Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives
NASA Astrophysics Data System (ADS)
Gajbhiye, Virendra; Escalante, Leah; Chen, Guojun; Laperle, Alex; Zheng, Qifeng; Steyer, Benjamin; Gong, Shaoqin; Saha, Krishanu
2013-12-01
Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained higher fibroblast proliferation levels and MMP activity. The results demonstrate that the PEG-H40-DXC nanoparticle system provides an effective tool to controlling gene expression in human stem cell derivatives.Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained higher fibroblast proliferation levels and MMP activity. The results demonstrate that the PEG-H40-DXC nanoparticle system provides an effective tool to controlling gene expression in human stem cell derivatives. Electronic supplementary information (ESI) available: ESI containing 1H NMR spectra and additional fibroblast characterization data. See DOI: 10.1039/c3nr04794f
Laubinger, Sascha; Zeller, Georg; Henz, Stefan R; Sachsenberg, Timo; Widmer, Christian K; Naouar, Naïra; Vuylsteke, Marnik; Schölkopf, Bernhard; Rätsch, Gunnar; Weigel, Detlef
2008-01-01
Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage. PMID:18613972
Expression of short hairpin RNAs using the compact architecture of retroviral microRNA genes.
Burke, James M; Kincaid, Rodney P; Aloisio, Francesca; Welch, Nicole; Sullivan, Christopher S
2017-09-29
Short hairpin RNAs (shRNAs) are effective in generating stable repression of gene expression. RNA polymerase III (RNAP III) type III promoters (U6 or H1) are typically used to drive shRNA expression. While useful for some knockdown applications, the robust expression of U6/H1-driven shRNAs can induce toxicity and generate heterogeneous small RNAs with undesirable off-target effects. Additionally, typical U6/H1 promoters encompass the majority of the ∼270 base pairs (bp) of vector space required for shRNA expression. This can limit the efficacy and/or number of delivery vector options, particularly when delivery of multiple gene/shRNA combinations is required. Here, we develop a compact shRNA (cshRNA) expression system based on retroviral microRNA (miRNA) gene architecture that uses RNAP III type II promoters. We demonstrate that cshRNAs coded from as little as 100 bps of total coding space can precisely generate small interfering RNAs (siRNAs) that are active in the RNA-induced silencing complex (RISC). We provide an algorithm with a user-friendly interface to design cshRNAs for desired target genes. This cshRNA expression system reduces the coding space required for shRNA expression by >2-fold as compared to the typical U6/H1 promoters, which may facilitate therapeutic RNAi applications where delivery vector space is limiting. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Variations in study design are typical for toxicogenomic studies, but their impact on gene expression in control animals has not been well characterized. A dataset of control animal microarray expression data was assembled by a working group of the Health and Environmental Scienc...
Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R; Del Río-Navarro, Blanca E; Mendoza-Vargas, Alfredo; Sánchez, Filiberto; Ochoa-Leyva, Adrian
2017-01-01
In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6-10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly, these pathways were related to the typical functions of leukocytes cells, such as antigen processing and presentation and natural killer cell mediated cytotoxicity. We also applied this method to obtain the absolute gene expression threshold in already published microarray data of liver cells, where the top 5% expressed genes showed an enrichment of typical KEGG pathways for liver cells. Our results suggest that the three selected genes of the Y chromosome can be used to calculate an absolute gene expression threshold, allowing a transcriptome profiling of microarray data without the need of an additional reference experiment. Our approach based on the establishment of a threshold for absolute gene expression analysis will allow a new way to analyze thousands of microarrays from public databases. This allows the study of different human diseases without the need of having additional samples for relative expression experiments.
Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.
Agrawal, Deepak K; Tang, Xun; Westbrook, Alexandra; Marshall, Ryan; Maxwell, Colin S; Lucks, Julius; Noireaux, Vincent; Beisel, Chase L; Dunlop, Mary J; Franco, Elisa
2018-05-08
Feedback allows biological systems to control gene expression precisely and reliably, even in the presence of uncertainty, by sensing and processing environmental changes. Taking inspiration from natural architectures, synthetic biologists have engineered feedback loops to tune the dynamics and improve the robustness and predictability of gene expression. However, experimental implementations of biomolecular control systems are still far from satisfying performance specifications typically achieved by electrical or mechanical control systems. To address this gap, we present mathematical models of biomolecular controllers that enable reference tracking, disturbance rejection, and tuning of the temporal response of gene expression. These controllers employ RNA transcriptional regulators to achieve closed loop control where feedback is introduced via molecular sequestration. Sensitivity analysis of the models allows us to identify which parameters influence the transient and steady state response of a target gene expression process, as well as which biologically plausible parameter values enable perfect reference tracking. We quantify performance using typical control theory metrics to characterize response properties and provide clear selection guidelines for practical applications. Our results indicate that RNA regulators are well-suited for building robust and precise feedback controllers for gene expression. Additionally, our approach illustrates several quantitative methods useful for assessing the performance of biomolecular feedback control systems.
Bikel, Shirley; Jacobo-Albavera, Leonor; Sánchez-Muñoz, Fausto; Cornejo-Granados, Fernanda; Canizales-Quinteros, Samuel; Soberón, Xavier; Sotelo-Mundo, Rogerio R.; del Río-Navarro, Blanca E.; Mendoza-Vargas, Alfredo; Sánchez, Filiberto
2017-01-01
Background In spite of the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under a specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays. Methods We extracted the RNA from 16 children leukocyte samples (nine males and seven females, ages 6–10 years). An Affymetrix Gene Chip Human Gene 1.0 ST Array was carried out for each sample and the fluorescence of 124 genes of the Y chromosome was used to calculate the absolute gene expression threshold. After that, several expressed and non-expressed genes according to our absolute gene expression threshold were compared against the expression obtained using real-time quantitative polymerase chain reaction (RT-qPCR). Results From the 124 genes of the Y chromosome, three genes (DDX3Y, TXLNG2P and EIF1AY) that displayed significant differences between sexes were used to calculate the absolute gene expression threshold. Using this threshold, we selected 13 expressed and non-expressed genes and confirmed their expression level by RT-qPCR. Then, we selected the top 5% most expressed genes and found that several KEGG pathways were significantly enriched. Interestingly, these pathways were related to the typical functions of leukocytes cells, such as antigen processing and presentation and natural killer cell mediated cytotoxicity. We also applied this method to obtain the absolute gene expression threshold in already published microarray data of liver cells, where the top 5% expressed genes showed an enrichment of typical KEGG pathways for liver cells. Our results suggest that the three selected genes of the Y chromosome can be used to calculate an absolute gene expression threshold, allowing a transcriptome profiling of microarray data without the need of an additional reference experiment. Discussion Our approach based on the establishment of a threshold for absolute gene expression analysis will allow a new way to analyze thousands of microarrays from public databases. This allows the study of different human diseases without the need of having additional samples for relative expression experiments. PMID:29230367
SOURCES OF VARIABILITY IN BASELINE GENE EXPRESSION IN RAT LIVER AND KIDNEY
Toxicogenomic studies are typically variable in design, but the impact of variations in study design and conduct on control animal gene expression has not been well characterized. A working group of the Health and Environmental Sciences Institute (HESI) Technical Committee on the...
Schrader, Lukas; Helanterä, Heikki; Oettler, Jan
2017-03-01
Plastic gene expression underlies phenotypic plasticity and plastically expressed genes evolve under different selection regimes compared with ubiquitously expressed genes. Social insects are well-suited models to elucidate the evolutionary dynamics of plastic genes for their genetically and environmentally induced discrete polymorphisms. Here, we study the evolution of plastically expressed genes in the ant Cardiocondyla obscurior-a species that produces two discrete male morphs in addition to the typical female polymorphism of workers and queens. Based on individual-level gene expression data from 28 early third instar larvae, we test whether the same evolutionary dynamics that pertain to plastically expressed genes in adults also pertain to genes with plastic expression during development. In order to quantify plasticity of gene expression over multiple contrasts, we develop a novel geometric measure. For genes expressed during development, we show that plasticity of expression is positively correlated with evolutionary rates. We furthermore find a strong correlation between expression plasticity and expression variation within morphs, suggesting a close link between active and passive plasticity of gene expression. Our results support the notion of relaxed selection and neutral processes as important drivers in the evolution of adaptive plasticity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Transcriptional Analysis of Flowering Time in Switchgrass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon
Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically early flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may then be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.« less
Transcriptional Analysis of Flowering Time in Switchgrass
Tornqvist, Carl-Erik; Vaillancourt, Brieanne; Kim, Jeongwoon; ...
2017-04-27
Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically earlymore » flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.Over the past two decades, switchgrass (Panicum virgatum) has emerged as a priority biofuel feedstock. The bulk of switchgrass biomass is in the vegetative portion of the plant; therefore, increasing the length of vegetative growth will lead to an increase in overall biomass yield. The goal of this study was to gain insight into the control of flowering time in switchgrass that would assist in development of cultivars with longer vegetative phases through delayed flowering. RNA sequencing was used to assess genome-wide expression profiles across a developmental series between switchgrass genotypes belonging to the two main ecotypes: upland, typically early flowering, and lowland, typically late flowering. Leaf blades and tissues enriched for the shoot apical meristem (SAM) were collected in a developmental series from emergence through anthesis for RNA extraction. RNA from samples that flanked the SAM transition stage was sequenced for expression analyses. The analyses revealed differential expression patterns between early- and late-flowering genotypes for known flowering time orthologs. Namely, genes shown to play roles in photoperiod response and the circadian clock in other species were identified as potential candidates for regulating flowering time in the switchgrass genotypes analyzed. Based on their expression patterns, many of the differentially expressed genes could also be classified as putative promoters or repressors of flowering. The candidate genes presented here may then be used to guide switchgrass improvement through marker-assisted breeding and/or transgenic or gene editing approaches.« less
Aoshima, Yoshiki; Sakakibara, Hiroyuki; Suzuki, Taka-aki; Yamazaki, Shunsuke; Shimoi, Kayoko
2014-01-01
Recent studies have suggested the possibility that nocturnal light exposure affects many biological processes in rodents, especially the circadian rhythm, an endogenous oscillation of approximately 24 h. However, there is still insufficient information about the physiological effects of nocturnal light exposure. In this study, we examined the changes in gene expression and serum levels of plasminogen activator inhibitor-1 (PAI-1), a major component of the fibrinolytic system that shows typical circadian rhythmicity, in C3H/He mice. Zeitgeber time (ZT) was assessed with reference to the onset of light period (ZT0). Exposure to fluorescent light (70 lux) for 1 h in the dark period (ZT14) caused a significant increase in hepatic Pai-1 gene expression at ZT16. Serum PAI-1 levels also tended to increase, albeit not significantly. Expression levels of the typical clock genes Bmal1, Clock, and Per1 were significantly increased at ZT21, ZT16, and ZT18, respectively. Exposure to nocturnal light significantly increased plasma adrenalin levels. The effects of nocturnal light exposure on Pai-1 expression disappeared in adrenalectomized mice, although the changes in clock genes were still apparent. In conclusion, our results suggest that nocturnal light exposure, even for 1 h, alters hepatic Pai-1 gene expression by stimulating the adrenal pathway. Adrenalin secreted from the adrenal gland may be an important signaling mediator of the change in Pai-1 expression in response to nocturnal light exposure. PMID:25077763
Gatta, V; Zizzari, V L; Dd ' Amico, V; Salini, L; D' Aurora, M; Franchi, S; Antonucci, I; Sberna, M T; Gherlone, E; Stuppia, L; Tetè, S
2012-01-01
Dental pulp undergoes a number of changes passing from healthy status to inflammation due to deep decay. These changes are regulated by several genes resulting differently expressed in inflamed and healthy dental pulp, and the knowledge of the processes underlying this differential expression is of great relevance in the identification of the pathogenesis of the disease. In this study, the gene expression profile of inflamed and healthy dental pulps were compared by microarray analysis, and data obtained were analyzed by Ingenuity Pathway Analysis (IPA) software. This analysis allows to focus on a variety of genes, typically expressed in inflamed tissues. The comparison analysis showed an increased expression of several genes in inflamed pulp, among which IL1β and CD40 resulted of particular interest. These results indicate that gene expression profile of human dental pulp in different physiological and pathological conditions may become an useful tool for improving our knowledge about processes regulating pulp inflammation.
Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica.
Liang, Dong; Xia, Hui; Wu, Shan; Ma, Fengwang
2012-12-01
The family of dehydrin genes has important roles in protecting higher plants against abiotic stress, such as drought, salinity and cold. However, knowledge about apple dehydrin gene family is limited. In the present study, we used a bioinformatics approach to identify members of that family in apple (Malus domestica). A total of 12 apple dehydrin genes (MdDHNs) were identified and located on various chromosomes. All putative proteins from those genes contained a typical K domain. Among 12 MdDHNs, nine were cloned and their expression patterns were investigated. Expression profiling indicated that the these nine dehydrin genes display differential expression patterns in various tissues. Moreover, transcript levels of some MdDHNs were up-regulated significantly under drought, low temperature, or ABA treatment, which indicated their important roles during stress adaptation. These results demonstrate that the apple dehydrin gene family may function in tissue development and plant stress responses.
Mapping cis- and trans-regulatory effects across multiple tissues in twins
Grundberg, Elin; Small, Kerrin S.; Hedman, Åsa K.; Nica, Alexandra C.; Buil, Alfonso; Keildson, Sarah; Bell, Jordana T.; Yang, Tsun-Po; Meduri, Eshwar; Barrett, Amy; Nisbett, James; Sekowska, Magdalena; Wilk, Alicja; Shin, So-Youn; Glass, Daniel; Travers, Mary; Min, Josine L.; Ring, Sue; Ho, Karen; Thorleifsson, Gudmar; Kong, Augustine; Thorsteindottir, Unnur; Ainali, Chrysanthi; Dimas, Antigone S.; Hassanali, Neelam; Ingle, Catherine; Knowles, David; Krestyaninova, Maria; Lowe, Christopher E.; Di Meglio, Paola; Montgomery, Stephen B.; Parts, Leopold; Potter, Simon; Surdulescu, Gabriela; Tsaprouni, Loukia; Tsoka, Sophia; Bataille, Veronique; Durbin, Richard; Nestle, Frank O.; O’Rahilly, Stephen; Soranzo, Nicole; Lindgren, Cecilia M.; Zondervan, Krina T.; Ahmadi, Kourosh R.; Schadt, Eric E.; Stefansson, Kari; Smith, George Davey; McCarthy, Mark I.; Deloukas, Panos; Dermitzakis, Emmanouil T.; Spector, Tim D.
2013-01-01
Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many eQTL studies typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis-effect on expression cannot be accounted for by common cis-variants, a finding which exposes the contribution of low frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene and identify several replicating trans-variants which act predominantly in a tissue-restricted manner and may regulate the transcription of many genes. PMID:22941192
Barberà, Miquel; Collantes-Alegre, Jorge Mariano; Martínez-Torres, David
2017-04-01
Aphids are typical photoperiodic insects that switch from viviparous parthenogenetic reproduction typical of long day seasons to oviparous sexual reproduction triggered by the shortening of photoperiod in autumn yielding an overwintering egg in which an embryonic diapause takes place. While the involvement of the circadian clock genes in photoperiodism in mammals is well established, there is still some controversy on their participation in insects. The availability of the genome of the pea aphid Acyrthosiphon pisum places this species as an excellent model to investigate the involvement of the circadian system in the aphid seasonal response. In the present report, we have advanced in the characterisation of the circadian clock genes and showed that these genes display extensive alternative splicing. Moreover, the expression of circadian clock genes, analysed at different moments of the day, showed a robust cycling of central clock genes period and timeless. Furthermore, the rhythmic expression of these genes was shown to be rapidly dampened under DD (continuous darkness conditions), thus supporting the model of a seasonal response based on a heavily dampened circadian oscillator. Additionally, increased expression of some of the circadian clock genes under short-day conditions suggest their involvement in the induction of the aphid seasonal response. Finally, in situ localisation of transcripts of genes period and timeless in the aphid brain revealed the site of clock neurons for the first time in aphids. Two groups of clock cells were identified: the Dorsal Neurons (DN) and the Lateral Neurons (LN), both in the protocerebrum. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Virus-induced gene silencing (VIGS) is a powerful and rapid approach for determining the functions of plant genes. The basis of VIGS is that a viral genome is engineered so that it can carry fragments of plant genes, typically in the 200-300 base pair size range. The recombinant viruses are used to ...
Identifying a gene expression signature of cluster headache in blood
Eising, Else; Pelzer, Nadine; Vijfhuizen, Lisanne S.; Vries, Boukje de; Ferrari, Michel D.; ‘t Hoen, Peter A. C.; Terwindt, Gisela M.; van den Maagdenberg, Arn M. J. M.
2017-01-01
Cluster headache is a relatively rare headache disorder, typically characterized by multiple daily, short-lasting attacks of excruciating, unilateral (peri-)orbital or temporal pain associated with autonomic symptoms and restlessness. To better understand the pathophysiology of cluster headache, we used RNA sequencing to identify differentially expressed genes and pathways in whole blood of patients with episodic (n = 19) or chronic (n = 20) cluster headache in comparison with headache-free controls (n = 20). Gene expression data were analysed by gene and by module of co-expressed genes with particular attention to previously implicated disease pathways including hypocretin dysregulation. Only moderate gene expression differences were identified and no associations were found with previously reported pathogenic mechanisms. At the level of functional gene sets, associations were observed for genes involved in several brain-related mechanisms such as GABA receptor function and voltage-gated channels. In addition, genes and modules of co-expressed genes showed a role for intracellular signalling cascades, mitochondria and inflammation. Although larger study samples may be required to identify the full range of involved pathways, these results indicate a role for mitochondria, intracellular signalling and inflammation in cluster headache. PMID:28074859
Temporal Changes in Gene Expression in Rainbow Trout Exposed to Ethynyl Estradiol*
Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.
2007-01-01
We examined changes in the genomic response during continuous exposure to the xenoestrogen ethynylestradiol. Isogenic rainbow trout Oncorhynchus mykiss were exposed to nominal concentrations of 100 ng/L ethynyl estradiol (EE2) for a period of three weeks. At fixed time points within the exposure, fish were euthanized, livers harvested and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Salmonid array (GRASP project, University of Victoria, Canada) spotted with 16,000 cDNAs. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up and down regulated genes, and to determine gene clustering patterns that can be used as “expression signatures”. Gene ontology was determined using the annotation available from the GRASP website. Our analysis indicates each exposure time period generated specific gene expression profiles. Changes in gene expression were best understood by grouping genes by their gene expression profiles rather than examining fold change at a particular time point. Many of the genes commonly used as biomarkers of exposure to xenoestrogens were not induced initially and did not have gene expression profiles typical of the majority of genes with altered expression. PMID:17215170
Temporal changes in gene expression in rainbow trout exposed to ethynyl estradiol.
Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R
2007-02-01
We examined changes in the genomic response during continuous exposure to the xenoestrogen ethynyl estradiol. Isogenic rainbow trout Oncorhynchus mykiss were exposed to nominal concentrations of 100 ng/L ethynyl estradiol (EE2) for a period of 3 weeks. At fixed time points within the exposure, fish were euthanized, livers harvested and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Salmonid array (GRASP project, University of Victoria, Canada) spotted with 16,000 cDNAs. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up and down regulated genes, and to determine gene clustering patterns that can be used as "expression signatures". Gene ontology was determined using the annotation available from the GRASP website. Our analysis indicates each exposure time period generated specific gene expression profiles. Changes in gene expression were best understood by grouping genes by their gene expression profiles rather than examining fold change at a particular time point. Many of the genes commonly used as biomarkers of exposure to xenoestrogens were not induced initially and did not have gene expression profiles typical of the majority of genes with altered expression.
Spatiotemporal evolution of bacterial biofilm colonies
NASA Astrophysics Data System (ADS)
Wilking, James; Koehler, Stephan; Sinha, Naveen; Seminara, Agnese; Brenner, Michael; Weitz, David
2014-03-01
Many bacteria on earth live in surface-attached communities known as biofilms. Gene expression in a biofilm is typically varied, resulting in a variety of phenotypes within a single film. These phenotypes play a critical role in biofilm physiology and development. We use time-resolved, wide-field fluorescence microscopy to image triple-labeled fluorescent Bacillus Subtilis colonies grown on agar to determine in a non-invasive fashion the evolving phenotypes. We infer their transition rates from the resulting spatiotemporal maps of gene expression. Moreover, we correlate these transition rates with local measurements of nutrient concentration to determine the influence of extracellular signals on gene expression.
Missing value imputation for gene expression data by tailored nearest neighbors.
Faisal, Shahla; Tutz, Gerhard
2017-04-25
High dimensional data like gene expression and RNA-sequences often contain missing values. The subsequent analysis and results based on these incomplete data can suffer strongly from the presence of these missing values. Several approaches to imputation of missing values in gene expression data have been developed but the task is difficult due to the high dimensionality (number of genes) of the data. Here an imputation procedure is proposed that uses weighted nearest neighbors. Instead of using nearest neighbors defined by a distance that includes all genes the distance is computed for genes that are apt to contribute to the accuracy of imputed values. The method aims at avoiding the curse of dimensionality, which typically occurs if local methods as nearest neighbors are applied in high dimensional settings. The proposed weighted nearest neighbors algorithm is compared to existing missing value imputation techniques like mean imputation, KNNimpute and the recently proposed imputation by random forests. We use RNA-sequence and microarray data from studies on human cancer to compare the performance of the methods. The results from simulations as well as real studies show that the weighted distance procedure can successfully handle missing values for high dimensional data structures where the number of predictors is larger than the number of samples. The method typically outperforms the considered competitors.
Bone-related gene profiles in developing calvaria.
Cho, Je-Yoel; Lee, Won-Bong; Kim, Hyun-Jung; Mi Woo, Kyung; Baek, Jeong-Hwa; Choi, Je-Yong; Hur, Cheol-Gu; Ryoo, Hyun-Mo
2006-05-10
Generating a comprehensive understanding of osteogenesis-related gene profiles is very important in the development of new treatments for osteopenic conditions. Developing calvaria undergoes a typical intramembranous bone-forming process. To identify genes associated with osteoblast differentiation, we isolated total RNAs from parietal bones, that represent active osteoblasts, and sutural mesenchyme, that represents osteoprogenitor cells, and comprehensively analyzed their gene expression profiles using an oligo-based Affymetrix microarray chip containing 22,690 probes. About 2100 genes with "Present" calls had more than 2-fold higher expression in bone compared to sutures while 73 of these genes had more than 8-fold expression. Some of these genes are already known to be bone-related biomarkers: VitD receptor, bone sialoprotein, osteocalcin, osteopontin, MMP13, etc. Eight genes were selected and subjected to confirmation by quantitative real-time RT-PCR analyses. All the genes tested showed higher expression in bones, ranging from 5- to 140-fold. Several of these genes are ESTs while others are already known but their functions in osteogenesis were not previously known. Most genes of the BMP and FGF families probed in the Genechip analysis were more highly expressed in bone tissues compared to suture. All differentially-expressed Runx and Dlx family genes also showed higher expression in bone. These results imply that our data is valid and can be used as a good standard for the mining of osteogenesis-related genes.
Olson, P D
2008-03-01
Research into the roles played by Hox and related homeotic gene families in the diverse and complex developmental programmes exhibited by parasitic flatworms (Platyhelminthes) can hardly be said to have begun, and thus presents considerable opportunity for new research. Although featured in some of the earliest screens for homeotic genes outside Drosophila and mice, surveys in parasitic flatworms are few in number and almost nothing is yet known of where or when the genes are expressed during ontogeny. This contrasts sharply with a significant body of literature concerning Hox genes in free-living flatworms which have long served as models for the study of regeneration and the maintenance of omnipotent cell lines. Nevertheless, available information suggests that the complement of Hox genes and other classes of homeobox-containing genes in parasitic flatworms is typical of their free-living cousins and of other members of the Lophotrochozoa. Recent work on Schistosoma combined with information on Hox gene expression in planarians indicates that at least some disruption of the clustered genomic arrangement of the genes, as well as of the strict spatial and temporal colinear patterns of expression typical in other groups, may be characteristic of flatworms. However, available data on the genomic arrangement and expression of flatworm Hox genes is so limited at present that such generalities are highly tenuous. Moreover, a basic underlying pattern of colinearity is still observed in their spatial expression patterns making them suitable as cell or region-specific markers. I discuss a number of fundamental developmental questions and some of the challenges to addressing them in relation to each of the major parasitic lineages. In addition, I present newly characterized Hox genes from the model tapeworm Hymenolepis and analyze these by Bayesian inference together with >100 Hox and ParaHox homeodomains of flatworms and select lophotrochozoan taxa, providing a phylogenetic scaffold for their identification.
Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle
Gutzwiller, Florence; Carmo, Catarina R.; Miller, Danny E.; Rice, Danny W.; Newton, Irene L. G.; Hawley, R. Scott; Teixeira, Luis; Bergman, Casey M.
2015-01-01
Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome. PMID:26497146
Klein, Andreas; Guhl, Eva; Zollinger, Raphael; Tzeng, Yin-Jeh; Wessel, Ralf; Hummel, Michael; Graessmann, Monika; Graessmann, Adolf
2005-05-01
Microarray studies revealed that as a first hit the SV40 T/t antigen causes deregulation of 462 genes in mammary gland cells (ME cells) of WAP-SVT/t transgenic animals. The majority of deregulated genes are cell proliferation specific and Rb-E2F dependent, causing ME cell proliferation and gland hyperplasia but not breast cancer formation. In the breast tumor cells a further 207 genes are differentially expressed, most of them belonging to the cell communication category. In tissue culture breast tumor cells frequently switch off WAP-SVT/t transgene expression and regain the morphology and growth characteristics of normal ME cells, although the tumor-revertant cells are aneuploid and only 114 genes regain the expression level of normal ME cells. The profile of retransformants shows that only 38 deregulated genes are tumor-specific, and that none of them is considered to be a typical breast cancer gene.
Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.
Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa
2017-01-20
Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.
An in vivo and in silico approach to study cis-antisense: a short cut to higher order response
NASA Astrophysics Data System (ADS)
Courtney, Colleen; Varanasi, Usha; Chatterjee, Anushree
2014-03-01
Antisense interactions are present in all domains of life. Typically sense, antisense RNA pairs originate from overlapping genes with convergent face to face promoters, and are speculated to be involved in gene regulation. Recent studies indicate the role of transcriptional interference (TI) in regulating expression of genes in convergent orientation. Modeling antisense, TI gene regulation mechanisms allows us to understand how organisms control gene expression. We present a modeling and experimental framework to understand convergent transcription that combines the effects of transcriptional interference and cis-antisense regulation. Our model shows that combining transcriptional interference and antisense RNA interaction adds multiple-levels of regulation which affords a highly tunable biological output, ranging from first order response to complex higher-order response. To study this system we created a library of experimental constructs with engineered TI and antisense interaction by using face-to-face inducible promoters separated by carefully tailored overlapping DNA sequences to control expression of a set of fluorescent reporter proteins. Studying this gene expression mechanism allows for an understanding of higher order behavior of gene expression networks.
Telomere interactions may condition the programming of antigen expression in Trypanosoma brucei.
Van der Werf, A; Van Assel, S; Aerts, D; Steinert, M; Pays, E
1990-01-01
The AnTat 1.1 antigen type typically occurs late in a chronic infection by the EATRO 1125 stock of Trypanosoma brucei. The AnTat 1.1 gene, which is located 24 kb from a chromosome end, seems exclusively expressed by acting as a donor in gene conversion events targeted to the telomeric expression site. We report that this gene is sufficiently provided with the homology blocks required for recombination with the expression site, and is not interrupted by stop codons up to the 3' block of homology. A possible reason for its low probability of activation is an inverse orientation with respect to the proximal chromosome end, since, if correctly positioned, it is readily expressed at an early stage of infection, following gene conversion. This suggests that interactions between chromosome ends may precede and favour the rearrangements leading to antigenic variation. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. PMID:2323332
Analysis of multiplex gene expression maps obtained by voxelation.
An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios
2009-04-29
Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental results confirm the hypothesis that genes with similar gene expression maps might have similar gene functions. The voxelation data takes into account the location information of gene expression level in mouse brain, which is novel in related research. The proposed approach can potentially be used to predict gene functions and provide helpful suggestions to biologists.
Models of stochastic gene expression
NASA Astrophysics Data System (ADS)
Paulsson, Johan
2005-06-01
Gene expression is an inherently stochastic process: Genes are activated and inactivated by random association and dissociation events, transcription is typically rare, and many proteins are present in low numbers per cell. The last few years have seen an explosion in the stochastic modeling of these processes, predicting protein fluctuations in terms of the frequencies of the probabilistic events. Here I discuss commonalities between theoretical descriptions, focusing on a gene-mRNA-protein model that includes most published studies as special cases. I also show how expression bursts can be explained as simplistic time-averaging, and how generic approximations can allow for concrete interpretations without requiring concrete assumptions. Measures and nomenclature are discussed to some extent and the modeling literature is briefly reviewed.
Che, Ping; Love, Tanzy M; Frame, Bronwyn R; Wang, Kan; Carriquiry, Alicia L; Howell, Stephen H
2006-09-01
Gene expression patterns were profiled during somatic embryogenesis in a regeneration-proficient maize hybrid line, Hi II, in an effort to identify genes that might be used as developmental markers or targets to optimize regeneration steps for recovering maize plants from tissue culture. Gene expression profiles were generated from embryogenic calli induced to undergo embryo maturation and germination. Over 1,000 genes in the 12,060 element arrays showed significant time variation during somatic embryo development. A substantial number of genes were downregulated during embryo maturation, largely histone and ribosomal protein genes, which may result from a slowdown in cell proliferation and growth during embryo maturation. The expression of these genes dramatically recovered at germination. Other genes up-regulated during embryo maturation included genes encoding hydrolytic enzymes (nucleases, glucosidases and proteases) and a few storage genes (an alpha-zein and caleosin), which are good candidates for developmental marker genes. Germination is accompanied by the up-regulation of a number of stress response and membrane transporter genes, and, as expected, greening is associated with the up-regulation of many genes encoding photosynthetic and chloroplast components. Thus, some, but not all genes typically associated with zygotic embryogenesis are significantly up or down-regulated during somatic embryogenesis in Hi II maize line regeneration. Although many genes varied in expression throughout somatic embryo development in this study, no statistically significant gene expression changes were detected between total embryogenic callus and callus enriched for transition stage somatic embryos.
Hacking DNA copy number for circuit engineering.
Wu, Feilun; You, Lingchong
2017-07-27
DNA copy number represents an essential parameter in the dynamics of synthetic gene circuits but typically is not explicitly considered. A new study demonstrates how dynamic control of DNA copy number can serve as an effective strategy to program robust oscillations in gene expression circuits.
Comparative Bacterial Proteomics: Analysis of the Core Genome Concept
Callister, Stephen J.; McCue, Lee Ann; Turse, Joshua E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.
2008-01-01
While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits. PMID:18253490
Binary Gene Expression Patterning of the Molt Cycle: The Case of Chitin Metabolism
Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D.; Sagi, Amir
2015-01-01
In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476
The acute phase response of cod (Gadus morhua L.): expression of immune response genes.
Audunsdottir, Sigridur S; Magnadottir, Bergljot; Gisladottir, Berglind; Jonsson, Zophonias O; Bragason, Birkir Th
2012-02-01
An acute phase response (APR) was experimentally induced in Atlantic cod (Gadus morhua L.) by intramuscular injection of turpentine oil. The change in the expression of immune related genes was monitored in the anterior kidney and the spleen over a period of 7 days. The genes examined were two types of pentraxins, apolipoprotein A1 (ApoA-I), the complement component C3, interleukin-1β (IL-1β), transferrin, cathelicidin, and hepcidin. All genes were constitutively expressed in both organs and their expression amplified by the turpentine injection. A pattern of response was observed both with respect to the organ preference and to the timing of a maximum response. The increased gene expression of the pentraxins, ApoA-I and C3 was restricted to the anterior kidney, the gene expression of IL-1β, cathelicidin, and transferrin increased in both organs, while hepcidin gene expression was only significantly increased in the spleen. The pentraxins and ApoA-I appear to be early mediators of APR in cod, possibly stimulating C3 and IL-1β response, while the antimicrobial peptides may play a minor role. The increase in transferrin gene expression in both organs, and apparent indifference to cortisol release associated with the turpentine injection, suggests that this could be a typical acute phase protein in cod. Copyright © 2011 Elsevier Ltd. All rights reserved.
Effect of Mild Acid on Gene Expression in Staphylococcus aureus
Weinrick, Brian; Dunman, Paul M.; McAleese, Fionnuala; Murphy, Ellen; Projan, Steven J.; Fang, Yuan; Novick, Richard P.
2004-01-01
During staphylococcal growth in glucose-supplemented medium, the pH of a culture starting near neutrality typically decreases by about 2 units due to the fermentation of glucose. Many species can comfortably tolerate the resulting mildly acidic conditions (pH, ∼5.5) by mounting a cellular response, which serves to defend the intracellular pH and, in principle, to modify gene expression for optimal performance in a mildly acidic infection site. In this report, we show that changes in staphylococcal gene expression formerly thought to represent a glucose effect are largely the result of declining pH. We examine the cellular response to mild acid by microarray analysis and define the affected gene set as the mild acid stimulon. Many of the genes encoding extracellular virulence factors are affected, as are genes involved in regulation of virulence factor gene expression, transport of sugars and peptides, intermediary metabolism, and pH homeostasis. Key results are verified by gene fusion and Northern blot hybridization analyses. The results point to, but do not define, possible regulatory pathways by which the organism senses and responds to a pH stimulus. PMID:15576791
Haney, Robert A.; Clarke, Thomas H.; Gadgil, Rujuta; Fitzpatrick, Ryan; Hayashi, Cheryl Y.; Ayoub, Nadia A.; Garb, Jessica E.
2016-01-01
Gene duplication and positive selection can be important determinants of the evolution of venom, a protein-rich secretion used in prey capture and defense. In a typical model of venom evolution, gene duplicates switch to venom gland expression and change function under the action of positive selection, which together with further duplication produces large gene families encoding diverse toxins. Although these processes have been demonstrated for individual toxin families, high-throughput multitissue sequencing of closely related venomous species can provide insights into evolutionary dynamics at the scale of the entire venom gland transcriptome. By assembling and analyzing multitissue transcriptomes from the Western black widow spider and two closely related species with distinct venom toxicity phenotypes, we do not find that gene duplication and duplicate retention is greater in gene families with venom gland biased expression in comparison with broadly expressed families. Positive selection has acted on some venom toxin families, but does not appear to be in excess for families with venom gland biased expression. Moreover, we find 309 distinct gene families that have single transcripts with venom gland biased expression, suggesting that the switching of genes to venom gland expression in numerous unrelated gene families has been a dominant mode of evolution. We also find ample variation in protein sequences of venom gland–specific transcripts, lineage-specific family sizes, and ortholog expression among species. This variation might contribute to the variable venom toxicity of these species. PMID:26733576
An efficient method to identify differentially expressed genes in microarray experiments
Qin, Huaizhen; Feng, Tao; Harding, Scott A.; Tsai, Chung-Jui; Zhang, Shuanglin
2013-01-01
Motivation Microarray experiments typically analyze thousands to tens of thousands of genes from small numbers of biological replicates. The fact that genes are normally expressed in functionally relevant patterns suggests that gene-expression data can be stratified and clustered into relatively homogenous groups. Cluster-wise dimensionality reduction should make it feasible to improve screening power while minimizing information loss. Results We propose a powerful and computationally simple method for finding differentially expressed genes in small microarray experiments. The method incorporates a novel stratification-based tight clustering algorithm, principal component analysis and information pooling. Comprehensive simulations show that our method is substantially more powerful than the popular SAM and eBayes approaches. We applied the method to three real microarray datasets: one from a Populus nitrogen stress experiment with 3 biological replicates; and two from public microarray datasets of human cancers with 10 to 40 biological replicates. In all three analyses, our method proved more robust than the popular alternatives for identification of differentially expressed genes. Availability The C++ code to implement the proposed method is available upon request for academic use. PMID:18453554
Optimizing information flow in small genetic networks. IV. Spatial coupling
NASA Astrophysics Data System (ADS)
Sokolowski, Thomas R.; Tkačik, Gašper
2015-06-01
We typically think of cells as responding to external signals independently by regulating their gene expression levels, yet they often locally exchange information and coordinate. Can such spatial coupling be of benefit for conveying signals subject to gene regulatory noise? Here we extend our information-theoretic framework for gene regulation to spatially extended systems. As an example, we consider a lattice of nuclei responding to a concentration field of a transcriptional regulator (the input) by expressing a single diffusible target gene. When input concentrations are low, diffusive coupling markedly improves information transmission; optimal gene activation functions also systematically change. A qualitatively different regulatory strategy emerges where individual cells respond to the input in a nearly steplike fashion that is subsequently averaged out by strong diffusion. While motivated by early patterning events in the Drosophila embryo, our framework is generically applicable to spatially coupled stochastic gene expression models.
Wang, Guang-Zhong; Lercher, Martin J.; Hurst, Laurence D.
2011-01-01
Abstract How is noise in gene expression modulated? Do mechanisms of noise control impact genome organization? In yeast, the expression of one gene can affect that of a very close neighbor. As the effect is highly regionalized, we hypothesize that genes in different orientations will have differing degrees of coupled expression and, in turn, different noise levels. Divergently organized gene pairs, in particular those with bidirectional promoters, have close promoters, maximizing the likelihood that expression of one gene affects the neighbor. With more distant promoters, the same is less likely to hold for gene pairs in nondivergent orientation. Stochastic models suggest that coupled chromatin dynamics will typically result in low abundance-corrected noise (ACN). Transcription of noncoding RNA (ncRNA) from a bidirectional promoter, we thus hypothesize to be a noise-reduction, expression-priming, mechanism. The hypothesis correctly predicts that protein-coding genes with a bidirectional promoter, including those with a ncRNA partner, have lower ACN than other genes and divergent gene pairs uniquely have correlated ACN. Moreover, as predicted, ACN increases with the distance between promoters. The model also correctly predicts ncRNA transcripts to be often divergently transcribed from genes that a priori would be under selection for low noise (essential genes, protein complex genes) and that the latter genes should commonly reside in divergent orientation. Likewise, that genes with bidirectional promoters are rare subtelomerically, cluster together, and are enriched in essential gene clusters is expected and observed. We conclude that gene orientation and transcription of ncRNAs are candidate modulators of noise. PMID:21402863
Singing-driven gene expression in the developing songbird brain
Johnson, Frank; Whitney, Osceola
2014-01-01
Neural and behavioral development arises from an integration of genetic and environmental influences, yet specifying the nature of this interaction remains a primary problem in neuroscience. Here, we review molecular and behavioral studies that focus on the role of singing-driven gene expression during neural and vocal development in the male zebra finch (Taeniopygia guttata), a songbird that learns a species-typical vocal pattern during juvenile development by imitating an adult male tutor. A primary aim of our lab has been to identify naturally-occurring environmental influences that shape the propensity to sing. This ethological approach underlies our theoretical perspective, which is to integrate the significance of singing-driven gene expression into a broader ecological context. PMID:16129463
Caracausi, Maria; Piovesan, Allison; Antonaros, Francesca; Strippoli, Pierluigi; Vitale, Lorenza; Pelleri, Maria Chiara
2017-09-01
The ideal reference, or control, gene for the study of gene expression in a given organism should be expressed at a medium‑high level for easy detection, should be expressed at a constant/stable level throughout different cell types and within the same cell type undergoing different treatments, and should maintain these features through as many different tissues of the organism. From a biological point of view, these theoretical requirements of an ideal reference gene appear to be best suited to housekeeping (HK) genes. Recent advancements in the quality and completeness of human expression microarray data and in their statistical analysis may provide new clues toward the quantitative standardization of human gene expression studies in biology and medicine, both cross‑ and within‑tissue. The systematic approach used by the present study is based on the Transcriptome Mapper tool and exploits the automated reassignment of probes to corresponding genes, intra‑ and inter‑sample normalization, elaboration and representation of gene expression values in linear form within an indexed and searchable database with a graphical interface recording quantitative levels of expression, expression variability and cross‑tissue width of expression for more than 31,000 transcripts. The present study conducted a meta‑analysis of a pool of 646 expression profile data sets from 54 different human tissues and identified actin γ 1 as the HK gene that best fits the combination of all the traditional criteria to be used as a reference gene for general use; two ribosomal protein genes, RPS18 and RPS27, and one aquaporin gene, POM121 transmembrane nucleporin C, were also identified. The present study provided a list of tissue‑ and organ‑specific genes that may be most suited for the following individual tissues/organs: Adipose tissue, bone marrow, brain, heart, kidney, liver, lung, ovary, skeletal muscle and testis; and also provides in these cases a representative, quantitative portrait of the relative, typical gene‑expression profile in the form of searchable database tables.
Palumbo, Michael J; Newberg, Lee A
2010-07-01
The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/).
Circular RNA Expression: Its Potential Regulation and Function.
Salzman, Julia
2016-05-01
In 2012, a new feature of eukaryotic gene expression emerged: ubiquitous expression of circular RNA (circRNA) from genes traditionally thought to express messenger or linear noncoding (nc)RNA only. CircRNAs are covalently closed, circular RNA molecules that typically comprise exonic sequences and are spliced at canonical splice sites. This feature of gene expression was first recognized in humans and mouse, but it quickly emerged that it was common across essentially all eukaryotes studied by molecular biologists. CircRNA abundance, and even which alternatively spliced circRNA isoforms are expressed, varies by cell type and can exceed the abundance of the traditional linear mRNA or ncRNA transcript. CircRNAs are enriched in the brain and increase in abundance during fetal development. Together, these features raise fundamental questions regarding the regulation of circRNA in cis and in trans, and its function. Copyright © 2016. Published by Elsevier Ltd.
High School Students' Understanding of Chromosome/Gene Behavior during Meiosis.
ERIC Educational Resources Information Center
Stewart, Jim; Dale, Michael
1989-01-01
Investigates high school students' understanding of the physical relationship of chromosomes and genes as expressed in their conceptual models and in their ability to manipulate the models to explain solutions to dihybrid cross problems. Describes three typical models and three students' reasoning processes. Discusses four implications. (YP)
Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B; Grillone, Teresa; Giovannone, Emilia D; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A S; Bond, Heather M; Mesuraca, Maria; Morrone, Giovanni
2014-01-01
Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and -LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG-LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells.
Sequential and combinatorial roles of maf family genes define proper lens development.
Reza, Hasan Mahmud; Urano, Atsuyo; Shimada, Naoko; Yasuda, Kunio
2007-01-16
Maf proteins have been shown to play pivotal roles in lens development in vertebrates. The developing chick lens expresses at least three large Maf proteins. However, the transcriptional relationship among the three large maf genes and their various roles in transactivating the downstream genes largely remain to be elucidated. Chick embryos were electroporated with wild-type L-maf, c-maf, and mafB by in ovo electroporation, and their effects on gene expression were determined by in situ hybridization using specific probes or by immunostaining. Endogenous gene expression was determined using nonelectroporated samples. A regulation mechanism exists among the members of maf family gene. An early-expressed member of this gene family typically stimulates the expression of later-expressed members. We also examined the regulation of various lens-expressing genes with a focus on the interaction between different Maf proteins. We found that the transcriptional ability of Maf proteins varies, even when the target is the same, in parallel with their discrete functions. L-Maf and c-Maf have no effect on E-cadherin expression, whereas MafB enhances its expression and thereby impedes lens vesicle formation. This study also revealed that Maf proteins can regulate the expression of gap junction genes, connexins, and their interacting partner, major intrinsic protein (MIP), during lens development. Misexpression of L-Maf and c-Maf induces ectopic expression of Cx43 and MIP; in contrast, MafB appears to have no effect on Cx43, but induces MIP significantly as evidenced from our gain-of-function experiments. Our results indicate that large Maf function is indispensable for chick lens initiation and development. In addition, L-Maf positively regulates most of the essential genes in this program and directs a series of molecular events leading to proper formation of the lens.
Bloch, Sylwia; Węgrzyn, Alicja; Węgrzyn, Grzegorz; Nejman-Faleńczyk, Bożena
2017-01-01
Non-coding small RNAs (sRNAs) have been identified in the wide range of bacteria (also pathogenic species) and found to play an important role in the regulation of many processes, including toxin gene expression. The best characterized prokaryotic sRNAs regulate gene expression by base pairing with mRNA targets and fall into two broad classes: cis-encoded sRNAs (also called antisense RNA) and trans-acting sRNAs. Molecules from the second class are frequently considered as the most related to eukaryotic microRNAs. Interestingly, typical microRNA-size RNA molecules have also been reported in prokaryotic cells, although they have received little attention up to now. In this work we have collected information about all three types of small prokaryotic RNAs in the context of the regulation of toxin gene expression. PMID:28556797
Bloch, Sylwia; Węgrzyn, Alicja; Węgrzyn, Grzegorz; Nejman-Faleńczyk, Bożena
2017-05-30
Non-coding small RNAs (sRNAs) have been identified in the wide range of bacteria (also pathogenic species) and found to play an important role in the regulation of many processes, including toxin gene expression. The best characterized prokaryotic sRNAs regulate gene expression by base pairing with mRNA targets and fall into two broad classes: cis -encoded sRNAs (also called antisense RNA) and trans -acting sRNAs. Molecules from the second class are frequently considered as the most related to eukaryotic microRNAs. Interestingly, typical microRNA-size RNA molecules have also been reported in prokaryotic cells, although they have received little attention up to now. In this work we have collected information about all three types of small prokaryotic RNAs in the context of the regulation of toxin gene expression.
ADGO: analysis of differentially expressed gene sets using composite GO annotation.
Nam, Dougu; Kim, Sang-Bae; Kim, Seon-Kyu; Yang, Sungjin; Kim, Seon-Young; Chu, In-Sun
2006-09-15
Genes are typically expressed in modular manners in biological processes. Recent studies reflect such features in analyzing gene expression patterns by directly scoring gene sets. Gene annotations have been used to define the gene sets, which have served to reveal specific biological themes from expression data. However, current annotations have limited analytical power, because they are classified by single categories providing only unary information for the gene sets. Here we propose a method for discovering composite biological themes from expression data. We intersected two annotated gene sets from different categories of Gene Ontology (GO). We then scored the expression changes of all the single and intersected sets. In this way, we were able to uncover, for example, a gene set with the molecular function F and the cellular component C that showed significant expression change, while the changes in individual gene sets were not significant. We provided an exemplary analysis for HIV-1 immune response. In addition, we tested the method on 20 public datasets where we found many 'filtered' composite terms the number of which reached approximately 34% (a strong criterion, 5% significance) of the number of significant unary terms on average. By using composite annotation, we can derive new and improved information about disease and biological processes from expression data. We provide a web application (ADGO: http://array.kobic.re.kr/ADGO) for the analysis of differentially expressed gene sets with composite GO annotations. The user can analyze Affymetrix and dual channel array (spotted cDNA and spotted oligo microarray) data for four species: human, mouse, rat and yeast. chu@kribb.re.kr http://array.kobic.re.kr/ADGO.
Zhang, Dapeng; Xiong, Huiling; Mennigen, Jan A; Popesku, Jason T; Marlatt, Vicki L; Martyniuk, Christopher J; Crump, Kate; Cossins, Andrew R; Xia, Xuhua; Trudeau, Vance L
2009-06-05
Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes) in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning), sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h) typical of the springtime breeding season (May), we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABA(A) gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development.
Mennigen, Jan A.; Popesku, Jason T.; Marlatt, Vicki L.; Martyniuk, Christopher J.; Crump, Kate; Cossins, Andrew R.; Xia, Xuhua; Trudeau, Vance L.
2009-01-01
Background Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. Methodology/Principal Findings In the present study, by analyzing multiple female goldfish brain microarray datasets, we have characterized global gene expression patterns for a seasonal cycle. A core set of genes (873 genes) in the hypothalamus were identified to be differentially expressed between May, August and December, which correspond to physiologically distinct stages that are sexually mature (prespawning), sexual regression, and early gonadal redevelopment, respectively. Expression changes of these genes are also shared by another brain region, the telencephalon, as revealed by multivariate analysis. More importantly, by examining one dataset obtained from fish in October who were kept under long-daylength photoperiod (16 h) typical of the springtime breeding season (May), we observed that the expression of identified genes appears regulated by photoperiod, a major factor controlling vertebrate reproductive cyclicity. Gene ontology analysis revealed that hormone genes and genes functionally involved in G-protein coupled receptor signaling pathway and transmission of nerve impulses are significantly enriched in an expression pattern, whose transition is located between prespawning and sexually regressed stages. The existence of seasonal expression patterns was verified for several genes including isotocin, ependymin II, GABAA gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays. Conclusions/Significance Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development. PMID:19503831
The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei
Seiboth, Bernhard; Karimi, Razieh Aghcheh; Phatale, Pallavi A; Linke, Rita; Hartl, Lukas; Sauer, Dominik G; Smith, Kristina M; Baker, Scott E; Freitag, Michael; Kubicek, Christian P
2012-01-01
Summary Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing (‘ChIP-seq’) showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified. PMID:22554051
Vital, Marius; Chai, Benli; Østman, Bjørn; Cole, James; Konstantinidis, Konstantinos T; Tiedje, James M
2015-01-01
Escherichia coli spans a genetic continuum from enteric strains to several phylogenetically distinct, atypical lineages that are rare in humans, but more common in extra-intestinal environments. To investigate the link between gene regulation, phylogeny and diversification in this species, we analyzed global gene expression profiles of four strains representing distinct evolutionary lineages, including a well-studied laboratory strain, a typical commensal (enteric) strain and two environmental strains. RNA-Seq was employed to compare the whole transcriptomes of strains grown under batch, chemostat and starvation conditions. Highly differentially expressed genes showed a significantly lower nucleotide sequence identity compared with other genes, indicating that gene regulation and coding sequence conservation are directly connected. Overall, distances between the strains based on gene expression profiles were largely dependent on the culture condition and did not reflect phylogenetic relatedness. Expression differences of commonly shared genes (all four strains) and E. coli core genes were consistently smaller between strains characterized by more similar primary habitats. For instance, environmental strains exhibited increased expression of stress defense genes under carbon-limited growth and entered a more pronounced survival-like phenotype during starvation compared with other strains, which stayed more alert for substrate scavenging and catabolism during no-growth conditions. Since those environmental strains show similar genetic distance to each other and to the other two strains, these findings cannot be simply attributed to genetic relatedness but suggest physiological adaptations. Our study provides new insights into ecologically relevant gene-expression and underscores the role of (differential) gene regulation for the diversification of the model bacterial species. PMID:25343512
Gene expression distribution deconvolution in single-cell RNA sequencing.
Wang, Jingshu; Huang, Mo; Torre, Eduardo; Dueck, Hannah; Shaffer, Sydney; Murray, John; Raj, Arjun; Li, Mingyao; Zhang, Nancy R
2018-06-26
Single-cell RNA sequencing (scRNA-seq) enables the quantification of each gene's expression distribution across cells, thus allowing the assessment of the dispersion, nonzero fraction, and other aspects of its distribution beyond the mean. These statistical characterizations of the gene expression distribution are critical for understanding expression variation and for selecting marker genes for population heterogeneity. However, scRNA-seq data are noisy, with each cell typically sequenced at low coverage, thus making it difficult to infer properties of the gene expression distribution from raw counts. Based on a reexamination of nine public datasets, we propose a simple technical noise model for scRNA-seq data with unique molecular identifiers (UMI). We develop deconvolution of single-cell expression distribution (DESCEND), a method that deconvolves the true cross-cell gene expression distribution from observed scRNA-seq counts, leading to improved estimates of properties of the distribution such as dispersion and nonzero fraction. DESCEND can adjust for cell-level covariates such as cell size, cell cycle, and batch effects. DESCEND's noise model and estimation accuracy are further evaluated through comparisons to RNA FISH data, through data splitting and simulations and through its effectiveness in removing known batch effects. We demonstrate how DESCEND can clarify and improve downstream analyses such as finding differentially expressed genes, identifying cell types, and selecting differentiation markers. Copyright © 2018 the Author(s). Published by PNAS.
Ogura, Atsushi; Ikeo, Kazuho; Gojobori, Takashi
2004-01-01
Although the camera eye of the octopus is very similar to that of humans, phylogenetic and embryological analyses have suggested that their camera eyes have been acquired independently. It has been known as a typical example of convergent evolution. To study the molecular basis of convergent evolution of camera eyes, we conducted a comparative analysis of gene expression in octopus and human camera eyes. We sequenced 16,432 ESTs of the octopus eye, leading to 1052 nonredundant genes that have matches in the protein database. Comparing these 1052 genes with 13,303 already-known ESTs of the human eye, 729 (69.3%) genes were commonly expressed between the human and octopus eyes. On the contrary, when we compared octopus eye ESTs with human connective tissue ESTs, the expression similarity was quite low. To trace the evolutionary changes that are potentially responsible for camera eye formation, we also compared octopus-eye ESTs with the completed genome sequences of other organisms. We found that 1019 out of the 1052 genes had already existed at the common ancestor of bilateria, and 875 genes were conserved between humans and octopuses. It suggests that a larger number of conserved genes and their similar gene expression may be responsible for the convergent evolution of the camera eye. PMID:15289475
Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei
2016-01-01
Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666
Jares, P.; Campo, E.; Pinyol, M.; Bosch, F.; Miquel, R.; Fernandez, P. L.; Sanchez-Beato, M.; Soler, F.; Perez-Losada, A.; Nayach, I.; Mallofré, C.; Piris, M. A.; Montserrat, E.; Cardesa, A.
1996-01-01
Mantle cell lymphomas (MCLs) are molecularly characterized by bcl-1 rearrangement and constant cyclin D1 (PRAD-1/CCND1) gene overexpression. Cyclin D1 is a G1 cyclin that participates in the control of the cell cycle progression by interacting with the retinoblastoma gene product (pRb). Inactivation of the Rb tumor suppressor gene has been implicated in the development of different types of human tumors including some high grade non-Hodgkin's lymphomas. To determine the role of the retinoblastoma gene in the pathogenesis of MCLs and its possible interaction with cyclin D1, pRb expression was examined in 23 MCLs including 17 typical and 6 blastic variants by immunohistochemistry and Western blot. Rb gene structure was studied in 13 cases by Southern blot. Cytogenetic analysis was performed in 5 cases. The results were compared with the cyclin D1 mRNA levels examined by Northern analysis, and the proliferative activity of the tumors was measured by Ki-67 growth fraction and flow cytometry. pRb was expressed in all MCLs. The expression varied from case to case (mean, 14.1% of positive cells; range, 1.3 to 42%) with a significant correlation with the proliferative activity of the tumors (mitotic index r = 0.85; Ki-67 r = 0.7; S phase = 0.73). Blastic variants showed higher numbers of pRb-positive cells (mean, 29%) than the typical cases (10%; P < 0.005) by immunohistochemistry and, concordantly, higher levels of expression by Western blot. In addition, the blastic cases also had an increased expression of the phosphorylated protein. No alterations in Rb gene structure were observed by Southern blot analysis. Cyclin D1 mRNA levels were independent of pRb expression and the proliferative activity of the tumors. These findings suggest that pRb in MCLs is normally regulated in relation to the proliferative activity of the tumors. Cyclin D1 overexpression may play a role in the maintenance of cell proliferation by overcoming the suppressive growth control of pRb. Images Figure 1 Figure 2 Figure 4 PMID:8623927
Singh, Kanika; Cubano, Luis; Lewis, Marian
2015-01-01
Gravitational perturbation altered gene expression and increased glucose consumption in spaceflown Jurkat cells. The purpose of this study was to determine if the acceleration experienced during launch was responsible for these changes. In ground-based studies, cells were subjected to typical launch centrifugal acceleration (3g of force for eight minutes) and centrifugal force of 90g for five minutes (commonly used to sediment cells) in a laboratory centrifuge. Controls consisted of static cultures. Gene expression was analyzed by RT-PCR. pH and glucose concentrations were evaluated to monitor metabolic changes. Comparison with controls indicated no significant change in pH or glucose use. Gene expression of Jurkat cells subjected to 3g or 90g of force was altered for only two genes out of seven tested. This research suggests that the changes observed in Jurkat cells flown on STS-95 were not a result of launch acceleration but to other conditions experienced during space flight. PMID:23875517
Comparative antennal transcriptome of Apis cerana cerana from four developmental stages.
Zhao, Huiting; Peng, Zhu; Du, Yali; Xu, Kai; Guo, Lina; Yang, Shuang; Ma, Weihua; Jiang, Yusuo
2018-06-20
Apis cerana cerana, an important endemic honey bee species in China, possesses valuable characteristics such as a sensitive olfactory system, good foraging ability, and strong resistance to parasitic mites. Here, we performed transcriptome sequencing of the antenna, the major chemosensory organ of the bee, using an Illumina sequencer, to identify typical differentially expressed genes (DEGs) in adult worker bees of different ages, namely, T1 (1 day); T2 (10 days); T3 (15 days); and T4 (25 days). Surprisingly, the expression levels of DEGs changed significantly between the T1 period and the other three periods. All the DEGs were classified into 26 expression profiles by trend analysis. Selected trend clusters were analyzed, and valuable information on gene expression patterns was obtained. We found that the expression levels of genes encoding cuticle proteins declined after eclosion, while those of immunity-related genes increased. In addition, genes encoding venom proteins and major royal jelly proteins were enriched at the T2 stage; small heat shock proteins showed significantly higher expression at the T3 stage; and some metabolism-related genes were more highly expressed at the T4 stage. The DEGs identified in this study may serve as a valuable resource for the characterization of expression patterns of antennal genes in A. cerana cerana. Furthermore, this study provides insights into the relationship between labor division in social bees and gene function. Copyright © 2018. Published by Elsevier B.V.
Derous, Davina; Mitchell, Sharon E; Green, Cara L; Wang, Yingchun; Han, Jing Dong J; Chen, Luonan; Promislow, Daniel E L; Lusseau, David; Speakman, John R; Douglas, Alex
2016-05-01
Connectivity in a gene-gene network declines with age, typically within gene clusters. We explored the effect of short-term (3 months) graded calorie restriction (CR) (up to 40 %) on network structure of aging-associated genes in the murine hypothalamus by using conditional mutual information. The networks showed a topological rearrangement when exposed to graded CR with a higher relative within cluster connectivity at 40CR. We observed changes in gene centrality concordant with changes in CR level, with Ppargc1a, and Ppt1 having increased centrality and Etfdh, Traf3 and Abcc1 decreased centrality as CR increased. This change in gene centrality in a graded manner with CR, occurred in the absence of parallel changes in gene expression levels. This study emphasizes the importance of augmenting traditional differential gene expression analyses to better understand structural changes in the transcriptome. Overall our results suggested that CR induced changes in centrality of biological relevant genes that play an important role in preventing the age-associated loss of network integrity irrespective of their gene expression levels.
Derous, Davina; Mitchell, Sharon E.; Green, Cara L.; Wang, Yingchun; Han, Jing Dong J.; Chen, Luonan; Promislow, Daniel E.L.; Lusseau, David; Speakman, John R.; Douglas, Alex
2016-01-01
Connectivity in a gene-gene network declines with age, typically within gene clusters. We explored the effect of short-term (3 months) graded calorie restriction (CR) (up to 40 %) on network structure of aging-associated genes in the murine hypothalamus by using conditional mutual information. The networks showed a topological rearrangement when exposed to graded CR with a higher relative within cluster connectivity at 40CR. We observed changes in gene centrality concordant with changes in CR level, with Ppargc1a, and Ppt1 having increased centrality and Etfdh, Traf3 and Abcc1 decreased centrality as CR increased. This change in gene centrality in a graded manner with CR, occurred in the absence of parallel changes in gene expression levels. This study emphasizes the importance of augmenting traditional differential gene expression analyses to better understand structural changes in the transcriptome. Overall our results suggested that CR induced changes in centrality of biological relevant genes that play an important role in preventing the age-associated loss of network integrity irrespective of their gene expression levels. PMID:27115072
Cha, Kihoon; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su
2015-01-01
It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation.
2015-01-01
Background It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. Results In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. Conclusions This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation. PMID:26043779
Zega, Alessandra; D'Ovidio, Renato
2016-11-01
Pectin methyl esterase (PME) genes code for enzymes that are involved in structural modifications of the plant cell wall during plant growth and development. They are also involved in plant-pathogen interaction. PME genes belong to a multigene family and in this study we report the first comprehensive analysis of the PME gene family in bread wheat (Triticum aestivum L.). Like in other species, the members of the TaPME family are dispersed throughout the genome and their encoded products retain the typical structural features of PMEs. qRT-PCR analysis showed variation in the expression pattern of TaPME genes in different tissues and revealed that these genes are mainly expressed in flowering spikes. In our attempt to identify putative TaPME genes involved in wheat defense, we revealed a strong variation in the expression of the TaPME following Fusarium graminearum infection, the causal agent of Fusarium head blight (FHB). Particularly interesting was the finding that the expression profile of some PME genes was markedly different between the FHB-resistant wheat cultivar Sumai3 and the FHB-susceptible cultivar Bobwhite, suggesting a possible involvement of these PME genes in FHB resistance. Moreover, the expression analysis of the TaPME genes during F. graminearum progression within the spike revealed those genes that responded more promptly to pathogen invasion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Naora, H; Nishida, T; Shindo, Y; Adachi, M; Naora, H
1998-04-01
Apoptosis is induced by the transcriptional inhibitor actinomycin D (Act D) in various cell types, particularly many leukemic cell lines such as HL-60. A common feature of these cell lines is their high constitutive expression level of the nbl gene, which was originally isolated by virtue of its abundance in a Namalwa Burkitt lymphoma cDNA library. In contrast, cell lines which constitutively express nbl at low levels appear not to undergo typical apoptotic death in response to Act D. Apoptotic induction by Act D in cells which normally express nbl at high levels was found in this study to be closely associated with a decline in nbl mRNA levels, raising the possibility that apoptosis could be induced by lowering nbl expression levels in such cells. Transient expression of nbl antisense sequences in HL-60 cells decreased cell viability, and induced typical apoptotic morphology such as cell shrinkage, chromatin condensation and nuclear fragmentation. Incubation with nbl antisense oligomers also induced similar features in HL-60 cells and in another high nb-expressing cell line, Jurkat, but had little effect in HepG2 cells which constitutively express nbl at low levels. These findings suggest that lowering constitutively high levels of nbl expression can induce apoptosis.
Gene expression profiling in multipotent DFAT cells derived from mature adipocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Hiromasa; Database Center for Life Science; Oki, Yoshinao
2011-04-15
Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed asmore » well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.« less
Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng
2017-01-01
Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass. PMID:28559903
Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng
2017-01-01
Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4 , were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses ( Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.
Gebhardt, Michael J; Jacobson, Rachael K; Shuman, Howard A
2017-01-01
The development of plasmid-mediated gene expression control in bacteria revolutionized the field of bacteriology. Many of these expression control systems rely on the addition of small molecules, generally metabolites or non-metabolized analogs thereof, to the growth medium to induce expression of the genes of interest. The paradigmatic example of an expression control system is the lac system from Escherichia coli, which typically relies on the Ptac promoter and the Lac repressor, LacI. In many cases, however, constitutive gene expression is desired, and other experimental approaches require the coordinated control of multiple genes. While multiple systems have been developed for use in E. coli and its close relatives, the utility and/or functionality of these tools does not always translate to other species. For example, for the Gram-negative pathogen, Legionella pneumophila, a causative agent of Legionnaires' Disease, the aforementioned Ptac system represents the only well-established expression control system. In order to enhance the tools available to study bacterial gene expression in L. pneumophila, we developed a plasmid, pON.mCherry, which confers constitutive gene expression from a mutagenized LacI binding site. We demonstrate that pON.mCherry neither interferes with other plasmids harboring an intact LacI-Ptac expression system nor alters the growth of Legionella species during intracellular growth. Furthermore, the broad-host range plasmid backbone of pON.mCherry allows constitutive gene expression in a wide variety of Gram-negative bacterial species, making pON.mCherry a useful tool for the greater research community.
Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana.
Paul, Anna-Lisa; Manak, Michael S; Mayfield, John D; Reyes, Matthew F; Gurley, William B; Ferl, Robert J
2011-10-01
Our primary objective was to evaluate gene expression changes in Arabidopsis thaliana in response to parabolic flight as part of a comprehensive approach to the molecular biology of spaceflight-related adaptations. In addition, we wished to establish parabolic flight as a tractable operations platform for molecular biology studies. In a succession of experiments on NASA's KC-135 and C-9 parabolic aircraft, Arabidopsis plants were presented with replicated exposure to parabolic flight. Transcriptome profiling revealed that parabolic flight caused changes in gene expression patterns that stood the statistical tests of replication on three different flight days. The earliest response, after 20 parabolas, was characterized by a prominence of genes associated with signal transduction. After 40 parabolas, this prominence was largely replaced by genes associated with biotic and abiotic stimuli and stress. Among these responses, three metabolic processes stand out in particular: the induction of auxin metabolism and signaling, the differential expression of genes associated with calcium-mediated signaling, and the repression of genes associated with disease resistance and cell wall biochemistry. Many, but not all, of these responses are known to be involved in gravity sensing in plants. Changes in auxin-related gene expression were also recorded by reporter genes tuned to auxin signal pathways. These data demonstrate that the parabolic flight environment is appropriate for molecular biology research involving the transition to microgravity, in that with replication, proper controls, and analyses, gene expression changes can be observed in the time frames of typical parabolic flight experiments.
Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael
2008-04-16
The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.
Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael
2008-01-01
Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983
Arabidopsis PIZZA has the capacity to acylate brassinosteroids.
Schneider, Katja; Breuer, Christian; Kawamura, Ayako; Jikumaru, Yusuke; Hanada, Atsushi; Fujioka, Shozo; Ichikawa, Takanari; Kondou, Youichi; Matsui, Minami; Kamiya, Yuji; Yamaguchi, Shinjiro; Sugimoto, Keiko
2012-01-01
Brassinosteroids (BRs) affect a wide range of developmental processes in plants and compromised production or signalling of BRs causes severe growth defects. To identify new regulators of plant organ growth, we searched the Arabidopsis FOX (Full-length cDNA Over-eXpressor gene) collection for mutants with altered organ size and isolated two overexpression lines that display typical BR deficient dwarf phenotypes. The phenotype of these lines, caused by an overexpression of a putative acyltransferase gene PIZZA (PIZ), was partly rescued by supplying exogenous brassinolide (BL) and castasterone (CS), indicating that endogenous BR levels are rate-limiting for the growth of PIZ overexpression lines. Our transcript analysis further showed that PIZ overexpression leads to an elevated expression of genes involved in BR biosynthesis and a reduced expression of BR inactivating hydroxylases, a transcriptional response typical to low BR levels. Taking the advantage of relatively high endogenous BR accumulation in a mild bri1-301 background, we found that overexpression of PIZ results in moderately reduced levels of BL and CS and a strong reduction of typhasterol (TY) and 6-deoxocastasterone (6-deoxoCS), suggesting a role of PIZ in BR metabolism. We tested a set of potential substrates in vitro for heterologously expressed PIZ and confirmed its acyltransferase activity with BL, CS and TY. The PIZ gene is expressed in various tissues but as reported for other genes involved in BR metabolism, the loss-of-function mutants did not display obvious growth phenotypes under standard growth conditions. Together, our data suggest that PIZ can modify BRs by acylation and that these properties might help modulating endogenous BR levels in Arabidopsis.
Floral Meristem Identity Genes Are Expressed during Tendril Development in Grapevine1
Calonje, Myriam; Cubas, Pilar; Martínez-Zapater, José M.; Carmona, María José
2004-01-01
To study the early steps of flower initiation and development in grapevine (Vitis vinifera), we have isolated two MADS-box genes, VFUL-L and VAP1, the putative FUL-like and AP1 grapevine orthologs, and analyzed their expression patterns during vegetative and reproductive development. Both genes are expressed in lateral meristems that, in grapevine, can give rise to either inflorescences or tendrils. They are also coexpressed in inflorescence and flower meristems. During flower development, VFUL-L transcripts are restricted to the central part of young flower meristems and, later, to the prospective carpel-forming region, which is consistent with a role of this gene in floral transition and carpel and fruit development. Expression pattern of VAP1 suggests that it may play a role in flowering transition and flower development. However, its lack of expression in sepal primordia, does not support its role as an A-function gene in grapevine. Neither VFUL-L nor VAP1 expression was detected in vegetative organs such as leaves or roots. In contrast, they are expressed throughout tendril development. Transcription of both genes in tendrils of very young plants that have not undergone flowering transition indicates that this expression is independent of the flowering process. These unique expression patterns of genes typically involved in reproductive development have implications on our understanding of flower induction and initiation in grapevine, on the origin of grapevine tendrils and on the functional roles of AP1-and FUL-like genes in plant development. These results also provide molecular support to the hypothesis that Vitis tendrils are modified reproductive organs adapted to climb. PMID:15247405
dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data.
Huynh-Thu, Vân Anh; Geurts, Pierre
2018-02-21
The elucidation of gene regulatory networks is one of the major challenges of systems biology. Measurements about genes that are exploited by network inference methods are typically available either in the form of steady-state expression vectors or time series expression data. In our previous work, we proposed the GENIE3 method that exploits variable importance scores derived from Random forests to identify the regulators of each target gene. This method provided state-of-the-art performance on several benchmark datasets, but it could however not specifically be applied to time series expression data. We propose here an adaptation of the GENIE3 method, called dynamical GENIE3 (dynGENIE3), for handling both time series and steady-state expression data. The proposed method is evaluated extensively on the artificial DREAM4 benchmarks and on three real time series expression datasets. Although dynGENIE3 does not systematically yield the best performance on each and every network, it is competitive with diverse methods from the literature, while preserving the main advantages of GENIE3 in terms of scalability.
Maternal-Effect Lethal Mutations on Linkage Group II of Caenorhabditis Elegans
Kemphues, K. J.; Kusch, M.; Wolf, N.
1988-01-01
We have analyzed a set of linkage group (LG) II maternal-effect lethal mutations in Caenorhabditis elegans isolated by a new screening procedure. Screens of 12,455 F(1) progeny from mutagenized adults resulted in the recovery of 54 maternal-effect lethal mutations identifying 29 genes. Of the 54 mutations, 39 are strict maternal-effect mutations defining 17 genes. These 17 genes fall into two classes distinguished by frequency of mutation to strict maternal-effect lethality. The smaller class, comprised of four genes, mutated to strict maternal-effect lethality at a frequency close to 5 X 10(-4), a rate typical of essential genes in C. elegans. Two of these genes are expressed during oogenesis and required exclusively for embryogenesis (pure maternal genes), one appears to be required specifically for meiosis, and the fourth has a more complex pattern of expression. The other 13 genes were represented by only one or two strict maternal alleles each. Two of these are identical genes previously identified by nonmaternal embryonic lethal mutations. We interpret our results to mean that although many C. elegans genes can mutate to strict maternal-effect lethality, most genes mutate to that phenotype rarely. Pure maternal genes, however, are among a smaller class of genes that mutate to maternal-effect lethality at typical rates. If our interpretation is correct, we are near saturation for pure maternal genes in the region of LG II balanced by mnC1. We conclude that the number of pure maternal genes in C. elegans is small, being probably not much higher than 12. PMID:3224814
de Miranda, Aline Mayrink; Rossoni Júnior, Joamyr Victor; Souza E Silva, Lorena; Dos Santos, Rinaldo Cardoso; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia
2017-06-01
The sun mushroom (Agaricus brasiliensis) is considered a major source of bioactive compounds with potential health benefits. Mushrooms typically act as lipid-lowering agents; however, little is known about the mechanisms of action of A. brasiliensis in biological systems. This study aimed to determine the underlying mechanism involved in the cholesterol-lowering effect of A. brasiliensis through the assessment of fecal and serum lipid profiles in addition to gene expression analysis of specific transcription factors, enzymes, and transporters involved in cholesterol homeostasis. Twenty-four albino Fischer rats approximately 90 days old, with an average weight of 205 g, were divided into four groups of 6 each and fed a standard AIN-93 M diet (C), hypercholesterolemic diet (H), hypercholesterolemic diet +1 % A. brasiliensis (HAb), or hypercholesterolemic diet +0.008 % simvastatin (HS) for 6 weeks. Simvastatin was used as a positive control, as it is a typical drug prescribed for lipid disorders. Subsequently, blood, liver, and feces samples were collected for lipid profile and quantitative real-time polymerase chain reaction gene expression analyses. Diet supplementation with A. brasiliensis significantly improved serum lipid profiles, comparable to the effect observed for simvastatin. In addition, A. brasiliensis dietary supplementation markedly promoted fecal cholesterol excretion. Increased expression of 7α-hydroxylase (CYP7A1), ATP-binding cassette subfamily G-transporters (ABCG5/G8), and low-density lipoprotein receptor (LDLR) was observed following A. brasiliensis administration. Our results suggest that consumption of A. brasiliensis improves the serum lipid profile in hypercholesterolemic rats by modulating the expression of key genes involved in hepatic cholesterol metabolism.
