Sample records for gene functional characterization

  1. OGRO: The Overview of functionally characterized Genes in Rice online database.

    PubMed

    Yamamoto, Eiji; Yonemaru, Jun-Ichi; Yamamoto, Toshio; Yano, Masahiro

    2012-12-01

    The high-quality sequence information and rich bioinformatics tools available for rice have contributed to remarkable advances in functional genomics. To facilitate the application of gene function information to the study of natural variation in rice, we comprehensively searched for articles related to rice functional genomics and extracted information on functionally characterized genes. As of 31 March 2012, 702 functionally characterized genes were annotated. This number represents about 1.6% of the predicted loci in the Rice Annotation Project Database. The compiled gene information is organized to facilitate direct comparisons with quantitative trait locus (QTL) information in the Q-TARO database. Comparison of genomic locations between functionally characterized genes and the QTLs revealed that QTL clusters were often co-localized with high-density gene regions, and that the genes associated with the QTLs in these clusters were different genes, suggesting that these QTL clusters are likely to be explained by tightly linked but distinct genes. Information on the functionally characterized genes compiled during this study is now available in the O verview of Functionally Characterized G enes in R ice O nline database (OGRO) on the Q-TARO website ( http://qtaro.abr.affrc.go.jp/ogro ). The database has two interfaces: a table containing gene information, and a genome viewer that allows users to compare the locations of QTLs and functionally characterized genes. OGRO on Q-TARO will facilitate a candidate-gene approach to identifying the genes responsible for QTLs. Because the QTL descriptions in Q-TARO contain information on agronomic traits, such comparisons will also facilitate the annotation of functionally characterized genes in terms of their effects on traits important for rice breeding. The increasing amount of information on rice gene function being generated from mutant panels and other types of studies will make the OGRO database even more valuable in the future.

  2. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance

    PubMed Central

    2013-01-01

    Background Understanding the function of a particular gene under various stresses is important for engineering plants for broad-spectrum stress tolerance. Although virus-induced gene silencing (VIGS) has been used to characterize genes involved in abiotic stress tolerance, currently available gene silencing and stress imposition methodology at the whole plant level is not suitable for high-throughput functional analyses of genes. This demands a robust and reliable methodology for characterizing genes involved in abiotic and multi-stress tolerance. Results Our methodology employs VIGS-based gene silencing in leaf disks combined with simple stress imposition and effect quantification methodologies for easy and faster characterization of genes involved in abiotic and multi-stress tolerance. By subjecting leaf disks from gene-silenced plants to various abiotic stresses and inoculating silenced plants with various pathogens, we show the involvement of several genes for multi-stress tolerance. In addition, we demonstrate that VIGS can be used to characterize genes involved in thermotolerance. Our results also showed the functional relevance of NtEDS1 in abiotic stress, NbRBX1 and NbCTR1 in oxidative stress; NtRAR1 and NtNPR1 in salinity stress; NbSOS1 and NbHSP101 in biotic stress; and NtEDS1, NbETR1, NbWRKY2 and NbMYC2 in thermotolerance. Conclusions In addition to widening the application of VIGS, we developed a robust, easy and high-throughput methodology for functional characterization of genes involved in multi-stress tolerance. PMID:24289810

  3. Characterization of embryo-specific genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that is not expressed in mature tissues -- the embryonic genes. In the last two years, using cDNA clones, we have isolated 22 cDNA clones, and characterized the expression pattern of their corresponding RNA. At least 4 cDNA clones detect RNAs of embryonic genes. These cDNA clones detect RNAs expressed in somatic as well as zygotic embryos of carrot. Using the cDNA clones, we screened the genomic library of carrot embryo DNA, and isolatedmore » genomic clones for three genes. The structure and function of two genes DC 8 and DC 59 have been characterized and are reported in this paper.« less

  4. Identification, characterization and expression analysis of lineage-specific genes within sweet orange (Citrus sinensis).

    PubMed

    Xu, Yuantao; Wu, Guizhi; Hao, Baohai; Chen, Lingling; Deng, Xiuxin; Xu, Qiang

    2015-11-23

    With the availability of rapidly increasing number of genome and transcriptome sequences, lineage-specific genes (LSGs) can be identified and characterized. Like other conserved functional genes, LSGs play important roles in biological evolution and functions. Two set of citrus LSGs, 296 citrus-specific genes (CSGs) and 1039 orphan genes specific to sweet orange, were identified by comparative analysis between the sweet orange genome sequences and 41 genomes and 273 transcriptomes. With the two sets of genes, gene structure and gene expression pattern were investigated. On average, both the CSGs and orphan genes have fewer exons, shorter gene length and higher GC content when compared with those evolutionarily conserved genes (ECs). Expression profiling indicated that most of the LSGs expressed in various tissues of sweet orange and some of them exhibited distinct temporal and spatial expression patterns. Particularly, the orphan genes were preferentially expressed in callus, which is an important pluripotent tissue of citrus. Besides, part of the CSGs and orphan genes expressed responsive to abiotic stress, indicating their potential functions during interaction with environment. This study identified and characterized two sets of LSGs in citrus, dissected their sequence features and expression patterns, and provided valuable clues for future functional analysis of the LSGs in sweet orange.

  5. Functional classification of rice flanking sequence tagged genes using MapMan terms and global understanding on metabolic and regulatory pathways affected by dxr mutant having defects in light response.

    PubMed

    Chandran, Anil Kumar Nalini; Lee, Gang-Seob; Yoo, Yo-Han; Yoon, Ung-Han; Ahn, Byung-Ohg; Yun, Doh-Won; Kim, Jin-Hyun; Choi, Hong-Kyu; An, GynHeung; Kim, Tae-Ho; Jung, Ki-Hong

    2016-12-01

    Rice is one of the most important food crops for humans. To improve the agronomical traits of rice, the functions of more than 1,000 rice genes have been recently characterized and summarized. The completed, map-based sequence of the rice genome has significantly accelerated the functional characterization of rice genes, but progress remains limited in assigning functions to all predicted non-transposable element (non-TE) genes, estimated to number 37,000-41,000. The International Rice Functional Genomics Consortium (IRFGC) has generated a huge number of gene-indexed mutants by using mutagens such as T-DNA, Tos17 and Ds/dSpm. These mutants have been identified by 246,566 flanking sequence tags (FSTs) and cover 65 % (25,275 of 38,869) of the non-TE genes in rice, while the mutation ratio of TE genes is 25.7 %. In addition, almost 80 % of highly expressed non-TE genes have insertion mutations, indicating that highly expressed genes in rice chromosomes are more likely to have mutations by mutagens such as T-DNA, Ds, dSpm and Tos17. The functions of around 2.5 % of rice genes have been characterized, and studies have mainly focused on transcriptional and post-transcriptional regulation. Slow progress in characterizing the function of rice genes is mainly due to a lack of clues to guide functional studies or functional redundancy. These limitations can be partially solved by a well-categorized functional classification of FST genes. To create this classification, we used the diverse overviews installed in the MapMan toolkit. Gene Ontology (GO) assignment to FST genes supplemented the limitation of MapMan overviews. The functions of 863 of 1,022 known genes can be evaluated by current FST lines, indicating that FST genes are useful resources for functional genomic studies. We assigned 16,169 out of 29,624 FST genes to 34 MapMan classes, including major three categories such as DNA, RNA and protein. To demonstrate the MapMan application on FST genes, transcriptome analysis was done from a rice mutant of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) gene with FST. Mapping of 756 down-regulated genes in dxr mutants and their annotation in terms of various MapMan overviews revealed candidate genes downstream of DXR-mediating light signaling pathway in diverse functional classes such as the methyl-D-erythritol 4-phosphatepathway (MEP) pathway overview, photosynthesis, secondary metabolism and regulatory overview. This report provides a useful guide for systematic phenomics and further applications to enhance the key agronomic traits of rice.

  6. Highlighting the Need for Systems-Level Experimental Characterization of Plant Metabolic Enzymes.

    PubMed

    Engqvist, Martin K M

    2016-01-01

    The biology of living organisms is determined by the action and interaction of a large number of individual gene products, each with specific functions. Discovering and annotating the function of gene products is key to our understanding of these organisms. Controlled experiments and bioinformatic predictions both contribute to functional gene annotation. For most species it is difficult to gain an overview of what portion of gene annotations are based on experiments and what portion represent predictions. Here, I survey the current state of experimental knowledge of enzymes and metabolism in Arabidopsis thaliana as well as eleven economically important crops and forestry trees - with a particular focus on reactions involving organic acids in central metabolism. I illustrate the limited availability of experimental data for functional annotation of enzymes in most of these species. Many enzymes involved in metabolism of citrate, malate, fumarate, lactate, and glycolate in crops and forestry trees have not been characterized. Furthermore, enzymes involved in key biosynthetic pathways which shape important traits in crops and forestry trees have not been characterized. I argue for the development of novel high-throughput platforms with which limited functional characterization of gene products can be performed quickly and relatively cheaply. I refer to this approach as systems-level experimental characterization. The data collected from such platforms would form a layer intermediate between bioinformatic gene function predictions and in-depth experimental studies of these functions. Such a data layer would greatly aid in the pursuit of understanding a multiplicity of biological processes in living organisms.

  7. Transposon based functional characterization of soybean genes

    USDA-ARS?s Scientific Manuscript database

    Type II transposable elements that use cut and paste mechanism for jumping from one genomic region to another is ideal in tagging and cloning genes. Precise excision from an insertion site in a mutant gene leads to regaining the wild-type function. Thus, function of a gene can be established based o...

  8. Data Integration and Applications of Functional Gene Networks in Drosophila Melanogaster

    ERIC Educational Resources Information Center

    Costello, James Christopher

    2009-01-01

    Understanding the function of every gene in the genome is a central goal in the biological sciences. This includes full characterization of a genes phenotypic effects, molecular interactions, the evolutionary forces that shape its function(s), and how these functions interrelate. Despite a long history and considerable effort to understand all…

  9. Functional characterization of a prokaryotic Kir channel.

    PubMed

    Enkvetchakul, Decha; Bhattacharyya, Jaya; Jeliazkova, Iana; Groesbeck, Darcy K; Cukras, Catherine A; Nichols, Colin G

    2004-11-05

    The Kir gene family encodes inward rectifying K+ (Kir) channels that are widespread and critical regulators of excitability in eukaryotic cells. A related gene family (KirBac) has recently been identified in prokaryotes. While a crystal structure of one member, Kir-Bac1.1, has been solved, there has been no functional characterization of any KirBac gene products. Here we present functional characterization of KirBac1.1 reconstituted in liposomes. Utilizing a 86Rb+ uptake assay, we demonstrate that KirBac1.1 generates a K+ -selective permeation path that is inhibited by extraliposomal Ba2+ and Ca2+ ions. In contrast to KcsA (an acid-activated bacterial potassium channel), KirBac1.1 is inhibited by extraliposomal acid (pKa approximately 6). This characterization of KirBac1.1 activity now paves the way for further correlation of structure and function in this model Kir channel.

  10. funRiceGenes dataset for comprehensive understanding and application of rice functional genes.

    PubMed

    Yao, Wen; Li, Guangwei; Yu, Yiming; Ouyang, Yidan

    2018-01-01

    As a main staple food, rice is also a model plant for functional genomic studies of monocots. Decoding of every DNA element of the rice genome is essential for genetic improvement to address increasing food demands. The past 15 years have witnessed extraordinary advances in rice functional genomics. Systematic characterization and proper deposition of every rice gene are vital for both functional studies and crop genetic improvement. We built a comprehensive and accurate dataset of ∼2800 functionally characterized rice genes and ∼5000 members of different gene families by integrating data from available databases and reviewing every publication on rice functional genomic studies. The dataset accounts for 19.2% of the 39 045 annotated protein-coding rice genes, which provides the most exhaustive archive for investigating the functions of rice genes. We also constructed 214 gene interaction networks based on 1841 connections between 1310 genes. The largest network with 762 genes indicated that pleiotropic genes linked different biological pathways. Increasing degree of conservation of the flowering pathway was observed among more closely related plants, implying substantial value of rice genes for future dissection of flowering regulation in other crops. All data are deposited in the funRiceGenes database (https://funricegenes.github.io/). Functionality for advanced search and continuous updating of the database are provided by a Shiny application (http://funricegenes.ncpgr.cn/). The funRiceGenes dataset would enable further exploring of the crosslink between gene functions and natural variations in rice, which can also facilitate breeding design to improve target agronomic traits of rice. © The Authors 2017. Published by Oxford University Press.

  11. Virus-induced gene silencing (VIGS)-mediated functional characterization of two genes involved in lignocellulosic secondary cell wall formation.

    PubMed

    Pandey, Shashank K; Nookaraju, Akula; Fujino, Takeshi; Pattathil, Sivakumar; Joshi, Chandrashekhar P

    2016-11-01

    Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.

  12. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis.

    PubMed

    Nanjareddy, Kalpana; Arthikala, Manoj-Kumar; Blanco, Lourdes; Arellano, Elizabeth S; Lara, Miguel

    2016-06-24

    Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. We present simple and efficient methodologies for protoplast isolation from multiple P. vulgaris tissues. We also provide a high-efficiency and amenable method for leaf mesophyll transformation for rapid gene functional characterization studies. Furthermore, a modified SAAT leaf disc infiltration approach aids in validating genes and their functions. Together, these methods help to rapidly unravel novel gene functions and are promising tools for P. vulgaris research.

  13. Towards an informative mutant phenotype for every bacterial gene

    DOE PAGES

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; ...

    2014-08-11

    Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, inmore » Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.

    Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, inmore » Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness.« less

  15. Genetic effects on gene expression across human tissues

    PubMed Central

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease. PMID:29022597

  16. Genetic effects on gene expression across human tissues.

    PubMed

    Battle, Alexis; Brown, Christopher D; Engelhardt, Barbara E; Montgomery, Stephen B

    2017-10-11

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

  17. Construction of a Bacterial Cell that Contains Only the Set of Essential Genes Necessary to Impart Life

    DTIC Science & Technology

    2014-05-16

    native uncharacterized genes for characterized genes from Bacillus subtilis , that is presented in a constitutive expression module. If the B... subtilis gene containing M. mycoides mutant is viable than the function of the conserved hypothetical gene is the same as the input B. subtilis gene...Characterized genes from B. subtilis were swapped with similar, but not so similar as to be clearly the same, essential genes from M. mycoides. The B. subtilis

  18. Proteins of Unknown Biochemical Function: A Persistent Problem and a Roadmap to Help Overcome It.

    PubMed

    Niehaus, Thomas D; Thamm, Antje M K; de Crécy-Lagard, Valérie; Hanson, Andrew D

    2015-11-01

    The number of sequenced genomes is rapidly increasing, but functional annotation of the genes in these genomes lags far behind. Even in Arabidopsis (Arabidopsis thaliana), only approximately 40% of enzyme- and transporter-encoding genes have credible functional annotations, and this number is even lower in nonmodel plants. Functional characterization of unknown genes is a challenge, but various databases (e.g. for protein localization and coexpression) can be mined to provide clues. If homologous microbial genes exist-and about one-half the genes encoding unknown enzymes and transporters in Arabidopsis have microbial homologs-cross-kingdom comparative genomics can powerfully complement plant-based data. Multiple lines of evidence can strengthen predictions and warrant experimental characterization. In some cases, relatively quick tests in genetically tractable microbes can determine whether a prediction merits biochemical validation, which is costly and demands specialized skills. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Structural and Functional Characterization of a Caenorhabditis elegans Genetic Interaction Network within Pathways

    PubMed Central

    Boucher, Benjamin; Lee, Anna Y.; Hallett, Michael; Jenna, Sarah

    2016-01-01

    A genetic interaction (GI) is defined when the mutation of one gene modifies the phenotypic expression associated with the mutation of a second gene. Genome-wide efforts to map GIs in yeast revealed structural and functional properties of a GI network. This provided insights into the mechanisms underlying the robustness of yeast to genetic and environmental insults, and also into the link existing between genotype and phenotype. While a significant conservation of GIs and GI network structure has been reported between distant yeast species, such a conservation is not clear between unicellular and multicellular organisms. Structural and functional characterization of a GI network in these latter organisms is consequently of high interest. In this study, we present an in-depth characterization of ~1.5K GIs in the nematode Caenorhabditis elegans. We identify and characterize six distinct classes of GIs by examining a wide-range of structural and functional properties of genes and network, including co-expression, phenotypical manifestations, relationship with protein-protein interaction dense subnetworks (PDS) and pathways, molecular and biological functions, gene essentiality and pleiotropy. Our study shows that GI classes link genes within pathways and display distinctive properties, specifically towards PDS. It suggests a model in which pathways are composed of PDS-centric and PDS-independent GIs coordinating molecular machines through two specific classes of GIs involving pleiotropic and non-pleiotropic connectors. Our study provides the first in-depth characterization of a GI network within pathways of a multicellular organism. It also suggests a model to understand better how GIs control system robustness and evolution. PMID:26871911

  20. Prospecting Metagenomic Enzyme Subfamily Genes for DNA Family Shuffling by a Novel PCR-based Approach*

    PubMed Central

    Wang, Qiuyan; Wu, Huili; Wang, Anming; Du, Pengfei; Pei, Xiaolin; Li, Haifeng; Yin, Xiaopu; Huang, Lifeng; Xiong, Xiaolong

    2010-01-01

    DNA family shuffling is a powerful method for enzyme engineering, which utilizes recombination of naturally occurring functional diversity to accelerate laboratory-directed evolution. However, the use of this technique has been hindered by the scarcity of family genes with the required level of sequence identity in the genome database. We describe here a strategy for collecting metagenomic homologous genes for DNA shuffling from environmental samples by truncated metagenomic gene-specific PCR (TMGS-PCR). Using identified metagenomic gene-specific primers, twenty-three 921-bp truncated lipase gene fragments, which shared 64–99% identity with each other and formed a distinct subfamily of lipases, were retrieved from 60 metagenomic samples. These lipase genes were shuffled, and selected active clones were characterized. The chimeric clones show extensive functional and genetic diversity, as demonstrated by functional characterization and sequence analysis. Our results indicate that homologous sequences of genes captured by TMGS-PCR can be used as suitable genetic material for DNA family shuffling with broad applications in enzyme engineering. PMID:20962349

  1. Cloning, Characterization, Regulation, and Function of Dormancy-Associated MADS-Box Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are SHORT VEGETATIVE PHASE–Like MADS box transcription factors linked to endodormancy induction. We have cloned and characterized several cDNA and genomic clones of DAM genes from the model perennial weed leafy spurge (Euphorbia esula). We present evidence fo...

  2. Combining Zebrafish and Mouse Models to Test the Function of Deubiquitinating Enzyme (Dubs) Genes in Development: Role of USP45 in the Retina.

    PubMed

    Toulis, Vasileios; Garanto, Alejandro; Marfany, Gemma

    2016-01-01

    Ubiquitination is a dynamic and reversible posttranslational modification. Much effort has been devoted to characterize the function of ubiquitin pathway genes in the cell context, but much less is known on their functional role in the development and maintenance of organs and tissues in the organism. In fact, several ubiquitin ligases and deubiquitinating enzymes (DUBs) are implicated in human pathological disorders, from cancer to neurodegeneration. The aim of our work is to explore the relevance of DUBs in retinal function in health and disease, particularly since some genes related to the ubiquitin or SUMO pathways cause retinal dystrophies, a group of rare diseases that affect 1:3000 individuals worldwide. We propose zebrafish as an extremely useful and informative genetic model to characterize the function of any particular gene in the retina, and thus complement the expression data from mouse. A preliminary characterization of gene expression in mouse retinas (RT-PCR and in situ hybridization) was performed to select particularly interesting genes, and we later replicated the experiments in zebrafish. As a proof of concept, we selected ups45 to be knocked down by morpholino injection in zebrafish embryos. Morphant phenotypic analysis showed moderate to severe eye morphological defects, with a defective formation of the retinal structures, therefore supporting the relevance of DUBs in the formation and differentiation of the vertebrate retina, and suggesting that genes encoding ubiquitin pathway enzymes are good candidates for causing hereditary retinal dystrophies.

  3. Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.).

    PubMed

    Malviya, N; Gupta, S; Singh, V K; Yadav, M K; Bisht, N C; Sarangi, B K; Yadav, D

    2015-02-01

    The DNA binding with One Finger (Dof) protein is a plant specific transcription factor involved in the regulation of wide range of processes. The analysis of whole genome sequence of pigeonpea has identified 38 putative Dof genes (CcDof) distributed on 8 chromosomes. A total of 17 out of 38 CcDof genes were found to be intronless. A comprehensive in silico characterization of CcDof gene family including the gene structure, chromosome location, protein motif, phylogeny, gene duplication and functional divergence has been attempted. The phylogenetic analysis resulted in 3 major clusters with closely related members in phylogenetic tree revealed common motif distribution. The in silico cis-regulatory element analysis revealed functional diversity with predominance of light responsive and stress responsive elements indicating the possibility of these CcDof genes to be associated with photoperiodic control and biotic and abiotic stress. The duplication pattern showed that tandem duplication is predominant over segmental duplication events. The comparative phylogenetic analysis of these Dof proteins along with 78 soybean, 36 Arabidopsis and 30 rice Dof proteins revealed 7 major clusters. Several groups of orthologs and paralogs were identified based on phylogenetic tree constructed. Our study provides useful information for functional characterization of CcDof genes.

  4. Phenotypic characterization of ten methanol oxidation (Mox) mutant classes in methylobacterium AM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunn, D.N.; Lidstrom, M.E.

    Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium strain AM1 have been characterized by complementation analysis and assigned to ten complementation groups, Mox A1,A2,A3 and B-H. We have characterized each of the mutants belonging to the ten Mox complementation groups by PMS-DCPIP dye linked methanol dehydrogenase activity, by methanol-dependent whole cell oxygen consumption, by the presence or absence of methanol dehydrogenase protein by SDS-polyacrylamide gels and Western blotting, by the absorption spectra of purified mutant methanol dehydrogenase proteins and by the presence or absence of the soluble cytochrome c proteins of Methylobacterium AM1. We propose functions for each ofmore » the genes deficient in the mutants of the ten Mox complementation groups. These functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the PQQ prosthetic group with the methanol dehydrogenase apoprotein and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol. 24 refs., 5 figs., 2 tabs.« less

  5. Molecular characterization and functional analysis of three pathogenesis-related cytochrome P450 genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea).

    PubMed

    Xu, Xiao-Lu; Wu, Xiao-Qin; Ye, Jian-Ren; Huang, Lin

    2015-03-06

    Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi) was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant.

  6. Identification and Characterization of Genes That Interact with Lin-12 in Caenorhabditis Elegans

    PubMed Central

    Tax, F. E.; Thomas, J. H.; Ferguson, E. L.; Horvitz, H. R.

    1997-01-01

    We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup-17 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup-17 and lag-2, suggest that both genes act at approximately the same time as lin-12 in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1. PMID:9409830

  7. Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer. | Office of Cancer Genomics

    Cancer.gov

    Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, BCR-ABL1, EML4-ALK, and ETV6-NTRK3, as well as 20 previously uncharacterized fusion genes identified in TCGA datasets.

  8. Genome-Wide Screening and Characterization of the Dof Gene Family in Physic Nut (Jatropha curcas L.).

    PubMed

    Wang, Peipei; Li, Jing; Gao, Xiaoyang; Zhang, Di; Li, Anlin; Liu, Changning

    2018-05-29

    Physic nut ( Jatropha curcas L.) is a species of flowering plant with great potential for biofuel production and as an emerging model organism for functional genomic analysis, particularly in the Euphorbiaceae family. DNA binding with one finger (Dof) transcription factors play critical roles in numerous biological processes in plants. Nevertheless, the knowledge about members, and the evolutionary and functional characteristics of the Dof gene family in physic nut is insufficient. Therefore, we performed a genome-wide screening and characterization of the Dof gene family within the physic nut draft genome. In total, 24 JcDof genes (encoding 33 JcDof proteins) were identified. All the JcDof genes were divided into three major groups based on phylogenetic inference, which was further validated by the subsequent gene structure and motif analysis. Genome comparison revealed that segmental duplication may have played crucial roles in the expansion of the JcDof gene family, and gene expansion was mainly subjected to positive selection. The expression profile demonstrated the broad involvement of JcDof genes in response to various abiotic stresses, hormonal treatments and functional divergence. This study provides valuable information for better understanding the evolution of JcDof genes, and lays a foundation for future functional exploration of JcDof genes.

  9. An Integrated workflow for phenazine biosynthetic gene cluster discovery and characterization

    USDA-ARS?s Scientific Manuscript database

    Increasing availability of new genomes and putative biosynthetic gene clusters (BGCs) has extended the opportunity to access novel chemical diversity for agriculture, medicine, environmental and industrial purposes. However, functional characterization of BGCs through heterologous expression is limi...

  10. [Cloning and functional characterization of phytoene desaturase in Andrographis paniculata].

    PubMed

    Shen, Qin-qin; Li, Li-xia; Zhan, Peng-lin; Wang, Qiang

    2015-10-01

    A full-length cDNA of phytoene desaturase (PDS) gene from Andrographis paniculata was obtained through RACE-PCR. The cDNA sequence consists of 2 224 bp with an intact ORF of 1 752 bp (GeneBank: KP982892), encoding a ploypeptide of 584 amino acids. Homology analysis showed that the deduced protein has extensive sequence similarities to PDS from other plants, and contains a conserved NAD ( H) -binding domain of plant dehydrase cofactor binding-domain in N-terminal. Phylogenetic analysis demonstrated that ApPDS was more related to PDS of Sesamum indicum and Pogostemon cablin. The semi-quantitative RT-PCR analysis revealed that ApPDS expressed in whole aboveground tissues with the highest expression in leaves. Virus induced gene silencing (VIGS) was performed to characterize the functional of ApPDS in planta. Significant photobleaching was not observed in infiltrated leaves, while the PDS gene has been down-regulated significantly at the yellowish area. To the best of our knowledge, this represents the first report of PDS gene cloning and functional characterization from A. paniculata, which lays the foundation for further investigation of new genes, especially that correlative to andrographolide biosynthetic pathway.

  11. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    PubMed

    Guo, Yong; Qiu, Li-Juan

    2013-01-01

    The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max). In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs) were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  12. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite

    PubMed Central

    Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W. A.

    2016-01-01

    Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of 35 orphan transport proteins of Plasmodium berghei during its life cycle in mice and Anopheles mosquitoes. Six genes, including four candidate aminophospholipid transporters, are refractory to gene deletion, indicative of essential functions. We generate and phenotypically characterize 29 mutant strains with deletions of individual transporter genes. Whereas seven genes appear to be dispensable under the experimental conditions tested, deletion of any of the 22 other genes leads to specific defects in life cycle progression in vivo and/or host transition. Our study provides growing support for a potential link between heavy metal homeostasis and host switching and reveals potential targets for rational design of new intervention strategies against malaria. PMID:26796412

  13. Phenotypic characterization of 10 methanol oxidation mutant classes in Methylobacterium sp. strain AM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunn, D.N.; Lidstrom, M.E.

