 and F56 identified expression differences in sequences involved in anthocyanin and carotenoid synthesis, which determine flower pigmentation. Single nucleotide polymorphisms (SNPs) unique to each M. sativa subspecies (110,241) were identified. The Medicago sativa Gene Index 1.2 increases the expressed sequence data available for alfalfa by ninefold and can be expanded as additional experiments are performed. The MSGI 1.2 transcriptome sequences, annotations, expression profiles, and SNPs were assembled into the Alfalfa Gene Index and Expression Database (AGED) at http://plantgrn.noble.org/AGED/ , a publicly available genomic resource for alfalfa improvement and legume research.

  16. Differential gene expression in the siphonophore Nanomia bijuga (Cnidaria) assessed with multiple next-generation sequencing workflows.

    PubMed

    Siebert, Stefan; Robinson, Mark D; Tintori, Sophia C; Goetz, Freya; Helm, Rebecca R; Smith, Stephen A; Shaner, Nathan; Haddock, Steven H D; Dunn, Casey W

    2011-01-01

    We investigated differential gene expression between functionally specialized feeding polyps and swimming medusae in the siphonophore Nanomia bijuga (Cnidaria) with a hybrid long-read/short-read sequencing strategy. We assembled a set of partial gene reference sequences from long-read data (Roche 454), and generated short-read sequences from replicated tissue samples that were mapped to the references to quantify expression. We collected and compared expression data with three short-read expression workflows that differ in sample preparation, sequencing technology, and mapping tools. These workflows were Illumina mRNA-Seq, which generates sequence reads from random locations along each transcript, and two tag-based approaches, SOLiD SAGE and Helicos DGE, which generate reads from particular tag sites. Differences in expression results across workflows were mostly due to the differential impact of missing data in the partial reference sequences. When all 454-derived gene reference sequences were considered, Illumina mRNA-Seq detected more than twice as many differentially expressed (DE) reference sequences as the tag-based workflows. This discrepancy was largely due to missing tag sites in the partial reference that led to false negatives in the tag-based workflows. When only the subset of reference sequences that unambiguously have tag sites was considered, we found broad congruence across workflows, and they all identified a similar set of DE sequences. Our results are promising in several regards for gene expression studies in non-model organisms. First, we demonstrate that a hybrid long-read/short-read sequencing strategy is an effective way to collect gene expression data when an annotated genome sequence is not available. Second, our replicated sampling indicates that expression profiles are highly consistent across field-collected animals in this case. Third, the impacts of partial reference sequences on the ability to detect DE can be mitigated through workflow choice and deeper reference sequencing.

  17. Differential Gene Expression in the Siphonophore Nanomia bijuga (Cnidaria) Assessed with Multiple Next-Generation Sequencing Workflows

    PubMed Central

    Siebert, Stefan; Robinson, Mark D.; Tintori, Sophia C.; Goetz, Freya; Helm, Rebecca R.; Smith, Stephen A.; Shaner, Nathan; Haddock, Steven H. D.; Dunn, Casey W.

    2011-01-01

    We investigated differential gene expression between functionally specialized feeding polyps and swimming medusae in the siphonophore Nanomia bijuga (Cnidaria) with a hybrid long-read/short-read sequencing strategy. We assembled a set of partial gene reference sequences from long-read data (Roche 454), and generated short-read sequences from replicated tissue samples that were mapped to the references to quantify expression. We collected and compared expression data with three short-read expression workflows that differ in sample preparation, sequencing technology, and mapping tools. These workflows were Illumina mRNA-Seq, which generates sequence reads from random locations along each transcript, and two tag-based approaches, SOLiD SAGE and Helicos DGE, which generate reads from particular tag sites. Differences in expression results across workflows were mostly due to the differential impact of missing data in the partial reference sequences. When all 454-derived gene reference sequences were considered, Illumina mRNA-Seq detected more than twice as many differentially expressed (DE) reference sequences as the tag-based workflows. This discrepancy was largely due to missing tag sites in the partial reference that led to false negatives in the tag-based workflows. When only the subset of reference sequences that unambiguously have tag sites was considered, we found broad congruence across workflows, and they all identified a similar set of DE sequences. Our results are promising in several regards for gene expression studies in non-model organisms. First, we demonstrate that a hybrid long-read/short-read sequencing strategy is an effective way to collect gene expression data when an annotated genome sequence is not available. Second, our replicated sampling indicates that expression profiles are highly consistent across field-collected animals in this case. Third, the impacts of partial reference sequences on the ability to detect DE can be mitigated through workflow choice and deeper reference sequencing. PMID:21829563