Das, Sayan; Ehlers, Jeffrey D; Close, Timothy J; Roberts, Philip A
2010-08-19
The locus Rk confers resistance against several species of root-knot nematodes (Meloidogyne spp., RKN) in cowpea (Vigna unguiculata). Based on histological and reactive oxygen species (ROS) profiles, Rk confers a delayed but strong resistance mechanism without a hypersensitive reaction-mediated cell death process, which allows nematode development but blocks reproduction. Responses to M. incognita infection in roots of resistant genotype CB46 and a susceptible near-isogenic line (null-Rk) were investigated using a soybean Affymetrix GeneChip expression array at 3 and 9 days post-inoculation (dpi). At 9 dpi 552 genes were differentially expressed in incompatible interactions (infected resistant tissue compared with non-infected resistant tissue) and 1,060 genes were differentially expressed in compatible interactions (infected susceptible tissue compared with non-infected susceptible tissue). At 3 dpi the differentially expressed genes were 746 for the incompatible and 623 for the compatible interactions. When expression between infected resistant and susceptible genotypes was compared, 638 and 197 genes were differentially expressed at 9 and 3 dpi, respectively. In comparing the differentially expressed genes in response to nematode infection, a greater number and proportion of genes were down-regulated in the resistant than in the susceptible genotype, whereas more genes were up-regulated in the susceptible than in the resistant genotype. Gene ontology based functional categorization revealed that the typical defense response was partially suppressed in resistant roots, even at 9 dpi, allowing nematode juvenile development. Differences in ROS concentrations, induction of toxins and other defense related genes seem to play a role in this unique resistance mechanism.
Transcriptional profiling in facioscapulohumeral muscular dystrophy to identify candidate biomarkers
Rahimov, Fedik; King, Oliver D.; Leung, Doris G.; Bibat, Genila M.; Emerson, Charles P.; Kunkel, Louis M.; Wagner, Kathryn R.
2012-01-01
Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disorder caused by contractions of repetitive elements within the macrosatellite D4Z4 on chromosome 4q35. The pathophysiology of FSHD is unknown and, as a result, there is currently no effective treatment available for this disease. To better understand the pathophysiology of FSHD and develop mRNA-based biomarkers of affected muscles, we compared global analysis of gene expression in two distinct muscles obtained from a large number of FSHD subjects and their unaffected first-degree relatives. Gene expression in two muscle types was analyzed using GeneChip Gene 1.0 ST arrays: biceps, which typically shows an early and severe disease involvement; and deltoid, which is relatively uninvolved. For both muscle types, the expression differences were mild: using relaxed cutoffs for differential expression (fold change ≥1.2; nominal P value <0.01), we identified 191 and 110 genes differentially expressed between affected and control samples of biceps and deltoid muscle tissues, respectively, with 29 genes in common. Controlling for a false-discovery rate of <0.25 reduced the number of differentially expressed genes in biceps to 188 and in deltoid to 7. Expression levels of 15 genes altered in this study were used as a “molecular signature” in a validation study of an additional 26 subjects and predicted them as FSHD or control with 90% accuracy based on biceps and 80% accuracy based on deltoids. PMID:22988124
Bidirectional Expression of Metabolic, Structural, and Immune Pathways in Early Myopia and Hyperopia
Riddell, Nina; Giummarra, Loretta; Hall, Nathan E.; Crewther, Sheila G.
2016-01-01
Myopia (short-sightedness) affects 1.45 billion people worldwide, many of whom will develop sight-threatening secondary disorders. Myopic eyes are characterized by excessive size while hyperopic (long-sighted) eyes are typically small. The biological and genetic mechanisms underpinning the retina's local control of these growth patterns remain unclear. In the present study, we used RNA sequencing to examine gene expression in the retina/RPE/choroid across 3 days of optically-induced myopia and hyperopia induction in chick. Data were analyzed for differential expression of single genes, and Gene Set Enrichment Analysis (GSEA) was used to identify gene sets correlated with ocular axial length and refraction across lens groups. Like previous studies, we found few single genes that were differentially-expressed in a sign-of-defocus dependent manner (only BMP2 at 1 day). Using GSEA, however, we are the first to show that more subtle shifts in structural, metabolic, and immune pathway expression are correlated with the eye size and refractive changes induced by lens defocus. Our findings link gene expression with the morphological characteristics of refractive error, and suggest that physiological stress arising from metabolic and inflammatory pathway activation could increase the vulnerability of myopic eyes to secondary pathologies. PMID:27625591
The effect of the colostral cells on gene expression of cytokines in cord blood cells.
Hrdý, Jiří; Novotná, Olga; Kocourková, Ingrid; Prokešová, Ludmila
2017-11-01
Beneficial effect of maternal milk is acknowledged, but there is still question whether maternal milk from allergic mother is as good as from healthy one. In our study, we have assayed the effect of cells from colostrum of healthy and allergic mothers on gene expression of cytokines in cord blood cells of newborns of healthy and allergic mothers. Cytokines typical for Th1 (IL-2, IFN-gamma), Th2 (IL-4, IL-13), Tregs (IL-10, TGF-beta), and IL-8 were followed. We were not able to detect significant influence of colostral cells on gene expression of cytokines in cord blood after 2-day coculture using Transwell system. There was no difference in gene expression of cytokines in nonstimulated cord blood cells of newborns of healthy and allergic mothers, but generally increased gene expression of cytokines except IL-10 and TGF-beta after polyclonal stimulation was detected in cord blood cells of children of allergic mothers. There was no difference in IL-10 expression in stimulated cord blood cells of children of healthy and allergic mothers. Gene expression of TGF-beta was even decreased in stimulated cord blood cells of children of allergic mothers in comparison to healthy ones. We have not observed difference in the capacity of colostral cells of healthy and allergic mothers to influence gene expression of cytokines in cord blood cells, but we have described difference in the reactivity of cord blood cells between children of allergic and healthy mothers.
2013-01-01
Background Snake venoms generally show sequence and quantitative variation within and between species, but some rattlesnakes have undergone exceptionally rapid, dramatic shifts in the composition, lethality, and pharmacological effects of their venoms. Such shifts have occurred within species, most notably in Mojave (Crotalus scutulatus), South American (C. durissus), and timber (C. horridus) rattlesnakes, resulting in some populations with extremely potent, neurotoxic venoms without the hemorrhagic effects typical of rattlesnake bites. Results To better understand the evolutionary changes that resulted in the potent venom of a population of C. horridus from northern Florida, we sequenced the venom-gland transcriptome of an animal from this population for comparison with the previously described transcriptome of the eastern diamondback rattlesnake (C. adamanteus), a congener with a more typical rattlesnake venom. Relative to the toxin transcription of C. adamanteus, which consisted primarily of snake-venom metalloproteinases, C-type lectins, snake-venom serine proteinases, and myotoxin-A, the toxin transcription of C. horridus was far simpler in composition and consisted almost entirely of snake-venom serine proteinases, phospholipases A2, and bradykinin-potentiating and C-type natriuretic peptides. Crotalus horridus lacked significant expression of the hemorrhagic snake-venom metalloproteinases and C-type lectins. Evolution of shared toxin families involved differential expansion and loss of toxin clades within each species and pronounced differences in the highly expressed toxin paralogs. Toxin genes showed significantly higher rates of nonsynonymous substitution than nontoxin genes. The expression patterns of nontoxin genes were conserved between species, despite the vast differences in toxin expression. Conclusions Our results represent the first complete, sequence-based comparison between the venoms of closely related snake species and reveal in unprecedented detail the rapid evolution of snake venoms. We found that the difference in venom properties resulted from major changes in expression levels of toxin gene families, differential gene-family expansion and loss, changes in which paralogs within gene families were expressed at high levels, and higher nonsynonymous substitution rates in the toxin genes relative to nontoxins. These massive alterations in the genetics of the venom phenotype emphasize the evolutionary lability and flexibility of this ecologically critical trait. PMID:23758969
Multidimensional quantitative analysis of mRNA expression within intact vertebrate embryos.
Trivedi, Vikas; Choi, Harry M T; Fraser, Scott E; Pierce, Niles A
2018-01-08
For decades, in situ hybridization methods have been essential tools for studies of vertebrate development and disease, as they enable qualitative analyses of mRNA expression in an anatomical context. Quantitative mRNA analyses typically sacrifice the anatomy, relying on embryo microdissection, dissociation, cell sorting and/or homogenization. Here, we eliminate the trade-off between quantitation and anatomical context, using quantitative in situ hybridization chain reaction (qHCR) to perform accurate and precise relative quantitation of mRNA expression with subcellular resolution within whole-mount vertebrate embryos. Gene expression can be queried in two directions: read-out from anatomical space to expression space reveals co-expression relationships in selected regions of the specimen; conversely, read-in from multidimensional expression space to anatomical space reveals those anatomical locations in which selected gene co-expression relationships occur. As we demonstrate by examining gene circuits underlying somitogenesis, quantitative read-out and read-in analyses provide the strengths of flow cytometry expression analyses, but by preserving subcellular anatomical context, they enable bi-directional queries that open a new era for in situ hybridization. © 2018. Published by The Company of Biologists Ltd.
Lintas, Carla; Sacco, Roberto; Persico, Antonio M
2016-01-01
Reelin plays a pivotal role in neurodevelopment and in post-natal synaptic plasticity and has been implicated in the pathogenesis of autism spectrum disorder (ASD). The reelin (RELN) gene expression is significantly decreased in ASD, both in the brain and peripherally. Methylation at the RELN gene promoter is largely triggered at puberty, and hypermethylation has been found in post-mortem brains of schizophrenic and bipolar patients. In this study, we assessed RELN gene methylation status in post-mortem temporocortical tissue samples (BA41/42 or 22) of six pairs of post-puberal individuals with ASD and typically developing subjects, matched for sex (male:female, M:F = 5:1), age, and post-mortem interval. ASD patients display a significantly higher number of methylated CpG islands and heavier methylation in the 5' region of the RELN gene promoter, spanning from -458 to -223 bp, whereas controls have more methylated CpG positions and greater extent of methylation at the 3' promoter region, spanning from -222 to +1 bp. The most upstream promoter region (-458 to -364 bp) is methylated only in ASD brains, while the most downstream region (-131 to +1 bp) is methylated exclusively in control brains. Within this general framework, three different methylation patterns are discernible, each correlated with different extents of reduction in reelin gene expression among ASD individuals compared to controls. The methylation pattern is different in ASD and control post-mortem brains. ASD-specific CpG positions, located in the most upstream gene promoter region, may exert a functional role potentially conferring ASD risk by blunting RELN gene expression.
The magnitude and colour of noise in genetic negative feedback systems.
Voliotis, Margaritis; Bowsher, Clive G
2012-08-01
The comparative ability of transcriptional and small RNA-mediated negative feedback to control fluctuations or 'noise' in gene expression remains unexplored. Both autoregulatory mechanisms usually suppress the average (mean) of the protein level and its variability across cells. The variance of the number of proteins per molecule of mean expression is also typically reduced compared with the unregulated system, but is almost never below the value of one. This relative variance often substantially exceeds a recently obtained, theoretical lower limit for biochemical feedback systems. Adding the transcriptional or small RNA-mediated control has different effects. Transcriptional autorepression robustly reduces both the relative variance and persistence (lifetime) of fluctuations. Both benefits combine to reduce noise in downstream gene expression. Autorepression via small RNA can achieve more extreme noise reduction and typically has less effect on the mean expression level. However, it is often more costly to implement and is more sensitive to rate parameters. Theoretical lower limits on the relative variance are known to decrease slowly as a measure of the cost per molecule of mean expression increases. However, the proportional increase in cost to achieve substantial noise suppression can be different away from the optimal frontier-for transcriptional autorepression, it is frequently negligible.
Bulley, Sean M; Rassam, Maysoon; Hoser, Dana; Otto, Wolfgang; Schünemann, Nicole; Wright, Michele; MacRae, Elspeth; Gleave, Andrew; Laing, William
2009-01-01
Vitamin C (L-ascorbic acid, AsA) is an essential metabolite for plants and animals. Kiwifruit (Actinidia spp.) are a rich dietary source of AsA for humans. To understand AsA biosynthesis in kiwifruit, AsA levels and the relative expression of genes putatively involved in AsA biosynthesis, regeneration, and transport were correlated by quantitative polymerase chain reaction in leaves and during fruit development in four kiwifruit genotypes (three species; A. eriantha, A. chinensis, and A. deliciosa). During fruit development, fruit AsA concentration peaked between 4 and 6 weeks after anthesis with A. eriantha having 3-16-fold higher AsA than other genotypes. The rise in AsA concentration typically occurred close to the peak in expression of the L-galactose pathway biosynthetic genes, particularly the GDP-L-galactose guanyltransferase gene. The high concentration of AsA found in the fruit of A. eriantha is probably due to higher expression of the GDP-mannose-3',5'-epimerase and GDP-L-galactose guanyltransferase genes. Over-expression of the kiwifruit GDP-L-galactose guanyltransferase gene in Arabidopsis resulted in up to a 4-fold increase in AsA, while up to a 7-fold increase in AsA was observed in transient expression studies where both GDP-L-galactose guanyltransferase and GDP-mannose-3',5'-epimerase genes were co-expressed. These studies show the importance of GDP-L-galactose guanyltransferase as a rate-limiting step to AsA, and demonstrate how AsA can be significantly increased in plants.
An Efficient Method for Generation of Knockout Human Embryonic Stem Cells Using CRISPR/Cas9 System.
Bohaciakova, Dasa; Renzova, Tereza; Fedorova, Veronika; Barak, Martin; Kunova Bosakova, Michaela; Hampl, Ales; Cajanek, Lukas
2017-11-01
Human embryonic stem cells (hESCs) represent a promising tool to study functions of genes during development, to model diseases, and to even develop therapies when combined with gene editing techniques such as CRISPR/CRISPR-associated protein-9 nuclease (Cas9) system. However, the process of disruption of gene expression by generation of null alleles is often inefficient and tedious. To circumvent these limitations, we developed a simple and efficient protocol to permanently downregulate expression of a gene of interest in hESCs using CRISPR/Cas9. We selected p53 for our proof of concept experiments. The methodology is based on series of hESC transfection, which leads to efficient downregulation of p53 expression even in polyclonal population (p53 Low cells), here proven by a loss of regulation of the expression of p53 target gene, microRNA miR-34a. We demonstrate that our approach achieves over 80% efficiency in generating hESC clonal sublines that do not express p53 protein. Importantly, we document by a set of functional experiments that such genetically modified hESCs do retain typical stem cells characteristics. In summary, we provide a simple and robust protocol to efficiently target expression of gene of interest in hESCs that can be useful for laboratories aiming to employ gene editing in their hESC applications/protocols.
Pester, Doris; Milčevičová, Renáta; Schaffer, Johann; Wilhelm, Eva; Blümel, Sylvia
2012-01-01
Background Pathogen entry through host blossoms is the predominant infection pathway of the Gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. Methodology/Principal Findings Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24–48 h post inoculation (hpi). This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4) in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7). Conclusion/Significance The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight control on a molecular level. PMID:22412891
USDA-ARS?s Scientific Manuscript database
The comprehensive identification of genes underlying phenotypic variation of complex traits remains a major challenge. Most genome-wide screens lack sufficient resolving power as they typically depend on linkage. An alternate method is to screen for allele-specific expression (ASE), a simple yet pow...
Guzmán-López, José Alfredo; Abraham-Juárez, María Jazmín; Lozano-Sotomayor, Paulina; de Folter, Stefan; Simpson, June
2016-05-01
Observation of a differential expression pattern, including strong expression in meristematic tissue of an Agave tequilana GlsA/ZRF ortholog suggested an important role for this gene during bulbil formation and developmental changes in this species. In order to better understand this role, the two GlsA/ZFR orthologs present in the genome of Arabidopsis thaliana were functionally characterized by analyzing expression patterns, double mutant phenotypes, promoter-GUS fusions and expression of hormone related or meristem marker genes. Patterns of expression for A. thaliana show that GlsA/ZFR genes are strongly expressed in SAMs and RAMs in mature plants and developing embryos and double mutants showed multiple changes in morphology related to both SAM and RAM tissues. Typical double mutants showed stunted growth of aerial and root tissue, formation of multiple ectopic meristems and effects on cotyledons, leaves and flowers. The KNOX genes STM and BP were overexpressed in double mutants whereas CLV3, WUSCHEL and AS1 were repressed and lack of AtGlsA expression was also associated with changes in localization of auxin and cytokinin. These results suggest that GlsA/ZFR is an essential component of the machinery that maintains the integrity of SAM and RAM tissue and underline the potential to identify new genes or gene functions based on observations in non-model plants.
Whitmore, S Scott; Braun, Terry A; Skeie, Jessica M; Haas, Christine M; Sohn, Elliott H; Stone, Edwin M; Scheetz, Todd E; Mullins, Robert F
2013-01-01
Age-related macular degeneration (AMD) is a major cause of blindness in developed countries. The molecular pathogenesis of early events in AMD is poorly understood. We investigated differential gene expression in samples of human retinal pigment epithelium (RPE) and choroid from early AMD and control maculas with exon-based arrays. Gene expression levels in nine human donor eyes with early AMD and nine control human donor eyes were assessed using Affymetrix Human Exon ST 1.0 arrays. Two controls did not pass quality control and were removed. Differentially expressed genes were annotated using the Database for Annotation, Visualization and Integrated Discovery (DAVID), and gene set enrichment analysis (GSEA) was performed on RPE-specific and endothelium-associated gene sets. The complement factor H (CFH) genotype was also assessed, and differential expression was analyzed regarding high AMD risk (YH/HH) and low AMD risk (YY) genotypes. Seventy-five genes were identified as differentially expressed (raw p value <0.01; ≥50% fold change, mean log2 expression level in AMD or control ≥ median of all average gene expression values); however, no genes were significant (adj. p value <0.01) after correction for multiple hypothesis testing. Of 52 genes with decreased expression in AMD (fold change <0.5; raw p value <0.01), 18 genes were identified by DAVID analysis as associated with vision or neurologic processes. The GSEA of the RPE-associated and endothelium-associated genes revealed a significant decrease in genes typically expressed by endothelial cells in the early AMD group compared to controls, consistent with previous histologic and proteomic studies. Analysis of the CFH genotype indicated decreased expression of ADAMTS9 in eyes with high-risk genotypes (fold change = -2.61; raw p value=0.0008). GSEA results suggest that RPE transcripts are preserved or elevated in early AMD, concomitant with loss of endothelial cell marker expression. These results are consistent with the notion that choroidal endothelial cell dropout or dedifferentiation occurs early in the pathogenesis of AMD.
Expansion of TALE homeobox genes and the evolution of spiralian development.
Morino, Yoshiaki; Hashimoto, Naoki; Wada, Hiroshi
2017-12-01
Spiralians, including molluscs, annelids and platyhelminths, share a unique development process that includes the typical geometry of early cleavage and early segregation of cell fate in blastomeres along the animal-vegetal axis. However, the molecular mechanisms underlying this early cell fate segregation are largely unknown. Here, we report spiralian-specific expansion of the three-amino-acid loop extension (TALE) class of homeobox genes. During early development, some of these TALE genes are expressed in staggered domains along the animal-vegetal axis in the limpet Nipponacmea fuscoviridis and the polychaete Spirobranchus kraussii. Inhibition or overexpression of these genes alters the developmental fate of blastomeres, as predicted by the gene expression patterns. These results suggest that the expansion of novel TALE genes plays a critical role in the establishment of a novel cell fate segregation mechanism in spiralians.
Aerobic glycolysis in the human brain is associated with development and neotenous gene expression
Goyal, Manu S.; Hawrylycz, Michael; Miller, Jeremy A.; Snyder, Abraham Z.; Raichle, Marcus E.
2015-01-01
SUMMARY Aerobic glycolysis (AG), i.e., non-oxidative metabolism of glucose despite the presence of abundant oxygen, accounts for 10–12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth. PMID:24411938
Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs.
Khan, Aly A; Betel, Doron; Miller, Martin L; Sander, Chris; Leslie, Christina S; Marks, Debora S
2009-06-01
Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competition among the transfected small RNAs and the endogenous pool of miRNAs for the intracellular machinery that processes small RNAs. To test this hypothesis, we analyzed genome-wide transcript responses from 151 published transfection experiments in seven different human cell types. We show that targets of endogenous miRNAs are expressed at significantly higher levels after transfection, consistent with impaired effectiveness of endogenous miRNA repression. This effect exhibited concentration and temporal dependence. Notably, the profile of endogenous miRNAs can be largely inferred by correlating miRNA sites with gene expression changes after transfections. The competition and saturation effects have practical implications for miRNA target prediction, the design of siRNA and short hairpin RNA (shRNA) genomic screens and siRNA therapeutics.
Watts, Annabelle M; West, Nicholas P; Cripps, Allan W; Smith, Pete K; Cox, Amanda J
2018-06-19
Investigations of gene expression in allergic rhinitis (AR) typically rely on invasive nasal biopsies (site of inflammation) or blood samples (systemic immunity) to obtain sufficient genetic material for analysis. New methodologies to circumvent the need for invasive sample collection offer promise to further the understanding of local immune mechanisms relevant in AR. A within-subject design was employed to compare immune gene expression profiles obtained from nasal washing/brushing and whole blood samples collected during peak pollen season. Twelve adults (age: 46.3 ± 12.3 years) with more than a 2-year history of AR and a confirmed grass pollen allergy participated in the study. Gene expression analysis was performed using a panel of 760 immune genes with the NanoString nCounter platform on nasal lavage/brushing cell lysates and compared to RNA extracted from blood. A total of 355 genes were significantly differentially expressed between sample types (9.87 to -9.71 log2 fold change). The top 3 genes significantly upregulated in nasal lysate samples were Mucin 1 (MUC1), Tight Junction Protein 1 (TJP1), and Lipocalin-2 (LCN2). The top 3 genes significantly upregulated in blood samples were cluster of differentiation 3e (CD3E), FYN Proto-Oncogene Src Family Tyrosine Kinase (FYN) and cluster of differentiation 3d (CD3D). Overall, the blood and nasal lavage samples showed vastly distinct gene expression profiles and functional gene pathways which reflect their anatomical and functional origins. Evaluating immune gene expression of the nasal mucosa in addition to blood samples may be beneficial in understanding AR pathophysiology and response to allergen challenge. © 2018 S. Karger AG, Basel.
Bradford, Emily M; Vairamani, Kanimozhi; Shull, Gary E
2016-02-15
To investigate the intestinal functions of the NKCC1 Na(+)-K(+)-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed. Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed. Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations. The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors.
Novel gene sets improve set-level classification of prokaryotic gene expression data.
Holec, Matěj; Kuželka, Ondřej; Železný, Filip
2015-10-28
Set-level classification of gene expression data has received significant attention recently. In this setting, high-dimensional vectors of features corresponding to genes are converted into lower-dimensional vectors of features corresponding to biologically interpretable gene sets. The dimensionality reduction brings the promise of a decreased risk of overfitting, potentially resulting in improved accuracy of the learned classifiers. However, recent empirical research has not confirmed this expectation. Here we hypothesize that the reported unfavorable classification results in the set-level framework were due to the adoption of unsuitable gene sets defined typically on the basis of the Gene ontology and the KEGG database of metabolic networks. We explore an alternative approach to defining gene sets, based on regulatory interactions, which we expect to collect genes with more correlated expression. We hypothesize that such more correlated gene sets will enable to learn more accurate classifiers. We define two families of gene sets using information on regulatory interactions, and evaluate them on phenotype-classification tasks using public prokaryotic gene expression data sets. From each of the two gene-set families, we first select the best-performing subtype. The two selected subtypes are then evaluated on independent (testing) data sets against state-of-the-art gene sets and against the conventional gene-level approach. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. Novel gene sets defined on the basis of regulatory interactions improve set-level classification of gene expression data. The experimental scripts and other material needed to reproduce the experiments are available at http://ida.felk.cvut.cz/novelgenesets.tar.gz.
A Prototype System for Retrieval of Gene Functional Information
Folk, Lillian C.; Patrick, Timothy B.; Pattison, James S.; Wolfinger, Russell D.; Mitchell, Joyce A.
2003-01-01
Microarrays allow researchers to gather data about the expression patterns of thousands of genes simultaneously. Statistical analysis can reveal which genes show statistically significant results. Making biological sense of those results requires the retrieval of functional information about the genes thus identified, typically a manual gene-by-gene retrieval of information from various on-line databases. For experiments generating thousands of genes of interest, retrieval of functional information can become a significant bottleneck. To address this issue, we are currently developing a prototype system to automate the process of retrieval of functional information from multiple on-line sources. PMID:14728346
Hiraishi, Kunihiko
2014-01-01
One of the significant topics in systems biology is to develop control theory of gene regulatory networks (GRNs). In typical control of GRNs, expression of some genes is inhibited (activated) by manipulating external stimuli and expression of other genes. It is expected to apply control theory of GRNs to gene therapy technologies in the future. In this paper, a control method using a Boolean network (BN) is studied. A BN is widely used as a model of GRNs, and gene expression is expressed by a binary value (ON or OFF). In particular, a context-sensitive probabilistic Boolean network (CS-PBN), which is one of the extended models of BNs, is used. For CS-PBNs, the verification problem and the optimal control problem are considered. For the verification problem, a solution method using the probabilistic model checker PRISM is proposed. For the optimal control problem, a solution method using polynomial optimization is proposed. Finally, a numerical example on the WNT5A network, which is related to melanoma, is presented. The proposed methods provide us useful tools in control theory of GRNs. PMID:24587766
Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G.; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B.; Grillone, Teresa; Giovannone, Emilia D.; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A. S.; Bond, Heather M.; Mesuraca, Maria; Morrone, Giovanni
2014-01-01
Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and –LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG–LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells. PMID:25502183
Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.
Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G
2014-05-09
The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals
Montagner, Alexandra; Korecka, Agata; Polizzi, Arnaud; Lippi, Yannick; Blum, Yuna; Canlet, Cécile; Tremblay-Franco, Marie; Gautier-Stein, Amandine; Burcelin, Rémy; Yen, Yi-Chun; Je, Hyunsoo Shawn; Maha, Al-Asmakh; Mithieux, Gilles; Arulampalam, Velmurugesan; Lagarrigue, Sandrine; Guillou, Hervé; Pettersson, Sven; Wahli, Walter
2016-01-01
The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function. PMID:26879573
Transcriptome Analysis for Abnormal Spike Development of the Wheat Mutant dms
Zhu, Xin-Xin; Li, Qiao-Yun; Shen, Chun-Cai; Duan, Zong-Biao; Yu, Dong-Yan; Niu, Ji-Shan; Ni, Yong-Jing; Jiang, Yu-Mei
2016-01-01
Background Wheat (Triticum aestivum L.) spike development is the foundation for grain yield. We obtained a novel wheat mutant, dms, characterized as dwarf, multi-pistil and sterility. Although the genetic changes are not clear, the heredity of traits suggests that a recessive gene locus controls the two traits of multi-pistil and sterility in self-pollinating populations of the medium plants (M), such that the dwarf genotype (D) and tall genotype (T) in the progeny of the mutant are ideal lines for studies regarding wheat spike development. The objective of this study was to explore the molecular basis for spike abnormalities of dwarf genotype. Results Four unigene libraries were assembled by sequencing the mRNAs of the super-bulked differentiating spikes and stem tips of the D and T plants. Using integrative analysis, we identified 419 genes highly expressed in spikes, including nine typical homeotic genes of the MADS-box family and the genes TaAP2, TaFL and TaDL. We also identified 143 genes that were significantly different between young spikes of T and D, and 26 genes that were putatively involved in spike differentiation. The result showed that the expression levels of TaAP1-2, TaAP2, and other genes involved in the majority of biological processes such as transcription, translation, cell division, photosynthesis, carbohydrate transport and metabolism, and energy production and conversion were significantly lower in D than in T. Conclusions We identified a set of genes related to wheat floral organ differentiation, including typical homeotic genes. Our results showed that the major causal factors resulting in the spike abnormalities of dms were the lower expression homeotic genes, hormonal imbalance, repressed biological processes, and deficiency of construction materials and energy. We performed a series of studies on the homeotic genes, however the other three causal factors for spike abnormal phenotype of dms need further study. PMID:26982202
Rue-Albrecht, Kévin; McGettigan, Paul A; Hernández, Belinda; Nalpas, Nicolas C; Magee, David A; Parnell, Andrew C; Gordon, Stephen V; MacHugh, David E
2016-03-11
Identification of gene expression profiles that differentiate experimental groups is critical for discovery and analysis of key molecular pathways and also for selection of robust diagnostic or prognostic biomarkers. While integration of differential expression statistics has been used to refine gene set enrichment analyses, such approaches are typically limited to single gene lists resulting from simple two-group comparisons or time-series analyses. In contrast, functional class scoring and machine learning approaches provide powerful alternative methods to leverage molecular measurements for pathway analyses, and to compare continuous and multi-level categorical factors. We introduce GOexpress, a software package for scoring and summarising the capacity of gene ontology features to simultaneously classify samples from multiple experimental groups. GOexpress integrates normalised gene expression data (e.g., from microarray and RNA-seq experiments) and phenotypic information of individual samples with gene ontology annotations to derive a ranking of genes and gene ontology terms using a supervised learning approach. The default random forest algorithm allows interactions between all experimental factors, and competitive scoring of expressed genes to evaluate their relative importance in classifying predefined groups of samples. GOexpress enables rapid identification and visualisation of ontology-related gene panels that robustly classify groups of samples and supports both categorical (e.g., infection status, treatment) and continuous (e.g., time-series, drug concentrations) experimental factors. The use of standard Bioconductor extension packages and publicly available gene ontology annotations facilitates straightforward integration of GOexpress within existing computational biology pipelines.
Reverse engineering of gene regulatory networks.
Cho, K H; Choo, S M; Jung, S H; Kim, J R; Choi, H S; Kim, J
2007-05-01
Systems biology is a multi-disciplinary approach to the study of the interactions of various cellular mechanisms and cellular components. Owing to the development of new technologies that simultaneously measure the expression of genetic information, systems biological studies involving gene interactions are increasingly prominent. In this regard, reconstructing gene regulatory networks (GRNs) forms the basis for the dynamical analysis of gene interactions and related effects on cellular control pathways. Various approaches of inferring GRNs from gene expression profiles and biological information, including machine learning approaches, have been reviewed, with a brief introduction of DNA microarray experiments as typical tools for measuring levels of messenger ribonucleic acid (mRNA) expression. In particular, the inference methods are classified according to the required input information, and the main idea of each method is elucidated by comparing its advantages and disadvantages with respect to the other methods. In addition, recent developments in this field are introduced and discussions on the challenges and opportunities for future research are provided.
Guerriero, Gea; Spadiut, Oliver; Kerschbamer, Christine; Giorno, Filomena; Baric, Sanja; Ezcurra, Inés
2016-01-01
Cellulose synthase (CesA) genes constitute a complex multigene family with six major phylogenetic clades in angiosperms. The recently sequenced genome of domestic apple, Malus×domestica, was mined for CesA genes, by blasting full-length cellulose synthase protein (CESA) sequences annotated in the apple genome against protein databases from the plant models Arabidopsis thaliana and Populus trichocarpa. Thirteen genes belonging to the six angiosperm CesA clades and coding for proteins with conserved residues typical of processive glycosyltransferases from family 2 were detected. Based on their phylogenetic relationship to Arabidopsis CESAs, as well as expression patterns, a nomenclature is proposed to facilitate further studies. Examination of their genomic organization revealed that MdCesA8-A is closely linked and co-oriented with WDR53, a gene coding for a WD40 repeat protein. The WDR53 and CesA8 genes display conserved collinearity in dicots and are partially co-expressed in the apple xylem. Interestingly, the presence of a bicistronic WDR53–CesA8A transcript was detected in phytoplasma-infected phloem tissues of apple. The bicistronic transcript contains a spliced intergenic sequence that is predicted to fold into hairpin structures typical of internal ribosome entry sites, suggesting its potential cap-independent translation. Surprisingly, the CesA8A cistron is alternatively spliced and lacks the zinc-binding domain. The possible roles of WDR53 and the alternatively spliced CESA8 variant during cellulose biosynthesis in M.×domestica are discussed. PMID:23048131
Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi
2006-07-01
To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.
Lack of NF1 gene expression in a sporadic schwannoma from a patient without neurofibromatosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, K.K.; Dowton, B.; Silow-Santiago, I.
The neurofibromatosis type 1 (NF1) gene encodes a tumor suppressor protein, neurofibromin, which is expressed at high levels in Schwann cells and other adult tissues. Loss of NF1 gene expression has been reported in Schwann cell tumors (neurofibrosarcomas) from patients with NF1 and its loss is associated with increased proliferation of these cells. We examined one spinal schwannoma from a patient without clinical features of neurofibromatosis type 1 or 2. The tumor was a typical schwannoma confirmed by standard neuropathologic criteria and expressed S100 by immunocytochemistry. NF1 gene expression in this tumor was examined by in situ hybridization using anmore » NF1-specific riboprobe, Northern blot analysis and reverse-transcribed (RT) PCR. Little or no expression of NF1 RNA could be detected using these methods whereas abundant expression of S100, cyclophilin and beta-action RNA was found in the tumor. Fibroblast and Schwann cells were then individually cultured from this schwannoma and the RNA extracted for Northern blot and RT-PCR analysis. In these cultured Schwann cells both from early and late passages, abundant expression of NF1 RNA could be detected. It is unlikely that our culture technique preferentially expanded {open_quotes}normal{close_quotes} Schwann cells, since NF1 acts as a tumor suppressor gene and its presence would not confer any growth advantage over the tumor-derived, neurofibromin-negative Schwann cells which presumably have an increased proliferation rate. Similarly, the conditions used to expand these Schwann cells do not result in increased NF1 gene expression as shown in previous studies. These results suggest that, in some tumors, expression of the NF1 gene can be downregulated by factors produced within the tumor and that this type of tumor suppressor gene downregulation may represent another mechanism other than mutation for turning off the expression of these growth-suppressing genes and allowing for cell proliferation in tumors.« less
Koda, Satoru; Onda, Yoshihiko; Matsui, Hidetoshi; Takahagi, Kotaro; Yamaguchi-Uehara, Yukiko; Shimizu, Minami; Inoue, Komaki; Yoshida, Takuhiro; Sakurai, Tetsuya; Honda, Hiroshi; Eguchi, Shinto; Nishii, Ryuei; Mochida, Keiichi
2017-01-01
We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon . To reveal the diurnal changes in the transcriptome in B. distachyon , we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon . On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon , aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.
Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis
Grassi, Elena; Damasco, Christian; Silengo, Lorenzo; Oti, Martin; Provero, Paolo; Di Cunto, Ferdinando
2008-01-01
Background Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. PMID:18369433
Andrés-Benito, Pol; Moreno, Jesús; Aso, Ester; Povedano, Mónica; Ferrer, Isidro
2017-01-01
Transcriptome arrays identifies 747 genes differentially expressed in the anterior horn of the spinal cord and 2,300 genes differentially expressed in frontal cortex area 8 in a single group of typical sALS cases without frontotemporal dementia compared with age-matched controls. Main up-regulated clusters in the anterior horn are related to inflammation and apoptosis; down-regulated clusters are linked to axoneme structures and protein synthesis. In contrast, up-regulated gene clusters in frontal cortex area 8 involve neurotransmission, synaptic proteins and vesicle trafficking, whereas main down-regulated genes cluster into oligodendrocyte function and myelin-related proteins. RT-qPCR validates the expression of 58 of 66 assessed genes from different clusters. The present results: a. reveal regional differences in de-regulated gene expression between the anterior horn of the spinal cord and frontal cortex area 8 in the same individuals suffering from sALS; b. validate and extend our knowledge about the complexity of the inflammatory response in the anterior horn of the spinal cord; and c. identify for the first time extensive gene up-regulation of neurotransmission and synaptic-related genes, together with significant down-regulation of oligodendrocyte- and myelin-related genes, as important contributors to the pathogenesis of frontal cortex alterations in the sALS/frontotemporal lobar degeneration spectrum complex at stages with no apparent cognitive impairment. PMID:28283675
Unisexual reproduction in Huntiella moniliformis.
Wilson, A M; Godlonton, T; van der Nest, M A; Wilken, P M; Wingfield, M J; Wingfield, B D
2015-07-01
Sexual reproduction in fungi is controlled by genes present at the mating type (MAT) locus, which typically harbors transcription factors that influence the expression of many sex-related genes. The MAT locus exists as two alternative idiomorphs in ascomycetous fungi and sexual reproduction is initiated when genes from both idiomorphs are expressed. Thus, the gene content of this locus determines whether a fungus is heterothallic (self-sterile) or homothallic (self-fertile). Recently, a unique sub-class of homothallism has been described in fungi, where individuals possessing a single MAT idiomorph can reproduce sexually in the absence of a partner. Using various mycological, molecular and bioinformatic techniques, we investigated the sexual strategies and characterized the MAT loci in two tree wound-infecting fungi, Huntiella moniliformis and Huntiella omanensis. H. omanensis was shown to exhibit a typically heterothallic sexual reproductive cycle, with isolates possessing either the MAT1-1 or MAT1-2 idiomorph. This was in contrast to the homothallism via unisexual reproduction that was shown in H. moniliformis, where only the MAT1-2-1 gene was present in sexually reproducing cultures. While the evolutionary benefit and mechanisms underpinning a unisexual mating strategy remain unknown, it could have evolved to minimize the costs, while retaining the benefits, of normal sexual reproduction. Copyright © 2015 Elsevier Inc. All rights reserved.
2013-01-01
Background Sequence-specific DNA-binding proteins, with their paramount importance in the regulation of expression of the genetic material, are encoded by approximately 5% of the genes in an animal’s genome. But it is unclear to what extent alternative transcripts from these genes may further increase the complexity of the transcription factor complement. Results Of the 938 potential C. elegans transcription factor genes, 197 were annotated in WormBase as encoding at least two distinct isoforms. Evaluation of prior evidence identified, with different levels of confidence, 50 genes with alternative transcript starts, 23 with alternative transcript ends, 35 with alternative splicing and 34 with alternative transcripts generated by a combination of mechanisms, leaving 55 that were discounted. Expression patterns were determined for transcripts for a sample of 29 transcription factor genes, concentrating on those with alternative transcript starts for which the evidence was strongest. Seamless fosmid recombineering was used to generate reporter gene fusions with minimal modification to assay expression of specific transcripts while maintaining the broad genomic DNA context and alternative transcript production. Alternative transcription factor gene transcripts were typically expressed with identical or substantially overlapping distributions rather than in distinct domains. Conclusions Increasingly sensitive sequencing technologies will reveal rare transcripts but many of these are clearly non-productive. The majority of the transcription factor gene alternative transcripts that are productive may represent tolerable noise rather than encoding functionally distinct isoforms. PMID:23586691
Bulley, Sean M.; Rassam, Maysoon; Hoser, Dana; Otto, Wolfgang; Schünemann, Nicole; Wright, Michele; MacRae, Elspeth; Gleave, Andrew; Laing, William
2009-01-01
Vitamin C (L-ascorbic acid, AsA) is an essential metabolite for plants and animals. Kiwifruit (Actinidia spp.) are a rich dietary source of AsA for humans. To understand AsA biosynthesis in kiwifruit, AsA levels and the relative expression of genes putatively involved in AsA biosynthesis, regeneration, and transport were correlated by quantitative polymerase chain reaction in leaves and during fruit development in four kiwifruit genotypes (three species; A. eriantha, A. chinensis, and A. deliciosa). During fruit development, fruit AsA concentration peaked between 4 and 6 weeks after anthesis with A. eriantha having 3–16-fold higher AsA than other genotypes. The rise in AsA concentration typically occurred close to the peak in expression of the L-galactose pathway biosynthetic genes, particularly the GDP-L-galactose guanyltransferase gene. The high concentration of AsA found in the fruit of A. eriantha is probably due to higher expression of the GDP-mannose-3′,5′-epimerase and GDP-L-galactose guanyltransferase genes. Over-expression of the kiwifruit GDP-L-galactose guanyltransferase gene in Arabidopsis resulted in up to a 4-fold increase in AsA, while up to a 7-fold increase in AsA was observed in transient expression studies where both GDP-L-galactose guanyltransferase and GDP-mannose-3′,5′-epimerase genes were co-expressed. These studies show the importance of GDP-L-galactose guanyltransferase as a rate-limiting step to AsA, and demonstrate how AsA can be significantly increased in plants. PMID:19129165
Estimation of Dynamic Systems for Gene Regulatory Networks from Dependent Time-Course Data.
Kim, Yoonji; Kim, Jaejik
2018-06-15
Dynamic system consisting of ordinary differential equations (ODEs) is a well-known tool for describing dynamic nature of gene regulatory networks (GRNs), and the dynamic features of GRNs are usually captured through time-course gene expression data. Owing to high-throughput technologies, time-course gene expression data have complex structures such as heteroscedasticity, correlations between genes, and time dependence. Since gene experiments typically yield highly noisy data with small sample size, for a more accurate prediction of the dynamics, the complex structures should be taken into account in ODE models. Hence, this study proposes an ODE model considering such data structures and a fast and stable estimation method for the ODE parameters based on the generalized profiling approach with data smoothing techniques. The proposed method also provides statistical inference for the ODE estimator and it is applied to a zebrafish retina cell network.
Access and use of the GUDMAP database of genitourinary development.
Davies, Jamie A; Little, Melissa H; Aronow, Bruce; Armstrong, Jane; Brennan, Jane; Lloyd-MacGilp, Sue; Armit, Chris; Harding, Simon; Piu, Xinjun; Roochun, Yogmatee; Haggarty, Bernard; Houghton, Derek; Davidson, Duncan; Baldock, Richard
2012-01-01
The Genitourinary Development Molecular Atlas Project (GUDMAP) aims to document gene expression across time and space in the developing urogenital system of the mouse, and to provide access to a variety of relevant practical and educational resources. Data come from microarray gene expression profiling (from laser-dissected and FACS-sorted samples) and in situ hybridization at both low (whole-mount) and high (section) resolutions. Data are annotated to a published, high-resolution anatomical ontology and can be accessed using a variety of search interfaces. Here, we explain how to run typical queries on the database, by gene or anatomical location, how to view data, how to perform complex queries, and how to submit data.
Dakshinamurthy, Amirtha Ganesh; Ramesar, Rajkumar; Goldberg, Paul; Blackburn, Jonathan M
2008-11-01
Cancer-testis (CT) antigens are a group of tumor antigens that are expressed in the testis and aberrantly in cancerous tissue but not in somatic tissues. The testis is an immune-privileged site because of the presence of a blood-testis barrier; as a result, CT antigens are considered to be essentially tumor specific and are attractive targets for immunotherapy. CT antigens are classified as the CT-X and the non-X CT antigens depending on the chromosomal location to which the genes are mapped. CT-X antigens are typically highly immunogenic and hence the first step towards tailored immunotherapy is to elucidate the expression profile of CT-X antigens in the respective tumors. In this study we investigated the expression profile of 16 CT-X antigen genes in 34 colorectal cancer (CRC) patients using reverse transcription-polymerase chain reaction. We observed that 12 of the 16 CT-X antigen genes studied did not show expression in any of the CRC samples analyzed. The other 4 CT-X antigen genes showed low frequency of expression and exhibited a highly variable expression profile when compared to other populations. Thus, our study forms the first report on the expression profile of CT-X antigen genes among CRC patients in the genetically diverse South African population. The results of our study suggest that genetic and ethnic variations in population might have a role in the expression of the CT-X antigen genes. Thus our results have significant implications for anti-CT antigen-based immunotherapy trials in this population.
Bradford, Emily M; Vairamani, Kanimozhi; Shull, Gary E
2016-01-01
AIM: To investigate the intestinal functions of the NKCC1 Na+-K+-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed. METHODS: Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed. RESULTS: Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations. CONCLUSION: The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors. PMID:26909237
Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes
Arikawa, Kentaro; Iwanaga, Tomoyuki; Wakakuwa, Motohiro; Kinoshita, Michiyo
2017-01-01
Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV)- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd), specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins) first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved. PMID:29238294
Folate, Alcohol, and Liver Disease
Medici, Valentina; Halsted, Charles H.
2013-01-01
Alcoholic liver disease (ALD) is typically associated with folate deficiency, which is the result of reduced dietary folate intake, intestinal malabsorption, reduced liver uptake and storage, and increased urinary folate excretion. Folate deficiency favors the progression of liver disease through mechanisms that include its effects on methionine metabolism with consequences for DNA synthesis and stability and the epigenetic regulation of gene expression involved in pathways of liver injury. This paper reviews the pathogenesis of alcoholic liver disease with particular focus on ethanol-induced alterations in methionine metabolism which may act in synergy with folate deficiency to decrease antioxidant defense as well as DNA stability while regulating epigenetic mechanisms of relevant gene expressions. We also review the current evidence available on potential treatments of alcoholic liver disease based on correcting abnormalities in methionine metabolism and the methylation regulation of relevant gene expressions. PMID:23136133
Essential role of eIF5-mimic protein in animal development is linked to control of ATF4 expression
USDA-ARS?s Scientific Manuscript database
Translational control of ATF4 through upstream ORFs (uORFs) plays an important role in eukaryotic gene regulation. While ATF4 translation is typically induced by inhibitory phosphorylation of eIF2, ATF4 translation can be also induced by expression of a new translational inhibitor protein, eIF5-mimi...
Steens, Jennifer; Zuk, Melanie; Benchellal, Mohamed; Bornemann, Lea; Teichweyde, Nadine; Hess, Julia; Unger, Kristian; Görgens, André; Klump, Hannes; Klein, Diana
2017-04-11
The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs) to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
The magnitude and colour of noise in genetic negative feedback systems
Voliotis, Margaritis; Bowsher, Clive G.
2012-01-01
The comparative ability of transcriptional and small RNA-mediated negative feedback to control fluctuations or ‘noise’ in gene expression remains unexplored. Both autoregulatory mechanisms usually suppress the average (mean) of the protein level and its variability across cells. The variance of the number of proteins per molecule of mean expression is also typically reduced compared with the unregulated system, but is almost never below the value of one. This relative variance often substantially exceeds a recently obtained, theoretical lower limit for biochemical feedback systems. Adding the transcriptional or small RNA-mediated control has different effects. Transcriptional autorepression robustly reduces both the relative variance and persistence (lifetime) of fluctuations. Both benefits combine to reduce noise in downstream gene expression. Autorepression via small RNA can achieve more extreme noise reduction and typically has less effect on the mean expression level. However, it is often more costly to implement and is more sensitive to rate parameters. Theoretical lower limits on the relative variance are known to decrease slowly as a measure of the cost per molecule of mean expression increases. However, the proportional increase in cost to achieve substantial noise suppression can be different away from the optimal frontier—for transcriptional autorepression, it is frequently negligible. PMID:22581772
MacMillan, Colleen P; Birke, Hannah; Chuah, Aaron; Brill, Elizabeth; Tsuji, Yukiko; Ralph, John; Dennis, Elizabeth S; Llewellyn, Danny; Pettolino, Filomena A
2017-07-18
Knowledge of plant secondary cell wall (SCW) regulation and deposition is mainly based on the Arabidopsis model of a 'typical' lignocellulosic SCW. However, SCWs in other plants can vary from this. The SCW of mature cotton seed fibres is highly cellulosic and lacks lignification whereas xylem SCWs are lignocellulosic. We used cotton as a model to study different SCWs and the expression of the genes involved in their formation via RNA deep sequencing and chemical analysis of stem and seed fibre. Transcriptome comparisons from cotton xylem and pith as well as from a developmental series of seed fibres revealed tissue-specific and developmentally regulated expression of several NAC transcription factors some of which are likely to be important as top tier regulators of SCW formation in xylem and/or seed fibre. A so far undescribed hierarchy was identified between the top tier NAC transcription factors SND1-like and NST1/2 in cotton. Key SCW MYB transcription factors, homologs of Arabidopsis MYB46/83, were practically absent in cotton stem xylem. Lack of expression of other lignin-specific MYBs in seed fibre relative to xylem could account for the lack of lignin deposition in seed fibre. Expression of a MYB103 homolog correlated with temporal expression of SCW CesAs and cellulose synthesis in seed fibres. FLAs were highly expressed and may be important structural components of seed fibre SCWs. Finally, we made the unexpected observation that cell walls in the pith of cotton stems contained lignin and had a higher S:G ratio than in xylem, despite that tissue's lacking many of the gene transcripts normally associated with lignin biosynthesis. Our study in cotton confirmed some features of the currently accepted gene regulatory cascade for 'typical' plant SCWs, but also revealed substantial differences, especially with key downstream NACs and MYBs. The lignocellulosic SCW of cotton xylem appears to be achieved differently from that in Arabidopsis. Pith cell walls in cotton stems are compositionally very different from that reported for other plant species, including Arabidopsis. The current definition of a 'typical' primary or secondary cell wall might not be applicable to all cell types in all plant species.
Trombik, Tomasz; Jasinski, Michal; Crouzet, Jérome; Boutry, Marc
2008-01-01
ATP-binding cassette transporters of the pleiotropic drug resistance (PDR) subfamily are composed of five clusters. We have cloned a gene, NpPDR2, belonging to the still uncharacterized cluster IV from Nicotiana plumbaginifolia. NpPDR2 transcripts were found in the roots and mature flowers. In the latter, NpPDR2 expression was restricted to the style and only after pollination. A 1.5-kb genomic sequence containing the putative NpPDR2 transcription promoter was fused to the beta-glucuronidase reporter gene. The GUS expression pattern confirmed the RT-PCR results that NpPDR2 was expressed in roots and the flower style and showed that it was localized around the conductive tissues. Unlike other PDR genes, NpPDR2 expression was not induced in leaf tissues by none of the hormones typically involved in biotic and abiotic stress response. Moreover, unlike NpPDR1 known to be involved in biotic stress response, NpPDR2 expression was not induced in the style upon Botrytis cinerea infection. In N. plumbaginifolia plants in which NpPDR2 expression was prevented by RNA interference, no unusual phenotype was observed, including at the flowering stage, which suggests that NpPDR2 is not essential in the reproductive process under the tested conditions.
Characterization of two rice MADS box genes that control flowering time.
Kang, H G; Jang, S; Chung, J E; Cho, Y G; An, G
1997-08-31
Plants contain a variety of the MADS box genes that encode regulatory proteins and play important roles in both the formation of flower meristem and the determination of floral organ identity. We have characterized two flower-specific cDNAs from rice, designated OsMADS7 and OsMADS8. The cDNAs displayed the structure of a typical plant MADS box gene, which consists of the MADS domain, I region, K domain, and C-terminal region. These genes were classified as members of the AGL2 gene family based on sequence homology. The OsMADS7 and 8 proteins were most homologous to OM1 and FBP2, respectively. The OsMADS7 and 8 transcripts were detectable primarily in carpels and also weakly in anthers. During flower development, the OsMADS genes started to express at the young flower stage and the expression continued to the late stage of flower development. The OsMADS7 and 8 genes were mapped on the long arms of the chromosome 8 and 9, respectively. To study the functions of the genes, the cDNA clones were expressed ectopically using the CaMV 35S promoter in a heterologous tobacco plant system. Transgenic plants expressing the OsMADS genes exhibited the phenotype of early flowering and dwarfism. The strength of the phenotypes was proportional to the levels of transgene expression and the phenotypes were co-inherited with the kanamycin resistant gene to the next generation. These results indicate that OsMADS7 and 8 are structurally related to the AGL2 family and are involved in controlling flowering time.
Niu, Jun; Bi, Quanxin; Deng, Shuya; Chen, Huiping; Yu, Haiyan; Wang, Libing; Lin, Shanzhi
2018-01-24
Auxin response factors (ARFs) in auxin signaling pathway are an important component that can regulate the transcription of auxin-responsive genes involved in almost all aspects of plant growth and development. To our knowledge, the comprehensive and systematic characterization of ARF genes has never been reported in Prunus sibirica, a novel woody biodiesel feedstock in China. In this study, we identified 14 PsARF genes with a perfect open reading frame (ORF) in P. sibirica by using its previous transcriptomic data. Conserved motif analysis showed that all identified PsARF proteins had typical DNA-binding and ARF domain, but 5 members (PsARF3, 8 10, 16 and 17) lacked the dimerization domain. Phylogenetic analysis of the ARF proteins generated from various plant species indicated that ARFs could be categorized into 4 major groups (Class I, II, III and IV), in which all identified ARFs from P. sibirica showed a closest relationship with those from P. mume. Comparison of the expression profiles of 14 PsARF genes in different developmental stages of Siberian apricot mesocarp (SAM) and kernel (SAK) reflected distinct temporal or spatial expression patterns for PsARF genes. Additionally, based on the expressed data from fruit and seed development of multiple plant species, we identified 1514 ARF-correlated genes using weighted gene co-expression network analysis (WGCNA). And the major portion of ARF-correlated gene was characterized to be involved in protein, nucleic acid and carbohydrate metabolic, transport and regulatory processes. In summary, we systematically and comprehensively analyzed the structure, expression pattern and co-expression network of ARF gene family in P. sibirica. All our findings provide theoretical foundation for the PsARF gene family and will pave the way for elucidating the precise role of PsARF genes in SAM and SAK development.
Growth of Aerobic Ripening Bacteria at the Cheese Surface Is Limited by the Availability of Iron
Back, Alexandre; Irlinger, Françoise
2012-01-01
The microflora on the surface of smear-ripened cheeses is composed of various species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. The objective of the present study was to show that iron availability is a limiting factor in the growth of typical aerobic ripening bacteria in cheese. For that purpose, we investigated the effect of iron or siderophore addition in model cheeses that were coinoculated with a yeast and a ripening bacterium. Both iron and the siderophore desferrioxamine B stimulated the growth of ripening bacteria belonging to the genera Arthrobacter, Corynebacterium, and Brevibacterium. The extent of stimulation was strain dependent, and generally, the effect of desferrioxamine B was greater than that of iron. Measurements of the expression of genes related to the metabolism of iron by Arthrobacter arilaitensis Re117 by real-time reverse transcription-PCR showed that these genes were transcribed during growth in cheese. The addition of desferrioxamine B increased the expression of two genes encoding iron-siderophore ABC transport binding proteins. The addition of iron decreased the expression of siderophore biosynthesis genes and of part of the genes encoding iron-siderophore ABC transport components. It was concluded that iron availability is a limiting factor in the growth of typical cheese surface bacteria. The selection of strains with efficient iron acquisition systems may be useful for the development of defined-strain surface cultures. Furthermore, the importance of iron metabolism in the microbial ecology of cheeses should be investigated since it may result in positive or negative microbial interactions. PMID:22367081
Comparative Transcriptomics to Identify Novel Genes and Pathways in Dinoflagellates
NASA Astrophysics Data System (ADS)
Ryan, D.
2016-02-01
The unarmored dinoflagellate Karenia brevis is among the most prominent harmful, bloom-forming phytoplankton species in the Gulf of Mexico. During blooms, the polyketides PbTx-1 and PbTx-2 (brevetoxins) are produced by K. brevis. Brevetoxins negatively impact human health and the Gulf shellfish harvest. However, the genes underlying brevetoxin synthesis are currently unknown. Because the K. brevis genome is extremely large ( 1 × 1011 base pairs long), and with a high proportion of repetitive, non-coding DNA, it has not been sequenced. In fact, large, repetitive genomes are common among the dinoflagellate group. High-throughput RNA sequencing technology enabled us to assemble Karenia transcriptomes de novo and investigate potential genes in the brevetoxin pathway through comparative transcriptomics. The brevetoxin profile varies among K. brevis clonal cultures. For example, well-documented Wilson-CCFWC268 typically produces 8-10 pg PbTx per cell, whereas SP1 produces < 2 pg PbTx/cell, and the mutant low-toxin Wilson clone produces undetectable to low (<0.05 pg/cell) amounts. Further, PbTx-2 has been measured in Karenia papilionacea but not Karenia mikimotoi. We compared the transcriptomes of four K. brevis clones (Wilson-CCFWC268, SP3, SP1, and mutant low-toxin Wilson) with K. papilionacea and K. mikimotoi to investigate nucleotide-level genetic variations and differences in gene expression. Of the 85,000 transcripts in the K. brevis transcriptome, 4,600 transcripts, including novel unannotated orthologs and putative polyketide synthases (PKSs), were only expressed by brevetoxin-producing K. brevis and K. papilionacea, not K. mikimotoi. Examination of gene expression between the typical- and low-toxin Wilson clones identified about 3,500 genes with significantly different expression levels, including 2 putative PKSs. One of the 2 PKSs was only found in the brevetoxin-producing Karenia species. These transcriptomes could not have been characterized without high-throughput RNA sequencing.
Moriau, L; Michelet, B; Bogaerts, P; Lambert, L; Michel, A; Oufattole, M; Boutry, M
1999-07-01
The plasma membrane H+-ATPase couples ATP hydrolysis to proton transport, thereby establishing the driving force for solute transport across the plasma membrane. In Nicotiana plumbaginifolia, this enzyme is encoded by at least nine pma (plasma membrane H+-ATPase) genes. Four of these are classified into two gene subfamilies, pma1-2-3 and pma4, which are the most highly expressed in plant species. We have isolated genomic clones for pma2 and pma4. Mapping of their transcript 5' end revealed the presence of a long leader that contained small open reading frames, regulatory features typical of other pma genes. The gusA reporter gene was then used to determine the expression of pma2, pma3 and pma4 in N. tabacum. These data, together with those obtained previously for pma1, led to the following conclusions. (i) The four pma-gusA genes were all expressed in root, stem, leaf and flower organs, but each in a cell-type specific manner. Expression in these organs was confirmed at the protein level, using subfamily-specific antibodies. (ii) pma4-gusA was expressed in many cell types and notably in root hair and epidermis, in companion cells, and in guard cells, indicating that in N. plumbaginifolia the same H+-ATPase isoform might be involved in mineral nutrition, phloem loading and control of stomata aperture. (iii) The second gene subfamily is composed, in N. plumbaginifolia, of a single gene (pma4) with a wide expression pattern and, in Arabidopsis thaliana, of three genes (aha1, aha2, aha3), at least two of them having a more restrictive expression pattern. (iv) Some cell types expressed pma2 and pma4 at the same time, which encode H+-ATPases with different enzymatic properties.
Positive relationship between p42.3 gene and inflammation in chronic non-atrophic gastritis.
Chen, Ping; Cui, Yun; Fu, Qing Yan; Lu, You Yong; Fang, Jing Yuan; Chen, Xiao Yu
2015-10-01
Gastric cancer (GC) is a typical type of inflammation-related tumor. The p42.3 gene is shown to be highly expressed in GC, but its association with gastritis remains unknown. We aimed to explore the relationship between gastric inflammation and p42.3 gene in vitro and in vivo. Normal gastric epithelial cells (GES-1) were treated with Helicobacter pylori (H. pylori) and tumor necrosis factor (TNF)-α. Total cell mRNA and protein were extracted and collected, and polymerase chain reaction and Western blot were performed to determine the relative expression of p42.3 gene. In total, 291 biopsy samples from patients with chronic non-atrophic gastritis were collected and immunohistochemistry was used to measure the p42.3 protein expression. The association between p42.3 protein expression and the clinicopathological characteristics of these patients were analyzed. Both H. pylori and TNF-α significantly enhanced the p42.3 protein expression in GES-1 cells in a time and dose-dependent manner. In addition, p42.3 gene expression was positively associated with the severity of gastric mucosal inflammation and H. pylori infection (P = 0.000). Its expression was significantly more common in severe gastric inflammation and in H. pylori-infected cases. p42.3 gene expression is associated with gastric mucosal inflammation that can be upregulated by TNF-α and H. pylori infection. © 2015 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Moire, Laurence; Rezzonico, Enea; Goepfert, Simon; Poirier, Yves
2004-01-01
Arabidopsis expressing the castor bean (Ricinus communis) oleate 12-hydroxylase or the Crepis palaestina linoleate 12-epoxygenase in developing seeds typically accumulate low levels of ricinoleic acid and vernolic acid, respectively. We have examined the presence of a futile cycle of fatty acid degradation in developing seeds using the synthesis of polyhydroxyalkanoate (PHA) from the intermediates of the peroxisomal beta-oxidation cycle. Both the quantity and monomer composition of the PHA synthesized in transgenic plants expressing the 12-epoxygenase and 12-hydroxylase in developing seeds revealed the presence of a futile cycle of degradation of the corresponding unusual fatty acids, indicating a limitation in their stable integration into lipids. The expression profile of nearly 200 genes involved in fatty acid biosynthesis and degradation has been analyzed through microarray. No significant changes in gene expression have been detected as a consequence of the activity of the 12-epoxygenase or the 12-hydroxylase in developing siliques. Similar results have also been obtained for transgenic plants expressing the Cuphea lanceolata caproyl-acyl carrier protein thioesterase and accumulating high amounts of caproic acid. Only in developing siliques of the tag1 mutant, deficient in the accumulation of triacylglycerols and shown to have a substantial futile cycling of fatty acids toward beta-oxidation, have some changes in gene expression been detected, notably the induction of the isocitrate lyase gene. These results indicate that analysis of peroxisomal PHA is a better indicator of the flux of fatty acid through beta-oxidation than the expression profile of genes involved in lipid metabolism.
Moire, Laurence; Rezzonico, Enea; Goepfert, Simon; Poirier, Yves
2004-01-01
Arabidopsis expressing the castor bean (Ricinus communis) oleate 12-hydroxylase or the Crepis palaestina linoleate 12-epoxygenase in developing seeds typically accumulate low levels of ricinoleic acid and vernolic acid, respectively. We have examined the presence of a futile cycle of fatty acid degradation in developing seeds using the synthesis of polyhydroxyalkanoate (PHA) from the intermediates of the peroxisomal β-oxidation cycle. Both the quantity and monomer composition of the PHA synthesized in transgenic plants expressing the 12-epoxygenase and 12-hydroxylase in developing seeds revealed the presence of a futile cycle of degradation of the corresponding unusual fatty acids, indicating a limitation in their stable integration into lipids. The expression profile of nearly 200 genes involved in fatty acid biosynthesis and degradation has been analyzed through microarray. No significant changes in gene expression have been detected as a consequence of the activity of the 12-epoxygenase or the 12-hydroxylase in developing siliques. Similar results have also been obtained for transgenic plants expressing the Cuphea lanceolata caproyl-acyl carrier protein thioesterase and accumulating high amounts of caproic acid. Only in developing siliques of the tag1 mutant, deficient in the accumulation of triacylglycerols and shown to have a substantial futile cycling of fatty acids toward β-oxidation, have some changes in gene expression been detected, notably the induction of the isocitrate lyase gene. These results indicate that analysis of peroxisomal PHA is a better indicator of the flux of fatty acid through β-oxidation than the expression profile of genes involved in lipid metabolism. PMID:14671017
Rosianskey, Yogev; Dahan, Yardena; Yadav, Sharawan; Freiman, Zohar E; Milo-Cochavi, Shira; Kerem, Zohar; Eyal, Yoram; Flaishman, Moshe A
2016-08-01
Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig 'Brown Turkey'. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained chlorophyll degradation in the parthenocarpic fruit.
Glucocorticoids Affect 24 h Clock Genes Expression in Human Adipose Tissue Explant Cultures
Gómez-Abellán, Purificación; Díez-Noguera, Antoni; Madrid, Juan A.; Luján, Juan A.; Ordovás, José M.; Garaulet, Marta
2012-01-01
Aims to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock genes expression. Subjects and Methods VAT and SAT biopsies were obtained from morbid obese women (body mass index≥40 kg/m2) (n = 6). In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX) and AT explants treated with DEX (2 hours) were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR. Results CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element) was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements) in the SAT (situation not present in VAT). A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues. Conclusions 24 h patterns in CLOCK and BMAL1 (positive clock elements) and PER2 (negative element) mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure. PMID:23251369
Majeske, Audrey J; Oren, Matan; Sacchi, Sandro; Smith, L Courtney
2014-12-01
Immune systems in animals rely on fast and efficient responses to a wide variety of pathogens. The Sp185/333 gene family in the purple sea urchin, Strongylocentrotus purpuratus, consists of an estimated 50 (±10) members per genome that share a basic gene structure but show high sequence diversity, primarily due to the mosaic appearance of short blocks of sequence called elements. The genes show significantly elevated expression in three subpopulations of phagocytes responding to marine bacteria. The encoded Sp185/333 proteins are highly diverse and have central effector functions in the immune system. In this study we report the Sp185/333 gene expression in single sea urchin phagocytes. Sea urchins challenged with heat-killed marine bacteria resulted in a typical increase in coelomocyte concentration within 24 h, which included an increased proportion of phagocytes expressing Sp185/333 proteins. Phagocyte fractions enriched from coelomocytes were used in limiting dilutions to obtain samples of single cells that were evaluated for Sp185/333 gene expression by nested RT-PCR. Amplicon sequences showed identical or nearly identical Sp185/333 amplicon sequences in single phagocytes with matches to six known Sp185/333 element patterns, including both common and rare element patterns. This suggested that single phagocytes show restricted expression from the Sp185/333 gene family and infers a diverse, flexible, and efficient response to pathogens. This type of expression pattern from a family of immune response genes in single cells has not been identified previously in other invertebrates. Copyright © 2014 by The American Association of Immunologists, Inc.
Li, Hongjun; Yang, Tianhua; Huang, Yanping; Liu, Mingzhu; Qin, Zhongqiang; Chu, Fei; Li, Zhenghong; Li, Yonghai
2017-11-01
Objective To establish a hepatocellular carcinoma xenograft model in nude mice which could stably express gene and be monitored dynamically. Methods We first constructed the lentiviral particles containing luciferase (Luc) and near-infrared fluorescent protein (iRFP) and puromycin resistance gene, and then transduced them into the HepG2 hepatoma cells. The cell line stably expressing Luc and iRFP genes were screened and inoculated into nude mice to establish xenograft tumor model. Tumor growth was monitored using in vivo imaging system. HE staining and immunohistochemistry were used to evaluate the pathological features and tumorigenic ability. Results HepG2 cells stably expressing iRFP and Luc were obtained; with the engineered cell line, xenograft model was successfully established with the features of proper tumor developing time and high rate of tumor formation as well as typical pathological features as showed by HE staining and immunohistochemistry. Conclusion Hepatocellular carcinoma model in nude mice with the features of stable gene expression and dynamical monitoring has been established successfully with the HepG2-iRFP-Luc cell line.
A method for generating new datasets based on copy number for cancer analysis.
Kim, Shinuk; Kon, Mark; Kang, Hyunsik
2015-01-01
New data sources for the analysis of cancer data are rapidly supplementing the large number of gene-expression markers used for current methods of analysis. Significant among these new sources are copy number variation (CNV) datasets, which typically enumerate several hundred thousand CNVs distributed throughout the genome. Several useful algorithms allow systems-level analyses of such datasets. However, these rich data sources have not yet been analyzed as deeply as gene-expression data. To address this issue, the extensive toolsets used for analyzing expression data in cancerous and noncancerous tissue (e.g., gene set enrichment analysis and phenotype prediction) could be redirected to extract a great deal of predictive information from CNV data, in particular those derived from cancers. Here we present a software package capable of preprocessing standard Agilent copy number datasets into a form to which essentially all expression analysis tools can be applied. We illustrate the use of this toolset in predicting the survival time of patients with ovarian cancer or glioblastoma multiforme and also provide an analysis of gene- and pathway-level deletions in these two types of cancer.
Costa, Caroline B; Monteiro, Karina M; Teichmann, Aline; da Silva, Edileuza D; Lorenzatto, Karina R; Cancela, Martín; Paes, Jéssica A; Benitz, André de N D; Castillo, Estela; Margis, Rogério; Zaha, Arnaldo; Ferreira, Henrique B
2015-08-01
The histone chaperone SET/TAF-Iβ is implicated in processes of chromatin remodelling and gene expression regulation. It has been associated with the control of developmental processes, but little is known about its function in helminth parasites. In Mesocestoides corti, a partial cDNA sequence related to SET/TAF-Iβ was isolated in a screening for genes differentially expressed in larvae (tetrathyridia) and adult worms. Here, the full-length coding sequence of the M. corti SET/TAF-Iβ gene was analysed and the encoded protein (McSET/TAF) was compared with orthologous sequences, showing that McSET/TAF can be regarded as a SET/TAF-Iβ family member, with a typical nucleosome-assembly protein (NAP) domain and an acidic tail. The expression patterns of the McSET/TAF gene and protein were investigated during the strobilation process by RT-qPCR, using a set of five reference genes, and by immunoblot and immunofluorescence, using monospecific polyclonal antibodies. A gradual increase in McSET/TAF transcripts and McSET/TAF protein was observed upon development induction by trypsin, demonstrating McSET/TAF differential expression during strobilation. These results provided the first evidence for the involvement of a protein from the NAP family of epigenetic effectors in the regulation of cestode development.
Zhu, Jia-Ying; Ze, Sang-Zi; Stanley, David W; Yang, Bin
2014-09-01
Superoxide dismutase (SOD) is an antioxidant enzyme involved in detoxifying reactive oxygen species. In this study, we identified genes encoding the extracellular and intracellular copper-zinc SODs (ecCuZnSOD and icCuZnSOD) and a manganese SOD (MnSOD) in the yellow mealworm beetle, Tenebrio molitor. The cDNAs for ecCuZnSOD, icCuZnSOD, and MnSOD, respectively, encode 24.55, 15.81, and 23.14 kDa polypeptides, which possess structural features typical of other insect SODs. They showed 20-94% identity to other known SOD sequences from Bombyx mori, Musca domestica, Nasonia vitripennis, Pediculus humanus corporis, and Tribolium castaneum. Expression of these genes was analyzed in selected tissues and developmental stages, and following exposure to Escherichia coli and parasitization by Scleroderma guani. We recorded expression of all three SODs in cuticle, fat body, and hemocytes and in the major developmental stages. Relatively higher expressions were detected in late-instar larvae and pupae, compared to other developmental stages. Transcriptional levels were upregulated following bacterial infection. Analysis of pupae parasitized by S. guani revealed that expression of T. molitor SOD genes was significantly induced following parasitization. We infer that these genes act in immune response and in host-parasitoid interactions. © 2014 Wiley Periodicals, Inc.