    Twenty-five methanol oxidation mutants of the facultative methylotroph Methylobacterium sp. strain AM1 have been characterized by complementation analysis and assigned to 10 complementation groups, Mox A1, A2, A3, and B through H. In this study we have characterized each of the mutants belonging to the 10 Mox complementation groups for the following criteria: (i) phenazine methosulfate-dichlorophenolindophenol dye-linked methanol dehydrogenase activity; (ii) methanol-dependent whole-cell oxygen consumption; (iii) the presence or absence of methanol dehydrogenase protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting; (iv) the absorption spectra of purified mutant methanol dehydrogenase proteins; and (v) the presence or absence ofmore » the soluble cytochrome c proteins of Methylobacterium sp. strain AM1, as determined by reduced-oxidized difference spectra and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With this information, we have proposed functions for each of the genes deficient in the mutants of the 10 Mox complementation groups. These proposed gene functions include two linked genes that encode the methanol dehydrogenase structural protein and the soluble cytochrome c/sub L/, a gene encoding a secretion function essential for the synthesis and export of methanol dehydrogenase and cytochrome c/sub L/, three gene functions responsible for the proper association of the pyrrolo-quinoline quinone prosthetic group with the methanol dehydrogenase apoprotein, and four positive regulatory gene functions controlling the expression of the ability to oxidize methanol.« less

  14. Systematic CRISPR-Cas9-Mediated Modifications of Plasmodium yoelii ApiAP2 Genes Reveal Functional Insights into Parasite Development

    PubMed Central

    Zhang, Cui; Li, Zhenkui; Cui, Huiting; Jiang, Yuanyuan; Yang, Zhenke; Wang, Xu; Gao, Han; Liu, Cong; Zhang, Shujia

    2017-01-01

    ABSTRACT Malaria parasites have a complex life cycle with multiple developmental stages in mosquito and vertebrate hosts, and different developmental stages express unique sets of genes. Unexpectedly, many transcription factors (TFs) commonly found in eukaryotic organisms are absent in malaria parasites; instead, a family of genes encoding proteins similar to the plant Apetala2 (ApiAP2) transcription factors is expanded in the parasites. Several malaria ApiAP2 genes have been shown to play a critical role in parasite development; however, the functions of the majority of the ApiAP2 genes remain to be elucidated. In particular, no study on the Plasmodium yoelii ApiAP2 (PyApiAP2) gene family has been reported so far. This study systematically investigated the functional roles of PyApiAP2 genes in parasite development. Twenty-four of the 26 PyApiAP2 genes were selected for disruption, and 12 were successfully knocked out using the clustered regularly interspaced short palindromic repeat–CRISPR-associated protein 9 (CRISPR-Cas9) method. The effects of gene knockout (KO) on parasite development in mouse and mosquito stages were evaluated. Ten of 12 successfully disrupted genes, including two genes that have not been functionally characterized in any Plasmodium species previously, were shown to be critical for P. yoelii development of sexual and mosquito stages. Additionally, seven of the genes were labeled for protein expression analysis, revealing important information supporting their functions. This study represents the first systematic functional characterization of the P. yoelii ApiAP2 gene family and discovers important insights on the roles of the ApiAP2 genes in parasite development. PMID:29233900

  15. NovelFam3000 – Uncharacterized human protein domains conserved across model organisms

    PubMed Central

    Kemmer, Danielle; Podowski, Raf M; Arenillas, David; Lim, Jonathan; Hodges, Emily; Roth, Peggy; Sonnhammer, Erik LL; Höög, Christer; Wasserman, Wyeth W

    2006-01-01

    Background Despite significant efforts from the research community, an extensive portion of the proteins encoded by human genes lack an assigned cellular function. Most metazoan proteins are composed of structural and/or functional domains, of which many appear in multiple proteins. Once a domain is characterized in one protein, the presence of a similar sequence in an uncharacterized protein serves as a basis for inference of function. Thus knowledge of a domain's function, or the protein within which it arises, can facilitate the analysis of an entire set of proteins. Description From the Pfam domain database, we extracted uncharacterized protein domains represented in proteins from humans, worms, and flies. A data centre was created to facilitate the analysis of the uncharacterized domain-containing proteins. The centre both provides researchers with links to dispersed internet resources containing gene-specific experimental data and enables them to post relevant experimental results or comments. For each human gene in the system, a characterization score is posted, allowing users to track the progress of characterization over time or to identify for study uncharacterized domains in well-characterized genes. As a test of the system, a subset of 39 domains was selected for analysis and the experimental results posted to the NovelFam3000 system. For 25 human protein members of these 39 domain families, detailed sub-cellular localizations were determined. Specific observations are presented based on the analysis of the integrated information provided through the online NovelFam3000 system. Conclusion Consistent experimental results between multiple members of a domain family allow for inferences of the domain's functional role. We unite bioinformatics resources and experimental data in order to accelerate the functional characterization of scarcely annotated domain families. PMID:16533400

  16. Bacterial avirulence genes.

    PubMed

    Leach, J E; White, F F

    1996-01-01

    Although more than 30 bacterial avirulence genes have been cloned and characterized, the function of the gene products in the elictitation of resistance is unknown in all cases but one. The product of avrD from Pseudomonas syringae pv. glycinea likely functions indirectly to elicit resistance in soybean, that is, evidence suggests the gene product is an enzyme involved in elicitor production. In most if not all cases, bacterial avirulence gene function is dependent on interactions with the hypersensitive response and pathogenicity (hrp) genes. Many hrp genes are similar to genes involved in delivery of pathogenicity factors in mammalian bacterial pathogens. Thus, analogies between mammalian and plant pathogens may provide needed clues to elucidate how virulence gene products control induction of resistance.

  17. QTLomics in Soybean: A Way Forward for Translational Genomics and Breeding

    PubMed Central

    Kumawat, Giriraj; Gupta, Sanjay; Ratnaparkhe, Milind B.; Maranna, Shivakumar; Satpute, Gyanesh K.

    2016-01-01

    Food legumes play an important role in attaining both food and nutritional security along with sustainable agricultural production for the well-being of humans globally. The various traits of economic importance in legume crops are complex and quantitative in nature, which are governed by quantitative trait loci (QTLs). Mapping of quantitative traits is a tedious and costly process, however, a large number of QTLs has been mapped in soybean for various traits albeit their utilization in breeding programmes is poorly reported. For their effective use in breeding programme it is imperative to narrow down the confidence interval of QTLs, to identify the underlying genes, and most importantly allelic characterization of these genes for identifying superior variants. In the field of functional genomics, especially in the identification and characterization of gene responsible for quantitative traits, soybean is far ahead from other legume crops. The availability of genic information about quantitative traits is more significant because it is easy and effective to identify homologs than identifying shared syntenic regions in other crop species. In soybean, genes underlying QTLs have been identified and functionally characterized for phosphorous efficiency, flowering and maturity, pod dehiscence, hard-seededness, α-Tocopherol content, soybean cyst nematode, sudden death syndrome, and salt tolerance. Candidate genes have also been identified for many other quantitative traits for which functional validation is required. Using the sequence information of identified genes from soybean, comparative genomic analysis of homologs in other legume crops could discover novel structural variants and useful alleles for functional marker development. The functional markers may be very useful for molecular breeding in soybean and harnessing benefit of translational research from soybean to other leguminous crops. Thus, soybean crop can act as a model crop for translational genomics and breeding of quantitative traits in legume crops. In this review, we summarize current status of identification and characterization of genes underlying QTLs for various quantitative traits in soybean and their significance in translational genomics and breeding of other legume crops. PMID:28066449

  18. Dating and functional characterization of duplicated genes in the apple (Malus domestica Borkh.) by analyzing EST data.

    PubMed

    Sanzol, Javier

    2010-05-14

    Gene duplication is central to genome evolution. In plants, genes can be duplicated through small-scale events and large-scale duplications often involving polyploidy. The apple belongs to the subtribe Pyrinae (Rosaceae), a diverse lineage that originated via allopolyploidization. Both small-scale duplications and polyploidy may have been important mechanisms shaping the genome of this species. This study evaluates the gene duplication and polyploidy history of the apple by characterizing duplicated genes in this species using EST data. Overall, 68% of the apple genes were clustered into families with a mean copy-number of 4.6. Analysis of the age distribution of gene duplications supported a continuous mode of small-scale duplications, plus two episodes of large-scale duplicates of vastly different ages. The youngest was consistent with the polyploid origin of the Pyrinae 37-48 MYBP, whereas the older may be related to gamma-triplication; an ancient hexapolyploidization previously characterized in the four sequenced eurosid genomes and basal to the eurosid-asterid divergence. Duplicated genes were studied for functional diversification with an emphasis on young paralogs; those originated during or after the formation of the Pyrinae lineage. Unequal assignment of single-copy genes and gene families to Gene Ontology categories suggested functional bias in the pattern of gene retention of paralogs. Young paralogs related to signal transduction, metabolism, and energy pathways have been preferentially retained. Non-random retention of duplicated genes seems to have mediated the expansion of gene families, some of which may have substantially increased their members after the origin of the Pyrinae. The joint analysis of over-duplicated functional categories and phylogenies, allowed evaluation of the role of both polyploidy and small-scale duplications during this process. Finally, gene expression analysis indicated that 82% of duplicated genes, including 80% of young paralogs, showed uncorrelated expression profiles, suggesting extensive subfunctionalization and a role of gene duplication in the acquisition of novel patterns of gene expression. This study reports a genome-wide analysis of the mode of gene duplication in the apple, and provides evidence for its role in genome functional diversification by characterising three major processes: selective retention of paralogs, amplification of gene families, and changes in gene expression.

  19. The Association of Multiple Interacting Genes with Specific Phenotypes in Rice Using Gene Coexpression Networks1[C][W][OA

    PubMed Central

    Ficklin, Stephen P.; Luo, Feng; Feltus, F. Alex

    2010-01-01

    Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes. PMID:20668062

  20. The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks.

    PubMed

    Ficklin, Stephen P; Luo, Feng; Feltus, F Alex

    2010-09-01

    Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes.

  1. Integrative and conjugative elements and their hosts: composition, distribution and organization

    PubMed Central

    Touchon, Marie; Rocha, Eduardo P. C.

    2017-01-01

    Abstract Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species’ pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. PMID:28911112

  2. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana.

    PubMed

    Mayer, K; Schüller, C; Wambutt, R; Murphy, G; Volckaert, G; Pohl, T; Düsterhöft, A; Stiekema, W; Entian, K D; Terryn, N; Harris, B; Ansorge, W; Brandt, P; Grivell, L; Rieger, M; Weichselgartner, M; de Simone, V; Obermaier, B; Mache, R; Müller, M; Kreis, M; Delseny, M; Puigdomenech, P; Watson, M; Schmidtheini, T; Reichert, B; Portatelle, D; Perez-Alonso, M; Boutry, M; Bancroft, I; Vos, P; Hoheisel, J; Zimmermann, W; Wedler, H; Ridley, P; Langham, S A; McCullagh, B; Bilham, L; Robben, J; Van der Schueren, J; Grymonprez, B; Chuang, Y J; Vandenbussche, F; Braeken, M; Weltjens, I; Voet, M; Bastiaens, I; Aert, R; Defoor, E; Weitzenegger, T; Bothe, G; Ramsperger, U; Hilbert, H; Braun, M; Holzer, E; Brandt, A; Peters, S; van Staveren, M; Dirske, W; Mooijman, P; Klein Lankhorst, R; Rose, M; Hauf, J; Kötter, P; Berneiser, S; Hempel, S; Feldpausch, M; Lamberth, S; Van den Daele, H; De Keyser, A; Buysshaert, C; Gielen, J; Villarroel, R; De Clercq, R; Van Montagu, M; Rogers, J; Cronin, A; Quail, M; Bray-Allen, S; Clark, L; Doggett, J; Hall, S; Kay, M; Lennard, N; McLay, K; Mayes, R; Pettett, A; Rajandream, M A; Lyne, M; Benes, V; Rechmann, S; Borkova, D; Blöcker, H; Scharfe, M; Grimm, M; Löhnert, T H; Dose, S; de Haan, M; Maarse, A; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Fartmann, B; Granderath, K; Dauner, D; Herzl, A; Neumann, S; Argiriou, A; Vitale, D; Liguori, R; Piravandi, E; Massenet, O; Quigley, F; Clabauld, G; Mündlein, A; Felber, R; Schnabl, S; Hiller, R; Schmidt, W; Lecharny, A; Aubourg, S; Chefdor, F; Cooke, R; Berger, C; Montfort, A; Casacuberta, E; Gibbons, T; Weber, N; Vandenbol, M; Bargues, M; Terol, J; Torres, A; Perez-Perez, A; Purnelle, B; Bent, E; Johnson, S; Tacon, D; Jesse, T; Heijnen, L; Schwarz, S; Scholler, P; Heber, S; Francs, P; Bielke, C; Frishman, D; Haase, D; Lemcke, K; Mewes, H W; Stocker, S; Zaccaria, P; Bevan, M; Wilson, R K; de la Bastide, M; Habermann, K; Parnell, L; Dedhia, N; Gnoj, L; Schutz, K; Huang, E; Spiegel, L; Sehkon, M; Murray, J; Sheet, P; Cordes, M; Abu-Threideh, J; Stoneking, T; Kalicki, J; Graves, T; Harmon, G; Edwards, J; Latreille, P; Courtney, L; Cloud, J; Abbott, A; Scott, K; Johnson, D; Minx, P; Bentley, D; Fulton, B; Miller, N; Greco, T; Kemp, K; Kramer, J; Fulton, L; Mardis, E; Dante, M; Pepin, K; Hillier, L; Nelson, J; Spieth, J; Ryan, E; Andrews, S; Geisel, C; Layman, D; Du, H; Ali, J; Berghoff, A; Jones, K; Drone, K; Cotton, M; Joshu, C; Antonoiu, B; Zidanic, M; Strong, C; Sun, H; Lamar, B; Yordan, C; Ma, P; Zhong, J; Preston, R; Vil, D; Shekher, M; Matero, A; Shah, R; Swaby, I K; O'Shaughnessy, A; Rodriguez, M; Hoffmann, J; Till, S; Granat, S; Shohdy, N; Hasegawa, A; Hameed, A; Lodhi, M; Johnson, A; Chen, E; Marra, M; Martienssen, R; McCombie, W R

    1999-12-16

    The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

  3. Evidence of Dynamically Dysregulated Gene Expression Pathways in Hyperresponsive B Cells from African American Lupus Patients

    PubMed Central

    Dozmorov, Igor; Dominguez, Nicolas; Sestak, Andrea L.; Robertson, Julie M.; Harley, John B.; James, Judith A.; Guthridge, Joel M.

    2013-01-01

    Recent application of gene expression profiling to the immune system has shown a great potential for characterization of complex regulatory processes. It is becoming increasingly important to characterize functional systems through multigene interactions to provide valuable insights into differences between healthy controls and autoimmune patients. Here we apply an original systematic approach to the analysis of changes in regulatory gene interconnections between in Epstein-Barr virus transformed hyperresponsive B cells from SLE patients and normal control B cells. Both traditional analysis of differential gene expression and analysis of the dynamics of gene expression variations were performed in combination to establish model networks of functional gene expression. This Pathway Dysregulation Analysis identified known transcription factors and transcriptional regulators activated uniquely in stimulated B cells from SLE patients. PMID:23977035

  4. Genome-wide identification, phylogeny and expression analyses of SCARECROW-LIKE(SCL) genes in millet (Setaria italica).

    PubMed

    Liu, Hongyun; Qin, Jiajia; Fan, Hui; Cheng, Jinjin; Li, Lin; Liu, Zheng

    2017-07-01

    As a member of the GRAS gene family, SCARECROW - LIKE ( SCL ) genes encode transcriptional regulators that are involved in plant information transmission and signal transduction. In this study, 44 SCL genes including two SCARECROW genes in millet were identified to be distributed on eight chromosomes, except chromosome 6. All the millet genes contain motifs 6-8, indicating that these motifs are conserved during the evolution. SCL genes of millet were divided into eight groups based on the phylogenetic relationship and classification of Arabidopsis SCL genes. Several putative millet orthologous genes in Arabidopsis , maize and rice were identified. High throughput RNA sequencing revealed that the expressions of millet SCL genes in root, stem, leaf, spica, and along leaf gradient varied greatly. Analyses combining the gene expression patterns, gene structures, motif compositions, promoter cis -elements identification, alternative splicing of transcripts and phylogenetic relationship of SCL genes indicate that the these genes may play diverse functions. Functionally characterized SCL genes in maize, rice and Arabidopsis would provide us some clues for future characterization of their homologues in millet. To the best of our knowledge, this is the first study of millet SCL genes at the genome wide level. Our work provides a useful platform for functional analysis of SCL genes in millet, a model crop for C 4 photosynthesis and bioenergy studies.

  5. Functional characterization of an apple (Malus x domestica) LysM domain receptor encoding gene for its role in defense response

    USDA-ARS?s Scientific Manuscript database

    Apple gene MDP0000136494 was identified as the only LysM containing protein encoding gene which was specifically up-regulated in P. ultimum infected apple root by a previous transcriptome analysis. In current study, the functional identity of MDP0000136494 was investigated using combined genomic, tr...

  6. Characterization of a novel gene at the Gaucher disease locus spanning the region between the glucocerebrosidase (GC) pseudogene and thrombospondin (TSP)3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginns, E.I.; Winfield, S.; Sidransky, E.

    1994-09-01

    The human GC locus on chromosome 1q21 encompasses a 7 kb functional gene encoding the enzyme deficient in Gaucher disease, and a highly homologous sequence 16 Kb downstream that has the properties of a pseudogene. A novel gene, gene X, spanning the 6 kb region between the pseudogene and TSP3 has been identified and characterized in the mouse, and appears to be critical for normal embryonic development. As in the mouse, the human gene X is located 5{prime} to the TSP3 gene and two genes are transcribed divergently from a bidirectional promoter; the direction of transcription of gene X andmore » GC is convergent. However, in the human, gene X and GC are separated by gene X and GC pseudogenes that are the consequence of a gene duplication. The gene X pseudogene lacks the first exon and part of the second exon of the functional gene and may not be transcribed. Northern blot analyses indicate that gene X is transcribed in both normal individuals and in patients with Gaucher disease, but the function of this gene is still unknown. The possibility that mutations in gene X could account for some of the diversity of symptoms encountered in individuals with the more atypical presentations of Gaucher disease is under investigation.« less

  7. Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy.

    PubMed

    Falavigna, Vítor da Silveira; Miotto, Yohanna Evelyn; Porto, Diogo Denardi; Anzanello, Rafael; Santos, Henrique Pessoa dos; Fialho, Flávio Bello; Margis-Pinheiro, Márcia; Pasquali, Giancarlo; Revers, Luís Fernando

    2015-11-01

    Dehydrins (DHN) are proteins involved in plant adaptive responses to abiotic stresses, mainly dehydration. Several studies in perennial crops have linked bud dormancy progression, a process characterized by the inability to initiate growth from meristems under favorable conditions, with DHN gene expression. However, an in-depth characterization of DHNs during bud dormancy progression is still missing. An extensive in silico characterization of the apple DHN gene family was performed. Additionally, we used five different experiments that generated samples with different dormancy status, including genotypes with contrasting dormancy traits, to analyze how DHN genes are being regulated during bud dormancy progression in apple by real-time quantitative polymerase chain reaction (RT-qPCR). Duplication events took place in the diversification of apple DHN family. Additionally, MdDHN genes presented tissue- and bud dormant-specific expression patterns. Our results indicate that MdDHN genes are highly divergent in function, with overlapping levels, and that their expressions are fine-tuned by the environment during the dormancy process in apple. © 2015 Scandinavian Plant Physiology Society.

  8. Temporal Gene Expression Kinetics for Human Keratinocytes Exposed to Hyperthermic Stress

    PubMed Central

    Echchgadda, Ibtissam; Roth, Caleb C.; Cerna, Cesario Z.; Wilmink, Gerald J.

    2013-01-01

    The gene expression kinetics for human cells exposed to hyperthermic stress are not well characterized. In this study, we identified and characterized the genes that are differentially expressed in human epidermal keratinocyte (HEK) cells exposed to hyperthermic stress. In order to obtain temporal gene expression kinetics, we exposed HEK cells to a heat stress protocol (44 °C for 40 min) and used messenger RNA (mRNA) microarrays at 0 h, 4 h and 24 h post-exposure. Bioinformatics software was employed to characterize the chief biological processes and canonical pathways associated with these heat stress genes. The data shows that the genes encoding for heat shock proteins (HSPs) that function to prevent further protein denaturation and aggregation, such as HSP40, HSP70 and HSP105, exhibit maximal expression immediately after exposure to hyperthermic stress. In contrast, the smaller HSPs, such as HSP10 and HSP27, which function in mitochondrial protein biogenesis and cellular adaptation, exhibit maximal expression during the “recovery phase”, roughly 24 h post-exposure. These data suggest that the temporal expression kinetics for each particular HSP appears to correlate with the cellular function that is required at each time point. In summary, these data provide additional insight regarding the expression kinetics of genes that are triggered in HEK cells exposed to hyperthermic stress. PMID:24709698

  9. The ubiquilin gene family: evolutionary patterns and functional insights

    PubMed Central

    2014-01-01

    Background Ubiquilins are proteins that function as ubiquitin receptors in eukaryotes. Mutations in two ubiquilin-encoding genes have been linked to the genesis of neurodegenerative diseases. However, ubiquilin functions are still poorly understood. Results In this study, evolutionary and functional data are combined to determine the origin and diversification of the ubiquilin gene family and to characterize novel potential roles of ubiquilins in mammalian species, including humans. The analysis of more than six hundred sequences allowed characterizing ubiquilin diversity in all the main eukaryotic groups. Many organisms (e. g. fungi, many animals) have single ubiquilin genes, but duplications in animal, plant, alveolate and excavate species are described. Seven different ubiquilins have been detected in vertebrates. Two of them, here called UBQLN5 and UBQLN6, had not been hitherto described. Significantly, marsupial and eutherian mammals have the most complex ubiquilin gene families, composed of up to 6 genes. This exceptional mammalian-specific expansion is the result of the recent emergence of four new genes, three of them (UBQLN3, UBQLN5 and UBQLNL) with precise testis-specific expression patterns that indicate roles in the postmeiotic stages of spermatogenesis. A gene with related features has independently arisen in species of the Drosophila genus. Positive selection acting on some mammalian ubiquilins has been detected. Conclusions The ubiquilin gene family is highly conserved in eukaryotes. The infrequent lineage-specific amplifications observed may be linked to the emergence of novel functions in particular tissues. PMID:24674348

  10. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.).

    PubMed

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.

  11. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.)

    PubMed Central

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided. PMID:27077738

  12. A Novel Loss-of-Sclerostin Function Mutation in a First Egyptian Family with Sclerosteosis

    PubMed Central

    Fayez, Alaaeldin; Aglan, Mona; Esmaiel, Nora; El Zanaty, Taher; Abdel Kader, Mohamed; El Ruby, Mona

    2015-01-01

    Sclerosteosis is a rare autosomal recessive condition characterized by increased bone density. Mutations in SOST gene coding for sclerostin are linked to sclerosteosis. Two Egyptian brothers with sclerosteosis and their apparently normal consanguineous parents were included in this study. Clinical evaluation and genomic sequencing of the SOST gene were performed followed by in silico analysis of the resulting variation. A novel homozygous frameshift mutation in the SOST gene, characterized as one nucleotide cytosine insertion that led to premature stop codon and loss of functional sclerostin, was identified in the two affected brothers. Their parents were heterozygous for the same mutation. To our knowledge this is the first Egyptian study of sclerosteosis and SOST gene causing mutation. PMID:25984533

  13. Systematic computation with functional gene-sets among leukemic and hematopoietic stem cells reveals a favorable prognostic signature for acute myeloid leukemia.

    PubMed

    Yang, Xinan Holly; Li, Meiyi; Wang, Bin; Zhu, Wanqi; Desgardin, Aurelie; Onel, Kenan; de Jong, Jill; Chen, Jianjun; Chen, Luonan; Cunningham, John M

    2015-03-24

    Genes that regulate stem cell function are suspected to exert adverse effects on prognosis in malignancy. However, diverse cancer stem cell signatures are difficult for physicians to interpret and apply clinically. To connect the transcriptome and stem cell biology, with potential clinical applications, we propose a novel computational "gene-to-function, snapshot-to-dynamics, and biology-to-clinic" framework to uncover core functional gene-sets signatures. This framework incorporates three function-centric gene-set analysis strategies: a meta-analysis of both microarray and RNA-seq data, novel dynamic network mechanism (DNM) identification, and a personalized prognostic indicator analysis. This work uses complex disease acute myeloid leukemia (AML) as a research platform. We introduced an adjustable "soft threshold" to a functional gene-set algorithm and found that two different analysis methods identified distinct gene-set signatures from the same samples. We identified a 30-gene cluster that characterizes leukemic stem cell (LSC)-depleted cells and a 25-gene cluster that characterizes LSC-enriched cells in parallel; both mark favorable-prognosis in AML. Genes within each signature significantly share common biological processes and/or molecular functions (empirical p = 6e-5 and 0.03 respectively). The 25-gene signature reflects the abnormal development of stem cells in AML, such as AURKA over-expression. We subsequently determined that the clinical relevance of both signatures is independent of known clinical risk classifications in 214 patients with cytogenetically normal AML. We successfully validated the prognosis of both signatures in two independent cohorts of 91 and 242 patients respectively (log-rank p < 0.0015 and 0.05; empirical p < 0.015 and 0.08). The proposed algorithms and computational framework will harness systems biology research because they efficiently translate gene-sets (rather than single genes) into biological discoveries about AML and other complex diseases.

  14. The ANGULATA7 gene encodes a DnaJ-like zinc finger-domain protein involved in chloroplast function and leaf development in Arabidopsis.

    PubMed

    Muñoz-Nortes, Tamara; Pérez-Pérez, José Manuel; Ponce, María Rosa; Candela, Héctor; Micol, José Luis

    2017-03-01

    The characterization of mutants with altered leaf shape and pigmentation has previously allowed the identification of nuclear genes that encode plastid-localized proteins that perform essential functions in leaf growth and development. A large-scale screen previously allowed us to isolate ethyl methanesulfonate-induced mutants with small rosettes and pale green leaves with prominent marginal teeth, which were assigned to a phenotypic class that we dubbed Angulata. The molecular characterization of the 12 genes assigned to this phenotypic class should help us to advance our understanding of the still poorly understood relationship between chloroplast biogenesis and leaf morphogenesis. In this article, we report the phenotypic and molecular characterization of the angulata7-1 (anu7-1) mutant of Arabidopsis thaliana, which we found to be a hypomorphic allele of the EMB2737 gene, which was previously known only for its embryonic-lethal mutations. ANU7 encodes a plant-specific protein that contains a domain similar to the central cysteine-rich domain of DnaJ proteins. The observed genetic interaction of anu7-1 with a loss-of-function allele of GENOMES UNCOUPLED1 suggests that the anu7-1 mutation triggers a retrograde signal that leads to changes in the expression of many genes that normally function in the chloroplasts. Many such genes are expressed at higher levels in anu7-1 rosettes, with a significant overrepresentation of those required for the expression of plastid genome genes. Like in other mutants with altered expression of plastid-encoded genes, we found that anu7-1 exhibits defects in the arrangement of thylakoidal membranes, which appear locally unappressed. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  15. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    PubMed Central

    2010-01-01

    Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and phylogeny for the entire currently known VvTPS gene family. PMID:20964856

  16. Recent Achievement in Gene Cloning and Functional Genomics in Soybean

    PubMed Central

    Zhai, Hong; Lü, Shixiang; Wu, Hongyan; Zhang, Yupeng

    2013-01-01

    Soybean is a model plant for photoperiodism as well as for symbiotic nitrogen fixation. However, a rather low efficiency in soybean transformation hampers functional analysis of genes isolated from soybean. In comparison, rapid development and progress in flowering time and photoperiodic response have been achieved in Arabidopsis and rice. As the soybean genomic information has been released since 2008, gene cloning and functional genomic studies have been revived as indicated by successfully characterizing genes involved in maturity and nematode resistance. Here, we review some major achievements in the cloning of some important genes and some specific features at genetic or genomic levels revealed by the analysis of functional genomics of soybean. PMID:24311973

  17. Pseudotyped baculovirus is an effective gene expression tool for studying molecular function during axolotl limb regeneration.

    PubMed

    Oliveira, Catarina R; Lemaitre, Regis; Murawala, Prayag; Tazaki, Akira; Drechsel, David N; Tanaka, Elly M

    2018-01-15

    Axolotls can regenerate complex structures through recruitment and remodeling of cells within mature tissues. Accessing the underlying mechanisms at a molecular resolution is crucial to understand how injury triggers regeneration and how it proceeds. However, gene transformation in adult tissues can be challenging. Here we characterize the use of pseudotyped baculovirus (BV) as an effective gene transfer method both for cells within mature limb tissue and within the blastema. These cells remain competent to participate in regeneration after transduction. We further characterize the effectiveness of BV for gene overexpression studies by overexpressing Shh in the blastema, which yields a high penetrance of classic polydactyly phenotypes. Overall, our work establishes BV as a powerful tool to access gene function in axolotl limb regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development.