  18. Sensitive and quantitative measurement of gene expression directly from a small amount of whole blood.

    PubMed

    Zheng, Zhi; Luo, Yuling; McMaster, Gary K

    2006-07-01

    Accurate and precise quantification of mRNA in whole blood is made difficult by gene expression changes during blood processing, and by variations and biases introduced by sample preparations. We sought to develop a quantitative whole-blood mRNA assay that eliminates blood purification, RNA isolation, reverse transcription, and target amplification while providing high-quality data in an easy assay format. We performed single- and multiplex gene expression analysis with multiple hybridization probes to capture mRNA directly from blood lysate and used branched DNA to amplify the signal. The 96-well plate singleplex assay uses chemiluminescence detection, and the multiplex assay combines Luminex-encoded beads with fluorescent detection. The single- and multiplex assays could quantitatively measure as few as 6000 and 24,000 mRNA target molecules (0.01 and 0.04 amoles), respectively, in up to 25 microL of whole blood. Both formats had CVs < 10% and dynamic ranges of 3-4 logs. Assay sensitivities allowed quantitative measurement of gene expression in the minority of cells in whole blood. The signals from whole-blood lysate correlated well with signals from purified RNA of the same sample, and absolute mRNA quantification results from the assay were similar to those obtained by quantitative reverse transcription-PCR. Both single- and multiplex assay formats were compatible with common anticoagulants and PAXgene-treated samples; however, PAXgene preparations induced expression of known antiapoptotic genes in whole blood. Both the singleplex and the multiplex branched DNA assays can quantitatively measure mRNA expression directly from small volumes of whole blood. The assay offers an alternative to current technologies that depend on RNA isolation and is amenable to high-throughput gene expression analysis of whole blood.

  19. Characterization of Gonadal Transcriptomes from Nile Tilapia (Oreochromis niloticus) Reveals Differentially Expressed Genes

    PubMed Central

    Sun, Yunlv; Yang, Shijie; Li, Minghui; Zeng, Sheng; Huang, Baofeng; Wang, Deshou

    2013-01-01

    Four pairs of XX and XY gonads from Nile tilapia were sequenced at four developmental stages, 5, 30, 90, and 180 days after hatching (dah) using Illumina HiseqTM technology. This produced 28 Gb sequences, which were mapped to 21,334 genes. Of these, 259 genes were found to be specifically expressed in XY gonads, and 69 were found to be specific to XX gonads. Totally, 187 XX- and 1,358 XY-enhanced genes were identified, and 2,978 genes were found to be co-expressed in XX and XY gonads. Almost all steroidogenic enzymes, including cyp19a1a, were up-regulated in XX gonads at 5 dah; but in XY gonads these enzymes, including cyp11b2, were significantly up-regulated at 90 dah, indicating that, at a time critical to sex determination, the XX fish produced estrogen and the XY fish did not produce androgens. The most pronounced expression of steroidogenic enzyme genes was observed at 30 and 90 dah for XX and XY gonads, corresponding to the initiation of germ cell meiosis in the female and male gonads, respectively. Both estrogen and androgen receptors were found to be expressed in XX gonads, but only estrogen receptors were expressed in XY gonads at 5 dah. This could explain why exogenous steroid treatment induced XX and XY sex reversal. The XX-enhanced expression of cyp19a1a and cyp19a1b at all stages suggests an important role for estrogen in female sex determination and maintenance of phenotypic sex. This work is the largest collection of gonadal transcriptome data in tilapia and lays the foundation for future studies into the molecular mechanisms of sex determination and maintenance of phenotypic sex in non-model teleosts. PMID:23658843

  20. Multiplex transcriptional analysis of paraffin-embedded liver needle biopsy from patients with liver fibrosis

    PubMed Central

    2012-01-01

    Background The possibility of extracting RNA and measuring RNA expression from paraffin sections can allow extensive investigations on stored paraffin samples obtained from diseased livers and could help with studies of the natural history of liver fibrosis and inflammation, and in particular, correlate basic mechanisms to clinical outcomes. Results To address this issue, a pilot study of multiplex gene expression using branched-chain DNA technology was conducted to directly measure mRNA expression in formalin-fixed paraffin-embedded needle biopsy samples of human liver. Twenty-five genes were selected for evaluation based on evidence obtained from human fibrotic liver, a rat BDL model and in vitro cultures of immortalized human hepatic stellate cells. The expression levels of these 25 genes were then correlated with liver fibrosis and inflammation activity scores. Statistical analysis revealed that three genes (COL3A1, KRT18, and TUBB) could separate fibrotic from non-fibrotic samples and that the expression of ten genes (ANXA2, TIMP1, CTGF, COL4A1, KRT18, COL1A1, COL3A1, ACTA2, TGFB1, LOXL2) were positively correlated with the level of liver inflammation activity. Conclusion This is the first report describing this multiplex technique for liver fibrosis and has provided the proof of concept of the suitability of RNA extracted from paraffin sections for investigating the modulation of a panel of proinflammatory and profibrogenic genes. This pilot study suggests that this technique will allow extensive investigations on paraffin samples from diseased livers and possibly from any other tissue. Using identical or other genes, this multiplex expression technique could be applied to samples obtained from extensive patient cohorts with stored paraffin samples in order to correlate gene expression with valuable clinically relevant information. This method could be used to provide a better understanding of the mechanisms of liver fibrosis and inflammation, its progression, and help development of new therapeutic approaches for this indication. PMID:23270325

Top