Voigt, Susanne; Laurent, Stefan; Litovchenko, Maria; Stephan, Wolfgang
2015-01-01
Drosophila melanogaster as a cosmopolitan species has successfully adapted to a wide range of different environments. Variation in temperature is one important environmental factor that influences the distribution of species in nature. In particular for insects, which are mostly ectotherms, ambient temperature plays a major role in their ability to colonize new habitats. Chromatin-based gene regulation is known to be sensitive to temperature. Ambient temperature leads to changes in the activation of genes regulated in this manner. One such regulatory system is the Polycomb group (PcG) whose target genes are more expressed at lower temperatures than at higher ones. Therefore, a greater range in ambient temperature in temperate environments may lead to greater variability (plasticity) in the expression of these genes. This might have detrimental effects, such that positive selection acts to lower the degree of the expression plasticity. We provide evidence for this process in a genomic region that harbors two PcG-regulated genes, polyhomeotic proximal (ph-p) and CG3835. We found a signature of positive selection in this gene region in European populations of D. melanogaster and investigated the region by means of reporter gene assays. The target of selection is located in the intergenic fragment between the two genes. It overlaps with the promoters of both genes and an experimentally validated Polycomb response element (PRE). This fragment harbors five sequence variants that are highly differentiated between European and African populations. The African alleles confer a temperature-induced plasticity in gene expression, which is typical for PcG-mediated gene regulation, whereas thermosensitivity is reduced for the European alleles. PMID:25855066
Balancing gene expression without library construction via a reusable sRNA pool.
Ghodasara, Amar; Voigt, Christopher A
2017-07-27
Balancing protein expression is critical when optimizing genetic systems. Typically, this requires library construction to vary the genetic parts controlling each gene, which can be expensive and time-consuming. Here, we develop sRNAs corresponding to 15nt 'target' sequences that can be inserted upstream of a gene. The targeted gene can be repressed from 1.6- to 87-fold by controlling sRNA expression using promoters of different strength. A pool is built where six sRNAs are placed under the control of 16 promoters that span a ∼103-fold range of strengths, yielding ∼107 combinations. This pool can simultaneously optimize up to six genes in a system. This requires building only a single system-specific construct by placing a target sequence upstream of each gene and transforming it with the pre-built sRNA pool. The resulting library is screened and the top clone is sequenced to determine the promoter controlling each sRNA, from which the fold-repression of the genes can be inferred. The system is then rebuilt by rationally selecting parts that implement the optimal expression of each gene. We demonstrate the versatility of this approach by using the same pool to optimize a metabolic pathway (β-carotene) and genetic circuit (XNOR logic gate). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Tissue-specific expression of the gene for a putative plasma membrane H(+)-ATPase in a seagrass.
Fukuhara, T; Pak, J Y; Ohwaki, Y; Tsujimura, H; Nitta, T
1996-01-01
A cDNA clone corresponding to the gene (ZHA1) for a putative plasma membrane H(+)-ATPase of a seagrass (Zostera marina L.) was isolated and sequenced. Comparison of the amino acid predicted sequence from the nucleotide sequence of ZHA1 with those encoded by known genes for plasma membrane H(+)-ATPases from other plants indicated that ZHA1 is most similar to the gene (PMA4) for a plasma membrane H(+)-ATPase in a tobacco (84.4%). Northern hybridization indicated that ZHA1 was strongly expressed in mature leaves, which are exposed to seawater and have the ability of tolerate salinity; ZHA1 was weakly expressed in immature leaves, which are protected from seawater by tightly enveloping sheaths and are sensitive to salinity. In mature leaves, in situ hybridization revealed that ZHA1 was expressed specifically in epidermal cells, the plasma membranes of which were highly invaginated and morphologically similar to those of typical transfer cells. Therefore, the differentiation of the transfer cell-like structures, accompanied by the high-level expression of ZHA1, in the epidermal cells of mature leaves in particular may be important for the excretion of salt by these cells. PMID:8587992
Wang, Jiang; Yu, Yi; Tang, Kexuan; Liu, Wen; He, Xinyi; Huang, Xi; Deng, Zixin
2010-01-01
Thiopeptide antibiotics are an important class of natural products resulting from posttranslational modifications of ribosomally synthesized peptides. Cyclothiazomycin is a typical thiopeptide antibiotic that has a unique bridged macrocyclic structure derived from an 18-amino-acid structural peptide. Here we reported cloning, sequencing, and heterologous expression of the cyclothiazomycin biosynthetic gene cluster from Streptomyces hygroscopicus 10-22. Remarkably, successful heterologous expression of a 22.7-kb gene cluster in Streptomyces lividans 1326 suggested that there is a minimum set of 15 open reading frames that includes all of the functional genes required for cyclothiazomycin production. Six genes of these genes, cltBCDEFG flanking the structural gene cltA, were predicted to encode the enzymes required for the main framework of cyclothiazomycin, and two enzymes encoded by a putative operon, cltMN, were hypothesized to participate in the tailoring step to generate the tertiary thioether, leading to the final cyclization of the bridged macrocyclic structure. This rigorous bioinformatics analysis based on heterologous expression of cyclothiazomycin resulted in an ideal biosynthetic model for us to understand the biosynthesis of thiopeptides. PMID:20154110
Trapnell, Cole; Roberts, Adam; Goff, Loyal; Pertea, Geo; Kim, Daehwan; Kelley, David R; Pimentel, Harold; Salzberg, Steven L; Rinn, John L; Pachter, Lior
2012-01-01
Recent advances in high-throughput cDNA sequencing (RNA-seq) can reveal new genes and splice variants and quantify expression genome-wide in a single assay. The volume and complexity of data from RNA-seq experiments necessitate scalable, fast and mathematically principled analysis software. TopHat and Cufflinks are free, open-source software tools for gene discovery and comprehensive expression analysis of high-throughput mRNA sequencing (RNA-seq) data. Together, they allow biologists to identify new genes and new splice variants of known ones, as well as compare gene and transcript expression under two or more conditions. This protocol describes in detail how to use TopHat and Cufflinks to perform such analyses. It also covers several accessory tools and utilities that aid in managing data, including CummeRbund, a tool for visualizing RNA-seq analysis results. Although the procedure assumes basic informatics skills, these tools assume little to no background with RNA-seq analysis and are meant for novices and experts alike. The protocol begins with raw sequencing reads and produces a transcriptome assembly, lists of differentially expressed and regulated genes and transcripts, and publication-quality visualizations of analysis results. The protocol's execution time depends on the volume of transcriptome sequencing data and available computing resources but takes less than 1 d of computer time for typical experiments and ~1 h of hands-on time. PMID:22383036
PDPR Gene Expression Correlates with Exercise-Training Insulin Sensitivity Changes
Barberio, Matthew D.; Huffman, Kim M.; Giri, Mamta; Hoffman, Eric P.; Kraus, William E.; Hubal, Monica J.
2016-01-01
Purpose Whole body insulin sensitivity (Si) typically improves following aerobic exercise training; however, individual responses can be highly variable. The purpose of this study was to use global gene expression to identify skeletal muscle genes that correlate with exercise-induced Si changes. Methods Longitudinal cohorts from the Studies of Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE) were utilized as Discovery (Affymetrix) and Confirmation (Illumina) of vastus lateralis gene expression profiles. Discovery (n=39; 21 men) and Confirmation (n=42; 19 men) cohorts were matched for age (52 ± 8 vs. 51 ± 10 yr), BMI (30.4 ± 2.8 vs. 29.7 ± 2.8 kg*m-2), and VO2max (30.4 ± 2.8 vs. 29.7 ± 2.8 mL/kg/min). Si was determined via intravenous glucose tolerance test pre- and post-training. Pearson product-moment correlation coefficients determined relationships between a) baseline and b) training-induced changes in gene expression and %ΔSi after training. Results Expression of 2454 (Discovery) and 1778 genes (Confirmation) at baseline were significantly (P<0.05) correlated to %ΔSi; 112 genes overlapped. Pathway analyses identified Ca2+-signaling-related transcripts in this 112-gene list. Expression changes of 1384 (Discovery) and 1288 genes (Confirmation) following training were significantly (P<0.05) correlated to % ΔSi; 33 genes overlapped, representing contractile apparatus of skeletal and smooth muscle genes. Pyruvate dehydrogenase phosphatase regulatory subunit (PDPR) expression at baseline (p=0.01, r=0.41) and post-training (p=0.01, r=0.43) were both correlated with %ΔSi. Conclusion Exercise-induced adaptations in skeletal muscle Si are related to baseline levels of Ca+2-regulating transcripts, which may prime the muscle for adaptation. Relationships between %ΔSi and PDPR, a regulatory subunit of the pyruvate dehydrogenase complex, indicate that the Si response is strongly related to key steps in metabolic regulation. PMID:27846149
Arai, Teppei; Umemura, Sara; Ota, Tamaki; Ogihara, Jun; Kato, Jun; Kasumi, Takafumi
2012-01-01
A fungal strain, Penicillium sp. AZ, produced the azaphilone Monascus pigment homolog when cultured in a medium composed of soluble starch, ammonium nitrate, yeast extract, and citrate buffer, pH 5.0. One of the typical features of violet pigment PP-V [(10Z)-12-carboxyl-monascorubramine] is that pyranoid oxygen is replaced with nitrogen. In this study, we found that ammonia and nitrate nitrogen are available for PP-V biosynthesis, and that ammonia nitrogen was much more effective than nitrate nitrogen. Further, we isolated nitrate assimilation gene cluster, niaD, niiA, and crnA, and analyzed the expression of these genes. The expression levels of all these genes increased with sodium nitrate addition to the culture medium. The results obtained here strongly suggest that Penicillium sp. AZ produced PP-V using nitrate in the form of ammonium reduced from nitrate through a bioprocess assimilatory reaction.
Partial least squares based identification of Duchenne muscular dystrophy specific genes.
An, Hui-bo; Zheng, Hua-cheng; Zhang, Li; Ma, Lin; Liu, Zheng-yan
2013-11-01
Large-scale parallel gene expression analysis has provided a greater ease for investigating the underlying mechanisms of Duchenne muscular dystrophy (DMD). Previous studies typically implemented variance/regression analysis, which would be fundamentally flawed when unaccounted sources of variability in the arrays existed. Here we aim to identify genes that contribute to the pathology of DMD using partial least squares (PLS) based analysis. We carried out PLS-based analysis with two datasets downloaded from the Gene Expression Omnibus (GEO) database to identify genes contributing to the pathology of DMD. Except for the genes related to inflammation, muscle regeneration and extracellular matrix (ECM) modeling, we found some genes with high fold change, which have not been identified by previous studies, such as SRPX, GPNMB, SAT1, and LYZ. In addition, downregulation of the fatty acid metabolism pathway was found, which may be related to the progressive muscle wasting process. Our results provide a better understanding for the downstream mechanisms of DMD.
Sarwar, Zaara; Garza, Anthony G
2016-02-01
When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Transcription profile of brewery yeast under fermentation conditions.
James, T C; Campbell, S; Donnelly, D; Bond, U
2003-01-01
Yeast strains, used in the brewing industry, experience distinctive physiological conditions. During a brewing fermentation, yeast are exposed to anaerobic conditions, high pressure, high specific gravity and low temperatures. The purpose of this study was to examine the global gene expression profile of yeast subjected to brewing stress. We have carried out a microarray analysis of a typical brewer's yeast during the course of an 8-day fermentation in 15 degrees P wort. We used the probes derived from Saccharomyces cerevisiae genomic DNA on the chip and RNA isolated from three stages of brewing. This analysis shows a high level of expression of genes involved in fatty acid and ergosterol biosynthesis early in fermentation. Furthermore, genes involved in respiration and mitochondrial protein synthesis also show higher levels of expression. Surprisingly, we observed a complete repression of many stress response genes and genes involved in protein synthesis throughout the 8-day period compared with that at the start of fermentation. This microarray data set provides an analysis of gene expression under brewing fermentation conditions. The data provide an insight into the various metabolic processes altered or activated by brewing conditions of growth. This study leads to future experiments whereby selective alterations in brewing conditions could be introduced to take advantage of the changing transcript profile to improve the quality of the brew.
Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang
2015-01-01
Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965
Malka, Osnat; Karunker, Iris; Yeheskel, Adva; Morin, Shai; Hefetz, Abraham
2009-10-01
The advances in honeybee sociogenomics have paved the way for the study of social communication processes at the gene level, in particular the expression of caste-specific pheromones. The queen honeybee mandibular pheromone provides an excellent model system, in that biosynthesis of the hydroxylating fatty acid caste-specific pheromone appears to be reduced to a single chemical hydroxylation step of stearic acid. Queens are typified by omega-1-hydroxylation, as opposed to the worker-typical omega-hydroxylation. We hypothesized that this bifurcation is the consequence of differential expression of caste-specific genes that code for fatty acid-hydroxylating enzymes from the cytochrome P450 (CYP) family. Bioinformatics studies disclosed two candidate proteins CYP4AA1 and CYP18A1. We thus investigated the expression of these genes in the mandibular glands of queens, and of queenright (QR) and queenless (QL) workers. The real-time PCR results revealed that CYP4AA1 (omega-hydroxylation) was expressed at high levels in both QR and QL workers, whereas in queens its expression was negligible. The expression of CYP18A1 (omega-1-hydroxylation), on the other hand, was high in the queen's glands and negligible in those of QR workers. In QL workers, however, the expression of CYP18A1 was considerably elevated and significantly greater than in QR workers. Three-dimensional structural models constructed for these enzymes demonstrate differences in the active site between CYP18A1 and CYP4AA1, in line with their differential catalytic specificity. The fact that queen pheromone plasticity can be tracked all the way to gene expression provides a new insight into the process of caste differentiation and the accompanying social communication.
Analysis of gene expression levels in individual bacterial cells without image segmentation.
Kwak, In Hae; Son, Minjun; Hagen, Stephen J
2012-05-11
Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly. Copyright © 2012 Elsevier Inc. All rights reserved.
Unifying measures of gene function and evolution.
Wolf, Yuri I; Carmel, Liran; Koonin, Eugene V
2006-06-22
Recent genome analyses revealed intriguing correlations between variables characterizing the functioning of a gene, such as expression level (EL), connectivity of genetic and protein-protein interaction networks, and knockout effect, and variables describing gene evolution, such as sequence evolution rate (ER) and propensity for gene loss. Typically, variables within each of these classes are positively correlated, e.g. products of highly expressed genes also have a propensity to be involved in many protein-protein interactions, whereas variables between classes are negatively correlated, e.g. highly expressed genes, on average, evolve slower than weakly expressed genes. Here, we describe principal component (PC) analysis of seven genome-related variables and propose biological interpretations for the first three PCs. The first PC reflects a gene's 'importance', or the 'status' of a gene in the genomic community, with positive contributions from knockout lethality, EL, number of protein-protein interaction partners and the number of paralogues, and negative contributions from sequence ER and gene loss propensity. The next two PCs define a plane that seems to reflect the functional and evolutionary plasticity of a gene. Specifically, PC2 can be interpreted as a gene's 'adaptability' whereby genes with high adaptability readily duplicate, have many genetic interaction partners and tend to be non-essential. PC3 also might reflect the role of a gene in organismal adaptation albeit with a negative rather than a positive contribution of genetic interactions; we provisionally designate this PC 'reactivity'. The interpretation of PC2 and PC3 as measures of a gene's plasticity is compatible with the observation that genes with high values of these PCs tend to be expressed in a condition- or tissue-specific manner. Functional classes of genes substantially vary in status, adaptability and reactivity, with the highest status characteristic of the translation system and cytoskeletal proteins, highest adaptability seen in cellular processes and signalling genes, and top reactivity characteristic of metabolic enzymes.
Yin, Chuntao; Park, Jeong-Jin; Gang, David R; Hulbert, Scot H
2014-03-01
The plant hormone indole-3-acetic acid (IAA) is best known as a regulator of plant growth and development but its production can also affect plant-microbe interactions. Microorganisms, including numerous plant-associated bacteria and several fungi, are also capable of producing IAA. The stem rust fungus Puccinia graminis f. sp. tritici induced wheat plants to accumulate auxin in infected leaf tissue. A gene (Pgt-IaaM) encoding a putative tryptophan 2-monooxygenase, which makes the auxin precursor indole-3-acetamide (IAM), was identified in the P. graminis f. sp. tritici genome and found to be expressed in haustoria cells in infected plant tissue. Transient silencing of the gene in infected wheat plants indicated that it was required for full pathogenicity. Expression of Pgt-IaaM in Arabidopsis caused a typical auxin expression phenotype and promoted susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000.
NASA Technical Reports Server (NTRS)
Baldwin, K. M.; Adams, G.; Haddad, F.; Zeng, M.; Qin, A.; Qin, L.; McCue, S.; Bodell, P.
1999-01-01
The myosin heavy chain (MHC) gene family encodes at least six MHC proteins (herein designated as neonatal, embryonic, slow type I (beta), and fast IIa, IIx, and IIb) that are expressed in skeletal muscle in a muscle-specific and developmentally-regulated fashion. At birth, both antigravity (e.g. soleus) and locomotor (e.g., plantaris) skeletal muscles are undifferentiated relative to the adult MHC phenotype such that the neonatal and embryonic MHC isoforms account for 80 - 90% of the MHC pool in a fast locomotor muscle; whereas, the embryonic and slow, type I isoforms account for approx. 90% of the pool in a typical antigravity muscle. The goal of this study was to investigate the role of an intact nerve, gravity and thyroid hormone (T3), as well as certain interactions of these interventions, on MHC gene expression in developing neonatal skeletal muscles of rodents.
Characterization of defensin gene from abalone Haliotis discus hannai and its deduced protein
NASA Astrophysics Data System (ADS)
Hong, Xuguang; Sun, Xiuqin; Zheng, Minggang; Qu, Lingyun; Zan, Jindong; Zhang, Jinxing
2008-11-01
Defensin is one of preserved ancient host defensive materials formed in biological evolution. As a regulator and effector molecule, it is very important in animals’ acquired immune system. This paper reports the defensin gene from the mixed liver and kidney cDNA library of abalone Haliotis discus hannai Ino. Sequence analysis shows that the gene sequence of full-length cDNA encodes 42 mature peptides (including six Cys), molecular weight of 4 323 Da, and pI of 8.02. Amino acid sequence homology analysis shows that the peptides are highly similar (70% in common) to other insects defensin. Because of a typical insect-defensin structural character of mature peptide in the secondary structure, the polypeptide named Haliotis discus defensin (hd-def), a novel of antimicrobial peptides, belongs to insects defensin subfamily. The RT-PCR result of Haliotis discus defensin shows that the gene can be expressed only in the hepatopancreas by Gram-negative and positive bacteria stimulation, which is ascribed to inducible expression. Therefore, it is revealed that the Haliotis discus defensin gene expression was related to the antibacterial infection of Haliotis discus hannai Ino.
Xu, Junhuan; Strange, James P; Welker, Dennis L; James, Rosalind R
2013-12-12
The Hunt bumble bee (Bombus huntii Greene, Hymenoptera: Apidae) is a holometabolous, social insect important as a pollinator in natural and agricultural ecosystems in western North America. Bumble bees spend a significant amount of time foraging on a wide variety of flowering plants, and this activity exposes them to both plant toxins and pesticides, posing a threat to individual and colony survival. Little is known about what detoxification pathways are active in bumble bees, how the expression of detoxification genes changes across life stages, or how the number of detoxification genes expressed in B. huntii compares to other insects. We found B. huntii expressed at least 584 genes associated with detoxification and stress responses. The expression levels of some of these genes, such as those encoding the cytochrome P450s, glutathione S-transferases (GSTs) and glycosidases, vary among different life stages to a greater extent than do other genes. We also found that the number of P450s, GSTs and esterase genes expressed by B. huntii is similar to the number of these genes found in the genomes of other bees, namely Bombus terrestris, Bombus impatiens, Apis mellifera and Megachile rotundata, but many fewer than are found in the fly Drosophila melanogaster. Bombus huntii has transcripts for a large number of detoxification and stress related proteins, including oxidation and reduction enzymes, conjugation enzymes, hydrolytic enzymes, ABC transporters, cadherins, and heat shock proteins. The diversity of genes expressed within some detoxification pathways varies among the life stages and castes, and we typically identified more genes in the adult females than in larvae, pupae, or adult males, for most pathways. Meanwhile, we found the numbers of detoxification and stress genes expressed by B. huntii to be more similar to other bees than to the fruit fly. The low number of detoxification genes, first noted in the honey bee, appears to be a common phenomenon among bees, and perhaps results from their symbiotic relationship with plants. Many flowering plants benefit from pollinators, and thus offer these insects rewards (such as nectar) rather than defensive plant toxins.
A Generic Protocol for Intracellular Expression of Recombinant Proteins in Bacillus subtilis.
Phan, Trang; Huynh, Phuong; Truong, Tuom; Nguyen, Hoang
2017-01-01
Bacillus subtilis (B. subtilis) is a potential and attractive host for the production of recombinant proteins. Different expression systems for B. subtilis have been developed recently, and various target proteins have been recombinantly synthesized and purified using this host. In this chapter, we introduce a generic protocol to express a recombinant protein in B. subtilis. It includes protocols for (1) using our typical expression vector (plasmid pHT254) to introduce a target gene, (2) transformation of the target vector into B. subtilis, and (3) evaluation of the actual expression of a recombinant protein.
Chen, Ding-Ping; Tseng, Ching-Ping; Lin, Chi-Jui; Wang, Wei-Ting; Sun, Chien-Feng
2015-01-01
In the case of blood type B3 with typical mixed-field agglutination of RBCs in the presence of anti-B or anti-AB antibody, a number of genetic alternations have been reported. It is well known that the IVS3+5G→A mutation in the B gene destroys the consensus of the splice donor site leading to exon 3 skipping during mRNA splicing. The lack of exon 3 likely causes a short stem region, producing an unstable B3 protein, and is concomitant with a decrease in B3 protein expression. Whether the phenomenon also appears in the type A blood group is of question. In this study, we evaluate whether exon 3 deletion in the blood type A gene also results in mixed-field phenotype. Site-directed mutagenesis was used to generate cDNA encoding A1 gene with exon 3 deletion. The cDNA was stably expressed in K562 cells. The expression of A antigen was compared with expression in parental K562 cells that did not express A antigen and in the stable K562 cell line expressing A(1) cDNA by flow cytometry analyses. The expression of A antigen in A1 stable cells and parental K562 cells was set as 100% and 0%, respectively. The mean relative percentage of A antigen expression for the cells of A1 with exon 3 deletion was 59.9% of A1 stable cells. Consistent with the observations of B3, which is B gene with exon 3 deletion, mixed field agglutination was observed for the cells expressing A1 with exon 3 deletion. Exon 3 deletion results in mixed field phenotype in both type A and B RBCs. However, the degree of antigen expression change for exon 3 deletion in A gene was less severe when compared with the deletion occurred in B gene. © 2015 by the Association of Clinical Scientists, Inc.
Mallik, Saurav; Zhao, Zhongming
2017-12-28
For transcriptomic analysis, there are numerous microarray-based genomic data, especially those generated for cancer research. The typical analysis measures the difference between a cancer sample-group and a matched control group for each transcript or gene. Association rule mining is used to discover interesting item sets through rule-based methodology. Thus, it has advantages to find causal effect relationships between the transcripts. In this work, we introduce two new rule-based similarity measures-weighted rank-based Jaccard and Cosine measures-and then propose a novel computational framework to detect condensed gene co-expression modules ( C o n G E M s) through the association rule-based learning system and the weighted similarity scores. In practice, the list of evolved condensed markers that consists of both singular and complex markers in nature depends on the corresponding condensed gene sets in either antecedent or consequent of the rules of the resultant modules. In our evaluation, these markers could be supported by literature evidence, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and Gene Ontology annotations. Specifically, we preliminarily identified differentially expressed genes using an empirical Bayes test. A recently developed algorithm-RANWAR-was then utilized to determine the association rules from these genes. Based on that, we computed the integrated similarity scores of these rule-based similarity measures between each rule-pair, and the resultant scores were used for clustering to identify the co-expressed rule-modules. We applied our method to a gene expression dataset for lung squamous cell carcinoma and a genome methylation dataset for uterine cervical carcinogenesis. Our proposed module discovery method produced better results than the traditional gene-module discovery measures. In summary, our proposed rule-based method is useful for exploring biomarker modules from transcriptomic data.
Isolation of ripening-related genes from ethylene/1-MCP treated papaya through RNA-seq.
Shen, Yan Hong; Lu, Bing Guo; Feng, Li; Yang, Fei Ying; Geng, Jiao Jiao; Ming, Ray; Chen, Xiao Jing
2017-08-31
Since papaya is a typical climacteric fruit, exogenous ethylene (ETH) applications can induce premature and quicker ripening, while 1-methylcyclopropene (1-MCP) slows down the ripening processes. Differential gene expression in ETH or 1-MCP-treated papaya fruits accounts for the ripening processes. To isolate the key ripening-related genes and better understand fruit ripening mechanisms, transcriptomes of ETH or 1-MCP-treated, and non-treated (Control Group, CG) papaya fruits were sequenced using Illumina Hiseq2500. A total of 18,648 (1-MCP), 19,093 (CG), and 15,321 (ETH) genes were detected, with the genes detected in the ETH-treatment being the least. This suggests that ETH may inhibit the expression of some genes. Based on the differential gene expression (DGE) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, 53 fruit ripening-related genes were selected: 20 cell wall-related genes, 18 chlorophyll and carotenoid metabolism-related genes, four proteinases and their inhibitors, six plant hormone signal transduction pathway genes, four transcription factors, and one senescence-associated gene. Reverse transcription quantitative PCR (RT-qPCR) analyses confirmed the results of RNA-seq and verified that the expression pattern of six genes is consistent with the fruit senescence process. Based on the expression profiling of genes in carbohydrate metabolic process, chlorophyll metabolism pathway, and carotenoid metabolism pathway, the mechanism of pulp softening and coloration of papaya was deduced and discussed. We illustrate that papaya fruit softening is a complex process with significant cell wall hydrolases, such as pectinases, cellulases, and hemicellulases involved in the process. Exogenous ethylene accelerates the coloration of papaya changing from green to yellow. This is likely due to the inhibition of chlorophyll biosynthesis and the α-branch of carotenoid metabolism. Chy-b may play an important role in the yellow color of papaya fruit. Comparing the differential gene expression in ETH/1-MCP-treated papaya using RNA-seq is a sound approach to isolate ripening-related genes. The results of this study can improve our understanding of papaya fruit ripening molecular mechanism and reveal candidate fruit ripening-related genes for further research.
Qian, Airong; Di, Shengmeng; Gao, Xiang; Zhang, Wei; Tian, Zongcheng; Li, Jingbao; Hu, Lifang; Yang, Pengfei; Yin, Dachuan; Shang, Peng
2009-07-01
The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields. In this study, a special designed superconducting magnet, which can produce three apparent gravity levels (0, 1, and 2 g), namely high magneto-gravitational environment (HMGE), was used to simulate space gravity environment. The effects of HMGE on osteoblast gene expression profile were investigated by microarray. Genes sensitive to diamagnetic levitation environment (0 g), gravity changes, and high magnetic field changes were sorted on the basis of typical cell functions. Cytoskeleton, as an intracellular load-bearing structure, plays an important role in gravity perception. Therefore, 13 cytoskeleton-related genes were chosen according to the results of microarray analysis, and the expressions of these genes were found to be altered under HMGE by real-time PCR. Based on the PCR results, the expressions of WASF2 (WAS protein family, member 2), WIPF1 (WAS/WASL interacting protein family, member 1), paxillin, and talin 1 were further identified by western blot assay. Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels, and talin 1 and paxillin were sensitive to both magnetic field and gravity changes. Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskeleton-related genes expression. The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis.
The statistics of identifying differentially expressed genes in Expresso and TM4: a comparison
Sioson, Allan A; Mane, Shrinivasrao P; Li, Pinghua; Sha, Wei; Heath, Lenwood S; Bohnert, Hans J; Grene, Ruth
2006-01-01
Background Analysis of DNA microarray data takes as input spot intensity measurements from scanner software and returns differential expression of genes between two conditions, together with a statistical significance assessment. This process typically consists of two steps: data normalization and identification of differentially expressed genes through statistical analysis. The Expresso microarray experiment management system implements these steps with a two-stage, log-linear ANOVA mixed model technique, tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite, normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity values (IIV) from the average intensities and spot pixel counts returned by the scanner software as input to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV). Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR data. Results The Expresso analysis using MIV data consistently identifies more genes as differentially expressed, when compared to Expresso analysis with IIV data. The typical TM4 normalization and filtering pipeline corrects systematic intensity-specific bias on a per microarray basis. Subsequent statistical analysis with Expresso or a TM4 t-test can effectively identify differentially expressed genes. The best agreement with qRT-PCR data is obtained through the use of Expresso analysis and MIV data. Conclusion The results of this research are of practical value to biologists who analyze microarray data sets. The TM4 normalization and filtering pipeline corrects microarray-specific systematic bias and complements the normalization stage in Expresso analysis. The results of Expresso using MIV data have the best agreement with qRT-PCR results. In one experiment, MIV is a better choice than IIV as input to data normalization and statistical analysis methods, as it yields as greater number of statistically significant differentially expressed genes; TM4 does not support the choice of MIV input data. Overall, the more flexible and extensive statistical models of Expresso achieve more accurate analytical results, when judged by the yardstick of qRT-PCR data, in the context of an experimental design of modest complexity. PMID:16626497
Variable sexually dimorphic gene expression in laboratory strains of Drosophila melanogaster.
Baker, Dean A; Meadows, Lisa A; Wang, Jing; Dow, Julian At; Russell, Steven
2007-12-10
Wild-type laboratory strains of model organisms are typically kept in isolation for many years, with the action of genetic drift and selection on mutational variation causing lineages to diverge with time. Natural populations from which such strains are established, show that gender-specific interactions in particular drive many aspects of sequence level and transcriptional level variation. Here, our goal was to identify genes that display transcriptional variation between laboratory strains of Drosophila melanogaster, and to explore evidence of gender-biased interactions underlying that variability. Transcriptional variation among the laboratory genotypes studied occurs more frequently in males than in females. Qualitative differences are also apparent to suggest that genes within particular functional classes disproportionately display variation in gene expression. Our analysis indicates that genes with reproductive functions are most often divergent between genotypes in both sexes, however a large proportion of female variation can also be attributed to genes without expression in the ovaries. The present study clearly shows that transcriptional variation between common laboratory strains of Drosophila can differ dramatically due to sexual dimorphism. Much of this variation reflects sex-specific challenges associated with divergent physiological trade-offs, morphology and regulatory pathways operating within males and females.
Gerstein, Mark
2016-01-01
Gene expression is controlled by the combinatorial effects of regulatory factors from different biological subsystems such as general transcription factors (TFs), cellular growth factors and microRNAs. A subsystem’s gene expression may be controlled by its internal regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated internally or externally–e.g., how non-conserved, species-specific TFs affect the expression of conserved, cross-species genes during evolution. We developed a computational method (DREISS, dreiss.gerteinlab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks, both External and Internal based on State Space models. Given a subsystem, the “state” and “control” in the model refer to its own (internal) and another subsystem’s (external) gene expression levels. The state at a given time is determined by the state and control at a previous time. Because typical time-series data do not have enough samples to fully estimate the model’s parameters, DREISS uses dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and oscillation) representing the regulatory effects emanating from various subsystems. To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs across distant species. In particular, we applied DREISS to the time-series gene expression datasets of C. elegans and D. melanogaster during their embryonic development. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between two species, the orthologs have matched, internally driven expression patterns but very different externally driven ones. This is particularly true for genes with evolutionarily ancient functions (e.g. the ribosomal proteins), in contrast to those with more recently evolved functions (e.g., cell-cell communication). This suggests that despite striking morphological differences, some fundamental embryonic-developmental processes are still controlled by ancient regulatory systems. PMID:27760135
Gene expression analysis of flax seed development
2011-01-01
Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well. PMID:21529361
Wang, Daifeng; He, Fei; Maslov, Sergei; Gerstein, Mark
2016-10-01
Gene expression is controlled by the combinatorial effects of regulatory factors from different biological subsystems such as general transcription factors (TFs), cellular growth factors and microRNAs. A subsystem's gene expression may be controlled by its internal regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated internally or externally-e.g., how non-conserved, species-specific TFs affect the expression of conserved, cross-species genes during evolution. We developed a computational method (DREISS, dreiss.gerteinlab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks, both External and Internal based on State Space models. Given a subsystem, the "state" and "control" in the model refer to its own (internal) and another subsystem's (external) gene expression levels. The state at a given time is determined by the state and control at a previous time. Because typical time-series data do not have enough samples to fully estimate the model's parameters, DREISS uses dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and oscillation) representing the regulatory effects emanating from various subsystems. To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs across distant species. In particular, we applied DREISS to the time-series gene expression datasets of C. elegans and D. melanogaster during their embryonic development. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between two species, the orthologs have matched, internally driven expression patterns but very different externally driven ones. This is particularly true for genes with evolutionarily ancient functions (e.g. the ribosomal proteins), in contrast to those with more recently evolved functions (e.g., cell-cell communication). This suggests that despite striking morphological differences, some fundamental embryonic-developmental processes are still controlled by ancient regulatory systems.
NASA Technical Reports Server (NTRS)
Kumar, Akhilesh; Chatterjee, A.; Alwood, Joshua S.; Dvorochkin, Natalya; Almeida, Eduardo A. C.
2011-01-01
Six months post-IR, there were no notable changes in skeletal expression of 84 principal genes in the p53 signaling pathway due to low dose IR (0.5Gy), HU, or both. In contrast, numerous genes relevant to oxidative stress were regulated by the treatments, typically in a direction indicative of increased oxidative stress and impaired defense. IR and HU independently reduced (between 0.46 to 0.88 fold) expression levels of Noxa1, Gpx3, Prdx2, Prdx3, and Zmynd17. Surprisingly, transient HU alone (sham-irradiated) decreased expression of several redox-related genes (Gpx1,Gstk1, Prdx1, Txnrd2), which were not affected significantly by IR alone. Irradiation increased (1.13 fold) expression of a gene responsible for production of superoxides by neutrophils (NCF2). Of interest, only combined treatment with HU and IR led to increased expression levels of Ercc2, (1.19 fold), a DNA excision repair enzyme. Differences in gene expression levels may reflect a change in gene expression on a per cell basis, a shift in the repertoire of specific cell types within the tissue, or both. Serum nitrite/nitrate levels were elevated to comparable levels (1.6-fold) due to IR, HU or both, indicative of elevated systemic nitrosyl stress. CONCLUSIONS The magnitude of changes in skeletal expression of oxidative stress-related genes six months after irradiation and/or transient unloading tended to be relatively modest (0.46-1.15 fold), whereas the p53 pathway was not affected. The finding that many different oxidative stress-related genes differed from controls at this late time point implicates a generalized impairment of oxidative defense within skeletal tissue, which coincides with both profound radiation damage to osteoprogenitors/stem cells in bone marrow and impaired remodeling of mineralized tissue.
Environmental epigenetics in metal exposure
Martinez-Zamudio, Ricardo
2011-01-01
Although it is widely accepted that chronic exposure to arsenite, nickel, chromium and cadmium increases cancer incidence in individuals, the molecular mechanisms underlying their ability to transform cells remain largely unknown. Carcinogenic metals are typically weak mutagens, suggesting that genetic-based mechanisms may not be primarily responsible for metal-induced carcinogenesis. Growing evidence shows that environmental metal exposure involves changes in epigenetic marks, which may lead to a possible link between heritable changes in gene expression and disease susceptibility and development. Here, we review recent advances in the understanding of metal exposure affecting epigenetic marks and discuss establishment of heritable gene expression in metal-induced carcinogenesis. PMID:21610324
Genomic Imprinting Is Implicated in the Psychology of Music.
Mehr, Samuel A; Kotler, Jennifer; Howard, Rhea M; Haig, David; Krasnow, Max M
2017-10-01
Why do people sing to babies? Human infants are relatively altricial and need their parents' attention to survive. Infant-directed song may constitute a signal of that attention. In Prader-Willi syndrome (PWS), a rare disorder of genomic imprinting, genes from chromosome 15q11-q13 that are typically paternally expressed are unexpressed, which results in exaggeration of traits that reduce offspring's investment demands on the mother. PWS may thus be associated with a distinctive musical phenotype. We report unusual responses to music in people with PWS. Subjects with PWS ( N = 39) moved more during music listening, exhibited greater reductions in heart rate in response to music listening, and displayed a specific deficit in pitch-discrimination ability relative to typically developing adults and children ( N = 589). Paternally expressed genes from 15q11-q13, which are unexpressed in PWS, may thus increase demands for music and enhance perceptual sensitivity to music. These results implicate genomic imprinting in the psychology of music, informing theories of music's evolutionary history.
2011-01-01
Background Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format) and they typically accept only gene lists as input. Results TRAM (Transcriptome Mapper) is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays), implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile), useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples) and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene clusters with differential expression during the differentiation toward megakaryocyte were identified. Conclusions TRAM is designed to create, and statistically analyze, quantitative transcriptome maps, based on gene expression data from multiple sources. The release includes FileMaker Pro database management runtime application and it is freely available at http://apollo11.isto.unibo.it/software/, along with preconfigured implementations for mapping of human, mouse and zebrafish transcriptomes. PMID:21333005
The transcriptional diversity of 25 Drosophila cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherbas, Lucy; Willingham, Aarron; Zhang, Dayu
2010-12-22
Drosophila melanogaster cell lines are important resources for cell biologists. In this article, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signalingmore » pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. We report the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25 lines with emphasis on what those patterns reveal about the origins of the lines and the stability of spatial expression patterns. In addition, we offer an initial analysis of previously unannotated transcripts in the cell lines.« less
2012-01-01
Background RNA-silencing is a conserved gene regulation and surveillance machinery, which in plants, is also used as major defence mechanism against viruses. Various virus-specific dsRNA structures are recognized by the silencing machinery leading to degradation of the viral RNAs or, as in case of begomoviruses, to methylation of their DNA genomes. Viruses produce specific RNA silencing suppressor (RSS) proteins to prevent these host defence mechanisms, and as these interfere with the silencing machinery they also disturb the endogenous silencing reactions. In this paper, we describe how expression of AC2 RSS, derived from African cassava mosaic geminivirus changes transcription profile in tobacco (Nicotiana tabacum) leaves and in flowers. Results Expression of AC2 RSS in transgenic tobacco plants induced clear phenotypic changes both in leaves and in flowers. Transcriptomes of these plants were strongly altered, with total of 1118 and 251 differentially expressed genes in leaves and flowers, respectively. The three most up-regulated transcript groups were related to stress, cell wall modifications and signalling, whereas the three most down-regulated groups were related to translation, photosynthesis and transcription. It appears that many of the gene expression alterations appeared to be related to enhanced biosynthesis of jasmonate and ethylene, and consequent enhancement of the genes and pathways that are regulated by these hormones, or to the retrograde signalling caused by the reduced photosynthetic activity and sugar metabolism. Comparison of these results to a previous transcriptional profiling of HC-Pro RSS-expressing plants revealed that some of same genes were induced by both RSSs, but their expression levels were typically higher in AC2 than in HC-Pro RSS expressing plants. All in all, a large number of transcript alterations were found to be specific to each of the RSS expressing transgenic plants. Conclusions AC2 RSS in transgenic tobacco plants interferes with the silencing machinery. It causes stress and defence reactions for instance via induction of the jasmonate and ethylene biosynthesis, and by consequent gene expression alteration regulated by these hormones. The changed sugar metabolism may cause significant down-regulation of genes encoding ribosomal proteins, thus reducing the general translation level. PMID:23130567
Tamilzhalagan, Sembulingam; Rathinam, Dhanasekaran; Ganesan, Kumaresan
2017-06-01
Frequent amplification of 7q21-22 genomic region is known in gastric cancer. Multiple genes including SHFM1, MCM7, and COL1A2 were reported to be the potential cancer candidate genes of this 20 Mb amplicon. This amplicon has two polycistrionic miRNA clusters and in the present study, miR-106b-25 cluster located in intron-13 of MCM7 was identified to express in gastric tumors. Among the 7q21-22 candidate genes, SHFM1 and MCM7 are expressed in intestinal type gastric tumors, whereas COL1A2 is expressed in diffuse type gastric tumors. Across gastric tumors, miR-25 was identified to co-express with MCM7 and SHFM1. On the other hand, negative correlation was observed between miR-25 and COL1A2 expression. miR-25 originating from MCM7 was found capable of selectively targeting the adjacent gene COL1A2. Silencing of miR-25 was found capable of elevating the expression of COL1A2 and inhibiting E-cadherin expression, revealing the diffuse type gastric cancer suppressive role conferred by miR-25. miR-25 was also found to suppress p53, and activate c-Src revealing its intestinal type gastric cancer associated oncogenic functions. Genome-wide expression profiling upon miR-25 silencing reveals that miR-25 is capable of suppressing 40 genes which are co-expressed with COL1A2, involved in epithelial to mesenchymal transition and angiogenesis which are the typical diffuse type gastric cancer features. The results clearly demonstrate 7q21-22 amplification, MCM7, and its intronic miR-25 are the major molecular switches involved in the complex oncogenic circuits of gastric cancer. © 2017 Wiley Periodicals, Inc.
Dynamic Visualization of Co-expression in Systems Genetics Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, Joshua Ryan; Huang, Jian; Chesler, Elissa J
2008-01-01
Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biologicalmore » networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.« less
Scoring clustering solutions by their biological relevance.
Gat-Viks, I; Sharan, R; Shamir, R
2003-12-12
A central step in the analysis of gene expression data is the identification of groups of genes that exhibit similar expression patterns. Clustering gene expression data into homogeneous groups was shown to be instrumental in functional annotation, tissue classification, regulatory motif identification, and other applications. Although there is a rich literature on clustering algorithms for gene expression analysis, very few works addressed the systematic comparison and evaluation of clustering results. Typically, different clustering algorithms yield different clustering solutions on the same data, and there is no agreed upon guideline for choosing among them. We developed a novel statistically based method for assessing a clustering solution according to prior biological knowledge. Our method can be used to compare different clustering solutions or to optimize the parameters of a clustering algorithm. The method is based on projecting vectors of biological attributes of the clustered elements onto the real line, such that the ratio of between-groups and within-group variance estimators is maximized. The projected data are then scored using a non-parametric analysis of variance test, and the score's confidence is evaluated. We validate our approach using simulated data and show that our scoring method outperforms several extant methods, including the separation to homogeneity ratio and the silhouette measure. We apply our method to evaluate results of several clustering methods on yeast cell-cycle gene expression data. The software is available from the authors upon request.
Allen, Alexandra M; Lexer, Christian; Hiscock, Simon J
2010-11-01
Fertilization in angiosperms depends on a complex cellular "courtship" between haploid pollen and diploid pistil. These pollen-pistil interactions are regulated by a diversity of molecules, many of which remain to be identified and characterized. Thus, it is unclear to what extent these processes are conserved among angiosperms, a fact confounded by limited sampling across taxa. Here, we report the analysis of pistil-expressed genes in Senecio squalidus (Asteraceae), a species from euasterid II, a major clade for which there are currently no data on pistil-expressed genes. Species from the Asteraceae characteristically have a "semidry stigma," intermediate between the "wet" and "dry" stigmas typical of the majority of angiosperms. Construction of pistil-enriched cDNA libraries for S. squalidus allowed us to address two hypotheses: (1) stigmas of S. squalidus will express genes common to wet and dry stigmas and genes specific to the semidry stigma characteristic of the Asteraceae; and (2) genes potentially essential for pistil function will be conserved between diverse angiosperm groups and therefore common to all currently available pistil transcriptome data sets, including S. squalidus. Our data support both these hypotheses. The S. squalidus pistil transcriptome contains novel genes and genes previously identified in pistils of species with dry stigmas and wet stigmas. Comparative analysis of the five pistil transcriptomes currently available (Oryza sativa, Crocus sativus, Arabidopsis thaliana, Nicotiana tabacum, and S. squalidus), representing four major angiosperm clades and the three stigma states, identified novel genes and conserved genes potentially regulating pollen-pistil interaction pathways common to monocots and eudicots.
Re, G G; Willingham, M C; el Bahtimi, R; Brownlee, N A; Hazen-Martin, D J; Garvin, A J
1997-02-01
One reason for the failure of chemotherapy is the overexpression of the multidrug resistance gene, MDR1. The product of this gene is the multidrug transporter P-glycoprotein, an ATP-dependent pump that extrudes drugs from the cytoplasm. Some tumors inherently express P-glycoprotein, whereas others acquire the ability to do so after exposure to certain chemotherapeutic agents, often by the mechanism of gene amplification. Classical Wilms' tumors (nephroblastoma) typically respond to therapy and have a good prognosis. On the contrary, anaplastic Wilms' tumors are generally refractory to chemotherapy. These anaplastic variants are rare (4.5% of all Wilms' tumors reported in the United States), aggressive, and often fatal forms of tumor, which are commonly thought to result from the progression of classical Wilms' tumors. To investigate the basis for this differential response to therapy, we examined a number of classical and anaplastic Wilms' tumors for the expression of the MDR1 gene by immunohistochemical and mRNA analysis. Classical Wilms' tumors consistently did not express P-glycoprotein except in areas of tubular differentiation, as in normal kidney. Similarly, two of three anaplastic tumors failed to show P-glycoprotein expression. In contrast, cultured cells derived from a third anaplastic tumor, W4, exhibited strong P-glycoprotein expression and were drug resistant in vitro. Southern analysis revealed that W4 cells contained a single copy of the MDR1 gene per haploid genome similar to normal cells, demonstrating that the overexpression of MDR1 was not caused by gene amplification. Transcriptional activation of the MDR1 gene would be in keeping with the concept that p53 might act as a transcriptional repressor of the MDR1 gene.
Zhang, Zan; Teng, Xiaolu; Chen, Maohua; Li, Fei
2014-01-01
The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR) to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research. PMID:25302617
2012-01-01
Background Because of the large volume of data and the intrinsic variation of data intensity observed in microarray experiments, different statistical methods have been used to systematically extract biological information and to quantify the associated uncertainty. The simplest method to identify differentially expressed genes is to evaluate the ratio of average intensities in two different conditions and consider all genes that differ by more than an arbitrary cut-off value to be differentially expressed. This filtering approach is not a statistical test and there is no associated value that can indicate the level of confidence in the designation of genes as differentially expressed or not differentially expressed. At the same time the fold change by itself provide valuable information and it is important to find unambiguous ways of using this information in expression data treatment. Results A new method of finding differentially expressed genes, called distributional fold change (DFC) test is introduced. The method is based on an analysis of the intensity distribution of all microarray probe sets mapped to a three dimensional feature space composed of average expression level, average difference of gene expression and total variance. The proposed method allows one to rank each feature based on the signal-to-noise ratio and to ascertain for each feature the confidence level and power for being differentially expressed. The performance of the new method was evaluated using the total and partial area under receiver operating curves and tested on 11 data sets from Gene Omnibus Database with independently verified differentially expressed genes and compared with the t-test and shrinkage t-test. Overall the DFC test performed the best – on average it had higher sensitivity and partial AUC and its elevation was most prominent in the low range of differentially expressed features, typical for formalin-fixed paraffin-embedded sample sets. Conclusions The distributional fold change test is an effective method for finding and ranking differentially expressed probesets on microarrays. The application of this test is advantageous to data sets using formalin-fixed paraffin-embedded samples or other systems where degradation effects diminish the applicability of correlation adjusted methods to the whole feature set. PMID:23122055
Martinson, Ellen O; Hackett, Jeremiah D; Machado, Carlos A; Arnold, A Elizabeth
2015-01-01
A striking property of the mutualism between figs and their pollinating wasps is that wasps consistently oviposit in the inner flowers of the fig syconium, which develop into galls that house developing larvae. Wasps typically do not use the outer ring of flowers, which develop into seeds. To better understand differences between gall and seed flowers, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, we found significant differences in gene expression between gall- and seed flowers in receptive syconia prior to oviposition. In particular, transcripts assigned to flavonoids and carbohydrate metabolism were significantly up-regulated in gall flowers relative to seed flowers. In response to oviposition, gall flowers significantly up-regulated the expression of chalcone synthase, which previously has been connected to gall formation in other plants. We propose several genes encoding proteins with signal peptides or associations with venom of other Hymenoptera as candidate genes for gall initiation or growth. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides insight into a possible stability mechanism in the ancient fig-fig wasp association.
Martinson, Ellen O.; Hackett, Jeremiah D.; Machado, Carlos A.; Arnold, A. Elizabeth
2015-01-01
A striking property of the mutualism between figs and their pollinating wasps is that wasps consistently oviposit in the inner flowers of the fig syconium, which develop into galls that house developing larvae. Wasps typically do not use the outer ring of flowers, which develop into seeds. To better understand differences between gall and seed flowers, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, we found significant differences in gene expression between gall- and seed flowers in receptive syconia prior to oviposition. In particular, transcripts assigned to flavonoids and carbohydrate metabolism were significantly up-regulated in gall flowers relative to seed flowers. In response to oviposition, gall flowers significantly up-regulated the expression of chalcone synthase, which previously has been connected to gall formation in other plants. We propose several genes encoding proteins with signal peptides or associations with venom of other Hymenoptera as candidate genes for gall initiation or growth. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides insight into a possible stability mechanism in the ancient fig-fig wasp association. PMID:26090817
Enshell-Seijffers, D; Smelyanski, L; Gershoni, J M
2001-05-15
Filamentous bacteriophages are particularly efficient for the expression and display of combinatorial random peptides. Two phage proteins are often employed for peptide display: the infectivity protein, PIII, and the major coat protein, PVIII. The use of PVIII typically requires the expression of two pVIII genes: the wild-type and the recombinant pVIII gene, to generate mosaic phages. 'Type 88' vectors contain two pVIII genes in one phage genome. In this study a novel 'type 88' expression vector has been rationally designed and constructed. Two factors were taken into account: the insertion site and the genetic stability of the second pVIII gene. It was found that selective deletion of recombinant genes was encountered when inserts were cloned into either of the two non-coding regions of the phage genome. The deletions were independent of recA yet required a functional F-episome. Transcription was also found to be a positive factor for deletion. Taking the above into account led to the generation of a novel vector, designated fth1, which can be used to express recombinant peptides as pVIII chimeric proteins in mosaic bacteriophages. The fth1 vector is not only genetically stable but also of high copy number and produces high titers of recombinant phages.
Genome-nuclear lamina interactions and gene regulation.
Kind, Jop; van Steensel, Bas
2010-06-01
The nuclear lamina, a filamentous protein network that coats the inner nuclear membrane, has long been thought to interact with specific genomic loci and regulate their expression. Molecular mapping studies have now identified large genomic domains that are in contact with the lamina. Genes in these domains are typically repressed, and artificial tethering experiments indicate that the lamina can actively contribute to this repression. Furthermore, the lamina indirectly controls gene expression in the nuclear interior by sequestration of certain transcription factors. A variety of DNA-binding and chromatin proteins may anchor specific loci to the lamina, while histone-modifying enzymes partly mediate the local repressive effect of the lamina. Experimental tools are now available to begin to unravel the underlying molecular mechanisms. Copyright 2010 Elsevier Ltd. All rights reserved.
Circadian clock regulation of the cell cycle in the zebrafish intestine.
Peyric, Elodie; Moore, Helen A; Whitmore, David
2013-01-01
The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.
Circadian Clock Regulation of the Cell Cycle in the Zebrafish Intestine
Peyric, Elodie; Moore, Helen A.; Whitmore, David
2013-01-01
The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally. PMID:24013905
Gawin, Agnieszka; Valla, Svein; Brautaset, Trygve
2017-07-01
The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low- and high-level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose-dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β-lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5' untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Hazen, Tracy H.; Daugherty, Sean C.; Shetty, Amol; Mahurkar, Anup A.; White, Owen; Kaper, James B.; Rasko, David A.
2015-01-01
Enteropathogenic Escherichia coli (EPEC) are a leading cause of diarrheal illness among infants in developing countries. E. coli isolates classified as typical EPEC are identified by the presence of the locus of enterocyte effacement (LEE) and the bundle-forming pilus (BFP), and absence of the Shiga-toxin genes, while the atypical EPEC also encode LEE but do not encode BFP or Shiga-toxin. Comparative genomic analyses have demonstrated that EPEC isolates belong to diverse evolutionary lineages and possess lineage- and isolate-specific genomic content. To investigate whether this genomic diversity results in significant differences in global gene expression, we used an RNA sequencing (RNA-Seq) approach to characterize the global transcriptomes of the prototype typical EPEC isolates E2348/69, B171, C581-05, and the prototype atypical EPEC isolate E110019. The global transcriptomes were characterized during laboratory growth in two different media and three different growth phases, as well as during adherence of the EPEC isolates to human cells using in vitro tissue culture assays. Comparison of the global transcriptomes during these conditions was used to identify isolate- and growth phase-specific differences in EPEC gene expression. These analyses resulted in the identification of genes that encode proteins involved in survival and metabolism that were coordinately expressed with virulence factors. These findings demonstrate there are isolate- and growth phase-specific differences in the global transcriptomes of EPEC prototype isolates, and highlight the utility of comparative transcriptomics for identifying additional factors that are directly or indirectly involved in EPEC pathogenesis. PMID:26124752
Use of Gnotobiotic Zebrafish to Study Vibrio anguillarum Pathogenicity
Oyarbide, Usua; Iturria, Iñaki; Rainieri, Sandra
2015-01-01
Abstract We evaluated the use of the gnotobiotic zebrafish system to study the effects of bacterial infection, and analyzed expression of genes involved in zebrafish innate immunity. Using a GFP-labeled strain of Vibrio anguillarum, we fluorescently monitored colonization of the zebrafish intestinal tract and used gene expression analysis to compare changes in genes involved in innate immunity between nongnotobiotic and gnotobiotic larvae. The experiments performed with the gnotobiotic zebrafish reveal new insights into V. anguillarum pathogenesis. Specifically, an alteration of the host immune system was detected through the suppression of a number of innate immune genes (NFKB, IL1B, TLR4, MPX, and TRF) during the first 3 h post infection. This immunomodulation can be indicative of a “stealth mechanism” of mucus invasion in which the pathogen found a sheltered niche, a typical trait of intracellular pathogens. PMID:25548877
TREATING HEMOGLOBINOPATHIES USING GENE CORRECTION APPROACHES: PROMISES AND CHALLENGES
Cottle, Renee N.; Lee, Ciaran M.; Bao, Gang
2016-01-01
Hemoglobinopathies are genetic disorders caused by aberrant hemoglobin expression or structure changes, resulting in severe mortality and health disparities worldwide. Sickle cell disease (SCD) and β-thalassemia, the most common forms of hemoglobinopathies, are typically treated using transfusions and pharmacological agents. Allogeneic hematopoietic stem cell transplantation is the only curative therapy, but has limited clinical applicability. Although gene therapy approaches have been proposed based on the insertion and forced expression of wild-type or anti-sickling β-globin variants, safety concerns may impede their clinical application. A novel curative approach is nuclease-based gene correction, which involves the application of precision genome editing tools to correct the disease-causing mutation. This review describes the development and potential application of gene therapy and precision genome editing approaches for treating SCD and β-thalassemia. The opportunities and challenges in advancing a curative therapy for hemoglobinopathies are also discussed. PMID:27314256
CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data
O'Connor, Timothy; Bodén, Mikael
2017-01-01
Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599
Whitney, Larisa Angela Swirsky; Loreti, Elena; Alpi, Amedeo; Perata, Pierdomenico
2011-04-01
• The unicellular green alga Chlamydomonas reinhardtii contains two iron (Fe)-hydrogenases which are responsible for hydrogen production under anoxia. In the present work the patterns of expression of alcohol dehydrogenase, a typical anaerobic gene in plants, of the hydrogenases genes (HYD1, HYD2) and of the genes responsible for their maturation (HYDEF, HYDG), were analysed. • The expression patterns were analysed by real-time reverse-transcription polymerase chain reaction in Chlamydomonas cultures during the day-night cycle, as well as in response to oxygen availability. • The results indicated that ADH1, HYD1, HYD2, HYDEF and HYDG were expressed following precise day-night fluctuations. ADH1 and HYD2 were modulated by the day-night cycle. Low oxygen plays an important role for the induction of HYD1, HYDEF and HYDG, while ADH1 and HYD2 expression was relatively insensitive to oxygen availability. • The regulation of the anaerobic gene expression in Chlamydomonas is only partly explained by responses to anoxia. The cell cycle and light-dark cycles are equally important elements in the regulatory network modulating the anaerobic response in Chlamydomonas. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Derntl, Christian; Rassinger, Alice; Srebotnik, Ewald; Mach, Robert L.
2016-01-01
ABSTRACT The industrially used ascomycete Trichoderma reesei secretes a typical yellow pigment during cultivation, while other Trichoderma species do not. A comparative genomic analysis suggested that a putative secondary metabolism cluster, containing two polyketide-synthase encoding genes, is responsible for the yellow pigment synthesis. This cluster is conserved in a set of rather distantly related fungi, including Acremonium chrysogenum and Penicillium chrysogenum. In an attempt to silence the cluster in T. reesei, two genes of the cluster encoding transcription factors were individually deleted. For a complete genetic proof-of-function, the genes were reinserted into the genomes of the respective deletion strains. The deletion of the first transcription factor (termed yellow pigment regulator 1 [Ypr1]) resulted in the full abolishment of the yellow pigment formation and the expression of most genes of this cluster. A comparative high-pressure liquid chromatography (HPLC) analysis of supernatants of the ypr1 deletion and its parent strain suggested the presence of several yellow compounds in T. reesei that are all derived from the same cluster. A subsequent gas chromatography/mass spectrometry analysis strongly indicated the presence of sorbicillin in the major HPLC peak. The presence of the second transcription factor, termed yellow pigment regulator 2 (Ypr2), reduces the yellow pigment formation and the expression of most cluster genes, including the gene encoding the activator Ypr1. IMPORTANCE Trichoderma reesei is used for industry-scale production of carbohydrate-active enzymes. During growth, it secretes a typical yellow pigment. This is not favorable for industrial enzyme production because it makes the downstream process more complicated and thus increases operating costs. In this study, we demonstrate which regulators influence the synthesis of the yellow pigment. Based on these data, we also provide indication as to which genes are under the control of these regulators and are finally responsible for the biosynthesis of the yellow pigment. These genes are organized in a cluster that is also found in other industrially relevant fungi, such as the two antibiotic producers Penicillium chrysogenum and Acremonium chrysogenum. The targeted manipulation of a secondary metabolism cluster is an important option for any biotechnologically applied microorganism. PMID:27520818
HIV promoter integration site primarily modulates transcriptional burst size rather than frequency.
Skupsky, Ron; Burnett, John C; Foley, Jonathan E; Schaffer, David V; Arkin, Adam P
2010-09-30
Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells. Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of modulation generates consistently noisy distributions over the sampled integration positions, with large expression variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus emerges as a significant control parameter for gene expression variation that may contribute to structuring mammalian genomes, as well as be exploited for survival by integrating viruses.
Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F.; Panetta, John C.; Wilkinson, Mark R.; Pui, Ching-Hon; Naeve, Clayton W.; Uberbacher, Edward C.; Bonten, Erik J.; Evans, William E.
2016-01-01
MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769
ERIC Educational Resources Information Center
Priano, Christine
2013-01-01
This model-building activity provides a quick, visual, hands-on tool that allows students to examine more carefully the cloverleaf structure of a typical tRNA molecule. When used as a supplement to lessons that involve gene expression, this exercise reinforces several concepts in molecular genetics, including nucleotide base-pairing rules, the…
Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.
2014-01-01
Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177
Boyko, Anna A; Azhikina, Tatyana L; Streltsova, Maria A; Sapozhnikov, Alexander M; Kovalenko, Elena I
2017-01-01
Cell-type specific variations are typical for the expression of different members of the HSP70 family. In circulating immune cells, HSP70 proteins interact with units of signaling pathways involved in the immune responses and may promote cell survival in sites of inflammation. In this work, we compared basal HSP70 expression and stress-induced HSP70 response in polymorphonuclear and mononuclear human leukocytes. The intracellular content of inducible and constitutive forms of HSP70 was analyzed in relation to the transcriptional activity of HSPA genes. Hyperthermia was used as the stress model for induction of HSP70 synthesis in the cells. Our results demonstrated that granulocytes (mainly neutrophils) and mononuclear cells differ significantly by both basal HSP70 expression and levels of HSP70 induction under hyperthermia. The differences were observed at the levels of HSPA gene transcription and intracellular HSP70 content. The expression of constitutive Hsс70 protein was much higher in mononuclear cells consisting of monocytes and lymphocytes than in granulocytes. At the same time, intact neutrophils showed increased expression of inducible Hsp70 protein compared to mononuclear cells. Heat treatment induced additional expression of HSPA genes in leukocytes. The most pronounced increase in the expression was observed in polymorphonuclear and mononuclear leukocytes for HSPA1A/B. However, in granulocytes, the induction of the transcription of the HSPA8 gene encoding the Hsc70 protein was significantly higher than in mononuclear cells. These variations in transcriptional activity of HSPA genes and intracellular HSP70 content in different populations of leukocytes may reflect specified requirements for the chaperone activity in the cells with a distinct functional role in the immune system.
Andersson, Claes R; Hvidsten, Torgeir R; Isaksson, Anders; Gustafsson, Mats G; Komorowski, Jan
2007-01-01
Background We address the issue of explaining the presence or absence of phase-specific transcription in budding yeast cultures under different conditions. To this end we use a model-based detector of gene expression periodicity to divide genes into classes depending on their behavior in experiments using different synchronization methods. While computational inference of gene regulatory circuits typically relies on expression similarity (clustering) in order to find classes of potentially co-regulated genes, this method instead takes advantage of known time profile signatures related to the studied process. Results We explain the regulatory mechanisms of the inferred periodic classes with cis-regulatory descriptors that combine upstream sequence motifs with experimentally determined binding of transcription factors. By systematic statistical analysis we show that periodic classes are best explained by combinations of descriptors rather than single descriptors, and that different combinations correspond to periodic expression in different classes. We also find evidence for additive regulation in that the combinations of cis-regulatory descriptors associated with genes periodically expressed in fewer conditions are frequently subsets of combinations associated with genes periodically expression in more conditions. Finally, we demonstrate that our approach retrieves combinations that are more specific towards known cell-cycle related regulators than the frequently used clustering approach. Conclusion The results illustrate how a model-based approach to expression analysis may be particularly well suited to detect biologically relevant mechanisms. Our new approach makes it possible to provide more refined hypotheses about regulatory mechanisms of the cell cycle and it can easily be adjusted to reveal regulation of other, non-periodic, cellular processes. PMID:17939860
2011-01-01
Background Gene co-expression, in the form of a correlation coefficient, has been valuable in the analysis, classification and prediction of protein-protein interactions. However, it is susceptible to bias from a few samples having a large effect on the correlation coefficient. Gene co-expression stability is a means of quantifying this bias, with high stability indicating robust, unbiased co-expression correlation coefficients. We assess the utility of gene co-expression stability as an additional measure to support the co-expression correlation in the analysis of protein-protein interaction networks. Results We studied the patterns of co-expression correlation and stability in interacting proteins with respect to their interaction promiscuity, levels of intrinsic disorder, and essentiality or disease-relatedness. Co-expression stability, along with co-expression correlation, acts as a better classifier of hub proteins in interaction networks, than co-expression correlation alone, enabling the identification of a class of hubs that are functionally distinct from the widely accepted transient (date) and obligate (party) hubs. Proteins with high levels of intrinsic disorder have low co-expression correlation and high stability with their interaction partners suggesting their involvement in transient interactions, except for a small group that have high co-expression correlation and are typically subunits of stable complexes. Similar behavior was seen for disease-related and essential genes. Interacting proteins that are both disordered have higher co-expression stability than ordered protein pairs. Using co-expression correlation and stability, we found that transient interactions are more likely to occur between an ordered and a disordered protein while obligate interactions primarily occur between proteins that are either both ordered, or disordered. Conclusions We observe that co-expression stability shows distinct patterns in structurally and functionally different groups of proteins and interactions. We conclude that it is a useful and important measure to be used in concert with gene co-expression correlation for further insights into the characteristics of proteins in the context of their interaction network. PMID:22369639
Zhu, Bao-Qing; Xu, Xiao-Qing; Wu, Yu-Wen; Duan, Chang-Qing; Pan, Qiu-Hong
2012-07-01
C6 compounds are the major fraction of the volatile profiles of grape berries, contributing the typical 'green' aroma to the grape and wine. Hydroperoxide lyase (HPL) catalyzes the cleavage of fatty acid hydroperoxides to produce C6 compounds. Two hypothetical genes, VvHPL1 and VvHPL2 were cloned from grape berries (Vitis vinifera L. Cabernet Sauvignon). Bioinformatics analysis revealed that the proteins encoded by these two genes both belong to subfamily of cytochrome P450 and contain typical conserved domains of HPLs, and have high identity with HPLs from other plants. Prokaryotically-expressed VvHPL1 and VvHPL2 with thioredoxin-6xHis-fusion partner were confirmed to have enzymatic activity. VvHPL1 is specific for 13-HPOD (T) producing C6 aldehydes with relatively higher activity and VvHPL2 catalyzes the cleavage of both 9- and 13-hydroperoxides producing C6 aldehydes and C9 aldehydes respectively. Analysis of real time-PCR showed that VvHPL2 was highly expressed in the leaves and the flowers of the grapes, while relatively low transcript abundance was detected in the berries, tendril and stems; VvHPL1 had high expression in all detected tissues. During grape berry development, the expression of these two isogenes presented similar trends with a rapid increase after veraison and a decrease at full-ripen stage, which roughly corresponded to the accumulation of their volatile products. These data lay an essential foundation for further study on the accumulation and control of C6 volatiles in grape berries.
Puthiyaveetil, Abdul Gafoor; Reilly, Christopher M; Pardee, Timothy S; Caudell, David L
2013-01-01
Chromosomal translocations typically impair cell differentiation and often require secondary mutations for malignant transformation. However, the role of a primary translocation in the development of collaborating mutations is debatable. To delineate the role of leukemic translocation NUP98-HOXD13 (NHD13) in secondary mutagenesis, DNA break and repair mechanisms in stimulated mouse B lymphocytes expressing NHD13 were analyzed. Our results showed significantly reduced expression of non-homologous end joining (NHEJ)-mediated DNA repair genes, DNA Pkcs, DNA ligase4, and Xrcc4 leading to cell cycle arrest at G2/M phase. Our results showed that expression of NHD13 fusion gene resulted in impaired NHEJ-mediated DNA break repair. Copyright © 2012 Elsevier Ltd. All rights reserved.
2013-01-01
Background High–throughput (HT) technologies provide huge amount of gene expression data that can be used to identify biomarkers useful in the clinical practice. The most frequently used approaches first select a set of genes (i.e. gene signature) able to characterize differences between two or more phenotypical conditions, and then provide a functional assessment of the selected genes with an a posteriori enrichment analysis, based on biological knowledge. However, this approach comes with some drawbacks. First, gene selection procedure often requires tunable parameters that affect the outcome, typically producing many false hits. Second, a posteriori enrichment analysis is based on mapping between biological concepts and gene expression measurements, which is hard to compute because of constant changes in biological knowledge and genome analysis. Third, such mapping is typically used in the assessment of the coverage of gene signature by biological concepts, that is either score–based or requires tunable parameters as well, limiting its power. Results We present Knowledge Driven Variable Selection (KDVS), a framework that uses a priori biological knowledge in HT data analysis. The expression data matrix is transformed, according to prior knowledge, into smaller matrices, easier to analyze and to interpret from both computational and biological viewpoints. Therefore KDVS, unlike most approaches, does not exclude a priori any function or process potentially relevant for the biological question under investigation. Differently from the standard approach where gene selection and functional assessment are applied independently, KDVS embeds these two steps into a unified statistical framework, decreasing the variability derived from the threshold–dependent selection, the mapping to the biological concepts, and the signature coverage. We present three case studies to assess the usefulness of the method. Conclusions We showed that KDVS not only enables the selection of known biological functionalities with accuracy, but also identification of new ones. An efficient implementation of KDVS was devised to obtain results in a fast and robust way. Computing time is drastically reduced by the effective use of distributed resources. Finally, integrated visualization techniques immediately increase the interpretability of results. Overall, KDVS approach can be considered as a viable alternative to enrichment–based approaches. PMID:23302187
Zhao, Mingzhu; Wang, Tianliang; Wu, Ping; Guo, Wenyun; Su, Liantai; Wang, Ying; Liu, Yajing; Yan, Fan
2017-01-01
Isoflavonoids are secondary metabolites that play a variety of roles in plant-microbe interactions and plant defenses against abiotic stresses. Here we report a new MYB transcription factor (TF) gene, GmMYBJ3, that is involved in the isoflavonoids biosynthesis. The GmMYBJ3 gene is 1,002 bp long and encodes a protein of 333 amino acids. Amino acid sequence analysis showed that GmMYBJ3 is a typical R2R3 MYB TF. Yeast expression experiment demonstrated that GmMYBJ3 has its transcription activity in the nucleus and is transiently expressed in onion epidermal cells. The GmMYBJ3 gene was transformed into soybean and the expression activity of the GmMYBJ3 gene was significantly positively correlated with total isoflavonoid accumulation in soybean. Transient expression assays indicated that GmMYBJ3 can activate CHS8 expression. Furthermore, we analyzed the expressions of several genes known involved in the isoflavonoid biosynthesis, including CHS8, CHI1A, PAL1, IFS2 and F3H, in the GmMYBJ3 transgenic plants. The results showed that the expression levels of CHS8 and CHI1A were significantly increased in the transgenic plants compared to wild-type plants, but those of PAL1, IFS2 and F3H remained similar between the transgenic and wild-type plants. These results suggest that GmMYBJ3 participates in the isoflavonoid biosynthesis through regulation of CHS8 and CHI1A in soybean. PMID:28654660
Overlap Chronic Placental Inflammation Is Associated with a Unique Gene Expression Pattern.
Raman, Kripa; Wang, Huaqing; Troncone, Michael J; Khan, Waliul I; Pare, Guillaume; Terry, Jefferson
2015-01-01
Breakdown of the balance between maternal pro- and anti-inflammatory pathways is thought to allow an anti-fetal maternal immune response that underlies development of chronic placental inflammation. Chronic placental inflammation is manifested by the influx of maternal inflammatory cells, including lymphocytes, histiocytes, and plasma cells, into the placental membranes, villi, and decidua. These infiltrates are recognized pathologically as chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis. Each of these histological entities is associated with adverse fetal outcomes including intrauterine growth restriction and preterm birth. Studying the gene expression patterns in chronically inflamed placenta, particularly when overlapping histologies are present, may lead to a better understanding of the underlying mechanism(s). Therefore, this study compared tissue with and without chronic placental inflammation, manifested as overlapping chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis. RNA expression profiling was conducted on formalin fixed, paraffin embedded placental tissue using Illumina microarrays. IGJ was the most significant differentially expressed gene identified and had increased expression in the inflamed tissue. In addition, IGLL1, CXCL13, CD27, CXCL9, ICOS, and KLRC1 had increased expression in the inflamed placental samples. These differentially expressed genes are associated with T follicular helper cells, natural killer cells, and B cells. Furthermore, these genes differ from those typically associated with the individual components of chronic placental inflammation, such as chronic villitis, suggesting that the inflammatory infiltrate associated with overlapping chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis differs is unique. To further explore and validate gene expression findings, we conducted immunohistochemical assessment of protein level expression and demonstrate that IgJ expression was largely attributable to the presence of plasma cells as part of chronic deciduitis and that IgA positive plasma cells are associated with chronic deciduitis occurring in combination with chronic chorioamnionitis and chronic villitis of unknown etiology but not with isolated chronic deciduitis.