    PubMed

    Gavazzi, Floriana; Pigna, Gaia; Braglia, Luca; Gianì, Silvia; Breviario, Diego; Morello, Laura

    2017-12-08

    Microtubules, polymerized from alpha and beta-tubulin monomers, play a fundamental role in plant morphogenesis, determining the cell division plane, the direction of cell expansion and the deposition of cell wall material. During polarized pollen tube elongation, microtubules serve as tracks for vesicular transport and deposition of proteins/lipids at the tip membrane. Such functions are controlled by cortical microtubule arrays. Aim of this study was to first characterize the flax β-tubulin family by sequence and phylogenetic analysis and to investigate differential expression of β-tubulin genes possibly related to fibre elongation and to flower development. We report the cloning and characterization of the complete flax β-tubulin gene family: exon-intron organization, duplicated gene comparison, phylogenetic analysis and expression pattern during stem and hypocotyl elongation and during flower development. Sequence analysis of the fourteen expressed β-tubulin genes revealed that the recent whole genome duplication of the flax genome was followed by massive retention of duplicated tubulin genes. Expression analysis showed that β-tubulin mRNA profiles gradually changed along with phloem fibre development in both the stem and hypocotyl. In flowers, changes in relative tubulin transcript levels took place at anthesis in anthers, but not in carpels. Phylogenetic analysis supports the origin of extant plant β-tubulin genes from four ancestral genes pre-dating angiosperm separation. Expression analysis suggests that particular tubulin subpopulations are more suitable to sustain different microtubule functions such as cell elongation, cell wall thickening or pollen tube growth. Tubulin genes possibly related to different microtubule functions were identified as candidate for more detailed studies.

  19. Development of resources for the analysis of gene function in Pucciniomycotina red yeasts.

    PubMed

    Ianiri, Giuseppe; Wright, Sandra A I; Castoria, Raffaello; Idnurm, Alexander

    2011-07-01

    The Pucciniomycotina is an important subphylum of basidiomycete fungi but with limited tools to analyze gene functions. Transformation protocols were established for a Sporobolomyces species (strain IAM 13481), the first Pucciniomycotina species with a completed draft genome sequence, to enable assessment of gene function through phenotypic characterization of mutant strains. Transformation markers were the URA3 and URA5 genes that enable selection and counter-selection based on uracil auxotrophy and resistance to 5-fluoroorotic acid. The wild type copies of these genes were cloned into plasmids that were used for transformation of Sporobolomyces sp. by both biolistic and Agrobacterium-mediated approaches. These resources have been deposited to be available from the Fungal Genetics Stock Center. To show that these techniques could be used to elucidate gene functions, the LEU1 gene was targeted for specific homologous replacement, and also demonstrating that this gene is required for the biosynthesis of leucine in basidiomycete fungi. T-DNA insertional mutants were isolated and further characterized, revealing insertions in genes that encode the homologs of Chs7, Erg3, Kre6, Kex1, Pik1, Sad1, Ssu1 and Tlg1. Phenotypic analysis of these mutants reveals both conserved and divergent functions compared with other fungi. Some of these strains exhibit reduced resistance to detergents, the antifungal agent fluconazole or sodium sulfite, or lower recovery from heat stress. While there are current experimental limitations for Sporobolomyces sp. such as the lack of Mendelian genetics for conventional mating, these findings demonstrate the facile nature of at least one Pucciniomycotina species for genetic manipulation and the potential to develop these organisms into new models for understanding gene function and evolution in the fungi. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Large-scale inference of gene function through phylogenetic annotation of Gene Ontology terms: case study of the apoptosis and autophagy cellular processes.

    PubMed

    Feuermann, Marc; Gaudet, Pascale; Mi, Huaiyu; Lewis, Suzanna E; Thomas, Paul D

    2016-01-01

    We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This 'GO Phylogenetic Annotation' approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied. Here, we report our results from applying this paradigm to two well-characterized cellular processes, apoptosis and autophagy. This revealed several important observations with respect to GO annotations and how they can be used for function inference. Notably, we applied only a small fraction of the experimentally supported GO annotations to infer function in other family members. The majority of other annotations describe indirect effects, phenotypes or results from high throughput experiments. In addition, we show here how feedback from phylogenetic annotation leads to significant improvements in the PANTHER trees, the GO annotations and GO itself. Thus GO phylogenetic annotation both increases the quantity and improves the accuracy of the GO annotations provided to the research community. We expect these phylogenetically based annotations to be of broad use in gene enrichment analysis as well as other applications of GO annotations.Database URL: http://amigo.geneontology.org/amigo. © The Author(s) 2016. Published by Oxford University Press.

  1. Integrative and conjugative elements and their hosts: composition, distribution and organization.

    PubMed

    Cury, Jean; Touchon, Marie; Rocha, Eduardo P C

    2017-09-06

    Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species' pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Characterization of rainbow trout (Oncorhynchus mykiss) spleen transcriptome and identification of immune-related genes

    USDA-ARS?s Scientific Manuscript database

    Resistance against specific diseases is affecting profitability in fish production systems including rainbow trout. Limited information is known about functions and mechanisms of the immune gene pathways in teleosts. Immunogenomics are powerful tools to determine immune-related genes/gene pathways a...

  3. Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress.

    PubMed

    Meng, Dong; Li, Yuanyuan; Bai, Yang; Li, Mingjun; Cheng, Lailiang

    2016-06-01

    As one of the largest transcriptional factor families in plants, WRKY genes play significant roles in various biotic and abiotic stress responses. Although the WRKY gene family has been characterized in a few plant species, the details remain largely unknown in the apple (Malus domestica Borkh.). In this study, we identified a total of 127 MdWRKYs from the apple genome, which were divided into four subgroups according to the WRKY domains and zinc finger motif. Most of them were mapped onto the apple's 17 chromosomes and were expressed in more than one tissue, including shoot tips, mature leaves, fruit and apple calli. We then contrasted WRKY expression patterns between calli grown in solid medium (control) and liquid medium (representing waterlogging stress) and found that 34 WRKY genes were differentially expressed between the two growing conditions. Finally, we determined the expression patterns of 10 selected WRKY genes in an apple rootstock, G41, in response to waterlogging and drought stress, which identified candidate genes involved in responses to water stress for functional analysis. Our data provide interesting candidate MdWRKYs for future functional analysis and demonstrate that apple callus is a useful system for characterizing gene expression and function in apple. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome.

    PubMed

    Cui, Hao-Ran; Zhang, Zheng-Rong; Lv, Wei; Xu, Jia-Ning; Wang, Xiao-Yun

    2015-08-01

    The F-box protein family is a large family that is characterized by conserved F-box domains of approximately 40-50 amino acids in the N-terminus. F-box proteins participate in diverse cellular processes, such as development of floral organs, signal transduction and response to stress, primarily as a component of the Skp1-cullin-F-box (SCF) complex. In this study, using a global search of the apple genome, 517 F-box protein-encoding genes (F-box genes for short) were identified and further subdivided into 12 groups according to the characterization of known functional domains, which suggests the different potential functions or processes that they were involved in. Among these domains, the galactose oxidase domain was analyzed for the first time in plants, and this domain was present with or without the Kelch domain. The F-box genes were distributed in all 17 apple chromosomes with various densities and tended to form gene clusters. Spatial expression profile analysis revealed that F-box genes have organ-specific expression and are widely expressed in all organs. Proteins that contained the galactose oxidase domain were highly expressed in leaves, flowers and seeds. From a fruit ripening expression profile, 166 F-box genes were identified. The expressions of most of these genes changed little during maturation, but five of them increased significantly. Using qRT-PCR to examine the expression of F-box genes encoding proteins with domains related to stress, the results revealed that F-box proteins were up- or down-regulated, which suggests that F-box genes were involved in abiotic stress. The results of this study helped to elucidate the functions of F-box proteins, especially in Rosaceae plants.

  5. Characterizing genes with distinct methylation patterns in the context of protein-protein interaction network: application to human brain tissues.

    PubMed

    Li, Yongsheng; Xu, Juan; Chen, Hong; Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia

    2013-01-01

    DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.

  6. Characterizing Genes with Distinct Methylation Patterns in the Context of Protein-Protein Interaction Network: Application to Human Brain Tissues

    PubMed Central

    Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia

    2013-01-01

    Background DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. Results In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. Conclusions We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms. PMID:23776563

  7. Characterization, Expression and Function of DORMANCY ASSOCIATED MADS-BOX Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY ASSOCIATED MADS-BOX (DAM) genes are related to AGAMOUS-LIKE 24 and SHORT VEGETATIVE PHASE genes of arabidopsis and are differentially regulated coordinately with endodormancy induction and release in buds of several perennial plant species. DAM genes were first shown to directly impact endo...

  8. Cloning, characterization, regulation, and function of dormancy-associated MADS-BOX genes from leafy spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are transcription factors that have been linked to endodormancy induction. The evergrowing mutation in peach, which renders it incapable of entering endodormancy, resulted from a deletion in a series of DAM genes (Bielenberg et al. 2008). Likewise, DAM genes ...

  9. Cloning, Characterization, Regulation, and Function of DORMANCY-ASSOCIATED MADS-BOX Genes from Leafy Spurge

    USDA-ARS?s Scientific Manuscript database

    DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are transcription factors that have been linked to endodormancy induction. The evergrowing mutation in peach, which renders it incapable of entering endodormancy, resulted from a deletion in a series of DAM genes (Bielenberg et al. 2008). Likewise, DAM genes ...

  10. RNA interference: learning gene knock-down from cell physiology

    PubMed Central

    Mocellin, Simone; Provenzano, Maurizio

    2004-01-01

    Over the past decade RNA interference (RNAi) has emerged as a natural mechanism for silencing gene expression. This ancient cellular antiviral response can be exploited to allow specific inhibition of the function of any chosen target gene. RNAi is proving to be an invaluable research tool, allowing much more rapid characterization of the function of known genes. More importantly, RNAi technology considerably bolsters functional genomics to aid in the identification of novel genes involved in disease processes. This review briefly describes the molecular principles underlying the biology of RNAi phenomenon and discuss the main technical issues regarding optimization of RNAi experimental design. PMID:15555080

  11. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes

    USDA-ARS?s Scientific Manuscript database

    Disease susceptibility affects production efficiency and profitability in rainbow trout aquaculture. There is limited information available regarding the functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful approaches to identify disease resistance genes/gene pathway...

  12. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.

    PubMed

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P

    2015-04-14

    Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for choline fermentation (the cut gene cluster) have been recently identified, there has been no characterization of these genes in human gut isolates and microbial communities. In this work, we use multiple approaches to demonstrate that the pathway encoded by the cut genes is present and functional in a diverse range of human gut bacteria and is also widespread in stool metagenomes. We also developed a PCR-based strategy to detect a key functional gene (cutC) involved in this pathway and applied it to characterize newly isolated choline-utilizing strains. Both our analyses of the cut gene cluster and this molecular tool will aid efforts to further understand the role of choline metabolism in the human gut microbiota and its link to disease. Copyright © 2015 Martínez-del Campo et al.

  13. Genome-Wide Study of the Tomato SlMLO Gene Family and Its Functional Characterization in Response to the Powdery Mildew Fungus Oidium neolycopersici.

    PubMed

    Zheng, Zheng; Appiano, Michela; Pavan, Stefano; Bracuto, Valentina; Ricciardi, Luigi; Visser, Richard G F; Wolters, Anne-Marie A; Bai, Yuling

    2016-01-01

    The MLO (Mildew Locus O) gene family encodes plant-specific proteins containing seven transmembrane domains and likely acting in signal transduction in a calcium and calmodulin dependent manner. Some members of the MLO family are susceptibility factors toward fungi causing the powdery mildew disease. In tomato, for example, the loss-of-function of the MLO gene SlMLO1 leads to a particular form of powdery mildew resistance, called ol-2, which arrests almost completely fungal penetration. This type of penetration resistance is characterized by the apposition of papillae at the sites of plant-pathogen interaction. Other MLO homologs in Arabidopsis regulate root response to mechanical stimuli (AtMLO4 and AtMLO11) and pollen tube reception by the female gametophyte (AtMLO7). However, the role of most MLO genes remains unknown. In this work, we provide a genome-wide study of the tomato SlMLO gene family. Besides SlMLO1, other 15 SlMLO homologs were identified and characterized with respect to their structure, genomic organization, phylogenetic relationship, and expression profile. In addition, by analysis of transgenic plants, we demonstrated that simultaneous silencing of SlMLO1 and two of its closely related homologs, SlMLO5 and SlMLO8, confer higher level of resistance than the one associated with the ol-2 mutation. The outcome of this study provides evidence for functional redundancy among tomato homolog genes involved in powdery mildew susceptibility. Moreover, we developed a series of transgenic lines silenced for individual SlMLO homologs, which lay the foundation for further investigations aimed at assigning new biological functions to the MLO gene family.

  14. De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis.

    PubMed

    Rai, Amit; Nakaya, Taiki; Shimizu, Yohei; Rai, Megha; Nakamura, Michimi; Suzuki, Hideyuki; Saito, Kazuki; Yamazaki, Mami

    2018-05-29

    Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale , consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale . Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization. Georg Thieme Verlag KG Stuttgart · New York.

  15. The Molecular Ecology of Guerrero Negro: Justifying the Need for Environmental Genomics

    NASA Technical Reports Server (NTRS)

    Smith, Jason M.; Green, Stefan J.; Moisander, Pia; Roberts, Kathryn J.; Francis, Chris; Prufert-Bebout, Leslie; Bebout, Brad M.

    2006-01-01

    The record of life on the only planet where it is known to exist is contained in the biogeochemical processes that organisms catalyze for their survival, in the compounds that they produce, and in their phylogenetic (evolutionary) relationships to each other. We manipulated sulfate and nutrient concentrations in intact microbial mats over periods of time up to a year. The objectives of the manipulations were: 1) characterize the diversity of process-associated functional genes; 2) understand environmental conditions leading to shifts in microbial guilds; 3) monitor/identify competitive responses of organisms sharing a metabolic niche. Characterization of functional genes associated with carbon (mcrA), nitrogen (nifH, nirK) and sulfur (dsrkB) cycling performed to date provided insight into the diversity and metabolic potential of the system; however, we only identified broad scale correlations between gene abundances and changes in mat physiology. For instance, increases in methane production by mats subjected to lowered sulfate and salinity concentrations were correlated with an observed increase in abundance of hydrogenotroph-like mcrA genes. However, due to low sequence similarity to any cultured isolates, phylogenetic associations only allow order level taxonomic commentary, preventing any associations being made on the cellular level. In each of the genes characterized from these experiments, a significant portion of sequences recovered show minimal phylogenetic affiliation to cultured organisms, preventing any understanding of inter-community dynamics and the functional capacities of these unknown organisms. Environmental genomics may provide insight into mat systems by allowing the correlation of functional genes with phylogenetic markers.

  16. Two Alternative Pathways for the Synthesis of the Rare Compatible Solute Mannosylglucosylglycerate in Petrotoga mobilis▿

    PubMed Central

    Fernandes, Chantal; Mendes, Vitor; Costa, Joana; Empadinhas, Nuno; Jorge, Carla; Lamosa, Pedro; Santos, Helena; da Costa, Milton S.

    2010-01-01

    The compatible solute mannosylglucosylglycerate (MGG), recently identified in Petrotoga miotherma, also accumulates in Petrotoga mobilis in response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase (gene Pmob_1143), which we functionally characterized as a mannosylglucosyl-3-phosphoglycerate synthase and designated MggA, were identified in the genome of Ptg. mobilis. This enzyme used the product of GpgS, glucosyl-3-phosphoglycerate (GPG), as well as GDP-mannose to produce mannosylglucosyl-3-phosphoglycerate (MGPG), the phosphorylated precursor of MGG. The MGPG dephosphorylation was determined in cell extracts, and the native enzyme was partially purified and characterized. Surprisingly, a gene encoding a putative glucosylglycerate synthase (Ggs) was also identified in the genome of Ptg. mobilis, and an active Ggs capable of producing glucosylglycerate (GG) from ADP-glucose and d-glycerate was detected in cell extracts and the recombinant enzyme was characterized, as well. Since GG has never been identified in this organism nor was it a substrate for the MggA, we anticipated the existence of a nonphosphorylating pathway for MGG synthesis. We putatively identified the corresponding gene, whose product had some sequence homology with MggA, but it was not possible to recombinantly express a functional enzyme from Ptg. mobilis, which we named mannosylglucosylglycerate synthase (MggS). In turn, a homologous gene from Thermotoga maritima was successfully expressed, and the synthesis of MGG was confirmed from GDP-mannose and GG. Based on the measurements of the relevant enzyme activities in cell extracts and on the functional characterization of the key enzymes, we propose two alternative pathways for the synthesis of the rare compatible solute MGG in Ptg. mobilis. PMID:20061481

  17. Neurotactin functions in concert with other identified CAMs in growth cone guidance in Drosophila.

    PubMed

    Speicher, S; García-Alonso, L; Carmena, A; Martín-Bermudo, M D; de la Escalera, S; Jiménez, F

    1998-02-01

    We have isolated and characterized mutations in Drosophila neurotactin, a gene that encodes a cell adhesion protein widely expressed during neural development. Analysis of both loss and gain of gene function conditions during embryonic and postembryonic development revealed specific requirements for neurotactin during axon outgrowth, fasciculation, and guidance. Furthermore, embryos of some double mutant combinations of neurotactin and other genes encoding adhesion/signaling molecules, including neuroglian, derailed, and kekkon1, displayed phenotypic synergy. This result provides evidence for functional cooperativity in vivo between the adhesion and signaling pathways controlled by neurotactin and the other three genes.

  18. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python)

    PubMed Central

    Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value. PMID:27200191

  19. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python).

    PubMed

    Irizarry, Kristopher J L; Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.

  20. Characterization of a Crabs Claw Gene in basal eudicot species Epimedium sagittatum (Berberidaceae).

    PubMed

    Sun, Wei; Huang, Wenjun; Li, Zhineng; Lv, Haiyan; Huang, Hongwen; Wang, Ying

    2013-01-08

    The Crabs Claw (CRC) YABBY gene is required for regulating carpel development in angiosperms and has played an important role in nectary evolution during core eudicot speciation. The function or expression of CRC-like genes has been explored in two basal eudicots, Eschscholzia californica and Aquilegia formosa. To further investigate the function of CRC orthologous genes related to evolution of carpel and nectary development in basal eudicots, a CRC ortholog, EsCRC, was isolated and characterized from Epimedium sagittatum (Sieb. and Zucc.) Maxim. A phylogenetic analysis of EsCRC and previously identified CRC-like genes placed EsCRC within the basal eudicot lineage. Gene expression results suggest that EsCRC is involved in the development of sepals and carpels, but not nectaries. Phenotypic complementation of the Arabidopsis mutant crc-1 was achieved by constitutive expression of EsCRC. In addition, over-expression of EsCRC in Arabidopsis and tobacco gave rise to abaxially curled leaves. Transgenic results together with the gene expression analysis suggest that EsCRC may maintain a conserved function in carpel development and also play a novel role related to sepal formation. Absence of EsCRC and ElCRC expression in nectaries further indicates that nectary development in non-core eudicots is unrelated to expression of CRC-like genes.

  1. Characterization of a Crabs Claw Gene in Basal Eudicot Species Epimedium sagittatum (Berberidaceae)

    PubMed Central

    Sun, Wei; Huang, Wenjun; Li, Zhineng; Lv, Haiyan; Huang, Hongwen; Wang, Ying

    2013-01-01

    The Crabs Claw (CRC) YABBY gene is required for regulating carpel development in angiosperms and has played an important role in nectary evolution during core eudicot speciation. The function or expression of CRC-like genes has been explored in two basal eudicots, Eschscholzia californica and Aquilegia formosa. To further investigate the function of CRC orthologous genes related to evolution of carpel and nectary development in basal eudicots, a CRC ortholog, EsCRC, was isolated and characterized from Epimedium sagittatum (Sieb. and Zucc.) Maxim. A phylogenetic analysis of EsCRC and previously identified CRC-like genes placed EsCRC within the basal eudicot lineage. Gene expression results suggest that EsCRC is involved in the development of sepals and carpels, but not nectaries. Phenotypic complementation of the Arabidopsis mutant crc-1 was achieved by constitutive expression of EsCRC. In addition, over-expression of EsCRC in Arabidopsis and tobacco gave rise to abaxially curled leaves. Transgenic results together with the gene expression analysis suggest that EsCRC may maintain a conserved function in carpel development and also play a novel role related to sepal formation. Absence of EsCRC and ElCRC expression in nectaries further indicates that nectary development in non-core eudicots is unrelated to expression of CRC-like genes. PMID:23299438

  2. Genome-wide analysis of Glycine soja ubiquitin (UBQ) genes and functional analysis of GsUBQ10 in response to alkaline stress.

    PubMed

    Chen, Chao; Chen, Ranran; Wu, Shengyang; Zhu, Dan; Sun, Xiaoli; Liu, Beidong; Li, Qiang; Zhu, Yanming

    2018-03-26

    Ubiquitin is a highly conserved protein with multiple essential regulation functions through the ubiquitin-proteasome system. Even though its functions in the ubiquitin-mediated protein degradation pathway were very well characterized. The functions of ubiquitin genes in regulating alkaline stress response are not fully established. In this study, we identified 12 potential UBQ genes in Glycine soja genome, and analyzed their evolutionary relationship, conserved domains and promoter cis-elements. We also explored the expression profiles of G. soja UBQ genes under alkaline stress, based on the transcriptome sequencing. We found that the expression of GsUBQ10 was significantly induced by alkaline stress, and function of GsUBQ10 was characterized using overexpression transgenic alfalfa (Medicago sativa). Our results suggested that GsUBQ10 transgenic lines significantly improved the alkaline tolerance in alfalfa. The GsUBQ10 transgenic lines showed lower relative membrane permeability, lower malon dialdehyde content and higher catalase activity than in the wild-type plants. This indicates that GsUBQ10 is involved in regulating the reactive oxygen species accumulation under alkaline stress. Taken together, we identified an ubiquitin gene GsUBQ10 from G. soja, which plays a positive role in responses to alkaline stress in alfalfa. This article is protected by copyright. All rights reserved.

  3. Characterization and distribution of repetitive elements in association with genes in the human genome.

    PubMed

    Liang, Kai-Chiang; Tseng, Joseph T; Tsai, Shaw-Jenq; Sun, H Sunny

    2015-08-01

    Repetitive elements constitute more than 50% of the human genome. Recent studies implied that the complexity of living organisms is not just a direct outcome of a number of coding sequences; the repetitive elements, which do not encode proteins, may also play a significant role. Though scattered studies showed that repetitive elements in the regulatory regions of a gene control gene expression, no systematic survey has been done to report the characterization and distribution of various types of these repetitive elements in the human genome. Sequences from 5' and 3' untranslated regions and upstream and downstream of a gene were downloaded from the Ensembl database. The repetitive elements in the neighboring of each gene were identified and classified using cross-matching implemented in the RepeatMasker. The annotation and distribution of distinct classes of repetitive elements associated with individual gene were collected to characterize genes in association with different types of repetitive elements using systems biology program. We identified a total of 1,068,400 repetitive elements which belong to 37-class families and 1235 subclasses that are associated with 33,761 genes and 57,365 transcripts. In addition, we found that the tandem repeats preferentially locate proximal to the transcription start site (TSS) of genes and the major function of these genes are involved in developmental processes. On the other hand, interspersed repetitive elements showed a tendency to be accumulated at distal region from the TSS and the function of interspersed repeat-containing genes took part in the catabolic/metabolic processes. Results from the distribution analysis were collected and used to construct a gene-based repetitive element database (GBRED; http://www.binfo.ncku.edu.tw/GBRED/index.html). A user-friendly web interface was designed to provide the information of repetitive elements associated with any particular gene(s). This is the first study focusing on the gene-associated repetitive elements in the human genome. Our data showed distinct genes associated with different kinds of repetitive element and implied such combination may shape the function of these genes. Aside from the conventional view of these elements in genome evolution, results from this study offer a systemic review to facilitate exploitation of these elements in genome function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio).

    PubMed

    Liu, Xiang; Li, Shangqi; Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A; Xu, Peng

    2016-01-01

    The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp.

  5. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio)

    PubMed Central

    Peng, Wenzhu; Feng, Shuaisheng; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A.

    2016-01-01

    The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp. PMID:27058731

  6. Molecular characterization and functional analysis of ubiquitin extension genes from the potato cyst nematode Globodera rostochiensis

    USDA-ARS?s Scientific Manuscript database

    Ubiquitin is a highly conserved 76-amino acid protein found in every eukaryotic cell. It has been proposed that ubiquitin has many cellular functions including DNA repair, transcription regulation, regulation of cell cycle and apoptosis. We identified two ubiquitin extension genes (Gr-Ubi1 and Gr-Ub...

  7. Characterization and expression analysis of a Retinoblastoma-related gene from Chinese wild Vitis pseudoreticulata

    USDA-ARS?s Scientific Manuscript database

    Retinoblastoma-related (RBR) genes, a conserved gene family in higher eukaryotes, plays an important role in cell differentiation, development and mammalian cell death in animals; however, little is known about its function in plants. In this study, an RBR gene was isolated from the Chinese wild gr...

  8. Variation in Cilia Protein Genes and Progression of Lung Disease in Cystic Fibrosis.

    PubMed

    Blue, Elizabeth; Louie, Tin L; Chong, Jessica X; Hebbring, Scott J; Barnes, Kathleen C; Rafaels, Nicholas M; Knowles, Michael R; Gibson, Ronald L; Bamshad, Michael J; Emond, Mary J

    2018-04-01

    Cystic fibrosis, like primary ciliary dyskinesia, is an autosomal recessive disorder characterized by abnormal mucociliary clearance and obstructive lung disease. We hypothesized that genes underlying the development or function of cilia may modify lung disease severity in persons with cystic fibrosis. To test this hypothesis, we compared variants in 93 candidate genes in both upper and lower tertiles of lung function in a large cohort of children and adults with cystic fibrosis with those of a population control dataset. Variants within candidate genes were tested for association using the SKAT-O test, comparing cystic fibrosis cases defined by poor (n = 127) or preserved (n = 127) lung function with population controls (n = 3,269 or 3,148, respectively). Associated variants were then tested for association with related phenotypes in independent datasets. Variants in DNAH14 and DNAAF3 were associated with poor lung function in cystic fibrosis, whereas variants in DNAH14 and DNAH6 were associated with preserved lung function in cystic fibrosis. Associations between DNAH14 and lung function were replicated in disease-related phenotypes characterized by obstructive lung disease in adults. Genetic variants within DNAH6, DNAH14, and DNAAF3 are associated with variation in lung function among persons with cystic fibrosis.

  9. Discovery and characterization of miRNA genes in atlantic salmon (Salmo salar) by use of a deep sequencing approach

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are an abundant class of endogenous small RNA molecules that downregulate gene expression at the posttranscriptional level. They play important roles in multiple biological processes by regulating genes that control developmental timing, growth, stem cell division and apoptosis by binding to the mRNA of target genes. Despite the position Atlantic salmon (Salmo salar) has as an economically important domesticated animal, there has been little research on miRNAs in this species. Knowledge about miRNAs and their target genes may be used to control health and to improve performance of economically important traits. However, before their biological function can be unravelled they must be identified and annotated. The aims of this study were to identify and characterize miRNA genes in Atlantic salmon by deep sequencing analysis of small RNA libraries from nine different tissues. Results A total of 180 distinct mature miRNAs belonging to 106 families of evolutionary conserved miRNAs, and 13 distinct novel mature miRNAs were discovered and characterized. The mature miRNAs corresponded to 521 putative precursor sequences located at unique genome locations. About 40% of these precursors were part of gene clusters, and the majority of the Salmo salar gene clusters discovered were conserved across species. Comparison of expression levels in samples from different tissues applying DESeq indicated that there were tissue specific expression differences in three conserved and one novel miRNA. Ssa-miR 736 was detected in heart tissue only, while two other clustered miRNAs (ssa-miR 212 and132) seems to be at a higher expression level in brain tissue. These observations correlate well with their expected functions as regulators of signal pathways in cardiac and neuronal cells, respectively. Ssa-miR 8163 is one of the novel miRNAs discovered and its function remains unknown. However, differential expression analysis using DESeq suggests that this miRNA is enriched in liver tissue and the precursor was mapped to intron 7 of the transferrin gene. Conclusions The identification and annotation of evolutionary conserved and novel Salmo salar miRNAs as well as the characterization of miRNA gene clusters provide biological knowledge that will greatly facilitate further functional studies on miRNAs in this species. PMID:23865519

  10. Virus-induced gene silencing (VIGS) in barley seedling leaves

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is one of the most potent reverse genetics technologies for gene functional characterization. This method exploits a dsRNA-mediated antiviral defense mechanism in plants. Using this method allows researchers to generate rapid phenotypic data in a relatively rapid ...

  11. Engineering and Functional Characterization of Fusion Genes Identifies Novel Oncogenic Drivers of Cancer.

    PubMed

    Lu, Hengyu; Villafane, Nicole; Dogruluk, Turgut; Grzeskowiak, Caitlin L; Kong, Kathleen; Tsang, Yiu Huen; Zagorodna, Oksana; Pantazi, Angeliki; Yang, Lixing; Neill, Nicholas J; Kim, Young Won; Creighton, Chad J; Verhaak, Roel G; Mills, Gordon B; Park, Peter J; Kucherlapati, Raju; Scott, Kenneth L

    2017-07-01

    Oncogenic gene fusions drive many human cancers, but tools to more quickly unravel their functional contributions are needed. Here we describe methodology permitting fusion gene construction for functional evaluation. Using this strategy, we engineered the known fusion oncogenes, BCR-ABL1, EML4-ALK , and ETV6-NTRK3, as well as 20 previously uncharacterized fusion genes identified in The Cancer Genome Atlas datasets. In addition to confirming oncogenic activity of the known fusion oncogenes engineered by our construction strategy, we validated five novel fusion genes involving MET, NTRK2 , and BRAF kinases that exhibited potent transforming activity and conferred sensitivity to FDA-approved kinase inhibitors. Our fusion construction strategy also enabled domain-function studies of BRAF fusion genes. Our results confirmed other reports that the transforming activity of BRAF fusions results from truncation-mediated loss of inhibitory domains within the N-terminus of the BRAF protein. BRAF mutations residing within this inhibitory region may provide a means for BRAF activation in cancer, therefore we leveraged the modular design of our fusion gene construction methodology to screen N-terminal domain mutations discovered in tumors that are wild-type at the BRAF mutation hotspot, V600. We identified an oncogenic mutation, F247L, whose expression robustly activated the MAPK pathway and sensitized cells to BRAF and MEK inhibitors. When applied broadly, these tools will facilitate rapid fusion gene construction for subsequent functional characterization and translation into personalized treatment strategies. Cancer Res; 77(13); 3502-12. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. Tuning Gene Activity by Inducible and Targeted Regulation of Gene Expression in Minimal Bacterial Cells.

    PubMed

    Mariscal, Ana M; Kakizawa, Shigeyuki; Hsu, Jonathan Y; Tanaka, Kazuki; González-González, Luis; Broto, Alicia; Querol, Enrique; Lluch-Senar, Maria; Piñero-Lambea, Carlos; Sun, Lijie; Weyman, Philip D; Wise, Kim S; Merryman, Chuck; Tse, Gavin; Moore, Adam J; Hutchison, Clyde A; Smith, Hamilton O; Tomita, Masaru; Venter, J Craig; Glass, John I; Piñol, Jaume; Suzuki, Yo

    2018-05-22

    Functional genomics studies in minimal mycoplasma cells enable unobstructed access to some of the most fundamental processes in biology. Conventional transposon bombardment and gene knockout approaches often fail to reveal functions of genes that are essential for viability, where lethality precludes phenotypic characterization. Conditional inactivation of genes is effective for characterizing functions central to cell growth and division, but tools are limited for this purpose in mycoplasmas. Here we demonstrate systems for inducible repression of gene expression based on clustered regularly interspaced short palindromic repeats-mediated interference (CRISPRi) in Mycoplasma pneumoniae and synthetic Mycoplasma mycoides, two organisms with reduced genomes actively used in systems biology studies. In the synthetic cell, we also demonstrate inducible gene expression for the first time. Time-course data suggest rapid kinetics and reversible engagement of CRISPRi. Targeting of six selected endogenous genes with this system results in lowered transcript levels or reduced growth rates that agree with lack or shortage of data in previous transposon bombardment studies, and now produces actual cells to analyze. The ksgA gene encodes a methylase that modifies 16S rRNA, rendering it vulnerable to inhibition by the antibiotic kasugamycin. Targeting the ksgA gene with CRISPRi removes the lethal effect of kasugamycin and enables cell growth, thereby establishing specific and effective gene modulation with our system. The facile methods for conditional gene activation and inactivation in mycoplasmas open the door to systematic dissection of genetic programs at the core of cellular life.

  13. Different functional classes of genes are characterized by different compositional properties.

    PubMed

    D'Onofrio, Giuseppe; Ghosh, Tapash Chandra; Saccone, Salvatore

    2007-12-22

    A compositional analysis on a set of human genes classified in several functional classes was performed. We found out that the GC3, i.e. the GC level at the third codon positions, of the genes involved in cellular metabolism was significantly higher than those involved in information storage and processing. Analyses of human/Xenopus ortologous genes showed that: (i) the GC3 increment of the genes involved in cellular metabolism was significantly higher than those involved in information storage and processing; and (ii) a strong correlation between the GC3 and the corresponding GCi, i.e. the GC level of introns, was found in each functional class. The non-randomness of the GC increments favours the selective hypothesis of gene/genome evolution.

  14. Simultaneous coexpression of memory-related and effector-related genes by individual human CD8 T cells depends on antigen specificity and differentiation.

    PubMed

    Gupta, Bhawna; Iancu, Emanuela M; Gannon, Philippe O; Wieckowski, Sébastien; Baitsch, Lukas; Speiser, Daniel E; Rufer, Nathalie

    2012-07-01

    Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.

  15. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa.

    PubMed

    He, Hongsheng; Dong, Qing; Shao, Yuanhua; Jiang, Haiyang; Zhu, Suwen; Cheng, Beijiu; Xiang, Yan

    2012-07-01

    WRKY transcription factors participate in diverse physiological and developmental processes in plants. They have highly conserved WRKYGQK amino acid sequences in their N-termini, followed by the novel zinc-finger-like motifs, Cys₂His₂ or Cys₂HisCys. To date, numerous WRKY genes have been identified and characterized in a number of herbaceous species. Survey and characterization of WRKY genes in a ligneous species would facilitate a better understanding of the evolutionary processes and functions of this gene family. In this study, 104 poplar WRKY genes (PtWRKY) were identified in the latest poplar genome sequence. According to their structural features, the predicted members were divided into the previously defined groups I-III, as described in rice. In addition, chromosomal localization of the genes demonstrated that there might be WRKY gene hot spots in 2.3 Mb regions on chromosome 14. Furthermore, approximately 83% (86 out of 104) WRKY genes participated in gene duplication events, including 69% (29 out of 42) gene pairs which exhibited segmental duplication. Using semi-quantitative RT-PCR, the expression patterns of subgroup III genes were investigated under different stresses [cold, drought, salinity and salicylic acid (SA)]. The data revealed that these genes presented different expression levels in response to various stress conditions. Expression analysis exhibited PtWRKY76 gene induced markedly in 0.1 mM SA or 25% PEG-6000 treatment. The results presented here provide a fundamental clue for cloning specific function genes in further studies and applications. This study identified 104 poplar WRKY genes and demonstrated WRKY gene hot spots on chromosome 14. Furthermore, semi-quantitative RT-PCR showed variable stress responses in subgroup III.

  16. Structural, functional and evolutionary characterization of major drought transcription factors families in maize

    NASA Astrophysics Data System (ADS)

    Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2018-05-01

    Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.

  17. Functional differentiation and spatial-temporal co-expression networks of the NBS-encoding gene family in Jilin ginseng, Panax ginseng C.A. Meyer.

    PubMed

    Yin, Rui; Zhao, Mingzhu; Wang, Kangyu; Lin, Yanping; Wang, Yanfang; Sun, Chunyu; Wang, Yi; Zhang, Meiping

    2017-01-01

    Ginseng, Panax ginseng C.A. Meyer, is one of the most important medicinal plants for human health and medicine. It has been documented that over 80% of genes conferring resistance to bacteria, viruses, fungi and nematodes are contributed by the nucleotide binding site (NBS)-encoding gene family. Therefore, identification and characterization of NBS genes expressed in ginseng are paramount to its genetic improvement and breeding. However, little is known about the NBS-encoding genes in ginseng. Here we report genome-wide identification and systems analysis of the NBS genes actively expressed in ginseng (PgNBS genes). Four hundred twelve PgNBS gene transcripts, derived from 284 gene models, were identified from the transcriptomes of 14 ginseng tissues. These genes were classified into eight types, including TNL, TN, CNL, CN, NL, N, RPW8-NL and RPW8-N. Seven conserved motifs were identified in both the Toll/interleukine-1 receptor (TIR) and coiled-coil (CC) typed genes whereas six were identified in the RPW8 typed genes. Phylogenetic analysis showed that the PgNBS gene family is an ancient family, with a vast majority of its genes originated before ginseng originated. In spite of their belonging to a family, the PgNBS genes have functionally dramatically differentiated and been categorized into numerous functional categories. The expressions of the across tissues, different aged roots and the roots of different genotypes. However, they are coordinating in expression, forming a single co-expression network. These results provide a deeper understanding of the origin, evolution and functional differentiation and expression dynamics of the NBS-encoding gene family in plants in general and in ginseng particularly, and a NBS gene toolkit useful for isolation and characterization of disease resistance genes and for enhanced disease resistance breeding in ginseng and related species.

  18. Functional differentiation and spatial-temporal co-expression networks of the NBS-encoding gene family in Jilin ginseng, Panax ginseng C.A. Meyer

    PubMed Central

    Wang, Kangyu; Lin, Yanping; Wang, Yanfang; Sun, Chunyu; Wang, Yi

    2017-01-01

    Ginseng, Panax ginseng C.A. Meyer, is one of the most important medicinal plants for human health and medicine. It has been documented that over 80% of genes conferring resistance to bacteria, viruses, fungi and nematodes are contributed by the nucleotide binding site (NBS)-encoding gene family. Therefore, identification and characterization of NBS genes expressed in ginseng are paramount to its genetic improvement and breeding. However, little is known about the NBS-encoding genes in ginseng. Here we report genome-wide identification and systems analysis of the NBS genes actively expressed in ginseng (PgNBS genes). Four hundred twelve PgNBS gene transcripts, derived from 284 gene models, were identified from the transcriptomes of 14 ginseng tissues. These genes were classified into eight types, including TNL, TN, CNL, CN, NL, N, RPW8-NL and RPW8-N. Seven conserved motifs were identified in both the Toll/interleukine-1 receptor (TIR) and coiled-coil (CC) typed genes whereas six were identified in the RPW8 typed genes. Phylogenetic analysis showed that the PgNBS gene family is an ancient family, with a vast majority of its genes originated before ginseng originated. In spite of their belonging to a family, the PgNBS genes have functionally dramatically differentiated and been categorized into numerous functional categories. The expressions of the across tissues, different aged roots and the roots of different genotypes. However, they are coordinating in expression, forming a single co-expression network. These results provide a deeper understanding of the origin, evolution and functional differentiation and expression dynamics of the NBS-encoding gene family in plants in general and in ginseng particularly, and a NBS gene toolkit useful for isolation and characterization of disease resistance genes and for enhanced disease resistance breeding in ginseng and related species. PMID:28727829

  19. Status of Therapeutic Gene Transfer to Treat Cardiovascular Disease in Dogs and Cats.

    PubMed

    Sleeper, Meg M

    2017-09-01

    Gene therapy is a procedure resulting in the transfer of a gene into an individual's cells to treat a disease. One goal of gene transfer is to express a functional gene when the endogenous gene is inactive. However, because heart failure is a complex disease characterized by multiple abnormalities at the cellular level, an alternate gene delivery approach is to alter myocardial protein levels to improve function. This article discusses background information on gene delivery, including packaging, administration, and a brief discussion of some of the candidate transgenes likely to alter the progression of naturally occurring heart disease in dogs and cats. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Comparative functional characterization of the CSR-1 22G-RNA pathway in Caenorhabditis nematodes

    PubMed Central

    Tu, Shikui; Wu, Monica Z.; Wang, Jie; Cutter, Asher D.; Weng, Zhiping; Claycomb, Julie M.

    2015-01-01

    As a champion of small RNA research for two decades, Caenorhabditis elegans has revealed the essential Argonaute CSR-1 to play key nuclear roles in modulating chromatin, chromosome segregation and germline gene expression via 22G-small RNAs. Despite CSR-1 being preserved among diverse nematodes, the conservation and divergence in function of the targets of small RNA pathways remains poorly resolved. Here we apply comparative functional genomic analysis between C. elegans and Caenorhabditis briggsae to characterize the CSR-1 pathway, its targets and their evolution. C. briggsae CSR-1-associated small RNAs that we identified by immunoprecipitation-small RNA sequencing overlap with 22G-RNAs depleted in cbr-csr-1 RNAi-treated worms. By comparing 22G-RNAs and target genes between species, we defined a set of CSR-1 target genes with conserved germline expression, enrichment in operons and more slowly evolving coding sequences than other genes, along with a small group of evolutionarily labile targets. We demonstrate that the association of CSR-1 with chromatin is preserved, and show that depletion of cbr-csr-1 leads to chromosome segregation defects and embryonic lethality. This first comparative characterization of a small RNA pathway in Caenorhabditis establishes a conserved nuclear role for CSR-1 and highlights its key role in germline gene regulation across multiple animal species. PMID:25510497

  1. Functional characterization of duplicated Suppressor of Overexpression of Constans 1-like genes in petunia.

    PubMed

    Preston, Jill C; Jorgensen, Stacy A; Jha, Suryatapa G

    2014-01-01

    Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene Suppressor Of Overexpression of Constans 1 (SOC1) in the short-lived perennial Petunia hybrida (petunia, Solanaceae). Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes Unshaven (UNS) and Floral Binding Protein 21 (FBP21), but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods.

  2. Functional Characterization of Duplicated SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1-Like Genes in Petunia

    PubMed Central

    Preston, Jill C.; Jorgensen, Stacy A.; Jha, Suryatapa G.

    2014-01-01

    Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants with different growth habits, gene duplication histories, and distributions. Here we functionally characterize three homologs of the flowering gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in the short-lived perennial Petunia hybrida (petunia, Solanaceae). Similar to A. thaliana soc1 mutants, co-silencing of duplicated petunia SOC1-like genes results in late flowering. This phenotype is most severe when all three SOC1-like genes are silenced. Furthermore, expression levels of the SOC1-like genes UNSHAVEN (UNS) and FLORAL BINDING PROTEIN 21 (FBP21), but not FBP28, are positively correlated with developmental age. In contrast to A. thaliana, petunia SOC1-like gene expression did not increase with longer photoperiods, and FBP28 transcripts were actually more abundant under short days. Despite evidence of functional redundancy, differential spatio-temporal expression data suggest that SOC1-like genes might fine-tune petunia flowering in response to photoperiod and developmental stage. This likely resulted from modification of SOC1-like gene regulatory elements following recent duplication, and is a possible mechanism to ensure flowering under both inductive and non-inductive photoperiods. PMID:24787903

  3. Function does not follow form in gene regulatory circuits.

    PubMed

    Payne, Joshua L; Wagner, Andreas

    2015-08-20

    Gene regulatory circuits are to the cell what arithmetic logic units are to the chip: fundamental components of information processing that map an input onto an output. Gene regulatory circuits come in many different forms, distinct structural configurations that determine who regulates whom. Studies that have focused on the gene expression patterns (functions) of circuits with a given structure (form) have examined just a few structures or gene expression patterns. Here, we use a computational model to exhaustively characterize the gene expression patterns of nearly 17 million three-gene circuits in order to systematically explore the relationship between circuit form and function. Three main conclusions emerge. First, function does not follow form. A circuit of any one structure can have between twelve and nearly thirty thousand distinct gene expression patterns. Second, and conversely, form does not follow function. Most gene expression patterns can be realized by more than one circuit structure. And third, multifunctionality severely constrains circuit form. The number of circuit structures able to drive multiple gene expression patterns decreases rapidly with the number of these patterns. These results indicate that it is generally not possible to infer circuit function from circuit form, or vice versa.

  4. Genome-Wide Gene Expression in relation to Age in Large Laboratory Cohorts of Drosophila melanogaster

    PubMed Central

    Carlson, Kimberly A.; Gardner, Kylee; Pashaj, Anjeza; Carlson, Darby J.; Yu, Fang; Eudy, James D.; Zhang, Chi; Harshman, Lawrence G.

    2015-01-01

    Aging is a complex process characterized by a steady decline in an organism's ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for microarray data method was used for the microarray analysis to adjust for the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age. PMID:26090231

  5. Genomics screens for metastasis genes

    PubMed Central

    Yan, Jinchun; Huang, Qihong

    2014-01-01

    Metastasis is responsible for most cancer mortality. The process of metastasis is complex, requiring the coordinated expression and fine regulation of many genes in multiple pathways in both the tumor and host tissues. Identification and characterization of the genetic programs that regulate metastasis is critical to understanding the metastatic process and discovering molecular targets for the prevention and treatment of metastasis. Genomic approaches and functional genomic analyses can systemically discover metastasis genes. In this review, we summarize the genetic tools and methods that have been used to identify and characterize the genes that play critical roles in metastasis. PMID:22684367

  6. Identification, cloning, and expression analysis of three putative Lymantria dispar nuclear polyhedrosis virus immediate early genes

    Treesearch

    James M. Slavicek; Nancy Hayes-Plazolles

    1991-01-01

    Viral immediate early gene products are usually regulatory proteins that control expression of other viral genes at the transcriptional level or are proteins that are part of the viral DNA replication complex. The identification and functional characterization of the immediate early gene products of Lymantria dispar nuclear polyhedrosis virus (LdNPV...

  7. Evolutionary genomics of LysM genes in land plants.

    PubMed

    Zhang, Xue-Cheng; Cannon, Steven B; Stacey, Gary

    2009-08-03

    The ubiquitous LysM motif recognizes peptidoglycan, chitooligosaccharides (chitin) and, presumably, other structurally-related oligosaccharides. LysM-containing proteins were first shown to be involved in bacterial cell wall degradation and, more recently, were implicated in perceiving chitin (one of the established pathogen-associated molecular patterns) and lipo-chitin (nodulation factors) in flowering plants. However, the majority of LysM genes in plants remain functionally uncharacterized and the evolutionary history of complex LysM genes remains elusive. We show that LysM-containing proteins display a wide range of complex domain architectures. However, only a simple core architecture is conserved across kingdoms. Each individual kingdom appears to have evolved a distinct array of domain architectures. We show that early plant lineages acquired four characteristic architectures and progressively lost several primitive architectures. We report plant LysM phylogenies and associated gene, protein and genomic features, and infer the relative timing of duplications of LYK genes. We report a domain architecture catalogue of LysM proteins across all kingdoms. The unique pattern of LysM protein domain architectures indicates the presence of distinctive evolutionary paths in individual kingdoms. We describe a comparative and evolutionary genomics study of LysM genes in plant kingdom. One of the two groups of tandemly arrayed plant LYK genes likely resulted from an ancient genome duplication followed by local genomic rearrangement, while the origin of the other groups of tandemly arrayed LYK genes remains obscure. Given the fact that no animal LysM motif-containing genes have been functionally characterized, this study provides clues to functional characterization of plant LysM genes and is also informative with regard to evolutionary and functional studies of animal LysM genes.

  8. Isolation and characterization of a SEPALLATA-like gene, ZjMADS1, from marine angiosperm Zostera japonica.

    PubMed

    Kakinuma, Makoto; Inoue, Miho; Morita, Teruwo; Tominaga, Hiroshi; Maegawa, Miyuki; Coury, Daniel A; Amano, Hideomi

    2012-05-01

    In flowering plants, floral homeotic MADS-box genes, which constitute a large multigene family, play important roles in the specification of floral organs as defined by the ABCDE model. In this study, a MADS-box gene, ZjMADS1, was isolated and characterized from the marine angiosperm Zostera japonica. The predicted length of the ZjMADS1 protein was 246 amino acids (AA), and the AA sequence was most similar to those of the SEPALLATA (SEP) subfamily, corresponding to E-function genes. Southern blot analysis suggested the presence of two SEP3-like genes in the Z. japonica genome. ZjMADS1 mRNA levels were extremely high in the spadices, regardless of the developmental stage, compared to other organs from the reproductive and vegetative shoots. These results suggest that the ZjMADS1 gene may be involved in spadix development in Z. japonica and act as an E-function gene in floral organ development in marine angiosperms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Identification and characterization of nuclear genes involved in photosynthesis in Populus

    PubMed Central

    2014-01-01

    Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936

  10. Characterization and phylogenetic analysis of lectin gene cDNA isolated from sea cucumber ( Apostichopus japonicus) body wall

    NASA Astrophysics Data System (ADS)

    Xue, Zhuang; Li, Hui; Liu, Yang; Zhou, Wei; Sun, Jing; Wang, Xiuli

    2017-12-01

    As a `living fossil' of species origin and `rich treasure' of food and nutrition development, sea cucumber has received a lot of attentions from researchers. The cDNA library construction and EST sequencing of blood had been conducted previously in our lab. The bioinformatic analysis provided a gene fragment which is highly homologous with the genes of lectin family, named AjL ( Apostichopus japonicus lectin). To characterize and determine the phylogeny of AjL genes in early evolution, we isolated a full-length cDNA of lectin gene from the body wall of A. japonicus. The open reading frame of this gene contained 489 bp and encoded a 163 amino acids secretory protein being homologous to lectins of mammals and aquatic organisms. The deduced protein included a lectin-like domain. SDS-PAGE analysis showed that AjL migrated as a specific band (about 36.09 kDa under reducing), and agglutinated against rabbit red blood cells. AjL was similar to chain A of CEL-IV in space structure. We predicted that AjL may play the same role of CEL-IV. Our results suggested that more than one lectin gene functioned in sea cucumber and most of other species, which was fused by uncertain sequences during the evolution and encoded different proteins with diverse functions. Our findings provided the insights into the function and characteristics of lectin genes invertebrates. The results will also be helpful for the identification and structural, functional, and evolutionary analyses of lectin genes.

  11. Characterizing and Targeting Replication Stress Response Defects in Breast Cancer

    DTIC Science & Technology

    2013-08-01

    This project is to use cutting-edge technologies to characterize novel RSR genes and their functions in tumor suppression; identify gene signature...and membrane proteins associated with defective RSR; identify drugs that target these defects; and develop RSR-defect-targeting nanoparticles for...screening and validation of drugs that target RSR-defect cells. The progress of our third year research is described below. BODY The tasks

  12. Gene mapping of the Usher syndromes.

    PubMed

    Kimberling, W; Smith, R J

    1992-10-01

    USH is an autosomal recessive group of diseases characterized by auditory impairment and visual loss owing to RP. Two common types of USH are known, types I and II. USH type I is characterized by a congenital severe to profound hearing impairment, absent vestibular function, and a progressive pigmentary retinopathy. Persons with type I do not find hearing aids useful, have delayed motor development, and experience progressive night blindness and peripheral visual loss, which usually begins in their second decade. USH type II is characterized by a congenital moderate to severe hearing loss with a down-sloping audiogram, normal vestibular function, and a progressive pigmentary retinopathy. Persons with USH2 find hearing aids beneficial, have normal psychomotor development, and experience progressive night blindness and peripheral visual loss, which usually begins in their third decade. Vestibular dysfunction is the best distinguishing hallmark to differentiate USH type I from type II. One USH type II gene (called USH2) has been assigned to chromosome 1q. One USH type I gene has been tentatively assigned to chromosome 14q. There are other USH genes that have not yet been localized.

  13. Identification of three duplicated Spin genes in medaka (Oryzias latipes).

    PubMed

    Wang, Xiao-Lei; Mei, Jie; Sun, Min; Hong, Yun-Han; Gui, Jian-Fang

    2005-05-09

    Gene and genomic duplications are very important and frequent events in fish evolution, and the divergence of duplicated genes in sequences and functions is a focus of research on gene evolution. Here, we report the identification and characterization of three duplicated Spindlin (Spin) genes from medaka (Oryzias latipes): OlSpinA, OlSpinB, and OlSpinC. Molecular cloning, genomic DNA Blast analysis and phylogenetic relationship analysis demonstrated that the three duplicated OlSpin genes should belong to gene duplication. Furthermore, Western blot analysis revealed significant expression differences of the three OlSpins among different tissues and during embryogenesis in medaka, and suggested that sequence and functional divergence might have occurred in evolution among them.

  14. Genome-wide characterization of mammalian promoters with distal enhancer functions.

    PubMed

    Dao, Lan T M; Galindo-Albarrán, Ariel O; Castro-Mondragon, Jaime A; Andrieu-Soler, Charlotte; Medina-Rivera, Alejandra; Souaid, Charbel; Charbonnier, Guillaume; Griffon, Aurélien; Vanhille, Laurent; Stephen, Tharshana; Alomairi, Jaafar; Martin, David; Torres, Magali; Fernandez, Nicolas; Soler, Eric; van Helden, Jacques; Puthier, Denis; Spicuglia, Salvatore

    2017-07-01

    Gene expression in mammals is precisely regulated by the combination of promoters and gene-distal regulatory regions, known as enhancers. Several studies have suggested that some promoters might have enhancer functions. However, the extent of this type of promoters and whether they actually function to regulate the expression of distal genes have remained elusive. Here, by exploiting a high-throughput enhancer reporter assay, we unravel a set of mammalian promoters displaying enhancer activity. These promoters have distinct genomic and epigenomic features and frequently interact with other gene promoters. Extensive CRISPR-Cas9 genomic manipulation demonstrated the involvement of these promoters in the cis regulation of expression of distal genes in their natural loci. Our results have important implications for the understanding of complex gene regulation in normal development and disease.

  15. A Resource of Quantitative Functional Annotation for Homo sapiens Genes.

    PubMed

    Taşan, Murat; Drabkin, Harold J; Beaver, John E; Chua, Hon Nian; Dunham, Julie; Tian, Weidong; Blake, Judith A; Roth, Frederick P

    2012-02-01

    The body of human genomic and proteomic evidence continues to grow at ever-increasing rates, while annotation efforts struggle to keep pace. A surprisingly small fraction of human genes have clear, documented associations with specific functions, and new functions continue to be found for characterized genes. Here we assembled an integrated collection of diverse genomic and proteomic data for 21,341 human genes and make quantitative associations of each to 4333 Gene Ontology terms. We combined guilt-by-profiling and guilt-by-association approaches to exploit features unique to the data types. Performance was evaluated by cross-validation, prospective validation, and by manual evaluation with the biological literature. Functional-linkage networks were also constructed, and their utility was demonstrated by identifying candidate genes related to a glioma FLN using a seed network from genome-wide association studies. Our annotations are presented-alongside existing validated annotations-in a publicly accessible and searchable web interface.

  16. Transcriptome-wide analysis of WRKY transcription factors in wheat and their leaf rust responsive expression profiling.