Dingemann, Jens; Doi, Takashi; Ruttenstock, Elke; Puri, Prem
2011-02-01
The nitrofen model of congenital diaphragmatic hernia (CDH) reproduces a typical diaphragmatic defect. However, the exact pathomechanism of CDH is still unknown. The Wilm's tumor 1 gene (WT1) is crucial for diaphragmatic development. Mutations in WT1 associated with CDH have been described in humans. Additionally, WT1(-/-) mice display CDH. Furthermore, WT1 is involved in the retinoid signaling pathway, a candidate pathway for CDH. We hypothesized that diaphragmatic WT1 gene expression is downregulated during diaphragmatic development in the nitrofen CDH model. Pregnant rats received vehicle or nitrofen on gestational day 9 (D9). Embryos were delivered on D13, D18 and D21. The pleuroperitoneal folds (PPFs) were dissected using laser capture microdissection (D13). Diaphragms of D18 and D21 were manually dissected. RNA was extracted and relative mRNA expression of WT1 was determined using real-time PCR. Immunofluorescence was performed to evaluate protein expression of WT1. Statistical significance was considered p < 0.05. Diaphragmatic mRNA expression of WT1 was significantly decreased in the nitrofen group on D13, D18 and D21. Intensity of immunofluorescencence of WT1 was markedly decreased in the CDH diaphragms on D13, D18 and D21. Downregulation of diaphragmatic WT1 gene expression may impair diaphragmatic development in the nitrofen CDH model.
Promoter Methylation in the Genesis of Gastrointestinal Cancer
Shin, Sung Kwan; Goel, Ajay
2009-01-01
Colorectal cancers (CRC)-and probably all cancers-are caused by alterations in genes. This includes activation of oncogenes and inactivation of tumor suppressor genes (TSGs). There are many ways to achieve these alterations. Oncogenes are frequently activated by point mutation, gene amplification, or changes in the promoter (typically caused by chromosomal rearrangements). TSGs are typically inactivated by mutation, deletion, or promoter methylation, which silences gene expression. About 15% of CRC is associated with loss of the DNA mismatch repair system, and the resulting CRCs have a unique phenotype that is called microsatellite instability, or MSI. This paper reviews the types of genetic alterations that can be found in CRCs and hepatocellular carcinoma (HCC), and focuses upon the epigenetic alterations that result in promoter methylation and the CpG island methylator phenotype (CIMP). The challenge facing CRC research and clinical care at this time is to deal with the heterogeneity and complexity of these genetic and epigenetic alterations, and to use this information to direct rational prevention and treatment strategies. PMID:19568590
Dana, Alexandra; Tuller, Tamir
2014-12-01
Gene translation modeling and prediction is a fundamental problem that has numerous biomedical implementations. In this work we present a novel, user-friendly tool/index for calculating the mean of the typical decoding rates that enables predicting translation elongation efficiency of protein coding genes for different tissue types, developmental stages, and experimental conditions. The suggested translation efficiency index is based on the analysis of the organism's ribosome profiling data. This index could be used for example to predict changes in translation elongation efficiency of lowly expressed genes that usually have relatively low and/or biased ribosomal densities and protein levels measurements, or can be used for example for predicting translation efficiency of new genetically engineered genes. We demonstrate the usability of this index via the analysis of six organisms in different tissues and developmental stages. Distributable cross platform application and guideline are available for download at: http://www.cs.tau.ac.il/~tamirtul/MTDR/MTDR_Install.html. Copyright © 2015 Dana and Tuller.
Jóźwiak-Bębenista, Marta; Kowalczyk, Edward
2017-04-01
Several lines of evidence suggest that pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide playing an important role as a neuromodulator. It has been indicated that PACAP is associated with mental diseases, and that regulation of the PACAPergic signals could be a potential target for the treatment of such psychiatric states as schizophrenia. Recent studies have suggested that action of neuroleptic drugs is mediated not only by dopaminergic and serotonergic neurotransmission, but also via neuropeptides which may act both as neurotransmitters and as neuromodulators. The present study examines whether currently-used neuroleptics influence the action of PACAP receptors, whose expression is altered in a schizophrenic patient. Real-time polymerase chain reaction (PCR) was used to examine the effects of haloperidol, olanzapine and amisulpride on the expression of genes coding PAC1/VPAC type receptors in the T98G glioblastoma cell line, as an example of an in vitro model of glial cells. PAC1 mRNA expression fell after 24-h incubation with haloperidol or olanzapine; however the effect was not maintained after 72 h, and haloperidol even up-regulated PAC1 mRNA expression in a dose-dependent manner. All the examined drugs decreased VPAC2 mRNA expression, especially after 72-h incubation. Haloperidol (typical neuroleptic) was distinctly more potent than atypical neuroleptic drugs (olanzapine and amisulpride). In addition, PACAP increased PAC1 and VPAC2 mRNA expression. In conclusion, our findings suggest PACAP receptors may be involved in the mechanism of typical and atypical neuroleptic drugs.
Identification and Analysis of Mitogen-Activated Protein Kinase (MAPK) Cascades in Fragaria vesca.
Zhou, Heying; Ren, Suyue; Han, Yuanfang; Zhang, Qing; Qin, Ling; Xing, Yu
2017-08-13
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules in eukaryotes, including yeasts, plants and animals. MAPK cascades are responsible for protein phosphorylation during signal transduction events, and typically consist of three protein kinases: MAPK, MAPK kinase, and MAPK kinase kinase. In this current study, we identified a total of 12 FvMAPK , 7 FvMAPKK , 73 FvMAPKKK , and one FvMAPKKKK genes in the recently published Fragaria vesca genome sequence. This work reported the classification, annotation and phylogenetic evaluation of these genes and an assessment of conserved motifs and the expression profiling of members of the gene family were also analyzed here. The expression profiles of the MAPK and MAPKK genes in different organs and fruit developmental stages were further investigated using quantitative real-time reverse transcription PCR (qRT-PCR). Finally, the MAPK and MAPKK expression patterns in response to hormone and abiotic stresses (salt, drought, and high and low temperature) were investigated in fruit and leaves of F. vesca . The results provide a platform for further characterization of the physiological and biochemical functions of MAPK cascades in strawberry.
Rodríguez-García, María Juliana; García-Reina, Andrés; Machado, Vilmar; Galián, José
2016-09-01
In this study, a defensin gene (Clit-Def) has been characterised in the tiger beetle Calomera littoralis for the first time. Bioinformatic analysis showed that the gene has an open reading frame of 246bp that contains a 46 amino acid mature peptide. The phylogenetic analysis showed a high variability in the coleopteran defensins analysed. The Clit-Def mature peptide has the features to be involved in the antimicrobial function: a predicted cationic isoelectric point of 8.94, six cysteine residues that form three disulfide bonds, and the typical cysteine-stabilized α-helix β-sheet (CSαβ) structural fold. Real time quantitative PCR analysis showed that Clit-Def was upregulated in the different body parts analysed after infection with lipopolysaccharides of Escherichia coli, and also indicated that has an expression peak at 12h post infection. The expression patterns of Clit-Def suggest that this gene plays important roles in the humoral system in the adephagan beetle Calomera littoralis. Copyright © 2016 Elsevier B.V. All rights reserved.
Weil, D; Levy, G; Sahly, I; Levi-Acobas, F; Blanchard, S; El-Amraoui, A; Crozet, F; Philippe, H; Abitbol, M; Petit, C
1996-04-16
The gene encoding human myosin VIIA is responsible for Usher syndrome type III (USH1B), a disease which associates profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. The reconstituted cDNA sequence presented here predicts a 2215 amino acid protein with a typical unconventional myosin structure. This protein is expected to dimerize into a two-headed molecule. The C terminus of its tail shares homology with the membrane-binding domain of the band 4.1 protein superfamily. The gene consists of 48 coding exons. It encodes several alternatively spliced forms. In situ hybridization analysis in human embryos demonstrates that the myosin VIIA gene is expressed in the pigment epithelium and the photoreceptor cells of the retina, thus indicating that both cell types may be involved in the USH1B retinal degenerative process. In addition, the gene is expressed in the human embryonic cochlear and vestibular neuroepithelia. We suggest that deafness and vestibular dysfunction in USH1B patients result from a defect in the morphogenesis of the inner ear sensory cell stereocilia.
Zhu, Ruo-Lin; Lei, Xiao-Ying; Ke, Fei; Yuan, Xiu-Ping; Zhang, Qi-Ya
2011-02-01
Genomic sequence of Scophthalmus maximus rhabdovirus (SMRV) isolated from diseased turbot has been characterized. The complete genome of SMRV comprises 11,492 nucleotides and encodes five typical rhabdovirus genes N, P, M, G and L. In addition, two open reading frames (ORF) are predicted overlapping with P gene, one upstream of P and smaller than P (temporarily called Ps), and another in P gene which may encodes a protein similar to the vesicular stomatitis virus C protein. The C ORF is contained within the P ORF. The five typical proteins share the highest sequence identities (48.9%) with the corresponding proteins of rhabdoviruses in genus Vesiculovirus. Phylogenetic analysis of partial L protein sequence indicates that SMRV is close to genus Vesiculovirus. The first 13 nucleotides at the ends of the SMRV genome are absolutely inverse complementarity. The gene junctions between the five genes show conserved polyadenylation signal (CATGA(7)) and intergenic dinucleotide (CT) followed by putative transcription initiation sequence A(A/G)(C/G)A(A/G/T), which are different from known rhabdoviruses. The entire Ps ORF was cloned and expressed, and used to generate polyclonal antibody in mice. One obvious band could be detected in SMRV-infected carp leucocyte cells (CLCs) by anti-Ps/C serum via Western blot, and the subcellular localization of Ps-GFP fusion protein exhibited cytoplasm distribution as multiple punctuate or doughnut shaped foci of uneven size. Copyright © 2010 Elsevier B.V. All rights reserved.
Takashima, Kayoko; Mizukawa, Yumiko; Morishita, Katsumi; Okuyama, Manabu; Kasahara, Toshihiko; Toritsuka, Naoki; Miyagishima, Toshikazu; Nagao, Taku; Urushidani, Tetsuro
2006-05-08
The Toxicogenomics Project is a 5-year collaborative project by the Japanese government and pharmaceutical companies in 2002. Its aim is to construct a large-scale toxicology database of 150 compounds orally administered to rats. The test consists of a single administration test (3, 6, 9 and 24 h) and a repeated administration test (3, 7, 14 and 28 days), and the conventional toxicology data together with the gene expression data in liver as analyzed by using Affymetrix GeneChip are being accumulated. In the project, either methylcellulose or corn oil is employed as vehicle. We examined whether the vehicle itself affects the analysis of gene expression and found that corn oil alone affected the food consumption and biochemical parameters mainly related to lipid metabolism, and this accompanied typical changes in the gene expression. Most of the genes modulated by corn oil were related to cholesterol or fatty acid metabolism (e.g., CYP7A1, CYP8B1, 3-hydroxy-3-methylglutaryl-Coenzyme A reductase, squalene epoxidase, angiopoietin-like protein 4, fatty acid synthase, fatty acid binding proteins), suggesting that the response was physiologic to the oil intake. Many of the lipid-related genes showed circadian rhythm within a day, but the expression pattern of general clock genes (e.g., period 2, arylhydrocarbon nuclear receptor translocator-like, D site albumin promoter binding protein) were unaffected by corn oil, suggesting that the effects are specific for lipid metabolism. These results would be useful for usage of the database especially when drugs with different vehicle control are compared.
Di Renzo, Francesca; Rossi, Federica; Bacchetta, Renato; Prati, Mariangela; Giavini, Erminio; Menegola, Elena
2011-06-01
The use of nonmammal models in teratological studies is a matter of debate and seems to be justified if the embryotoxic mechanism involves conserved processes. Published data on mammals and Xenopus laevis suggest that azoles are teratogenic by altering the endogenous concentration of retinoic acid (RA). The expression of some genes (Shh, Ptch-1, Gsc, and Msx2) controlled by retinoic acid is downregulated in rat embryos exposed at the phylotypic stage to the triazole triadimefon (FON). In order to propose X. laevis as a model for gene-based comparative teratology, this work evaluates the expression of Shh, Ptch-1, Gsc, and Msx2 in FON-exposed X. laevis embryos. Embryos, exposed to a high concentration level (500 µM) of FON from stage 13 till 17, were examined at stages 17, 27, and 47. Stage 17 and 27 embryos were processed to perform quantitative RT-PCR. The developmental rate was never affected by FON at any considered stage. FON-exposed stage 47 larvae showed the typical craniofacial malformations. A significant downregulation of Gsc was observed in FON-exposed stage 17 embryos. Shh, Ptch-1, Msx2 showed a high fluctuation of expression both in control and in FON-exposed samples both at stages 17 and 27. The downregulation of Gsc mimics the effects of FON on rat embryos, showing for this gene a common effect of FON in the two vertebrate classes. The high fluctuation observed in the gene expression of the other genes, however, suggests that X. laevis at this stage has limited utility for gene-based comparative teratology. © 2011 Wiley-Liss, Inc.
Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo
2016-01-01
Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate corneal epithelial cell-specific differentiation. PMID:27583466
Microarray analysis of gene expression in West Nile virus–infected human retinal pigment epithelium
Munoz-Erazo, Luis; Natoli, Ricardo; Provis, Jan Marie; Madigan, Michelle Catherine
2012-01-01
Purpose To identify key genes differentially expressed in the human retinal pigment epithelium (hRPE) following low-level West Nile virus (WNV) infection. Methods Primary hRPE and retinal pigment epithelium cell line (ARPE-19) cells were infected with WNV (multiplicity of infection 1). RNA extracted from mock-infected and WNV-infected cells was assessed for differential expression of genes using Affymetrix microarray. Quantitative real-time PCR analysis of 23 genes was used to validate the microarray results. Results Functional annotation clustering of the microarray data showed that gene clusters involved in immune and antiviral responses ranked highly, involving genes such as chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 5 (CCL5), chemokine (C-X-C motif) ligand 10 (CXCL10), and toll like receptor 3 (TLR3). In conjunction with the quantitative real-time PCR analysis, other novel genes regulated by WNV infection included indoleamine 2,3-dioxygenase (IDO1), genes involved in the transforming growth factor–β pathway (bone morphogenetic protein and activin membrane-bound inhibitor homolog [BAMBI] and activating transcription factor 3 [ATF3]), and genes involved in apoptosis (tumor necrosis factor receptor superfamily, member 10d [TNFRSF10D]). WNV-infected RPE did not produce any interferon-γ, suggesting that IDO1 is induced by other soluble factors, by the virus alone, or both. Conclusions Low-level WNV infection of hRPE cells induced expression of genes that are typically associated with the host cell response to virus infection. We also identified other genes, including IDO1 and BAMBI, that may influence the RPE and therefore outer blood-retinal barrier integrity during ocular infection and inflammation, or are associated with degeneration, as seen for example in aging. PMID:22509103
Gupta, Vikas; Estrada, April D; Blakley, Ivory; Reid, Rob; Patel, Ketan; Meyer, Mason D; Andersen, Stig Uggerhøj; Brown, Allan F; Lila, Mary Ann; Loraine, Ann E
2015-01-01
Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry varieties with enhanced health benefits. Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments identified developmentally regulated alternative splicing, promoter use, and 3' end formation. We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that provide an important new resource enabling high throughput studies in blueberry.
DEIVA: a web application for interactive visual analysis of differential gene expression profiles.
Harshbarger, Jayson; Kratz, Anton; Carninci, Piero
2017-01-07
Differential gene expression (DGE) analysis is a technique to identify statistically significant differences in RNA abundance for genes or arbitrary features between different biological states. The result of a DGE test is typically further analyzed using statistical software, spreadsheets or custom ad hoc algorithms. We identified a need for a web-based system to share DGE statistical test results, and locate and identify genes in DGE statistical test results with a very low barrier of entry. We have developed DEIVA, a free and open source, browser-based single page application (SPA) with a strong emphasis on being user friendly that enables locating and identifying single or multiple genes in an immediate, interactive, and intuitive manner. By design, DEIVA scales with very large numbers of users and datasets. Compared to existing software, DEIVA offers a unique combination of design decisions that enable inspection and analysis of DGE statistical test results with an emphasis on ease of use.
Yoon, J. Cliff; Chickering, Troy W.; Rosen, Evan D.; Dussault, Barry; Qin, Yubin; Soukas, Alexander; Friedman, Jeffrey M.; Holmes, William E.; Spiegelman, Bruce M.
2000-01-01
The nuclear receptor peroxisome proliferator-activated receptor γ regulates adipose differentiation and systemic insulin signaling via ligand-dependent transcriptional activation of target genes. However, the identities of the biologically relevant target genes are largely unknown. Here we describe the isolation and characterization of a novel target gene induced by PPARγ ligands, termed PGAR (for PPARγ angiopoietin related), which encodes a novel member of the angiopoietin family of secreted proteins. The transcriptional induction of PGAR follows a rapid time course typical of immediate-early genes and occurs in the absence of protein synthesis. The expression of PGAR is predominantly localized to adipose tissues and placenta and is consistently elevated in genetic models of obesity. Hormone-dependent adipocyte differentiation coincides with a dramatic early induction of the PGAR transcript. Alterations in nutrition and leptin administration are found to modulate the PGAR expression in vivo. Taken together, these data suggest a possible role for PGAR in the regulation of systemic lipid metabolism or glucose homeostasis. PMID:10866690
Cotesia vestalis parasitization suppresses expression of a Plutella xylostella thioredoxin
USDA-ARS?s Scientific Manuscript database
Thioredoxins (Trxs) are a family of small, highly conserved and ubiquitous proteins involved in protecting organisms against toxic reactive oxygen species (ROS). In this study, a typical thioredoxin gene, PxTrx, was isolated from Plutella xylostella. The full-length cDNA sequence is composed of 959 ...
L.G. Baker; Pauline Spaine; S.F. Covert
2006-01-01
Cronartium quercuum f. sp. fusiforme is an obligate pathogen of pine and oak. Its basidiospores are specifically adapted to recognize and establish infections on the pine host. Depending on environmental cues, the basidiospores can germinate directly, which typically leads to infection of pine,...
[A case of familial Marfan syndrome without manifested ocular anomalies].
Kavtaradze, N P; Natriashvili, G D; Kapanadze, N B
1989-01-01
Three sibs aged 14, 13 and 10 years are described. The Marfan's syndrome was inherited from their father. Full penetration and pseudovariable expressivity of the mutant gene were characteristic of the case. With pronounced phenotypic manifestations of the mutation inherited, the lack of typical ocular anomalies was evident.
2013-01-01
Background Plants that utilize the highly efficient C4 pathway of photosynthesis typically possess kranz-type leaf anatomy that consists of two morphologically and functionally distinct photosynthetic cell types, the bundle sheath (BS) and mesophyll (M) cells. These two cell types differentially express many genes that are required for C4 capability and function. In mature C4 leaves, the plastidic rbcL gene, encoding the large subunit of the primary CO2 fixation enzyme Rubisco, is expressed specifically within BS cells. Numerous studies have demonstrated that BS-specific rbcL gene expression is regulated predominantly at post-transcriptional levels, through the control of translation and mRNA stability. The identification of regulatory factors associated with C4 patterns of rbcL gene expression has been an elusive goal for many years. Results RLSB, encoded by the nuclear RLSB gene, is an S1-domain RNA binding protein purified from C4 chloroplasts based on its specific binding to plastid-encoded rbcL mRNA in vitro. Co-localized with LSU to chloroplasts, RLSB is highly conserved across many plant species. Most significantly, RLSB localizes specifically to leaf bundle sheath (BS) cells in C4 plants. Comparative analysis using maize (C4) and Arabidopsis (C3) reveals its tight association with rbcL gene expression in both plants. Reduced RLSB expression (through insertion mutation or RNA silencing, respectively) led to reductions in rbcL mRNA accumulation and LSU production. Additional developmental effects, such as virescent/yellow leaves, were likely associated with decreased photosynthetic function and disruption of associated signaling networks. Conclusions Reductions in RLSB expression, due to insertion mutation or gene silencing, are strictly correlated with reductions in rbcL gene expression in both maize and Arabidopsis. In both plants, accumulation of rbcL mRNA as well as synthesis of LSU protein were affected. These findings suggest that specific accumulation and binding of the RLSB binding protein to rbcL mRNA within BS chloroplasts may be one determinant leading to the characteristic cell type-specific localization of Rubisco in C4 plants. Evolutionary modification of RLSB expression, from a C3 “default” state to BS cell-specificity, could represent one mechanism by which rbcL expression has become restricted to only one cell type in C4 plants. PMID:24053212
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbin, Cyrielle; Drouet, Samantha; Markulin, Lucija
Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress. Dirigent proteins (DIRs) were discovered during 8-8' lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (-)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset ofmore » genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8' linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (-)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved in different aspects of secondary cell wall biosynthesis and plant defense.« less
Corbin, Cyrielle; Drouet, Samantha; Markulin, Lucija; Auguin, Daniel; Lainé, Éric; Davin, Laurence B; Cort, John R; Lewis, Norman G; Hano, Christophe
2018-05-01
Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress. Dirigent proteins (DIRs) were discovered during 8-8' lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (-)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset of genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8' linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (-)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved in different aspects of secondary cell wall biosynthesis and plant defense.
Yarur, Antonia; Soto, Esteban; León, Gabriel; Almeida, Andrea Miyasaka
2016-12-01
FT gene is expressed in leaves and buds and is involved in floral meristem determination and bud development in sweet cherry. In woody fruit perennial trees, floral determination, dormancy and bloom, depends on perception of different environmental and endogenous cues which converge to a systemic signaling gene known as FLOWERING LOCUS T (FT). In long-day flowering plants, FT is expressed in the leaves on long days. The protein travels through the phloem to the shoot apical meristem, where it induces flower determination. In perennial plants, meristem determination and flowering are separated by a dormancy period. Meristem determination takes place in summer, but flowering occurs only after a dormancy period and cold accumulation during winter. The roles of FT are not completely clear in meristem determination, dormancy release, and flowering in perennial plants. We cloned FT from sweet cherry (Prunus avium) and analyzed its expression pattern in leaves and floral buds during spring and summer. Phylogenetic analysis shows high identity of the FT cloned sequence with orthologous genes from other Rosaceae species. Our results show that FT is expressed in both leaves and floral buds and increases when the daylight reached 12 h. The peak in FT expression was coincident with floral meristem identity genes expression and morphological changes typical of floral meristem determination. The Edi-0 Arabidopsis ecotype, which requires vernalization to flower, was transformed with a construct for overexpression of PavFT. These transgenic plants showed an early-flowering phenotype without cold treatment. Our results suggest that FT is involved in floral meristem determination and bud development in sweet cherry. Moreover, we show that FT is expressed in both leaves and floral buds in this species, in contrast to annual plants.
Timescales and bottlenecks in miRNA-dependent gene regulation.
Hausser, Jean; Syed, Afzal Pasha; Selevsek, Nathalie; van Nimwegen, Erik; Jaskiewicz, Lukasz; Aebersold, Ruedi; Zavolan, Mihaela
2013-12-03
MiRNAs are post-transcriptional regulators that contribute to the establishment and maintenance of gene expression patterns. Although their biogenesis and decay appear to be under complex control, the implications of miRNA expression dynamics for the processes that they regulate are not well understood. We derived a mathematical model of miRNA-mediated gene regulation, inferred its parameters from experimental data sets, and found that the model describes well time-dependent changes in mRNA, protein and ribosome density levels measured upon miRNA transfection and induction. The inferred parameters indicate that the timescale of miRNA-dependent regulation is slower than initially thought. Delays in miRNA loading into Argonaute proteins and the slow decay of proteins relative to mRNAs can explain the typically small changes in protein levels observed upon miRNA transfection. For miRNAs to regulate protein expression on the timescale of a day, as miRNAs involved in cell-cycle regulation do, accelerated miRNA turnover is necessary.
Koi, Satoshi; Katayama, Natsu
2013-01-01
Podostemaceae is a family of aquatic angiosperms growing submerged on rocks in fast-flowing water and called moss-like or alga-like riverweeds. It evolved remarkable innovations to adapt to such an extreme environment, one of which is reduced shoots borne on roots adhering to rock surface. Recent observations revealed that the basal subfamily Tristichoideae, like most other angiosperms, has typical shoot apical meristems (SAMs). In species of the subfamily Podostemoideae, however, shoot apical meristems (SAMs) are not formed during development and new leaves arise from the meristematic basal region of preexisting leaves. The genetic basis of this shoot organogenesis process, e.g., the expression patterns of genes homologous to transcription factors regulating shoot development, is essential to better understand the evolution of Podostemaceae. A gene expression analysis found that the SAM-less Podostemoideae leaf has mixed identity of SAM and leaf, and provided insight into the evolution of the shoot in Podostemaceae.
HbMADS4, a MADS-box Transcription Factor from Hevea brasiliensis, Negatively Regulates HbSRPP.
Li, Hui-Liang; Wei, Li-Ran; Guo, Dong; Wang, Ying; Zhu, Jia-Hong; Chen, Xiong-Ting; Peng, Shi-Qing
2016-01-01
In plants MADS-box transcription factors (TFs) play important roles in growth and development. However, no plant MADS-box gene has been identified to have a function related to secondary metabolites regulation. Here, a MADS-box TF gene, designated as HbMADS4 , was isolated from Hevea brasiliensis by the yeast one-hybrid experiment to screen the latex cDNA library using the promoter of the gene encoding H. brasiliensis small rubber particle protein (HbSRPP) as bait. HbMADS4 was 984-bp containing 633-bp open reading frame encoding a deduced protein of 230 amino acid residues with a typical conserved MADS-box motif at the N terminus. HbMADS4 was preferentially expressed in the latex, but little expression was detected in the leaves, flowers, and roots. Its expression was inducible by methyl jasmonate and ethylene. Furthermore, transient over-expression and over-expression of HbMADS4 in transgenic tobacco plants significantly suppressed the activity of the HbSRP promoter. Altogether, it is proposed that HbMADS4 is a negative regulator of HbSRPP which participates in the biosynthesis of natural rubber.
Letek, Michal; Valbuena, Noelia; Ramos, Angelina; Ordóñez, Efrén; Gil, José A.; Mateos, Luís M.
2006-01-01
The genes involved in gluconate catabolism (gntP and gntK) in Corynebacterium glutamicum are scattered in the chromosome, and no regulatory genes are apparently associated with them, in contrast with the organization of the gnt operon in Escherichia coli and Bacillus subtilis. In C. glutamicum, gntP and gntK are essential genes when gluconate is the only carbon and energy source. Both genes contain upstream regulatory regions consisting of a typical promoter and a hypothetical cyclic AMP (cAMP) receptor protein (CRP) binding region but lack the expected consensus operator region for binding of the GntR repressor protein. Expression analysis by Northern blotting showed monocistronic transcripts for both genes. The expression of gntP and gntK is not induced by gluconate, and the gnt genes are subject to catabolite repression by sugars, such as glucose, fructose, and sucrose, as was detected by quantitative reverse transcription-PCR (qRT-PCR). Specific analysis of the DNA promoter sequences (PgntK and PgntP) was performed using bifunctional promoter probe vectors containing mel (involved in melanin production) or egfp2 (encoding a green fluorescent protein derivative) as the reporter gene. Using this approach, we obtained results parallel to those from qRT-PCR. An applied example of in vivo gene expression modulation of the divIVA gene in C. glutamicum is shown, corroborating the possible use of the gnt promoters to control gene expression. glxR (which encodes GlxR, the hypothetical CRP protein) was subcloned from the C. glutamicum chromosomal DNA and overexpressed in corynebacteria; we found that the level of gnt expression was slightly decreased compared to that of the control strains. The purified GlxR protein was used in gel shift mobility assays, and a specific interaction of GlxR with sequences present on PgntP and PgntK fragments was detected only in the presence of cAMP. PMID:16385030
Letek, Michal; Valbuena, Noelia; Ramos, Angelina; Ordóñez, Efrén; Gil, José A; Mateos, Luís M
2006-01-01
The genes involved in gluconate catabolism (gntP and gntK) in Corynebacterium glutamicum are scattered in the chromosome, and no regulatory genes are apparently associated with them, in contrast with the organization of the gnt operon in Escherichia coli and Bacillus subtilis. In C. glutamicum, gntP and gntK are essential genes when gluconate is the only carbon and energy source. Both genes contain upstream regulatory regions consisting of a typical promoter and a hypothetical cyclic AMP (cAMP) receptor protein (CRP) binding region but lack the expected consensus operator region for binding of the GntR repressor protein. Expression analysis by Northern blotting showed monocistronic transcripts for both genes. The expression of gntP and gntK is not induced by gluconate, and the gnt genes are subject to catabolite repression by sugars, such as glucose, fructose, and sucrose, as was detected by quantitative reverse transcription-PCR (qRT-PCR). Specific analysis of the DNA promoter sequences (PgntK and PgntP) was performed using bifunctional promoter probe vectors containing mel (involved in melanin production) or egfp2 (encoding a green fluorescent protein derivative) as the reporter gene. Using this approach, we obtained results parallel to those from qRT-PCR. An applied example of in vivo gene expression modulation of the divIVA gene in C. glutamicum is shown, corroborating the possible use of the gnt promoters to control gene expression. glxR (which encodes GlxR, the hypothetical CRP protein) was subcloned from the C. glutamicum chromosomal DNA and overexpressed in corynebacteria; we found that the level of gnt expression was slightly decreased compared to that of the control strains. The purified GlxR protein was used in gel shift mobility assays, and a specific interaction of GlxR with sequences present on PgntP and PgntK fragments was detected only in the presence of cAMP.
Genetics, gene expression and bioinformatics of the pituitary gland.
Davis, Shannon W; Potok, Mary Anne; Brinkmeier, Michelle L; Carninci, Piero; Lyons, Robert H; MacDonald, James W; Fleming, Michelle T; Mortensen, Amanda H; Egashira, Noboru; Ghosh, Debashis; Steel, Karen P; Osamura, Robert Y; Hayashizaki, Yoshihide; Camper, Sally A
2009-04-01
Genetic cases of congenital pituitary hormone deficiency are common and many are caused by transcription factor defects. Mouse models with orthologous mutations are invaluable for uncovering the molecular mechanisms that lead to problems in organ development and typical patient characteristics. We are using mutant mice defective in the transcription factors PROP1 and POU1F1 for gene expression profiling to identify target genes for these critical transcription factors and candidates for cases of pituitary hormone deficiency of unknown aetiology. These studies reveal critical roles for Wnt signalling pathways, including the TCF/LEF transcription factors and interacting proteins of the groucho family, bone morphogenetic protein antagonists and targets of notch signalling. Current studies are investigating the roles of novel homeobox genes and pathways that regulate the transition from proliferation to differentiation, cell adhesion and cell migration. Pituitary adenomas are a common human health problem, yet most cases are sporadic, necessitating alternative approaches to traditional Mendelian genetic studies. Mouse models of adenoma formation offer the opportunity for gene expression profiling during progressive stages of hyperplasia, adenoma and tumorigenesis. This approach holds promise for the identification of relevant pathways and candidate genes as risk factors for adenoma formation, understanding mechanisms of progression, and identifying drug targets and clinically relevant biomarkers. Copyright 2009 S. Karger AG, Basel.
Genetics, Gene Expression and Bioinformatics of the Pituitary Gland
Davis, Shannon W; Potok, Mary Anne; Brinkmeier, Michelle L; Carninci, Piero; Lyons, Robert H; MacDonald, James W.; Fleming, Michelle T; Mortensen, Amanda H; Egashira, Noboru; Ghosh, Debashis; Steel, Karen P.; Osamura, Robert Y; Hayashizaki, Yoshihide; Camper, Sally A
2011-01-01
Genetic cases of congenital pituitary hormone deficiency are common and many are caused by transcription factor defects. Mouse models with orthologous mutations are invaluable for uncovering the molecular mechanisms that lead to problems in organ development and typical patient characteristics. We are using mutant mice defective in the transcription factors PROP1 and POU1F1 for gene expression profiling to identify target genes for these critical transcription factors and candidates for cases of pituitary hormone deficiency of unknown etiology. These studies reveal critical roles for Wnt signalling pathways including the TCF/LEF transcription factors and interacting proteins of the groucho family, bone morphogenetic proteins antagonists, and targets of notch signalling. Current studies are investigating roles of novel homeobox genes and pathways that regulate the transition from proliferation to differentiation, cell adhesion and cell migration. Pituitary adenomas are a common human health problem, yet most cases are sporadic, necessitating alternative approaches to traditional Mendelian genetic studies. Mouse models of adenoma formation offer the opportunity for gene expression profiling during progressive stages of hyperplasia, adenoma and tumorigenesis. This approach holds promise for identification of relevant pathways and candidate genes as risk factors for adenoma formation, understanding mechanisms of progression, and identifying drug targets and clinically relevant biomarkers. PMID:19407506
NASA Technical Reports Server (NTRS)
Adams, Gregory A.; Haddad, Fadia; Baldwin, Kenneth M.
2003-01-01
Several muscles in the body exist mainly to work against gravity. Whether gravity is important in the development of these muscles is not known. By examining the basic proteins that compose muscle, questions about the role of gravity in muscle development can be answered. Myosin heavy chains (MHCs) are a family of proteins critically important for muscle contraction. Several types of MHCs exist (e.g., neonatal, slow, fast), and each type is produced by a particular gene. Neonatal MHCs are produced early in life. Slow MHCs are important in antigravity muscles, and fast MHCs are found in fast-twitch power muscles. The gene that is turned on or expressed will determine which MHC is produced. Early in development, antigravity skeletal muscles (muscles that work against gravity) normally produce a combination of the neonatal/embryonic MHCs. The expression of these primitive MHCs is repressed early in development; and the adult slow and fast MHC genes become fully expressed. We tested the hypothesis that weightbearing activity is critical for inducing the normal expression of the slow MHC gene typically expressed in adult antigravity muscles. Also, we hypothesized that thyroid hormone, but not opposition to gravity, is necessary for expressing the adult fast IIb MHC gene essential for high-intensity muscle performance. Groups of normal thyroid and thyroid-deficient neonatal rats were studied after their return from the 16-day Neurolab mission and compared to matched controls. The results suggest: (1) Weightlessness impaired body and limb skeletal muscle growth in both normal and thyroid-deficient animals. Antigravity muscles were impaired more than those used primarily for locomotion andor nonweightbearing activity. (2) Systemic and muscle expression of insulin-like growth factor-I (IGF-I), an important body and tissue growth factor, was depressed in flight animals. (3) Normal slow, type I MHC gene expression was markedly repressed in the normal thyroid flight group. (4) Fast IIb MHC gene expression was enhanced in fast-twitch muscles of normal thyroid animals exposed to spaceflight; however, thyroid deficiency markedly repressed expression of this gene independently of spaceflight. In summary, the absence of gravity, when imposed at critical stages of development, impaired body and skeletal muscle growth, as well as expression of the MHC gene family of motor proteins. This suggests that normal weightbearing activity is essential for establishing body and muscle growth in neonatal animals, and for expressing the motor gene essential for supporting antigravity functions.
Expression of cancer-testis antigens MAGE-A4 and MAGE-C1 in oral squamous cell carcinoma.
Montoro, José Raphael de Moura Campos; Mamede, Rui Celso Martins; Neder Serafini, Luciano; Saggioro, Fabiano Pinto; Figueiredo, David Livingstone Alves; Silva, Wilson Araújo da; Jungbluth, Achim A; Spagnoli, Giulio Cesare; Zago, Marco Antônio
2012-08-01
Tumor markers are genes or their products expressed exclusively or preferentially in tumor cells and cancer-testis antigens (CTAs) form a group of genes with a typical expression pattern expressed in a variety of malignant neoplasms. CTAs are considered potential targets for cancer vaccines. It is possible that the CTA MAGE-A4 (melanoma antigen) and MAGE-C1 are expressed in carcinoma of the oral cavity and are related with survival. This study involved immunohistochemical analysis of 23 patients with oral squamous cell carcinoma (SCC) and was carried out using antibodies for MAGE-A4 and MAGE-C1. Fisher's exact test and log-rank test were used to evaluate the results. The expression of the MAGE-A4 and MAGE-C1 were 56.5% and 47.8% without statistical difference in studied variables and survival. The expression of at least 1 CTA was present in 78.3% of the patients, however, without correlation with clinicopathologic variables and survival. Copyright © 2011 Wiley Periodicals, Inc.
Shirahata, Mitsuaki; Iwao-Koizumi, Kyoko; Saito, Sakae; Ueno, Noriko; Oda, Masashi; Hashimoto, Nobuo; Takahashi, Jun A; Kato, Kikuya
2007-12-15
Current morphology-based glioma classification methods do not adequately reflect the complex biology of gliomas, thus limiting their prognostic ability. In this study, we focused on anaplastic oligodendroglioma and glioblastoma, which typically follow distinct clinical courses. Our goal was to construct a clinically useful molecular diagnostic system based on gene expression profiling. The expression of 3,456 genes in 32 patients, 12 and 20 of whom had prognostically distinct anaplastic oligodendroglioma and glioblastoma, respectively, was measured by PCR array. Next to unsupervised methods, we did supervised analysis using a weighted voting algorithm to construct a diagnostic system discriminating anaplastic oligodendroglioma from glioblastoma. The diagnostic accuracy of this system was evaluated by leave-one-out cross-validation. The clinical utility was tested on a microarray-based data set of 50 malignant gliomas from a previous study. Unsupervised analysis showed divergent global gene expression patterns between the two tumor classes. A supervised binary classification model showed 100% (95% confidence interval, 89.4-100%) diagnostic accuracy by leave-one-out cross-validation using 168 diagnostic genes. Applied to a gene expression data set from a previous study, our model correlated better with outcome than histologic diagnosis, and also displayed 96.6% (28 of 29) consistency with the molecular classification scheme used for these histologically controversial gliomas in the original article. Furthermore, we observed that histologically diagnosed glioblastoma samples that shared anaplastic oligodendroglioma molecular characteristics tended to be associated with longer survival. Our molecular diagnostic system showed reproducible clinical utility and prognostic ability superior to traditional histopathologic diagnosis for malignant glioma.
Phosphorus starvation induces post-transcriptional CHS gene silencing in Petunia corolla.
Hosokawa, Munetaka; Yamauchi, Takayoshi; Takahama, Masayoshi; Goto, Mariko; Mikano, Sachiko; Yamaguchi, Yuki; Tanaka, Yoshiyuki; Ohno, Sho; Koeda, Sota; Doi, Motoaki; Yazawa, Susumu
2013-05-01
The corolla of Petunia 'Magic Samba' exhibits unstable anthocyanin expression depending on its phosphorus content. Phosphorus deficiency enhanced post-transcriptional gene silencing of chalcone synthase - A in the corolla. Petunia (Petunia hybrida) 'Magic Samba' has unstable red-white bicolored corollas that respond to nutrient deficiency. We grew this cultivar hydroponically using solutions that lacked one or several nutrients to identify the specific nutrient related to anthocyanin expression in corolla. The white area of the corolla widened under phosphorus (P)-deficient conditions. When the P content of the corolla grown under P-deficient conditions dropped to <2,000 ppm, completely white corollas continued to develop in >40 corollas until the plants died. Other elemental deficiencies had no clear effects on anthocyanin suppression in the corolla. After phosphate was resupplied to the P-deficient plants, anthocyanin was restored in the corollas. The expression of chalcone synthase-A (CHS-A) was suppressed in the white area that widened under P-suppressed conditions, whereas the expression of several other genes related to anthocyanin biosynthesis was enhanced more in the white area than in the red area. Reddish leaves and sepals developed under the P-deficient condition, which is a typical P-deficiency symptom. Two genes related to anthocyanin biosynthesis were enhanced in the reddish organs. Small interfering RNA analysis of CHS-A showed that the suppression resulted from post-transcriptional gene silencing (PTGS). Thus, it was hypothesized that the enhancement of anthocyanin biosynthetic gene expression due to P-deficiency triggered PTGS of CHS-A, which resulted in white corolla development.
Human Papillomaviruses; Epithelial Tropisms, and the Development of Neoplasia
Egawa, Nagayasu; Egawa, Kiyofumi; Griffin, Heather; Doorbar, John
2015-01-01
Papillomaviruses have evolved over many millions of years to propagate themselves at specific epithelial niches in a range of different host species. This has led to the great diversity of papillomaviruses that now exist, and to the appearance of distinct strategies for epithelial persistence. Many papillomaviruses minimise the risk of immune clearance by causing chronic asymptomatic infections, accompanied by long-term virion-production with only limited viral gene expression. Such lesions are typical of those caused by Beta HPV types in the general population, with viral activity being suppressed by host immunity. A second strategy requires the evolution of sophisticated immune evasion mechanisms, and allows some HPV types to cause prominent and persistent papillomas, even in immune competent individuals. Some Alphapapillomavirus types have evolved this strategy, including those that cause genital warts in young adults or common warts in children. These strategies reflect broad differences in virus protein function as well as differences in patterns of viral gene expression, with genotype-specific associations underlying the recent introduction of DNA testing, and also the introduction of vaccines to protect against cervical cancer. Interestingly, it appears that cellular environment and the site of infection affect viral pathogenicity by modulating viral gene expression. With the high-risk HPV gene products, changes in E6 and E7 expression are thought to account for the development of neoplasias at the endocervix, the anal and cervical transformation zones, and the tonsilar crypts and other oropharyngeal sites. A detailed analysis of site-specific patterns of gene expression and gene function is now prompted. PMID:26193301
Bent, Zachary W.; Poorey, Kunal; Brazel, David M.; ...
2015-04-20
Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocoliticabiovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26°C to establish amore » baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37°C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.« less
A transcriptome analysis of two grapevine populations segregating for tendril phyllotaxy
Arro, Jie; Cuenca, Jose; Yang, Yingzhen; Liang, Zhenchang; Cousins, Peter; Zhong, Gan-Yuan
2017-01-01
The shoot structure of cultivated grapevine Vitis vinifera L. typically exhibits a three-node modular repetitive pattern, two sequential leaf-opposed tendrils followed by a tendril-free node. In this study, we investigated the molecular basis of this pattern by characterizing differentially expressed genes in 10 bulk samples of young tendril tissue from two grapevine populations showing segregation of mutant or wild-type shoot/tendril phyllotaxy. One population was the selfed progeny and the other one, an outcrossed progeny of a Vitis hybrid, ‘Roger’s Red’. We analyzed 13 375 expressed genes and carried out in-depth analyses of 324 of them, which were differentially expressed with a minimum of 1.5-fold changes between the mutant and wild-type bulk samples in both selfed and cross populations. A significant portion of these genes were direct cis-binding targets of 14 transcription factor families that were themselves differentially expressed. Network-based dependency analysis further revealed that most of the significantly rewired connections among the 10 most connected hub genes involved at least one transcription factor. TCP3 and MYB12, which were known important for plant-form development, were among these transcription factors. More importantly, TCP3 and MYB12 were found in this study to be involved in regulating the lignin gene PRX52, which is important to plant-form development. A further support evidence for the roles of TCP3-MYB12-PRX52 in contributing to tendril phyllotaxy was the findings of two other lignin-related genes uniquely expressed in the mutant phyllotaxy background. PMID:28713572
GECKO: a complete large-scale gene expression analysis platform.
Theilhaber, Joachim; Ulyanov, Anatoly; Malanthara, Anish; Cole, Jack; Xu, Dapeng; Nahf, Robert; Heuer, Michael; Brockel, Christoph; Bushnell, Steven
2004-12-10
Gecko (Gene Expression: Computation and Knowledge Organization) is a complete, high-capacity centralized gene expression analysis system, developed in response to the needs of a distributed user community. Based on a client-server architecture, with a centralized repository of typically many tens of thousands of Affymetrix scans, Gecko includes automatic processing pipelines for uploading data from remote sites, a data base, a computational engine implementing approximately 50 different analysis tools, and a client application. Among available analysis tools are clustering methods, principal component analysis, supervised classification including feature selection and cross-validation, multi-factorial ANOVA, statistical contrast calculations, and various post-processing tools for extracting data at given error rates or significance levels. On account of its open architecture, Gecko also allows for the integration of new algorithms. The Gecko framework is very general: non-Affymetrix and non-gene expression data can be analyzed as well. A unique feature of the Gecko architecture is the concept of the Analysis Tree (actually, a directed acyclic graph), in which all successive results in ongoing analyses are saved. This approach has proven invaluable in allowing a large (approximately 100 users) and distributed community to share results, and to repeatedly return over a span of years to older and potentially very complex analyses of gene expression data. The Gecko system is being made publicly available as free software http://sourceforge.net/projects/geckoe. In totality or in parts, the Gecko framework should prove useful to users and system developers with a broad range of analysis needs.
Principle considerations for the use of transcriptomics in doping research.
Neuberger, Elmo W I; Moser, Dirk A; Simon, Perikles
2011-10-01
Over the course of the past decade, technical progress has enabled scientists to investigate genome-wide RNA expression using microarray platforms. This transcriptomic approach represents a promising tool for the discovery of basic gene expression patterns and for identification of cellular signalling pathways under various conditions. Since doping substances have been shown to influence mRNA expression, it has been suggested that these changes can be detected by screening the blood transcriptome. In this review, we critically discuss the potential but also the pitfalls of this application as a tool in doping research. Transcriptomic approaches were considered to potentially provide researchers with a unique gene expression signature or with a specific biomarker for various physiological and pathophysiological conditions. Since transcriptomic approaches are considerably prone to biological and technical confounding factors that act on study subjects or samples, very strict guidelines for the use of transcriptomics in human study subjects have been developed. Typical field conditions associated with doping controls limit the feasibility of following these strict guidelines as there are too many variables counteracting a standardized procedure. After almost a decade of research using transcriptomic tools, it still remains a matter of future technological progress to identify the ultimate biomarker using technologies and/or methodologies that are sufficiently robust against typical biological and technical bias and that are valid in a court of law. Copyright © 2011 John Wiley & Sons, Ltd.
Rapid Evolution of Ovarian-Biased Genes in the Yellow Fever Mosquito (Aedes aegypti).
Whittle, Carrie A; Extavour, Cassandra G
2017-08-01
Males and females exhibit highly dimorphic phenotypes, particularly in their gonads, which is believed to be driven largely by differential gene expression. Typically, the protein sequences of genes upregulated in males, or male-biased genes, evolve rapidly as compared to female-biased and unbiased genes. To date, the specific study of gonad-biased genes remains uncommon in metazoans. Here, we identified and studied a total of 2927, 2013, and 4449 coding sequences (CDS) with ovary-biased, testis-biased, and unbiased expression, respectively, in the yellow fever mosquito Aedes aegypti The results showed that ovary-biased and unbiased CDS had higher nonsynonymous to synonymous substitution rates (dN/dS) and lower optimal codon usage (those codons that promote efficient translation) than testis-biased genes. Further, we observed higher dN/dS in ovary-biased genes than in testis-biased genes, even for genes coexpressed in nonsexual (embryo) tissues. Ovary-specific genes evolved exceptionally fast, as compared to testis- or embryo-specific genes, and exhibited higher frequency of positive selection. Genes with ovary expression were preferentially involved in olfactory binding and reception. We hypothesize that at least two potential mechanisms could explain rapid evolution of ovary-biased genes in this mosquito: (1) the evolutionary rate of ovary-biased genes may be accelerated by sexual selection (including female-female competition or male-mate choice) affecting olfactory genes during female swarming by males, and/or by adaptive evolution of olfactory signaling within the female reproductive system ( e.g. , sperm-ovary signaling); and/or (2) testis-biased genes may exhibit decelerated evolutionary rates due to the formation of mating plugs in the female after copulation, which limits male-male sperm competition. Copyright © 2017 by the Genetics Society of America.
Characterization of a gene coding for a type IIo bacterial IgG-binding protein.
Boyle, M D; Weber-Heynemann, J; Raeder, R; Podbielski, A
1995-06-01
Two antigenic classes of non-immune IgG-binding proteins can be expressed by group A streptococci. One antigenic group of proteins is recognized by an antibody prepared against the product of a cloned fcrA gene (anti-FcRA). In this study, the immunogen used to prepare the antibody that defines the second antigenic class was shown to be the product of the emm-like (emmL) gene of M serotype 55 group A isolate, A928. The emmL55 gene expressed in E. coli produced an M(r) approximately 58,000 molecule which bound human IgG1, IgG2, IgG3 and IgG4, as well as horse, rabbit and pig IgG in a non-immune fashion. These properties are characteristic of the previously described type IIo IgG-binding protein isolated from this strain. In addition, the recombinant protein was reactive with human serum albumin and fibrinogen. The emmL 55 gene sequence was analysed and found to have the organization and sequence characteristics of a typical class I emm-like gene.
Jin, Yazhong; Zhang, Chong; Liu, Wei; Tang, Yufan; Qi, Hongyan; Chen, Hao; Cao, Songxiao
2016-01-01
Alcohol dehydrogenases (ADH), encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH), designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into three groups respectively, namely long-, medium-, and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into six medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed. PMID:27242871
Kanno, Akira; Saeki, Hiroshi; Kameya, Toshiaki; Saedler, Heinz; Theissen, Günter
2003-07-01
In higher eudicotyledonous angiosperms the floral organs are typically arranged in four different whorls, containing sepals, petals, stamens and carpels. According to the ABC model, the identity of these organs is specified by floral homeotic genes of class A, A+B, B+C and C, respectively. In contrast to the sepal and petal whorls of eudicots, the perianths of many plants from the Liliaceae family have two outer whorls of almost identical petaloid organs, called tepals. To explain the Liliaceae flower morphology, van Tunen et al. (1993) proposed a modified ABC model, exemplified with tulip. According to this model, class B genes are not only expressed in whorls 2 and 3, but also in whorl 1. Thus the organs of both whorls 1 and 2 express class A plus class B genes and, therefore, get the same petaloid identity. To test this modified ABC model we have cloned and characterized putative class B genes from tulip. Two DEF- and one GLO-like gene were identified, named TGDEFA, TGDEFB and TGGLO. Northern hybridization analysis showed that all of these genes are expressed in whorls 1, 2 and 3 (outer and inner tepals and stamens), thus corroborating the modified ABC model. In addition, these experiments demonstrated that TGGLO is also weakly expressed in carpels, leaves, stems and bracts. Gel retardation assays revealed that TGGLO alone binds to DNA as a homodimer. In contrast, TGDEFA and TGDEFB cannot homodimerize, but make heterodimers with PI. Homodimerization of GLO-like protein has also been reported for lily, suggesting that this phenomenon is conserved within Liliaceae plants or even monocot species.
Spaceflight Transcriptomes: Unique Responses to a Novel Environment
Paul, Anna-Lisa; Zupanska, Agata K.; Ostrow, Dejerianne T.; Zhang, Yanping; Sun, Yijun; Li, Jian-Liang; Shanker, Savita; Farmerie, William G.; Amalfitano, Claire E.
2012-01-01
Abstract The spaceflight environment presents unique challenges to terrestrial biology, including but not limited to the direct effects of gravity. As we near the end of the Space Shuttle era, there remain fundamental questions about the response and adaptation of plants to orbital spaceflight conditions. We address a key baseline question of whether gene expression changes are induced by the orbital environment, and then we ask whether undifferentiated cells, cells presumably lacking the typical gravity response mechanisms, perceive spaceflight. Arabidopsis seedlings and undifferentiated cultured Arabidopsis cells were launched in April, 2010, as part of the BRIC-16 flight experiment on STS-131. Biologically replicated DNA microarray and averaged RNA digital transcript profiling revealed several hundred genes in seedlings and cell cultures that were significantly affected by launch and spaceflight. The response was moderate in seedlings; only a few genes were induced by more than 7-fold, and the overall intrinsic expression level for most differentially expressed genes was low. In contrast, cell cultures displayed a more dramatic response, with dozens of genes showing this level of differential expression, a list comprised primarily of heat shock–related and stress-related genes. This baseline transcriptome profiling of seedlings and cultured cells confirms the fundamental hypothesis that survival of the spaceflight environment requires adaptive changes that are both governed and displayed by alterations in gene expression. The comparison of intact plants with cultures of undifferentiated cells confirms a second hypothesis: undifferentiated cells can detect spaceflight in the absence of specialized tissue or organized developmental structures known to detect gravity. Key Words: Tissue culture—Microgravity—Low Earth orbit—Space Shuttle—Microarray. Astrobiology 12, 40–56. PMID:22221117
Dynamic modelling of microRNA regulation during mesenchymal stem cell differentiation.
Weber, Michael; Sotoca, Ana M; Kupfer, Peter; Guthke, Reinhard; van Zoelen, Everardus J
2013-11-12
Network inference from gene expression data is a typical approach to reconstruct gene regulatory networks. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation, microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference aimes at determining interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target predictions. We applied the NetGenerator tool in order to infer an integrated gene regulatory network. Time series experiments were performed to measure mRNA and miRNA abundances of TGF-beta1+BMP2 stimulated hMSCs. Network nodes were identified by analysing temporal expression changes, miRNA target gene predictions, time series correlation and literature knowledge. Network inference was performed using NetGenerator to reconstruct a dynamical regulatory model based on the measured data and prior knowledge. The resulting model is robust against noise and shows an optimal trade-off between fitting precision and inclusion of prior knowledge. It predicts the influence of miRNAs on the expression of chondrogenic marker genes and therefore proposes novel regulatory relations in differentiation control. By analysing the inferred network, we identified a previously unknown regulatory effect of miR-524-5p on the expression of the transcription factor SOX9 and the chondrogenic marker genes COL2A1, ACAN and COL10A1. Genome-wide exploration of miRNA-mRNA regulatory relationships is a reasonable approach to identify miRNAs which have so far not been associated with the investigated differentiation process. The NetGenerator tool is able to identify valid gene regulatory networks on the basis of miRNA and mRNA time series data.
Inoue, Naoki; Hirouchi, Taisei; Kasai, Atsushi; Higashi, Shintaro; Hiraki, Natsumi; Tanaka, Shota; Nakazawa, Takanobu; Nunomura, Kazuto; Lin, Bangzhong; Omori, Akiko; Hayata-Takano, Atsuko; Kim, Yoon-Jeong; Doi, Takefumi; Baba, Akemichi; Hashimoto, Hitoshi; Shintani, Norihito
2018-01-08
We recently showed that a 13-kDa protein (p13), the homolog protein of formation of mitochondrial complex V assembly factor 1 in yeast, acts as a potential protective factor in pancreatic islets under diabetes. Here, we aimed to identify known compounds regulating p13 mRNA expression to obtain therapeutic insight into the cellular stress response. A luciferase reporter system was developed using the putative promoter region of the human p13 gene. Overexpression of peroxisome proliferator-activated receptor gamma coactivator 1α, a master player regulating mitochondrial metabolism, increased both reporter activity and p13 expression. Following unbiased screening with 2320 known compounds in HeLa cells, 12 pharmacological agents (including 8 cardiotonics and 2 anthracyclines) that elicited >2-fold changes in p13 mRNA expression were identified. Among them, four cardiac glycosides decreased p13 expression and concomitantly elevated cellular oxidative stress. Additional database analyses showed highest p13 expression in heart, with typically decreased expression in cardiac disease. Accordingly, our results illustrate the usefulness of unbiased compound screening as a method for identifying novel functional roles of unfamiliar genes. Our findings also highlight the importance of p13 in the cellular stress response in heart. Copyright © 2017. Published by Elsevier Inc.
Allelic Imbalance Is a Prevalent and Tissue-Specific Feature of the Mouse Transcriptome
Pinter, Stefan F.; Colognori, David; Beliveau, Brian J.; Sadreyev, Ruslan I.; Payer, Bernhard; Yildirim, Eda; Wu, Chao-ting; Lee, Jeannie T.
2015-01-01
In mammals, several classes of monoallelic genes have been identified, including those subject to X-chromosome inactivation (XCI), genomic imprinting, and random monoallelic expression (RMAE). However, the extent to which these epigenetic phenomena are influenced by underlying genetic variation is unknown. Here we perform a systematic classification of allelic imbalance in mouse hybrids derived from reciprocal crosses of divergent strains. We observe that deviation from balanced biallelic expression is common, occurring in ∼20% of the mouse transcriptome in a given tissue. Allelic imbalance attributed to genotypic variation is by far the most prevalent class and typically is tissue-specific. However, some genotype-based imbalance is maintained across tissues and is associated with greater genetic variation, especially in 5′ and 3′ termini of transcripts. We further identify novel random monoallelic and imprinted genes and find that genotype can modify penetrance of parental origin even in the setting of large imprinted regions. Examination of nascent transcripts in single cells from inbred parental strains reveals that genes showing genotype-based imbalance in hybrids can also exhibit monoallelic expression in isogenic backgrounds. This surprising observation may suggest a competition between alleles and/or reflect the combined impact of cis- and trans-acting variation on expression of a given gene. Our findings provide novel insights into gene regulation and may be relevant to human genetic variation and disease. PMID:25858912
Mollah, Mohammad Manir Hossain; Jamal, Rahman; Mokhtar, Norfilza Mohd; Harun, Roslan; Mollah, Md. Nurul Haque
2015-01-01
Background Identifying genes that are differentially expressed (DE) between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA), are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach that unifies the robustness and efficiency of estimation using the minimum β-divergence method to overcome some problems that arise in the existing robust methods for both small- and large-sample cases with multiple patterns of expression. Results The proposed method relies on a β-weight function, which produces values between 0 and 1. The β-weight function with β = 0.2 is used as a measure of outlier detection. It assigns smaller weights (≥ 0) to outlying expressions and larger weights (≤ 1) to typical expressions. The distribution of the β-weights is used to calculate the cut-off point, which is compared to the observed β-weight of an expression to determine whether that gene expression is an outlier. This weight function plays a key role in unifying the robustness and efficiency of estimation in one-way ANOVA. Conclusion Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA, SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed) perform almost identically for m = 2 conditions in the absence of outliers. However, the robust BetaEB method and the proposed method exhibited considerably better performance than the other six methods in the presence of outliers. In this case, the BetaEB method exhibited slightly better performance than the proposed method for the small-sample cases, but the the proposed method exhibited much better performance than the BetaEB method for both the small- and large-sample cases in the presence of more than 50% outlying genes. The proposed method also exhibited better performance than the other methods for m > 2 conditions with multiple patterns of expression, where the BetaEB was not extended for this condition. Therefore, the proposed approach would be more suitable and reliable on average for the identification of DE genes between two or more conditions with multiple patterns of expression. PMID:26413858
Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.
Kreuz, P C; Gentili, C; Samans, B; Martinelli, D; Krüger, J P; Mittelmeier, W; Endres, M; Cancedda, R; Kaps, C
2013-12-01
Studies about cartilage repair in the hip and infant chondrocytes are rare. The aim of our study was to evaluate the use of infant articular hip chondrocytes for tissue engineering of scaffold-assisted cartilage grafts. Hip cartilage was obtained from five human donors (age 1-10 years). Expanded chondrocytes were cultured in polyglycolic acid (PGA)-fibrin scaffolds. De- and re-differentiation of chondrocytes were assessed by histological staining and gene expression analysis of typical chondrocytic marker genes. In vivo, cartilage matrix formation was assessed by histology after subcutaneous transplantation of chondrocyte-seeded PGA-fibrin scaffolds in immunocompromised mice. The donor tissue was heterogenous showing differentiated articular cartilage and non-differentiated tissue and considerable expression of type I and II collagens. Gene expression analysis showed repression of typical chondrocyte and/or mesenchymal marker genes during cell expansion, while markers were re-induced when expanded cells were cultured in PGA-fibrin scaffolds. Cartilage formation after subcutaneous transplantation of chondrocyte loaded PGA-fibrin scaffolds in nude mice was variable, with grafts showing resorption and host cell infiltration or formation of hyaline cartilage rich in type II collagen. Addition of human platelet rich plasma (PRP) to cartilage grafts resulted robustly in formation of hyaline-like cartilage that showed type II collagen and regions with type X collagen. These results suggest that culture of expanded and/or de-differentiated infant hip cartilage cells in PGA-fibrin scaffolds initiates chondrocyte re-differentiation. The heterogenous donor tissue containing immature chondrocytes bears the risk of cartilage repair failure in vivo, which may be possibly overcome by the addition of PRP. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Hewson, Ian; Moisander, Pia H; Morrison, Amanda E; Zehr, Jonathan P
2007-05-01
We investigated diazotrophic bacterioplankton assemblage composition in the Heron Reef lagoon (Great Barrier Reef, Australia) using culture-independent techniques targeting the nifH fragment of the nitrogenase gene. Seawater was collected at 3 h intervals over a period of 72 h (i.e. over diel as well as tidal cycles). An incubation experiment was also conducted to assess the impact of phosphate (PO(4)3*) availability on nifH expression patterns. DNA-based nifH libraries contained primarily sequences that were most similar to nifH from sediment, microbial mat and surface-associated microorganisms, with a few sequences that clustered with typical open ocean phylotypes. In contrast to genomic DNA sequences, libraries prepared from gene transcripts (mRNA amplified by reverse transcription-polymerase chain reaction) were entirely cyanobacterial and contained phylotypes similar to those observed in open ocean plankton. The abundance of Trichodesmium and two uncultured cyanobacterial phylotypes from previous studies (group A and group B) were studied by quantitative-polymerase chain reaction in the lagoon samples. These were detected as transcripts, but were not detected in genomic DNA. The gene transcript abundance of these phylotypes demonstrated variability over several diel cycles. The PO(4)3* enrichment experiment had a clearer pattern of gene expression over diel cycles than the lagoon sampling, however PO(4)3* additions did not result in enhanced transcript abundance relative to control incubations. The results suggest that a number of diazotrophs in bacterioplankton of the reef lagoon may originate from sediment, coral or beachrock surfaces, sloughing into plankton with the flooding tide. The presence of typical open ocean phylotype transcripts in lagoon bacterioplankton may indicate that they are an important component of the N cycle of the coral reef.
White, Michael A.; Kitano, Jun; Peichel, Catherine L.
2015-01-01
Sex chromosomes are subject to unique evolutionary forces that cause suppression of recombination, leading to sequence degeneration and the formation of heteromorphic chromosome pairs (i.e., XY or ZW). Although progress has been made in characterizing the outcomes of these evolutionary processes on vertebrate sex chromosomes, it is still unclear how recombination suppression and sequence divergence typically occur and how gene dosage imbalances are resolved in the heterogametic sex. The threespine stickleback fish (Gasterosteus aculeatus) is a powerful model system to explore vertebrate sex chromosome evolution, as it possesses an XY sex chromosome pair at relatively early stages of differentiation. Using a combination of whole-genome and transcriptome sequencing, we characterized sequence evolution and gene expression across the sex chromosomes. We uncovered two distinct evolutionary strata that correspond with known structural rearrangements on the Y chromosome. In the oldest stratum, only a handful of genes remain, and these genes are under strong purifying selection. By comparing sex-linked gene expression with expression of autosomal orthologs in an outgroup, we show that dosage compensation has not evolved in threespine sticklebacks through upregulation of the X chromosome in males. Instead, in the oldest stratum, the genes that still possess a Y chromosome allele are enriched for genes predicted to be dosage sensitive in mammals and yeast. Our results suggest that dosage imbalances may have been avoided at haploinsufficient genes by retaining function of the Y chromosome allele through strong purifying selection. PMID:25818858
Structural and affinity studies of IgM polyreactive natural autoantibodies.
Diaw, L; Magnac, C; Pritsch, O; Buckle, M; Alzari, P M; Dighiero, G
1997-01-15
Natural polyreactive autoantibodies (NAA) are an important component of the normal B cell repertoire. One intriguing characteristic of these Abs is their binding to various dissimilar Ags. It has been generally assumed that these Abs bind the Ags with low affinity, and are encoded by germline genes. We have used surface plasmon resonance to determine binding of avidities, and conducted a structural analysis of five murine monoclonal natural autoantibodies displaying a typical polyreactive binding pattern against cytoskeleton Ags and DNA. We show that 1) all the five Abs bind the different Ags with kinetic constants similar to those observed for immune Abs; 2) they express a restricted set of V(H) and V(L) genes, since the same V(H) gene is expressed by three out of the five, and one particular Vkappa gene was expressed twice. In addition, a single D gene segment was used by three of the five Abs; and 3) they express, in most cases, genes in a close germline configuration. Our amino acid sequence and modeling studies show that the distribution of exposed side chains in the NAA paratopes is close to the general pattern observed in the complementarity-determining regions (CDRs) of variable domains from immune Abs. Although CDR3 regions of the heavy chain have been postulated to play a major role in determining polyreactivity on the basis of recombinatorial experiments, our results failed to show any distinctive particularity of this region in terms of length or charge when compared with classical immune Abs.
Wu, Baojun; Gaskell, Jill; Held, Benjamin W; Toapanta, Cristina; Vuong, Thu; Ahrendt, Steven; Lipzen, Anna; Zhang, Jiwei; Schilling, Jonathan S; Master, Emma; Grigoriev, Igor V; Blanchette, Robert A; Cullen, Dan; Hibbett, David S
2018-06-08
Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at five days) or solid wood wafers (sampled at ten and thirty days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and timepoints. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and timepoints. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi. IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that allow fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species, aspen, pine and spruce, under various culture conditions. We examined both gene expression (transcription levels) and RNA editing (post-transcriptional modification of RNA, which can potentially yield different proteins from the same gene). We found that F. pinicola is able to modify both gene expression and RNA editing profiles across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This work provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates. Copyright © 2018 American Society for Microbiology.
Dynamic expression of ancient and novel molluscan shell genes during ecological transitions
Jackson, Daniel J; Wörheide, Gert; Degnan, Bernard M
2007-01-01
Background The Mollusca constitute one of the most morphologically and ecologically diverse metazoan phyla, occupying a wide range of marine, terrestrial and freshwater habitats. The evolutionary success of the molluscs can in part be attributed to the evolvability of the external shell. Typically, the shell first forms during embryonic and larval development, changing dramatically in shape, colour and mineralogical composition as development and maturation proceeds. Major developmental transitions in shell morphology often correlate with ecological transitions (e.g. from a planktonic to benthic existence at metamorphosis). While the genes involved in molluscan biomineralisation are beginning to be identified, there is little understanding of how these are developmentally regulated, or if the same genes are operational at different stages of the mollusc's life. Results Here we relate the developmental expression of nine genes in the tissue responsible for shell production – the mantle – to ecological transitions that occur during the lifetime of the tropical abalone Haliotis asinina (Vetigastropoda). Four of these genes encode evolutionarily ancient proteins, while four others encode secreted proteins with little or no identity to known proteins. Another gene has been previously described from the mantle of another haliotid vetigastropod. All nine genes display dynamic spatial and temporal expression profiles within the larval shell field and juvenile mantle. Conclusion These expression data reflect the regulatory complexity that underlies molluscan shell construction from larval stages to adulthood, and serves to highlight the different ecological demands placed on each stage. The use of both ancient and novel genes in all stages of shell construction also suggest that a core set of shell-making genes was provided by a shared metazoan ancestor, which has been elaborated upon to produce the range of molluscan shell types we see today. PMID:17845714
De novo design of a synthetic riboswitch that regulates transcription termination
Wachsmuth, Manja; Findeiß, Sven; Weissheimer, Nadine; Stadler, Peter F.; Mörl, Mario
2013-01-01
Riboswitches are regulatory RNA elements typically located in the 5′-untranslated region of certain mRNAs and control gene expression at the level of transcription or translation. These elements consist of a sensor and an adjacent actuator domain. The sensor usually is an aptamer that specifically interacts with a ligand. The actuator contains an intrinsic terminator or a ribosomal binding site for transcriptional or translational regulation, respectively. Ligand binding leads to structural rearrangements of the riboswitch and to presentation or masking of these regulatory elements. Based on this modular organization, riboswitches are an ideal target for constructing synthetic regulatory systems for gene expression. Although riboswitches for translational control have been designed successfully, attempts to construct synthetic elements regulating transcription have failed so far. Here, we present an in silico pipeline for the rational design of synthetic riboswitches that regulate gene expression at the transcriptional level. Using the well-characterized theophylline aptamer as sensor, we designed the actuator part as RNA sequences that can fold into functional intrinsic terminator structures. In the biochemical characterization, several of the designed constructs show ligand-dependent control of gene expression in Escherichia coli, demonstrating that it is possible to engineer riboswitches not only for translational but also for transcriptional regulation. PMID:23275562
A Rosa canina WUSCHEL-related homeobox gene, RcWOX1, is involved in auxin-induced rhizoid formation.
Gao, Bin; Wen, Chao; Fan, Lusheng; Kou, Yaping; Ma, Nan; Zhao, Liangjun
2014-12-01
Homeobox (HB) proteins are important transcription factors that regulate the developmental decisions of eukaryotes. WUSCHEL-related homeobox (WOX) transcription factors, known as a plant-specific HB family, play a key role in plant developmental processes. Our previous work has indicated that rhizoids are induced by auxin in rose (Rosa spp.), which acts as critical part of an efficient plant regeneration system. However, the function of WOX genes in auxin-induced rhizoid formation remains unclear. Here, we isolated and characterized a WUSCHEL-related homeobox gene from Rosa canina, RcWOX1, containing a typical homeodomain with 65 amino acid residues. Real-time reverse transcription PCR (qRT-PCR) analysis revealed that RcWOX1 was expressed in the whole process of callus formation and in the early stage of rhizoid formation. Moreover, its expression was induced by auxin treatment. In Arabidopsis transgenic lines expressing the RcWOX1pro::GUS and 35S::GFP-RcWOX1, RcWOX1 was specifically expressed in roots and localized to the nucleus. Overexpression of RcWOX1 in Arabidopsis increased lateral root density and induced upregulation of PIN1 and PIN7 genes. Therefore, we postulated that RcWOX1 is a functional transcription factor that plays an essential role in auxin-induced rhizoid formation.
MicroRNAs: regulators of gene expression and cell differentiation
Shivdasani, Ramesh A.
2006-01-01
The existence and roles of a class of abundant regulatory RNA molecules have recently come into sharp focus. Micro-RNAs (miRNAs) are small (approximately 22 bases), non–protein-coding RNAs that recognize target sequences of imperfect complementarity in cognate mRNAs and either destabilize them or inhibit protein translation. Although mechanisms of miRNA biogenesis have been elucidated in some detail, there is limited appreciation of their biological functions. Reported examples typically focus on miRNA regulation of a single tissue-restricted transcript, often one encoding a transcription factor, that controls a specific aspect of development, cell differentiation, or physiology. However, computational algorithms predict up to hundreds of putative targets for individual miRNAs, single transcripts may be regulated by multiple miRNAs, and miRNAs may either eliminate target gene expression or serve to finetune transcript and protein levels. Theoretical considerations and early experimental results hence suggest diverse roles for miRNAs as a class. One appealing possibility, that miRNAs eliminate low-level expression of unwanted genes and hence refine unilineage gene expression, may be especially amenable to evaluation in models of hematopoiesis. This review summarizes current understanding of miRNA mechanisms, outlines some of the important outstanding questions, and describes studies that attempt to define miRNA functions in hematopoiesis. PMID:16882713
Antonucci, Ivana; Di Pietro, Roberta; Alfonsi, Melissa; Centurione, Maria Antonietta; Centurione, Lucia; Sancilio, Silvia; Pelagatti, Francesca; D'Amico, Maria Angela; Di Baldassarre, Angela; Piattelli, Adriano; Tetè, Stefano; Palka, Giandomenico; Borlongan, Cesar V; Stuppia, Liborio
2014-01-01
Human amniotic fluid-derived stem cells (AFSCs) represent a novel class of broadly multipotent stem cells sharing characteristics of both embryonic and adult stem cells. However, both the origin of these cells and their actual properties in terms of pluripotent differentiation potential are still debated. In order to verify the presence of features of pluripotency in human second trimester AFSCs, we have investigated the ability of these cells to form in vitro three-dimensional aggregates, known as embryoid bodies (EBs), and to express specific genes of embryonic stem cells (ESCs) and primordial germ cells (PGCs). EBs were obtained after 5 days of AFSC culture in suspension and showed positivity for alkaline phosphatase (AP) staining and for specific markers of pluripotency (OCT4 and SOX2). Moreover, EB-derived cells showed the expression of specific transcripts of the three germ layers. RT-PCR analysis, carried out at different culture times (second, third, fourth, fifth, and eighth passages), revealed the presence of specific markers of ESCs (such as FGF4 and DAPPA4), as well as of markers typical of PGCs and, in particular, genes involved in early stages of germ cell development (Fragilis, Stella, Vasa, c-Kit, Rnf17). Finally, the expression of genes related to the control of DNA methylation (DNMT3A, DNMT3b1, DNMT1, DNMT3L, MBD1, MBD2, MBD3, MDB4, MeCP2), as well as the lack of inactivation of the X-chromosome in female samples, was also demonstrated. Taken together, these data provide further evidence for the presence of common features among human AFSCs, PGCs, and ESCs.