    PubMed

    Satapathy, Lopamudra; Singh, Dharmendra; Ranjan, Prashant; Kumar, Dhananjay; Kumar, Manish; Prabhu, Kumble Vinod; Mukhopadhyay, Kunal

    2014-12-01

    WRKY, a plant-specific transcription factor family, has important roles in pathogen defense, abiotic cues and phytohormone signaling, yet little is known about their roles and molecular mechanism of function in response to rust diseases in wheat. We identified 100 TaWRKY sequences using wheat Expressed Sequence Tag database of which 22 WRKY sequences were novel. Identified proteins were characterized based on their zinc finger motifs and phylogenetic analysis clustered them into six clades consisting of class IIc and class III WRKY proteins. Functional annotation revealed major functions in metabolic and cellular processes in control plants; whereas response to stimuli, signaling and defense in pathogen inoculated plants, their major molecular function being binding to DNA. Tag-based expression analysis of the identified genes revealed differential expression between mock and Puccinia triticina inoculated wheat near isogenic lines. Gene expression was also performed with six rust-related microarray experiments at Gene Expression Omnibus database. TaWRKY10, 15, 17 and 56 were common in both tag-based and microarray-based differential expression analysis and could be representing rust specific WRKY genes. The obtained results will bestow insight into the functional characterization of WRKY transcription factors responsive to leaf rust pathogenesis that can be used as candidate genes in molecular breeding programs to improve biotic stress tolerance in wheat.

  17. From genomics to functional markers in the era of next-generation sequencing.

    PubMed

    Salgotra, R K; Gupta, B B; Stewart, C N

    2014-03-01

    The availability of complete genome sequences, along with other genomic resources for Arabidopsis, rice, pigeon pea, soybean and other crops, has revolutionized our understanding of the genetic make-up of plants. Next-generation DNA sequencing (NGS) has facilitated single nucleotide polymorphism discovery in plants. Functionally-characterized sequences can be identified and functional markers (FMs) for important traits can be developed at an ever-increasing ease. FMs are derived from sequence polymorphisms found in allelic variants of a functional gene. Linkage disequilibrium-based association mapping and homologous recombinants have been developed for identification of "perfect" markers for their use in crop improvement practices. Compared with many other molecular markers, FMs derived from the functionally characterized sequence genes using NGS techniques and their use provide opportunities to develop high-yielding plant genotypes resistant to various stresses at a fast pace.

  18. Cloning and characterization of a mouse gene with homology to the human von Hippel-Lindau disease tumor suppressor gene: implications for the potential organization of the human von Hippel-Lindau disease gene.

    PubMed

    Gao, J; Naglich, J G; Laidlaw, J; Whaley, J M; Seizinger, B R; Kley, N

    1995-02-15

    The human von Hippel-Lindau disease (VHL) gene has recently been identified and, based on the nucleotide sequence of a partial cDNA clone, has been predicted to encode a novel protein with as yet unknown functions [F. Latif et al., Science (Washington DC), 260: 1317-1320, 1993]. The length of the encoded protein and the characteristics of the cellular expressed protein are as yet unclear. Here we report the cloning and characterization of a mouse gene (mVHLh1) that is widely expressed in different mouse tissues and shares high homology with the human VHL gene. It predicts a protein 181 residues long (and/or 162 amino acids, considering a potential alternative start codon), which across a core region of approximately 140 residues displays a high degree of sequence identity (98%) to the predicted human VHL protein. High stringency DNA and RNA hybridization experiments and protein expression analyses indicate that this gene is the most highly VHL-related mouse gene, suggesting that it represents the mouse VHL gene homologue rather than a related gene sharing a conserved functional domain. These findings provide new insights into the potential organization of the VHL gene and nature of its encoded protein.

  19. Identification of Loci and Functional Characterization of Trichothecene Biosynthesis Genes in Filamentous Fungi of the Genus Trichoderma▿†

    PubMed Central

    Cardoza, R. E.; Malmierca, M. G.; Hermosa, M. R.; Alexander, N. J.; McCormick, S. P.; Proctor, R. H.; Tijerino, A. M.; Rumbero, A.; Monte, E.; Gutiérrez, S.

    2011-01-01

    Trichothecenes are mycotoxins produced by Trichoderma, Fusarium, and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for the formation of the mycotoxins. However, little is known about trichothecene biosynthesis in the other genera. Here, we identify and characterize TRI gene orthologues (tri) in Trichoderma arundinaceum and Trichoderma brevicompactum. Our results indicate that both Trichoderma species have a tri cluster that consists of orthologues of seven genes present in the Fusarium TRI cluster. Organization of genes in the cluster is the same in the two Trichoderma species but differs from the organization in Fusarium. Sequence and functional analysis revealed that the gene (tri5) responsible for the first committed step in trichothecene biosynthesis is located outside the cluster in both Trichoderma species rather than inside the cluster as it is in Fusarium. Heterologous expression analysis revealed that two T. arundinaceum cluster genes (tri4 and tri11) differ in function from their Fusarium orthologues. The Tatri4-encoded enzyme catalyzes only three of the four oxygenation reactions catalyzed by the orthologous enzyme in Fusarium. The Tatri11-encoded enzyme catalyzes a completely different reaction (trichothecene C-4 hydroxylation) than the Fusarium orthologue (trichothecene C-15 hydroxylation). The results of this study indicate that although some characteristics of the tri/TRI cluster have been conserved during evolution of Trichoderma and Fusarium, the cluster has undergone marked changes, including gene loss and/or gain, gene rearrangement, and divergence of gene function. PMID:21642405

  20. Skin Microbiome Surveys Are Strongly Influenced by Experimental Design.

    PubMed

    Meisel, Jacquelyn S; Hannigan, Geoffrey D; Tyldsley, Amanda S; SanMiguel, Adam J; Hodkinson, Brendan P; Zheng, Qi; Grice, Elizabeth A

    2016-05-01

    Culture-independent studies to characterize skin microbiota are increasingly common, due in part to affordable and accessible sequencing and analysis platforms. Compared to culture-based techniques, DNA sequencing of the bacterial 16S ribosomal RNA (rRNA) gene or whole metagenome shotgun (WMS) sequencing provides more precise microbial community characterizations. Most widely used protocols were developed to characterize microbiota of other habitats (i.e., gastrointestinal) and have not been systematically compared for their utility in skin microbiome surveys. Here we establish a resource for the cutaneous research community to guide experimental design in characterizing skin microbiota. We compare two widely sequenced regions of the 16S rRNA gene to WMS sequencing for recapitulating skin microbiome community composition, diversity, and genetic functional enrichment. We show that WMS sequencing most accurately recapitulates microbial communities, but sequencing of hypervariable regions 1-3 of the 16S rRNA gene provides highly similar results. Sequencing of hypervariable region 4 poorly captures skin commensal microbiota, especially Propionibacterium. WMS sequencing, which is resource and cost intensive, provides evidence of a community's functional potential; however, metagenome predictions based on 16S rRNA sequence tags closely approximate WMS genetic functional profiles. This study highlights the importance of experimental design for downstream results in skin microbiome surveys. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Skin microbiome surveys are strongly influenced by experimental design

    PubMed Central

    Meisel, Jacquelyn S.; Hannigan, Geoffrey D.; Tyldsley, Amanda S.; SanMiguel, Adam J.; Hodkinson, Brendan P.; Zheng, Qi; Grice, Elizabeth A.

    2016-01-01

    Culture-independent studies to characterize skin microbiota are increasingly common, due in part to affordable and accessible sequencing and analysis platforms. Compared to culture-based techniques, DNA sequencing of the bacterial 16S ribosomal RNA (rRNA) gene or whole metagenome shotgun (WMS) sequencing provide more precise microbial community characterizations. Most widely used protocols were developed to characterize microbiota of other habitats (i.e. gastrointestinal), and have not been systematically compared for their utility in skin microbiome surveys. Here we establish a resource for the cutaneous research community to guide experimental design in characterizing skin microbiota. We compare two widely sequenced regions of the 16S rRNA gene to WMS sequencing for recapitulating skin microbiome community composition, diversity, and genetic functional enrichment. We show that WMS sequencing most accurately recapitulates microbial communities, but sequencing of hypervariable regions 1-3 of the 16S rRNA gene provides highly similar results. Sequencing of hypervariable region 4 poorly captures skin commensal microbiota, especially Propionibacterium. WMS sequencing, which is resource- and cost-intensive, provides evidence of a community’s functional potential; however, metagenome predictions based on 16S rRNA sequence tags closely approximate WMS genetic functional profiles. This work highlights the importance of experimental design for downstream results in skin microbiome surveys. PMID:26829039

  2. Comparative in Silico Analysis of Ferric Reduction Oxidase (FRO) Genes Expression Patterns in Response to Abiotic Stresses, Metal and Hormone Applications.

    PubMed

    Muhammad, Izhar; Jing, Xiu-Qing; Shalmani, Abdullah; Ali, Muhammad; Yi, Shi; Gan, Peng-Fei; Li, Wen-Qiang; Liu, Wen-Ting; Chen, Kun-Ming

    2018-05-12

    The ferric reduction oxidase (FRO) gene family is involved in various biological processes widely found in plants and may play an essential role in metal homeostasis, tolerance and intricate signaling networks in response to a number of abiotic stresses. Our study describes the identification, characterization and evolutionary relationships of FRO genes families. Here, total 50 FRO genes in Plantae and 15 ‘FRO like’ genes in non-Plantae were retrieved from 16 different species. The entire FRO genes have been divided into seven clades according to close similarity in biological and functional behavior. Three conserved domains were common in FRO genes while in two FROs sub genome have an extra NADPH-Ox domain, separating the function of plant FROs. OsFRO1 and OsFRO7 genes were expressed constitutively in rice plant. Real-time RT-PCR analysis demonstrated that the expression of OsFRO1 was high in flag leaf, and OsFRO7 gene expression was maximum in leaf blade and flag leaf. Both genes showed vigorous expressions level in response to different abiotic and hormones treatments. Moreover, the expression of both genes was also substantial under heavy metal stresses. OsFRO1 gene expression was triggered following 6 h under Zn, Pb, Co and Ni treatments, whereas OsFRO7 gene expression under Fe, Pb and Ni after 12 h, Zn and Cr after 6 h, and Mn and Co after 3 h treatments. These findings suggest the possible involvement of both the genes under abiotic and metal stress and the regulation of phytohormones. Therefore, our current work may provide the foundation for further functional characterization of rice FRO genes family.

  3. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions

    PubMed Central

    Nayak, Renuka R.; Kearns, Michael; Spielman, Richard S.; Cheung, Vivian G.

    2009-01-01

    Genes interact in networks to orchestrate cellular processes. Analysis of these networks provides insights into gene interactions and functions. Here, we took advantage of normal variation in human gene expression to infer gene networks, which we constructed using correlations in expression levels of more than 8.5 million gene pairs in immortalized B cells from three independent samples. The resulting networks allowed us to identify biological processes and gene functions. Among the biological pathways, we found processes such as translation and glycolysis that co-occur in the same subnetworks. We predicted the functions of poorly characterized genes, including CHCHD2 and TMEM111, and provided experimental evidence that TMEM111 is part of the endoplasmic reticulum-associated secretory pathway. We also found that IFIH1, a susceptibility gene of type 1 diabetes, interacts with YES1, which plays a role in glucose transport. Furthermore, genes that predispose to the same diseases are clustered nonrandomly in the coexpression network, suggesting that networks can provide candidate genes that influence disease susceptibility. Therefore, our analysis of gene coexpression networks offers information on the role of human genes in normal and disease processes. PMID:19797678

  4. Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jizhong; He, Zhili

    2010-02-28

    Project Title: Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria DOE Grant Number: DE-FG02-06ER64205 Principal Investigator: Jizhong (Joe) Zhou (University of Oklahoma) Key members: Zhili He, Aifen Zhou, Christopher Hemme, Joy Van Nostrand, Ye Deng, and Qichao Tu Collaborators: Terry Hazen, Judy Wall, Adam Arkin, Matthew Fields, Aindrila Mukhopadhyay, and David Stahl Summary Three major objectives have been conducted in the Zhou group at the University of Oklahoma (OU): (i) understanding of gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough in response to environmental stresses, (ii) development of metagenomics technologies for microbial community analysis,more » and (iii) functional characterization of microbial communities with metagenomic approaches. In the past a few years, we characterized four CRP/FNR regulators, sequenced ancestor and evolved D. vulgaris strains, and functionally analyzed those mutated genes identified in salt-adapted strains. Also, a new version of GeoChip 4.0 has been developed, which also includes stress response genes (StressChip), and a random matrix theory-based conceptual framework for identifying functional molecular ecological networks has been developed with the high throughput functional gene array hybridization data as well as pyrosequencing data from 16S rRNA genes. In addition, GeoChip and sequencing technologies as well as network analysis approaches have been used to analyze microbial communities from different habitats. Those studies provide a comprehensive understanding of gene function, regulation, network, and evolution in D. vulgaris, and microbial community diversity, composition and structure as well as their linkages with environmental factors and ecosystem functioning, which has resulted in more than 60 publications.« less

  5. Characterization of BRCA2 Mutation in a Series of Functional Assays

    DTIC Science & Technology

    2005-05-01

    9 Appendices .................................................................................... 10 Abstract Mutations in the BRCA2 gene account for...approximately 20% of all hereditary breast cancer. Many individuals undergo expensive clinical testing for mutations in the BRCA2 gene in order to...BRCA2 breast and ovarian cancer predisposition gene was identified in 1995. Mutations in the gene account for approximately 20% of all hereditary breast

  6. Functional Annotations of Paralogs: A Blessing and a Curse

    PubMed Central

    Zallot, Rémi; Harrison, Katherine J.; Kolaczkowski, Bryan; de Crécy-Lagard, Valérie

    2016-01-01

    Gene duplication followed by mutation is a classic mechanism of neofunctionalization, producing gene families with functional diversity. In some cases, a single point mutation is sufficient to change the substrate specificity and/or the chemistry performed by an enzyme, making it difficult to accurately separate enzymes with identical functions from homologs with different functions. Because sequence similarity is often used as a basis for assigning functional annotations to genes, non-isofunctional gene families pose a great challenge for genome annotation pipelines. Here we describe how integrating evolutionary and functional information such as genome context, phylogeny, metabolic reconstruction and signature motifs may be required to correctly annotate multifunctional families. These integrative analyses can also lead to the discovery of novel gene functions, as hints from specific subgroups can guide the functional characterization of other members of the family. We demonstrate how careful manual curation processes using comparative genomics can disambiguate subgroups within large multifunctional families and discover their functions. We present the COG0720 protein family as a case study. We also discuss strategies to automate this process to improve the accuracy of genome functional annotation pipelines. PMID:27618105

  7. Characterization of a Multiresistant Mosaic Plasmid from a Fish Farm Sediment Exiguobacterium sp. Isolate Reveals Aggregation of Functional Clinic-Associated Antibiotic Resistance Genes

    PubMed Central

    Yang, Jing; Wang, Chao; Wu, Jinyu; Liu, Li; Zhang, Gang

    2014-01-01

    The genus Exiguobacterium can adapt readily to, and survive in, diverse environments. Our study demonstrated that Exiguobacterium sp. strain S3-2, isolated from marine sediment, is resistant to five antibiotics. The plasmid pMC1 in this strain carries seven putative resistance genes. We functionally characterized these resistance genes in Escherichia coli, and genes encoding dihydrofolate reductase and macrolide phosphotransferase were considered novel resistance genes based on their low similarities to known resistance genes. The plasmid G+C content distribution was highly heterogeneous. Only the G+C content of one block, which shared significant similarity with a plasmid from Exiguobacterium arabatum, fit well with the mean G+C content of the host. The remainder of the plasmid was composed of mobile elements with a markedly lower G+C ratio than the host. Interestingly, five mobile elements located on pMC1 showed significant similarities to sequences found in pathogens. Our data provided an example of the link between resistance genes in strains from the environment and the clinic and revealed the aggregation of antibiotic resistance genes in bacteria isolated from fish farms. PMID:24362420

  8. TaFROG encodes a Pooideae orphan protein that interacts with SnRK1 and enhances resistance to the mycotoxigenic fungus fusarium graminearum.

    USDA-ARS?s Scientific Manuscript database

    All genomes encode taxonomically restricted ‘orphan’ genes, most of which are of unknown function. We report the functional characterization of the orphan gene TaFROG as a component of the wheat resistance to the globally important Fusarium head blight (FHB) disease. TaFROG is taxonomically restrict...

  9. A molecular characterization of the choroid plexus and stress-induced gene regulation

    PubMed Central

    Sathyanesan, M; Girgenti, M J; Banasr, M; Stone, K; Bruce, C; Guilchicek, E; Wilczak-Havill, K; Nairn, A; Williams, K; Sass, S; Duman, J G; Newton, S S

    2012-01-01

    The role of the choroid plexus (CP) in brain homeostasis is being increasingly recognized and recent studies suggest that the CP has a more important role in physiological and pathological brain functions than currently appreciated. To obtain additional insight on the CP function, we performed a proteomics and transcriptomics characterization employing a combination of high resolution tandem mass spectrometry and gene expression analyses in normal rodent brain. Using multiple protein fractionation approaches, we identified 1400 CP proteins in adult CP. Microarray-based comparison of CP gene expression with the kidney, cortex and hippocampus showed significant overlap between the CP and the kidney. CP gene profiles were validated by in situ hybridization analysis of several target genes including klotho, CLIC 6, OATP 14 and Ezrin. Immunohistochemical analyses were performed for CP and enpendyma detection of several target proteins including cytokeratin, Rab7, klotho, tissue inhibitor of metalloprotease 1 (TIMP1), MMP9 and glial fibrillary acidic protein (GFAP). The molecular functions associated with various proteins of the CP proteome indicate that it is a blood–cerebrospinal fluid (CSF) barrier that exhibits high levels of metabolic activity. We also analyzed the gene expression changes induced by stress, an exacerbating factor for many illnesses, particularly mood disorders. Chronic stress altered the expression of several genes, downregulating 5HT2C, glucocorticoid receptor and the cilia genes IFT88 and smoothened while upregulating 5HT2A, BDNF, TNFα and IL-1b. The data presented here attach additional significance to the emerging importance of CP function in brain health and CNS disease states. PMID:22781172

  10. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    PubMed

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  11. Molecular characterization of locus of enterocyte effacement pathogenicity island in shigatoxic Escherichia coli isolated from human & cattle in West Bengal, India

    PubMed Central

    Das, Suresh Chandra; Ramamurthy, Thandavanaryanalu; Ghosh, Santanu; Pazhani, Gururaja Perumal; Sen, Tista; Singh, Raghubir

    2017-01-01

    Background & objectives: Shigatoxic Escherichia coli (STEC) recovered from dairy animals of Kolkata, India, harboured the putative virulence genes; however, the animals did not exhibit clinical symptoms. Similarly, human isolates in this locality also showed variations in degree of symptoms. Hence, this study was designed to know the presence of recognized gene(s) in the locus of enterocyte effacement (LEE) pathogenicity island in these STEC isolates and functional status of the cardinal gene (eae) related to pathogenicity. Methods: Genes were characterized using polymerase chain reaction (PCR) assays, and functional status of cardinal gene (eae) was evaluated by fluorescent actin staining (FAS) assay. Variation in eae gene was determined by intimin PCR. Results: Cattle STEC isolates carried 22 genes in LEE pathogenicity island in different frequencies ranging from 5.63 to 47.88 per cent of the isolates. In human isolates, the genes namely ler, escRSTU, orf2, escC, escV, orf3 and tir that are associated with secretory function, were found to be absent and rest of the genes were present in lower frequency. Further, the cardinal gene (eae) responsible for initiation of pathogenesis was in a very low frequency in human (n=2; 10.5%) and cattle (n=11; 15.5%) isolates. None of these eae+ STEC isolates from human and cattle revealed positivity in FAS assay. Interpretation & conclusions: Majority of human STEC isolates lacked the cardinal virulence gene (eae), and genes for secretory function that are essential for facilitating pathogenesis. This may partially be attributed to low occurrence of STEC in human clinical diarrhoea in this area. Although a few isolates (11 of 71) from cattle had eae gene, they did not express phenotypically. This could be one of the reasons for not appearing of clinical symptoms in the hosts. PMID:29205193

  12. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, Carolyn M

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identifiedmore » and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.« less

  13. Characterization of a Planctomycetal Organelle: a Novel Bacterial Microcompartment for the Aerobic Degradation of Plant Saccharides

    PubMed Central

    Erbilgin, Onur; McDonald, Kent L.

    2014-01-01

    Bacterial microcompartments (BMCs) are organelles that encapsulate functionally linked enzymes within a proteinaceous shell. The prototypical example is the carboxysome, which functions in carbon fixation in cyanobacteria and some chemoautotrophs. It is increasingly apparent that diverse heterotrophic bacteria contain BMCs that are involved in catabolic reactions, and many of the BMCs are predicted to have novel functions. However, most of these putative organelles have not been experimentally characterized. In this study, we sought to discover the function of a conserved BMC gene cluster encoded in the majority of the sequenced planctomycete genomes. This BMC is especially notable for its relatively simple genetic composition, its remote phylogenetic position relative to characterized BMCs, and its apparent exclusivity to the enigmatic Verrucomicrobia and Planctomycetes. Members of the phylum Planctomycetes are known for their morphological dissimilarity to the rest of the bacterial domain: internal membranes, reproduction by budding, and lack of peptidoglycan. As a result, they are ripe for many discoveries, but currently the tools for genetic studies are very limited. We expanded the genetic toolbox for the planctomycetes and generated directed gene knockouts of BMC-related genes in Planctomyces limnophilus. A metabolic activity screen revealed that BMC gene products are involved in the degradation of a number of plant and algal cell wall sugars. Among these sugars, we confirmed that BMCs are formed and required for growth on l-fucose and l-rhamnose. Our results shed light on the functional diversity of BMCs as well as their ecological role in the planctomycetes, which are commonly associated with algae. PMID:24487526

  14. Systematic Analysis of Sequences and Expression Patterns of Drought-Responsive Members of the HD-Zip Gene Family in Maize

    PubMed Central

    Zhao, Yang; Zhou, Yuqiong; Jiang, Haiyang; Li, Xiaoyu; Gan, Defang; Peng, Xiaojian; Zhu, Suwen; Cheng, Beijiu

    2011-01-01

    Background Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). Methods and Findings In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related cis-elements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution. Conclusions Our results reveal a comprehensive overview of the maize HD-Zip gene family and provide the first step towards the selection of Zmhdz genes for cloning and functional research to uncover their roles in maize growth and development. PMID:22164299

  15. Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize.

    PubMed

    Zhao, Yang; Zhou, Yuqiong; Jiang, Haiyang; Li, Xiaoyu; Gan, Defang; Peng, Xiaojian; Zhu, Suwen; Cheng, Beijiu

    2011-01-01

    Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related cis-elements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution. Our results reveal a comprehensive overview of the maize HD-Zip gene family and provide the first step towards the selection of Zmhdz genes for cloning and functional research to uncover their roles in maize growth and development.

  16. Phylogenomics databases for facilitating functional genomics in rice.

    PubMed

    Jung, Ki-Hong; Cao, Peijian; Sharma, Rita; Jain, Rashmi; Ronald, Pamela C

    2015-12-01

    The completion of whole genome sequence of rice (Oryza sativa) has significantly accelerated functional genomics studies. Prior to the release of the sequence, only a few genes were assigned a function each year. Since sequencing was completed in 2005, the rate has exponentially increased. As of 2014, 1,021 genes have been described and added to the collection at The Overview of functionally characterized Genes in Rice online database (OGRO). Despite this progress, that number is still very low compared with the total number of genes estimated in the rice genome. One limitation to progress is the presence of functional redundancy among members of the same rice gene family, which covers 51.6 % of all non-transposable element-encoding genes. There remain a significant portion or rice genes that are not functionally redundant, as reflected in the recovery of loss-of-function mutants. To more accurately analyze functional redundancy in the rice genome, we have developed a phylogenomics databases for six large gene families in rice, including those for glycosyltransferases, glycoside hydrolases, kinases, transcription factors, transporters, and cytochrome P450 monooxygenases. In this review, we introduce key features and applications of these databases. We expect that they will serve as a very useful guide in the post-genomics era of research.

  17. HoloVir: A Workflow for Investigating the Diversity and Function of Viruses in Invertebrate Holobionts

    PubMed Central

    Laffy, Patrick W.; Wood-Charlson, Elisha M.; Turaev, Dmitrij; Weynberg, Karen D.; Botté, Emmanuelle S.; van Oppen, Madeleine J. H.; Webster, Nicole S.; Rattei, Thomas

    2016-01-01

    Abundant bioinformatics resources are available for the study of complex microbial metagenomes, however their utility in viral metagenomics is limited. HoloVir is a robust and flexible data analysis pipeline that provides an optimized and validated workflow for taxonomic and functional characterization of viral metagenomes derived from invertebrate holobionts. Simulated viral metagenomes comprising varying levels of viral diversity and abundance were used to determine the optimal assembly and gene prediction strategy, and multiple sequence assembly methods and gene prediction tools were tested in order to optimize our analysis workflow. HoloVir performs pairwise comparisons of single read and predicted gene datasets against the viral RefSeq database to assign taxonomy and additional comparison to phage-specific and cellular markers is undertaken to support the taxonomic assignments and identify potential cellular contamination. Broad functional classification of the predicted genes is provided by assignment of COG microbial functional category classifications using EggNOG and higher resolution functional analysis is achieved by searching for enrichment of specific Swiss-Prot keywords within the viral metagenome. Application of HoloVir to viral metagenomes from the coral Pocillopora damicornis and the sponge Rhopaloeides odorabile demonstrated that HoloVir provides a valuable tool to characterize holobiont viral communities across species, environments, or experiments. PMID:27375564

  18. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene

    PubMed Central

    Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746

  19. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Cancer.gov

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  20. CHARACTERIZATION AND APPLICATIONS OF REDUCTIVE DEHALOGENASE GENES IN ENHANCEMENT AND MONITORING OF BIODEGRADATION OF CHLORINATED POLLUTANTS

    EPA Science Inventory

    Of the currently known reductive dehalogenase genes, few have functions assigned, and it seems likely that many more remain to be discovered. Very little is known of the ecology of the organisms that harbor these genes, that encode enzymes that are key to the anaerobic dechlorina...

  1. Characterization of WRKY transcription factors in Solanum lycopersicum reveals collinearity and their expression patterns under cold treatment.

    PubMed

    Chen, Lin; Yang, Yang; Liu, Can; Zheng, Yanyan; Xu, Mingshuang; Wu, Na; Sheng, Jiping; Shen, Lin

    2015-08-28

    WRKY transcription factors play an important role in cold defense of plants. However, little information is available about the cold-responsive WRKYs in tomato (Solanum lycopersicum). In the present study, a complete characterization of this gene family was described. Eighty WRKY genes in the tomato genome were identified. Almost all WRKY genes contain putative stress-responsive cis-elements in their promoter regions. Segmental duplications contributed significantly to the expansion of the SlWRKY gene family. Transcriptional analysis revealed notable differential expression in tomato tissues and expression patterns under cold stress, which indicated wide functional divergence in this family. Ten WRKYs in tomato were strongly induced more than 2-fold during cold stress. These genes represented candidate genes for future functional analysis of WRKYs involved in the cold-related signal pathways. Our data provide valuable information about tomato WRKY proteins and form a foundation for future studies of these proteins, especially for those that play an important role in response to cold stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. An integrated and comparative approach towards identification, characterization and functional annotation of candidate genes for drought tolerance in sorghum (Sorghum bicolor (L.) Moench).

    PubMed

    Woldesemayat, Adugna Abdi; Van Heusden, Peter; Ndimba, Bongani K; Christoffels, Alan

    2017-12-22

    Drought is the most disastrous abiotic stress that severely affects agricultural productivity worldwide. Understanding the biological basis of drought-regulated traits, requires identification and an in-depth characterization of genetic determinants using model organisms and high-throughput technologies. However, studies on drought tolerance have generally been limited to traditional candidate gene approach that targets only a single gene in a pathway that is related to a trait. In this study, we used sorghum, one of the model crops that is well adapted to arid regions, to mine genes and define determinants for drought tolerance using drought expression libraries and RNA-seq data. We provide an integrated and comparative in silico candidate gene identification, characterization and annotation approach, with an emphasis on genes playing a prominent role in conferring drought tolerance in sorghum. A total of 470 non-redundant functionally annotated drought responsive genes (DRGs) were identified using experimental data from drought responses by employing pairwise sequence similarity searches, pathway and interpro-domain analysis, expression profiling and orthology relation. Comparison of the genomic locations between these genes and sorghum quantitative trait loci (QTLs) showed that 40% of these genes were co-localized with QTLs known for drought tolerance. The genome reannotation conducted using the Program to Assemble Spliced Alignment (PASA), resulted in 9.6% of existing single gene models being updated. In addition, 210 putative novel genes were identified using AUGUSTUS and PASA based analysis on expression dataset. Among these, 50% were single exonic, 69.5% represented drought responsive and 5.7% were complete gene structure models. Analysis of biochemical metabolism revealed 14 metabolic pathways that are related to drought tolerance and also had a strong biological network, among categories of genes involved. Identification of these pathways, signifies the interplay of biochemical reactions that make up the metabolic network, constituting fundamental interface for sorghum defence mechanism against drought stress. This study suggests untapped natural variability in sorghum that could be used for developing drought tolerance. The data presented here, may be regarded as an initial reference point in functional and comparative genomics in the Gramineae family.

  3. Comparative functional characterization of the CSR-1 22G-RNA pathway in Caenorhabditis nematodes.

    PubMed

    Tu, Shikui; Wu, Monica Z; Wang, Jie; Cutter, Asher D; Weng, Zhiping; Claycomb, Julie M

    2015-01-01

    As a champion of small RNA research for two decades, Caenorhabditis elegans has revealed the essential Argonaute CSR-1 to play key nuclear roles in modulating chromatin, chromosome segregation and germline gene expression via 22G-small RNAs. Despite CSR-1 being preserved among diverse nematodes, the conservation and divergence in function of the targets of small RNA pathways remains poorly resolved. Here we apply comparative functional genomic analysis between C. elegans and Caenorhabditis briggsae to characterize the CSR-1 pathway, its targets and their evolution. C. briggsae CSR-1-associated small RNAs that we identified by immunoprecipitation-small RNA sequencing overlap with 22G-RNAs depleted in cbr-csr-1 RNAi-treated worms. By comparing 22G-RNAs and target genes between species, we defined a set of CSR-1 target genes with conserved germline expression, enrichment in operons and more slowly evolving coding sequences than other genes, along with a small group of evolutionarily labile targets. We demonstrate that the association of CSR-1 with chromatin is preserved, and show that depletion of cbr-csr-1 leads to chromosome segregation defects and embryonic lethality. This first comparative characterization of a small RNA pathway in Caenorhabditis establishes a conserved nuclear role for CSR-1 and highlights its key role in germline gene regulation across multiple animal species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. The Prx1 limb enhancers: targeted gene expression in developing zebrafish pectoral fins.

    PubMed

    Hernández-Vega, Amayra; Minguillón, Carolina

    2011-08-01

    Limbs represent an excellent model to study the induction, growth, and patterning of several organs. A breakthrough to study gene function in various tissues has been the characterization of regulatory elements that allow tissue-specific interference of gene function. The mouse Prx1 promoter has been used to generate limb-specific mutants and overexpress genes in tetrapod limbs. Although zebrafish possess advantages that favor their use to study limb morphogenesis, there is no driver described suitable for specifically interfering with gene function in developing fins. We report the generation of zebrafish lines that express enhanced green fluorescent protein (EGFP) driven by the mouse Prx1 enhancer in developing pectoral fins. We also describe the expression pattern of the zebrafish prrx1 genes and identify three conserved non-coding elements (CNEs) that we use to generate fin-specific EGFP reporter lines. Finally, we show that the mouse and zebrafish regulatory elements may be used to modify gene function in pectoral fins. Copyright © 2011 Wiley-Liss, Inc.

  5. Functional characterization of the vitellogenin promoter in the silkworm, Bombyx mori.

    PubMed

    Xu, J; Wang, Y Q; Li, Z Q; Ling, L; Zeng, B S; You, L; Chen, Y Z; Aslam, A F M; Huang, Y P; Tan, A J

    2014-10-01

    Genetic transformation and genome editing technologies have been successfully established in the lepidopteran insect model, the domesticated silkworm, Bombyx mori, providing great potential for functional genomics and practical applications. However, the current lack of cis-regulatory elements in B. mori gene manipulation research limits further exploitation in functional gene analysis. In the present study, we characterized a B. mori endogenous promoter, Bmvgp, which is a 798-bp DNA sequence adjacent to the 5'-end of the vitellogenin gene (Bmvg). PiggyBac-based transgenic analysis shows that Bmvgp precisely directs expression of a reporter gene, enhanced green fluorescent protein (EGFP), in a sex-, tissue- and stage-specific manner. In transgenic animals, EGFP expression can be detected in the female fat body from larval-pupal ecdysis to the following pupal and adult stage. Furthermore, in vitro and in vivo experiments revealed that EGFP expression can be activated by 20-hydroxyecdysone, which is consistent with endogenous Bmvg expression. These data indicate that Bmvgp is an effective endogenous cis-regulatory element in B. mori. © 2014 The Royal Entomological Society.

  6. Using expression genetics to study the neurobiology of ethanol and alcoholism.

    PubMed

    Farris, Sean P; Wolen, Aaron R; Miles, Michael F

    2010-01-01

    Recent simultaneous progress in human and animal model genetics and the advent of microarray whole genome expression profiling have produced prodigious data sets on genetic loci, potential candidate genes, and differential gene expression related to alcoholism and ethanol behaviors. Validated target genes or gene networks functioning in alcoholism are still of meager proportions. Genetical genomics, which combines genetic analysis of both traditional phenotypes and whole genome expression data, offers a potential methodology for characterizing brain gene networks functioning in alcoholism. This chapter will describe concepts, approaches, and recent findings in the field of genetical genomics as it applies to alcohol research. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Evolution of the bovine lysozyme gene family: changes in gene expression and reversion of function.

    PubMed

    Irwin, D M

    1995-09-01

    Recruitment of lysozyme to a digestive function in ruminant artiodactyls is associated with amplification of the gene. At least four of the approximately ten genes are expressed in the stomach, and several are expressed in nonstomach tissues. Characterization of additional lysozymelike sequences in the bovine genome has identified most, if not all, of the members of this gene family. There are at least six stomachlike lysozyme genes, two of which are pseudogenes. The stomach lysozyme pseudogenes show a pattern of concerted evolution similar to that of the functional stomach genes. At least four nonstomach lysozyme genes exist. The nonstomach lysozyme genes are not monophyletic. A gene encoding a tracheal lysozyme was isolated, and the stomach lysozyme of advanced ruminants was found to be more closely related to the tracheal lysozyme than to the stomach lysozyme of the camel or other nonstomach lysozyme genes of ruminants. The tracheal lysozyme shares with stomach lysozymes of advanced ruminants the deletion of amino acid 103, and several other adaptive sequence characteristics of stomach lysozymes. I suggest here that tracheal lysozyme has reverted from a functional stomach lysozyme. Tracheal lysozyme then represents a second instance of a change in lysozyme gene expression and function within ruminants.

  8. A review of the immune molecules in the sea cucumber.

    PubMed

    Xue, Zhuang; Li, Hui; Wang, Xiuli; Li, Xia; Liu, Yang; Sun, Jing; Liu, Cenjie

    2015-05-01

    It is very important to identify and characterize the immune-related genes that respond to pathogens. Until recently, only some of the immune-related genes in sea cucumbers had been characterized. Their expression patterns after pathogen challenges have been analyzed via expressed sequence tag libraries, microarray studies and proteomic approaches. These genes include lectins, antimicrobial peptides, lysozyme, enzymes, clotting protein, pattern recognition proteins, Toll receptors, complement C3 and other humoral factors that might participate in the innate immune system of sea cucumbers. Although the participation of some of these immune molecules in the sea cucumber's innate immune defense against invading pathogens has been demonstrated, the functions of many of the molecules remain unclear. This review focuses on the discovery and functional characterization of the immune-related molecules from the sea cucumber for the first time and provides new insights into the immune mechanisms of the sea cucumber, which opens new possibilities for developing drugs for novel anti-bacterial and antiviral applications in fisheries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Cytochrome b5 dependent C-5(6) sterol desaturase DES5A from the endoplasmic reticulum of Tetrahymena thermophila complements ergosterol biosynthesis mutants in Saccharomyces cerevisiae

    PubMed Central

    Poklepovich, Tomas J.; Rinaldi, Mauro A.; Tomazic, Mariela L.; Favale, Nicolas O.; Turkewitz, Aaron P.; Nudel, Clara B.; Nusblat, Alejandro D.

    2012-01-01

    Tetrahymena thermophila is a free-living ciliate with no exogenous sterol requirement. However, it can perform several modifications on externally added sterols including desaturation at C5(6), C7(8), and C22(23). Sterol desaturases in Tetrahymena are microsomal enzymes that require Cyt b5, Cyt b5 reductase, oxygen, and reduced NAD(P)H for their activity, and some of the genes encoding these functions have recently been identified. The DES5A gene encodes a C-5(6) sterol desaturase, as shown by gene knockout in Tetrahymena. To confirm and extend that result, and to develop new approaches to gene characterization in Tetrahymena, we have now, expressed DES5A in Saccharomyces cerevisiae. The DES5A gene was codon optimized and expressed in a yeast mutant, erg3Δ, which is disrupted for the gene encoding the S. cerevisiae C-5(6) sterol desaturase ERG3. The complemented strain was able to accumulate 74% of the wild type level of ergosterol, and also lost the hypersensitivity to cycloheximide associated with the lack of ERG3 function. C-5(6) sterol desaturases are expected to function at the endoplasmic reticulum. Consistent with this, a GFP-tagged copy of Des5Ap was localized to the endoplasmic reticulum in both Tetrahymena and yeast. This work shows for the first time that both function and localization are conserved for a microsomal enzyme between ciliates and fungi, notwithstanding the enormous evolutionary distance between these lineages. The results suggest that heterologous expression of ciliate genes in S. cerevisiae provides a useful tool for the characterization of genes in Tetrahymena, including genes encoding membrane protein complexes. PMID:22982564

  10. Analysis of the Prefoldin Gene Family in 14 Plant Species

    PubMed Central

    Cao, Jun

    2016-01-01

    Prefoldin is a hexameric molecular chaperone complex present in all eukaryotes and archaea. The evolution of this gene family in plants is unknown. Here, I identified 140 prefoldin genes in 14 plant species. These prefoldin proteins were divided into nine groups through phylogenetic analysis. Highly conserved gene organization and motif distribution exist in each prefoldin group, implying their functional conservation. I also observed the segmental duplication of maize prefoldin gene family. Moreover, a few functional divergence sites were identified within each group pairs. Functional network analyses identified 78 co-expressed genes, and most of them were involved in carrying, binding and kinase activity. Divergent expression profiles of the maize prefoldin genes were further investigated in different tissues and development periods and under auxin and some abiotic stresses. I also found a few cis-elements responding to abiotic stress and phytohormone in the upstream sequences of the maize prefoldin genes. The results provided a foundation for exploring the characterization of the prefoldin genes in plants and will offer insights for additional functional studies. PMID:27014333

  11. In Vitro Characterization and Concerted Function of Three Core Enzymes of a Glycyl Radical Enzyme - Associated Bacterial Microcompartment.

    PubMed

    Zarzycki, Jan; Sutter, Markus; Cortina, Niña Socorro; Erb, Tobias J; Kerfeld, Cheryl A

    2017-02-16

    Many bacteria encode proteinaceous bacterial microcompartments (BMCs) that encapsulate sequential enzymatic reactions of diverse metabolic pathways. Well-characterized BMCs include carboxysomes for CO 2 -fixation, and propanediol- and ethanolamine-utilizing microcompartments that contain B 12 -dependent enzymes. Genes required to form BMCs are typically organized in gene clusters, which promoted their distribution across phyla by horizontal gene transfer. Recently, BMCs associated with glycyl radical enzymes (GREs) were discovered; these are widespread and comprise at least three functionally distinct types. Previously, we predicted one type of these GRE-associated microcompartments (GRMs) represents a B 12 -independent propanediol-utilizing BMC. Here we functionally and structurally characterize enzymes of the GRM of Rhodopseudomonas palustris BisB18 and demonstrate their concerted function in vitro. The GRM signature enzyme, the GRE, is a dedicated 1,2-propanediol dehydratase with a new type of intramolecular encapsulation peptide. It forms a complex with its activating enzyme and, in conjunction with an aldehyde dehydrogenase, converts 1,2-propanediol to propionyl-CoA. Notably, homologous GRMs are also encoded in pathogenic Escherichia coli strains. Our high-resolution crystal structures of the aldehyde dehydrogenase lead to a revised reaction mechanism. The successful in vitro reconstitution of a part of the GRM metabolism provides insights into the metabolic function and steps in the assembly of this BMC.

  12. In Vitro Characterization and Concerted Function of Three Core Enzymes of a Glycyl Radical Enzyme - Associated Bacterial Microcompartment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarzycki, Jan; Sutter, Markus; Cortina, Niña Socorro

    Many bacteria encode proteinaceous bacterial microcompartments (BMCs) that encapsulate sequential enzymatic reactions of diverse metabolic pathways. Well-characterized BMCs include carboxysomes for CO 2-fixation, and propanediol- and ethanolamine-utilizing microcompartments that contain B 12-dependent enzymes. Genes thus required to form BMCs are typically organized in gene clusters, which promoted their distribution across phyla by horizontal gene transfer. Recently, BMCs associated with glycyl radical enzymes (GREs) were discovered; these are widespread and comprise at least three functionally distinct types. Previously, we predicted one type of these GRE-associated microcompartments (GRMs) represents a B 12-independent propanediol-utilizing BMC. We functionally and structurally characterize enzymes of themore » GRM of Rhodopseudomonas palustris BisB18 and demonstrate their concerted function in vitro. The GRM signature enzyme, the GRE, is a dedicated 1,2-propanediol dehydratase with a new type of intramolecular encapsulation peptide. It forms a complex with its activating enzyme and, in conjunction with an aldehyde dehydrogenase, converts 1,2-propanediol to propionyl-CoA. Notably, homologous GRMs are also encoded in pathogenic Escherichia coli strains. Our high-resolution crystal structures of the aldehyde dehydrogenase lead to a revised reaction mechanism. The successful in vitro reconstitution of a part of the GRM metabolism provides insights into the metabolic function and steps in the assembly of this BMC.« less

  13. In Vitro Characterization and Concerted Function of Three Core Enzymes of a Glycyl Radical Enzyme - Associated Bacterial Microcompartment

    DOE PAGES

    Zarzycki, Jan; Sutter, Markus; Cortina, Niña Socorro; ...

    2017-02-16

    Many bacteria encode proteinaceous bacterial microcompartments (BMCs) that encapsulate sequential enzymatic reactions of diverse metabolic pathways. Well-characterized BMCs include carboxysomes for CO 2-fixation, and propanediol- and ethanolamine-utilizing microcompartments that contain B 12-dependent enzymes. Genes thus required to form BMCs are typically organized in gene clusters, which promoted their distribution across phyla by horizontal gene transfer. Recently, BMCs associated with glycyl radical enzymes (GREs) were discovered; these are widespread and comprise at least three functionally distinct types. Previously, we predicted one type of these GRE-associated microcompartments (GRMs) represents a B 12-independent propanediol-utilizing BMC. We functionally and structurally characterize enzymes of themore » GRM of Rhodopseudomonas palustris BisB18 and demonstrate their concerted function in vitro. The GRM signature enzyme, the GRE, is a dedicated 1,2-propanediol dehydratase with a new type of intramolecular encapsulation peptide. It forms a complex with its activating enzyme and, in conjunction with an aldehyde dehydrogenase, converts 1,2-propanediol to propionyl-CoA. Notably, homologous GRMs are also encoded in pathogenic Escherichia coli strains. Our high-resolution crystal structures of the aldehyde dehydrogenase lead to a revised reaction mechanism. The successful in vitro reconstitution of a part of the GRM metabolism provides insights into the metabolic function and steps in the assembly of this BMC.« less

  14. Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen

    PubMed Central

    Blyth, Julie; Makrantoni, Vasso; Barton, Rachael E.; Spanos, Christos; Rappsilber, Juri; Marston, Adele L.

    2018-01-01

    Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis. PMID:29259000

  15. Functional Analysis of the Polyketide Synthase Genes in the Filamentous Fungus Gibberella zeae (Anamorph Fusarium graminearum)

    PubMed Central

    Gaffoor, Iffa; Brown, Daren W.; Plattner, Ron; Proctor, Robert H.; Qi, Weihong; Trail, Frances

    2005-01-01

    Polyketides are a class of secondary metabolites that exhibit a vast diversity of form and function. In fungi, these compounds are produced by large, multidomain enzymes classified as type I polyketide synthases (PKSs). In this study we identified and functionally disrupted 15 PKS genes from the genome of the filamentous fungus Gibberella zeae. Five of these genes are responsible for producing the mycotoxins zearalenone, aurofusarin, and fusarin C and the black perithecial pigment. A comprehensive expression analysis of the 15 genes revealed diverse expression patterns during grain colonization, plant colonization, sexual development, and mycelial growth. Expression of one of the PKS genes was not detected under any of 18 conditions tested. This is the first study to genetically characterize a complete set of PKS genes from a single organism. PMID:16278459

  16. Genome-wide characterization of the WRKY gene family in radish (Raphanus sativus L.) reveals its critical functions under different abiotic stresses.

    PubMed

    Karanja, Bernard Kinuthia; Fan, Lianxue; Xu, Liang; Wang, Yan; Zhu, Xianwen; Tang, Mingjia; Wang, Ronghua; Zhang, Fei; Muleke, Everlyne M'mbone; Liu, Liwang

    2017-11-01

    The radish WRKY gene family was genome-widely identified and played critical roles in response to multiple abiotic stresses. The WRKY is among the largest transcription factors (TFs) associated with multiple biological activities for plant survival, including control response mechanisms against abiotic stresses such as heat, salinity, and heavy metals. Radish is an important root vegetable crop and therefore characterization and expression pattern investigation of WRKY transcription factors in radish is imperative. In the present study, 126 putative WRKY genes were retrieved from radish genome database. Protein sequence and annotation scrutiny confirmed that RsWRKY proteins possessed highly conserved domains and zinc finger motif. Based on phylogenetic analysis results, RsWRKYs candidate genes were divided into three groups (Group I, II and III) with the number 31, 74, and 20, respectively. Additionally, gene structure analysis revealed that intron-exon patterns of the WRKY genes are highly conserved in radish. Linkage map analysis indicated that RsWRKY genes were distributed with varying densities over nine linkage groups. Further, RT-qPCR analysis illustrated the significant variation of 36 RsWRKY genes under one or more abiotic stress treatments, implicating that they might be stress-responsive genes. In total, 126 WRKY TFs were identified from the R. sativus genome wherein, 35 of them showed abiotic stress-induced expression patterns. These results provide a genome-wide characterization of RsWRKY TFs and baseline for further functional dissection and molecular evolution investigation, specifically for improving abiotic stress resistances with an ultimate goal of increasing yield and quality of radish.

  17. Cloning and characterization of the ONAC106 gene from Oryza sativa cultivar Kuku Belang

    NASA Astrophysics Data System (ADS)

    Basri, Khairunnisa; Sukiran, Noor Liyana; Zainal, Zamri

    2016-11-01

    Plants possess different mechanisms in stress response, where induction of stress-responsive genes provides tolerance to unfavorable conditions. Stress-responsive genes are characterized for functional and regulatory genes that help in overcoming stress by molecular, biochemical and morphological adaptations. NAC transcription factors are one of the regulatory proteins that involved in stress signaling pathway. A putative NAC transcription factor, ONAC016 was identified from drought transcriptomic data. Our data suggested that ONAC106 was induced by drought, but its function in abiotic stress is still unclear. In silico analysis of ONAC106 showed that this gene encodes 334 amino acids, and its protein consists of NAM (No Apical Meristem) domain. The orthologue of ONAC106 was present in several Poaceae family members, suggesting that ONAC106 is unique to monocot plants only. We found that ONAC106 was induced by salt and cold stresses, indicating that this gene involves in abiotic stress response. In addition, we also found that ONAC106 might function in defense response to pathogen invasion. The ABRE (Abscisic Acid Regulatory Element) cis-element was identified in the promoter region of ONAC106, suggesting that it may involve in the abscisic acid (ABA)-dependent signaling pathway. Based on this preliminary result, we hypothesize that ONAC106 may play a role in abiotic stress response by regulating ABA-responsive genes.

  18. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    PubMed Central

    Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A

    2009-01-01

    Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an important step towards the identification of all genes in the citrus genome. Furthermore, public availability of the cDNA clones generated in this study, and not only their sequence, enables testing of the biological function of the genes represented in the collection. Expression of the citrus SEP3 homologue, CitrSEP, in Arabidopsis results in early flowering, along with other phenotypes resembling the over-expression of the Arabidopsis SEPALLATA genes. Our findings suggest that the members of the SEP gene family play similar roles in these quite distant plant species. PMID:19747386

  19. Functional Genomic Screening Approaches in Mechanistic Toxicology and Potential Future Applications of CRISPR-Cas9

    PubMed Central

    Shen, Hua; McHale, Cliona M.; Smith, Martyn T; Zhang, Luoping

    2015-01-01

    Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells, have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide unprecedented mechanistic insight in the field of modern toxicology. PMID:26041264

  20. Construction of a Bacterial Cell that Contains Only the Set of Essential Genes Necessary to Impart Life

    DTIC Science & Technology

    2014-08-15

    characterized genes from Bacillus subtilis , that is presented in a constitutive expression module. If the B. subtilis gene containing M. mycoides mutant is...essential gene MMYC_0361 with the rlmH gene from Bacillus subtilis . Mycoplasma mycoides containing the B. subtilis rlmH was viable. This tells us the...viable than the function of the conserved hypothetical gene is the same as the input B. subtilis gene. Table of Contents: Section

  1. RNA Sequencing Reveals Differences between the Global Transcriptomes of Salmonella enterica Serovar Enteritidis Strains with High and Low Pathogenicities

    PubMed Central

    2014-01-01

    Salmonella enterica serovar Enteritidis is one of the important causes of bacterial food-borne gastroenteritis worldwide. Field strains of S. Enteritidis are relatively genetically homogeneous; however, they show extensive phenotypic diversity and differences in virulence potential. RNA sequencing (RNA-Seq) was used to characterize differences in the global transcriptome between several genetically similar but phenotypically diverse poultry-associated field strains of S. Enteritidis grown in laboratory medium at avian body temperature (42°C). These S. Enteritidis strains were previously characterized as high-pathogenicity (HP; n = 3) and low-pathogenicity (LP; n = 3) strains based on both in vitro and in vivo virulence assays. Using the negative binomial distribution-based statistical tools edgeR and DESeq, 252 genes were identified as differentially expressed in LP strains compared with their expression in the HP strains (P < 0.05). A majority of genes (235, or 93.2%) showed significantly reduced expression, whereas a few genes (17, or 6.8%) showed increased expression in all LP strains compared with HP strains. LP strains showed a unique transcriptional profile that is characterized by significantly reduced expression of several transcriptional regulators and reduced expression of genes involved in virulence (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-5, and fimbrial and motility genes) and protection against osmotic, oxidative, and other stresses, such as iron-limiting conditions commonly encountered within the host. Several functionally uncharacterized genes also showed reduced expression. This study provides a first concise view of the global transcriptional differences between field strains of S. Enteritidis with various levels of pathogenicity, providing the basis for future functional characterization of several genes with potential roles in virulence or stress regulation of S. Enteritidis. PMID:24271167

  2. Molecular characterization of FXI deficiency.

    PubMed

    Berber, Ergul

    2011-02-01

    Factor XI (FXI) deficiency is a rare autosomal bleeding disease associated with genetic defects in the FXI gene. It is a heterogeneous disorder with variable tendency in bleeding and variable causative FXI gene mutations. It is characterized as a cross-reacting material-negative (CRM-) FXI deficiency due to decreased FXI levels or cross-reacting material-positive (CRM+) FXI deficiency due to impaired FXI function. Increasing number of mutations has been reported in FXI mutation database, and most of the mutations are affecting serine protease (SP) domain of the protein. Functional characterization for the mutations helps to better understand the molecular basis of FXI deficiency. Prevalence of the disease is higher in certain populations such as Ashkenazi Jews. The purpose of this review is to give an overview of the molecular basis of congenital FXI deficiency.

  3. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    DOE PAGES

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; ...

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstratemore » that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.« less

  4. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas.

    PubMed

    Li, Chaoqiong; Luo, Li; Fu, Qiantang; Niu, Longjian; Xu, Zeng-Fu

    2014-05-08

    Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) -like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha.

  5. An integrated multi-layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize.

    PubMed

    Wen, Weiwei; Jin, Min; Li, Kun; Liu, Haijun; Xiao, Yingjie; Zhao, Mingchao; Alseekh, Saleh; Li, Wenqiang; de Abreu E Lima, Francisco; Brotman, Yariv; Willmitzer, Lothar; Fernie, Alisdair R; Yan, Jianbing

    2018-03-01

    Primary metabolism plays a pivotal role in normal plant growth, development and reproduction. As maize is a major crop worldwide, the primary metabolites produced by maize plants are of immense importance from both calorific and nutritional perspectives. Here a genome-wide association study (GWAS) of 61 primary metabolites using a maize association panel containing 513 inbred lines identified 153 significant loci associated with the level of these metabolites in four independent tissues. The genome-wide expression level of 760 genes was also linked with metabolite levels within the same tissue. On average, the genetic variants at each locus or transcriptional variance of each gene identified here were estimated to have a minor effect (4.4-7.8%) on primary metabolic variation. Thirty-six loci or genes were prioritized as being worthy of future investigation, either with regard to functional characterization or for their utility for genetic improvement. This target list includes the well-known opaque 2 (O2) and lkr/sdh genes as well as many less well-characterized genes. During our investigation of these 36 loci, we analyzed the genetic components and variations underlying the trehalose, aspartate and aromatic amino acid pathways, thereby functionally characterizing four genes involved in primary metabolism in maize. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  6. Genomic organization and chromosomal localization of the gene TCF15 encoding the early mesodermal basic helix-loop-helix factor bHLH-EC2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidai, H.; Quertermous, E.E.; Quertermous, T.

    1995-12-10

    bHLH-EC2 is a recently characterized member of a growing family of basic helix-loop-helix transcription factors. This family includes bHLH factors such as twist, which appear to be primarily involved in early mesodermal differentiation, and bHLH factors such as TAL-1, which have been characterized through their association with chromosomal breakpoints associated with T-cell leukemias. To provide for studies aimed at understanding the genetic regulation of bHLH-EC2, we have characterized the organization of this gene and conducted preliminary studies of the transcriptional activity of the upstream promoter region. The mouse bHLH-EC2 gene was found to consist of two exons separated by amore » 5-kb intron, an organization pattern similar to the mouse twist gene. The transcription initiation site was identified by RNase protection assay and primer extension analysis. Linked promoter-reporter gene transfection experiments in cultured cells indicated that while the identified upstream sequence can function to promote transcription, it does not function in a cell-specific fashion. To investigate the possible association of bHLH-EC2 with hematological malignancy, the chromosomal location of this gene in the human was mapped by fluorescence in situ hybridization and assigned to chromosome band 20p13. 16 refs., 3 figs.« less

  7. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    PubMed Central

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  8. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    PubMed

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-02

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  9. Activity-based metagenomic screening and biochemical characterization of bovine ruminal protozoan glycoside hydrolases.

    PubMed

    Findley, Seth D; Mormile, Melanie R; Sommer-Hurley, Andrea; Zhang, Xue-Cheng; Tipton, Peter; Arnett, Krista; Porter, James H; Kerley, Monty; Stacey, Gary

    2011-11-01

    The rumen, the foregut of herbivorous ruminant animals such as cattle, functions as a bioreactor to process complex plant material. Among the numerous and diverse microbes involved in ruminal digestion are the ruminal protozoans, which are single-celled, ciliated eukaryotic organisms. An activity-based screen was executed to identify genes encoding fibrolytic enzymes present in the metatranscriptome of a bovine ruminal protozoan-enriched cDNA expression library. Of the four novel genes identified, two were characterized in biochemical assays. Our results provide evidence for the effective use of functional metagenomics to retrieve novel enzymes from microbial populations that cannot be maintained in axenic cultures.