Spiro, Stephen
2012-01-01
Several biochemical mechanisms contribute to the biological generation of nitrous oxide (N2O). N2O generating enzymes include the respiratory nitric oxide (NO) reductase, an enzyme from the flavo-diiron family, and flavohaemoglobin. On the other hand, there is only one enzyme that is known to use N2O as a substrate, which is the respiratory N2O reductase typically found in bacteria capable of denitrification (the respiratory reduction of nitrate and nitrite to dinitrogen). This article will briefly review the properties of the enzymes that make and consume N2O, together with the accessory proteins that have roles in the assembly and maturation of those enzymes. The expression of the genes encoding the enzymes that produce and consume N2O is regulated by environmental signals (typically oxygen and NO) acting through regulatory proteins, which, either directly or indirectly, control the frequency of transcription initiation. The roles and mechanisms of these proteins, and the structures of the regulatory networks in which they participate will also be reviewed. PMID:22451107
Spiro, Stephen
2012-05-05
Several biochemical mechanisms contribute to the biological generation of nitrous oxide (N(2)O). N(2)O generating enzymes include the respiratory nitric oxide (NO) reductase, an enzyme from the flavo-diiron family, and flavohaemoglobin. On the other hand, there is only one enzyme that is known to use N(2)O as a substrate, which is the respiratory N(2)O reductase typically found in bacteria capable of denitrification (the respiratory reduction of nitrate and nitrite to dinitrogen). This article will briefly review the properties of the enzymes that make and consume N(2)O, together with the accessory proteins that have roles in the assembly and maturation of those enzymes. The expression of the genes encoding the enzymes that produce and consume N(2)O is regulated by environmental signals (typically oxygen and NO) acting through regulatory proteins, which, either directly or indirectly, control the frequency of transcription initiation. The roles and mechanisms of these proteins, and the structures of the regulatory networks in which they participate will also be reviewed.
Analysis of gene expression levels in individual bacterial cells without image segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, In Hae; Son, Minjun; Hagen, Stephen J., E-mail: sjhagen@ufl.edu
2012-05-11
Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on amore » segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.« less
Identification of three protein disulfide isomerase members from Haemaphysalis longicornis tick.
Liao, Min; Hatta, Takeshi; Umemiya, Rika; Huang, Penglong; Jia, Honglin; Gong, Haiyan; Zhou, Jinlin; Nishikawa, Yoshifumi; Xuan, Xuenan; Fujisaki, Kozo
2007-07-01
Three genes encoding putative protein disulfide isomerase (PDI) were isolated from the Haemaphysalis longicornis EST database and designed as HlPDI-1, HlPDI-2, and HlPDI-3. All three PDI genes contain two typical PDI active sites CXXC and encode putative 435, 499, and 488 amino acids, respectively. The recombinant proteins expressed in Escherichia coli all show PDI activities, and the activities were inhibited by a PDI-specific inhibitor, zinc bacitracin. Western blot analysis and real-time PCR revealed that three HlPDIs were present in all the developmental stages of the tick as well as in the midgut, salivary glands, ovary, hemolymph, and fatbody of adult female ticks, but the three genes were expressed at the highest level in the egg stage. HlPDI-1 is expressed primarily in the ovary and secondarily in the salivary glands. HlPDI-2 and HlPDI-3 are expressed primarily in the salivary gland, suggesting that the PDI genes are important for tick biology, especially for egg development, and that they play distinct roles in different tissues. Blood feeding induced significantly increased expression of HlPDI-1 and HlPDI-3 in both partially fed nymphs and adults. Babesia gibsoni-infected larval ticks expressed HlPDI-1 and HlPDI-3 2.0 and 4.0 times higher than uninfected normal larval ticks, respectively. The results indicate that HlPDI-1 and HlPDI-3 might be involved in tick blood feeding and Babesia parasite infection in ticks.
Suppression of Bedbug’s Reproduction by RNA Interference of Vitellogenin
Moriyama, Minoru; Hosokawa, Takahiro; Tanahashi, Masahiko; Nikoh, Naruo; Fukatsu, Takema
2016-01-01
Recent resurgence of the bedbug Cimex lectularius is a global problem on the public health. On account of the worldwide rise of insecticide-resistant bedbug populations, exploration of new approaches to the bedbug control and management is anticipated. In this context, gene silencing by RNA interference (RNAi) has been considered for its potential application to pest control and management, because RNAi enables specific suppression of target genes and thus flexible selection of target traits to be disrupted. In this study, in an attempt to develop a control strategy targeting reproduction of the bedbug, we investigated RNAi-mediated gene silencing of vitellogenin (Vg), a major yolk protein precursor essential for oogenesis. From the bedbug transcriptomes, we identified a typical Vg gene and a truncated Vg gene, which were designated as ClVg and ClVg-like, respectively. ClVg gene was highly expressed mainly in the fat body of adult females, which was more than 100 times higher than the expression level of ClVg-like gene, indicating that ClVg gene is the primary functional Vg gene in the bedbug. RNAi-mediated suppression of ClVg gene expression in adult females resulted in drastically reduced egg production, atrophied ovaries, and inflated abdomen due to hypertrophied fat bodies. These phenotypic consequences are expected not only to suppress the bedbug reproduction directly but also to deteriorate its feeding and survival indirectly via behavioral modifications. These results suggest the potential of ClVg gene as a promising target for RNAi-based population management of the bedbug. PMID:27096422
Weiss, Julia; Terry, Marta I; Martos-Fuentes, Marina; Letourneux, Lisa; Ruiz-Hernández, Victoria; Fernández, Juan A; Egea-Cortines, Marcos
2018-02-14
Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock. We identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions. The core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to leaves. Storage protein deposition may be circadian regulated under field conditions but the strong environmental signals are not met under artificial growth conditions. Diel expression pattern in field conditions may result in better usage of energy for protein storage.
Ribosome reinitiation at leader peptides increases translation of bacterial proteins.
Korolev, Semen A; Zverkov, Oleg A; Seliverstov, Alexandr V; Lyubetsky, Vassily A
2016-04-16
Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well.
Zha, Wenjun; Peng, Xinxin; Chen, Rongzhi; Du, Bo; Zhu, Lili; He, Guangcun
2011-01-01
Background RNA interference (RNAi) is a powerful technique for functional genomics research in insects. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been reported for lepidopteran and coleopteran insects, showing potential for field-level control of insect pests, but this has not been reported for other insect orders. Methodology/Principal Findings The Hemipteran insect brown planthopper (Nilaparvata lugens Stål) is a typical phloem sap feeder specific to rice (Oryza sativa L.). To analyze the potential of exploiting RNAi-mediated effects in this insect, we identified genes (Nlsid-1 and Nlaub) encoding proteins that might be involved in the RNAi pathway in N. lugens. Both genes are expressed ubiquitously in nymphs and adult insects. Three genes (the hexose transporter gene NlHT1, the carboxypeptidase gene Nlcar and the trypsin-like serine protease gene Nltry) that are highly expressed in the N. lugens midgut were isolated and used to develop dsRNA constructs for transforming rice. RNA blot analysis showed that the dsRNAs were transcribed and some of them were processed to siRNAs in the transgenic lines. When nymphs were fed on rice plants expressing dsRNA, levels of transcripts of the targeted genes in the midgut were reduced; however, lethal phenotypic effects after dsRNA feeding were not observed. Conclusions Our study shows that genes for the RNAi pathway (Nlsid-1 and Nlaub) are present in N. lugens. When insects were fed on rice plant materials expressing dsRNAs, RNA interference was triggered and the target genes transcript levels were suppressed. The gene knockdown technique described here may prove to be a valuable tool for further investigations in N. lugens. The results demonstrate the potential of dsRNA-mediated RNAi for field-level control of planthoppers, but appropriate target genes must be selected when designing the dsRNA-transgenic plants. PMID:21655219
Development of an Improved Mammalian Overexpression Method for Human CD62L
Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.
2014-01-01
We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402
Low load for disruptive mutations in autism genes and their biased transmission
Iossifov, Ivan; Levy, Dan; Allen, Jeremy; Ye, Kenny; Ronemus, Michael; Lee, Yoon-ha; Yamrom, Boris; Wigler, Michael
2015-01-01
We previously computed that genes with de novo (DN) likely gene-disruptive (LGD) mutations in children with autism spectrum disorders (ASD) have high vulnerability: disruptive mutations in many of these genes, the vulnerable autism genes, will have a high likelihood of resulting in ASD. Because individuals with ASD have lower fecundity, such mutations in autism genes would be under strong negative selection pressure. An immediate prediction is that these genes will have a lower LGD load than typical genes in the human gene pool. We confirm this hypothesis in an explicit test by measuring the load of disruptive mutations in whole-exome sequence databases from two cohorts. We use information about mutational load to show that lower and higher intelligence quotients (IQ) affected individuals can be distinguished by the mutational load in their respective gene targets, as well as to help prioritize gene targets by their likelihood of being autism genes. Moreover, we demonstrate that transmission of rare disruptions in genes with a lower LGD load occurs more often to affected offspring; we show transmission originates most often from the mother, and transmission of such variants is seen more often in offspring with lower IQ. A surprising proportion of transmission of these rare events comes from genes expressed in the embryonic brain that show sharply reduced expression shortly after birth. PMID:26401017
Ding, Liang-Hao; Xie, Yang; Park, Seongmi; Xiao, Guanghua; Story, Michael D.
2008-01-01
Despite the tremendous growth of microarray usage in scientific studies, there is a lack of standards for background correction methodologies, especially in single-color microarray platforms. Traditional background subtraction methods often generate negative signals and thus cause large amounts of data loss. Hence, some researchers prefer to avoid background corrections, which typically result in the underestimation of differential expression. Here, by utilizing nonspecific negative control features integrated into Illumina whole genome expression arrays, we have developed a method of model-based background correction for BeadArrays (MBCB). We compared the MBCB with a method adapted from the Affymetrix robust multi-array analysis algorithm and with no background subtraction, using a mouse acute myeloid leukemia (AML) dataset. We demonstrated that differential expression ratios obtained by using the MBCB had the best correlation with quantitative RT–PCR. MBCB also achieved better sensitivity in detecting differentially expressed genes with biological significance. For example, we demonstrated that the differential regulation of Tnfr2, Ikk and NF-kappaB, the death receptor pathway, in the AML samples, could only be detected by using data after MBCB implementation. We conclude that MBCB is a robust background correction method that will lead to more precise determination of gene expression and better biological interpretation of Illumina BeadArray data. PMID:18450815
Fudal, Isabelle; Collemare, Jérôme; Böhnert, Heidi U.; Melayah, Delphine; Lebrun, Marc-Henri
2007-01-01
Magnaporthe grisea is responsible for a devastating fungal disease of rice called blast. Current control of this disease relies on resistant rice cultivars that recognize M. grisea signals corresponding to specific secreted proteins encoded by avirulence genes. The M. grisea ACE1 avirulence gene differs from others, since it controls the biosynthesis of a secondary metabolite likely recognized by rice cultivars carrying the Pi33 resistance gene. Using a transcriptional fusion between ACE1 promoter and eGFP, we showed that ACE1 is only expressed in appressoria during fungal penetration into rice and barley leaves, onion skin, and cellophane membranes. ACE1 is almost not expressed in appressoria differentiated on Teflon and Mylar artificial membranes. ACE1 expression is not induced by cellophane and plant cell wall components, demonstrating that it does not require typical host plant compounds. Cyclic AMP (cAMP) signaling mutants ΔcpkA and Δmac1 sum1-99 and tetraspanin mutant Δpls1::hph differentiate melanized appressoria with normal turgor but are unable to penetrate host plant leaves. ACE1 is normally expressed in these mutants, suggesting that it does not require cAMP signaling or a successful penetration event. ACE1 is not expressed in appressoria of the buf1::hph mutant defective for melanin biosynthesis and appressorial turgor. The addition of hyperosmotic solutes to buf1::hph appressoria restores appressorial development and ACE1 expression. Treatments of young wild-type appressoria with actin and tubulin inhibitors reduce both fungal penetration and ACE1 expression. These experiments suggest that ACE1 appressorium-specific expression does not depend on host plant signals but is connected to the onset of appressorium-mediated penetration. PMID:17142568
Li, Fupeng; Wu, Baoduo; Qin, Xiaowei; Yan, Lin; Hao, Chaoyun; Tan, Lehe; Lai, Jianxiong
2014-08-10
In this study, we performed cloning and expression analysis of six putative sucrose transporter genes, designated TcSUT1, TcSUT2, TcSUT3, TcSUT4, TcSUT5 and TcSUT6, from the cacao genotype 'TAS-R8'. The combination of cDNA and genomic DNA sequences revealed that the cacao SUT genes contained exon numbers ranging from 1 to 14. The average molecular mass of all six deduced proteins was approximately 56 kDa (range 52 to 66 kDa). All six proteins were predicted to exhibit typical features of sucrose transporters with 12 trans-membrane spanning domains. Phylogenetic analysis revealed that TcSUT2 and TcSUT4 belonged to Group 2 SUT and Group 4 SUT, respectively, and the other TcSUT proteins were belonging to Group 1 SUT. Real-time PCR was conducted to investigate the expression pattern of each member of the SUT family in cacao. Our experiment showed that TcSUT1 was expressed dominantly in pods and that, TcSUT3 and TcSUT4 were highly expressed in both pods and in bark with phloem. Within pods, TcSUT1 and TcSUT4 were expressed more in the seed coat and seed from the pod enlargement stage to the ripening stage. TcSUT5 expression sharply increased to its highest expression level in the seed coat during the ripening stage. Expression pattern analysis indicated that TcSUT genes may be associated with photoassimilate transport into developing seeds and may, therefore, have an impact on seed production. Copyright © 2014 Elsevier B.V. All rights reserved.
Song, J; Doucette, C; Hanniford, D; Hunady, K; Wang, N; Sherf, B; Harrington, J J; Brunden, K R; Stricker-Krongrad, A
2005-06-01
Target-based high-throughput screening (HTS) plays an integral role in drug discovery. The implementation of HTS assays generally requires high expression levels of the target protein, and this is typically accomplished using recombinant cDNA methodologies. However, the isolated gene sequences to many drug targets have intellectual property claims that restrict the ability to implement drug discovery programs. The present study describes the pharmacological characterization of the human histamine H3 receptor that was expressed using random activation of gene expression (RAGE), a technology that over-expresses proteins by up-regulating endogenous genes rather than introducing cDNA expression vectors into the cell. Saturation binding analysis using [125I]iodoproxyfan and RAGE-H3 membranes revealed a single class of binding sites with a K(D) value of 0.77 nM and a B(max) equal to 756 fmol/mg of protein. Competition binding studies showed that the rank order of potency for H3 agonists was N(alpha)-methylhistamine approximately (R)-alpha- methylhistamine > histamine and that the rank order of potency for H3 antagonists was clobenpropit > iodophenpropit > thioperamide. The same rank order of potency for H3 agonists and antagonists was observed in the functional assays as in the binding assays. The Fluorometic Imaging Plate Reader assays in RAGE-H3 cells gave high Z' values for agonist and antagonist screening, respectively. These results reveal that the human H3 receptor expressed with the RAGE technology is pharmacologically comparable to that expressed through recombinant methods. Moreover, the level of expression of the H3 receptor in the RAGE-H3 cells is suitable for HTS and secondary assays.
Suo, Jinwei; Zhao, Qi; Zhang, Zhengxiu; Chen, Sixue; Cao, Jian'guo; Liu, Guanjun; Wei, Xing; Wang, Tai; Yang, Chuanping; Dai, Shaojun
2015-09-01
Fern spore is a good single-cell model for studying the sophisticated molecular networks in asymmetric cell division, differentiation, and polar growth. Osmunda cinnamomea L. var. asiatica is one of the oldest fern species with typical separate-growing trophophyll and sporophyll. The chlorophyllous spores generated from sporophyll can germinate without dormancy. In this study, the spore ultrastructure, antioxidant enzyme activities, as well as protein and gene expression patterns were analyzed in the course of spore germination at five typical stages (i.e. mature spores, rehydrated spores, double-celled spores, germinated spores, and spores with protonemal cells). Proteomic analysis revealed 113 differentially expressed proteins, which were mainly involved in photosynthesis, reserve mobilization, energy supplying, protein synthesis and turnover, reactive oxygen species scavenging, signaling, and cell structure modulation. The presence of multiple proteoforms of 25 differentially expressed proteins implies that post-translational modification may play important roles in spore germination. The dynamic patterns of proteins and their encoding genes exhibited specific characteristics in the processes of cell division and rhizoid tip growth, which include heterotrophic and autotrophic metabolisms, de novo protein synthesis and active protein turnover, reactive oxygen species and hormone (brassinosteroid and ethylene) signaling, and vesicle trafficking and cytoskeleton dynamic. In addition, the function skew of proteins in fern spores highlights the unique and common mechanisms when compared with evolutionarily divergent spermatophyte pollen. These findings provide an improved understanding of the typical single-celled asymmetric division and polar growth during fern spore germination. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Tordjman, Sylvie; Anderson, George M; Cohen, David; Kermarrec, Solenn; Carlier, Michèle; Touitou, Yvan; Saugier-Veber, Pascale; Lagneaux, Céline; Chevreuil, Claire; Verloes, Alain
2013-08-23
Deletion of the Williams-Beuren syndrome (WBS) critical region (WBSCR), at 7q11.23, causes a developmental disorder commonly characterized by hypersociability and excessive talkativeness and often considered the opposite behavioral phenotype to autism. Duplication of the WBSCR leads to severe delay in expressive language. Gene-dosage effects on language development at 7q11.23 have been hypothesized. Molecular characterization of the WBSCR was performed by fluorescence in situ hybridization and high-resolution single-nucleotide polymorphism array in two individuals with severe autism enrolled in a genetic study of autism who showed typical WBS facial dysmorphism on systematic clinical genetic examination. The serotonin transporter promoter polymorphism (5-HTTLPR, locus SLC6A4) was genotyped. Platelet serotonin levels and urinary 6-sulfatoxymelatonin excretion were measured. Behavioral and cognitive phenotypes were examined. The two patients had common WBSCR deletions between proximal and medial low copy repeat clusters, met diagnostic criteria for autism and displayed severe impairment in communication, including a total absence of expressive speech. Both patients carried the 5-HTTLPR ss genotype and exhibited platelet hyperserotonemia and low melatonin production. Our observations indicate that behaviors and neurochemical phenotypes typically associated with autism can occur in patients with common WBSCR deletions. The results raise intriguing questions about phenotypic heterogeneity in WBS and regarding genetic and/or environmental factors interacting with specific genes at 7q11.23 sensitive to dosage alterations that can influence the development of social communication skills. Thus, the influence of WBSCR genes on social communication expression might be dramatically modified by other genes, such as 5-HTTLPR, known to influence the severity of social communication impairments in autism, or by environmental factors, such as hyperserotonemia, given that hyperserotonemia is found in WBS associated with autism but not in WBS without autism. In this regard, WBS provides a potentially fruitful model with which to develop integrated genetic, cognitive, behavioral and neurochemical approaches to study genotype-phenotype correlations, possible gene-environment interactions and genetic background effects. The results underscore the importance of considering careful clinical and molecular genetic examination of individuals diagnosed with autism.
Literature-based condition-specific miRNA-mRNA target prediction.
Oh, Minsik; Rhee, Sungmin; Moon, Ji Hwan; Chae, Heejoon; Lee, Sunwon; Kang, Jaewoo; Kim, Sun
2017-01-01
miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3'-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression-based target prediction algorithms have been developed for condition-specific target predictions. A typical strategy to utilize expression data is to leverage the negative control roles of miRNAs on genes. To control false positives, a stringent cutoff value is typically set, but in this case, these methods tend to reject many true target relationships, i.e., false negatives. To overcome these limitations, additional information should be utilized. The literature is probably the best resource that we can utilize. Recent literature mining systems compile millions of articles with experiments designed for specific biological questions, and the systems provide a function to search for specific information. To utilize the literature information, we used a literature mining system, BEST, that automatically extracts information from the literature in PubMed and that allows the user to perform searches of the literature with any English words. By integrating omics data analysis methods and BEST, we developed Context-MMIA, a miRNA-mRNA target prediction method that combines expression data analysis results and the literature information extracted based on the user-specified context. In the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Context-MMIA outperformed the four existing target prediction methods that we tested. In another test on whether prediction methods can re-produce experimentally validated target relationships, Context-MMIA outperformed the four existing target prediction methods. In summary, Context-MMIA allows the user to specify a context of the experimental data to predict miRNA targets, and we believe that Context-MMIA is very useful for predicting condition-specific miRNA targets.
Oxytocin, vasopressin, and autism: is there a connection?
Insel, T R; O'Brien, D J; Leckman, J F
1999-01-15
Autism is a poorly understood developmental disorder characterized by social impairment, communication deficits, and compulsive behavior. The authors review evidence from animal studies demonstrating that the nonapeptides, oxytocin and vasopressin, have unique effects on the normal expression of species-typical social behavior, communication, and rituals. Based on this evidence, they hypothesize that an abnormality in oxytocin or vasopressin neurotransmission may account for several features of autism. As autism appears to be a genetic disorder, mutations in the various peptide, peptide receptor, or lineage-specific developmental genes could lead to altered oxytocin or vasopressin neurotransmission. Many of these genes have been cloned and sequenced, and several polymorphisms have been identified. Recent gene targeting studies that alter expression of either the peptides or their receptors in the rodent brain partially support the autism hypothesis. While previous experience suggests caution in hypothesizing a cause or suggesting a treatment for autism, the available preclinical evidence with oxytocin and vasopressin recommends the need for clinical studies using gene scanning, pharmacological and neurobiological approaches.
Song, M; Ouyang, Z; Liu, Z L
2009-05-01
Composed of linear difference equations, a discrete dynamical system (DDS) model was designed to reconstruct transcriptional regulations in gene regulatory networks (GRNs) for ethanologenic yeast Saccharomyces cerevisiae in response to 5-hydroxymethylfurfural (HMF), a bioethanol conversion inhibitor. The modelling aims at identification of a system of linear difference equations to represent temporal interactions among significantly expressed genes. Power stability is imposed on a system model under the normal condition in the absence of the inhibitor. Non-uniform sampling, typical in a time-course experimental design, is addressed by a log-time domain interpolation. A statistically significant DDS model of the yeast GRN derived from time-course gene expression measurements by exposure to HMF, revealed several verified transcriptional regulation events. These events implicate Yap1 and Pdr3, transcription factors consistently known for their regulatory roles by other studies or postulated by independent sequence motif analysis, suggesting their involvement in yeast tolerance and detoxification of the inhibitor.
p53 downregulates the Fanconi anaemia DNA repair pathway
Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck
2016-01-01
Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53Δ31, a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53Δ31/Δ31 fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53Δ31/Δ31 fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop. PMID:27033104
p53 downregulates the Fanconi anaemia DNA repair pathway.
Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck
2016-04-01
Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.
GO-Bayes: Gene Ontology-based overrepresentation analysis using a Bayesian approach.
Zhang, Song; Cao, Jing; Kong, Y Megan; Scheuermann, Richard H
2010-04-01
A typical approach for the interpretation of high-throughput experiments, such as gene expression microarrays, is to produce groups of genes based on certain criteria (e.g. genes that are differentially expressed). To gain more mechanistic insights into the underlying biology, overrepresentation analysis (ORA) is often conducted to investigate whether gene sets associated with particular biological functions, for example, as represented by Gene Ontology (GO) annotations, are statistically overrepresented in the identified gene groups. However, the standard ORA, which is based on the hypergeometric test, analyzes each GO term in isolation and does not take into account the dependence structure of the GO-term hierarchy. We have developed a Bayesian approach (GO-Bayes) to measure overrepresentation of GO terms that incorporates the GO dependence structure by taking into account evidence not only from individual GO terms, but also from their related terms (i.e. parents, children, siblings, etc.). The Bayesian framework borrows information across related GO terms to strengthen the detection of overrepresentation signals. As a result, this method tends to identify sets of closely related GO terms rather than individual isolated GO terms. The advantage of the GO-Bayes approach is demonstrated with a simulation study and an application example.
Integrative analyses of leprosy susceptibility genes indicate a common autoimmune profile.
Zhang, Deng-Feng; Wang, Dong; Li, Yu-Ye; Yao, Yong-Gang
2016-04-01
Leprosy is an ancient chronic infection in the skin and peripheral nerves caused by Mycobacterium leprae. The development of leprosy depends on genetic background and the immune status of the host. However, there is no systematic view focusing on the biological pathways, interaction networks and overall expression pattern of leprosy-related immune and genetic factors. To identify the hub genes in the center of leprosy genetic network and to provide an insight into immune and genetic factors contributing to leprosy. We retrieved all reported leprosy-related genes and performed integrative analyses covering gene expression profiling, pathway analysis, protein-protein interaction network, and evolutionary analyses. A list of 123 differentially expressed leprosy related genes, which were enriched in activation and regulation of immune response, was obtained in our analyses. Cross-disorder analysis showed that the list of leprosy susceptibility genes was largely shared by typical autoimmune diseases such as lupus erythematosus and arthritis, suggesting that similar pathways might be affected in leprosy and autoimmune diseases. Protein-protein interaction (PPI) and positive selection analyses revealed a co-evolution network of leprosy risk genes. Our analyses showed that leprosy associated genes constituted a co-evolution network and might undergo positive selection driven by M. leprae. We suggested that leprosy may be a kind of autoimmune disease and the development of leprosy is a matter of defect or over-activation of body immunity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Accurate and fast multiple-testing correction in eQTL studies.
Sul, Jae Hoon; Raj, Towfique; de Jong, Simone; de Bakker, Paul I W; Raychaudhuri, Soumya; Ophoff, Roel A; Stranger, Barbara E; Eskin, Eleazar; Han, Buhm
2015-06-04
In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multiple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Genotype-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models
Singh, Abhyudai; Soltani, Mohammad
2013-01-01
Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters. PMID:24391934
Quantifying intrinsic and extrinsic variability in stochastic gene expression models.
Singh, Abhyudai; Soltani, Mohammad
2013-01-01
Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters.
Genetic influences on human body odor: from genes to the axillae.
Preti, George; Leyden, James J
2010-02-01
Several groups have identified the characteristic axillary odorants and how they arrive on the skin surface, pre-formed, bound to water-soluble odorless precursors in apocrine secretions. In the current issue, Martin et al., (2010) describe the relationship between the production of axillary odorants and variants in the ABCC11 gene. Individuals who are homozygotic for a SNP (538G>A) were found to have significantly less of the characteristic axillary odorants than either individuals who were heterozygotic for this change or those who had the wild-type gene. The 538G>A SNP predominates in Asians who have nearly complete loss of typical body odor. ABCC11 is expressed and localized in apocrine sweat glands. These findings are remarkably similar to the ethnic distribution and expression patterns for apocrine apoD, a previously identified carrier of a characteristic axillary odorant.
Raimbault, Astrid-Kim; Zuily-Fodil, Yasmine; Soler, Alain; Cruz de Carvalho, Maria H
2013-11-15
A full-length cDNA encoding a putative aspartic acid protease (AcAP1) was isolated for the first time from the flesh of pineapple (Ananas comosus) fruit. The deduced sequence of AcAP1 showed all the common features of a typical plant aspartic protease phytepsin precursor. Analysis of AcAP1 gene expression under postharvest chilling treatment in two pineapple varieties differing in their resistance to blackheart development revealed opposite trends. The resistant variety showed an up-regulation of AcAP1 precursor gene expression whereas the susceptible showed a down-regulation in response to postharvest chilling treatment. The same trend was observed regarding specific AP enzyme activity in both varieties. Taken together our results support the involvement of AcAP1 in postharvest chilling stress resistance in pineapple fruits. Copyright © 2013 Elsevier GmbH. All rights reserved.
Kennedy, Jonathan; Marchesi, Julian R; Dobson, Alan D W
2007-05-01
Natural products isolated from sponges are an important source of new biologically active compounds. However, the development of these compounds into drugs has been held back by the difficulties in achieving a sustainable supply of these often-complex molecules for pre-clinical and clinical development. Increasing evidence implicates microbial symbionts as the source of many of these biologically active compounds, but the vast majority of the sponge microbial community remain uncultured. Metagenomics offers a biotechnological solution to this supply problem. Metagenomes of sponge microbial communities have been shown to contain genes and gene clusters typical for the biosynthesis of biologically active natural products. Heterologous expression approaches have also led to the isolation of secondary metabolism gene clusters from uncultured microbial symbionts of marine invertebrates and from soil metagenomic libraries. Combining a metagenomic approach with heterologous expression holds much promise for the sustainable exploitation of the chemical diversity present in the sponge microbial community.
Molecular networks and the evolution of human cognitive specializations.
Fontenot, Miles; Konopka, Genevieve
2014-12-01
Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Transimulation - protein biosynthesis web service.
Siwiak, Marlena; Zielenkiewicz, Piotr
2013-01-01
Although translation is the key step during gene expression, it remains poorly characterized at the level of individual genes. For this reason, we developed Transimulation - a web service measuring translational activity of genes in three model organisms: Escherichia coli, Saccharomyces cerevisiae and Homo sapiens. The calculations are based on our previous computational model of translation and experimental data sets. Transimulation quantifies mean translation initiation and elongation time (expressed in SI units), and the number of proteins produced per transcript. It also approximates the number of ribosomes that typically occupy a transcript during translation, and simulates their propagation. The simulation of ribosomes' movement is interactive and allows modifying the coding sequence on the fly. It also enables uploading any coding sequence and simulating its translation in one of three model organisms. In such a case, ribosomes propagate according to mean codon elongation times of the host organism, which may prove useful for heterologous expression. Transimulation was used to examine evolutionary conservation of translational parameters of orthologous genes. Transimulation may be accessed at http://nexus.ibb.waw.pl/Transimulation (requires Java version 1.7 or higher). Its manual and source code, distributed under the GPL-2.0 license, is freely available at the website.
Targeting RNA Splicing for Disease Therapy
Havens, Mallory A.; Duelli, Dominik M.
2013-01-01
Splicing of pre-messenger RNA into mature messenger RNA is an essential step for expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. PMID:23512601
Targeting RNA splicing for disease therapy.
Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L
2013-01-01
Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. Copyright © 2013 John Wiley & Sons, Ltd.
Frequency sensitive mechanism in low-intensity ultrasound enhanced bioeffects
Chama, Abdoulkadri; Subramanian, Anuradha; Viljoen, Hendrik J.
2017-01-01
This study presents two novel theoretical models to elucidate frequency sensitive nuclear mechanisms in low-intensity ultrasound enhanced bioeffects. In contrast to the typical 1.5 MHz pulsed ultrasound regime, our group previously experimentally confirmed that ultrasound stimulation of anchored chondrocytes at resonant frequency maximized gene expression of load inducible genes which are regulatory markers for cellular response to external stimuli. However, ERK phosphorylation displayed no frequency dependency, suggesting that the biochemical mechanisms involved in enhanced gene expression is downstream of ERK phosphorylation. To elucidate such underlying mechanisms, this study presents a theoretical model of an anchored cell, representing an in vitro chondrocyte, in an ultrasound field. The model results showed that the mechanical energy storage is maximized at the chondrocyte’s resonant frequency and the energy density in the nucleus is almost twice as high as in the cytoplasm. Next, a mechanochemical model was developed to link the mechanical stimulation of ultrasound and the increased mechanical energy density in the nucleus to the downstream targets of the ERK pathway. This study showed for the first time that ultrasound stimulation induces frequency dependent gene expression as a result of altered rates of transcription factors binding to chromatin. PMID:28763448
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oishi, Katsutaka, E-mail: k-ooishi@aist.go.jp; Uchida, Daisuke; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki
Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD).more » To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR{alpha}-null mice. PPAR{gamma} activation seems to be involved in KD-induced hypofibrinolysis by augmenting PAI-1 gene expression in the fatty liver.« less
Yang, Z Q; Chen, H; Tan, J H; Xu, H L; Jia, J; Feng, Y H
2016-12-23
Pinus massoniana Lamb. is an important timber and turpentine-producing tree species in China. Dendrolimus punctatus and Dasychira axutha are leaf-eating pests that have harmful effects on P. massoniana production. Few studies have focused on the molecular mechanisms underlying pest resistance in P. massoniana. Based on sequencing analysis of the transcriptomes of insect-resistant P. massoniana, three key genes involved in the flavonoid metabolic pathway were identified in the present study (PmF3H, PmF3'5'H, and PmC4H). Structural domain analysis showed that the PmF3H gene contains typical binding sites for the 2OG-Fe (II) oxygenase superfamily, while PmF3'5'H and PmC4H both contain the cytochrome P450 structural domain, which is specific for P450 enzymes. Phylogenetic analysis showed that each of the three P. massoniana genes, and the homologous genes in gymnosperms, clustered into a group. Expression of these three genes was highest in the stems, and was higher in the insect-resistant P. massoniana varieties than in the controls. The extent of the increased expression in the insect-resistant P. massoniana varieties indicated that these three genes are involved in defense mechanisms against pests in this species. In the insect-resistant varieties, rapid induction of PmF3H increased the levels of PmF3'5'H and PmC4H expression. The enhanced anti-pest capability of the insect-resistant varieties could be related to temperature and humidity. In addition, these results suggest that these three genes maycontribute to the change in flower color during female cone development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voluevich, E.A.; Buloichik, A.A.; Palilova, A.N.
Specificity of expression of the major nuclear genes Lr to two brown rust clones in hybrids with the same maternal cytoplasm was analyzed. It was evaluated by a resistant: susceptible ratio in the F{sub 2}. Reciprocal hybrids were obtained from the cross between the progeny of homozygous susceptible plants of the cultivar Penjamo 62 and its alloplasmatic lines carrying cytoplasms of Triticum dicoccoides var. fulvovillosum, Aegilops squarrosa var. typical, Agropyron trichophorum, and isogenic lines of the cultivar Thatcher (Th) with the Lr1, Lr9, Lr15, and Lr19 genes. It was shown that the effect of the Lr1 gene in the cytoplasmmore » of cultivar Thatcher and in eu-, and alloplasmatic forms of Penjamo 62 was less expressed than that of other Lr genes. Cytoplasm of the alloplasmatic line (dicoccoides)-Penjamo 62 was the only exception: in the F{sub 2}, hybrids with Th (Lr1) had a higher yield of resistant forms than those with Th (Lr15). In the hybrid combinations studied, expression and/or transmission of the Lr19 gene was more significant than that of other genes. This gene had no advantages over Lr15 and Lr19 only in cytoplasm of the alloplasmatic line (squarrosa)-Penjamo 62. In certain hybrid cytoplasms, the display of the Lr1, Lr15, and Lr19 genes, in contrast to Lr9, varied with the virulence of the pathogen clones. 15 refs., 5 tabs.« less
Wang, Cheng; Cui, Hong-Mi; Huang, Tian-Hong; Liu, Tong-Kun; Hou, Xi-Lin; Li, Ying
2016-01-01
Non-heading Chinese cabbage (Brassica rapa ssp. chinensis Makino) is an important vegetable member of Brassica rapa crops. It exhibits a typical sporophytic self-incompatibility (SI) system and is an ideal model plant to explore the mechanism of SI. Gene expression research are frequently used to unravel the complex genetic mechanism and in such studies appropriate reference selection is vital. Validation of reference genes have neither been conducted in Brassica rapa flowers nor in SI trait. In this study, 13 candidate reference genes were selected and examined systematically in 96 non-heading Chinese cabbage flower samples that represent four strategic groups in compatible and self-incompatible lines of non-heading Chinese cabbage. Two RT-qPCR analysis software, geNorm and NormFinder, were used to evaluate the expression stability of these genes systematically. Results revealed that best-ranked references genes should be selected according to specific sample subsets. DNAJ, UKN1, and PP2A were identified as the most stable reference genes among all samples. Moreover, our research further revealed that the widely used reference genes, CYP and ACP, were the least suitable reference genes in most non-heading Chinese cabbage flower sample sets. To further validate the suitability of the reference genes identified in this study, the expression level of SRK and Exo70A1 genes which play important roles in regulating interaction between pollen and stigma were studied. Our study presented the first systematic study of reference gene(s) selection for SI study and provided guidelines to obtain more accurate RT-qPCR results in non-heading Chinese cabbage. PMID:27375663
Costa, José Hélio; de Melo, Dirce Fernandes; Gouveia, Zélia; Cardoso, Hélia Guerra; Peixe, Augusto; Arnholdt-Schmitt, Birgit
2009-12-01
'Genomic design' refers to the structural organization of gene sequences. Recently, the role of intron sequences for gene regulation is being better understood. Further, introns possess high rates of polymorphism that are considered as the major source for speciation. In molecular breeding, the length of gene-specific introns is recognized as a tool to discriminate genotypes with diverse traits of agronomic interest. 'Economy selection' and 'time-economy selection' have been proposed as models for explaining why highly expressed genes typically contain small introns. However, in contrast to these theories, plant-specific selection reveals that highly expressed genes contain introns that are large. In the presented research, 'wet'Aox gene identification from grapevine is advanced by a bioinformatics approach to study the species-specific organization of Aox gene structures in relation to available expressed sequence tag (EST) data. Two Aox1 and one Aox2 gene sequences have been identified in Vitis vinifera using grapevine cultivars from Portugal and Germany. Searching the complete genome sequence data of two grapevine cultivars confirmed that V. vinifera alternative oxidase (Aox) is encoded by a small multigene family composed of Aox1a, Aox1b and Aox2. An analysis of EST distribution revealed high expression of the VvAox2 gene. A relationship between the atypical long primary transcript of VvAox2 (in comparison to other plant Aox genes) and its expression level is suggested. V. vinifera Aox genes contain four exons interrupted by three introns except for Aox1a which contains an additional intron in the 3'-UTR. The lengths of primary Aox transcripts were estimated for each gene in two V. vinifera varieties: PN40024 and Pinot Noir. In both varieties, Aox1a and Aox1b contained small introns that corresponded to primary transcript lengths ranging from 1501 to 1810 bp. The Aox2 of PN40024 (12 329 bp) was longer than that from Pinot Noir (7279 bp) because of selection against a transposable-element insertion that is 5028 bp in size. An EST database basic local alignment search tool (BLAST) search of GenBank revealed the following ESTs percentages for each gene: Aox1a (26.2%), Aox1b (11.9%) and Aox2 (61.9%). Aox1a was expressed in fruits and roots, Aox1b expression was confined to flowers and Aox2 was ubiquitously expressed. These data for V. vinifera show that atypically long Aox intron lengths are related to high levels of gene expression. Furthermore, it is shown for the first time that two grapevine cultivars can be distinguished by Aox intron length polymorphism.
Identifying transposon insertions and their effects from RNA-sequencing data.
de Ruiter, Julian R; Kas, Sjors M; Schut, Eva; Adams, David J; Koudijs, Marco J; Wessels, Lodewyk F A; Jonkers, Jos
2017-07-07
Insertional mutagenesis using engineered transposons is a potent forward genetic screening technique used to identify cancer genes in mouse model systems. In the analysis of these screens, transposon insertion sites are typically identified by targeted DNA-sequencing and subsequently assigned to predicted target genes using heuristics. As such, these approaches provide no direct evidence that insertions actually affect their predicted targets or how transcripts of these genes are affected. To address this, we developed IM-Fusion, an approach that identifies insertion sites from gene-transposon fusions in standard single- and paired-end RNA-sequencing data. We demonstrate IM-Fusion on two separate transposon screens of 123 mammary tumors and 20 B-cell acute lymphoblastic leukemias, respectively. We show that IM-Fusion accurately identifies transposon insertions and their true target genes. Furthermore, by combining the identified insertion sites with expression quantification, we show that we can determine the effect of a transposon insertion on its target gene(s) and prioritize insertions that have a significant effect on expression. We expect that IM-Fusion will significantly enhance the accuracy of cancer gene discovery in forward genetic screens and provide initial insight into the biological effects of insertions on candidate cancer genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ashoub, Ahmed; Müller, Niels; Jiménez-Gómez, José M; Brüggemann, Wolfgang
2018-05-01
Under field conditions, drought and heat stress typically happen simultaneously and their negative impact on the agricultural production is expected to increase worldwide under the climate change scenario. In this study, we performed RNA-sequencing analysis on leaves of wild barley (Hordeum spontaneum) originated from the northern coastal region of Egypt following individual drought acclimation (DA) and heat shock (HS) treatments and their combination (CS, combined stresses) to distinguish the unique and shared differentially expressed genes (DEG). Results indicated that the number of unique genes that were differentially expressed following HS treatment exceeded the number of those expressed following DA. In addition, the number of genes that were uniquely differentially expressed in response to CS treatment exceeded the number of those of shared responses to individual DA and HS treatments. These results indicate a better adaptation of the Mediterranean wild barley to drought conditions when compared with heat stress. It also manifests that the wild barley response to CS tends to be unique rather than common. Annotation of DEG showed that metabolic processes were the most influenced biological function in response to the applied stresses. © 2017 Scandinavian Plant Physiology Society.
Simonin, F; Gavériaux-Ruff, C; Befort, K; Matthes, H; Lannes, B; Micheletti, G; Mattéi, M G; Charron, G; Bloch, B; Kieffer, B
1995-01-01
Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors. Images Fig. 3 Fig. 4 PMID:7624359
Takahashi, Junko; Waki, Shiori; Matsumoto, Rena; Odake, Junji; Miyaji, Takayuki; Tottori, Junichi; Iwanaga, Takehiro; Iwahashi, Hitoshi
2012-01-01
Background Hyperlipidemia animal models have been established, but complete gene expression profiles of the transition from normal lipid levels have not been obtained. Miniature pigs are useful model animals for gene expression studies on dietary-induced hyperlipidemia because they have a similar anatomy and digestive physiology to humans, and blood samples can be obtained from them repeatedly. Methodology Two typical dietary treatments were used for dietary-induced hyperlipidemia models, by using specific pathogen-free (SPF) Clawn miniature pigs. One was a high-fat and high-cholesterol diet (HFCD) and the other was a high-fat, high-cholesterol, and high-sucrose diet (HFCSD). Microarray analyses were conducted from whole blood samples during the dietary period and from white blood cells at the end of the dietary period to evaluate the transition of expression profiles of the two dietary models. Principal Findings Variations in whole blood gene expression intensity within the HFCD or the HFCSD group were in the same range as the controls provide with normal diet at all periods. This indicates uniformity of dietary-induced hyperlipidemia for our dietary protocols. Gene ontology- (GO) based functional analyses revealed that characteristics of the common changes between HFCD and HFCSD were involved in inflammatory responses and reproduction. The correlation coefficient between whole blood and white blood cell expression profiles at 27 weeks with the HFCSD diet was significantly lower than that of the control and HFCD diet groups. This may be due to the effects of RNA originating from the tissues and/or organs. Conclusions No statistically significant differences in fasting plasma lipids and glucose levels between the HFCD and HFCSD groups were observed. However, blood RNA analyses revealed different characteristics corresponding to the dietary protocols. In this study, whole blood RNA analyses proved to be a useful tool to evaluate transitions in dietary-induced hyperlipidemia gene expression profiles in miniature pigs. PMID:22662175
Kocmarek, Andrea L; Ferguson, Moira M; Danzmann, Roy G
2015-04-01
All-female lines of fish are created by crossing sex reversed (XX genotype) males with normal females. All-female lines avoid the deleterious phenotypic effects that are typical of precocious maturation in males. To determine whether all-female and mixed sex populations of rainbow trout (Oncorhynchus mykiss) differ in performance, we compared the growth and gene expression profiles in progeny groups produced by crossing a XX male and a XY male to the same five females. Body weight and length were measured in the resulting all-female (XX) and mixed sex (XX/XY) offspring groups. Microarray experiments with liver and white muscle were used to determine if the gene expression profiles of large and small XX offspring differ from those in large and small XX/XY offspring. We detected no significant differences in body length and weight between offspring groups but XX offspring were significantly less variable in the value of these traits. A large number of upregulated genes were shared between the large XX and large XX/XY offspring; the small XX and small XX/XY offspring also shared similar expression profiles. No GO category differences were seen in the liver or between the large XX and large XX/XY offspring in the muscle. The greatest differences between the small XX and small XX/XY offspring were in the genes assigned to the "small molecule metabolic process" and "cellular metabolic process" GO level 3 categories. Similarly, genes within these categories as well as the category "macromolecule metabolic process" were more highly expressed in small compared to large XX fish.
Christie, Lyndsay; van Aerle, Ronny; Paley, Richard K; Verner-Jeffreys, David W; Tidbury, Hannah; Green, Matthew; Feist, Stephen W; Cano, Irene
2018-07-01
Puffy skin disease (PSD) is an emerging skin condition which affects rainbow trout, Oncorhynchus mykiss (Walbaum). The transmission pattern of PSD suggests an infectious aetiology, however, the actual causative infectious agent(s) remain(s) unknown. In the present study, the rainbow trout epidermal immune response to PSD was characterised. Skin samples from infected fish were analysed and classified as mild, moderate or severe PSD by gross pathology and histological assessment. The level of expression of 26 immune-associated genes including cytokines, immunoglobulins and cell markers were examined by TaqMan qPCR assays. A significant up-regulation of the gene expression of C3, lysozyme, IL-1β and T-bet and down-regulation of TGFβ and TLR3 was observed in PSD fish compared to control fish. MHCI gene expression was up-regulated only in severe PSD lesions. Histological examinations of the epidermis showed a significant increase in the number of eosinophil cells and dendritic melanocytes in PSD fish. In severe lesions, mild diffuse lymphocyte infiltration was observed. IgT and CD8 positive cells were detected locally in the skin of PSD fish by in situ hybridisation (ISH), however, the gene expression of those genes was not different from control fish. Total IgM in serum of diseased animals was not different from control fish, measured by a sandwich ELISA, nor was significant up regulation of IgM gene expression in PSD lesions observed. Taken together, these results show activation of the complement pathway, up-regulation of a Th17 type response and eosinophilia during PSD. This is typical of a response to extracellular pathogens (i.e. bacteria and parasites) and allergens, commonly associated with acute dermatitis. Copyright © 2018. Published by Elsevier Ltd.
Pepke, Shirley; Ver Steeg, Greg
2017-03-15
De novo inference of clinically relevant gene function relationships from tumor RNA-seq remains a challenging task. Current methods typically either partition patient samples into a few subtypes or rely upon analysis of pairwise gene correlations that will miss some groups in noisy data. Leveraging higher dimensional information can be expected to increase the power to discern targetable pathways, but this is commonly thought to be an intractable computational problem. In this work we adapt a recently developed machine learning algorithm for sensitive detection of complex gene relationships. The algorithm, CorEx, efficiently optimizes over multivariate mutual information and can be iteratively applied to generate a hierarchy of relatively independent latent factors. The learned latent factors are used to stratify patients for survival analysis with respect to both single factors and combinations. These analyses are performed and interpreted in the context of biological function annotations and protein network interactions that might be utilized to match patients to multiple therapies. Analysis of ovarian tumor RNA-seq samples demonstrates the algorithm's power to infer well over one hundred biologically interpretable gene cohorts, several times more than standard methods such as hierarchical clustering and k-means. The CorEx factor hierarchy is also informative, with related but distinct gene clusters grouped by upper nodes. Some latent factors correlate with patient survival, including one for a pathway connected with the epithelial-mesenchymal transition in breast cancer that is regulated by a microRNA that modulates epigenetics. Further, combinations of factors lead to a synergistic survival advantage in some cases. In contrast to studies that attempt to partition patients into a small number of subtypes (typically 4 or fewer) for treatment purposes, our approach utilizes subgroup information for combinatoric transcriptional phenotyping. Considering only the 66 gene expression groups that are found to both have significant Gene Ontology enrichment and are small enough to indicate specific drug targets implies a computational phenotype for ovarian cancer that allows for 3 66 possible patient profiles, enabling truly personalized treatment. The findings here demonstrate a new technique that sheds light on the complexity of gene expression dependencies in tumors and could eventually enable the use of patient RNA-seq profiles for selection of personalized and effective cancer treatments.
Robust Gaussian Graphical Modeling via l1 Penalization
Sun, Hokeun; Li, Hongzhe
2012-01-01
Summary Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically have heavier tails or more outlying observations than the standard Gaussian distribution. Such outliers in gene expression data can lead to wrong inference on the dependency structure among the genes. We propose a l1 penalized estimation procedure for the sparse Gaussian graphical models that is robustified against possible outliers. The likelihood function is weighted according to how the observation is deviated, where the deviation of the observation is measured based on its own likelihood. An efficient computational algorithm based on the coordinate gradient descent method is developed to obtain the minimizer of the negative penalized robustified-likelihood, where nonzero elements of the concentration matrix represents the graphical links among the genes. After the graphical structure is obtained, we re-estimate the positive definite concentration matrix using an iterative proportional fitting algorithm. Through simulations, we demonstrate that the proposed robust method performs much better than the graphical Lasso for the Gaussian graphical models in terms of both graph structure selection and estimation when outliers are present. We apply the robust estimation procedure to an analysis of yeast gene expression data and show that the resulting graph has better biological interpretation than that obtained from the graphical Lasso. PMID:23020775
Munro, Sarah A; Lund, Steven P; Pine, P Scott; Binder, Hans; Clevert, Djork-Arné; Conesa, Ana; Dopazo, Joaquin; Fasold, Mario; Hochreiter, Sepp; Hong, Huixiao; Jafari, Nadereh; Kreil, David P; Łabaj, Paweł P; Li, Sheng; Liao, Yang; Lin, Simon M; Meehan, Joseph; Mason, Christopher E; Santoyo-Lopez, Javier; Setterquist, Robert A; Shi, Leming; Shi, Wei; Smyth, Gordon K; Stralis-Pavese, Nancy; Su, Zhenqiang; Tong, Weida; Wang, Charles; Wang, Jian; Xu, Joshua; Ye, Zhan; Yang, Yong; Yu, Ying; Salit, Marc
2014-09-25
There is a critical need for standard approaches to assess, report and compare the technical performance of genome-scale differential gene expression experiments. Here we assess technical performance with a proposed standard 'dashboard' of metrics derived from analysis of external spike-in RNA control ratio mixtures. These control ratio mixtures with defined abundance ratios enable assessment of diagnostic performance of differentially expressed transcript lists, limit of detection of ratio (LODR) estimates and expression ratio variability and measurement bias. The performance metrics suite is applicable to analysis of a typical experiment, and here we also apply these metrics to evaluate technical performance among laboratories. An interlaboratory study using identical samples shared among 12 laboratories with three different measurement processes demonstrates generally consistent diagnostic power across 11 laboratories. Ratio measurement variability and bias are also comparable among laboratories for the same measurement process. We observe different biases for measurement processes using different mRNA-enrichment protocols.
Herfst, Sander; Bestebroer, Theo M.; Vaes, Vincent P.; van der Hoeven, Barbara; Koster, Abraham J.; Kremers, Gert-Jan; Scott, Dana P.; Gultyaev, Alexander P.; Sorell, Erin M.; de Graaf, Miranda; Bárcena, Montserrat; Rimmelzwaan, Guus F.; Fouchier, Ron A.
2015-01-01
Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone. However, whilst bioluminescence is suited to in vivo imaging, fluorescent viruses are more appropriate for microscopy. Therefore, the idea l reporter virus varies depending on the experiment in question, and it is important that any reporter virus strategy can be adapted accordingly. Herein, a strategy was developed to create five different reporter viruses in a single virus backbone. Specifically, enhanced green fluorescent protein (eGFP), far-red fluorescent protein (fRFP), near-infrared fluorescent protein (iRFP), Gaussia luciferase (gLUC) and firefly luciferase (fLUC) were inserted into the PA gene segment of A/PR/8/34 (H1N1). This study provides a comprehensive characterisation of the effects of different reporter genes on influenza virus replication and reporter activity. In vivo reporter gene expression, in lung tissues, was only detected for eGFP, fRFP and gLUC expressing viruses. In vitro, the eGFP-expressing virus displayed the best reporter stability and could be used for correlative light electron microscopy (CLEM). This strategy was then used to create eGFP-expressing viruses consisting entirely of pandemic H1N1, highly pathogenic avian influenza (HPAI) H5N1 and H7N9. The HPAI H5N1 eGFP-expressing virus infected mice and reporter gene expression was detected, in lung tissues, in vivo. Thus, this study provides new tools and insights for the creation of bioluminescent and fluorescent influenza A reporter viruses. PMID:26241861
Kakizaki, Fumihiko; Sonoshita, Masahiro; Miyoshi, Hiroyuki; Itatani, Yoshiro; Ito, Shinji; Kawada, Kenji; Sakai, Yoshiharu; Taketo, M Mark
2016-11-01
We recently found that the product of the AES gene functions as a metastasis suppressor of colorectal cancer (CRC) in both humans and mice. Expression of amino-terminal enhancer of split (AES) protein is significantly decreased in liver metastatic lesions compared with primary colon tumors. To investigate its downregulation mechanism in metastases, we searched for transcriptional regulators of AES in human CRC and found that its expression is reduced mainly by transcriptional dysregulation and, in some cases, by additional haploidization of its coding gene. The AES promoter-enhancer is in a typical CpG island, and contains a Yin-Yang transcription factor recognition sequence (YY element). In human epithelial cells of normal colon and primary tumors, transcription factor YY2, a member of the YY family, binds directly to the YY element, and stimulates expression of AES. In a transplantation mouse model of liver metastases, however, expression of Yy2 (and therefore of Aes) is downregulated. In human CRC metastases to the liver, the levels of AES protein are correlated with those of YY2. In addition, we noticed copy-number reduction for the AES coding gene in chromosome 19p13.3 in 12% (5/42) of human CRC cell lines. We excluded other mechanisms such as point or indel mutations in the coding or regulatory regions of the AES gene, CpG methylation in the AES promoter enhancer, expression of microRNAs, and chromatin histone modifications. These results indicate that Aes may belong to a novel family of metastasis suppressors with a CpG-island promoter enhancer, and it is regulated transcriptionally. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Yan, Lulu; Lee, Sangmi; Lazzaro, Douglas R; Aranda, Jacob; Grant, Maria B; Chaqour, Brahim
2015-09-18
The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3'-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Yan, Lulu; Lee, Sangmi; Lazzaro, Douglas R.; Aranda, Jacob; Grant, Maria B.; Chaqour, Brahim
2015-01-01
The response of the retina to ischemic insult typically leads to aberrant retinal neovascularization, a major cause of blindness. The epigenetic regulation of angiogenic gene expression by miRNAs provides new prospects for their therapeutic utility in retinal neovascularization. Here, we focus on miR-155, a microRNA functionally important in inflammation, which is of paramount importance in the pathogenesis of retinal neovascularization. Whereas constitutive miR-155-deficiency in mice results in mild vascular defects, forced expression of miR-155 causes endothelial hyperplasia and increases microglia count and activation. The mouse model of oxygen-induced retinopathy, which recapitulates ischemia-induced aberrant neovessel growth, is characterized by increased expression of miR-155 and localized areas of microglia activation. Interestingly, miR-155 deficiency in mice reduces microglial activation, curtails abnormal vessel growth, and allows for rapid normalization of the retinal vasculature following ischemic insult. miR-155 binds to the 3′-UTR and represses the expression of the CCN1 gene, which encodes an extracellular matrix-associated integrin-binding protein that both promotes physiological angiogenesis and harnesses growth factor-induced abnormal angiogenic responses. Single CCN1 deficiency or double CCN1 and miR-155 knock-out in mice causes retinal vascular malformations typical of faulty maturation, mimicking the vascular alterations of miR-155 gain of function. During development, the miR-155/CCN1 regulatory axis balances the proangiogenic and proinflammatory activities of microglia to allow for their function as guideposts for sprout fusion and anastomosis. Under ischemic conditions, dysregulated miR-155 and CCN1 expression increases the inflammatory load and microglial activation, prompting aberrant angiogenic responses. Thus, miR-155 functions in tandem with CCN1 to modulate inflammation-induced vascular homeostasis and repair. PMID:26242736
Beyene, Getu; Buenrostro-Nava, Marco T; Damaj, Mona B; Gao, San-Ji; Molina, Joe; Mirkov, T Erik
2011-01-01
The potential of using vector-free minimal gene cassettes (MGCs) with a double terminator for the enhancement and stabilization of transgene expression was tested in sugarcane biolistic transformation. The MGC system used consisted of the enhanced yellow fluorescent protein (EYFP) reporter gene driven by the maize ubiquitin-1 (Ubi) promoter and a single or double terminator from nopaline synthase (Tnos) or/and Cauliflower mosaic virus 35S (35ST). Transient EYFP expression from Tnos or 35ST single terminator MGC was very low and unstable, typically peaking early (8-16 h) and diminishing rapidly (48-72 h) after bombardment. Addition of a ~260 bp vector sequence (VS) to the single MGC downstream of Tnos (Tnos + VS) or 35ST (35ST + VS) enhanced EYFP expression by 1.25- to 25-fold. However, a much more significant increase in EYFP expression was achieved when the VS in 35ST + VS was replaced by Tnos to generate a 35ST-Tnos double terminator MGC, reaching its maximum at 24 h post-bombardment. The enhanced EYFP expression from the double terminator MGC was maintained for a long period of time (168 h), resulting in an overall increase of 5- to 65-fold and 10- to 160-fold as compared to the 35ST and Tnos single terminator MGCs, respectively. The efficiency of the double terminator MGC in enhancing EYFP expression was also demonstrated in sorghum and tobacco, suggesting that the underlying mechanism is highly conserved among monocots and dicots. Our results also suggest the involvement of posttranscriptional gene silencing in the reduced and unstable transgene expression from single terminator MGCs in plants.
USDA-ARS?s Scientific Manuscript database
In plants, the endoplasmic reticulum (ER)-localized omega-3 fatty acid desaturases (Fad3s) increase the production of polyunsaturated fatty acids at cooler temperatures, but the FAD3 genes themselves are typically not upregulated during this adaptive response. Here, we expressed two closely related ...
USDA-ARS?s Scientific Manuscript database
Analysis of growth parameters have been researched in a number of aquaculture species with rainbow trout having received a significant amount of attention. Typically most growth studies have evaluated changes in plasma hormone levels or expression in growth genes in fish at a certain life stage. It ...
Novelty and Fear Conditioning Induced Gene Expression in High and Low States of Anxiety
ERIC Educational Resources Information Center
Donley, Melanie P.; Rosen, Jeffrey B.
2017-01-01
Emotional states influence how stimuli are interpreted. High anxiety states in humans lead to more negative, threatening interpretations of novel information, typically accompanied by activation of the amygdala. We developed a handling protocol that induces long-lasting high and low anxiety-like states in rats to explore the role of state anxiety…
USDA-ARS?s Scientific Manuscript database
Escherichia coli is a leading cause of intramammary infections in dairy cattle and is typically transient in nature. However, in a minority of cases, E. coli can cause persistent infections. Although the mechanisms that allow for a persistent intramammary E. coli infection are not fully understood...
Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens.
Doublet, Vincent; Poeschl, Yvonne; Gogol-Döring, Andreas; Alaux, Cédric; Annoscia, Desiderato; Aurori, Christian; Barribeau, Seth M; Bedoya-Reina, Oscar C; Brown, Mark J F; Bull, James C; Flenniken, Michelle L; Galbraith, David A; Genersch, Elke; Gisder, Sebastian; Grosse, Ivo; Holt, Holly L; Hultmark, Dan; Lattorff, H Michael G; Le Conte, Yves; Manfredini, Fabio; McMahon, Dino P; Moritz, Robin F A; Nazzi, Francesco; Niño, Elina L; Nowick, Katja; van Rij, Ronald P; Paxton, Robert J; Grozinger, Christina M
2017-03-02
Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.
Dissecting nutrient-related co-expression networks in phosphate starved poplars.
Kavka, Mareike; Polle, Andrea
2017-01-01
Phosphorus (P) is an essential plant nutrient, but its availability is often limited in soil. Here, we studied changes in the transcriptome and in nutrient element concentrations in leaves and roots of poplars (Populus × canescens) in response to P deficiency. P starvation resulted in decreased concentrations of S and major cations (K, Mg, Ca), in increased concentrations of N, Zn and Al, while C, Fe and Mn were only little affected. In roots and leaves >4,000 and >9,000 genes were differently expressed upon P starvation. These genes clustered in eleven co-expression modules of which seven were correlated with distinct elements in the plant tissues. One module (4.7% of all differentially expressed genes) was strongly correlated with changes in the P concentration in the plant. In this module the GO term "response to P starvation" was enriched with phosphoenolpyruvate carboxylase kinases, phosphatases and pyrophosphatases as well as regulatory domains such as SPX, but no phosphate transporters. The P-related module was also enriched in genes of the functional category "galactolipid synthesis". Galactolipids substitute phospholipids in membranes under P limitation. Two modules, one correlated with C and N and the other with biomass, S and Mg, were connected with the P-related module by co-expression. In these modules GO terms indicating "DNA modification" and "cell division" as well as "defense" and "RNA modification" and "signaling" were enriched; they contained phosphate transporters. Bark storage proteins were among the most strongly upregulated genes in the growth-related module suggesting that N, which could not be used for growth, accumulated in typical storage compounds. In conclusion, weighted gene coexpression network analysis revealed a hierarchical structure of gene clusters, which separated phosphate starvation responses correlated with P tissue concentrations from other gene modules, which most likely represented transcriptional adjustments related to down-stream nutritional changes and stress.
Bmp2 Deletion Causes an Amelogenesis Imperfecta Phenotype Via Regulating Enamel Gene Expression
GUO, FENG; FENG, JUNSHENG; WANG, FENG; LI, WENTONG; GAO, QINGPING; CHEN, ZHUO; SHOFF, LISA; DONLY, KEVIN J.; GLUHAK-HEINRICH, JELICA; CHUN, YONG HEE PATRICIA; HARRIS, STEPHEN E.; MACDOUGALL, MARY; CHEN, SHUO
2015-01-01
Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo. PMID:25545831
Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression.
Guo, Feng; Feng, Junsheng; Wang, Feng; Li, Wentong; Gao, Qingping; Chen, Zhuo; Shoff, Lisa; Donly, Kevin J; Gluhak-Heinrich, Jelica; Chun, Yong Hee Patricia; Harris, Stephen E; MacDougall, Mary; Chen, Shuo
2015-08-01
Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo. © 2015 Wiley Periodicals, Inc.
MouSensor: A Versatile Genetic Platform to Create Super Sniffer Mice for Studying Human Odor Coding.
D'Hulst, Charlotte; Mina, Raena B; Gershon, Zachary; Jamet, Sophie; Cerullo, Antonio; Tomoiaga, Delia; Bai, Li; Belluscio, Leonardo; Rogers, Matthew E; Sirotin, Yevgeniy; Feinstein, Paul
2016-07-26
Typically, ∼0.1% of the total number of olfactory sensory neurons (OSNs) in the main olfactory epithelium express the same odorant receptor (OR) in a singular fashion and their axons coalesce into homotypic glomeruli in the olfactory bulb. Here, we have dramatically increased the total number of OSNs expressing specific cloned OR coding sequences by multimerizing a 21-bp sequence encompassing the predicted homeodomain binding site sequence, TAATGA, known to be essential in OR gene choice. Singular gene choice is maintained in these "MouSensors." In vivo synaptopHluorin imaging of odor-induced responses by known M71 ligands shows functional glomerular activation in an M71 MouSensor. Moreover, a behavioral avoidance task demonstrates that specific odor detection thresholds are significantly decreased in multiple transgenic lines, expressing mouse or human ORs. We have developed a versatile platform to study gene choice and axon identity, to create biosensors with great translational potential, and to finally decode human olfaction. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
2014-01-01
Background Growth in fishes is regulated via many environmental and physiological factors and is shaped by the genetic background of each individual. Previous microarray studies of salmonid growth have examined fish experiencing either muscle wastage or accelerated growth patterns following refeeding, or the influence of growth hormone and transgenesis. This study determines the gene expression profiles of genetically unmanipulated large and small fish from a domesticated salmonid strain reared on a typical feeding regime. Gene expression profiles of white muscle and liver from rainbow trout (Oncorhynchus mykiss) from two seasonal spawning groups (September and December lots) within a single strain were examined when the fish were 15 months of age to assess the influence of season (late fall vs. onset of spring) and body size (large vs. small). Results Although IGFBP1 gene expression was up-regulated in the livers of small fish in both seasonal lots, few expression differences were detected in the liver overall. Faster growing Dec. fish showed a greater number of differences in white muscle expression compared to Sept. fish. Significant differences in the GO Generic Level 3 categories ‘response to external stimulus’, ‘establishment of localization’, and ‘response to stress’ were detected in white muscle tissue between large and small fish. Larger fish showed up-regulation of cytoskeletal component genes while many genes related to myofibril components of muscle tissue were up-regulated in small fish. Most of the genes up-regulated in large fish within the ‘response to stress’ category are involved in immunity while in small fish most of these gene functions are related to apoptosis. Conclusions A higher proportion of genes in white muscle compared to liver showed similar patterns of up- or down-regulation within the same size class across seasons supporting their utility as biomarkers for growth in rainbow trout. Differences between large and small Sept. fish in the ‘response to stress’ and ‘response to external stimulus’ categories for white muscle tissue, suggests that smaller fish have a greater inability to handle stress compared to the large fish. Sampling season had a significant impact on the expression of genes related to the growth process in rainbow trout. PMID:24450799
Feddermann, Nadja; Boller, Thomas; Salzer, Peter; Elfstrand, Sara; Wiemken, Andres; Elfstrand, Malin
2008-02-01
Different arbuscular mycorrhizal fungi (AMF) alter growth and nutrition of a given plant differently. Plant gene expression patterns in response to fungal colonization show a certain overlap when colonized by fungi of the Glomeraceae. However, little is known of plant responses to fungi of different fungal taxa, e.g. the Gigasporaceae. We therefore compared the impact of colonization by three taxonomically different AMF species (Glomus intraradices, Glomus mosseae and Scutellospora castanea) on Medicago truncatula at the physiological and transcriptional level using quantitative-PCR. Each AMF developed a species-typical colonization pattern, with a colonization degree of 60% for G. intraradices and 30% for G. mosseae. Both species developed appressoria, intraradical hyphae, arbuscules and vesicles. S. castanea showed a colonization degree of 10% and developed appressoria, intraradical hyphae, arbuscules and arbusculate coils. All AMF enhanced the plant biomass accumulation and nutritional status although not in correlation with the colonization degree. The expression of 10 mycorrhiza-specific or mycorrhiza-associated plant genes could be separated into two clusters. The first cluster, containing arbuscule-induced genes, was highly induced in interactions with G. intraradices and G. mosseae but also slightly induced by S. castanea. The second cluster of genes contained genes that were induced primarily by S. castanea. In conclusion, genes that respond to colonization by fungi of the genus Glomus also respond to Scutellospora. However, there is also a group of genes that is significantly induced only by Scutellospora and not by Glomus species in this study. Our data indicate that genes may be differentially regulated in response to the different AM fungi.
GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge
Wagner, Florian
2015-01-01
Method Genome-wide expression profiling is a widely used approach for characterizing heterogeneous populations of cells, tissues, biopsies, or other biological specimen. The exploratory analysis of such data typically relies on generic unsupervised methods, e.g. principal component analysis (PCA) or hierarchical clustering. However, generic methods fail to exploit prior knowledge about the molecular functions of genes. Here, I introduce GO-PCA, an unsupervised method that combines PCA with nonparametric GO enrichment analysis, in order to systematically search for sets of genes that are both strongly correlated and closely functionally related. These gene sets are then used to automatically generate expression signatures with functional labels, which collectively aim to provide a readily interpretable representation of biologically relevant similarities and differences. The robustness of the results obtained can be assessed by bootstrapping. Results I first applied GO-PCA to datasets containing diverse hematopoietic cell types from human and mouse, respectively. In both cases, GO-PCA generated a small number of signatures that represented the majority of lineages present, and whose labels reflected their respective biological characteristics. I then applied GO-PCA to human glioblastoma (GBM) data, and recovered signatures associated with four out of five previously defined GBM subtypes. My results demonstrate that GO-PCA is a powerful and versatile exploratory method that reduces an expression matrix containing thousands of genes to a much smaller set of interpretable signatures. In this way, GO-PCA aims to facilitate hypothesis generation, design of further analyses, and functional comparisons across datasets. PMID:26575370
GO-PCA: An Unsupervised Method to Explore Gene Expression Data Using Prior Knowledge.
Wagner, Florian
2015-01-01
Genome-wide expression profiling is a widely used approach for characterizing heterogeneous populations of cells, tissues, biopsies, or other biological specimen. The exploratory analysis of such data typically relies on generic unsupervised methods, e.g. principal component analysis (PCA) or hierarchical clustering. However, generic methods fail to exploit prior knowledge about the molecular functions of genes. Here, I introduce GO-PCA, an unsupervised method that combines PCA with nonparametric GO enrichment analysis, in order to systematically search for sets of genes that are both strongly correlated and closely functionally related. These gene sets are then used to automatically generate expression signatures with functional labels, which collectively aim to provide a readily interpretable representation of biologically relevant similarities and differences. The robustness of the results obtained can be assessed by bootstrapping. I first applied GO-PCA to datasets containing diverse hematopoietic cell types from human and mouse, respectively. In both cases, GO-PCA generated a small number of signatures that represented the majority of lineages present, and whose labels reflected their respective biological characteristics. I then applied GO-PCA to human glioblastoma (GBM) data, and recovered signatures associated with four out of five previously defined GBM subtypes. My results demonstrate that GO-PCA is a powerful and versatile exploratory method that reduces an expression matrix containing thousands of genes to a much smaller set of interpretable signatures. In this way, GO-PCA aims to facilitate hypothesis generation, design of further analyses, and functional comparisons across datasets.
Initiation of follicular atresia: gene networks during early atresia in pig ovaries.
Zhang, Jinbi; Liu, Yang; Yao, Wang; Li, Qifa; Liu, Hong-Lin; Pan, Zengxiang
2018-05-09
In mammals, more than 99% of ovarian follicles undergo a degenerative process known as atresia. The molecular events involve in atresia initiation remain incompletely understood. The objective of this study was to analyze differential gene expression profiles of medium antral ovarian follicles during early atresia in pig. The transcriptome evaluation was performed on cDNA microarrays using healthy and early atretic follicle samples and was validated by quantitative PCR. Annotation analysis applying current database (sus scrofa 11.1) revealed 450 significantly differential expressed genes between healthy and early atretic follicles. Among them, 142 were significantly up-regulated in early atretic with respect to healthy group and 308 were down-regulated. Similar expression trends were observed between microarray data and qRT-PCR confirmation, which indicated the reliability of the microarray analysis. Further analysis of the differential expressed genes revealed the most significantly affected biological functions during early atresia including blood vessel development, regulation of DNA-templated transcription in response to stress and negative regulation of cell adhesion. The pathway and interaction analysis suggested that atresia initiation associates with 1) a crosstalk of cell apoptosis, autophagy, and ferroptosis rather than change of typical apoptosis markers, 2) dramatic shift of steroidogenic enzymes, 3) deficient glutathione metabolism, and 4) vascular degeneration. The novel gene candidates and pathways identified in the current study will lead to a comprehensive view of the molecular regulation of ovarian follicular atresia and a new understanding of atresia initiation.
Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce
Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit
2012-01-01
In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce. PMID:22973444
Reiman, Mario; Laan, Maris; Rull, Kristiina; Sõber, Siim
2017-08-01
RNA degradation is a ubiquitous process that occurs in living and dead cells, as well as during handling and storage of extracted RNA. Reduced RNA quality caused by degradation is an established source of uncertainty for all RNA-based gene expression quantification techniques. RNA sequencing is an increasingly preferred method for transcriptome analyses, and dependence of its results on input RNA integrity is of significant practical importance. This study aimed to characterize the effects of varying input RNA integrity [estimated as RNA integrity number (RIN)] on transcript level estimates and delineate the characteristic differences between transcripts that differ in degradation rate. The study used ribodepleted total RNA sequencing data from a real-life clinically collected set ( n = 32) of human solid tissue (placenta) samples. RIN-dependent alterations in gene expression profiles were quantified by using DESeq2 software. Our results indicate that small differences in RNA integrity affect gene expression quantification by introducing a moderate and pervasive bias in expression level estimates that significantly affected 8.1% of studied genes. The rapidly degrading transcript pool was enriched in pseudogenes, short noncoding RNAs, and transcripts with extended 3' untranslated regions. Typical slowly degrading transcripts (median length, 2389 nt) represented protein coding genes with 4-10 exons and high guanine-cytosine content.-Reiman, M., Laan, M., Rull, K., Sõber, S. Effects of RNA integrity on transcript quantification by total RNA sequencing of clinically collected human placental samples. © FASEB.
Kikuta, Hiroshi; Laplante, Mary; Navratilova, Pavla; Komisarczuk, Anna Z.; Engström, Pär G.; Fredman, David; Akalin, Altuna; Caccamo, Mario; Sealy, Ian; Howe, Kerstin; Ghislain, Julien; Pezeron, Guillaume; Mourrain, Philippe; Ellingsen, Staale; Oates, Andrew C.; Thisse, Christine; Thisse, Bernard; Foucher, Isabelle; Adolf, Birgit; Geling, Andrea; Lenhard, Boris; Becker, Thomas S.
2007-01-01
We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated “bystander” genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns that are different from those of the target genes. Reporter insertions distal to zebrafish developmental regulatory genes pax6.1/2, rx3, id1, and fgf8 and miRNA genes mirn9-1 and mirn9-5 recapitulate the expression patterns of these genes even if located inside or beyond bystander genes, suggesting that the regulatory domain of a developmental regulatory gene can extend into and beyond adjacent transcriptional units. We termed these chromosomal segments genomic regulatory blocks (GRBs). After whole genome duplication in teleosts, GRBs, including HCNEs and target genes, were often maintained in both copies, while bystander genes were typically lost from one GRB, strongly suggesting that evolutionary pressure acts to keep the single-copy GRBs of higher vertebrates intact. We show that loss of bystander genes and other mutational events suffered by duplicated GRBs in teleost genomes permits target gene identification and HCNE/target gene assignment. These findings explain the absence of evolutionary breakpoints from large vertebrate chromosomal segments and will aid in the recognition of position effect mutations within human GRBs. PMID:17387144
Differential expansion and expression of alpha- and beta-tubulin gene families in Populus.
Oakley, Rodney V; Wang, Yuh-Shuh; Ramakrishna, Wusirika; Harding, Scott A; Tsai, Chung-Jui
2007-11-01
Microtubule organization is intimately associated with cellulose microfibril deposition, central to plant secondary cell wall development. We have determined that a relatively large suite of eight alpha-TUBULIN (TUA) and 20 beta-TUBULIN (TUB) genes is expressed in the woody perennial Populus. A number of features, including gene number, alpha:beta gene representation, amino acid changes at the C terminus, and transcript abundance in wood-forming tissue, distinguish the Populus tubulin suite from that of Arabidopsis thaliana. Five of the eight Populus TUAs are unusual in that they contain a C-terminal methionine, glutamic acid, or glutamine, instead of the more typical, and potentially regulatory, C-terminal tyrosine. Both C-terminal Y-type (TUA1) and M-type (TUA5) TUAs were highly expressed in wood-forming tissues and pollen, while the Y-type TUA6 and TUA8 were abundant only in pollen. Transcripts of the disproportionately expanded TUB family were present at comparatively low levels, with phylogenetically distinct classes predominating in xylem and pollen. When tension wood induction was used as a model system to examine changes in tubulin gene expression under conditions of augmented cellulose deposition, xylem-abundant TUA and TUB genes were up-regulated. Immunolocalization of TUA and TUB in xylem and phloem fibers of stems further supported the notion of heavy microtubule involvement during cellulose microfibril deposition in secondary walls. The high degree of sequence diversity, differential expansion, and differential regulation of Populus TUA and TUB families may confer flexibility in cell wall formation that is of adaptive significance to the woody perennial growth habit.
Qiu, Yilan; Liao, Lijuan; Jin, Xiaorui; Mao, Dandan; Liu, Rushi
2018-01-30
CMS, which refers to the inability to generate functional pollen grains while still producing a normal gynoecium, has been widely used for pepper hybrid seed production. Pepper line 8214A is an excellent CMS line exhibiting 100% male sterility and superior economic characteristics. A TUNEL assay revealed the nuclear DNA is damaged in 8214A PMCs during meiosis. TEM images indicated that the 8214A PMCs exhibited asynchronous meiosis after prophase I, and some PMCs degraded prematurely with morphological features typical of PCD. Additionally, at the end of meiosis, the 8214A PMCs formed abnormal non-tetrahedral tetrads that degraded in situ. To identify the genes involved in the pollen abortion of line 8214A, the transcriptional profiles of the 8214A and the 8214B anthers (i.e., from the fertile maintainer line) during meiosis were analyzed using an RNA-seq approach. A total of 1355 genes were determined to be differentially expressed, including 424 and 931 up- and down- regulated genes, respectively, in the 8214A anthers during meiosis relative to the expression levels in the 8214B. The expression levels of ubiquitin ligase and cell cycle-related genes were apparently down-regulated, while the expression of methyltransferase genes was up-regulated in the 8214A anthers during meiosis, which likely contributed to the PCD of these PMCs during meiosis. Thus, our results may be useful for revealing the molecular mechanism regulating the pollen abortion of CMS pepper. Copyright © 2017. Published by Elsevier B.V.
Vernon, Suzanne D; Whistler, Toni; Cameron, Barbara; Hickie, Ian B; Reeves, William C; Lloyd, Andrew
2006-01-31
Acute infectious diseases are typically accompanied by non-specific symptoms including fever, malaise, irritability and somnolence that usually resolve on recovery. However, in some individuals these symptoms persist in what is commonly termed post-infective fatigue. The objective of this pilot study was to determine the gene expression correlates of post-infective fatigue following acute Epstein Barr virus (EBV) infection. We followed 5 people with acute mononucleosis who developed post-infective fatigue of more than 6 months duration and 5 HLA-matched control subjects who recovered within 3 months. Subjects had peripheral blood mononuclear cell (PBMC) samples collected at varying time points including at diagnosis, then every 2 weeks for 3 months, then every 3 months for a year. Total RNA was extracted from the PBMC samples and hybridized to microarrays spotted with 3,800 oligonucleotides. Those who developed post-infective fatigue had gene expression profiles indicative of an altered host response during acute mononucleosis compared to those who recovered uneventfully. Several genes including ISG20 (interferon stimulated gene), DNAJB2 (DnaJ [Hsp40] homolog and CD99), CDK8 (cyclin-dependent kinase 8), E2F2 (E2F transcription factor 2), CDK8 (cyclin-dependent kinase 8), and ACTN2 (actinin, alpha 2), known to be regulated during EBV infection, were differentially expressed in post-infective fatigue cases. Several of the differentially expressed genes affect mitochondrial functions including fatty acid metabolism and the cell cycle. These preliminary data provide insights into alterations in gene transcripts associated with the varied clinical outcomes from acute infectious mononucleosis.
Zeng, Mu-Heng; Liu, Sheng-Hong; Yang, Miao-Xian; Zhang, Ya-Jun; Liang, Jia-Yong; Wan, Xiao-Rong; Liang, Hong
2013-01-01
Clathrin, a three-legged triskelion composed of three clathrin heavy chains (CHCs) and three light chains (CLCs), plays a critical role in clathrin-mediated endocytosis (CME) in eukaryotic cells. In this study, the genes ZmCHC1 and ZmCHC2 encoding clathrin heavy chain in maize were cloned and characterized for the first time in monocots. ZmCHC1 encodes a 1693-amino acid-protein including 29 exons and 28 introns, and ZmCHC2 encodes a 1746-amino acid-protein including 28 exons and 27 introns. The high similarities of gene structure, protein sequences and 3D models among ZmCHC1, and Arabidopsis AtCHC1 and AtCHC2 suggest their similar functions in CME. ZmCHC1 gene is predominantly expressed in maize roots instead of ubiquitous expression of ZmCHC2. Consistent with a typical predicted salicylic acid (SA)-responsive element and four predicted ABA-responsive elements (ABREs) in the promoter sequence of ZmCHC1, the expression of ZmCHC1 instead of ZmCHC2 in maize roots is significantly up-regulated by SA or ABA, suggesting that ZmCHC1 gene may be involved in the SA signaling pathway in maize defense responses. The expressions of ZmCHC1 and ZmCHC2 genes in maize are down-regulated by azide or cold treatment, further revealing the energy requirement of CME and suggesting that CME in plants is sensitive to low temperatures. PMID:23880865
Identification, expression and tissue distribution of a renalase homologue from mouse.
Wang, Jian; Qi, Shaoling; Cheng, Wei; Li, Li; Wang, Fu; Li, Ying-Zi; Zhang, Shu-Ping
2008-12-01
FAD (flavin adenine dinucleotide)-dependent monoamine oxidases play very important roles in many biological processes. A novel monoamine oxidase, named renalase, has been identified in human kidney recently and is found to be markedly reduced in patients with end-stage renal disease (ESRD). Here, we reported the identification of a renalase homologue from mouse, termed mMAO-C (mouse monoamine oxidase-C) after the monoamine oxidase-A and -B (MAO-A and -B). This gene locates on the mouse chromosome 19C1 and its coding region spans 7 exons. The deuced amino acid sequences were predicted to contain a typical secretive signal peptide and a conserved amine oxidase domain. Phylogenetic analysis and multiple sequences alignment indicated that mMAO-C-like sequences exist in all examined species and share significant similarities. This gene has been submitted to the NCBI GenBank database (Accession number: DQ788834). With expression vectors generated from the cloned mMAO-C gene, exogenous protein was effectively expressed in both prokaryotic and eukaryotic cells. Recombinant mMAO-C protein was secreted out of human cell lines, indicating the biological function of its signal peptide. Moreover, tissue expression pattern analysis revealed that mMAO-C gene is predominantly expressed in the mouse kidney and testicle, which implies that kidney and testicle are the main sources of renalase secretion. Shortly, this study provides an insight into understanding the physiological and biological functions of mMAO-C and its homologues in endocrine.
Analysis of Epstein-Barr Virus Genomes and Expression Profiles in Gastric Adenocarcinoma.
Borozan, Ivan; Zapatka, Marc; Frappier, Lori; Ferretti, Vincent
2018-01-15
Epstein-Barr virus (EBV) is a causative agent of a variety of lymphomas, nasopharyngeal carcinoma (NPC), and ∼9% of gastric carcinomas (GCs). An important question is whether particular EBV variants are more oncogenic than others, but conclusions are currently hampered by the lack of sequenced EBV genomes. Here, we contribute to this question by mining whole-genome sequences of 201 GCs to identify 13 EBV-positive GCs and by assembling 13 new EBV genome sequences, almost doubling the number of available GC-derived EBV genome sequences and providing the first non-Asian EBV genome sequences from GC. Whole-genome sequence comparisons of all EBV isolates sequenced to date (85 from tumors and 57 from healthy individuals) showed that most GC and NPC EBV isolates were closely related although American Caucasian GC samples were more distant, suggesting a geographical component. However, EBV GC isolates were found to contain some consistent changes in protein sequences regardless of geographical origin. In addition, transcriptome data available for eight of the EBV-positive GCs were analyzed to determine which EBV genes are expressed in GC. In addition to the expected latency proteins (EBNA1, LMP1, and LMP2A), specific subsets of lytic genes were consistently expressed that did not reflect a typical lytic or abortive lytic infection, suggesting a novel mechanism of EBV gene regulation in the context of GC. These results are consistent with a model in which a combination of specific latent and lytic EBV proteins promotes tumorigenesis. IMPORTANCE Epstein-Barr virus (EBV) is a widespread virus that causes cancer, including gastric carcinoma (GC), in a small subset of individuals. An important question is whether particular EBV variants are more cancer associated than others, but more EBV sequences are required to address this question. Here, we have generated 13 new EBV genome sequences from GC, almost doubling the number of EBV sequences from GC isolates and providing the first EBV sequences from non-Asian GC. We further identify sequence changes in some EBV proteins common to GC isolates. In addition, gene expression analysis of eight of the EBV-positive GCs showed consistent expression of both the expected latency proteins and a subset of lytic proteins that was not consistent with typical lytic or abortive lytic expression. These results suggest that novel mechanisms activate expression of some EBV lytic proteins and that their expression may contribute to oncogenesis. Copyright © 2018 American Society for Microbiology.
Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers.
Krajewska, M.; Krajewski, S.; Epstein, J. I.; Shabaik, A.; Sauvageot, J.; Song, K.; Kitada, S.; Reed, J. C.
1996-01-01
Proteins encoded by bcl-2 family genes are important regulators of programmed cell death and apoptosis. Alterations in the expression of these apoptosis-regulating genes can contribute to the origins of cancer, as well as adversely influence tumor responses to chemo- and radiotherapy. Using antibodies specific for the Bcl-2, Bax, Bcl-X, and Mcl-1 proteins in combination with immunohistochemical methods, we examined for the first time the expression of these bcl-2 family genes in 64 cases of adenocarcinoma of the prostate, including 10 Gleason grade 2 to 4 tumors, 21 grade 5 to 7 tumors, 17 grade 8 to 10 tumors, 8 lymph node metastases, and 8 bone metastases. In addition, 24 cases of prostatic intraepithelial neoplasia (PIN) or PIN coexisting with carcinoma were also evaluated. All immunostaining results were scored with regard to approximate percentage of positive tumor cells and relative immunostaining intensity. Expression of the anti-apoptotic protein Bcl-2 was present in 16 of 64 (25%) adenocarcinomas and tended to be more frequent in high grade tumors (Gleason grade 8 to 10; 41%) and nodal metastases (38%) than in lower grade (Gleason 2 to 7) primary tumors (16%; P < 0.05). Bcl-X was expressed in all 64 (100%) tumors evaluated. Bcl-X immunointensity was generally stronger in high grade primary tumors (grade 8 to 10) and metastases compared with PIN and low grade neoplasms (P < 0.0001). In addition, the proportion of specimens with > 50% Bcl-X-immunopositive tumor cells also was higher in advanced grade primary tumors (Gleason 8 to 10) and metastases than in PIN and low grade tumors (Gleason 2 to 7; P < 0.005). The anti-apoptotic protein Mcl-1 was expressed in 52 of 64 (81%) tumors, compared with only 9 of 24 (38%) cases of PIN (P < 0.001). In addition, the percentage of Mcl-1-positive cells was typically higher in Gleason grade 8 to 10 tumors and metastases than in PIN or lower grade tumors (P = 0.025). In contrast, the pro-apoptotic protein Bax was expressed in all prostate cancers evaluated, with high percentages of immunopositive cells and strong immunointensity typically occurring regardless of tumor grade. The findings suggest that expression of several anti-apoptotic members of the bcl-2 gene family, including bcl-2, bcl-X, and mcl-1 increases during progression of prostate cancers, a finding that may be relevant to the hormone-insensitive, metastatic phenotype of most advanced adenocarcinomas of the prostate. Images Figure 2 PMID:8623925
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Saguna; Ziegler, Katja; Ananthula, Praveen
2006-02-20
Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarraymore » technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.« less
Jiménez, Sergio; Li, Zhigang; Reighard, Gregory L; Bielenberg, Douglas G
2010-02-09
In many tree species the perception of short days (SD) can trigger growth cessation, dormancy entrance, and the establishment of a chilling requirement for bud break. The molecular mechanisms connecting photoperiod perception, growth cessation and dormancy entrance in perennials are not clearly understood. The peach [Prunus persica (L.) Batsch] evergrowing (evg) mutant fails to cease growth and therefore cannot enter dormancy under SD. We used the evg mutant to filter gene expression associated with growth cessation after exposure to SD. Wild-type and evg plants were grown under controlled conditions of long days (16 h/8 h) followed by transfer to SD (8 h/16 h) for eight weeks. Apical tissues were sampled at zero, one, two, four, and eight weeks of SD and suppression subtractive hybridization was performed between genotypes at the same time points. We identified 23 up-regulated genes in the wild-type with respect to the mutant during SD exposure. We used quantitative real-time PCR to verify the expression of the differentially expressed genes in wild-type tissues following the transition to SD treatment. Three general expression patterns were evident: one group of genes decreased at the time of growth cessation (after 2 weeks in SD), another that increased immediately after the SD exposure and then remained steady, and another that increased throughout SD exposure. The use of the dormancy-incapable mutant evg has allowed us to reduce the number of genes typically detected by differential display techniques for SD experiments. These genes are candidates for involvement in the signalling pathway leading from photoperiod perception to growth cessation and dormancy entrance and will be the target of future investigations.
Abernathy, Jason; Brezas, Andreas; Snekvik, Kevin R; Hardy, Ronald W; Overturf, Ken
2017-01-01
Finding suitable alternative protein sources for diets of carnivorous fish species remains a major concern for sustainable aquaculture. Through genetic selection, we created a strain of rainbow trout that outperforms parental lines in utilizing an all-plant protein diet and does not develop enteritis in the distal intestine, as is typical with salmonids on long-term plant protein-based feeds. By incorporating this strain into functional analyses, we set out to determine which genes are critical to plant protein utilization in the absence of gut inflammation. After a 12-week feeding trial with our selected strain and a control trout strain fed either a fishmeal-based diet or an all-plant protein diet, high-throughput RNA sequencing was completed on both liver and muscle tissues. Differential gene expression analyses, weighted correlation network analyses and further functional characterization were performed. A strain-by-diet design revealed differential expression ranging from a few dozen to over one thousand genes among the various comparisons and tissues. Major gene ontology groups identified between comparisons included those encompassing central, intermediary and foreign molecule metabolism, associated biosynthetic pathways as well as immunity. A systems approach indicated that genes involved in purine metabolism were highly perturbed. Systems analysis among the tissues tested further suggests the interplay between selection for growth, dietary utilization and protein tolerance may also have implications for nonspecific immunity. By combining data from differential gene expression and co-expression networks using selected trout, along with ontology and pathway analyses, a set of 63 candidate genes for plant diet tolerance was found. Risk loci in human inflammatory bowel diseases were also found in our datasets, indicating rainbow trout selected for plant-diet tolerance may have added utility as a potential biomedical model.
Kirsten, Holger; Al-Hasani, Hoor; Holdt, Lesca; Gross, Arnd; Beutner, Frank; Krohn, Knut; Horn, Katrin; Ahnert, Peter; Burkhardt, Ralph; Reiche, Kristin; Hackermüller, Jörg; Löffler, Markus; Teupser, Daniel; Thiery, Joachim; Scholz, Markus
2015-01-01
Genetics of gene expression (eQTLs or expression QTLs) has proved an indispensable tool for understanding biological pathways and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We found eQTLs for about 85% of analysed genes, and 18% of genes were trans-regulated. Local eSNPs were enriched up to a distance of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated genes of GWAS-related eSNPs supported functional relevance of identified eQTLs. We demonstrate that nearest genes of GWAS-SNPs might frequently be misleading functional candidates. We identified novel trans-clusters of potential functional relevance for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes. We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of gene expression, pathways and disease-related processes. PMID:26019233
NASA Astrophysics Data System (ADS)
Edgcomb, V. P.; Taylor, C.; Pachiadaki, M. G.; Honjo, S.; Engstrom, I.; Yakimov, M.
2016-07-01
Obtaining an accurate picture of microbial processes occurring in situ is essential for our understanding of marine biogeochemical cycles of global importance. Water samples are typically collected at depth and returned to the sea surface for processing and downstream experiments. Metatranscriptome analysis is one powerful approach for investigating metabolic activities of microorganisms in their habitat and which can be informative for determining responses of microbiota to disturbances such as the Deepwater Horizon oil spill. For studies of microbial processes occurring in the deep sea, however, sample handling, pressure, and other changes during sample recovery can subject microorganisms to physiological changes that alter the expression profile of labile messenger RNA. Here we report a comparison of gene expression profiles for whole microbial communities in a bathypelagic water column sample collected in the Eastern Mediterranean Sea using Niskin bottle sample collection and a new water column sampler for studies of marine microbial ecology, the Microbial Sampler - In Situ Incubation Device (MS-SID). For some taxa, gene expression profiles from samples collected and preserved in situ were significantly different from potentially more stressful Niskin sampling and preservation on deck. Some categories of transcribed genes also appear to be affected by sample handling more than others. This suggests that for future studies of marine microbial ecology, particularly targeting deep sea samples, an in situ sample collection and preservation approach should be considered.
Genomic understanding of dinoflagellates.
Lin, Senjie
2011-01-01
The phylum of dinoflagellates is characterized by many unusual and interesting genomic and physiological features, the imprint of which, in its immense genome, remains elusive. Much novel understanding has been achieved in the last decade on various aspects of dinoflagellate biology, but most remarkably about the structure, expression pattern and epigenetic modification of protein-coding genes in the nuclear and organellar genomes. Major findings include: 1) the great diversity of dinoflagellates, especially at the base of the dinoflagellate tree of life; 2) mini-circularization of the genomes of typical dinoflagellate plastids (with three membranes, chlorophylls a, c1 and c2, and carotenoid peridinin), the scrambled mitochondrial genome and the extensive mRNA editing occurring in both systems; 3) ubiquitous spliced leader trans-splicing of nuclear-encoded mRNA and demonstrated potential as a novel tool for studying dinoflagellate transcriptomes in mixed cultures and natural assemblages; 4) existence and expression of histones and other nucleosomal proteins; 5) a ribosomal protein set expected of typical eukaryotes; 6) genetic potential of non-photosynthetic solar energy utilization via proton-pump rhodopsin; 7) gene candidates in the toxin synthesis pathways; and 8) evidence of a highly redundant, high gene number and highly recombined genome. Despite this progress, much more work awaits genome-wide transcriptome and whole genome sequencing in order to unfold the molecular mechanisms underlying the numerous mysterious attributes of dinoflagellates. Copyright © 2011 Institut Pasteur. Published by Elsevier SAS. All rights reserved.
Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization
Roberts, Brock; Haupt, Amanda; Tucker, Andrew; Grancharova, Tanya; Arakaki, Joy; Fuqua, Margaret A.; Nelson, Angelique; Hookway, Caroline; Ludmann, Susan A.; Mueller, Irina A.; Yang, Ruian; Horwitz, Rick; Rafelski, Susanne M.; Gunawardane, Ruwanthi N.
2017-01-01
We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1–4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line–generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. PMID:28814507
Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang
2015-01-01
Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055
Lovisetto, Alessandro; Baldan, Barbara; Pavanello, Anna; Casadoro, Giorgio
2015-07-16
The involvement of MADS-box genes of the AGAMOUS lineage in the formation of both flowers and fruits has been studied in detail in Angiosperms. AGAMOUS genes are expressed also in the reproductive structures of Gymnosperms, yet the demonstration of their role has been problematic because Gymnosperms are woody plants difficult to manipulate for physiological and genetic studies. Recently, it was shown that in the gymnosperm Ginkgo biloba an AGAMOUS gene was expressed throughout development and ripening of the fleshy fruit-like structures produced by this species around its seeds. Such fleshy structures are evolutionarily very important because they favor the dispersal of seeds through endozoochory. In this work a characterization of the Ginkgo gene was carried out by over-expressing it in tomato. In tomato plants ectopically expressing the Ginkgo AGAMOUS gene a macroscopic anomaly was observed only in the flower sepals. While the wild type sepals had a leaf-like appearance, the transgenic ones appeared connately adjoined at their proximal extremity and, concomitant with the development and ripening of the fruit, they became thicker and acquired a yellowish-orange color, thus indicating that they had undergone a homeotic transformation into carpel-like structures. Molecular analyses of several genes associated with either the control of ripening or the ripening syndrome in tomato fruits confirmed that the transgenic sepals behaved like ectopic fruits that could undergo some ripening, although the red color typical of the ripe tomato fruit was never achieved. The ectopic expression of the Ginkgo AGAMOUS gene in tomato caused the homeotic transformation of the transgenic sepals into carpel-like structures, and this showed that the gymnosperm gene has a genuine C function. In parallel with the ripening of fruits the related transgenic sepals became fleshy fruit-like structures that also underwent some ripening and such a result indicates that this C function gene might be involved, together with other gens, also in the development of the Ginkgo fruit-like structures. It seems thus strengthened the hypothesis that AGAMOUS MADS-box genes were recruited already in Gymnosperms for the development of the fleshy fruit habit which is evolutionarily so important for the dispersal of seeds.
Heterologous expression of proteins from Plasmodium falciparum: results from 1000 genes.
Mehlin, Christopher; Boni, Erica; Buckner, Frederick S; Engel, Linnea; Feist, Tiffany; Gelb, Michael H; Haji, Lutfiyah; Kim, David; Liu, Colleen; Mueller, Natascha; Myler, Peter J; Reddy, J T; Sampson, Joshua N; Subramanian, E; Van Voorhis, Wesley C; Worthey, Elizabeth; Zucker, Frank; Hol, Wim G J
2006-08-01
As part of a structural genomics initiative, 1000 open reading frames from Plasmodium falciparum, the causative agent of the most deadly form of malaria, were tested in an E. coli protein expression system. Three hundred and thirty-seven of these targets were observed to express, although typically the protein was insoluble. Sixty-three of the targets provided soluble protein in yields ranging from 0.9 to 406.6 mg from one liter of rich media. Higher molecular weight, greater protein disorder (segmental analysis, SEG), more basic isoelectric point (pI), and a lack of homology to E. coli proteins were all highly and independently correlated with difficulties in expression. Surprisingly, codon usage and the percentage of adenosines and thymidines (%AT) did not appear to play a significant role. Of those proteins which expressed, high pI and a hypothetical annotation were both strongly and independently correlated with insolubility. The overwhelmingly important role of pI in both expression and solubility appears to be a surprising and fundamental issue in the heterologous expression of P. falciparum proteins in E. coli. Twelve targets which did not express in E. coli from the native gene sequence were codon-optimized through whole gene synthesis, resulting in the (insoluble) expression of three of these proteins. Seventeen targets which were expressed insolubly in E. coli were moved into a baculovirus/Sf-21 system, resulting in the soluble expression of one protein at a high level and six others at a low level. A variety of factors conspire to make the heterologous expression of P. falciparum proteins challenging, and these observations lay the groundwork for a rational approach to prioritizing and, ultimately, eliminating these impediments.
2012-01-01
Background Glioblastoma multiforme, the most common type of primary brain tumor in adults, is driven by cells with neural stem (NS) cell characteristics. Using derivation methods developed for NS cells, it is possible to expand tumorigenic stem cells continuously in vitro. Although these glioblastoma-derived neural stem (GNS) cells are highly similar to normal NS cells, they harbor mutations typical of gliomas and initiate authentic tumors following orthotopic xenotransplantation. Here, we analyzed GNS and NS cell transcriptomes to identify gene expression alterations underlying the disease phenotype. Methods Sensitive measurements of gene expression were obtained by high-throughput sequencing of transcript tags (Tag-seq) on adherent GNS cell lines from three glioblastoma cases and two normal NS cell lines. Validation by quantitative real-time PCR was performed on 82 differentially expressed genes across a panel of 16 GNS and 6 NS cell lines. The molecular basis and prognostic relevance of expression differences were investigated by genetic characterization of GNS cells and comparison with public data for 867 glioma biopsies. Results Transcriptome analysis revealed major differences correlated with glioma histological grade, and identified misregulated genes of known significance in glioblastoma as well as novel candidates, including genes associated with other malignancies or glioma-related pathways. This analysis further detected several long non-coding RNAs with expression profiles similar to neighboring genes implicated in cancer. Quantitative PCR validation showed excellent agreement with Tag-seq data (median Pearson r = 0.91) and discerned a gene set robustly distinguishing GNS from NS cells across the 22 lines. These expression alterations include oncogene and tumor suppressor changes not detected by microarray profiling of tumor tissue samples, and facilitated the identification of a GNS expression signature strongly associated with patient survival (P = 1e-6, Cox model). Conclusions These results support the utility of GNS cell cultures as a model system for studying the molecular processes driving glioblastoma and the use of NS cells as reference controls. The association between a GNS expression signature and survival is consistent with the hypothesis that a cancer stem cell component drives tumor growth. We anticipate that analysis of normal and malignant stem cells will be an important complement to large-scale profiling of primary tumors. PMID:23046790
Korch, Shaleen B.; Contreras, Heidi; Clark-Curtiss, Josephine E.
2009-01-01
Mycobacterium tuberculosis protein pairs Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, here named RelBE, RelFG, and RelJK, respectively, were identified based on homology to the Escherichia coli RelBE toxin:antitoxin (TA) module. In this study, we have characterized each Rel protein pair and have established that they are functional TA modules. Overexpression of individual M. tuberculosis rel toxin genes relE, relG, and relK induced growth arrest in Mycobacterium smegmatis; a phenotype that was completely reversible by expression of their cognate antitoxin genes, relB, relF, and relJ, respectively. We also provide evidence that RelB and RelE interact directly, both in vitro and in vivo. Analysis of the genetic organization and regulation established that relBE, relFG, and relJK form bicistronic operons that are cotranscribed and autoregulated, in a manner unlike typical TA modules. RelB and RelF act as transcriptional activators, inducing expression of their respective promoters. However, RelBE, RelFG, and RelJK (together) repress expression to basal levels of activity, while RelJ represses promoter activity altogether. Finally, we have determined that all six rel genes are expressed in broth-grown M. tuberculosis, whereas relE, relF, and relK are expressed during infection of human macrophages. This is the first demonstration of M. tuberculosis expressing TA modules in broth culture and during infection of human macrophages. PMID:19114484
2013-01-01
Background Wheat – Hessian fly interaction follows a typical gene-for-gene model. Hessian fly larvae die in wheat plants carrying an effective resistance gene, or thrive in susceptible plants that carry no effective resistance gene. Results Gene sets affected by Hessian fly attack in resistant plants were found to be very different from those in susceptible plants. Differential expression of gene sets was associated with differential accumulation of intermediates in defense pathways. Our results indicated that resources were rapidly mobilized in resistant plants for defense, including extensive membrane remodeling and release of lipids, sugar catabolism, and amino acid transport and degradation. These resources were likely rapidly converted into defense molecules such as oxylipins; toxic proteins including cysteine proteases, inhibitors of digestive enzymes, and lectins; phenolics; and cell wall components. However, toxicity alone does not cause immediate lethality to Hessian fly larvae. Toxic defenses might slow down Hessian fly development and therefore give plants more time for other types of defense to become effective. Conclusion Our gene expression and metabolic profiling results suggested that remodeling and fortification of cell wall and cuticle by increased deposition of phenolics and enhanced cross-linking were likely to be crucial for insect mortality by depriving Hessian fly larvae of nutrients from host cells. The identification of a large number of genes that were differentially expressed at different time points during compatible and incompatible interactions also provided a foundation for further research on the molecular pathways that lead to wheat resistance and susceptibility to Hessian fly infestation. PMID:23800119
Qian, Guofeng; Karnati, Srikanth; Baumgart-Vogt, Eveline
2015-01-01
Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat), whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and related gene expression and accelerated osteoblast differentiation. Taken together, our results suggest that PPARß regulates the numerical abundance and metabolic function of peroxisomes via Pex11ß in parallel to osteoblast differentiation. PMID:26630504
Redekar, Neelam R; Biyashev, Ruslan M; Jensen, Roderick V; Helm, Richard F; Grabau, Elizabeth A; Maroof, M A Saghai
2015-12-18
Low phytic acid (lpa) crops are potentially eco-friendly alternative to conventional normal phytic acid (PA) crops, improving mineral bioavailability in monogastric animals as well as decreasing phosphate pollution. The lpa crops developed to date carry mutations that are directly or indirectly associated with PA biosynthesis and accumulation during seed development. These lpa crops typically exhibit altered carbohydrate profiles, increased free phosphate, and lower seedling emergence, the latter of which reduces overall crop yield, hence limiting their large-scale cultivation. Improving lpa crop yield requires an understanding of the downstream effects of the lpa genotype on seed development. Towards that end, we present a comprehensive comparison of gene-expression profiles between lpa and normal PA soybean lines (Glycine max) at five stages of seed development using RNA-Seq approaches. The lpa line used in this study carries single point mutations in a myo-inositol phosphate synthase gene along with two multidrug-resistance protein ABC transporter genes. RNA sequencing data of lpa and normal PA soybean lines from five seed-developmental stages (total of 30 libraries) were used for differential expression and functional enrichment analyses. A total of 4235 differentially expressed genes, including 512-transcription factor genes were identified. Eighteen biological processes such as apoptosis, glucan metabolism, cellular transport, photosynthesis and 9 transcription factor families including WRKY, CAMTA3 and SNF2 were enriched during seed development. Genes associated with apoptosis, glucan metabolism, and cellular transport showed enhanced expression in early stages of lpa seed development, while those associated with photosynthesis showed decreased expression in late developmental stages. The results suggest that lpa-causing mutations play a role in inducing and suppressing plant defense responses during early and late stages of seed development, respectively. This study provides a global perspective of transcriptomal changes during soybean seed development in an lpa mutant. The mutants are characterized by earlier expression of genes associated with cell wall biosynthesis and a decrease in photosynthetic genes in late stages. The biological processes and transcription factors identified in this study are signatures of lpa-causing mutations.
Transcriptional maturation of the mouse auditory forebrain.
Hackett, Troy A; Guo, Yan; Clause, Amanda; Hackett, Nicholas J; Garbett, Krassimira; Zhang, Pan; Polley, Daniel B; Mirnics, Karoly
2015-08-14
The maturation of the brain involves the coordinated expression of thousands of genes, proteins and regulatory elements over time. In sensory pathways, gene expression profiles are modified by age and sensory experience in a manner that differs between brain regions and cell types. In the auditory system of altricial animals, neuronal activity increases markedly after the opening of the ear canals, initiating events that culminate in the maturation of auditory circuitry in the brain. This window provides a unique opportunity to study how gene expression patterns are modified by the onset of sensory experience through maturity. As a tool for capturing these features, next-generation sequencing of total RNA (RNAseq) has tremendous utility, because the entire transcriptome can be screened to index expression of any gene. To date, whole transcriptome profiles have not been generated for any central auditory structure in any species at any age. In the present study, RNAseq was used to profile two regions of the mouse auditory forebrain (A1, primary auditory cortex; MG, medial geniculate) at key stages of postnatal development (P7, P14, P21, adult) before and after the onset of hearing (~P12). Hierarchical clustering, differential expression, and functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all genes. Selected genesets related to neurotransmission, developmental plasticity, critical periods and brain structure were highlighted. An accessible repository of the entire dataset was also constructed that permits extraction and screening of all data from the global through single-gene levels. To our knowledge, this is the first whole transcriptome sequencing study of the forebrain of any mammalian sensory system. Although the data are most relevant for the auditory system, they are generally applicable to forebrain structures in the visual and somatosensory systems, as well. The main findings were: (1) Global gene expression patterns were tightly clustered by postnatal age and brain region; (2) comparing A1 and MG, the total numbers of differentially expressed genes were comparable from P7 to P21, then dropped to nearly half by adulthood; (3) comparing successive age groups, the greatest numbers of differentially expressed genes were found between P7 and P14 in both regions, followed by a steady decline in numbers with age; (4) maturational trajectories in expression levels varied at the single gene level (increasing, decreasing, static, other); (5) between regions, the profiles of single genes were often asymmetric; (6) GSEA revealed that genesets related to neural activity and plasticity were typically upregulated from P7 to adult, while those related to structure tended to be downregulated; (7) GSEA and pathways analysis of selected functional networks were not predictive of expression patterns in the auditory forebrain for all genes, reflecting regional specificity at the single gene level. Gene expression in the auditory forebrain during postnatal development is in constant flux and becomes increasingly stable with age. Maturational changes are evident at the global through single gene levels. Transcriptome profiles in A1 and MG are distinct at all ages, and differ from other brain regions. The database generated by this study provides a rich foundation for the identification of novel developmental biomarkers, functional gene pathways, and targeted studies of postnatal maturation in the auditory forebrain.
Emily E. Puckett; Michelle J. Serpiglia; Alyssa M. DeLeon; Stephanie Long; Rakesh Minocha; Lawrence B. Smart
2012-01-01
Studies of arsenate and phosphate uptake by plants in hydroponic and soil systems indicate a common transport mechanism via the phosphate transporters (PHTs) due to structural similarity of the anions. Typically, the presence of phosphate decreases plant uptake and translocation of arsenate in hydroponic solution. This study quantified arsenic (As) uptake related to...
USDA-ARS?s Scientific Manuscript database
A distinct type of postharvest skin browning of apple fruit called ‘stain’ is a frequent disorder of ‘Fuji’ apples grown under high light conditions. Symptoms typically develop only on sun-exposed regions of the peel regardless of the presence of prior sun-related injury, but usually on the margins...
ERIC Educational Resources Information Center
Chang, Ming-Mei; Briggs, George M.
2007-01-01
DNA microarrays are microscopic arrays on a solid surface, typically a glass slide, on which DNA oligonucleotides are deposited or synthesized in a high-density matrix with a predetermined spatial order. Several types of DNA microarrays have been developed and used for various biological studies. Here, we developed an undergraduate laboratory…
Caarls, Lotte; Van der Does, Dieuwertje; Hickman, Richard; Jansen, Wouter; Verk, Marcel C Van; Proietti, Silvia; Lorenzo, Oscar; Solano, Roberto; Pieterse, Corné M J; Van Wees, Saskia C M
2017-02-01
Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Suzuki, Hitoshi; Master, Emma; Ferreira, Patricia; Ruiz-Dueñas, Francisco J.; Held, Benjamin; Canessa, Paulo; Larrondo, Luis F.; Schmoll, Monika; Druzhinina, Irina S.; Kubicek, Christian P.; Gaskell, Jill A.; Kersten, Phil; St. John, Franz; Glasner, Jeremy; Sabat, Grzegorz; Splinter BonDurant, Sandra; Syed, Khajamohiddin; Yadav, Jagjit; Mgbeahuruike, Anthony C.; Kovalchuk, Andriy; Asiegbu, Fred O.; Lackner, Gerald; Hoffmeister, Dirk; Rencoret, Jorge; Gutiérrez, Ana; Sun, Hui; Lindquist, Erika; Barry, Kerrie; Riley, Robert; Grigoriev, Igor V.; Henrissat, Bernard; Kües, Ursula; Berka, Randy M.; Martínez, Angel T.; Covert, Sarah F.; Blanchette, Robert A.; Cullen, Daniel
2014-01-01
Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes. PMID:25474575
New potential markers of in vitro tomato morphogenesis identified by mRNA differential display.
Torelli, A; Soragni, E; Bolchi, A; Petrucco, S; Ottonello, S; Branca, C
1996-12-01
The identification of plant genes involved in early phases of in vitro morphogenesis can not only contribute to our understanding of the processes underlying growth regulator-controlled determination, but also provide novel markers for evaluating the outcome of in vitro regeneration experiments. To search for such genes and to monitor changes in gene expression accompanying in vitro regeneration, we have adapted the mRNA differential display technique to the comparative analysis of a model system of tomato cotyledons that can be driven selectively toward either shoot or callus formation by means of previously determined growth regulator supplementations. Hormone-independent transcriptional modulation (mainly down-regulation) has been found to be the most common event, indicating that a non-specific reprogramming of gene expression quantitatively predominates during the early phases of in vitro culture. However, cDNA fragments representative of genes that are either down-regulated or induced in a programme-specific manner could also be identified, and two of them (G35, G36) were further characterized. One of these cDNA fragments, G35, corresponds to an mRNA that is down-regulated much earlier in callus- (day 2) than in shoot-determined explants (day 6). The other, G36, identifies an mRNA that is transiently expressed in shoot-determined explants only, well before any macroscopic signs of differentiation become apparent, and thus exhibits typical features of a morphogenetic marker.
The evolution of an osmotically inducible dps in the genus Streptomyces.
Facey, Paul D; Hitchings, Matthew D; Williams, Jason S; Skibinski, David O F; Dyson, Paul J; Del Sol, Ricardo
2013-01-01
Dps proteins are found almost ubiquitously in bacterial genomes and there is now an appreciation of their multifaceted roles in various stress responses. Previous studies have shown that this family of proteins assemble into dodecamers and their quaternary structure is entirely critical to their function. Moreover, the numbers of dps genes per bacterial genome is variable; even amongst closely related species - however, for many genera this enigma is yet to be satisfactorily explained. We reconstruct the most probable evolutionary history of Dps in Streptomyces genomes. Typically, these bacteria encode for more than one Dps protein. We offer the explanation that variation in the number of dps per genome among closely related Streptomyces can be explained by gene duplication or lateral acquisition, and the former preceded a subsequent shift in expression patterns for one of the resultant paralogs. We show that the genome of S. coelicolor encodes for three Dps proteins including a tailless Dps. Our in vivo observations show that the tailless protein, unlike the other two Dps in S. coelicolor, does not readily oligomerise. Phylogenetic and bioinformatic analyses combined with expression studies indicate that in several Streptomyces species at least one Dps is significantly over-expressed during osmotic shock, but the identity of the ortholog varies. In silico analysis of dps promoter regions coupled with gene expression studies of duplicated dps genes shows that paralogous gene pairs are expressed differentially and this correlates with the presence of a sigB promoter. Lastly, we identify a rare novel clade of Dps and show that a representative of these proteins in S. coelicolor possesses a dodecameric quaternary structure of high stability.
Discovering functional modules by topic modeling RNA-Seq based toxicogenomic data.
Yu, Ke; Gong, Binsheng; Lee, Mikyung; Liu, Zhichao; Xu, Joshua; Perkins, Roger; Tong, Weida
2014-09-15
Toxicogenomics (TGx) endeavors to elucidate the underlying molecular mechanisms through exploring gene expression profiles in response to toxic substances. Recently, RNA-Seq is increasingly regarded as a more powerful alternative to microarrays in TGx studies. However, realizing RNA-Seq's full potential requires novel approaches to extracting information from the complex TGx data. Considering read counts as the number of times a word occurs in a document, gene expression profiles from RNA-Seq are analogous to a word by document matrix used in text mining. Topic modeling aiming at to discover the latent structures in text corpora would be helpful to explore RNA-Seq based TGx data. In this study, topic modeling was applied on a typical RNA-Seq based TGx data set to discover hidden functional modules. The RNA-Seq based gene expression profiles were transformed into "documents", on which latent Dirichlet allocation (LDA) was used to build a topic model. We found samples treated by the compounds with the same modes of actions (MoAs) could be clustered based on topic similarities. The topic most relevant to each cluster was identified as a "marker" topic, which was interpreted by gene enrichment analysis with MoAs then confirmed by compound and pathways associations mined from literature. To further validate the "marker" topics, we tested topic transferability from RNA-Seq to microarrays. The RNA-Seq based gene expression profile of a topic specifically associated with peroxisome proliferator-activated receptors (PPAR) signaling pathway was used to query samples with similar expression profiles in two different microarray data sets, yielding accuracy of about 85%. This proof-of-concept study demonstrates the applicability of topic modeling to discover functional modules in RNA-Seq data and suggests a valuable computational tool for leveraging information within TGx data in RNA-Seq era.
Universal and idiosyncratic characteristic lengths in bacterial genomes
NASA Astrophysics Data System (ADS)
Junier, Ivan; Frémont, Paul; Rivoire, Olivier
2018-05-01
In condensed matter physics, simplified descriptions are obtained by coarse-graining the features of a system at a certain characteristic length, defined as the typical length beyond which some properties are no longer correlated. From a physics standpoint, in vitro DNA has thus a characteristic length of 300 base pairs (bp), the Kuhn length of the molecule beyond which correlations in its orientations are typically lost. From a biology standpoint, in vivo DNA has a characteristic length of 1000 bp, the typical length of genes. Since bacteria live in very different physico-chemical conditions and since their genomes lack translational invariance, whether larger, universal characteristic lengths exist is a non-trivial question. Here, we examine this problem by leveraging the large number of fully sequenced genomes available in public databases. By analyzing GC content correlations and the evolutionary conservation of gene contexts (synteny) in hundreds of bacterial chromosomes, we conclude that a fundamental characteristic length around 10–20 kb can be defined. This characteristic length reflects elementary structures involved in the coordination of gene expression, which are present all along the genome of nearly all bacteria. Technically, reaching this conclusion required us to implement methods that are insensitive to the presence of large idiosyncratic genomic features, which may co-exist along these fundamental universal structures.
[The pathophysiology and diagnosis of anxiety disorder].
Akiyoshi, Jotaro
2012-01-01
In addition to genetic factors, the role of epigenetic and other environmental factors in the promotion of anxiety disorder has attracted much attention in psychiatric research. When stress is encountered in the environment, the hypothalamus-pituitary adrenal system (HPA system) is activated and cortisol is secreted. CRHR gene function is closely related to this response. As a result of haplotype analysis of CRHR genes in depression and panic disorder patients, it was found that genetic polymorphism of CRHR1 and CRHR2 was related to both disorders. It is reported that abused children are more susceptible to developing depression and anxiety disorder upon reaching adulthood, but there also exist genetic polymorphisms that may moderate this relationship. Direct methylation of DNA (typically repressing gene expression) and modification of chromatin structure (complexes of histone proteins and DNA) via acetylation (typically facilitating gene expression) represent epigenetic modifications that are thought to influence behavioral phenotypes. For example, it is rare that schizophrenia develops in identical twins brought up together in the same environment, and thus phenotypic differences cannot be explained simply by genetic polymorphism. We also evaluated salivary cortisol and amylase reactivity (indices of the HPA system and sympathoadrenal medullary system, respectfully) after electrical stimulation stress and Trier Social Stress Test (TSST) administration. Here we found differences in the cortisol stress response between electrical stimulation and TSST stressors, in contrast to the theory of Selye. In addition, we found alterations in activity patterns and difficulties integrating sensorimotor information in panic disorder patients, suggesting links between sensorimotor integration and stress in panic disorder. Moreover, state and trait anxiety may be associated with stabilograph factors.
Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda
2016-10-01
Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform for the selection of candidate lipase genes for further detailed functional study.
Jia, Tianqi; Wei, Danfeng; Meng, Shan; Allan, Andrew C.; Zeng, Lihui
2014-01-01
Longan (Dimocarpus longan L.) is a tropical/subtropical fruit tree of significant economic importance in Southeast Asia. However, a lack of transcriptomic and genomic information hinders research on longan traits, such as the control of flowering. In this study, high-throughput RNA sequencing (RNA-Seq) was used to investigate differentially expressed genes between a unique longan cultivar ‘Sijimi’(S) which flowers throughout the year and a more typical cultivar ‘Lidongben’(L) which flowers only once in the season, with the aim of identifying candidate genes associated with continuous flowering. 36,527 and 40,982 unigenes were obtained by de novo assembly of the clean reads from cDNA libraries of L and S cultivars. Additionally 40,513 unigenes were assembled from combined reads of these libraries. A total of 32,475 unigenes were annotated by BLAST search to NCBI non-redundant protein (NR), Swiss-Prot, Clusters of Orthologous Groups (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Of these, almost fifteen thousand unigenes were identified as significantly differentially expressed genes (DEGs) by using Reads Per kb per Million reads (RPKM) method. A total of 6,415 DEGs were mapped to 128 KEGG pathways, and 8,743 DEGs were assigned to 54 Gene Ontology categories. After blasting the DEGs to public sequence databases, 539 potential flowering-related DEGs were identified. In addition, 107 flowering-time genes were identified in longan, their expression levels between two longan samples were compared by RPKM method, of which the expression levels of 15 were confirmed by real-time quantitative PCR. Our results suggest longan homologues of SHORT VEGETATIVE PHASE (SVP), GIGANTEA (GI), F-BOX 1 (FKF1) and EARLY FLOWERING 4 (ELF4) may be involved this flowering trait and ELF4 may be a key gene. The identification of candidate genes related to continuous flowering will provide new insight into the molecular process of regulating flowering time in woody plants. PMID:25479005
Chen, Lin; Dong, Chuanju; Kong, Shengnan; Zhang, Jiangfan; Li, Xuejun; Xu, Peng
2017-09-05
Bone morphogenetic proteins (Bmps) are a group of signaling molecules known to play important roles during formation and maintenance of various organs, not only bone, but also muscle, blood and so on. Common carp (Cyprinus carpio) is one of the most intensively studied fish due to its economic and environmental importance. Besides, common carp has encountered an additional round of whole genome duplication (WGD) compared with many closely related diploid teleost, which make it one of the most important models for genome evolutionary studies in teleost. Comprehensive genome resources of common carp have been developed recently, which facilitate the thorough characterization of bmp gene family in the tetraploidized common carp genome. We identified a total of 44 bmps from the common carp genome, which are twice as many as that of zebrafish. Phylogenetic analysis revealed that most of bmps are highly conserved. Comparative analysis was performed across six typical vertebrate genomes. It appeared that all the bmp genes in common carp were duplicated. Obviously, the expansion of the bmp gene family in common carp was due to the latest additional round of whole genome duplication and made it more abundant than other diploid teleosts. Expression signatures were assessed in major tissues, including gill, intestine, liver, spleen, skin, heart, gonad, muscle, kidney, head kidney, brain and blood, which demonstrated the comprehensive expression profiles of bmp genes in the tetraploidized genome. Significant gene expression divergences were observed which revealed substantial functional divergences of those duplicated bmp genes post the latest WGD event. The conserved synteny blocks of bmp5s revealed the genome rearrangement of common carp post the 4R WGD. The whole set of bmp gene family in common carp provides insight into gene fate of tetraploidized common carp genome post recent WGD. Copyright © 2017. Published by Elsevier B.V.
Hamby, Kelly A.; Kwok, Rosanna S.; Zalom, Frank G.; Chiu, Joanna C.
2013-01-01
Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene expression can predict chronotoxicity of D. suzukii to insecticides. Locomotor assays were performed under conditions that approximate a typical summer or winter day in Watsonville, California, where D. suzukii was first detected in North America. As expected, daily activity patterns of D. suzukii appeared quite different between ‘summer’ and ‘winter’ conditions due to differences in photoperiod and temperature. In the ‘summer’, D. suzukii assumed a more bimodal activity pattern, with maximum activity occurring at dawn and dusk. In the ‘winter’, activity was unimodal and restricted to the warmest part of the circadian cycle. Expression analysis of six detoxification genes and acute contact bioassays were performed at multiple circadian times, but only in conditions approximating Watsonville summer, the cropping season, when most insecticide applications occur. Five of the genes tested exhibited rhythmic expression, with the majority showing peak expression at dawn (ZT0, 6am). We observed significant differences in the chronotoxicity of D. suzukii towards malathion, with highest susceptibility at ZT0 (6am), corresponding to peak expression of cytochrome P450s that may be involved in bioactivation of malathion. High activity levels were not found to correlate with high insecticide susceptibility as initially hypothesized. Chronobiology and chronotoxicity of D. suzukii provide valuable insights for monitoring and control efforts, because insect activity as well as insecticide timing and efficacy are crucial considerations for pest management. However, field research is necessary for extrapolation to agricultural settings. PMID:23861907
Hamby, Kelly A; Kwok, Rosanna S; Zalom, Frank G; Chiu, Joanna C
2013-01-01
Native to Southeast Asia, Drosophila suzukii (Matsumura) is a recent invader that infests intact ripe and ripening fruit, leading to significant crop losses in the U.S., Canada, and Europe. Since current D. suzukii management strategies rely heavily on insecticide usage and insecticide detoxification gene expression is under circadian regulation in the closely related Drosophila melanogaster, we set out to determine if integrative analysis of daily activity patterns and detoxification gene expression can predict chronotoxicity of D. suzukii to insecticides. Locomotor assays were performed under conditions that approximate a typical summer or winter day in Watsonville, California, where D. suzukii was first detected in North America. As expected, daily activity patterns of D. suzukii appeared quite different between 'summer' and 'winter' conditions due to differences in photoperiod and temperature. In the 'summer', D. suzukii assumed a more bimodal activity pattern, with maximum activity occurring at dawn and dusk. In the 'winter', activity was unimodal and restricted to the warmest part of the circadian cycle. Expression analysis of six detoxification genes and acute contact bioassays were performed at multiple circadian times, but only in conditions approximating Watsonville summer, the cropping season, when most insecticide applications occur. Five of the genes tested exhibited rhythmic expression, with the majority showing peak expression at dawn (ZT0, 6am). We observed significant differences in the chronotoxicity of D. suzukii towards malathion, with highest susceptibility at ZT0 (6am), corresponding to peak expression of cytochrome P450s that may be involved in bioactivation of malathion. High activity levels were not found to correlate with high insecticide susceptibility as initially hypothesized. Chronobiology and chronotoxicity of D. suzukii provide valuable insights for monitoring and control efforts, because insect activity as well as insecticide timing and efficacy are crucial considerations for pest management. However, field research is necessary for extrapolation to agricultural settings.
Breynaert, Christine; Dresselaers, Tom; Perrier, Clémentine; Arijs, Ingrid; Cremer, Jonathan; Van Lommel, Leentje; Van Steen, Kristel; Ferrante, Marc; Schuit, Frans; Vermeire, Séverine; Rutgeerts, Paul; Himmelreich, Uwe; Ceuppens, Jan L.; Geboes, Karel; Van Assche, Gert
2013-01-01
Introduction Chronically relapsing inflammation, tissue remodeling and fibrosis are hallmarks of inflammatory bowel diseases. The aim of this study was to investigate changes in connective tissue in a chronic murine model resulting from repeated cycles of dextran sodium sulphate (DSS) ingestion, to mimic the relapsing nature of the human disease. Materials and Methods C57BL/6 mice were exposed to DSS in drinking water for 1 week, followed by a recovery phase of 2 weeks. This cycle of exposure was repeated for up to 3 times (9 weeks in total). Colonic inflammation, fibrosis, extracellular matrix proteins and colonic gene expression were studied. In vivo MRI T 2 relaxometry was studied as a potential non-invasive imaging tool to evaluate bowel wall inflammation and fibrosis. Results Repeated cycles of DSS resulted in a relapsing and remitting disease course, which induced a chronic segmental, transmural colitis after 2 and 3 cycles of DSS with clear induction of fibrosis and remodeling of the muscular layer. Tenascin expression mirrored its expression in Crohn’s colitis. Microarray data identified a gene expression profile different in chronic colitis from that in acute colitis. Additional recovery was associated with upregulation of unique genes, in particular keratins, pointing to activation of molecular pathways for healing and repair. In vivo MRI T2 relaxometry of the colon showed a clear shift towards higher T2 values in the acute stage and a gradual regression of T2 values with increasing cycles of DSS. Conclusions Repeated cycles of DSS exposure induce fibrosis and connective tissue changes with typical features, as occurring in Crohn’s disease. Colonic gene expression analysis revealed unique expression profiles in chronic colitis compared to acute colitis and after additional recovery, pointing to potential new targets to intervene with the induction of fibrosis. In vivo T2 relaxometry is a promising non-invasive assessment of inflammation and fibrosis. PMID:23894361
Degl'Innocenti, Andrea; Parrilla, Marta; Harr, Bettina; Teschke, Meike
2016-01-01
In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a whole, our findings favor Olfr266 as a model gene to investigate odorant receptor gene choice.
Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA.
Queck, Shu Y; Khan, Burhan A; Wang, Rong; Bach, Thanh-Huy L; Kretschmer, Dorothee; Chen, Liang; Kreiswirth, Barry N; Peschel, Andreas; Deleo, Frank R; Otto, Michael
2009-07-01
Bacterial virulence and antibiotic resistance have a significant influence on disease severity and treatment options during bacterial infections. Frequently, the underlying genetic determinants are encoded on mobile genetic elements (MGEs). In the leading human pathogen Staphylococcus aureus, MGEs that contain antibiotic resistance genes commonly do not contain genes for virulence determinants. The phenol-soluble modulins (PSMs) are staphylococcal cytolytic toxins with a crucial role in immune evasion. While all known PSMs are core genome-encoded, we here describe a previously unidentified psm gene, psm-mec, within the staphylococcal methicillin resistance-encoding MGE SCCmec. PSM-mec was strongly expressed in many strains and showed the physico-chemical, pro-inflammatory, and cytolytic characteristics typical of PSMs. Notably, in an S. aureus strain with low production of core genome-encoded PSMs, expression of PSM-mec had a significant impact on immune evasion and disease. In addition to providing high-level resistance to methicillin, acquisition of SCCmec elements encoding PSM-mec by horizontal gene transfer may therefore contribute to staphylococcal virulence by substituting for the lack of expression of core genome-encoded PSMs. Thus, our study reveals a previously unknown role of methicillin resistance clusters in staphylococcal pathogenesis and shows that important virulence and antibiotic resistance determinants may be combined in staphylococcal MGEs.
Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data.
Kannan, Soumya; Sams, Thomas; Maury, Jérôme; Workman, Christopher T
2018-03-16
Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system of ordinary differential equations for estimating dynamic promoter activity for promoters that change their activity in response to the environment that is robust to noise and changes in growth rate. Our approach, inference of dynamic promoter activity (PromAct), improves on existing methods by more accurately inferring known promoter activity profiles. This method is also capable of estimating the correct scale of promoter activity and can be applied to quantitative data sets to estimate quantitative rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seoung Hoon; Kim, Taesoo; Park, Eui-Soon
2008-05-02
Bone homeostasis is tightly regulated by the balanced actions of osteoblasts (OBs) and osteoclasts (OCs). We previously analyzed the gene expression profile of OC differentiation using a cDNA microarray, and identified a novel osteoclastogenic gene candidate, clone OCL-1-E7 [J. Rho, C.R. Altmann, N.D. Socci, L. Merkov, N. Kim, H. So, O. Lee, M. Takami, A.H. Brivanlou, Y. Choi, Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis, DNA Cell Biol. 21 (2002) 541-549]. In this study, we have isolated full-length cDNAs corresponding to this clone from mice and humans to determine the functionalmore » roles of this gene in osteoclastogenesis. The full-length cDNA of OCL-1-E7 encodes 12 membrane-spanning domains that are typical of isoforms of the Na{sup +}/H{sup +} exchangers (NHEs), indicating that this clone is a novel member of the NHE family (hereafter referred to as NHE10). Here, we show that NHE10 is highly expressed in OCs in response to receptor activator of nuclear factor-{kappa}B ligand signaling and is required for OC differentiation and survival.« less
García-Alonso, Luz; Alonso, Roberto; Vidal, Enrique; Amadoz, Alicia; de María, Alejandro; Minguez, Pablo; Medina, Ignacio; Dopazo, Joaquín
2012-01-01
Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein–protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network. PMID:22844098
Identification of a novel Gig2 gene family specific to non-amniote vertebrates.
Zhang, Yi-Bing; Liu, Ting-Kai; Jiang, Jun; Shi, Jun; Liu, Ying; Li, Shun; Gui, Jian-Fang
2013-01-01
Gig2 (grass carp reovirus (GCRV)-induced gene 2) is first identified as a novel fish interferon (IFN)-stimulated gene (ISG). Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD) hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose) polymerases (PARPs), and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates.
DNA methylation and differentiation: HOX genes in muscle cells
2013-01-01
Background Tight regulation of homeobox genes is essential for vertebrate development. In a study of genome-wide differential methylation, we recently found that homeobox genes, including those in the HOX gene clusters, were highly overrepresented among the genes with hypermethylation in the skeletal muscle lineage. Methylation was analyzed by reduced representation bisulfite sequencing (RRBS) of postnatal myoblasts, myotubes and adult skeletal muscle tissue and 30 types of non-muscle-cell cultures or tissues. Results In this study, we found that myogenic hypermethylation was present in specific subregions of all four HOX gene clusters and was associated with various chromatin epigenetic features. Although the 3′ half of the HOXD cluster was silenced and enriched in polycomb repression-associated H3 lysine 27 trimethylation in most examined cell types, including myoblasts and myotubes, myogenic samples were unusual in also displaying much DNA methylation in this region. In contrast, both HOXA and HOXC clusters displayed myogenic hypermethylation bordering a central region containing many genes preferentially expressed in myogenic progenitor cells and consisting largely of chromatin with modifications typical of promoters and enhancers in these cells. A particularly interesting example of myogenic hypermethylation was HOTAIR, a HOXC noncoding RNA gene, which can silence HOXD genes in trans via recruitment of polycomb proteins. In myogenic progenitor cells, the preferential expression of HOTAIR was associated with hypermethylation immediately downstream of the gene. Other HOX gene regions also displayed myogenic DNA hypermethylation despite being moderately expressed in myogenic cells. Analysis of representative myogenic hypermethylated sites for 5-hydroxymethylcytosine revealed little or none of this base, except for an intragenic site in HOXB5 which was specifically enriched in this base in skeletal muscle tissue, whereas myoblasts had predominantly 5-methylcytosine at the same CpG site. Conclusions Our results suggest that myogenic hypermethylation of HOX genes helps fine-tune HOX sense and antisense gene expression through effects on 5′ promoters, intragenic and intergenic enhancers and internal promoters. Myogenic hypermethylation might also affect the relative abundance of different RNA isoforms, facilitate transcription termination, help stop the spread of activation-associated chromatin domains and stabilize repressive chromatin structures. PMID:23916067
Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment.
Gierliński, Marek; Cole, Christian; Schofield, Pietà; Schurch, Nicholas J; Sherstnev, Alexander; Singh, Vijender; Wrobel, Nicola; Gharbi, Karim; Simpson, Gordon; Owen-Hughes, Tom; Blaxter, Mark; Barton, Geoffrey J
2015-11-15
High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of 'bad' replicates, which can drastically affect the gene read-count distribution. RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. g.j.barton@dundee.ac.uk. © The Author 2015. Published by Oxford University Press.
Statistical models for RNA-seq data derived from a two-condition 48-replicate experiment
Cole, Christian; Schofield, Pietà; Schurch, Nicholas J.; Sherstnev, Alexander; Singh, Vijender; Wrobel, Nicola; Gharbi, Karim; Simpson, Gordon; Owen-Hughes, Tom; Blaxter, Mark; Barton, Geoffrey J.
2015-01-01
Motivation: High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. Results: A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of ‘bad’ replicates, which can drastically affect the gene read-count distribution. Availability and implementation: RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. Contact: g.j.barton@dundee.ac.uk PMID:26206307
An interstitial 15q11-q14 deletion: expanded Prader-Willi syndrome phenotype.
Butler, Merlin G; Bittel, Douglas C; Kibiryeva, Nataliya; Cooley, Linda D; Yu, Shihui
2010-02-01
We present an infant girl with a de novo interstitial deletion of the chromosome 15q11-q14 region, larger than the typical deletion seen in Prader-Willi syndrome (PWS). She presented with features seen in PWS including hypotonia, a poor suck, feeding problems, and mild micrognathia. She also presented with features not typically seen in PWS such as preauricular ear tags, a high-arched palate, edematous feet, coarctation of the aorta, a PDA, and a bicuspid aortic valve. G-banded chromosome analysis showed a large de novo deletion of the proximal long arm of chromosome 15 confirmed using FISH probes (D15511 and GABRB3). Methylation testing was abnormal and consistent with the diagnosis of PWS. Because of the large appearing deletion by karyotype analysis, an array comparative genomic hybridization (aCGH) was performed. A 12.3 Mb deletion was found which involved the 15q11-q14 region containing approximately 60 protein coding genes. This rare deletion was approximately twice the size of the typical deletion seen in PWS and involved the proximal breakpoint BP1 and the distal breakpoint was located in the 15q14 band between previously recognized breakpoints BP5 and BP6. The deletion extended slightly distal to the AVEN gene including the neighboring CHRM5 gene. There is no evidence that the genes in the 15q14 band are imprinted; therefore, their potential contribution in this patient's expanded PWS phenotype must be a consequence of dosage sensitivity of the genes or due to altered expression of intact neighboring genes from a position effect. Copyright 2010 Wiley-Liss, Inc.
Pollex, Tim; Piolot, Tristan; Heard, Edith
2013-01-01
Differentiation of embryonic stem cells is accompanied by changes of gene expression and chromatin and chromosome dynamics. One of the most impressive examples for these changes is inactivation of one of the two X chromosomes occurring upon differentiation of mouse female embryonic stem cells. With a few exceptions, these events have been mainly studied in fixed cells. In order to better understand the dynamics, kinetics, and order of events during differentiation, one needs to employ live-cell imaging techniques. Here, we describe a combination of live-cell imaging with techniques that can be used in fixed cells (e.g., RNA FISH) to correlate locus dynamics or subnuclear localization with, e.g., gene expression. To study locus dynamics in female ES cells, we generated cell lines containing TetO arrays in the X-inactivation center, the locus on the X chromosome regulating X-inactivation, which can be visualized upon expression of TetR fused to fluorescent proteins. We will use this system to elaborate on how to generate ES cell lines for live-cell imaging of locus dynamics, how to culture ES cells prior to live-cell imaging, and to describe typical live-cell imaging conditions for ES cells using different microscopes. Furthermore, we will explain how RNA, DNA FISH, or immunofluorescence can be applied following live-cell imaging to correlate gene expression with locus dynamics.
NASA Astrophysics Data System (ADS)
Shao, Zhanru; Li, Wei; Guo, Hui; Duan, Delin
2015-12-01
Ulva prolifera is a typical green alga in subtidal areas and can grow tremendously fast. A highly efficient Rubisco enzyme which is encoded by UpRbcL gene may contribute to the rapid growth. In this study, the full-length UpRbcL open reading frame (ORF) was identified, which encoded a protein of 474 amino acids. Phylogenetic analysis of UpRbcL sequences revealed that Chlorophyta had a closer genetic relationship with higher plants than with Rhodophyta and Phaeophyta. The two distinct residues (aa11 and aa91) were presumed to be unique for Rubisco catalytic activity. The predicted three-dimensional structure showed that one α/β-barrel existed in the C-terminal region, and the sites for Mg2+ coordination and CO2 fixation were also located in this region. Gene expression profile indicated that UpRbcL was expressed at a higher level under light exposure than in darkness. When the culture temperature reached 35°C, the expression level of UpRbcL was 2.5-fold lower than at 15°C, and the carboxylase activity exhibited 13.8-fold decrease. UpRbcL was heterologously expressed in E. coli and was purified by Ni2+ affinity chromatography. The physiological and biochemical characterization of recombinant Rubisco will be explored in the future.
The Thiamine Biosynthesis Gene THI1 Promotes Nodule Growth and Seed Maturation1
Nagae, Miwa; Kawaguchi, Masayoshi; Takeda, Naoya
2016-01-01
Thiamine (vitamin B1) is essential for living organisms. Unlike animals, plants can synthesize thiamine. In Lotus japonicus, the expression of two thiamine biosynthesis genes, THI1 and THIC, was enhanced by inoculation with rhizobia but not by inoculation with arbuscular mycorrhizal fungi. THIC and THI2 (a THI1 paralog) were expressed in uninoculated leaves. THI2-knockdown plants and the transposon insertion mutant thiC had chlorotic leaves. This typical phenotype of thiamine deficiency was rescued by an exogenous supply of thiamine. In wild-type plants, THI1 was expressed mainly in roots and nodules, and the thi1 mutant had green leaves even in the absence of exogenous thiamine. THI1 was highly expressed in actively dividing cells of nodule primordia. The thi1 mutant had small nodules, and this phenotype was rescued by exogenous thiamine and by THI1 complementation. Exogenous thiamine increased nodule diameter, but the level of arbuscular mycorrhizal colonization was unaffected in the thi1 mutant or by exogenous thiamine. Expression of symbiotic marker genes was induced normally, implying that mainly nodule growth was delayed in the thi1 mutant. Furthermore, this mutant formed many immature seeds with reduced seed weight. These results indicate that thiamine biosynthesis mediated by THI1 enhances nodule enlargement and is required for seed development in L. japonicus. PMID:27702844
Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes
Tohidnezhad, Mersedeh; Lammel, Justus; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Gläser, Regine; Harder, Jürgen
2017-01-01
Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs) or their clinically related formulations (e.g., Vivostat PRF®) came recently into the physicians' focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10) and late (transglutaminase-1 and involucrin) differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR-) dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo. PMID:28808357
Molecular cloning and characterization of a novel bovine IFN-ε.
Guo, Yongli; Gao, Mingchun; Bao, Jun; Luo, Xiuxin; Liu, Ying; An, Dong; Zhang, Haili; Ma, Bo; Wang, Junwei
2015-03-01
A bovine IFN-ε (BoIFN-ε) gene was amplified from bovine liver genomic DNA consisting of a 463bp partial 5'UTR, 582bp complete ORF and 171bp partial 3'UTR, which encodes a protein of 193 amino acids with a 21-amino acid signal peptide and shares 61 to 87% identity with other species IFN-ε. Then BoIFN-ε gene was characterized, and it can be transcribed in EBK cells at a high level after being infected by VSV. Recombinant proteins were expressed in Escherichia coli and the antiviral activity was determined in vitro, which revealed that bovine IFN-ε has less antiviral activity than bovine IFN-α. In addition, an immunofluorescence assay indicated that BoIFN-ε expressed in MDBK cells could be detected by polyclonal antibody against BoIFN-ε. Furthermore, the BoIFN-ε gene can be constitutively expressed in the liver, thymus, kidney, small intestine and testis, but not in the heart. This study revealed that BoIFN-ε has the typical characteristics of type I interferon and can be expressed constitutively in certain tissue, which not only can be a likely candidate for a novel, effective therapeutic agent, but also facilitate further research on the role of bovine IFN system. Copyright © 2014 Elsevier B.V. All rights reserved.
Deaner, Matthew; Holzman, Allison; Alper, Hal S
2018-04-16
Metabolic engineering typically utilizes a suboptimal step-wise gene target optimization approach to parse a highly connected and regulated cellular metabolism. While the endonuclease-null CRISPR/Cas system has enabled gene expression perturbations without genetic modification, it has been mostly limited to small sets of gene targets in eukaryotes due to inefficient methods to assemble and express large sgRNA operons. In this work, we develop a TEF1p-tRNA expression system and demonstrate that the use of tRNAs as splicing elements flanking sgRNAs provides higher efficiency than both Pol III and ribozyme-based expression across a variety of single sgRNA and multiplexed contexts. Next, we devise and validate a scheme to allow modular construction of tRNA-sgRNA (TST) operons using an iterative Type IIs digestion/ligation extension approach, termed CRISPR-Ligation Extension of sgRNA Operons (LEGO). This approach enables facile construction of large TST operons. We demonstrate this utility by constructing a metabolic rewiring prototype for 2,3-butanediol production in 2 distinct yeast strain backgrounds. These results demonstrate that our approach can act as a surrogate for traditional genetic modification on a much shorter design-cycle timescale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanistic links between cellular trade-offs, gene expression, and growth.