  10. Genetic resources offer efficient tools for rice functional genomics research.

    PubMed

    Lo, Shuen-Fang; Fan, Ming-Jen; Hsing, Yue-Ie; Chen, Liang-Jwu; Chen, Shu; Wen, Ien-Chie; Liu, Yi-Lun; Chen, Ku-Ting; Jiang, Mirng-Jier; Lin, Ming-Kuang; Rao, Meng-Yen; Yu, Lin-Chih; Ho, Tuan-Hua David; Yu, Su-May

    2016-05-01

    Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops. © 2015 John Wiley & Sons Ltd.

  11. Genome-wide identification of bacterial plant colonization genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Benjamin J.; Feltcher, Meghan E.; Waters, Robert J.

    Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44more » other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Here, our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes.« less

  12. Genome-wide identification of bacterial plant colonization genes

    DOE PAGES

    Cole, Benjamin J.; Feltcher, Meghan E.; Waters, Robert J.; ...

    2017-09-22

    Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44more » other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Here, our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes.« less

  13. Characterization of gonadal transcriptomes from the turbot (Scophthalmus maximus).

    PubMed

    Hu, Yulong; Huang, Meng; Wang, Weiji; Guan, Jiantao; Kong, Jie

    2016-01-01

    The mechanisms underlying sexual reproduction and sex ratio determination remains unclear in turbot, a flatfish of great commercial value. And there is limited information in the turbot database regarding genes related to the reproductive system. Here, we conducted high-throughput transcriptome profiling of turbot gonad tissues to better understand their reproductive functions and to supply essential gene sequence information for marker-assisted selection programs in the turbot industry. In this study, two gonad libraries representing sex differences in Scophthalmus maximus yielded 453 818 high-quality reads that were assembled into 24 611 contigs and 33 713 singletons by using 454 pyrosequencing, 13 936 contigs and singletons (CS) of which were annotated using BLASTx. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses revealed that various biological functions and processes were associated with many of the annotated CS. Expression analyses showed that 510 genes were differentially expressed in males versus females; 80% of these genes were annotated. In addition, 6484 and 6036 single nucleotide polymorphisms (SNPs) were identified in male and female libraries, respectively. This transcriptome resource will serve as the foundation for cDNA or SNP microarray construction, gene expression characterization, and sex-specific linkage mapping in turbot.

  14. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple.

    PubMed

    Nieuwenhuizen, Niels J; Green, Sol A; Chen, Xiuyin; Bailleul, Estelle J D; Matich, Adam J; Wang, Mindy Y; Atkinson, Ross G

    2013-02-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple 'Royal Gala' expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies.

  15. Functional Genomics Reveals That a Compact Terpene Synthase Gene Family Can Account for Terpene Volatile Production in Apple1[W

    PubMed Central

    Nieuwenhuizen, Niels J.; Green, Sol A.; Chen, Xiuyin; Bailleul, Estelle J.D.; Matich, Adam J.; Wang, Mindy Y.; Atkinson, Ross G.

    2013-01-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple ‘Royal Gala’ expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150

  16. Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli.

    PubMed

    Gao, Jie; Lan, Ting

    2016-01-19

    Late embryogenesis abundant (LEA) proteins are a large and highly diverse gene family present in a wide range of plant species. LEAs are proposed to play a role in various stress tolerance responses. Our study represents the first-ever survey of LEA proteins and their encoding genes in a widely distributed pine (Pinus tabuliformis) in China. Twenty-three LEA genes were identified from the P. tabuliformis belonging to seven groups. Proteins with repeated motifs are an important feature specific to LEA groups. Ten of 23 pine LEA genes were selectively expressed in specific tissues, and showed expression divergence within each group. In addition, we selected 13 genes representing each group and introduced theses genes into Escherichia coli to assess the protective function of PtaLEA under heat and salt stresses. Compared with control cells, the E. coli cells expressing PtaLEA fusion protein exhibited enhanced salt and heat resistance and viability, indicating the protein may play a protective role in cells under stress conditions. Furthermore, among these enhanced tolerance genes, a certain extent of function divergence appeared within a gene group as well as between gene groups, suggesting potential functional diversity of this gene family in conifers.

  17. Functional Gene Analysis of Freshwater Iron-Rich Flocs at Circumneutral pH and Isolation of a Stalk-Forming Microaerophilic Iron-Oxidizing Bacterium

    PubMed Central

    Chan, Clara; Itoh, Takashi; Ohkuma, Moriya

    2013-01-01

    Iron-rich flocs often occur where anoxic water containing ferrous iron encounters oxygenated environments. Culture-independent molecular analyses have revealed the presence of 16S rRNA gene sequences related to diverse bacteria, including autotrophic iron oxidizers and methanotrophs in iron-rich flocs; however, the metabolic functions of the microbial communities remain poorly characterized, particularly regarding carbon cycling. In the present study, we cultivated iron-oxidizing bacteria (FeOB) and performed clone library analyses of functional genes related to carbon fixation and methane oxidization (cbbM and pmoA, respectively), in addition to bacterial and archaeal 16S rRNA genes, in freshwater iron-rich flocs at groundwater discharge points. The analyses of 16S rRNA, cbbM, and pmoA genes strongly suggested the coexistence of autotrophic iron oxidizers and methanotrophs in the flocs. Furthermore, a novel stalk-forming microaerophilic FeOB, strain OYT1, was isolated and characterized phylogenetically and physiologically. The 16S rRNA and cbbM gene sequences of OYT1 are related to those of other microaerophilic FeOB in the family Gallionellaceae, of the Betaproteobacteria, isolated from freshwater environments at circumneutral pH. The physiological characteristics of OYT1 will help elucidate the ecophysiology of microaerophilic FeOB. Overall, this study demonstrates functional roles of microorganisms in iron flocs, suggesting several possible linkages between Fe and C cycling. PMID:23811518

  18. The petunia AGL6 gene has a SEPALLATA-like function in floral patterning.

    PubMed

    Rijpkema, Anneke S; Zethof, Jan; Gerats, Tom; Vandenbussche, Michiel

    2009-10-01

    SEPALLATA (SEP) MADS-box genes are required for the regulation of floral meristem determinacy and the specification of sepals, petals, stamens, carpels and ovules, specifically in angiosperms. The SEP subfamily is closely related to the AGAMOUS LIKE6 (AGL6) and SQUAMOSA (SQUA) subfamilies. So far, of these three groups only AGL6-like genes have been found in extant gymnosperms. AGL6 genes are more similar to SEP than to SQUA genes, both in sequence and in expression pattern. Despite the ancestry and wide distribution of AGL6-like MADS-box genes, not a single loss-of-function mutant exhibiting a clear phenotype has yet been reported; consequently the function of AGL6-like genes has remained elusive. Here, we characterize the Petunia hybrida AGL6 (PhAGL6, formerly called PETUNIA MADS BOX GENE4/pMADS4) gene, and show that it functions redundantly with the SEP genes FLORAL BINDING PROTEIN2 (FBP2) and FBP5 in petal and anther development. Moreover, expression analysis suggests a function for PhAGL6 in ovary and ovule development. The PhAGL6 and FBP2 proteins interact in in vitro experiments overall with the same partners, indicating that the two proteins are biochemically quite similar. It will be interesting to determine the functions of AGL6-like genes of other species, especially those of gymnosperms.

  19. Lessons from the canine Oxtr gene: populations, variants and functional aspects.

    PubMed

    Bence, M; Marx, P; Szantai, E; Kubinyi, E; Ronai, Z; Banlaki, Z

    2017-04-01

    Oxytocin receptor (OXTR) acts as a key behavioral modulator of the central nervous system, affecting social behavior, stress, affiliation and cognitive functions. Variants of the Oxtr gene are known to influence behavior both in animals and humans; however, canine Oxtr polymorphisms are less characterized in terms of possible relevance to function, selection criteria in breeding and domestication. In this report, we provide a detailed characterization of common variants of the canine Oxtr gene. In particular (1) novel polymorphisms were identified by direct sequencing of wolf and dog samples, (2) allelic distributions and pairwise linkage disequilibrium patterns of several canine populations were compared, (3) neighbor joining (NJ) tree based on common single nucleotide polymorphisms (SNPs) was constructed, (4) mRNA expression features were assessed, (5) a novel splice variant was detected and (6) in vitro functional assays were performed. Results indicate marked differences regarding Oxtr variations between purebred dogs of different breeds, free-ranging dog populations, wolf subspecies and golden jackals. This, together with existence of explicitly dog-specific alleles and data obtained from the NJ tree implies that Oxtr could indeed have been a target gene during domestication and selection for human preferred aspects of temperament and social behavior. This assumption is further supported by the present observations on gene expression patterns within the brain and luciferase reporter experiments, providing a molecular level link between certain canine Oxtr polymorphisms and differences in nervous system function and behavior. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. A novel cell model to study the function of the adrenoleukodystrophy-related protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueugnon, Fabien; Volodina, Natalia; Taouil, Jaoued Et

    2006-03-03

    X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder due to mutations in the ABCD1 (ALD) gene. ALDRP, the closest homolog of ALDP, has been shown to have partial functional redundancy with ALDP and, when overexpressed, can compensate for the loss-of-function of ALDP. In order to characterize the function of ALDRP and to understand the phenomenon of gene redundancy, we have developed a novel system that allows the controlled expression of the ALDRP-EGFP fusion protein (normal or non-functional mutated ALDRP) using the Tet-On system in H4IIEC3 rat hepatoma cells. The generated stable cell lines express negligible levels of endogenous ALDRP and doxycyclinemore » dosage-dependent levels of normal or mutated ALDRP. Importantly, the ALDRP-EGFP protein is targeted correctly to peroxisome and is functional. The obtained cell lines will be an indispensable tool in our further studies aimed at the resolution of the function of ALDRP to characterize its potential substrates in a natural context.« less

  1. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    NASA Astrophysics Data System (ADS)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  2. Functional characterization of the triple gene block 1 (TGB1) gene of Pepino mosaic virus in tomato

    USDA-ARS?s Scientific Manuscript database

    Pepino mosaic virus (PepMV) has caused serious economic losses to many greenhouse tomato productions around the world. This potexvirus genome contains five major open reading frames (ORFs) encoding for a 164-kDa RNA-dependent RNA polymerase (RdRp), three triple gene block (TGB) proteins of 26, 14 an...

  3. Partitioning of functional gene expression data using principal points.

    PubMed

    Kim, Jaehee; Kim, Haseong

    2017-10-12

    DNA microarrays offer motivation and hope for the simultaneous study of variations in multiple genes. Gene expression is a temporal process that allows variations in expression levels with a characterized gene function over a period of time. Temporal gene expression curves can be treated as functional data since they are considered as independent realizations of a stochastic process. This process requires appropriate models to identify patterns of gene functions. The partitioning of the functional data can find homogeneous subgroups of entities for the massive genes within the inherent biological networks. Therefor it can be a useful technique for the analysis of time-course gene expression data. We propose a new self-consistent partitioning method of functional coefficients for individual expression profiles based on the orthonormal basis system. A principal points based functional partitioning method is proposed for time-course gene expression data. The method explores the relationship between genes using Legendre coefficients as principal points to extract the features of gene functions. Our proposed method provides high connectivity in connectedness after clustering for simulated data and finds a significant subsets of genes with the increased connectivity. Our approach has comparative advantages that fewer coefficients are used from the functional data and self-consistency of principal points for partitioning. As real data applications, we are able to find partitioned genes through the gene expressions found in budding yeast data and Escherichia coli data. The proposed method benefitted from the use of principal points, dimension reduction, and choice of orthogonal basis system as well as provides appropriately connected genes in the resulting subsets. We illustrate our method by applying with each set of cell-cycle-regulated time-course yeast genes and E. coli genes. The proposed method is able to identify highly connected genes and to explore the complex dynamics of biological systems in functional genomics.

  4. Functional Potential of Soil Microbial Communities in the Maize Rhizosphere

    PubMed Central

    Xiong, Jingbo; Li, Jiabao; He, Zhili; Zhou, Jizhong; Yannarell, Anthony C.; Mackie, Roderick I.

    2014-01-01

    Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Here, we identified important functional genes that characterize the rhizosphere microbial community to understand metabolic capabilities in the maize rhizosphere using the GeoChip-based functional gene array method. Significant differences in functional gene structure were apparent between rhizosphere and bulk soil microbial communities. Approximately half of the detected gene families were significantly (p<0.05) increased in the rhizosphere. Based on the detected gyrB genes, Gammaproteobacteria, Betaproteobacteria, Firmicutes, Bacteroidetes and Cyanobacteria were most enriched in the rhizosphere compared to those in the bulk soil. The rhizosphere niche also supported greater functional diversity in catabolic pathways. The maize rhizosphere had significantly enriched genes involved in carbon fixation and degradation (especially for hemicelluloses, aromatics and lignin), nitrogen fixation, ammonification, denitrification, polyphosphate biosynthesis and degradation, sulfur reduction and oxidation. This research demonstrates that the maize rhizosphere is a hotspot of genes, mostly originating from dominant soil microbial groups such as Proteobacteria, providing functional capacity for the transformation of labile and recalcitrant organic C, N, P and S compounds. PMID:25383887

  5. A Systematic Genetic Screen to Dissect the MicroRNA Pathway in Drosophila.

    PubMed

    Pressman, Sigal; Reinke, Catherine A; Wang, Xiaohong; Carthew, Richard W

    2012-04-01

    A central goal of microRNA biology is to elucidate the genetic program of miRNA function and regulation. However, relatively few of the effectors that execute miRNA repression have been identified. Because such genes may function in many developmental processes, mutations in them are expected to be pleiotropic and thus are discarded in most standard genetic screens. Here, we describe a systematic screen designed to identify all Drosophila genes in ∼40% of the genome that function in the miRNA pathway. To identify potentially pleiotropic genes, the screen analyzed clones of homozygous mutant cells in heterozygous animals. We identified 45 mutations representing 24 genes, and we molecularly characterized 9 genes. These include 4 previously known genes that encode core components of the miRNA pathway, including Drosha, Pasha, Dicer-1, and Ago1. The rest are new genes that function through chromatin remodeling, signaling, and mRNA decapping. The results suggest genetic screens that use clonal analysis can elucidate the miRNA program and that ∼100 genes are required to execute the miRNA program.

  6. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis.

    PubMed

    Zhang, Wenbo; Wei, Rui; Chen, Su; Jiang, Jing; Li, Huiyu; Huang, Haijiao; Yang, Guang; Wang, Shuo; Wei, Hairong; Liu, Guifeng

    2015-06-01

    We cloned a Cinnamoyl-CoA Reductase gene (BpCCR1) from an apical meristem and first internode of Betula platyphylla and characterized its functions in lignin biosynthesis, wood formation and tree growth through transgenic approaches. We generated overexpression and suppression transgenic lines and analyzed them in comparison with the wild-type in terms of lignin content, anatomical characteristics, height and biomass. We found that BpCCR1 overexpression could increase lignin content up to 14.6%, and its underexpression decreased lignin content by 6.3%. Surprisingly, modification of BpCCR1 expression led to conspicuous changes in wood characteristics, including xylem vessel number and arrangement, and secondary wall thickness. The growth of transgenic trees in terms of height was also significantly influenced by the modification of BpCCR1 genes. We discuss the functions of BpCCR1 in the context of a phylogenetic tree built with CCR genes from multiple species. © 2014 Scandinavian Plant Physiology Society.

  7. Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation

    PubMed Central

    Chen, Shuowen; Khan, Muhammad J.; Loor, Juan J.

    2013-01-01

    Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants. However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression. Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth. Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants. As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients. In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle. PMID:23737762

  8. Genome-wide characterization of GRAS family genes in Medicago truncatula reveals their evolutionary dynamics and functional diversification

    PubMed Central

    Zhang, Hailing; Cao, Yingping; Shang, Chen; Li, Jikai; Wang, Jianli; Wu, Zhenying; Ma, Lichao; Qi, Tianxiong; Fu, Chunxiang; Hu, Baozhong

    2017-01-01

    The GRAS gene family is a large plant-specific family of transcription factors that are involved in diverse processes during plant development. Medicago truncatula is an ideal model plant for genetic research in legumes, and specifically for studying nodulation, which is crucial for nitrogen fixation. In this study, 59 MtGRAS genes were identified and classified into eight distinct subgroups based on phylogenetic relationships. Motifs located in the C-termini were conserved across the subgroups, while motifs in the N-termini were subfamily specific. Gene duplication was the main evolutionary force for MtGRAS expansion, especially proliferation of the LISCL subgroup. Seventeen duplicated genes showed strong effects of purifying selection and diverse expression patterns, highlighting their functional importance and diversification after duplication. Thirty MtGRAS genes, including NSP1 and NSP2, were preferentially expressed in nodules, indicating possible roles in the process of nodulation. A transcriptome study, combined with gene expression analysis under different stress conditions, suggested potential functions of MtGRAS genes in various biological pathways and stress responses. Taken together, these comprehensive analyses provide basic information for understanding the potential functions of GRAS genes, and will facilitate further discovery of MtGRAS gene functions. PMID:28945786

  9. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    PubMed Central

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  10. The evolutionary landscape of intergenic trans-splicing events in insects

    PubMed Central

    Kong, Yimeng; Zhou, Hongxia; Yu, Yao; Chen, Longxian; Hao, Pei; Li, Xuan

    2015-01-01

    To explore the landscape of intergenic trans-splicing events and characterize their functions and evolutionary dynamics, we conduct a mega-data study of a phylogeny containing eight species across five orders of class Insecta, a model system spanning 400 million years of evolution. A total of 1,627 trans-splicing events involving 2,199 genes are identified, accounting for 1.58% of the total genes. Homology analysis reveals that mod(mdg4)-like trans-splicing is the only conserved event that is consistently observed in multiple species across two orders, which represents a unique case of functional diversification involving trans-splicing. Thus, evolutionarily its potential for generating proteins with novel function is not broadly utilized by insects. Furthermore, 146 non-mod trans-spliced transcripts are found to resemble canonical genes from different species. Trans-splicing preserving the function of ‘breakup' genes may serve as a general mechanism for relaxing the constraints on gene structure, with profound implications for the evolution of genes and genomes. PMID:26521696

  11. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.

    PubMed

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin

    2017-10-24

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .

  12. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus

    PubMed Central

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Xu, Xinfu; Wang, Rui; Li, Jiana

    2017-01-01

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed (Brassica napus). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B. napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B. napus and its parental lines and for molecular breeding studies of bZIP genes in B. napus. PMID:29064393

  13. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.

    PubMed

    Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris

    2015-09-23

    In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cloning and sequencing the genes encoding goldfish and carp ependymin.

    PubMed

    Adams, D S; Shashoua, V E

    1994-04-20

    Ependymins (EPNs) are brain glycoproteins thought to function in optic nerve regeneration and long-term memory consolidation. To date, epn genes have been characterized in two orders of teleost fish. In this study, polymerase chain reactions (PCR) were used to amplify the complete 1.6-kb epn genes, gf-I and cc-I, from genomic DNA of Cypriniformes, goldfish and carp, respectively. Amplified bands were cloned and sequenced. Each gene consists of six exons and five introns. The exon portion of gf-I encodes a predicted 215-amino-acid (aa) protein previously characterized as GF-I, while cc-I encodes a predicted 215-aa protein 95% homologous to GF-I.

  15. A Genome-Wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells

    PubMed Central

    Zhang, Eric E.; Liu, Andrew C.; Hirota, Tsuyoshi; Miraglia, Loren J.; Welch, Genevieve; Pongsawakul, Pagkapol Y.; Liu, Xianzhong; Atwood, Ann; Huss, Jon W.; Janes, Jeff; Su, Andrew I.; Hogenesch, John B.; Kay, Steve A.

    2009-01-01

    Summary Two decades of research identified more than a dozen clock genes and defined a biochemical feedback mechanism of circadian oscillator function. To identify additional clock genes and modifiers, we conducted a genome-wide siRNA screen in a human cellular clock model. Knockdown of nearly a thousand genes reduced rhythm amplitude. Potent effects on period length or increased amplitude were less frequent; we found hundreds of these and confirmed them in secondary screens. Characterization of a subset of these genes demonstrated a dosage-dependent effect on oscillator function. Protein interaction network analysis showed that dozens of gene products directly or indirectly associate with known clock components. Pathway analysis revealed these genes are overrepresented for components of insulin and hedgehog signaling, the cell cycle, and the folate metabolism. Coupled with data showing many of these pathways are clock-regulated, we conclude the clock is interconnected with many aspects of cellular function. PMID:19765810

  16. The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development.

    PubMed

    Bedell, Victoria M; Person, Anthony D; Larson, Jon D; McLoon, Anna; Balciunas, Darius; Clark, Karl J; Neff, Kevin I; Nelson, Katie E; Bill, Brent R; Schimmenti, Lisa A; Beiraghi, Soraya; Ekker, Stephen C

    2012-02-01

    The Homeobox (Hox) and Paired box (Pax) gene families are key determinants of animal body plans and organ structure. In particular, they function within regulatory networks that control organogenesis. How these conserved genes elicit differences in organ form and function in response to evolutionary pressures is incompletely understood. We molecularly and functionally characterized one member of an evolutionarily dynamic gene family, plac8 onzin related protein 1 (ponzr1), in the zebrafish. ponzr1 mRNA is expressed early in the developing kidney and pharyngeal arches. Using ponzr1-targeting morpholinos, we show that ponzr1 is required for formation of the glomerulus. Loss of ponzr1 results in a nonfunctional glomerulus but retention of a functional pronephros, an arrangement similar to the aglomerular kidneys found in a subset of marine fish. ponzr1 is integrated into the pax2a pathway, with ponzr1 expression requiring pax2a gene function, and proper pax2a expression requiring normal ponzr1 expression. In addition to pronephric function, ponzr1 is required for pharyngeal arch formation. We functionally demonstrate that ponzr1 can act as a transcription factor or co-factor, providing the first molecular mode of action for this newly described gene family. Together, this work provides experimental evidence of an additional mechanism that incorporates evolutionarily dynamic, lineage-specific gene families into conserved regulatory gene networks to create functional organ diversity.

  17. Integrative Functional Genomics for Systems Genetics in GeneWeaver.org.

    PubMed

    Bubier, Jason A; Langston, Michael A; Baker, Erich J; Chesler, Elissa J

    2017-01-01

    The abundance of existing functional genomics studies permits an integrative approach to interpreting and resolving the results of diverse systems genetics studies. However, a major challenge lies in assembling and harmonizing heterogeneous data sets across species for facile comparison to the positional candidate genes and coexpression networks that come from systems genetic studies. GeneWeaver is an online database and suite of tools at www.geneweaver.org that allows for fast aggregation and analysis of gene set-centric data. GeneWeaver contains curated experimental data together with resource-level data such as GO annotations, MP annotations, and KEGG pathways, along with persistent stores of user entered data sets. These can be entered directly into GeneWeaver or transferred from widely used resources such as GeneNetwork.org. Data are analyzed using statistical tools and advanced graph algorithms to discover new relations, prioritize candidate genes, and generate function hypotheses. Here we use GeneWeaver to find genes common to multiple gene sets, prioritize candidate genes from a quantitative trait locus, and characterize a set of differentially expressed genes. Coupling a large multispecies repository curated and empirical functional genomics data to fast computational tools allows for the rapid integrative analysis of heterogeneous data for interpreting and extrapolating systems genetics results.

  18. New genes as drivers of phenotypic evolution

    PubMed Central

    Chen, Sidi; Krinsky, Benjamin H.; Long, Manyuan

    2014-01-01

    During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution. PMID:23949544

  19. New genes as drivers of phenotypic evolution.

    PubMed

    Chen, Sidi; Krinsky, Benjamin H; Long, Manyuan

    2013-09-01

    During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution.

  20. Bioinformatics-Based Identification of Candidate Genes from QTLs Associated with Cell Wall Traits in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjan, Priya; Yin, Tongming; Zhang, Xinye

    2009-11-01

    Quantitative trait locus (QTL) studies are an integral part of plant research and are used to characterize the genetic basis of phenotypic variation observed in structured populations and inform marker-assisted breeding efforts. These QTL intervals can span large physical regions on a chromosome comprising hundreds of genes, thereby hampering candidate gene identification. Genome history, evolution, and expression evidence can be used to narrow the genes in the interval to a smaller list that is manageable for detailed downstream functional genomics characterization. Our primary motivation for the present study was to address the need for a research methodology that identifies candidatemore » genes within a broad QTL interval. Here we present a bioinformatics-based approach for subdividing candidate genes within QTL intervals into alternate groups of high probability candidates. Application of this approach in the context of studying cell wall traits, specifically lignin content and S/G ratios of stem and root in Populus plants, resulted in manageable sets of genes of both known and putative cell wall biosynthetic function. These results provide a roadmap for future experimental work leading to identification of new genes controlling cell wall recalcitrance and, ultimately, in the utility of plant biomass as an energy feedstock.« less

  1. The genomic view of genes responsive to the antagonistic phytohormones, abscisic acid, and gibberellin.

    PubMed

    Yazaki, Junshi; Kikuchi, Shoshi

    2005-01-01

    We now have the various genomics tools for monocot (Oryza sativa) and a dicot (Arabidopsis thaliana) plant. Plant is not only a very important agricultural resource but also a model organism for biological research. It is important that the interaction between ABA and GA is investigated for controlling the transition from embryogenesis to germination in seeds using genomics tools. These studies have investigated the relationship between dormancy and germination using genomics tools. Genomics tools identified genes that had never before been annotated as ABA- or GA-responsive genes in plant, detected new interactions between genes responsive to the two hormones, comprehensively characterized cis-elements of hormone-responsive genes, and characterized cis-elements of rice and Arabidopsis. In these research, ABA- and GA-regulated genes have been classified as functional proteins (proteins that probably function in stress or PR tolerance) and regulatory proteins (protein factors involved in further regulation of signal transduction). Comparison between ABA and/or GA-responsive genes in rice and those in Arabidopsis has shown that the cis-element has specificity in each species. cis-Elements for the dehydration-stress response have been specified in Arabidopsis but not in rice. cis-Elements for protein storage are remarkably richer in the upstream regions of the rice gene than in those of Arabidopsis.

  2. Elucidation of primary metabolic pathways in Aspergillus species: orphaned research in characterizing orphan genes.

    PubMed

    Andersen, Mikael Rørdam

    2014-11-01

    Primary metabolism affects all phenotypical traits of filamentous fungi. Particular examples include reacting to extracellular stimuli, producing precursor molecules required for cell division and morphological changes as well as providing monomer building blocks for production of secondary metabolites and extracellular enzymes. In this review, all annotated genes from four Aspergillus species have been examined. In this process, it becomes evident that 80-96% of the genes (depending on the species) are still without verified function. A significant proportion of the genes with verified metabolic functions are assigned to secondary or extracellular metabolism, leaving only 2-4% of the annotated genes within primary metabolism. It is clear that primary metabolism has not received the same attention in the post-genomic area as many other research areas--despite its role at the very centre of cellular function. However, several methods can be employed to use the metabolic networks in tandem with comparative genomics to accelerate functional assignment of genes in primary metabolism. In particular, gaps in metabolic pathways can be used to assign functions to orphan genes. In this review, applications of this from the Aspergillus genes will be examined, and it is proposed that, where feasible, this should be a standard part of functional annotation of fungal genomes. © The Author 2014. Published by Oxford University Press.

  3. Transcriptional Modulation of Genes Encoding Structural Characteristics of Differentiating Enterocytes During Development of a Polarized Epithelium In Vitro

    PubMed Central

    Halbleib, Jennifer M.; Sääf, Annika M.