Weiße, Andrea Y; Oyarzún, Diego A; Danos, Vincent; Swain, Peter S
2015-03-03
Intracellular processes rarely work in isolation but continually interact with the rest of the cell. In microbes, for example, we now know that gene expression across the whole genome typically changes with growth rate. The mechanisms driving such global regulation, however, are not well understood. Here we consider three trade-offs that, because of limitations in levels of cellular energy, free ribosomes, and proteins, are faced by all living cells and we construct a mechanistic model that comprises these trade-offs. Our model couples gene expression with growth rate and growth rate with a growing population of cells. We show that the model recovers Monod's law for the growth of microbes and two other empirical relationships connecting growth rate to the mass fraction of ribosomes. Further, we can explain growth-related effects in dosage compensation by paralogs and predict host-circuit interactions in synthetic biology. Simulating competitions between strains, we find that the regulation of metabolic pathways may have evolved not to match expression of enzymes to levels of extracellular substrates in changing environments but rather to balance a trade-off between exploiting one type of nutrient over another. Although coarse-grained, the trade-offs that the model embodies are fundamental, and, as such, our modeling framework has potentially wide application, including in both biotechnology and medicine.
Vernon, Suzanne D; Whistler, Toni; Cameron, Barbara; Hickie, Ian B; Reeves, William C; Lloyd, Andrew
2006-01-01
Background Acute infectious diseases are typically accompanied by non-specific symptoms including fever, malaise, irritability and somnolence that usually resolve on recovery. However, in some individuals these symptoms persist in what is commonly termed post-infective fatigue. The objective of this pilot study was to determine the gene expression correlates of post-infective fatigue following acute Epstein Barr virus (EBV) infection. Methods We followed 5 people with acute mononucleosis who developed post-infective fatigue of more than 6 months duration and 5 HLA-matched control subjects who recovered within 3 months. Subjects had peripheral blood mononuclear cell (PBMC) samples collected at varying time points including at diagnosis, then every 2 weeks for 3 months, then every 3 months for a year. Total RNA was extracted from the PBMC samples and hybridized to microarrays spotted with 3,800 oligonucleotides. Results Those who developed post-infective fatigue had gene expression profiles indicative of an altered host response during acute mononucleosis compared to those who recovered uneventfully. Several genes including ISG20 (interferon stimulated gene), DNAJB2 (DnaJ [Hsp40] homolog and CD99), CDK8 (cyclin-dependent kinase 8), E2F2 (E2F transcription factor 2), CDK8 (cyclin-dependent kinase 8), and ACTN2 (actinin, alpha 2), known to be regulated during EBV infection, were differentially expressed in post-infective fatigue cases. Several of the differentially expressed genes affect mitochondrial functions including fatty acid metabolism and the cell cycle. Conclusion These preliminary data provide insights into alterations in gene transcripts associated with the varied clinical outcomes from acute infectious mononucleosis. PMID:16448567
Dal Santo, Silvia; Palliotti, Alberto; Zenoni, Sara; Tornielli, Giovanni Battista; Fasoli, Marianna; Paci, Paola; Tombesi, Sergio; Frioni, Tommaso; Silvestroni, Oriana; Bellincontro, Andrea; d'Onofrio, Claudio; Matarese, Fabiola; Gatti, Matteo; Poni, Stefano; Pezzotti, Mario
2016-10-20
Grapevine (Vitis vinifera L.) is an economically important crop with a wide geographical distribution, reflecting its ability to grow successfully in a range of climates. However, many vineyards are located in regions with seasonal drought, and these are often predicted to be global climate change hotspots. Climate change affects the entire physiology of grapevine, with strong effects on yield, wine quality and typicity, making it difficult to produce berries of optimal enological quality and consistent stability over the forthcoming decades. Here we investigated the reactions of two grapevine cultivars to water stress, the isohydric variety Montepulciano and the anisohydric variety Sangiovese, by examining physiological and molecular perturbations in the leaf and berry. A multidisciplinary approach was used to characterize the distinct stomatal behavior of the two cultivars and its impact on leaf and berry gene expression. Positive associations were found among the photosynthetic, physiological and transcriptional modifications, and candidate genes encoding master regulators of the water stress response were identified using an integrated approach based on the analysis of topological co-expression network properties. In particular, the genome-wide transcriptional study indicated that the isohydric behavior relies upon the following responses: i) faster transcriptome response after stress imposition; ii) faster abscisic acid-related gene modulation; iii) more rapid expression of heat shock protein (HSP) genes and iv) reversion of gene-expression profile at rewatering. Conversely, that reactive oxygen species (ROS)-scavenging enzymes, molecular chaperones and abiotic stress-related genes were induced earlier and more strongly in the anisohydric cultivar. Overall, the present work found original evidence of a molecular basis for the proposed classification between isohydric and anisohydric grapevine genotypes.
Zhang, Liyuan; Gu, Lingkun; Ringler, Patricia; Smith, Stanley; Rushton, Paul J; Shen, Qingxi J
2015-07-01
Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Identifying cooperative transcriptional regulations using protein–protein interactions
Nagamine, Nobuyoshi; Kawada, Yuji; Sakakibara, Yasubumi
2005-01-01
Cooperative transcriptional activations among multiple transcription factors (TFs) are important to understand the mechanisms of complex transcriptional regulations in eukaryotes. Previous studies have attempted to find cooperative TFs based on gene expression data with gene expression profiles as a measure of similarity of gene regulations. In this paper, we use protein–protein interaction data to infer synergistic binding of cooperative TFs. Our fundamental idea is based on the assumption that genes contributing to a similar biological process are regulated under the same control mechanism. First, the protein–protein interaction networks are used to calculate the similarity of biological processes among genes. Second, we integrate this similarity and the chromatin immuno-precipitation data to identify cooperative TFs. Our computational experiments in yeast show that predictions made by our method have successfully identified eight pairs of cooperative TFs that have literature evidences but could not be identified by the previous method. Further, 12 new possible pairs have been inferred and we have examined the biological relevances for them. However, since a typical problem using protein–protein interaction data is that many false-positive data are contained, we propose a method combining various biological data to increase the prediction accuracy. PMID:16126847
Emerging principles of regulatory evolution.
Prud'homme, Benjamin; Gompel, Nicolas; Carroll, Sean B
2007-05-15
Understanding the genetic and molecular mechanisms governing the evolution of morphology is a major challenge in biology. Because most animals share a conserved repertoire of body-building and -patterning genes, morphological diversity appears to evolve primarily through changes in the deployment of these genes during development. The complex expression patterns of developmentally regulated genes are typically controlled by numerous independent cis-regulatory elements (CREs). It has been proposed that morphological evolution relies predominantly on changes in the architecture of gene regulatory networks and in particular on functional changes within CREs. Here, we discuss recent experimental studies that support this hypothesis and reveal some unanticipated features of how regulatory evolution occurs. From this growing body of evidence, we identify three key operating principles underlying regulatory evolution, that is, how regulatory evolution: (i) uses available genetic components in the form of preexisting and active transcription factors and CREs to generate novelty; (ii) minimizes the penalty to overall fitness by introducing discrete changes in gene expression; and (iii) allows interactions to arise among any transcription factor and downstream CRE. These principles endow regulatory evolution with a vast creative potential that accounts for both relatively modest morphological differences among closely related species and more profound anatomical divergences among groups at higher taxonomical levels.
Physiological and molecular characterization of genetic competence in Streptococcus sanguinis.
Rodriguez, A M; Callahan, J E; Fawcett, P; Ge, X; Xu, P; Kitten, T
2011-04-01
Streptococcus sanguinis is a major component of the oral flora and an important cause of infective endocarditis. Although S. sanguinis is naturally competent, genome sequencing has suggested significant differences in the S. sanguinis competence system relative to those of other streptococci. An S. sanguinis mutant possessing an in-frame deletion in the comC gene, which encodes competence-stimulating peptide (CSP), was created. Addition of synthetic CSP induced competence in this strain. Gene expression in this strain was monitored by microarray analysis at multiple time-points from 2.5 to 30 min after CSP addition, and verified by quantitative reverse transcription-polymerase chain reaction. Over 200 genes were identified whose expression was altered at least two-fold in at least one time point, with the majority upregulated. The 'late' response was typical of that seen in previous studies. However, comparison of the 'early' response in S. sanguinis with that of other oral streptococci revealed unexpected differences with regard to the number of genes induced, the nature of those genes, and their putative upstream regulatory sequences. Streptococcus sanguinis possesses a comparatively limited early response, which may define a minimal streptococcal competence regulatory circuit. © 2011 John Wiley & Sons A/S.
Physiological and molecular characterization of genetic competence in Streptococcus sanguinis
Rodriguez, Alejandro Miguel; Callahan, Jill E.; Fawcett, Paul; Ge, Xiuchun; Xu, Ping; Kitten, Todd
2011-01-01
SUMMARY Streptococcus sanguinis is a major component of the oral flora and an important cause of infective endocarditis. Although S. sanguinis is naturally competent, genome sequencing has suggested significant differences in the S. sanguinis competence system relative to those of other streptococci. An S. sanguinis mutant possessing an in-frame deletion in the comC gene, which encodes competence-stimulating peptide (CSP), was created. Addition of synthetic CSP induced competence in this strain. Gene expression in this strain was monitored by microarray analysis at multiple time points from 2.5 to 30 min after CSP addition, and verified by quantitative RT-PCR. Over 200 genes were identified whose expression was altered at least two-fold in at least one time point, with the majority upregulated. The “late” response was typical of that seen in previous studies. However, comparison of the “early” response in S. sanguinis with that of other oral streptococci revealed unexpected differences with regard to the number of genes induced, the nature of these genes, and their putative upstream regulatory sequences. S. sanguinis possesses a comparatively limited early response, which may define a minimal streptococcal competence regulatory circuit. PMID:21375701
Rauscher, Emily; Conley, Dalton; Siegal, Mark L
2015-11-01
While research consistently suggests siblings matter for individual outcomes, it remains unclear why. At the same time, studies of genetic effects on health typically correlate variants of a gene with the average level of behavioral or health measures, ignoring more complicated genetic dynamics. Using National Longitudinal Study of Adolescent Health data, we investigate whether sibling genes moderate individual genetic expression. We compare twin variation in health-related absences and self-rated health by genetic differences at three locations related to dopamine regulation and transport to test sibship-level cross-person gene-gene interactions. Results suggest effects of variation at these genetic locations are moderated by sibling genes. Although the mechanism remains unclear, this evidence is consistent with frequency dependent selection and suggests much genetic research may violate the stable unit treatment value assumption. Copyright © 2015 Elsevier Inc. All rights reserved.
Novel mutation at the initiation codon in the Norrie disease gene in two Japanese families.
Isashiki, Y; Ohba, N; Yanagita, T; Hokita, N; Doi, N; Nakagawa, M; Ozawa, M; Kuroda, N
1995-01-01
We have identified a new mutation of Norrie disease (ND) gene in two Japanese males from unrelated families; they showed typical ocular features of ND but no mental retardation or hearing impairment. A mutation was found in both patients at the initiation codon of exon 2 of the ND gene (ATG to GTG), with otherwise normal nucleotide sequences. Their mothers had the normal and mutant types of the gene, which was expected for heterozygotes of the disease. The mutation of the initiation codon would cause the failure of ND gene expression or a defect in translation thereby truncating the amino terminus of ND protein. In view of the rarity and marked heterogeneity of mutations in the ND gene, the present apparently unrelated Japanese families who have lived in the same area for over two centuries presumably share the origin of the mutation.
Gibson, Shannon L; Narayanan, Latha; Hegan, Denise Campisi; Buermeyer, Andrew B; Liskay, R Michael; Glazer, Peter M
2006-12-08
Inherited defects in genes associated with DNA mismatch repair (MMR) have been linked to familial colorectal cancer. Cells deficient in MMR are genetically unstable and demonstrate a tolerance phenotype in response to certain classes of DNA damage. Some sporadic human cancers also show abnormalities in MMR gene function, typically due to diminished expression of one of the MutL homologs, MLH1. Here, we report that overexpression of the MutL homolog, human PMS2, can also cause a disruption of the MMR pathway in mammalian cells, resulting in hypermutability and DNA damage tolerance. A mouse fibroblast cell line carrying a recoverable lambda phage shuttle vector for mutation detection was transfected with either a vector designed to express hPMS2 or with an empty vector control. Cells overexpressing hPMS2 were found to have elevated spontaneous mutation frequencies at the cII reporter gene locus. They also showed an increase in the level of mutations induced by the alkylating agent, methynitrosourea (MNU). Clonogenic survival assays demonstrated increased survival of the PMS2-overexpressing cells following exposure to MNU, consistent with the induction of a damage tolerance phenotype. Similar results were seen in cells expressing a mutant PMS2 gene, containing a premature stop codon at position 134 and representing a variant found in an individual with familial colon cancer. These results show that dysregulation of PMS2 gene expression can disrupt MMR function in mammalian cells and establish an additional carcinogenic mechanism by which cells can develop genetic instability and acquire resistance to cytotoxic cancer therapies.
The reverse evolution from multicellularity to unicellularity during carcinogenesis.
Chen, Han; Lin, Fangqin; Xing, Ke; He, Xionglei
2015-03-09
Theoretical reasoning suggests that cancer may result from a knockdown of the genetic constraints that evolved for the maintenance of metazoan multicellularity. By characterizing the whole-life history of a xenograft tumour, here we show that metastasis is driven by positive selection for general loss-of-function mutations on multicellularity-related genes. Expression analyses reveal mainly downregulation of multicellularity-related genes and an evolving expression profile towards that of embryonic stem cells, the cell type resembling unicellular life in its capacity of unlimited clonal proliferation. Also, the emergence of metazoan multicellularity ~600 Myr ago is accompanied by an elevated birth rate of cancer genes, and there are more loss-of-function tumour suppressors than activated oncogenes in a typical tumour. These data collectively suggest that cancer represents a loss-of-function-driven reverse evolution back to the unicellular 'ground state'. This cancer evolution model may account for inter-/intratumoural genetic heterogeneity, could explain distant-organ metastases and hold implications for cancer therapy.
Tan, Yanxiao; Wang, Suncai; Liang, Dong; Li, Mingjun; Ma, Fengwang
2014-06-01
Cystatins or phytocystatins (PhyCys) comprise a family of plant-specific inhibitors of cysteine proteinases. Such inhibitors are thought to be involved in the regulation of several endogenous processes as well as defense against biotic or abiotic stresses. However, information about this family is limited in apple. We identified 26 PhyCys genes within the entire apple genome. They were clustered into three distinct groups distributed across several chromosomes. All of their putative proteins contained one or two typical cystatin domains, which shared the characteristic motifs of PhyCys. Eight selected genes displayed differential expression patterns in various tissues. Moreover, their transcript levels were also up-regulated significantly in leaves during maturation, senescence or in response to treatment with one or more abiotic stresses. Our results indicated that members of this family may function in tissue development, leaf senescence, and adaptation to adverse environments in apple. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis.
Wu, Chi-Hong; Fallini, Claudia; Ticozzi, Nicola; Keagle, Pamela J; Sapp, Peter C; Piotrowska, Katarzyna; Lowe, Patrick; Koppers, Max; McKenna-Yasek, Diane; Baron, Desiree M; Kost, Jason E; Gonzalez-Perez, Paloma; Fox, Andrew D; Adams, Jenni; Taroni, Franco; Tiloca, Cinzia; Leclerc, Ashley Lyn; Chafe, Shawn C; Mangroo, Dev; Moore, Melissa J; Zitzewitz, Jill A; Xu, Zuo-Shang; van den Berg, Leonard H; Glass, Jonathan D; Siciliano, Gabriele; Cirulli, Elizabeth T; Goldstein, David B; Salachas, Francois; Meininger, Vincent; Rossoll, Wilfried; Ratti, Antonia; Gellera, Cinzia; Bosco, Daryl A; Bassell, Gary J; Silani, Vincenzo; Drory, Vivian E; Brown, Robert H; Landers, John E
2012-08-23
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.
Zwaenepoel, Arthur; Diels, Tim; Amar, David; Van Parys, Thomas; Shamir, Ron; Van de Peer, Yves; Tzfadia, Oren
2018-01-01
Recent times have seen an enormous growth of "omics" data, of which high-throughput gene expression data are arguably the most important from a functional perspective. Despite huge improvements in computational techniques for the functional classification of gene sequences, common similarity-based methods often fall short of providing full and reliable functional information. Recently, the combination of comparative genomics with approaches in functional genomics has received considerable interest for gene function analysis, leveraging both gene expression based guilt-by-association methods and annotation efforts in closely related model organisms. Besides the identification of missing genes in pathways, these methods also typically enable the discovery of biological regulators (i.e., transcription factors or signaling genes). A previously built guilt-by-association method is MORPH, which was proven to be an efficient algorithm that performs particularly well in identifying and prioritizing missing genes in plant metabolic pathways. Here, we present MorphDB, a resource where MORPH-based candidate genes for large-scale functional annotations (Gene Ontology, MapMan bins) are integrated across multiple plant species. Besides a gene centric query utility, we present a comparative network approach that enables researchers to efficiently browse MORPH predictions across functional gene sets and species, facilitating efficient gene discovery and candidate gene prioritization. MorphDB is available at http://bioinformatics.psb.ugent.be/webtools/morphdb/morphDB/index/. We also provide a toolkit, named "MORPH bulk" (https://github.com/arzwa/morph-bulk), for running MORPH in bulk mode on novel data sets, enabling researchers to apply MORPH to their own species of interest.
Li, Zhiqian; Zhang, Chen; Guo, Yurui; Niu, Weili; Wang, Yuejin; Xu, Yan
2017-09-21
The HD-Zip family has a diversity of functions during plant development. In this study, we identify 33 HD-Zip transcription factors in grape and detect their expressions in ovules and somatic embryos, as well as in various vegetative organs. A genome-wide survey for HD-Zip transcription factors in Vitis was conducted based on the 12 X grape genome (V. vinifera L.). A total of 33 members were identified and classified into four subfamilies (I-IV) based on phylogeny analysis with Arabidopsis, rice and maize. VvHDZs in the same subfamily have similar protein motifs and intron/exon structures. An evaluation of duplication events suggests several HD-Zip genes arose before the divergence of the grape and Arabidopsis lineages. The 33 members of HD-Zip were differentially expressed in ovules of the stenospermic grape, Thompson Seedless and of the seeded grape, Pinot noir. Most have higher expressions during ovule abortion in Thompson Seedless. In addition, transcripts of the HD-Zip family were also detected in somatic embryogenesis of Thompson Seedless and in different vegetative organs of Thompson Seedless at varying levels. Additionally, VvHDZ28 is located in the nucleus and had transcriptional activity consistent with the typical features of the HD-Zip family. Our results provide a foundation for future grape HD-Zip gene function research. The identification and expression profiles of the HD-Zip transcription factors in grape, reveal their diverse roles during ovule abortion and organ development. Our results lay a foundation for functional analysis of grape HDZ genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin
Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and containedmore » a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.« less
Super-delta: a new differential gene expression analysis procedure with robust data normalization.
Liu, Yuhang; Zhang, Jinfeng; Qiu, Xing
2017-12-21
Normalization is an important data preparation step in gene expression analyses, designed to remove various systematic noise. Sample variance is greatly reduced after normalization, hence the power of subsequent statistical analyses is likely to increase. On the other hand, variance reduction is made possible by borrowing information across all genes, including differentially expressed genes (DEGs) and outliers, which will inevitably introduce some bias. This bias typically inflates type I error; and can reduce statistical power in certain situations. In this study we propose a new differential expression analysis pipeline, dubbed as super-delta, that consists of a multivariate extension of the global normalization and a modified t-test. A robust procedure is designed to minimize the bias introduced by DEGs in the normalization step. The modified t-test is derived based on asymptotic theory for hypothesis testing that suitably pairs with the proposed robust normalization. We first compared super-delta with four commonly used normalization methods: global, median-IQR, quantile, and cyclic loess normalization in simulation studies. Super-delta was shown to have better statistical power with tighter control of type I error rate than its competitors. In many cases, the performance of super-delta is close to that of an oracle test in which datasets without technical noise were used. We then applied all methods to a collection of gene expression datasets on breast cancer patients who received neoadjuvant chemotherapy. While there is a substantial overlap of the DEGs identified by all of them, super-delta were able to identify comparatively more DEGs than its competitors. Downstream gene set enrichment analysis confirmed that all these methods selected largely consistent pathways. Detailed investigations on the relatively small differences showed that pathways identified by super-delta have better connections to breast cancer than other methods. As a new pipeline, super-delta provides new insights to the area of differential gene expression analysis. Solid theoretical foundation supports its asymptotic unbiasedness and technical noise-free properties. Implementation on real and simulated datasets demonstrates its decent performance compared with state-of-art procedures. It also has the potential of expansion to be incorporated with other data type and/or more general between-group comparison problems.
Determining the Origin of Human Germinal Center B Cell-Derived Malignancies.
Seifert, Marc; Küppers, Ralf
2017-01-01
Most human B cell lymphomas originate from germinal center (GC) B cells. This is partly caused by the high proliferative activity of GC B cells and the remodeling processes acting at the immunoglobulin (Ig) loci of these cells, i.e., somatic hypermutation and class-switching. Mistargeting of these processes can cause chromosomal translocations, and the hypermutation machinery may also target non-Ig genes. As somatic hypermutation is exclusively active in GC B cells, the presence of somatic mutations in rearranged IgV genes is a standard criterium for a GC or post-GC B cell origin of lymphomas. Beyond this, ongoing somatic hypermutation during lymphoma clone expansion indicates that the lymphoma has an active GC B cell differentiation program. The proto-oncogene BCL6 is specifically expressed in GC B cells and also acquires somatic mutations as a physiological by-product of the somatic hypermutation process, albeit at a lower level than IgV genes. Thus, detection of BCL6 mutations is a further genetic trait of a GC experience of a B cell lymphoma. Typically, B cell lymphomas retain key features of their specific cells of origin, including a differentiation stage-specific gene expression pattern. This is at least partly due to genetic lesions, which "freeze" the lymphoma cells at the differentiation stage at which the transformation occurred. Therefore, identification of the normal B cell subset with the most similar gene expression pattern to a particular type of B cell lymphoma has been instrumental to deduce the precise cell of origin of lymphomas.We present here protocols to analyze human B cell lymphomas for a potential origin from GC B cells by determining the presence of mutations in rearranged IgV genes and the BCL6 gene, and by comparing the gene expression pattern of lymphoma cells with those of normal B cell subsets by genechip or RNA-sequencing analysis.
Identification and expression analysis of cobia (Rachycentron canadum) Toll-like receptor 9 gene.
Byadgi, Omkar; Puteri, Dinda; Lee, Yan-Horn; Lee, Jai-Wei; Cheng, Ta-Chih
2014-02-01
Cobia culture is hindered by bacterial infection (Photobacterium damselae subsp. piscicida) and in order to study the effect of P. damselae subsp. piscicida challenge and CpG ODN stimulation on cobia Toll like receptor 9 (RCTLR9), we used PCR to clone RCTLR9 gene and qRT-PCR to quantify gene expression. The results indicated that RCTLR9 cDNA contains 3141 bp. It encodes 1047 amino acids containing 16 typical structures of leucine-rich repeats (LRRs) including an LRRTYP, LRRCT and a motif involved in PAMP binding was identified at position 240-253 amino acid. Broad expression of RCTLR9 was found in larval, juvenile and adult stages irrespective of the tissues. In larval stage, RCTLR9 mRNA expression decreased at 5 d and then increased at 10 dph. At juvenile stage cobia, the expression was significantly high (p < 0.05) in spleen and intestine compared to gill, kidney, liver and skin. However, at adult stage, the significant high expression was found in gill and intestine. Cobia challenged with P. damselae subsp. piscicida showed significant increase in RCTLR9 expression at 24 h post challenge in intestine, spleen and liver, while in kidney the expression was peak at 12 h and later it decreased at 24 h. The highest expression was 40 fold increase in spleen and the lowest expression was ∼3.6 fold increase in liver. Cobia stimulated with CpG oligonucleotides showed that the induction of these genes was CpG ODN type and time dependent. In spleen and liver, CpG ODNs 1668 and 2006 injected group showed high expression of RCTLR9, IL-1β, chemokine CC compared to other groups. Meanwhile, CpG ODN 2006 has induced high expression of IgM. The CpG ODNs 2395 have induced significant high expression of Mx in spleen and liver. These results demonstrates the potential of using CpG ODN to enhance cobia resistance to P. damselae subsp. piscicida infection and use as an adjuvant in vaccine development. Copyright © 2013 Elsevier Ltd. All rights reserved.
MPIGeneNet: Parallel Calculation of Gene Co-Expression Networks on Multicore Clusters.
Gonzalez-Dominguez, Jorge; Martin, Maria J
2017-10-10
In this work we present MPIGeneNet, a parallel tool that applies Pearson's correlation and Random Matrix Theory to construct gene co-expression networks. It is based on the state-of-the-art sequential tool RMTGeneNet, which provides networks with high robustness and sensitivity at the expenses of relatively long runtimes for large scale input datasets. MPIGeneNet returns the same results as RMTGeneNet but improves the memory management, reduces the I/O cost, and accelerates the two most computationally demanding steps of co-expression network construction by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on two different systems using three typical input datasets shows that MPIGeneNet is significantly faster than RMTGeneNet. As an example, our tool is up to 175.41 times faster on a cluster with eight nodes, each one containing two 12-core Intel Haswell processors. Source code of MPIGeneNet, as well as a reference manual, are available at https://sourceforge.net/projects/mpigenenet/.
NASA Astrophysics Data System (ADS)
Cui, Yuehua; Yang, Haitao
2017-03-01
Epigenetics typically refers to changes in the structure of a chromosome that affect gene activity and expression. Genomic imprinting is a special type of epigenetic phenomenon in which the expression of an allele depends on its parental origin. When an allele inherited from the mother (or father) is imprinted (i.e., silent), it is termed as maternal (or paternal) imprinting. Imprinting is often resulted from DNA methylation and tends to cluster together in the genome [1]. It has been shown to play a key role in many genetic disorders in humans [2]. Imprinting is heritable and undergoes a reprogramming process in gametes before and after fertilization [1]. Sometimes the reprogramming process is not reversible, leading to the loss of imprinting [3]. Although efforts have been made to experimentally or computationally infer imprinting genes, the underlying molecular mechanism that leads to unbalanced allelic expression is still largely unknown.
Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita
2016-01-01
Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the 2 × 105 K format Brassica microarray. Expression differences were correlated to the structure-dependent response of flavonoid glycosides and hydroxycinnamic acid derivatives to alterations in either light or temperature. The altered metabolite accumulation was mainly reflected on gene expression level of core biosynthetic pathway genes and gave further hints to an isoform specific functional specialization.
Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita
2016-01-01
Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m−2 s−1 or 100 μmol m−2 s−1 at 10°C, or at 400 μmol m−2 s−1 with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the 2 × 105 K format Brassica microarray. Expression differences were correlated to the structure-dependent response of flavonoid glycosides and hydroxycinnamic acid derivatives to alterations in either light or temperature. The altered metabolite accumulation was mainly reflected on gene expression level of core biosynthetic pathway genes and gave further hints to an isoform specific functional specialization. PMID:27066016
Lu, Wuguang; Cao, Peng; Lei, Huangzong; Zhang, Shuangquan
2010-03-01
Heparin-binding epidermal growth factor (HB-EGF) can stimulate the division of various cell types and has potential clinical applications that stimulate growth and differentiation. HB-EGF has an EGF-like domain typical of all members of the EGF family. The high expression of active HB-EGF in Escherichia coli has not been successful as the protein contains three intra-molecular disulfide bonds, the same as other members of the EGF super family that are difficult to form correctly in the bacterial intracellular environment. This work fused the non-glycosylated HB-EGF gene with a small ubiquitin-related modifier gene (SUMO) by over-lap PCR. The resulting fusion gene SUMO-HBEGF was highly expressed in BL21(DE3) that the soluble SUMO-HBEGF was up to 30% of the total cellular protein. The fusion protein was purified by Ni-NTA affinity chromatography and cleaved by a SUMO-specific protease Ulp1 to obtain the native HB-EGF, which was further purified by Ni-NTA affinity chromatography. MTT assays indicated the purified HB-EGF, as well as SUMO-HBEGF, had mitogenic activity in a dose-dependent manner.
Schmidt, Andreas Johannes; Hemmeter, Ulrich Michael; Krieg, Jürgen-Christian; Vedder, Helmut; Heiser, Philip
2009-05-01
Antipsychotics are known to alter antioxidant activities in vivo. Therefore, the aim of the present study was to examine in the human neuroblastoma SH-SY5Y cell line the impact of a typical (haloperidol) and an atypical (quetiapine) antipsychotic on the expression of genes encoding the key enzymes of the antioxidant metabolism (Cu, Zn superoxide dismutase; Mn superoxide dismutase; glutathione peroxidase; catalase) and enzymes of the glutathione metabolism (gamma-glutamyl cysteine synthetase, glutathione-S-transferase, gamma-glutamyltranspeptidase, glutathione reductase). The cells were incubated for 24h with 0.3, 3, 30 and 300microM haloperidol and quetiapine, respectively; mRNA levels were measured by polymerase chain reaction. In the present study, we observed mostly significant decreases of mRNA contents. With respect to the key pathways, we detected mainly effects on the mRNA levels of the hydrogen peroxide detoxifying enzymes. Among the enzymes of the glutathione metabolism, glutathione-S-transferase- and gamma-glutamyltranspeptidase-mRNA levels showed the most prominent effects. Taken together, our results demonstrate a significantly reduced expression of genes encoding for antioxidant enzymes after treatment with the antipsychotics, haloperidol and quetiapine.
Projecting 2D gene expression data into 3D and 4D space.
Gerth, Victor E; Katsuyama, Kaori; Snyder, Kevin A; Bowes, Jeff B; Kitayama, Atsushi; Ueno, Naoto; Vize, Peter D
2007-04-01
Video games typically generate virtual 3D objects by texture mapping an image onto a 3D polygonal frame. The feeling of movement is then achieved by mathematically simulating camera movement relative to the polygonal frame. We have built customized scripts that adapt video game authoring software to texture mapping images of gene expression data onto b-spline based embryo models. This approach, known as UV mapping, associates two-dimensional (U and V) coordinates within images to the three dimensions (X, Y, and Z) of a b-spline model. B-spline model frameworks were built either from confocal data or de novo extracted from 2D images, once again using video game authoring approaches. This system was then used to build 3D models of 182 genes expressed in developing Xenopus embryos and to implement these in a web-accessible database. Models can be viewed via simple Internet browsers and utilize openGL hardware acceleration via a Shockwave plugin. Not only does this database display static data in a dynamic and scalable manner, the UV mapping system also serves as a method to align different images to a common framework, an approach that may make high-throughput automated comparisons of gene expression patterns possible. Finally, video game systems also have elegant methods for handling movement, allowing biomechanical algorithms to drive the animation of models. With further development, these biomechanical techniques offer practical methods for generating virtual embryos that recapitulate morphogenesis.
Bertolde, Fabiana Z.; Almeida, Alex-Alan F.; Pirovani, Carlos P.
2014-01-01
Soil flooding causes changes in gene transcription, synthesis and degradation of proteins and cell metabolism. The main objective of this study was to understand the biological events of Theobroma cacao during soil flooding-induced stress, using the analyses of gene expression and activity of key enzymes involved in fermentation, as well as the identification of differentially expressed proteins by mass spectrometry in two contrasting genotypes for flooding tolerance (tolerant - TSA-792 and susceptible - TSH-774). Soil anoxia caused by flooding has led to changes in the expression pattern of genes associated with the biosynthesis of alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC) and lactate dehydrogenase (LDH) in leaves and roots of the two evaluated genotypes. Significant differences were observed between the enzyme activities of the two genotypes. Leaves and roots of the TSA-792 genotype showed higher ADH activity as compared to the TSH-774 genotype, whereas the activities of PDC and LDH have varied over the 96 h of soil flooding, being higher for TSA-792 genotype, at the initial stage, and TSH-774 genotype, at the final stage. Some of the identified proteins are those typical of the anaerobic metabolism-involved in glycolysis and alcoholic fermentation-and different proteins associated with photosynthesis, protein metabolism and oxidative stress. The ability to maintain glycolysis and induce fermentation was observed to play an important role in anoxia tolerance in cacao and may also serve to distinguish tolerant and susceptible genotypes in relation to this stressor. PMID:25289700
Deferme, Lize; Wolters, Jarno; Claessen, Sandra; Briedé, Jacco; Kleinjans, Jos
2015-08-17
It is widely accepted that in chemical carcinogenesis different modes-of-action exist, e.g., genotoxic (GTX) versus nongenotoxic (NGTX) carcinogenesis. In this context, it has been suggested that oxidative stress response pathways are typical for NGTX carcinogenesis. To evaluate this, we examined oxidative stress-related changes in gene expression, cell cycle distribution, and (oxidative) DNA damage in human hepatoma cells (HepG2) exposed to GTX-, NGTX-, and noncarcinogens, at multiple time points (4-8-24-48-72 h). Two GTX (azathriopine (AZA) and furan) and two NGTX (tetradecanoyl-phorbol-acetate, (TPA) and tetrachloroethylene (TCE)) carcinogens as well as two noncarcinogens (diazinon (DZN, d-mannitol (Dman)) were selected, while per class one compound was deemed to induce oxidative stress and the other not. Oxidative stressors AZA, TPA, and DZN induced a 10-fold higher number of gene expression changes over time compared to those of furan, TCE, or Dman treatment. Genes commonly expressed among AZA, TPA, and DZN were specifically involved in oxidative stress, DNA damage, and immune responses. However, differences in gene expression between GTX and NGTX carcinogens did not correlate to oxidative stress or DNA damage but could instead be assigned to compound-specific characteristics. This conclusion was underlined by results from functional readouts on ROS formation and (oxidative) DNA damage. Therefore, oxidative stress may represent the underlying cause for increased risk of liver toxicity and even carcinogenesis; however, it does not discriminate between GTX and NGTX carcinogens.
Bertolde, Fabiana Z; Almeida, Alex-Alan F; Pirovani, Carlos P
2014-01-01
Soil flooding causes changes in gene transcription, synthesis and degradation of proteins and cell metabolism. The main objective of this study was to understand the biological events of Theobroma cacao during soil flooding-induced stress, using the analyses of gene expression and activity of key enzymes involved in fermentation, as well as the identification of differentially expressed proteins by mass spectrometry in two contrasting genotypes for flooding tolerance (tolerant - TSA-792 and susceptible - TSH-774). Soil anoxia caused by flooding has led to changes in the expression pattern of genes associated with the biosynthesis of alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC) and lactate dehydrogenase (LDH) in leaves and roots of the two evaluated genotypes. Significant differences were observed between the enzyme activities of the two genotypes. Leaves and roots of the TSA-792 genotype showed higher ADH activity as compared to the TSH-774 genotype, whereas the activities of PDC and LDH have varied over the 96 h of soil flooding, being higher for TSA-792 genotype, at the initial stage, and TSH-774 genotype, at the final stage. Some of the identified proteins are those typical of the anaerobic metabolism-involved in glycolysis and alcoholic fermentation-and different proteins associated with photosynthesis, protein metabolism and oxidative stress. The ability to maintain glycolysis and induce fermentation was observed to play an important role in anoxia tolerance in cacao and may also serve to distinguish tolerant and susceptible genotypes in relation to this stressor.
Dumitrache, Alexandru; Klingeman, Dawn M.; Natzke, Jace; ...
2017-02-27
Clostridium thermocellum forms biofilms adherent to lignocellulosic feedstock in a typical continuous cell-monolayer to efficiently break down and uptake cellulose hydrolysates. The sessile cells of biofilms may revert to non-adherent planktonic cells through generation of offspring cells or microenvironment constraints such as limited surface area. These interdependent cell populations co-exist and have different contributions to culture activity and growth. Here, we developed a novel bioreactor design to rapidly harvest sessile and planktonic cell populations for omics studies. In RNA-seq analyses, within 3299 protein coding genes, 59% (or 1958 genes) were differentially expressed with a minimum two-fold change between the twomore » cell populations isolated simultaneously at high culture activity. Furthermore, sessile cells had definitive greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division; planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. Our knowledge of these cellular adaptations will aid the engineering of industrially relevant strains for consolidated bioprocessing of solid lignocellulosic biomass« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrache, Alexandru; Klingeman, Dawn M.; Natzke, Jace
Clostridium thermocellum forms biofilms adherent to lignocellulosic feedstock in a typical continuous cell-monolayer to efficiently break down and uptake cellulose hydrolysates. The sessile cells of biofilms may revert to non-adherent planktonic cells through generation of offspring cells or microenvironment constraints such as limited surface area. These interdependent cell populations co-exist and have different contributions to culture activity and growth. Here, we developed a novel bioreactor design to rapidly harvest sessile and planktonic cell populations for omics studies. In RNA-seq analyses, within 3299 protein coding genes, 59% (or 1958 genes) were differentially expressed with a minimum two-fold change between the twomore » cell populations isolated simultaneously at high culture activity. Furthermore, sessile cells had definitive greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division; planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. Our knowledge of these cellular adaptations will aid the engineering of industrially relevant strains for consolidated bioprocessing of solid lignocellulosic biomass« less
The functional genomic studies of curcumin.
Huminiecki, Lukasz; Horbańczuk, Jarosław; Atanasov, Atanas G
2017-10-01
Curcumin is a natural plant-derived compound that has attracted a lot of attention for its anti-cancer activities. Curcumin can slow proliferation of and induce apoptosis in cancer cell lines, but the precise mechanisms of these effects are not fully understood. However, many lines of evidence suggested that curcumin has a potent impact on gene expression profiles; thus, functional genomics should be the key to understanding how curcumin exerts its anti-cancer activities. Here, we review the published functional genomic studies of curcumin focusing on cancer. Typically, a cancer cell line or a grafted tumor were exposed to curcumin and profiled with microarrays, methylation assays, or RNA-seq. Crucially, these studies are in agreement that curcumin has a powerful effect on gene expression. In the majority of the studies, among differentially expressed genes we found genes involved in cell signaling, apoptosis, and the control of cell cycle. Curcumin can also induce specific methylation changes, and is a powerful regulator of the expression of microRNAs which control oncogenesis. We also reflect on how the broader technological progress in transcriptomics has been reflected on the field of curcumin. We conclude by discussing the areas where more functional genomic studies are highly desirable. Integrated OMICS approaches will clearly be the key to understanding curcumin's anticancer and chemopreventive effects. Such strategies may become a template for elucidating the mode of action of other natural products; many natural products have pleiotropic effects that are well suited for a systems-level analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Systemic AAV8-Mediated Gene Therapy Drives Whole-Body Correction of Myotubular Myopathy in Dogs.
Mack, David L; Poulard, Karine; Goddard, Melissa A; Latournerie, Virginie; Snyder, Jessica M; Grange, Robert W; Elverman, Matthew R; Denard, Jérôme; Veron, Philippe; Buscara, Laurine; Le Bec, Christine; Hogrel, Jean-Yves; Brezovec, Annie G; Meng, Hui; Yang, Lin; Liu, Fujun; O'Callaghan, Michael; Gopal, Nikhil; Kelly, Valerie E; Smith, Barbara K; Strande, Jennifer L; Mavilio, Fulvio; Beggs, Alan H; Mingozzi, Federico; Lawlor, Michael W; Buj-Bello, Ana; Childers, Martin K
2017-04-05
X-linked myotubular myopathy (XLMTM) results from MTM1 gene mutations and myotubularin deficiency. Most XLMTM patients develop severe muscle weakness leading to respiratory failure and death, typically within 2 years of age. Our objective was to evaluate the efficacy and safety of systemic gene therapy in the p.N155K canine model of XLMTM by performing a dose escalation study. A recombinant adeno-associated virus serotype 8 (rAAV8) vector expressing canine myotubularin (cMTM1) under the muscle-specific desmin promoter (rAAV8-cMTM1) was administered by simple peripheral venous infusion in XLMTM dogs at 10 weeks of age, when signs of the disease are already present. A comprehensive analysis of survival, limb strength, gait, respiratory function, neurological assessment, histology, vector biodistribution, transgene expression, and immune response was performed over a 9-month study period. Results indicate that systemic gene therapy was well tolerated, prolonged lifespan, and corrected the skeletal musculature throughout the body in a dose-dependent manner, defining an efficacious dose in this large-animal model of the disease. These results support the development of gene therapy clinical trials for XLMTM. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Shechter, Asaf; Aflalo, Eliahu D; Davis, Claytus; Sagi, Amir
2005-07-01
In oviparous females, the synthesis of the yolk precursor vitellogenin is an important step in ovarian maturation and oocyte development. In decapod Crustacea, including the red-claw crayfish (Cherax quadricarinatus), this reproductive process is regulated by inhibitory neurohormones secreted by the endocrine X-organ-sinus gland (XO-SG) complex. In males, the C. quadricarinatus vitellogenin gene (CqVg), although present, is not expressed under normal conditions. We show here that endocrine manipulation by removal of the XO-SG complex from male animals induced CqVg transcription. The CqVg gene was expressed differentially during the molt cycle in these induced males: no expression was seen in the intermolt stages, but expression was occasionally detected in the premolt stages and always detected in the early postmolt stages. Relative quantitation with a real-time reverse transcriptase-polymerase chain reaction showed that expression of CqVg in induced early postmolt males was an order of magnitude lower than that in reproductive females, a finding that was consistent with RNA in situ hybridization results. The SDS-PAGE of high-density lipoproteins from the hemolymph of endocrinologically induced early postmolt males did not show the typical vitellogenin-related polypeptide profile found in reproductive females. On the other hand, removal of the XO-SG complex from intersex individuals, which are chromosomally female but functionally male and possess an arrested female reproductive system, induced the expression, translation, and release of CqVg products into the hemolymph, as was the case for vitellogenic females. The expression of CqVg in endocrinologically manipulated molting males and intersex animals provides an inducible model for the investigation and understanding of the endocrine regulation of CqVg expression and translation in Crustacea as well as the relationship between the endocrine axes regulating molt and reproduction.
Nakayama, Yoshiaki; Nakamura, Naosuke; Kawai, Tamiko; Kaneda, Eiichi; Takahashi, Yui; Miyake, Ayumi; Itoh, Nobuyuki; Kurosaka, Akira
2014-09-01
Mucin-type glycosylation is one of the most common posttranslational modifications of secretory and membrane proteins and has diverse physiological functions. The initial biosynthesis of mucin-type carbohydrates is catalyzed by UDP-GalNAc: polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) encoded by GALNT genes. Among these, GalNAc-T8, -T9, -T17, and -T18 form a characteristic subfamily called "Y-subfamily" and have no or very low in vitro transferase activities when assayed with typical mucin peptides as acceptor substrates. Although the Y-subfamily isozymes have been reported to be possibly involved in various diseases, their in vivo functions have not been reported. Here, we isolated zebrafish Y-subfamily galnt genes, and determined their spatial and temporal expressions during the early development of zebrafish. Our study demonstrated that all the Y-subfamily isozymes were well conserved in zebrafish with GalNAc-T18 having two orthologs, galnt18a and galnt18b, and with the other three isozymes each having a corresponding ortholog, galnt8, galnt9, and galnt17. The galnt8 was expressed in the cephalic mesoderm and hatching gland during early developmental stages, and differently expressed in the head, somatic muscles, and liver in the later stages. The other three orthologs also exhibited the characteristic expression patterns, although their expressions were generally strong in the nervous systems. In addition to the expression in the brain, galnt17 and galnt18a were expressed in the somitic muscles, and galnt18a and galnt18b in the notochord. These expression patterns may contribute to the functional analysis of the Y-subfamily, whose physiological roles still remain to be elucidated. Copyright © 2014 Elsevier B.V. All rights reserved.
Terabayashi, Yasunobu; Sano, Motoaki; Yamane, Noriko; Marui, Junichiro; Tamano, Koichi; Sagara, Junichi; Dohmoto, Mitsuko; Oda, Ken; Ohshima, Eiji; Tachibana, Kuniharu; Higa, Yoshitaka; Ohashi, Shinichi; Koike, Hideaki; Machida, Masayuki
2010-12-01
Kojic acid is produced in large amounts by Aspergillus oryzae as a secondary metabolite and is widely used in the cosmetic industry. Glucose can be converted to kojic acid, perhaps by only a few steps, but no genes for the conversion have thus far been revealed. Using a DNA microarray, gene expression profiles under three pairs of conditions significantly affecting kojic acid production were compared. All genes were ranked using an index parameter reflecting both high amounts of transcription and a high induction ratio under producing conditions. After disruption of nine candidate genes selected from the top of the list, two genes of unknown function were found to be responsible for kojic acid biosynthesis, one having an oxidoreductase motif and the other a transporter motif. These two genes are closely associated in the genome, showing typical characteristics of genes involved in secondary metabolism. Copyright © 2010 Elsevier Inc. All rights reserved.
Yakovlev, Igor A; Hietala, Ari M; Courty, Pierre-Emmanuel; Lundell, Taina; Solheim, Halvor; Fossdal, Carl Gunnar
2013-07-01
The pathogenic white-rot basidiomycete Heterobasidion irregulare is able to remove lignin and hemicellulose prior to cellulose during the colonization of root and stem xylem of conifer and broadleaf trees. We identified and followed the regulation of expression of genes belonging to families encoding ligninolytic enzymes. In comparison with typical white-rot fungi, the H. irregulare genome has exclusively the short-manganese peroxidase type encoding genes (6 short-MnPs) and thereby a slight contraction in the pool of class II heme-containing peroxidases, but an expansion of the MCO laccases with 17 gene models. Furthermore, the genome shows a versatile set of other oxidoreductase genes putatively involved in lignin oxidation and conversion, including 5 glyoxal oxidases, 19 quinone-oxidoreductases and 12 aryl-alcohol oxidases. Their genetic multiplicity and gene-specific regulation patterns on cultures based on defined lignin, cellulose or Norway spruce lignocellulose substrates suggest divergent specificities and physiological roles for these enzymes. While the short-MnP encoding genes showed similar transcript levels upon fungal growth on heartwood and reaction zone (RZ), a xylem defense tissue rich in phenolic compounds unique to trees, a subset of laccases showed higher gene expression in the RZ cultures. In contrast, other oxidoreductases depending on initial MnP activity showed generally lower transcript levels on RZ than on heartwood. These data suggest that the rate of fungal oxidative conversion of xylem lignin differs between spruce RZ and heartwood. It is conceivable that in RZ part of the oxidoreductase activities of laccases are related to the detoxification of phenolic compounds involved in host-defense. Expression of the several short-MnP enzymes indicated an important role for these enzymes in effective delignification of wood by H. irregulare. Copyright © 2013 Elsevier Inc. All rights reserved.
Walter, Robert Fred Henry; Werner, Robert; Ting, Saskia; Vollbrecht, Claudia; Theegarten, Dirk; Christoph, Daniel Christian; Schmid, Kurt Werner; Wohlschlaeger, Jeremias; Mairinger, Fabian Dominik
2015-09-22
Neuroendocrine tumors of the lung comprise typical (TC) and atypical carcinoids (AC), large-cell neuroendocrine cancer (LCNEC) and small-cell lung cancer (SCLC). Cell cycle and apoptosis are key pathways of multicellular homeostasis and deregulation of these pathways is associated with cancerogenesis. Sixty representative FFPE-specimens (16 TC, 13 AC, 16 LCNEC and 15 SCLC) were used for mRNA expression analysis using the NanoString technique. Eight genes related to apoptosis and ten genes regulating key points of cell cycle were investigated. ASCL1, BCL2, CASP8, CCNE1, CDK1, CDK2, CDKN1A and CDKN2A showed lower expression in carcinoids compared to carcinomas. In contrast, CCNE1 and CDK6 showed elevated expression in carcinoids compared to carcinomas. The calculated BCL2/BAX ratio showed increasing values from TC to SCLC. Between SCLC and LCNEC CDK2, CDKN1B, CDKN2A and PNN expression was significantly different with higher expression in SCLC. Carcinoids have increased CDK4/6 and CCND1 expression controlling RB1 phosphorylation via this signaling cascade. CDK2 and CCNE1 were increased in carcinomas showing that these use the opposite way to control RB1. BAX and BCL2 are antagonists in regulating apoptosis. BCL2 expression increased over BAX expression with increasing malignancy of the tumor from TC to SCLC.
Identification, Expression, and Functional Analysis of the Fructokinase Gene Family in Cassava.
Yao, Yuan; Geng, Meng-Ting; Wu, Xiao-Hui; Sun, Chong; Wang, Yun-Lin; Chen, Xia; Shang, Lu; Lu, Xiao-Hua; Li, Zhan; Li, Rui-Mei; Fu, Shao-Ping; Duan, Rui-Jun; Liu, Jiao; Hu, Xin-Wen; Guo, Jian-Chun
2017-11-12
Fructokinase (FRK) proteins play important roles in catalyzing fructose phosphorylation and participate in the carbohydrate metabolism of storage organs in plants. To investigate the roles of FRKs in cassava tuber root development, seven FRK genes ( MeFRK1 - 7 ) were identified, and MeFRK1 - 6 were isolated. Phylogenetic analysis revealed that the MeFRK family genes can be divided into α ( MeFRK 1 , 2 , 6 , 7 ) and β ( MeFRK 3 , 4 , 5 ) groups. All the MeFRK proteins have typical conserved regions and substrate binding residues similar to those of the FRKs. The overall predicted three-dimensional structures of MeFRK1-6 were similar, folding into a catalytic domain and a β-sheet ''lid" region, forming a substrate binding cleft, which contains many residues involved in the binding to fructose. The gene and the predicted three-dimensional structures of MeFRK3 and MeFRK4 were the most similar. MeFRK1-6 displayed different expression patterns across different tissues, including leaves, stems, tuber roots, flowers, and fruits. In tuber roots, the expressions of MeFRK3 and MeFRK4 were much higher compared to those of the other genes. Notably, the expression of MeFRK3 and MeFRK4 as well as the enzymatic activity of FRK were higher at the initial and early expanding tuber stages and were lower at the later expanding and mature tuber stages. The FRK activity of MeFRK3 and MeFRK4 was identified by the functional complementation of triple mutant yeast cells that were unable to phosphorylate either glucose or fructose. The gene expression and enzymatic activity of MeFRK3 and MeFRK4 suggest that they might be the main enzymes in fructose phosphorylation for regulating the formation of tuber roots and starch accumulation at the tuber root initial and expanding stages.
Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum
2017-01-01
Summary The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves do not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a 3-fold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol, were reduced more in senescence-induced LEC2 than endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Senescence-induced LEC2 upregulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expression of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. PMID:25790072
Beta-Poisson model for single-cell RNA-seq data analyses.
Vu, Trung Nghia; Wills, Quin F; Kalari, Krishna R; Niu, Nifang; Wang, Liewei; Rantalainen, Mattias; Pawitan, Yudi
2016-07-15
Single-cell RNA-sequencing technology allows detection of gene expression at the single-cell level. One typical feature of the data is a bimodality in the cellular distribution even for highly expressed genes, primarily caused by a proportion of non-expressing cells. The standard and the over-dispersed gamma-Poisson models that are commonly used in bulk-cell RNA-sequencing are not able to capture this property. We introduce a beta-Poisson mixture model that can capture the bimodality of the single-cell gene expression distribution. We further integrate the model into the generalized linear model framework in order to perform differential expression analyses. The whole analytical procedure is called BPSC. The results from several real single-cell RNA-seq datasets indicate that ∼90% of the transcripts are well characterized by the beta-Poisson model; the model-fit from BPSC is better than the fit of the standard gamma-Poisson model in > 80% of the transcripts. Moreover, in differential expression analyses of simulated and real datasets, BPSC performs well against edgeR, a conventional method widely used in bulk-cell RNA-sequencing data, and against scde and MAST, two recent methods specifically designed for single-cell RNA-seq data. An R package BPSC for model fitting and differential expression analyses of single-cell RNA-seq data is available under GPL-3 license at https://github.com/nghiavtr/BPSC CONTACT: yudi.pawitan@ki.se or mattias.rantalainen@ki.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Song, Tingting; Yao, Yuncong
2014-01-01
Chalcone synthase is a key and often rate-limiting enzyme in the biosynthesis of anthocyanin pigments that accumulate in plant organs such as flowers and fruits, but the relationship between CHS expression and the petal coloration level in different cultivars is still unclear. In this study, three typical crabapple cultivars were chosen based on different petal colors and coloration patterns. The two extreme color cultivars, ‘Royalty’ and ‘Flame’, have dark red and white petals respectively, while the intermediate cultivar ‘Radiant’ has pink petals. We detected the flavoniods accumulation and the expression levels of McCHS during petals expansion process in different cultivars. The results showed McCHS have their special expression patterns in each tested cultivars, and is responsible for the red coloration and color variation in crabapple petals, especially for color fade process in ‘Radiant’. Furthermore, tobacco plants constitutively expressing McCHS displayed a higher anthocyanins accumulation and a deeper red petal color compared with control untransformed lines. Moreover, the expression levels of several anthocyanin biosynthetic genes were higher in the transgenic McCHS overexpressing tobacco lines than in the control plants. A close relationship was observed between the expression of McCHS and the transcription factors McMYB4 and McMYB5 during petals development in different crabapple cultivars, suggesting that the expression of McCHS was regulated by these transcription factors. We conclude that the endogenous McCHS gene is a critical factor in the regulation of anthocyanin biosynthesis during petal coloration in Malus crabapple. PMID:25357207
Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum
2015-12-01
The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves does not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a threefold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol were reduced more in senescence-induced LEC2 than in endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol. Senescence-induced LEC2 up-regulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expressions of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L.
2012-01-01
Background Carotenoids are a heterogeneous group of plant isoprenoids primarily involved in photosynthesis. In plants the cleavage of carotenoids leads to the formation of the phytohormones abscisic acid and strigolactone, and C13-norisoprenoids involved in the characteristic flavour and aroma compounds in flowers and fruits and are of specific importance in the varietal character of grapes and wine. This work extends the previous reports of carotenoid gene expression and photosynthetic pigment analysis by providing an up-to-date pathway analysis and an important framework for the analysis of carotenoid metabolic pathways in grapevine. Results Comparative genomics was used to identify 42 genes putatively involved in carotenoid biosynthesis/catabolism in grapevine. The genes are distributed on 16 of the 19 chromosomes and have been localised to the physical map of the heterozygous ENTAV115 grapevine sequence. Nine of the genes occur as single copies whereas the rest of the carotenoid metabolic genes have more than one paralogue. The cDNA copies of eleven corresponding genes from Vitis vinifera L. cv. Pinotage were characterised, and four where shown to be functional. Microarrays provided expression profiles of 39 accessions in the metabolic pathway during three berry developmental stages in Sauvignon blanc, whereas an optimised HPLC analysis provided the concentrations of individual carotenoids. This provides evidence of the functioning of the lutein epoxide cycle and the respective genes in grapevine. Similarly, orthologues of genes leading to the formation of strigolactone involved in shoot branching inhibition were identified: CCD7, CCD8 and MAX1. Moreover, the isoforms typically have different expression patterns, confirming the complex regulation of the pathway. Of particular interest is the expression pattern of the three VvNCEDs: Our results support previous findings that VvNCED3 is likely the isoform linked to ABA content in berries. Conclusions The carotenoid metabolic pathway is well characterised, and the genes and enzymes have been studied in a number of plants. The study of the 42 carotenoid pathway genes of grapevine showed that they share a high degree of similarity with other eudicots. Expression and pigment profiling of developing berries provided insights into the most complete grapevine carotenoid pathway representation. This study represents an important reference study for further characterisation of carotenoid biosynthesis and catabolism in grapevine. PMID:22702718
McGowan, Ian; Janocko, Laura; Burneisen, Shaun; Bhat, Anand; Richardson-Harman, Nicola
2015-01-01
To determine the intra- and inter-subject variability of mucosal cytokine gene expression in rectal biopsies from healthy volunteers and to screen cytokine and chemokine mRNA as potential biomarkers of mucosal inflammation. Rectal biopsies were collected from 8 participants (3 biopsies per participant) and 1 additional participant (10 biopsies). Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to quantify IL-1β, IL-6, IL-12p40, IL-8, IFN-γ, MIP-1α, MIP-1β, RANTES, and TNF-α gene expression in the rectal tissue. The intra-assay, inter-biopsy and inter-subject variance was measured in the eight participants. Bootstrap re-sampling of the biopsy measurements was performed to determine the accuracy of gene expression data obtained for 10 biopsies obtained from one participant. Cytokines were both non-normalized and normalized using four reference genes (GAPDH, β-actin, β2 microglobulin, and CD45). Cytokine measurement accuracy was increased with the number of biopsy samples, per person; four biopsies were typically needed to produce a mean result within a 95% confidence interval of the subject's cytokine level approximately 80% of the time. Intra-assay precision (% geometric standard deviation) ranged between 8.2 and 96.9 with high variance between patients and even between different biopsies from the same patient. Variability was not greatly reduced with the use of reference genes to normalize data. The number of biopsy samples required to provide an accurate result varied by target although 4 biopsy samples per subject and timepoint, provided for >77% accuracy across all targets tested. Biopsies within the same subjects and between subjects had similar levels of variance while variance within a biopsy (intra-assay) was generally lower. Normalization of inflammatory cytokines against reference genes failed to consistently reduce variance. The accuracy and reliability of mRNA expression of inflammatory cytokines will set a ceiling on the ability of these measures to predict mucosal inflammation. Techniques to reduce variability should be developed within a larger cohort of individuals before normative reference values can be validated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Osteil, Pierre; Tapponnier, Yann; Markossian, Suzy; Godet, Murielle; Schmaltz-Panneau, Barbara; Jouneau, Luc; Cabau, Cédric; Joly, Thierry; Blachère, Thierry; Gócza, Elen; Bernat, Agnieszka; Yerle, Martine; Acloque, Hervé; Hidot, Sullivan; Bosze, Zsuzsanna; Duranthon, Véronique; Savatier, Pierre; Afanassieff, Marielle
2013-01-01
Summary Not much is known about the molecular and functional features of pluripotent stem cells (PSCs) in rabbits. To address this, we derived and characterized 2 types of rabbit PSCs from the same breed of New Zealand White rabbits: 4 lines of embryonic stem cells (rbESCs), and 3 lines of induced PSCs (rbiPSCs) that were obtained by reprogramming adult skin fibroblasts. All cell lines required fibroblast growth factor 2 for their growth and proliferation. All rbESC lines showed molecular and functional properties typically associated with primed pluripotency. The cell cycle of rbESCs had a prolonged G1 phase and a DNA damage checkpoint before entry into the S phase, which are the 2 features typically associated with the somatic cell cycle. In contrast, the rbiPSC lines exhibited some characteristics of naïve pluripotency, including resistance to single-cell dissociation by trypsin, robust activity of the distal enhancer of the mouse Oct4 gene, and expression of naïve pluripotency-specific genes, as defined in rodents. According to gene expression profiles, rbiPSCs were closer to the rabbit inner cell mass (ICM) than rbESCs. Furthermore, rbiPSCs were capable of colonizing the ICM after aggregation with morulas. Therefore, we propose that rbiPSCs self-renew in an intermediate state between naïve and primed pluripotency, which represents a key step toward the generation of bona fide naïve PSC lines in rabbits. PMID:23789112
Du, Fukuan; Su, Jianguo; Huang, Rong; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping
2013-06-01
Grass carp (Ctenopharyngodon idellus) is a very important aquaculture species in China and other South-East Asian countries; however, disease outbreaks in this species are frequent, resulting in huge economic losses. Grass carp hemorrhage caused by grass carp reovirus (GCRV) is one of the most serious diseases. Junction adhesion molecule A (JAM-A) is the mammalian receptor for reovirus, and has been well studied. However, the JAM-A gene in grass carp has not been studied so far. In this study, we cloned and elucidated the structure of the JAM-A gene in grass carp (GcJAM-A) and then studied its functions during grass carp hemorrhage. GcJAM-A is composed of 10 exons and 9 introns, and its full-length cDNA is 1833 bp long, with an 888 bp open reading frame (ORF) that encodes a 295 amino acid protein. The GcJAM-A protein is predicted to contain a typical transmembrane domain. Maternal expression pattern of GcJAM-A is observed during early embryogenesis, while zygote expression occurs at 8 h after hatching. GcJAM-A is expressed strongly in the gill, liver, intestine and kidney, while it is expressed poorly in the blood, brain, spleen and head kidney. Moreover, lower expression is observed in the gill, liver, intestine, brain, spleen and kidney of 30-month-old individuals, compared with 6-month-old. In a GcJAM-A-knockdown cell line (CIK) infected with GCRV, the expression of genes involved in the interferon and apoptosis pathways was significantly inhibited. These results suggest that GcJAM-A could be a receptor for GCRV. We have therefore managed to characterize the GcJAM-A gene and provide evidence for its role as a receptor for GCRV. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Lu, Ming-Xing; Li, Hong-Bo; Zheng, Yu-Tao; Shi, Liang; Du, Yu-Zhou
2016-04-01
The western flower thrips, Frankliniella occidentalis, is an important invasive pest with a strong tolerance for extreme temperatures; however, the molecular mechanisms that regulate thermotolerance in this insect remain unclear. In this study, four heat shock protein genes were cloned from F. occidentalis and named Fohsp90, Fohsc701, Fohsc702 and Fohsp60. These four Hsps exhibited typical characteristics of heat shock proteins. Subcellular localization signals and phylogenetic analysis indicated that FoHsp90 and FoHsc701 localize to the cytosol, whereas FoHsc702 and FoHsp60 were located in the endoplasmic reticulum and mitochondria, respectively. Analysis of genomic sequences revealed the presence of introns in the four genes (three, four, seven, and five introns for Fohsp90, Fohsc701, Fohsc702 and Fohsp60, respectively). Both the number and position of introns in these four genes were quite different from analogous genes in other species. qRT-PCR indicated that the four Fohsps were detected in second-stage larvae, one-day-old pupae, and one-day-old adults, and mRNA expression levels were lowest in larvae and highest in pupae. Fohsc701 and Fohsc702 possessed similar expression patterns and were not induced by cold or heat stress. Expression of Fohsp60 was significantly elevated by heat, and Fohsp90 was rapidly up-regulated after exposure to both cold and heat stress. Exposure to -8°C had no effect on expression of the four Fohsps; however, expression of Fohsp90 and Fohsp60 was highest after a 2-h incubation at 39°C. Furthermore, cold and heat hardening led to significant up-regulation of the four Fohsps compared to their respective controls. Collectively, our results indicate that the four FoHsps contribute to insect development and also function in rapid cold or heat hardening; furthermore, FoHsp90 and FoHsp60 contribute to thermotolerance in F. occidentalis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis.
Bentsink, Leónie; Jowett, Jemma; Hanhart, Corrie J; Koornneef, Maarten
2006-11-07
Genetic variation for seed dormancy in nature is a typical quantitative trait controlled by multiple loci on which environmental factors have a strong effect. Finding the genes underlying dormancy quantitative trait loci is a major scientific challenge, which also has relevance for agriculture and ecology. In this study we describe the identification of the DELAY OF GERMINATION 1 (DOG1) gene previously identified as a quantitative trait locus involved in the control of seed dormancy. This gene was isolated by a combination of positional cloning and mutant analysis and is absolutely required for the induction of seed dormancy. DOG1 is a member of a small gene family of unknown molecular function, with five members in Arabidopsis. The functional natural allelic variation present in Arabidopsis is caused by polymorphisms in the cis-regulatory region of the DOG1 gene and results in considerable expression differences between the DOG1 alleles of the accessions analyzed.
Detecting novel genes with sparse arrays
Haiminen, Niina; Smit, Bart; Rautio, Jari; Vitikainen, Marika; Wiebe, Marilyn; Martinez, Diego; Chee, Christine; Kunkel, Joe; Sanchez, Charles; Nelson, Mary Anne; Pakula, Tiina; Saloheimo, Markku; Penttilä, Merja; Kivioja, Teemu
2014-01-01
Species-specific genes play an important role in defining the phenotype of an organism. However, current gene prediction methods can only efficiently find genes that share features such as sequence similarity or general sequence characteristics with previously known genes. Novel sequencing methods and tiling arrays can be used to find genes without prior information and they have demonstrated that novel genes can still be found from extensively studied model organisms. Unfortunately, these methods are expensive and thus are not easily applicable, e.g., to finding genes that are expressed only in very specific conditions. We demonstrate a method for finding novel genes with sparse arrays, applying it on the 33.9 Mb genome of the filamentous fungus Trichoderma reesei. Our computational method does not require normalisations between arrays and it takes into account the multiple-testing problem typical for analysis of microarray data. In contrast to tiling arrays, that use overlapping probes, only one 25mer microarray oligonucleotide probe was used for every 100 b. Thus, only relatively little space on a microarray slide was required to cover the intergenic regions of a genome. The analysis was done as a by-product of a conventional microarray experiment with no additional costs. We found at least 23 good candidates for novel transcripts that could code for proteins and all of which were expressed at high levels. Candidate genes were found to neighbour ire1 and cre1 and many other regulatory genes. Our simple, low-cost method can easily be applied to finding novel species-specific genes without prior knowledge of their sequence properties. PMID:20691772
Tan, Dongmei; Jiang, Zhongyu; Wei, Yun; Li, Juncai; Wang, Aide
2014-01-01
The fruit of Pyrus ussuriensis is typically climacteric. During ripening, the fruits produce a large amount of ethylene, and their firmness drops rapidly. Although the molecular basis of climacteric fruit ripening has been studied in depth, some aspects remain unclear. Here, we compared the transcriptomes of pre- and post-climacteric fruits of Chinese pear (P. ussuriensis c.v. Nanguo) using RNA-seq. In total, 3,279 unigenes were differentially expressed between the pre- and post-climacteric fruits. Differentially expressed genes (DEGs) were subjected to Gene Ontology analysis, and 31 categories were significantly enriched in the groups ‘biological process’, ‘molecular function’ and ‘cellular component’. The DEGs included genes related to plant hormones, such as ethylene, ABA, auxin, GA and brassinosteroid, and transcription factors, such as MADS, NAC, WRKY and HSF. Moreover, genes encoding enzymes related to DNA methylation, cytoskeletal proteins and heat shock proteins (HSPs) showed differential expression between the pre- and post-climacteric fruits. Select DEGs were subjected to further analysis using quantitative RT-PCR (qRT-PCR), and the results were consistent with those of RNA-seq. Our data suggest that in addition to ethylene, other hormones play important roles in regulating fruit ripening and may interact with ethylene signaling during this process. DNA methylation-related methyltransferase and cytoskeletal protein genes are also involved in fruit ripening. Our results provide useful information for future research on pear fruit ripening. PMID:25215597
The genetic basis of natural variation for iron homeostasis in the maize IBM population
2014-01-01
Background Iron (Fe) deficiency symptoms in maize (Zea mays subsp. mays) express as leaf chlorosis, growth retardation, as well as yield reduction and are typically observed when plants grow in calcareous soils at alkaline pH. To improve our understanding of genotypical variability in the tolerance to Fe deficiency-induced chlorosis, the objectives of this study were to (i) determine the natural genetic variation of traits related to Fe homeostasis in the maize intermated B73 × Mo17 (IBM) population, (ii) to identify quantitative trait loci (QTLs) for these traits, and (iii) to analyze expression levels of genes known to be involved in Fe homeostasis as well as of candidate genes obtained from the QTL analysis. Results In hydroponically-grown maize, a total of 47 and 39 QTLs were detected for the traits recorded under limited and adequate supply of Fe, respectively. Conclusions From the QTL results, we were able to identify new putative candidate genes involved in Fe homeostasis under a deficient or adequate Fe nutritional status, like Ferredoxin class gene, putative ferredoxin PETF, metal tolerance protein MTP4, and MTP8. Furthermore, our expression analysis of candidate genes suggested the importance of trans-acting regulation for 2’-deoxymugineic acid synthase 1 (DMAS1), nicotianamine synthase (NAS3, NAS1), formate dehydrogenase 1 (FDH1), methylthioribose-1-phosphate isomerase (IDI2), aspartate/tyrosine/aromatic aminotransferase (IDI4), and methylthioribose kinase (MTK). PMID:24400634
mRNA Transcript Abundance during Plant Growth and the Influence of Li + Exposure
Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; ...
2014-10-23
Lithium (Li) toxicity in plants is, at a minimum, a function of Li + concentration, exposure time, species and growth conditions. Most plant studies with Li + focus on short-term acute exposures. This study examines short- and long-term effects of Li + exposure in Arabidopsis with Li + uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li +-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li + resembled priormore » studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li + exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li + exposure increases expression signal transduction genes. The identification of new Li +-sensitive genes and a gene-based “response plan” for acute and chronic Li + exposure are delineated.« less
mRNA Transcript abundance during plant growth and the influence of Li(+) exposure.
Duff, M C; Kuhne, W W; Halverson, N V; Chang, C-S; Kitamura, E; Hawthorn, L; Martinez, N E; Stafford, C; Milliken, C E; Caldwell, E F; Stieve-Caldwell, E
2014-12-01
Lithium (Li) toxicity in plants is, at a minimum, a function of Li(+) concentration, exposure time, species and growth conditions. Most plant studies with Li(+) focus on short-term acute exposures. This study examines short- and long-term effects of Li(+) exposure in Arabidopsis with Li(+) uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li(+)-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li(+) resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li(+) exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li(+) exposure increases expression signal transduction genes. The identification of new Li(+)-sensitive genes and a gene-based "response plan" for acute and chronic Li(+) exposure are delineated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Lu, Shun-Wen; Chen, Shiyan; Wang, Jianying; Yu, Hang; Chronis, Demosthenis; Mitchum, Melissa G; Wang, Xiaohong
2009-09-01
Plant CLAVATA3/ESR-related (CLE) peptides have diverse roles in plant growth and development. Here, we report the isolation and functional characterization of five new CLE genes from the potato cyst nematode Globodera rostochiensis. Unlike typical plant CLE peptides that contain a single CLE motif, four of the five Gr-CLE genes encode CLE proteins with multiple CLE motifs. These Gr-CLE genes were found to be specifically expressed within the dorsal esophageal gland cell of nematode parasitic stages, suggesting a role for their encoded proteins in plant parasitism. Overexpression phenotypes of Gr-CLE genes in Arabidopsis mimicked those of plant CLE genes, and Gr-CLE proteins could rescue the Arabidopsis clv3-2 mutant phenotype when expressed within meristems. A short root phenotype was observed when synthetic GrCLE peptides were exogenously applied to roots of Arabidopsis or potato similar to the overexpression of Gr-CLE genes in Arabidopsis and potato hairy roots. These results reveal that G. rostochiensis CLE proteins with either single or multiple CLE motifs function similarly to plant CLE proteins and that CLE signaling components are conserved in both Arabidopsis and potato roots. Furthermore, our results provide evidence to suggest that the evolution of multiple CLE motifs may be an important mechanism for generating functional diversity in nematode CLE proteins to facilitate parasitism.
Kelly, Steven; Ivens, Alasdair; Mott, G. Adam; O’Neill, Ellis; Emms, David; Macleod, Olivia; Voorheis, Paul; Tyler, Kevin; Clark, Matthew; Matthews, Jacqueline
2017-01-01
Abstract There are hundreds of Trypanosoma species that live in the blood and tissue spaces of their vertebrate hosts. The vast majority of these do not have the ornate system of antigenic variation that has evolved in the small number of African trypanosome species, but can still maintain long-term infections in the face of the vertebrate adaptive immune system. Trypanosoma theileri is a typical example, has a restricted host range of cattle and other Bovinae, and is only occasionally reported to cause patent disease although no systematic survey of the effect of infection on agricultural productivity has been performed. Here, a detailed genome sequence and a transcriptome analysis of gene expression in bloodstream form T. theileri have been performed. Analysis of the genome sequence and expression showed that T. theileri has a typical kinetoplastid genome structure and allowed a prediction that it is capable of meiotic exchange, gene silencing via RNA interference and, potentially, density-dependent growth control. In particular, the transcriptome analysis has allowed a comparison of two distinct trypanosome cell surfaces, T. brucei and T. theileri, that have each evolved to enable the maintenance of a long-term extracellular infection in cattle. The T. theileri cell surface can be modeled to contain a mixture of proteins encoded by four novel large and divergent gene families and by members of a major surface protease gene family. This surface composition is distinct from the uniform variant surface glycoprotein coat on African trypanosomes providing an insight into a second mechanism used by trypanosome species that proliferate in an extracellular milieu in vertebrate hosts to avoid the adaptive immune response. PMID:28903536
Bock, Sylvia; Ortelt, Jennifer; Link, Gerhard
2014-01-01
Plants contain a nuclear gene family for plastid sigma factors, i.e., proteins that associate with the “bacterial-type” organellar RNA polymerase and confer the ability for correct promoter binding and transcription initiation. Questions that are still unresolved relate to the “division of labor” among members of the sigma family, both in terms of their range of target genes and their temporal and spatial activity during development. Clues to the in vivo role of individual sigma genes have mainly come from studies of sigma knockout lines. Despite its obvious strengths, however, this strategy does not necessarily trace-down causal relationships between mutant phenotype and a single sigma gene, if other family members act in a redundant and/or compensatory manner. We made efforts to reduce the complexity by genetic crosses of Arabidopsis single mutants (with focus on a chlorophyll-deficient sig6 line) to generate double knockout lines. The latter typically had a similar visible phenotype as the parental lines, but tended to be more strongly affected in the transcript patterns of both plastid and sigma genes. Because triple mutants were lethal under our growth conditions, we exploited a strategy of transformation of single and double mutants with RNAi constructs that contained sequences from the unconserved sigma region (UCR). These RNAi/knockout lines phenotypically resembled their parental lines, but were even more strongly affected in their plastid transcript patterns. Expression patterns of sigma genes revealed both similarities and differences compared to the parental lines, with transcripts at reduced or unchanged amounts and others that were found to be present in higher (perhaps compensatory) amounts. Together, our results reveal considerable flexibility of gene activity at the levels of both sigma and plastid gene expression. A (still viable) “basal state” seems to be reached, if 2–3 of the 6 Arabidopsis sigma genes are functionally compromised. PMID:25505479
Wang, Yixing; Wu, Hong; Yang, Ming
2008-07-01
The Arabidopsis sporophytic tapetum undergoes a programmed degeneration process to secrete lipid and other materials to support pollen development. However, the molecular mechanism regulating the degeneration process is unknown. To gain insight into this molecular mechanism, we first determined that the most critical period for tapetal secretion to support pollen development is from the vacuolate microspore stage to the early binucleate pollen stage. We then analyzed the expression of enzymes responsible for lipid biosynthesis and degradation with available in-silico data. The genes for these enzymes that are expressed in the stamen but not in the concurrent uninucleate microspore and binucleate pollen are of particular interest, as they presumably hold the clues to unique molecular processes in the sporophytic tissues compared to the gametophytic tissue. No gene for lipid biosynthesis but a single gene encoding a patatin-like protein likely for lipid mobilization was identified based on the selection criterion. A search for genes co-expressed with this gene identified additional genes encoding typical signal transduction components such as a leucine-rich repeat receptor kinase, an extra-large G-protein, other protein kinases, and transcription factors. In addition, proteases, cell wall degradation enzymes, and other proteins were also identified. These proteins thus may be components of a signaling network leading to degradation of a broad range of cellular components. Since a broad range of degradation activities is expected to occur only in the tapetal degeneration process at this stage in the stamen, it is further hypothesized that the signaling network acts in the tapetal degeneration process.
Weiß, Stefan; Bartsch, Melanie; Winkelmann, Traud
2017-06-01
Gene expression studies in roots of apple replant disease affected plants suggested defense reactions towards biotic stress to occur which did not lead to adequate responses to the biotic stressors. Apple replant disease (ARD) leads to growth inhibition and fruit yield reduction in replanted populations and results in economic losses for tree nurseries and fruit producers. The etiology is not well understood on a molecular level and causal agents show a great diversity indicating that no definitive cause, which applies to the majority of cases, has been found out yet. Hence, it is pivotal to gain a better understanding of the molecular and physiological reactions of the plant when affected by ARD and later to overcome the disease, for example by developing tolerant rootstocks. For the first time, gene expression was investigated in roots of ARD affected plants employing massive analysis of cDNA ends (MACE) and RT-qPCR. In reaction to ARD, genes in secondary metabolite production as well as plant defense, regulatory and signaling genes were upregulated whereas for several genes involved in primary metabolism lower expression was detected. For internal verification of MACE data, candidate genes were tested via RT-qPCR and a strong positive correlation between both datasets was observed. Comparison of apple 'M26' roots cultivated in ARD soil or γ-irradiated ARD soil suggests that typical defense reactions towards biotic stress take place in ARD affected plants but they did not allow responding to the biotic stressors attack adequately, leading to the observed growth depressions in ARD variants.
Staib-Lasarzik, Irina; Kriege, Oliver; Timaru-Kast, Ralph; Pieter, Dana; Werner, Christian; Engelhard, Kristin; Thal, Serge C
2014-10-01
Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10-11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperitoneally (COMB), or 3 min of 360 mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNFα), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNFα expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNFα expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited reproduciblity of real-time PCR data between studies or research groups and should therefore be considered for quantitative PCR data.
Brezas, Andreas; Snekvik, Kevin R.; Hardy, Ronald W.; Overturf, Ken
2017-01-01
Finding suitable alternative protein sources for diets of carnivorous fish species remains a major concern for sustainable aquaculture. Through genetic selection, we created a strain of rainbow trout that outperforms parental lines in utilizing an all-plant protein diet and does not develop enteritis in the distal intestine, as is typical with salmonids on long-term plant protein-based feeds. By incorporating this strain into functional analyses, we set out to determine which genes are critical to plant protein utilization in the absence of gut inflammation. After a 12-week feeding trial with our selected strain and a control trout strain fed either a fishmeal-based diet or an all-plant protein diet, high-throughput RNA sequencing was completed on both liver and muscle tissues. Differential gene expression analyses, weighted correlation network analyses and further functional characterization were performed. A strain-by-diet design revealed differential expression ranging from a few dozen to over one thousand genes among the various comparisons and tissues. Major gene ontology groups identified between comparisons included those encompassing central, intermediary and foreign molecule metabolism, associated biosynthetic pathways as well as immunity. A systems approach indicated that genes involved in purine metabolism were highly perturbed. Systems analysis among the tissues tested further suggests the interplay between selection for growth, dietary utilization and protein tolerance may also have implications for nonspecific immunity. By combining data from differential gene expression and co-expression networks using selected trout, along with ontology and pathway analyses, a set of 63 candidate genes for plant diet tolerance was found. Risk loci in human inflammatory bowel diseases were also found in our datasets, indicating rainbow trout selected for plant-diet tolerance may have added utility as a potential biomedical model. PMID:28723948
Kirsten, Holger; Al-Hasani, Hoor; Holdt, Lesca; Gross, Arnd; Beutner, Frank; Krohn, Knut; Horn, Katrin; Ahnert, Peter; Burkhardt, Ralph; Reiche, Kristin; Hackermüller, Jörg; Löffler, Markus; Teupser, Daniel; Thiery, Joachim; Scholz, Markus
2015-08-15
Genetics of gene expression (eQTLs or expression QTLs) has proved an indispensable tool for understanding biological pathways and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We found eQTLs for about 85% of analysed genes, and 18% of genes were trans-regulated. Local eSNPs were enriched up to a distance of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated genes of GWAS-related eSNPs supported functional relevance of identified eQTLs. We demonstrate that nearest genes of GWAS-SNPs might frequently be misleading functional candidates. We identified novel trans-clusters of potential functional relevance for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes. We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of gene expression, pathways and disease-related processes. © The Author 2015. Published by Oxford University Press.
Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; ...
2014-12-04
Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on freshcut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genesmore » involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea’s extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko
Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on freshcut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genesmore » involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea’s extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.« less
Analysis of a polygalacturonase gene of Ustilago maydis and characterization of the encoded enzyme.
Castruita-Domínguez, José P; González-Hernández, Sandra E; Polaina, Julio; Flores-Villavicencio, Lérida L; Alvarez-Vargas, Aurelio; Flores-Martínez, Alberto; Ponce-Noyola, Patricia; Leal-Morales, Carlos A
2014-05-01
Ustilago maydis is a pathogenic fungus that produces the corn smut. It is a biotrophic parasite that depends on living plant tissues for its proliferation and development. Polygalacturonases are secreted by pathogens to solubilize the plant cell-wall and are required for pathogen virulence. In this paper, we report the isolation of a U. maydis polygalacturonase gene (Pgu1) and the functional and structural characterization of the encoded enzyme. The U. maydis Pgu1 gene is expressed when the fungus is grown in liquid culture media containing different carbon sources. In plant tissue, the expression increased as a function of incubation time. Pgu1 gene expression was detected during plant infection around 10 days post-infection with U. maydis FB-D12 strain in combination with teliospore formation. Synthesis and secretion of active recombinant PGU1 were achieved using Pichia pastoris, the purified enzyme had a optimum temperature of 34 °C, optimum pH of 4.5, a Km of 57.84 g/L for polygalacturonic acid, and a Vmax of 28.9 µg/min mg. Structural models of PGU1 based on homologous enzymes yielded a typical right-handed β-helix fold of pectinolytic enzymes classified in the glycosyl hydrolases family 28, and the U. maydis PGU1 is related with endo rather than exo polygalacturonases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells.
Weniger, Marc A; Tiacci, Enrico; Schneider, Stefanie; Arnolds, Judith; Rüschenbaum, Sabrina; Duppach, Janine; Seifert, Marc; Döring, Claudia; Hansmann, Martin-Leo; Küppers, Ralf
2018-06-11
Very few B cells in germinal centers (GCs) and extrafollicular (EF) regions of lymph nodes express CD30. Their specific features and relationship to CD30-expressing Hodgkin and Reed/Sternberg (HRS) cells of Hodgkin lymphoma are unclear but highly relevant, because numerous patients with lymphoma are currently treated with an anti-CD30 immunotoxin. We performed a comprehensive analysis of human CD30+ B cells. Phenotypic and IgV gene analyses indicated that CD30+ GC B lymphocytes represent typical GC B cells, and that CD30+ EF B cells are mostly post-GC B cells. The transcriptomes of CD30+ GC and EF B cells largely overlapped, sharing a strong MYC signature, but were strikingly different from conventional GC B cells and memory B and plasma cells, respectively. CD30+ GC B cells represent MYC+ centrocytes redifferentiating into centroblasts; CD30+ EF B cells represent active, proliferating memory B cells. HRS cells shared typical transcriptome patterns with CD30+ B cells, suggesting that they originate from these lymphocytes or acquire their characteristic features during lymphomagenesis. By comparing HRS to normal CD30+ B cells we redefined aberrant and disease-specific features of HRS cells. A remarkable downregulation of genes regulating genomic stability and cytokinesis in HRS cells may explain their genomic instability and multinuclearity.
Algorithms for Hidden Markov Models Restricted to Occurrences of Regular Expressions
Tataru, Paula; Sand, Andreas; Hobolth, Asger; Mailund, Thomas; Pedersen, Christian N. S.
2013-01-01
Hidden Markov Models (HMMs) are widely used probabilistic models, particularly for annotating sequential data with an underlying hidden structure. Patterns in the annotation are often more relevant to study than the hidden structure itself. A typical HMM analysis consists of annotating the observed data using a decoding algorithm and analyzing the annotation to study patterns of interest. For example, given an HMM modeling genes in DNA sequences, the focus is on occurrences of genes in the annotation. In this paper, we define a pattern through a regular expression and present a restriction of three classical algorithms to take the number of occurrences of the pattern in the hidden sequence into account. We present a new algorithm to compute the distribution of the number of pattern occurrences, and we extend the two most widely used existing decoding algorithms to employ information from this distribution. We show experimentally that the expectation of the distribution of the number of pattern occurrences gives a highly accurate estimate, while the typical procedure can be biased in the sense that the identified number of pattern occurrences does not correspond to the true number. We furthermore show that using this distribution in the decoding algorithms improves the predictive power of the model. PMID:24833225
Fulgentini, Lorenzo; Passini, Valerio; Colombetti, Giuliano; Miceli, Cristina; La Terza, Antonietta; Marangoni, Roberto
2015-08-01
The psychrophilic ciliate Euplotes focardii inhabits the shallow marine coastal sediments of Antarctica, where, over millions of years of evolution, it has reached a strict molecular adaptation to such a constant-temperature environment (about -2 °C). This long evolution at sub-zero temperatures has made E. focardii unable to respond to heat stress with the activation of its heat shock protein (hsp) 70 genes. These genes can, however, be expressed in response to other stresses, like the oxidative one, thus indicating that the molecular adaptation has exclusively altered the heat stress signaling pathways, while it has preserved hsp70 gene activation in response to other environmental stressors. Since radiative stress has proved to be affine to oxidative stress in several organisms, we investigated the capability of UV radiation to induce hsp70 transcription. E. focardii cell cultures were exposed to several different irradiation regimes, ranging from visible only to a mixture of visible, UV-A and UV-B. The irradiation values of each spectral band have been set to be comparable with those recorded in a typical Antarctic spring. Using Northern blot analysis, we measured the expression level of hsp70 immediately after irradiation (0-h-labeled samples), 1 h, and 2 h from the end of the irradiation. Surprisingly, our results showed that besides UV radiation, the visible light was also able to induce hsp70 expression in E. focardii. Moreover, spectrophotometric measurements have revealed no detectable endogenous pigments in E. focardii, making it difficult to propose a possible explanation for the visible light induction of its hsp70 genes. Further research is needed to conclusively clarify this point.
Gene and protein expression following exposure to radiofrequency fields from mobile phones.
Vanderstraeten, Jacques; Verschaeve, Luc
2008-09-01
Since 1999, several articles have been published on genome-wide and/or proteome-wide response after exposure to radiofrequency (RF) fields whose signal and intensities were similar to or typical of those of currently used mobile telephones. These studies were performed using powerful high-throughput screening techniques (HTSTs) of transcriptomics and/or proteomics, which allow for the simultaneous screening of the expression of thousands of genes or proteins. We reviewed these HTST-based studies and compared the results with currently accepted concepts about the effects of RF fields on gene expression. In this article we also discuss these last in light of the recent concept of microwave-assisted chemistry. To date, the results of HTST-based studies of transcriptomics and/or proteomics after exposure to RF fields relevant to human exposure are still inconclusive, as most of the positive reports are flawed by methodologic imperfections or shortcomings. In addition, when positive findings were reported, no precise response pattern could be identified in a reproducible way. In particular, results from HTST studies tend to exclude the role of a cell stressor for exposure to RF fields at nonthermal intensities. However, on the basis of lessons from microwave-assisted chemistry, we can assume that RF fields might affect heat-sensitive gene or protein expression to an extent larger than would be predicted from temperature change only. But in all likelihood, this would concern intensities higher than those relevant to usual human exposure. The precise role of transcriptomics and proteomics in the screening of bioeffects from exposure to RF fields from mobile phones is still uncertain in view of the lack of positively identified phenotypic change and the lack of theoretical, as well as experimental, arguments for specific gene and/or protein response patterns after this kind of exposure.
Zhang, Haifang; Zheng, Yi; Gao, Huasheng; Xu, Ping; Wang, Min; Li, Aiqing; Miao, Minhui; Xie, Xiaofang; Deng, Yimai; Zhou, Huiqin; Du, Hong
2016-01-01
Staphylococcus aureus is a common pathogen causing both hospital and community-acquired infections. Hemolysin is one of the important virulence factors for S. aureus and causes the typical β-hemolytic phenotype which is called complete hemolytic phenotype as well. Recently, S. aureus with an incomplete hemolytic phenotype (SIHP) was isolated from clinical samples. To study the microbiologic characteristics of SIHP, the special hemolytic phenotype of SIHP was verified on the sheep blood agar plates supplied by different manufacturers. Expression of hemolysin genes hla, hlb, hlgC , and hld of SIHP was detected by qRT-PCR and it was showed that expression of hlb in SIHP was obviously increased compared to the control S. aureus strains with complete hemolytic phenotype (SCHP), while the expression of hla, hlgC , and hld in SIHP was significantly decreased. In addition, the α-hemolysin encoded by gene hla was decreased obviously in SIHP compared to SCHP by western blot. All 60 SIHP strains were identified to be the methicillin resistant S. aureus (MRSA), and moreover these SIHP strains all contains mecA gene. The virulence gene tst were all present in SIHP, and the intracellular survival ability of SIHP was much greater than that of the gene tst negative S. aureus . We also found that IL-2, IL-6, and IL-17A secreted in the supernatant of SIHP infected macrophages increased significantly compared to tst negative control strains infected ones. MLST analysis showed that all of SIHP strains were classified into ST5 clone. To our knowledge, this study firstly showed that SIHP strains are a kind of methicillin resistant strains which express β-hemolysin highly and possess a potential high virulence, and it was suggested that SIHP should be paid more attention in hospital.
Estimating replicate time shifts using Gaussian process regression
Liu, Qiang; Andersen, Bogi; Smyth, Padhraic; Ihler, Alexander
2010-01-01
Motivation: Time-course gene expression datasets provide important insights into dynamic aspects of biological processes, such as circadian rhythms, cell cycle and organ development. In a typical microarray time-course experiment, measurements are obtained at each time point from multiple replicate samples. Accurately recovering the gene expression patterns from experimental observations is made challenging by both measurement noise and variation among replicates' rates of development. Prior work on this topic has focused on inference of expression patterns assuming that the replicate times are synchronized. We develop a statistical approach that simultaneously infers both (i) the underlying (hidden) expression profile for each gene, as well as (ii) the biological time for each individual replicate. Our approach is based on Gaussian process regression (GPR) combined with a probabilistic model that accounts for uncertainty about the biological development time of each replicate. Results: We apply GPR with uncertain measurement times to a microarray dataset of mRNA expression for the hair-growth cycle in mouse back skin, predicting both profile shapes and biological times for each replicate. The predicted time shifts show high consistency with independently obtained morphological estimates of relative development. We also show that the method systematically reduces prediction error on out-of-sample data, significantly reducing the mean squared error in a cross-validation study. Availability: Matlab code for GPR with uncertain time shifts is available at http://sli.ics.uci.edu/Code/GPRTimeshift/ Contact: ihler@ics.uci.edu PMID:20147305
Desvignes, Thomas; Nguyen, Thaovi; Chesnel, Franck; Bouleau, Aurélien; Fauvel, Christian; Bobe, Julien
2015-08-01
Retinitis pigmentosa 2 (RP2) gene is responsible for up to 20% of X-linked retinitis pigmentosa, a severe heterogeneous genetic disorder resulting in progressive retinal degeneration in humans. In vertebrates, several bodies of evidence have clearly established the role of Rp2 protein in cilia genesis and/or function. Unexpectedly, some observations in zebrafish have suggested the oocyte-predominant expression of the rp2 gene, a typical feature of maternal-effect genes. In the present study, we investigate the maternal inheritance of rp2 gene products in zebrafish eggs in order to address whether rp2 could be a novel maternal-effect gene required for normal development. Although both rp2 mRNA and corresponding protein are expressed during oogenesis, rp2 mRNA is maternally inherited, in contrast to Rp2 protein. A knockdown of the protein transcribed from both rp2 maternal and zygotic mRNA results in delayed epiboly and severe developmental defects, including eye malformations, that were not observed when only the protein from zygotic origin was knocked down. Moreover, the knockdown of maternal and zygotic Rp2 revealed a high incidence of left-right asymmetry establishment defects compared to only zygotic knockdown. Here we show that rp2 is a novel maternal-effect gene exclusively expressed in oocytes within the zebrafish ovary and demonstrate that maternal rp2 mRNA is essential for successful embryonic development and thus contributes to egg developmental competence. Our observations also reveal that Rp2 protein translated from maternal mRNA is important to allow normal heart loop formation, thus providing evidence of a direct maternal contribution to left-right asymmetry establishment. © 2015 by the Society for the Study of Reproduction, Inc.
Investigation of fusion gene expression in HCT116 cells.
Zhang, Yanmei; Ren, Juan; Fang, Mengdie; Wang, Xiaoju
2017-12-01
Colon cancer is the most common type of gastrointestinal cancer. A number of specific and sensitive biomarkers facilitate the diagnosis and monitoring of patients with colon cancer. Fusion genes are typically identified in cancer and a majority of the newly identified fusion genes are oncogenic in nature. Therefore, fusion genes are potential biomarkers and/or therapy targets in cancer. In the present study, the regulation of specific candidate fusion genes were investigated using Brother of the Regulator of Imprinted Sites (BORIS) in the HCT116 colon cancer cell line, which is a paralog of the fusion gene regulator CCCTC-binding factor (CTCF). The copy number of BORIS increased correspondingly to the progression of colorectal carcinoma from the M0 to the M1a stage. It was identified that EIF3E(e1)-RSPO2(e2) , EIF3E(e1)-RSPO2(e3) , PTPRK(e1)-RSPO3(e2) , PTPRK(e7)-RSPO3(e2), TADA2A-MEF2B and MED13L-CD4 are fusion transcripts present in the transcriptome of the HCT116 colon cancer cell line. CDC42SE2-KIAAO146 is a genomic fusion transcript, which originates from DNA arrangement in HCT116 cells. BORIS suppresses the expression of EIF3E , RSPO2 , PTPRK , RSPO3 , TADA2A and CD4 to inhibit the expression of fusion transcripts in HCT116 cells. It was hypothesized that the fusion transcripts investigated in the present study may not be oncogenic in HCT116 cells. As BORIS is not colorectal carcinoma-specific, the fusion genes investigated may be a biomarker assemblage for monitoring the progression of colorectal carcinoma.
Investigation of fusion gene expression in HCT116 cells
Zhang, Yanmei; Ren, Juan; Fang, Mengdie; Wang, Xiaoju
2017-01-01
Colon cancer is the most common type of gastrointestinal cancer. A number of specific and sensitive biomarkers facilitate the diagnosis and monitoring of patients with colon cancer. Fusion genes are typically identified in cancer and a majority of the newly identified fusion genes are oncogenic in nature. Therefore, fusion genes are potential biomarkers and/or therapy targets in cancer. In the present study, the regulation of specific candidate fusion genes were investigated using Brother of the Regulator of Imprinted Sites (BORIS) in the HCT116 colon cancer cell line, which is a paralog of the fusion gene regulator CCCTC-binding factor (CTCF). The copy number of BORIS increased correspondingly to the progression of colorectal carcinoma from the M0 to the M1a stage. It was identified that EIF3E(e1)-RSPO2(e2), EIF3E(e1)-RSPO2(e3), PTPRK(e1)-RSPO3(e2), PTPRK(e7)-RSPO3(e2), TADA2A-MEF2B and MED13L-CD4 are fusion transcripts present in the transcriptome of the HCT116 colon cancer cell line. CDC42SE2-KIAAO146 is a genomic fusion transcript, which originates from DNA arrangement in HCT116 cells. BORIS suppresses the expression of EIF3E, RSPO2, PTPRK, RSPO3, TADA2A and CD4 to inhibit the expression of fusion transcripts in HCT116 cells. It was hypothesized that the fusion transcripts investigated in the present study may not be oncogenic in HCT116 cells. As BORIS is not colorectal carcinoma-specific, the fusion genes investigated may be a biomarker assemblage for monitoring the progression of colorectal carcinoma. PMID:29181107
Genes that characterize T3-predominant Graves' thyroid tissues.
Matsumoto, Chisa; Ito, Mitsuru; Yamada, Hiroya; Yamakawa, Noriko; Yoshida, Hiroshi; Date, Arisa; Watanabe, Mikio; Hidaka, Yoh; Iwatani, Yoshinori; Miyauchi, Akira; Takano, Toru
2013-02-01
3,5,3'-Triiodothyronine (T(3))-predominant Graves' disease is characterized by the increasing volume of thyroid goiter resulting in poor prognosis. Although type 1 and type 2 iodothyronine deiodinases (DIO1 and DIO2 respectively) are known to be overexpressed in the thyroid tissues of T(3)-predominant Graves' disease, the pathogenesis of this disease is still unclear. The aim of our study is to identify genes that characterize T(3)-predominant Graves' disease tissue in order to clarify the molecular mechanism of this disease. mRNAs from two thyroid tissues of both typical T(3)-predominant and common-type Graves' disease were analyzed with DNA microarrays with probes for 28 869 genes. Genes identified to be differentially expressed between the two groups were further analyzed in the second and third screenings using 70 Graves' thyroid tissues by real-time quantitative RT-PCR. Twenty-three candidate genes were selected as being differentially expressed in the first screening with microarrays. Among these, seven genes, leucine-rich repeat neuronal 1 (LRRN1), bone morphogenetic protein 8a (BMP8A), N-cadherin (CDH2), phosphodiesterase 1A (PDE1A), creatine kinase mitochondrial 2 (CKMT2), integrin beta-3 (ITGB3), and protein tyrosine phosphatase non-receptor type 4 (PTPN4), were confirmed to be differentially expressed in DIO1 or DIO2 over- and underexpressing Graves' tissues. These genes are related to the characteristics of T(3)-predominant Graves' disease, such as high titer level of serum anti-TSH receptor antibody, high free T(3) to free thyroxine ratio, and a large goiter size. They might play a role in the pathogenesis of T(3)-predominant Graves' disease.
Johansen, Lill-Heidi; Thim, Hanna L; Jørgensen, Sven Martin; Afanasyev, Sergey; Strandskog, Guro; Taksdal, Torunn; Fremmerlid, Kjersti; McLoughlin, Marion; Jørgensen, Jorunn B; Krasnov, Aleksei
2015-10-01
Pancreas disease (PD) and heart and skeletal muscle inflammation (HSMI) are viral diseases associated with SAV (salmonid alphavirus) and PRV (piscine reovirus), which induce systemic infections and pathologies in cardiac and skeletal muscle tissue of farmed Atlantic salmon (Salmo salar L), resulting in severe morbidity and mortality. While general features of the clinical symptoms and pathogenesis of salmonid viral diseases are relatively well studied, much less is known about molecular mechanisms associated with immunity and disease-specific changes. In this study, transcriptomic analyses of heart tissue from PD and HSMI challenged Atlantic salmon were done, focusing on the mature phases of both diseases at respectively 28-35 and 42-77 days post infection. A large number of immune genes was activated in both trials with prevalence of genes associated with early innate antiviral responses, their expression levels being slightly higher in PD challenged fish. Activation of the IFN axis was in parallel with inflammatory changes that involved diverse humoral and cellular factors. Adaptive immune response genes were more pronounced in fish with HSMI, as suggested by increased expression of a large number of genes associated with differentiation and maturation of B lymphocytes and cytotoxic T cells. A similar down-regulation of non-immune genes such as myofiber and mitochondrial proteins between diseases was most likely reflecting myocardial pathology. A suite of genes important for cardiac function including B-type natriuretic peptide and four neuropeptides displayed differential expression between PD and HSMI. Comparison of results revealed common and distinct features and added to the understanding of both diseases at their mature phases with typical clinical pictures. A number of genes that showed disease-specific changes can be of interest for diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Joonyup; Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Yang, Ronghui; Meir, Shimon; Tucker, Mark L
2015-01-01
Abscission zone (AZ) development and the progression of abscission (detachment of plant organs) have been roughly separated into four stages: first, AZ differentiation; second, competence to respond to abscission signals; third, activation of abscission; and fourth, formation of a protective layer and post-abscission trans-differentiation. Stage three, activation of abscission, is when changes in the cell wall and extracellular matrix occur to support successful organ separation. Most abscission research has focused on gene expression for enzymes that disassemble the cell wall within the AZ and changes in phytohormones and other signaling events that regulate their expression. Here, transcriptome data for soybean, tomato and Arabidopsis were examined and compared with a focus not only on genes associated with disassembly of the cell wall but also on gene expression linked to the biosynthesis of a new extracellular matrix. AZ-specific up-regulation of genes associated with cell wall disassembly including cellulases (beta-1,4-endoglucanases, CELs), polygalacturonases (PGs), and expansins (EXPs) were much as expected; however, curiously, changes in expression of xyloglucan endotransglucosylase/hydrolases (XTHs) were not AZ-specific in soybean. Unexpectedly, we identified an early increase in the expression of genes underlying the synthesis of a waxy-like cuticle. Based on the expression data, we propose that the early up-regulation of an abundance of small pathogenesis-related (PR) genes is more closely linked to structural changes in the extracellular matrix of separating cells than an enzymatic role in pathogen resistance. Furthermore, these observations led us to propose that, in addition to cell wall loosening enzymes, abscission requires (or is enhanced by) biosynthesis and secretion of small proteins (15-25 kDa) and waxes that form an extensible extracellular matrix and boundary layer on the surface of separating cells. The synthesis of the boundary layer precedes what is typically associated with the post-abscission synthesis of a protective scar over the fracture plane. This modification in the abscission model is discussed in regard to how it influences our interpretation of the role of multiple abscission signals.
Zhang, Zhi-Ke; Lei, Zhong-Ren
2015-01-01
Using RT-PCR and RACE-PCR strategies, we cloned and identified a new chemosensory protein (FoccCSP) from the Western flower thrips, Frankliniella occidentalis, a species for which no chemosensory protein (CSP) has yet been identified. The FoccCSP gene contains a 387 bp open-reading frame encoding a putative protein of 128 amino acids with a molecular weight of 14.51 kDa and an isoelectric point of 5.41. The deduced amino acid sequence contains a putative signal peptide of 19 amino acid residues at the N-terminus, as well as the typical four—cysteine signature found in other insect CSPs. As FoccCSP is from a different order of insect than other known CSPs, the GenBank FoccCSP homolog showed only 31-50% sequence identity with them. A neighbor-joining tree was constructed and revealed that FoccCSP is in a group with CSPs from Homopteran insects (e.g., AgosCSP4, AgosCSP10, ApisCSP, and NlugCSP9), suggesting that these genes likely developed from a common ancestral gene. The FoccCSP gene expression profile of different tissues and development stages was measured by quantitative real-time PCR. The results of this analysis revealed this gene is predominantly expressed in the antennae and also highly expressed in the first instar nymph, suggesting a function for FoccCSP in olfactory reception and in particular life activities during the first instar nymph stage. We expressed recombinant FoccCSP protein in a prokaryotic expression system and purified FoccCSP protein by affinity chromatography using a Ni-NTA-Sepharose column. Using N-phenyl-1-naphthylamine (1-NPN) as a fluorescent probe in fluorescence-based competitive binding assay, we determined the binding affinities of 19 volatile substances for FoccCSP protein. This analysis revealed that anisic aldehyde, geraniol and methyl salicylate have high binding affinities for FoccCSP, with KD values of 10.50, 15.35 and 35.24 μM, respectively. Thus, our study indicates that FoccCSP may play an important role in regulating the development of the first instar nymph and mediate F. occidentalis host recognition. PMID:25635391
Zhang, Zhi-Ke; Lei, Zhong-Ren
2015-01-01
Using RT-PCR and RACE-PCR strategies, we cloned and identified a new chemosensory protein (FoccCSP) from the Western flower thrips, Frankliniella occidentalis, a species for which no chemosensory protein (CSP) has yet been identified. The FoccCSP gene contains a 387 bp open-reading frame encoding a putative protein of 128 amino acids with a molecular weight of 14.51 kDa and an isoelectric point of 5.41. The deduced amino acid sequence contains a putative signal peptide of 19 amino acid residues at the N-terminus, as well as the typical four-cysteine signature found in other insect CSPs. As FoccCSP is from a different order of insect than other known CSPs, the GenBank FoccCSP homolog showed only 31-50% sequence identity with them. A neighbor-joining tree was constructed and revealed that FoccCSP is in a group with CSPs from Homopteran insects (e.g., AgosCSP4, AgosCSP10, ApisCSP, and NlugCSP9), suggesting that these genes likely developed from a common ancestral gene. The FoccCSP gene expression profile of different tissues and development stages was measured by quantitative real-time PCR. The results of this analysis revealed this gene is predominantly expressed in the antennae and also highly expressed in the first instar nymph, suggesting a function for FoccCSP in olfactory reception and in particular life activities during the first instar nymph stage. We expressed recombinant FoccCSP protein in a prokaryotic expression system and purified FoccCSP protein by affinity chromatography using a Ni-NTA-Sepharose column. Using N-phenyl-1-naphthylamine (1-NPN) as a fluorescent probe in fluorescence-based competitive binding assay, we determined the binding affinities of 19 volatile substances for FoccCSP protein. This analysis revealed that anisic aldehyde, geraniol and methyl salicylate have high binding affinities for FoccCSP, with KD values of 10.50, 15.35 and 35.24 μM, respectively. Thus, our study indicates that FoccCSP may play an important role in regulating the development of the first instar nymph and mediate F. occidentalis host recognition.
Different Preclimacteric Events in Apple Cultivars with Modified Ripening Physiology
Singh, Vikram; Weksler, Asya; Friedman, Haya
2017-01-01
“Anna” is an early season apple cultivar exhibiting a fast softening and juiciness loss during storage, in comparison to two mid-late season cultivars “Galaxy” and “GD.” The poor storage capacity of “Anna” was correlated with high lipid oxidation-related autoluminescence, high respiration and ethylene production rates, associated with high expression of MdACO1, 2, 4, 7, and MdACS1. All cultivars at harvest responded to exogenous ethylene by enhancing ethylene production, typical of system-II. The contribution of pre-climacteric events to the poor storage capacity of “Anna” was examined by comparing respiration and ethylene production rates, response to exogenous ethylene, expression of genes responsible for ethylene biosynthesis and response, and developmental regulators in the three cultivars throughout fruit development. In contrast to the “Galaxy” and “GD,” “Anna” showed higher ethylene production and respiration rates during fruit development, and exhibited auto-stimulatory (system II-like) effect in response to exogenous ethylene. The higher ethylene production rate in “Anna” was correlated with higher expression of ethylene biosynthesis genes, MdACS3a MdACO2, 4, and 7 during early fruit development. The expression of negative regulators of ripening (AP2/ERF) and ethylene response pathway, (MdETR1,2 and MdCTR1) was lower in “Anna” in comparison to the other two cultivars throughout development and ripening. Similar pattern of gene expression was found for SQUAMOSA promoter binding protein (SBP)-box genes, including MdCNR and for MdFUL. Taken together, this study provides new understanding on pre-climacteric events in “Anna” that might affect its ripening behavior and physiology following storage. PMID:28928755
Gao, Qingqing; Xia, Le; Liu, Juanhua; Wang, Xiaobo; Gao, Song; Liu, Xiufan
2016-11-01
Avian pathogenic Escherichia coli (APEC) cause typical extraintestinal infections in poultry, including acute fatal septicemia, subacute pericarditis, and airsacculitis. These bacteria most often infect chickens, turkeys, ducks, and other avian species, and therefore pose a significant economic burden on the poultry industry worldwide. Few studies have analyzed the genome-wide transcriptional profile of APEC during infection in vivo. In this study, we examined the genome-wide transcriptional response of APEC O2 strain E058 in an in vivo chicken infection model to better understand the factors necessary for APEC colonization, growth, and survival in vivo. An Affymetrix multigenome DNA microarray, which contains most of the genomic open reading frames of E. coli K-12 strain MG1655, uropathogenic E. coli strain CFT073, and E. coli O157:H7 strain EDL 933, was used to profile the gene expression in APEC E058. We identified the in vivo transcriptional response of APEC E058 bacteria collected directly from the blood of infected chickens. Significant differences in expression levels were detected between the in vivo expression profile and the in vitro expression profile in LB medium. The genes highly expressed during infection were involved in metabolism, iron acquisition or transport, virulence, response to stress, and biological regulation. The reliability of the microarray data was confirmed by performing quantitative real-time PCR on 12 representative genes. Moreover, several significantly upregulated genes, including yjiY, sodA, phoB and spy, were selected to study their role in APEC pathogenesis. The data will help to better understand the mechanisms of APEC pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liao, Chengshui; Wang, Xiaoli; Tian, Wenjing; Zhang, Mengke; Zhang, Chunjie; Li, Yinju; Wu, Tingcai; Cheng, Xiangchao
2017-08-25
Although there are 125 predicted DNase Ⅱ-like family genes in the Trichinella spiralis genome, plancitoxin-1-like (Ts-Pt) contains the HKD motif, a typical conserved region of DNase Ⅱ, in N- and C-terminal. It is generally believed that histidine is the active site in DNase Ⅱ. To study the nuclease activity of recombinant Ts-Pt with mutations in the active site from T. spiralis, different fragments of the mutated Ts-Pt genes were cloned using overlap PCR technique and inserted into the expressing vector pET-28a(+), and transformed into Escherichia coli Rosseta (DE3). The fusion proteins were purified by Ni-NTA affinity chromatography and SDS-PAGE. Nuclease activity of the recombinant proteins was detected by agarose gel electrophoresis and nuclease-zymography. The recombinant plasmids harboring the mutated Ts-Pt genes were constructed and expressed as inclusive body in a prokaryotic expression system. After renaturation in vitro, the recombinant proteins had no nuclease activity according to agarose gel electrophoresis. However, the expressed proteins as inclusive body displayed the ability to degrade DNA after renaturation in gel. And the nuclease activity was not affected after subjected to mutation of active site in N- and C-termini of Ts-Pt. These results provide the basis to study the relationship between DNase Ⅱ-like protein family and infection of T. spiralis.
Baranwal, Vinay Kumar; Negi, Nisha; Khurana, Paramjit
2017-01-01
Auxin Response Factors (ARFs) are at the core of the regulation mechanism for auxin-mediated responses, along with AUX/IAA proteins.They are critical in the auxin-mediated control of various biological responses including development and stress. A wild mulberry species genome has been sequenced and offers an opportunity to investigate this important gene family. A total of 17 ARFs have been identified from mulberry (Morus notabilis) which show a wide range of expression patterns. Of these 17 ARFs, 15 have strong acidic isoelectric point (pI) values and a molecular mass ranging from 52 kDa to 101 kDa. The putative promoters of these ARFs harbour cis motifs related to light-dependent responses, various stress responses and hormone regulations suggestive of their multifactorial regulation. The gene ontology terms for ARFs indicate their role in flower development, stress, root morphology and other such development and stress mitigation related activities. Conserved motif analysis showed the presence of all typical domains in all but four members that lack the PB1 domain and thus represent truncated ARFs. Expression analysis of these ARFs suggests their preferential expression in tissues ranging from leaf, root, winter bud, bark and male flowers. These ARFs showed differential expression in the leaf tissue of M. notabilis, Morus laevigata and Morus serrata. Insights gained from this analysis have implications in mulberry improvement programs. PMID:28841197
De Filippis, Francesca; Genovese, Alessandro; Ferranti, Pasquale; Gilbert, Jack A.; Ercolini, Danilo
2016-01-01
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality. PMID:26911915
Antipsychotics activate the TGFβ pathway effector SMAD3
Cohen, T.; Sundaresh, S.; Levine, F.
2014-01-01
Although effective in treating an array of neurological disorders, antipsychotics are associated with deleterious metabolic side effects. Through high-throughput screening, we previously identified phenothiazine antipsychotics as modulators of the human insulin promoter. Here, we extended our initial finding to structurally diverse typical and atypical antipsychotics. We then identified the TGFβ pathway as being involved in the effect of antipsychotics on the insulin promoter, finding that antipsychotics activated SMAD3, a downstream effector of the TGFβ pathway, through a receptor distinct from the TGFβ receptor family and known neurotransmitter receptor targets of antipsychotics. Of note, antipsychotics that do not cause metabolic side effects did not activate SMAD3. In vivo relevance was demonstrated by reanalysis of gene expression data from human brains treated with antipsychotics, which showed altered expression of SMAD3 responsive genes. This work raises the possibility that antipsychotics could be designed that retain beneficial CNS activity while lacking deleterious metabolic side effects. PMID:22290122
Design of a Temperature-Responsive Transcription Terminator.
Roßmanith, Johanna; Weskamp, Mareen; Narberhaus, Franz
2018-02-16
RNA structures regulate various steps in gene expression. Transcription in bacteria is typically terminated by stable hairpin structures. Translation initiation can be modulated by metabolite- or temperature-sensitive RNA structures, called riboswitches or RNA thermometers (RNATs), respectively. RNATs control translation initiation by occlusion of the ribosome binding site at low temperatures. Increasing temperatures destabilize the RNA structure and facilitate ribosome access. In this study, we exploited temperature-responsive RNAT structures to design regulatory elements that control transcription termination instead of translation initiation in Escherichia coli. In order to mimic the structure of factor-independent intrinsic terminators, naturally occurring RNAT hairpins were genetically engineered to be followed by a U-stretch. Functional temperature-responsive terminators (thermoterms) prevented mRNA synthesis at low temperatures but resumed transcription after a temperature upshift. The successful design of temperature-controlled terminators highlights the potential of RNA structures as versatile gene expression control elements.
Activation and manipulation of host responses by a Gram-positive bacterium
Balaji, Vasudevan
2008-01-01
The interaction between tomato plants and Clavibacter michiganensis subsp. michiganensis (Cmm) represents a model pathosystem to study the interplay between the virulence determinants of a Gram-positive bacterium and the attempt of a crop plant to counteract pathogen invasion. To investigate plant responses activated during this compatible interaction, we recently analyzed gene expression profiles of tomato stems infected with Cmm. This analysis revealed activation of basal defense responses that are typically observed upon plant perception of pathogen-associated molecular patterns. In addition, Cmm infection upregulated the expression of host genes related to ethylene synthesis and response. Further analysis of tomato plants impaired in ethylene perception and production demonstrated an important role for ethylene in the development of disease symptoms. Here we discuss possible molecular strategies used by the plant to recognize Cmm infection and possible mechanisms employed by the pathogen to interfere with the activation of plant defense responses and promote disease. PMID:19704516
Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
Yin, L; Maddison, L A; Chen, W
2016-01-01
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is a powerful tool for genome editing in numerous organisms. However, the system is typically used for gene editing throughout the entire organism. Tissue and temporal specific mutagenesis is often desirable to determine gene function in a specific stage or tissue and to bypass undesired consequences of global mutations. We have developed the CRISPR/Cas system for conditional mutagenesis in transgenic zebrafish using tissue-specific and/or inducible expression of Cas9 and U6-driven expression of sgRNA. To allow mutagenesis of multiple targets, we have isolated four distinct U6 promoters and designed Golden Gate vectors to easily assemble transgenes with multiple sgRNAs. We provide experimental details on the reagents and applications for multiplex conditional mutagenesis in zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.
2010-01-01
Background The Mexican axolotl (Ambystoma mexicanum) is considered a hopeful monster because it exhibits an adaptive and derived mode of development - paedomorphosis - that has evolved rapidly and independently among tiger salamanders. Unlike related tiger salamanders that undergo metamorphosis, axolotls retain larval morphological traits into adulthood and thus present an adult body plan that differs dramatically from the ancestral (metamorphic) form. The basis of paedomorphic development was investigated by comparing temporal patterns of gene transcription between axolotl and tiger salamander larvae (Ambystoma tigrinum tigrinum) that typically undergo a metamorphosis. Results Transcript abundances from whole brain and pituitary were estimated via microarray analysis on four different days post hatching (42, 56, 70, 84 dph) and regression modeling was used to independently identify genes that were differentially expressed as a function of time in both species. Collectively, more differentially expressed genes (DEGs) were identified as unique to the axolotl (n = 76) and tiger salamander (n = 292) than were identified as shared (n = 108). All but two of the shared DEGs exhibited the same temporal pattern of expression and the unique genes tended to show greater changes later in the larval period when tiger salamander larvae were undergoing anatomical metamorphosis. A second, complementary analysis that directly compared the expression of 1320 genes between the species identified 409 genes that differed as a function of species or the interaction between time and species. Of these 409 DEGs, 84% exhibited higher abundances in tiger salamander larvae at all sampling times. Conclusions Many of the unique tiger salamander transcriptional responses are probably associated with metamorphic biological processes. However, the axolotl also showed unique patterns of transcription early in development. In particular, the axolotl showed a genome-wide reduction in mRNA abundance across loci, including genes that regulate hypothalamic-pituitary activities. This suggests that an axolotls failure to undergo anatomical metamorphosis late in the larval period is indirectly associated with a mechanism(s) that acts earlier in development to broadly program transcription. The axolotl hopeful monster provides a model to identify mechanisms of early brain development that proximally and ultimately affect the expression of adult phenotypes. PMID:20584293
Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs)
Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong
2016-01-01
Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the ‘Vitis vinifera cv. Pinot Noir’ and ‘Vitis vinifera cv. Thompson Seedless’ varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs. PMID:27551866
Gene Cloning, Expression and Enzyme Activity of Vitis vinifera Vacuolar Processing Enzymes (VvVPEs).
Tang, Yujin; Wang, Ruipu; Gong, Peijie; Li, Shuxiu; Wang, Yuejin; Zhang, Chaohong
2016-01-01
Vacuolar processing enzymes (VPEs) have received considerable attention due to their caspase-1-like activity and ability to regulate programmed cell death (PCD), which plays an essential role in the development of stenospermocarpic seedless grapes ovules. To characterize VPEs and the relationship between stenospermocarpic grapes and the VPE gene family, we identified 3 Vitis vinifera VPE genes (VvβVPE, VvγVPE, and VvδVPE) from the PN40024 grape genome and cloned the full-length complementary DNAs (cDNAs) from the 'Vitis vinifera cv. Pinot Noir' and 'Vitis vinifera cv. Thompson Seedless' varietals. Each of the VPEs contained a typical catalytic dyad [His (177), Cys (219)] and substrate binding pocket [Arg (112), Arg (389), Ser (395)], except that Ser (395) in the VvγVPE protein sequence was replaced with alanine. Phylogenetic analysis of 4 Arabidopsis thaliana and 6 Vitis vinifera VPEs revealed that the 10 VPEs form 3 major branches. Furthermore, the 6 grapevine VPEs share a similar gene structure, with 9 exons and 8 introns. The 6 grapevine VPEs are located on 3 different chromosomes. We also tested the enzymatic activity of recombinant VPEs expressed in the Pichia Pastoris expression system and found that the VvVPEs exhibit cysteine peptidase activity. Tissue-specific expression analysis showed that VvδVPE is only expressed in flowers, buds and ovules, that VvγVPE is expressed in various tissues, and that VvβVPE was expressed in roots, flowers, buds and ovules. The results of quantitative real-time PCR (qRT-PCR) suggested that VvβVPE in seeded grapes increased significantly at 30 days after full-bloom (DAF), close to the timing of endosperm abortion at 32 DAF. These results suggested that VvβVPE is related to ovule abortion in seedless grapes. Our experiments provide a new perspective for understanding the mechanism of stenospermocarpic seedlessness and represent a useful reference for the further study of VPEs.
Guo, Li; Allen, Kelly S; Deiulio, Greg; Zhang, Yong; Madeiras, Angela M; Wick, Robert L; Ma, Li-Jun
2016-01-01
Current and emerging plant diseases caused by obligate parasitic microbes such as rusts, downy mildews, and powdery mildews threaten worldwide crop production and food safety. These obligate parasites are typically unculturable in the laboratory, posing technical challenges to characterize them at the genetic and genomic level. Here we have developed a data analysis pipeline integrating several bioinformatic software programs. This pipeline facilitates rapid gene discovery and expression analysis of a plant host and its obligate parasite simultaneously by next generation sequencing of mixed host and pathogen RNA (i.e., metatranscriptomics). We applied this pipeline to metatranscriptomic sequencing data of sweet basil (Ocimum basilicum) and its obligate downy mildew parasite Peronospora belbahrii, both lacking a sequenced genome. Even with a single data point, we were able to identify both candidate host defense genes and pathogen virulence genes that are highly expressed during infection. This demonstrates the power of this pipeline for identifying genes important in host-pathogen interactions without prior genomic information for either the plant host or the obligate biotrophic pathogen. The simplicity of this pipeline makes it accessible to researchers with limited computational skills and applicable to metatranscriptomic data analysis in a wide range of plant-obligate-parasite systems.
Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications.
Muranen, Taru A; Greco, Dario; Fagerholm, Rainer; Kilpivaara, Outi; Kämpjärvi, Kati; Aittomäki, Kristiina; Blomqvist, Carl; Heikkilä, Päivi; Borg, Ake; Nevanlinna, Heli
2011-09-20
Checkpoint kinase 2 (CHEK2) is a moderate penetrance breast cancer risk gene, whose truncating mutation 1100delC increases the risk about twofold. We investigated gene copy-number aberrations and gene-expression profiles that are typical for breast tumors of CHEK2 1100delC-mutation carriers. In total, 126 breast tumor tissue specimens including 32 samples from patients carrying CHEK2 1100delC were studied in array-comparative genomic hybridization (aCGH) and gene-expression (GEX) experiments. After dimensionality reduction with CGHregions R package, CHEK2 1100delC-associated regions in the aCGH data were detected by the Wilcoxon rank-sum test. The linear model was fitted to GEX data with R package limma. Genes whose expression levels were associated with CHEK2 1100delC mutation were detected by the bayesian method. We discovered four lost and three gained CHEK2 1100delC-related loci. These include losses of 1p13.3-31.3, 8p21.1-2, 8p23.1-2, and 17p12-13.1 as well as gains of 12q13.11-3, 16p13.3, and 19p13.3. Twenty-eight genes located on these regions showed differential expression between CHEK2 1100delC and other tumors, nominating them as candidates for CHEK2 1100delC-associated tumor-progression drivers. These included CLCA1 on 1p22 as well as CALCOCO1, SBEM, and LRP1 on 12q13. Altogether, 188 genes were differentially expressed between CHEK2 1100delC and other tumors. Of these, 144 had elevated and 44, reduced expression levels.Our results suggest the WNT pathway as a driver of tumorigenesis in breast tumors of CHEK2 1100delC-mutation carriers and a role for the olfactory receptor protein family in cancer progression. Differences in the expression of the 188 CHEK2 1100delC-associated genes divided breast tumor samples from three independent datasets into two groups that differed in their relapse-free survival time. We have shown that copy-number aberrations of certain genomic regions are associated with CHEK2 mutation 1100delC. On these regions, we identified potential drivers of CHEK2 1100delC-associated tumorigenesis, whose role in cancer progression is worth investigating. Furthermore, poorer survival related to the CHEK2 1100delC gene-expression signature highlights pathways that are likely to have a role in the development of metastatic disease in carriers of the CHEK2 1100delC mutation.
Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications
2011-01-01
Introduction Checkpoint kinase 2 (CHEK2) is a moderate penetrance breast cancer risk gene, whose truncating mutation 1100delC increases the risk about twofold. We investigated gene copy-number aberrations and gene-expression profiles that are typical for breast tumors of CHEK2 1100delC-mutation carriers. Methods In total, 126 breast tumor tissue specimens including 32 samples from patients carrying CHEK2 1100delC were studied in array-comparative genomic hybridization (aCGH) and gene-expression (GEX) experiments. After dimensionality reduction with CGHregions R package, CHEK2 1100delC-associated regions in the aCGH data were detected by the Wilcoxon rank-sum test. The linear model was fitted to GEX data with R package limma. Genes whose expression levels were associated with CHEK2 1100delC mutation were detected by the bayesian method. Results We discovered four lost and three gained CHEK2 1100delC-related loci. These include losses of 1p13.3-31.3, 8p21.1-2, 8p23.1-2, and 17p12-13.1 as well as gains of 12q13.11-3, 16p13.3, and 19p13.3. Twenty-eight genes located on these regions showed differential expression between CHEK2 1100delC and other tumors, nominating them as candidates for CHEK2 1100delC-associated tumor-progression drivers. These included CLCA1 on 1p22 as well as CALCOCO1, SBEM, and LRP1 on 12q13. Altogether, 188 genes were differentially expressed between CHEK2 1100delC and other tumors. Of these, 144 had elevated and 44, reduced expression levels. Our results suggest the WNT pathway as a driver of tumorigenesis in breast tumors of CHEK2 1100delC-mutation carriers and a role for the olfactory receptor protein family in cancer progression. Differences in the expression of the 188 CHEK2 1100delC-associated genes divided breast tumor samples from three independent datasets into two groups that differed in their relapse-free survival time. Conclusions We have shown that copy-number aberrations of certain genomic regions are associated with CHEK2 mutation 1100delC. On these regions, we identified potential drivers of CHEK2 1100delC-associated tumorigenesis, whose role in cancer progression is worth investigating. Furthermore, poorer survival related to the CHEK2 1100delC gene-expression signature highlights pathways that are likely to have a role in the development of metastatic disease in carriers of the CHEK2 1100delC mutation. PMID:21542898
Loss of LOFSEP Transcription Factor Function Converts Spikelet to Leaf-Like Structures in Rice1[OPEN
Zhu, Wanwan
2018-01-01
SEPALLATA (SEP)-like genes, which encode a subfamily of MADS-box transcription factors, are essential for specifying floral organ and meristem identity in angiosperms. Rice (Oryza sativa) has five SEP-like genes with partial redundancy and overlapping expression domains, yet their functions and evolutionary conservation are only partially known. Here, we describe the biological role of one of the SEP genes of rice, OsMADS5, in redundantly controlling spikelet morphogenesis. OsMADS5 belongs to the conserved LOFSEP subgroup along with OsMADS1 and OsMADS34. OsMADS5 was expressed strongly across a broad range of reproductive stages and tissues. No obvious phenotype was observed in the osmads5 single mutants when compared with the wild type, which was largely due to the functional redundancy among the three LOFSEP genes. Genetic and molecular analyses demonstrated that OsMADS1, OsMADS5, and OsMADS34 together regulate floral meristem determinacy and specify the identities of spikelet organs by positively regulating the other MADS-box floral homeotic genes. Experiments conducted in yeast also suggested that OsMADS1, OsMADS5, and OsMADS34 form protein-protein interactions with other MADS-box floral homeotic members, which seems to be a typical, conserved feature of plant SEP proteins. PMID:29217592
Poch, H L Cabrera; López, R H Manzanilla; Kanyuka, K
2006-07-01
The expression of host genomes is modified locally by root endoparasitic nematode secretions to induce the development of complex cellular structures referred as feeding sites. In compatible interactions, the feeding sites provide the environment and nutrients for the completion of the nematode's life cycle, whereas in an incompatible (resistant) interaction, the host immune system triggers a plant cell death programme, often in the form of a hypersensitive reaction, which restricts nematode reproduction. These processes have been studied in great detail in organ tissues normally infected by these nematodes: the roots. Here we show that host leaves can support a similar set of programmed developmental events in the potato cyst nematode Globodera rostochiensis life cycle that are typical of the root-invading nematodes. We also show that a gene-for-gene type specific disease resistance that is effective against potato cyst nematodes (PCN) in roots also operates in leaves: the expression of the resistance (R) gene Hero and members of its gene family in leaves correlates with the elicitation of a hypersensitive response only during the incompatible interaction. These findings, and the ability to isolate RNA from relevant parasitic stages of the nematode, may have significant implications for the identification of nematode factors involved in incompatible interactions.
Aguiar, J; Santurlidis, S; Nowok, J; Alexander, C; Rudnicki, D; Gispert, S; Schulz, W; Auburger, G
1999-01-19
In order to further use the spinocerebellar ataxia 2 (SCA2) promoter for transgenic mice models of "CAG repeat" neurodegeneration, different fragments of this 5' end were ligated into pGL3-Luc plasmid to obtain the better promoter-activity of the physiological promoter for SCA2. Base-par composition of the SCA2-5' region, and promoter prediction algorithms such as TSSW and TSSG, together with the high firefly luciferase expression after 48 hours of transient transfection in mammalian cells lines, showed a typical CpG island for promoter-activity. The promoter activity was specifically localized into the exon 1 of the SCA2 gene. The higher expression of firefly luciferase in the embryonal F9 cells by the use of SCA2 promoter, rather than by the use of CMV promoter may be related with the origin of the nonmethylated CpG island during the early embryogenesis. Analysis of the 5' region from HD gene revealed to a CpG island, which could be containing the physiological promoter for this gene. Copyright 1999 Academic Press.
Analyzing Kernel Matrices for the Identification of Differentially Expressed Genes
Xia, Xiao-Lei; Xing, Huanlai; Liu, Xueqin
2013-01-01
One of the most important applications of microarray data is the class prediction of biological samples. For this purpose, statistical tests have often been applied to identify the differentially expressed genes (DEGs), followed by the employment of the state-of-the-art learning machines including the Support Vector Machines (SVM) in particular. The SVM is a typical sample-based classifier whose performance comes down to how discriminant samples are. However, DEGs identified by statistical tests are not guaranteed to result in a training dataset composed of discriminant samples. To tackle this problem, a novel gene ranking method namely the Kernel Matrix Gene Selection (KMGS) is proposed. The rationale of the method, which roots in the fundamental ideas of the SVM algorithm, is described. The notion of ''the separability of a sample'' which is estimated by performing -like statistics on each column of the kernel matrix, is first introduced. The separability of a classification problem is then measured, from which the significance of a specific gene is deduced. Also described is a method of Kernel Matrix Sequential Forward Selection (KMSFS) which shares the KMGS method's essential ideas but proceeds in a greedy manner. On three public microarray datasets, our proposed algorithms achieved noticeably competitive performance in terms of the B.632+ error rate. PMID:24349110
A homeobox gene involved in node, notochord and neural plate formation of chick embryos.
Stein, S; Kessel, M
1995-01-01
We have isolated a chicken cDNA clone, Cnot, resembling in sequence and expression pattern the Xenopus homeobox gene Xnot. The major, early transcription domains of Cnot are the node, the notochord and prenodal and postnodal neural plate caudal from the prospective hindbrain level. All these cell populations appear to be descendants of the Cnot-expressing cells of the node, suggesting a cell lineage relationship. After the onset of somitogenesis, a second, independent expression domain appears in the neural folds at the prospective mid- and forebrain levels, and further transcripts are found in the epiphysis, the ventral diencephalon, the preoral gut and the limb buds. Transplantation of nodes from extended streak embryos leads to the formation of ectopic notochords, which express Cnot in the typical, cranially decreasing gradient. Transplantation of young nodes to young hosts has previously been described to induce secondary embryos. We observed that secondary chick embryos express Cnot in node derived, notochord-like structures and in the anterior neural plate, similar to the domains seen in primary embryos. However, expression was absent from the posterior neural plate, which in the induction experiments is excluded from the node lineage. This finding corroborates our initial conclusion about a cell lineage relationship between node, notochord, and neural plate defined by Cnot expression. The midline mesoderm of vertebrate embryos consists of two tissues, the prechordal mesoderm and the notochord. The anterior notochord, the head process, may represent an intermediate form. The transition from prechordal to chordal mesoderm can be followed by the expression of the two marker homeobox genes goosecoid and Cnot, first in the primitive streak, and then in the head process. We suggest that expression of goosecoid or Cnot is involved in the specification of a prechordal or notochordal identity, respectively. A transition from goosecoid to Cnot expression may proceed, while cells are still in the epiblast, but not after becoming mesodermal. A molecular coding of axial positions in the midline mesoderm may occur by specific homeobox genes, similar to the situation in the neural tube and the somitic mesoderm.
Franz, Charles M. A. P.; Worobo, Randy W.; Quadri, Luis E. N.; Schillinger, Ulrich; Holzapfel, Wilhelm H.; Vederas, John C.; Stiles, Michael E.
1999-01-01
A purified bacteriocin produced by Enterococcus faecium BFE 900 isolated from black olives was shown by Edman degradation and mass spectrometric analyses to be identical to enterocin B produced by E. faecium T136 from meat (P. Casaus, T. Nilsen, L. M. Cintas, I. F. Nes, P. E. Hernández, and H. Holo, Microbiology 143:2287–2294, 1997). The structural gene was located on a 2.2-kb HindIII fragment and a 12.0-kb EcoRI chromosomal fragment. The genetic characteristics and production of EntB by E. faecium BFE 900 differed from that described so far by the presence of a conserved sequence like a regulatory box upstream of the EntB gene, and its production was constitutive and not regulated. The 2.2-kb chromosomal fragment contained the hitherto undetected immunity gene for EntB in an atypical orientation that is the reverse of that of the structural gene. Typical transport and other genes associated with bacteriocin production were not detected on the 12.0-kb chromosomal fragment containing the EntB structural gene. This makes the EntB genetic system different from most other bacteriocin systems, where transport and possible regulatory genes are clustered. EntB was subcloned and expressed by the dedicated secretion machinery of Carnobacterium piscicola LV17A. The structural gene was amplified by PCR, fused to the divergicin A signal peptide, and expressed by the general secretory pathway in Enterococcus faecalis ATCC 19433. PMID:10224016
Degl'Innocenti, Andrea
2016-01-01
Background In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Aim Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Procedures Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. Results In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a whole, our findings favor Olfr266 as a model gene to investigate odorant receptor gene choice. PMID:26794459
2014-01-01
Background There has been much research on the bioconversion of xylose found in lignocellulosic biomass to ethanol by genetically engineered Saccharomyces cerevisiae. However, the rate of ethanol production from xylose in these xylose-utilizing yeast strains is quite low compared to their glucose fermentation. In this study, two diploid xylose-utilizing S. cerevisiae strains, the industrial strain MA-R4 and the laboratory strain MA-B4, were employed to investigate the differences between anaerobic fermentation of xylose and glucose, and general differences between recombinant yeast strains, through genome-wide transcription analysis. Results In MA-R4, many genes related to ergosterol biosynthesis were expressed more highly with glucose than with xylose. Additionally, these ergosterol-related genes had higher transcript levels in MA-R4 than in MA-B4 during glucose fermentation. During xylose fermentation, several genes related to central metabolic pathways that typically increase during growth on non-fermentable carbon sources were expressed at higher levels in both strains. Xylose did not fully repress the genes encoding enzymes of the tricarboxylic acid and respiratory pathways, even under anaerobic conditions. In addition, several genes involved in spore wall metabolism and the uptake of ammonium, which are closely related to the starvation response, and many stress-responsive genes mediated by Msn2/4p, as well as trehalose synthase genes, increased in expression when fermenting with xylose, irrespective of the yeast strain. We further observed that transcript levels of genes involved in xylose metabolism, membrane transport functions, and ATP synthesis were higher in MA-R4 than in MA-B4 when strains were fermented with glucose or xylose. Conclusions Our transcriptomic approach revealed the molecular events underlying the response to xylose or glucose and differences between MA-R4 and MA-B4. Xylose-utilizing S. cerevisiae strains may recognize xylose as a non-fermentable carbon source, which induces a starvation response and adaptation to oxidative stress, resulting in the increased expression of stress-response genes. PMID:24467867
[Hsp70 Genes of the Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae) Parasitic Wasp].
Chuvakova, L N; Sharko, F S; Nedoluzhko, A V; Polilov, A A; Prokhorchuk, E B; Skryabin, K G; Evgen'ev, M B
2017-01-01
Miniaturization is an evolutionary process that is widely represented in both invertebrates and vertebrates. Miniaturization frequently affects not only the size of the organism and its constituent cells, but also changes the genome structure and functioning. The structure of the main heat shock genes (hsp70 and hsp83) was studied in one of the smallest insects, the Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae) parasitic wasp, which is comparable in size with unicellular organisms. An analysis of the sequenced genome has detected six genes that relate to the hsp70 family, some of which are apparently induced upon heat shock. Both induced and constitutively expressed hsp70 genes contain a large number of introns, which is not typical for the genes of this family. Moreover, none of the found genes form clusters, and they are all very heterogeneous (individual copies are only 75-85% identical), which indicates the absence of gene conversion, which provides the identity of genes of this family in Drosophila and other organisms. Two hsp83 genes, one of which contains an intron, have also been found in the M. amalphitanum genome.
Gene expression of stem cells at different stages of ontological human development.
Allegra, Adolfo; Altomare, Roberta; Curcio, Patrizia; Santoro, Alessandra; Lo Monte, Attilio I; Mazzola, Sergio; Marino, Angelo
2013-10-01
To compare multipotent mesenchymal stem cells (MSCs) obtained from chorionic villi (CV), amniotic fluid (AF) and placenta, with regard to their phenotype and gene expression, in order to understand if MSCs derived from different extra-embryonic tissues, at different stages of human ontological development, present distinct stemness characteristics. MSCs obtained from 30 samples of CV, 30 of AF and 10 placentas (obtained from elective caesarean sections) were compared. MSCs at second confluence cultures were characterized by immunophenotypic analysis with flow cytometry using FACS CANTO II. The expression of the genes Oct-4 (Octamer-binding transcription factor 4, also known as POU5F1), Sox-2 (SRY box-containing factor 2), Nanog, Rex-1 (Zfp-42) and Pax-6 (Paired Box Protein-6), was analyzed. Real-time quantitative PCR was performed by ABI Prism 7700, after RNA isolation and retro-transcription in cDNA. Statistical analysis was performed using non-parametric test Kruskal-Wallis (XLSTAT 2011) and confirmed by REST software, to estimate fold changes between samples. Each gene was defined differentially expressed if p-value was <0.05. Cells from all samples were negative for haematopoietic antigens CD45, CD34, CD117 and CD33 and positive for the typical MSCs antigens CD13, CD73 and CD90. Nevertheless, MSCs from AF and placentas showed different fluorescence intensity, reflecting the heterogeneity of these tissues. The gene expression of OCT-4, SOX-2, NANOG was not significantly different among the three groups. In AF, REX-1 and PAX-6 showed a higher expression in comparison to CV. MSCs of different extra-embryonic tissues showed no differences in immunophenotype when collected from second confluence cultures. The expression of OCT-4, NANOG and SOX-2 was not significantly different, demonstrating that all fetal sources are suitable for obtaining MSCs. These results open new possibilities for the clinical use of MSCs derived from easily accessible sources, in order to develop new protocols for clinical and experimental research. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Carlos, Bianca C; Fotoran, Wesley L; Menezes, Maria J; Cabral, Fernanda J; Bastos, Marcele F; Costa, Fabio T M; Sousa-Neto, Jayme A; Ribolla, Paulo E M; Wunderlich, Gerhard; Ferreira, Marcelo U
2016-11-01
The var gene-encoded erythrocyte membrane protein-1 of Plasmodium falciparum (PfEMP-1) is the main variant surface antigen (VSA) expressed on infected erythrocytes. The rate at which antibody responses to VSA expressed by circulating parasites are acquired depends on the size of the local VSA repertoire and the frequency of exposure to new VSA. Because parasites from areas with declining malaria endemicity, such as the Amazon, typically express a restricted PfEMP-1 repertoire, we hypothesized that Amazonians would rapidly acquire antibodies to most locally circulating VSA. Consistent with our expectations, the analysis of 5878 sequence tags expressed by 10 local P. falciparum samples revealed little PfEMP-1 DBL1α domain diversity. Among the most commonly expressed DBL1α types, 45% were shared by two or more independent parasite lines. Nevertheless, Amazonians displayed major gaps in their repertoire of anti-VSA antibodies, although the breadth of anti-VSA antibody responses correlated positively with their cumulative exposure to malaria. We found little antibody cross-reactivity even when testing VSA from related parasites expressing the same dominant DBL1α types. We conclude that variant-specific immunity to P. falciparum VSAs develops slowly despite the relatively restricted PfEMP-1 repertoire found in low-endemicity settings. Copyright © 2016 Elsevier Inc. All rights reserved.
Fundamental limits on dynamic inference from single-cell snapshots
Weinreb, Caleb; Tusi, Betsabeh K.; Socolovsky, Merav
2018-01-01
Single-cell expression profiling reveals the molecular states of individual cells with unprecedented detail. Because these methods destroy cells in the process of analysis, they cannot measure how gene expression changes over time. However, some information on dynamics is present in the data: the continuum of molecular states in the population can reflect the trajectory of a typical cell. Many methods for extracting single-cell dynamics from population data have been proposed. However, all such attempts face a common limitation: for any measured distribution of cell states, there are multiple dynamics that could give rise to it, and by extension, multiple possibilities for underlying mechanisms of gene regulation. Here, we describe the aspects of gene expression dynamics that cannot be inferred from a static snapshot alone and identify assumptions necessary to constrain a unique solution for cell dynamics from static snapshots. We translate these constraints into a practical algorithmic approach, population balance analysis (PBA), which makes use of a method from spectral graph theory to solve a class of high-dimensional differential equations. We use simulations to show the strengths and limitations of PBA, and then apply it to single-cell profiles of hematopoietic progenitor cells (HPCs). Cell state predictions from this analysis agree with HPC fate assays reported in several papers over the past two decades. By highlighting the fundamental limits on dynamic inference faced by any method, our framework provides a rigorous basis for dynamic interpretation of a gene expression continuum and clarifies best experimental designs for trajectory reconstruction from static snapshot measurements. PMID:29463712
Sadri, H; Bruckmaier, R M; Rahmani, H R; Ghorbani, G R; Morel, I; van Dorland, H A
2010-10-01
Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFα), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, β-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFα concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement. © 2010 Blackwell Verlag GmbH.
EBP1 is a novel E2F target gene regulated by transforming growth factor-β.
Judah, David; Chang, Wing Y; Dagnino, Lina
2010-11-10
Regulation of gene expression requires transcription factor binding to specific DNA elements, and a large body of work has focused on the identification of such sequences. However, it is becoming increasingly clear that eukaryotic transcription factors can exhibit widespread, nonfunctional binding to genomic DNA sites. Conversely, some of these proteins, such as E2F, can also modulate gene expression by binding to non-consensus elements. E2F comprises a family of transcription factors that play key roles in a wide variety of cellular functions, including survival, differentiation, activation during tissue regeneration, metabolism, and proliferation. E2F factors bind to the Erb3-binding protein 1 (EBP1) promoter in live cells. We now show that E2F binding to the EBP1 promoter occurs through two tandem DNA elements that do not conform to typical consensus E2F motifs. Exogenously expressed E2F1 activates EBP1 reporters lacking one, but not both sites, suggesting a degree of redundancy under certain conditions. E2F1 increases the levels of endogenous EBP1 mRNA in breast carcinoma and other transformed cell lines. In contrast, in non-transformed primary epidermal keratinocytes, E2F, together with the retinoblastoma family of proteins, appears to be involved in decreasing EBP1 mRNA abundance in response to growth inhibition by transforming growth factor-β1. Thus, E2F is likely a central coordinator of multiple responses that culminate in regulation of EBP1 gene expression, and which may vary depending on cell type and context.
Yeung, Chi Lam Au; Tsang, Tsun Yee; Yau, Pak Lun; Kwok, Tim Tak
2017-02-14
Oncogenic protein E6 of human papillomavirus type 16 (HPV-16) is believed to involve in the aberrant methylation in cervical cancer as it upregulates DNA methyltransferase 1 (DNMT1) through tumor suppressor p53. In addition, DNA demethylating agent induces the expression of one of the HPV-16 E6 regulated microRNAs (miRs), miR-23b, in human cervical carcinoma SiHa cells. Thus, the importance of DNA methylation and miR-23b in HPV-16 E6 associated cervical cancer development is investigated. In the present study, however, it is found that miR-23b is not embedded in any typical CpG island. Nevertheless, a functional CpG island is predicted in the promoter region of C9orf3, the host gene of miR-23b, and is validated by methylation-specific PCR and bisulfite genomic sequencing analyses. Besides, c-MET is confirmed to be a target gene of miR-23b. Silencing of HPV-16 E6 is found to increase the expression of miR-23b, decrease the expression of c-MET and thus induce the apoptosis of SiHa cells through the c-MET downstream signaling pathway. Taken together, the tumor suppressive miR-23b is epigenetically inactivated through its host gene C9orf3 and this is probably a critical pathway during HPV-16 E6 associated cervical cancer development.