    2007-01-01

    Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell–cell adhesion–initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes. PMID:17699590

  4. Cardiogenic Genes Expressed in Cardiac Fibroblasts Contribute to Heart Development and Repair

    PubMed Central

    Furtado, Milena B.; Costa, Mauro W.; Pranoto, Edward Adi; Salimova, Ekaterina; Pinto, Alex; Lam, Nicholas T.; Park, Anthony; Snider, Paige; Chandran, Anjana; Harvey, Richard P.; Boyd, Richard; Conway, Simon J.; Pearson, James; Kaye, David M.; Rosenthal, Nadia A.

    2014-01-01

    Rationale Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. Objective To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. Methods and Results High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical MSC and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. Whilst genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, Tbx20, caused marked myocardial dysmorphology and perturbations in scar formation upon myocardial infarction. Conclusions The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs and direct contribution to cardiac development and repair provokes alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies. PMID:24650916

  5. Novel Approaches to Breast Cancer Prevention and Inhibition of Metastases

    DTIC Science & Technology

    2013-10-01

    allow a functional characterization of human candidate breast cancer genes. The transgenic RNAi library is covering the whole Drosophila genome ...W81XWH-12-1-0093 / Penninger 15. SUBJECT TERMS Genome wide functional genetics, haploid stem cells, Drosophila cancer modeling...With the advent of modern genomics hundreds of candidate genes have been associated with breast cancer both in GWAS studies as well as by cancer genome

  6. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Cancer.gov

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  7. Isolation and characterization of Xenopus laevis homologs of the mouse inv gene and functional analysis of the conserved calmodulin binding sites.

    PubMed

    Yasuhiko, Yukuto; Shiokawa, Koichiro; Mochizuki, Toshio; Asashima, Makoto; Yokoyama, Takahiko

    2006-04-01

    The homozygous inv (inversion of embryonic turning) mouse mutant shows situs inversus and polycystic kidney disease, both of which result from the lack of the inv gene. Previously, we suggested that inv may be important for the left-right axis formation, not only in mice but also in Xenopus, and that calmodulin regulates this inv protein function. Here, we isolated and characterized two Xenopus laevis homologs (Xinv-1 and Xinv-2) of the mouse inv gene, and performed functional analysis of the conserved IQ motifs that interact with calmodulin. Xinv-1 expresses early in development in the same manner as mouse inv does. Unexpectedly, a full-length Xenopus inv mRNA did not randomize cardiac orientation when injected into Xenopus embryos, which is different from mouse inv mRNA. Contrary to mouse inv mRNA, Xenopus inv mRNA with mutated IQ randomized cardiac orientation. The present study indicates that calmodulin binding sites (IQ motifs) are crucial in controlling the biological activity of both mouse and Xenopus inv proteins. Although mouse and Xenopus inv genes have a quite similar structure, the interaction with calmodulin and IQ motifs of Xenopus inv and mouse inv proteins may regulate their function in different ways.

  8. Functions and impact of tal-like genes in animals with regard to applied aspects.

    PubMed

    Zhu, Min; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2018-06-16

    A large number of DNAs in eukaryote genomes can code for atypical transcripts, and their functions are controversial. It has been reported that the transcripts contain many small open reading frames (sORFs), which were originally considered as non-translatable RNAs. However, increasing evidence has suggested that some of these sORFs can encode for small peptides and some are conserved across large evolutionary distances. It has been reported that the small peptides have functions and may be involved in varieties of cellular processes, playing important roles in development, physiology, and metabolism. Among the sORFs, studies of the non-canonical gene polished rice/tarsal-less (pri/tal) in Drosophila and mille-pattes(mlpt) in Tribolium have been more thoroughly studied. The genes similar to pri/tal in other species have been defined as the tarsal-less-related gene family, tal-like gene. In this review, we described recent progress in the discovery and functional characterization of the small peptides encoded by the tal-like gene and their possible functional potentials.

  9. Effect of MUC8 on Airway Inflammation: A Friend or a Foe?

    PubMed

    Cha, Hee-Jae; Song, Kyoung Seob

    2018-02-06

    In this review, we compile identifying molecular mechanisms of MUC8 gene expression and studies characterizing the physiological functions of MUC8 in the airway and analyzing how altered MUC8 gene expression in the lung is affected by negative regulators.

  10. Functional consequences of inducible genetic elements from the p53 SOS response in a mammalian organ system.

    PubMed

    Guthrie, O'neil W

    2017-10-01

    In response to DNA damage from ultraviolet (UV) radiation, bacteria deploy the SOS response in order to limit cell death. This bacterial SOS response is characterized by an increase in the recA gene that transactivates expression of multiple DNA repair genes. The current series of experiments demonstrate that a mammalian organ system (the cochlea) that is not evolutionarily conditioned to UV radiation can elicit SOS responses that are reminiscent of that of bacteria. This mammalian SOS response is characterized by an increase in the p53 gene with activation of multiple DNA repair genes that harbor p53 response elements in their promoters. Furthermore, the experimental results provide support for the notion of a convergent trigger paradox, where independent SOS triggers facilitate disparate physiologic sequelae (loss vs. recovery of function). Therefore, it is proposed that the mammalian SOS response is multifunctional and manipulation of this endogenous response could be exploited in future biomedical interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A novel salt-inducible gene SbSI-1 from Salicornia brachiata confers salt and desiccation tolerance in E. coli.

    PubMed

    Yadav, Narendra Singh; Rashmi, Deo; Singh, Dinkar; Agarwal, Pradeep K; Jha, Bhavanath

    2012-02-01

    Salicornia brachiata is one of the extreme salt tolerant plants and grows luxuriantly in coastal areas. Previously we have reported isolation and characterization of ESTs from S. brachiata with large number of unknown gene sequences. Reverse Northern analysis showed upregulation and downregulation of few unknown genes in response to salinity. Some of these unknown genes were made full length and their functional analysis is being tested. In this study, we have selected a novel unknown salt inducible gene SbSI-1 (Salicornia brachiata salt inducible-1) for the functional validation. The SbSI-1 (Gen-Bank accession number JF 965339) was made full length and characterized in detail for its functional validation under desiccation and salinity. The SbSI-1 gene is 917 bp long, and contained 437 bp 3' UTR, and 480 bp ORF region encoding 159 amino acids protein with estimated molecular mass of 18.39 kDa and pI 8.58. The real time PCR analysis revealed high transcript expression in salt, desiccation, cold and heat stresses. However, the maximum expression was obtained by desiccation. The ORF region of SbSI-1 was cloned in pET28a vector and transformed in BL21 (DE3) E. coli cells. The SbSI-1 recombinant E. coli cells showed tolerance to desiccation and salinity stress compared to only vector in the presence of stress.

  12. Successful In Vitro Expansion and Differentiation of Cord Blood Derived CD34+ Cells into Early Endothelial Progenitor Cells Reveals Highly Differential Gene Expression

    PubMed Central

    Topcic, Denijal; Haviv, Izhak; Merivirta, Ruusu-Maaria; Agrotis, Alexander; Leitner, Ephraem; Jowett, Jeremy B.; Bode, Christoph; Lappas, Martha; Peter, Karlheinz

    2011-01-01

    Endothelial progenitor cells (EPCs) can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU) assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP), PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15) or pro-angiogenic (galectin-3) properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP) was the most up-regulated gene. PMID:21858032

  13. Characterization of functional properties of Enterococcus faecium strains isolated from human gut.

    PubMed

    İspirli, Hümeyra; Demirbaş, Fatmanur; Dertli, Enes

    2015-11-01

    The aim of this work was to characterize the functional properties of Enterococcus faecium strains identified after isolation from human faeces. Of these isolates, strain R13 showed the best resistance to low pH, bile salts, and survival in the simulated in vitro digestion assay, and demonstrated an important level of adhesion to hexadecane as a potential probiotic candidate. Analysis of the antibiotic resistance of E. faecium strains indicated that in general these isolates were sensitive to the tested antibiotics and no strain appeared to be resistant to vancomycin. Examination of the virulence determinants for E. faecium strains demonstrated that all strains contained the virulence genes common in gut- and food-originated enterococci, and strain R13 harboured the lowest number of virulence genes. Additionally, no strain contained the genes related to cytolysin metabolism and showed hemolytic activity. The antimicrobial role of E. faecium strains was tested against several pathogens, in which different levels of inhibitory effects were observed, and strain R13 was inhibitory to all tested pathogens. PCR screening of genes encoding enterocin A and B indicated the presence of these genes in E. faecium strains. Preliminary characterization of bacteriocins revealed that their activity was lost after proteolytic enzyme treatments, but no alteration in antimicrobial activity was observed at different pHs (3.5 to 9.5) and after heat treatments. In conclusion, this study revealed the functional characteristics of E. faecium R13 as a gut isolate, and this strain could be developed as a new probiotic after further tests.

  14. Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction.

    PubMed

    Bossi, Flavia; Fan, Jue; Xiao, Jun; Chandra, Lilyana; Shen, Max; Dorone, Yanniv; Wagner, Doris; Rhee, Seung Y

    2017-06-26

    The molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. To identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation. We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.

  15. A Reverse-Genetics Mutational Analysis of the Barley HvDWARF Gene Results in Identification of a Series of Alleles and Mutants with Short Stature of Various Degree and Disturbance in BR Biosynthesis Allowing a New Insight into the Process.

    PubMed

    Gruszka, Damian; Gorniak, Malgorzata; Glodowska, Ewelina; Wierus, Ewa; Oklestkova, Jana; Janeczko, Anna; Maluszynski, Miroslaw; Szarejko, Iwona

    2016-04-22

    Brassinosteroids (BRs) are plant steroid hormones, regulating a broad range of physiological processes. The largest amount of data related with BR biosynthesis has been gathered in Arabidopsis thaliana, however understanding of this process is far less elucidated in monocot crops. Up to now, only four barley genes implicated in BR biosynthesis have been identified. Two of them, HvDWARF and HvBRD, encode BR-6-oxidases catalyzing biosynthesis of castasterone, but their relation is not yet understood. In the present study, the identification of the HvDWARF genomic sequence, its mutational and functional analysis and characterization of new mutants are reported. Various types of mutations located in different positions within functional domains were identified and characterized. Analysis of their impact on phenotype of the mutants was performed. The identified homozygous mutants show reduced height of various degree and disrupted skotomorphogenesis. Mutational analysis of the HvDWARF gene with the "reverse genetics" approach allowed for its detailed functional analysis at the level of protein functional domains. The HvDWARF gene function and mutants' phenotypes were also validated by measurement of endogenous BR concentration. These results allowed a new insight into the BR biosynthesis in barley.

  16. A novel chlorophyll a/b binding (Cab) protein gene from petunia which encodes the lower molecular weight Cab precursor protein.

    PubMed

    Stayton, M M; Black, M; Bedbrook, J; Dunsmuir, P

    1986-12-22

    The 16 petunia Cab genes which have been characterized are all closely related at the nucleotide sequence level and they encode Cab precursor polypeptides which are similar in sequence and length. Here we describe a novel petunia Cab gene which encodes a unique Cab precursor protein. This protein is a member of the smallest class of Cab precursor proteins for which no gene has previously been assigned in petunia or any other species. The features of this Cab precursor protein are that it is shorter by 2-3 amino acids than the formerly characterized Cab precursors, its transit peptide sequence is unrelated, and the mature polypeptide is significantly diverged at the functionally important N terminus from other petunia Cab proteins. Gene structure also discriminates this gene which is the only intron containing Cab gene in petunia genomic DNA.

  17. Development and Function of the Mouse Vestibular System in the Absence of Gravity Perception

    NASA Technical Reports Server (NTRS)

    Wolgemuth, Debra J.

    2005-01-01

    The hypothesis that was tested in this research was that the absence of gravity perception, such as would occur in space, would affect the development and function of the vestibular and central nervous systems. Further, we postulated that these effects would be more significant at specific stages of post-natal development of the animal. We also proposed the use of molecular genetic approaches that would provide important information as to the hierarchy of gene function during the development and subsequent function of the vestibular system. The tilted (tlt) mutant mouse has been characterized as lacking the ability to provide sensory input to the gravity receptors. The tlt/tlt mutant mice were a particularly attractive model for the study of vestibular function since the primary defect was limited to the receptor part of the vestibular system, and there were no detectable abnormal phenotypes in other organ systems. The goal of the proposed studies was to assess immediate and delayed effects of the lack of gravity perception on the vestibular system. Particular attention was paid to characterizing primarily affected periods of vestibular morphogenesis, and to identifying downstream genetic pathways that are altered in the CNS of the tlt/tlt mutant mouse. The specific aims were: (1) to characterize the postnatal morphogenesis of the CNS in the tlt mutant mouse, using detailed morphometric analysis of isolated vestibular ganglia and brain tissue at different stages of postnatal development and assessment of apoptotic cell death; (2) to examine the expression of selected genes implicated by mutational analysis to be important in vestibular development or function by in situ hybridization or immunohistochemistry in the mutant mice; and (3) to identify other genes involved in vestibular development and function, using differential cloning strategies to isolate genes whose expression is changed in the mutant versus normal vestibular system.

  18. Molecular characterization and expression analysis of Zar1 and Zar1-like genes in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Zygote arrest 1 (Zar1) is a maternal effect gene that is essential for early embryonic development. Recently, a novel gene called Zar1-like (Zar1l) was discovered. Functional studies showed that ZAR1L plays an important role in regulating oocyte-to-embryo transition in mouse. The objectives of this ...

  19. Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response.

    PubMed

    Quach, Truyen N; Nguyen, Hanh T M; Valliyodan, Babu; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-06-01

    Nuclear factor-Y (NF-Y), a heterotrimeric transcription factor, is composed of NF-YA, NF-YB and NF-YC proteins. In plants, there are usually more than 10 genes for each family and their members have been identified to be key regulators in many developmental and physiological processes controlling gametogenesis, embryogenesis, nodule development, seed development, abscisic acid (ABA) signaling, flowering time, primary root elongation, blue light responses, endoplasmic reticulum (ER) stress response and drought tolerance. Taking the advantages of the recent soybean genome draft and information on functional characterizations of nuclear factor Y (NF-Y) transcription factor family in plants, we identified 21 GmNF-YA, 32 GmNF-YB, and 15 GmNF-YC genes in the soybean (Glycine max) genome. Phylogenetic analyses show that soybean's proteins share strong homology to Arabidopsis and many of them are closely related to functionally characterized NF-Y in plants. Expression analysis in various tissues of flower, leaf, root, seeds of different developmental stages, root hairs under rhizobium inoculation, and drought-treated roots and leaves revealed that certain groups of soybean NF-Y are likely involved in specific developmental and stress responses. This study provides extensive evaluation of the soybean NF-Y family and is particularly useful for further functional characterization of GmNF-Y proteins in seed development, nodulation and drought adaptation of soybean.

  20. Exploration of Uncharted Regions of the Protein Universe

    PubMed Central

    Jaroszewski, Lukasz; Li, Zhanwen; Krishna, S. Sri; Bakolitsa, Constantina; Wooley, John; Deacon, Ashley M.; Wilson, Ian A.; Godzik, Adam

    2009-01-01

    The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies. PMID:19787035

  1. Analysis of Aspergillus nidulans metabolism at the genome-scale

    PubMed Central

    David, Helga; Özçelik, İlknur Ş; Hofmann, Gerald; Nielsen, Jens

    2008-01-01

    Background Aspergillus nidulans is a member of a diverse group of filamentous fungi, sharing many of the properties of its close relatives with significance in the fields of medicine, agriculture and industry. Furthermore, A. nidulans has been a classical model organism for studies of development biology and gene regulation, and thus it has become one of the best-characterized filamentous fungi. It was the first Aspergillus species to have its genome sequenced, and automated gene prediction tools predicted 9,451 open reading frames (ORFs) in the genome, of which less than 10% were assigned a function. Results In this work, we have manually assigned functions to 472 orphan genes in the metabolism of A. nidulans, by using a pathway-driven approach and by employing comparative genomics tools based on sequence similarity. The central metabolism of A. nidulans, as well as biosynthetic pathways of relevant secondary metabolites, was reconstructed based on detailed metabolic reconstructions available for A. niger and Saccharomyces cerevisiae, and information on the genetics, biochemistry and physiology of A. nidulans. Thereby, it was possible to identify metabolic functions without a gene associated, and to look for candidate ORFs in the genome of A. nidulans by comparing its sequence to sequences of well-characterized genes in other species encoding the function of interest. A classification system, based on defined criteria, was developed for evaluating and selecting the ORFs among the candidates, in an objective and systematic manner. The functional assignments served as a basis to develop a mathematical model, linking 666 genes (both previously and newly annotated) to metabolic roles. The model was used to simulate metabolic behavior and additionally to integrate, analyze and interpret large-scale gene expression data concerning a study on glucose repression, thereby providing a means of upgrading the information content of experimental data and getting further insight into this phenomenon in A. nidulans. Conclusion We demonstrate how pathway modeling of A. nidulans can be used as an approach to improve the functional annotation of the genome of this organism. Furthermore we show how the metabolic model establishes functional links between genes, enabling the upgrade of the information content of transcriptome data. PMID:18405346

  2. Characterization and Amplification of Gene-Based Simple Sequence Repeat (SSR) Markers in Date Palm.

    PubMed

    Zhao, Yongli; Keremane, Manjunath; Prakash, Channapatna S; He, Guohao

    2017-01-01

    The paucity of molecular markers limits the application of genetic and genomic research in date palm (Phoenix dactylifera L.). Availability of expressed sequence tag (EST) sequences in date palm may provide a good resource for developing gene-based markers. This study characterizes a substantial fraction of transcriptome sequences containing simple sequence repeats (SSRs) from the EST sequences in date palm. The EST sequences studied are mainly homologous to those of Elaeis guineensis and Musa acuminata. A total of 911 gene-based SSR markers, characterized with functional annotations, have provided a useful basis not only for discovering candidate genes and understanding genetic basis of traits of interest but also for developing genetic and genomic tools for molecular research in date palm, such as diversity study, quantitative trait locus (QTL) mapping, and molecular breeding. The procedures of DNA extraction, polymerase chain reaction (PCR) amplification of these gene-based SSR markers, and gel electrophoresis of PCR products are described in this chapter.

  3. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes.

    PubMed

    Minkenberg, Bastian; Xie, Kabin; Yang, Yinong

    2017-02-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system depends on a guide RNA (gRNA) to specify its target. By efficiently co-expressing multiple gRNAs that target different genomic sites, the polycistronic tRNA-gRNA gene (PTG) strategy enables multiplex gene editing in the family of closely related mitogen-activated protein kinase (MPK) genes in Oryza sativa (rice). In this study, we identified MPK1 and MPK6 (Arabidopsis AtMPK6 and AtMPK4 orthologs, respectively) as essential genes for rice development by finding the preservation of MPK functional alleles and normal phenotypes in CRISPR-edited mutants. The true knock-out mutants of MPK1 were severely dwarfed and sterile, and homozygous mpk1 seeds from heterozygous parents were defective in embryo development. By contrast, heterozygous mpk6 mutant plants completely failed to produce homozygous mpk6 seeds. In addition, the functional importance of specific MPK features could be evaluated by characterizing CRISPR-induced allelic variation in the conserved kinase domain of MPK6. By simultaneously targeting between two and eight genomic sites in the closely related MPK genes, we demonstrated 45-86% frequency of biallelic mutations and the successful creation of single, double and quadruple gene mutants. Indels and fragment deletion were both stably inherited to the next generations, and transgene-free mutants of rice MPK genes were readily obtained via genetic segregation, thereby eliminating any positional effects of transgene insertions. Taken together, our study reveals the essentiality of MPK1 and MPK6 in rice development, and enables the functional discovery of previously inaccessible genes or domains with phenotypes masked by lethality or redundancy. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  4. Divergent Expression Patterns and Function Implications of Four nanos Genes in a Hermaphroditic Fish, Epinephelus coioides.

    PubMed

    Sun, Zhi-Hui; Wang, Yang; Lu, Wei-Jia; Li, Zhi; Liu, Xiao-Chun; Li, Shui-Sheng; Zhou, Li; Gui, Jian-Fang

    2017-03-23

    Multiple nanos genes have been characterized in several fishes, but the functional implications of their various expression patterns remain unclear. In this study, we identified and characterized four nanos genes from a hermaphroditic fish orange-spotted grouper, Epinephelus coioides . Ecnanos1a and Ecnanos1b show divergent expression patterns, and the dynamic expression change of Ecnanos1a in pituitaries during sex change is associated with testis differentiation and spermatogenesis. Ecnanos2 and Ecnanos3 might be germline stem cells (GSCs) and primordial germ cells (PGCs)-specific markers, respectively. Significantly, Ecnanos3 3'-untranslated region (UTR) is necessary for PGC specific expression, where a non-canonical "GCACGTTT" sequence is required for miR-430-mediated repression of Ecnanos3 RNA. Furthermore, grouper Dead end (Dnd) can relieve miR-430 repression in PGCs by associating with a 23 bp U-rich region (URR) in Ecnanos3 3'-UTR. The current study revealed the functional association of multiple nanos genes with PGC formation and germ cell development in orange-spotted grouper, and opened up new possibilities for developing biotechnologies through utilizing the associations between Ecnanos3 and PGCs or between Ecnanos2 and GSCs in the hermaphroditic fish.

  5. Molecular cloning and functional characterization of the promoter region of the human uncoupling protein-2 gene.

    PubMed

    Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M; Lentes, K U

    1999-11-19

    As a member of the uncoupling protein family, UCP2 is ubiquitously expressed in rodents and humans, implicating a major role in thermogenesis. To analyze promoter function and regulatory motifs involved in the transcriptional regulation of UCP2 gene expression, 3.3 kb of 5'-flanking region of the human UCP2 (hUCP2) gene have been cloned. Sequence analysis showed that the promoter region of hUCP2 lacks a classical TATA or CAAT box, however, appeared GC-rich resulting in the presence of several Sp-1 motifs and Ap-1/-2 binding sites near the transcription initiation site. Functional characterization of human UCP2 promoter-CAT fusion constructs in transient expression assays showed that minimal promoter activity was observed within 65 bp upstream of the transcriptional start site (+1). 75 bp further upstream (from nt -141 to -66) a strong cis-acting regulatory element (or enhancer) was identified, which significantly enhanced basal promoter activity. The regulation of human UCP2 gene expression involves complex interactions among positive and negative regulatory elements distributed over a minimum of 3.3 kb of the promoter region. Copyright 1999 Academic Press.

  6. Status of therapeutic gene transfer to treat cardiovascular disease in dogs and cats.

    PubMed

    Sleeper, Meg; Bish, Lawrence T; Haskins, Mark; Ponder, Katherine P; Sweeney, H Lee

    2011-06-01

    Gene therapy is a procedure resulting in the transfer of a gene(s) into an individual's cells to treat a disease, which is designed to produce a protein or functional RNA (the gene product). Although most current gene therapy clinical trials focus on cancer and inherited diseases, multiple studies have evaluated the efficacy of gene therapy to abrogate various forms of heart disease. Indeed, human clinical trials are currently underway. One goal of gene transfer may be to express a functional gene when the endogenous gene is inactive. Alternatively, complex diseases such as end stage heart failure are characterized by a number of abnormalities at the cellular level, many of which can be targeted using gene delivery to alter myocardial protein levels. This review will discuss issues related to gene vector systems, gene delivery strategies and two cardiovascular diseases in dogs successfully treated with therapeutic gene delivery. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Robust one-Tube Ω-PCR Strategy Accelerates Precise Sequence Modification of Plasmids for Functional Genomics

    PubMed Central

    Chen, Letian; Wang, Fengpin; Wang, Xiaoyu; Liu, Yao-Guang

    2013-01-01

    Functional genomics requires vector construction for protein expression and functional characterization of target genes; therefore, a simple, flexible and low-cost molecular manipulation strategy will be highly advantageous for genomics approaches. Here, we describe a Ω-PCR strategy that enables multiple types of sequence modification, including precise insertion, deletion and substitution, in any position of a circular plasmid. Ω-PCR is based on an overlap extension site-directed mutagenesis technique, and is named for its characteristic Ω-shaped secondary structure during PCR. Ω-PCR can be performed either in two steps, or in one tube in combination with exonuclease I treatment. These strategies have wide applications for protein engineering, gene function analysis and in vitro gene splicing. PMID:23335613

  8. Detection and characterization of miniature inverted-repeat transposable elements in “Candidatus Liberibacter asiaticus”

    USDA-ARS?s Scientific Manuscript database

    Miniature inverted-repeat transposable elements (MITEs) are non-autonomous transposons (devoid a transposase gene, tps) involving insertion/deletion of genomic DNA in bacterial genomes influencing gene functions. No transposon has yet been reported in “Candidatus Liberibacter asiaticus”, an alpha-pr...

  9. Characterization of Light and Nitrogen Regulated Gene Expression Pathways in Marine Diatoms

    DTIC Science & Technology

    1992-12-31

    DNA and cDNA from the seagrass Zostera marina and marine unicellular chlorophyte Dunaliella tertiolecta, using oligonucleotide primers based on...availability of carbon skeletons from photosynthesis may also function in the modulation of gene expression in diatoms. FCP abundance did not exhibit any

  10. Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean.

    PubMed

    Wu, Jing; Wang, Lanfen; Wang, Shumin

    2016-09-07

    Common bean (Phaseolus vulgaris L.) is an important warm-season food legume. Drought is the most important environmental stress factor affecting large areas of common bean via plant death or reduced global production. The NAM, ATAF1/2 and CUC2 (NAC) domain protein family are classic transcription factors (TFs) involved in a variety of abiotic stresses, particularly drought stress. However, the NAC TFs in common bean have not been characterized. In the present study, 86 putative NAC TF proteins were identified from the common bean genome database and located on 11 common bean chromosomes. The proteins were phylogenetically clustered into 8 distinct subfamilies. The gene structure and motif composition of common bean NACs were similar in each subfamily. These results suggest that NACs in the same subfamily may possess conserved functions. The expression patterns of common bean NAC genes were also characterized. The majority of NACs exhibited specific temporal and spatial expression patterns. We identified 22 drought-related NAC TFs based on transcriptome data for drought-tolerant and drought-sensitive genotypes. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression patterns of the 20 drought-related NAC genes. Based on the common bean genome sequence, we analyzed the structural characteristics, genome distribution, and expression profiles of NAC gene family members and analyzed drought-responsive NAC genes. Our results provide useful information for the functional characterization of common bean NAC genes and rich resources and opportunities for understanding common bean drought stress tolerance mechanisms.

  11. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas

    PubMed Central

    2014-01-01

    Background Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) –like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. Results To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. Conclusions JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha. PMID:24886195

  12. Joint scaling laws in functional and evolutionary categories in prokaryotic genomes

    PubMed Central

    Grilli, J.; Bassetti, B.; Maslov, S.; Cosentino Lagomarsino, M.

    2012-01-01

    We propose and study a class-expansion/innovation/loss model of genome evolution taking into account biological roles of genes and their constituent domains. In our model, numbers of genes in different functional categories are coupled to each other. For example, an increase in the number of metabolic enzymes in a genome is usually accompanied by addition of new transcription factors regulating these enzymes. Such coupling can be thought of as a proportional ‘recipe’ for genome composition of the type ‘a spoonful of sugar for each egg yolk’. The model jointly reproduces two known empirical laws: the distribution of family sizes and the non-linear scaling of the number of genes in certain functional categories (e.g. transcription factors) with genome size. In addition, it allows us to derive a novel relation between the exponents characterizing these two scaling laws, establishing a direct quantitative connection between evolutionary and functional categories. It predicts that functional categories that grow faster-than-linearly with genome size to be characterized by flatter-than-average family size distributions. This relation is confirmed by our bioinformatics analysis of prokaryotic genomes. This proves that the joint quantitative trends of functional and evolutionary classes can be understood in terms of evolutionary growth with proportional recipes. PMID:21937509

  13. Identification of candidate MLO powdery mildew susceptibility genes in cultivated Solanaceae and functional characterization of tobacco NtMLO1.

    PubMed

    Appiano, Michela; Pavan, Stefano; Catalano, Domenico; Zheng, Zheng; Bracuto, Valentina; Lotti, Concetta; Visser, Richard G F; Ricciardi, Luigi; Bai, Yuling

    2015-10-01

    Specific homologs of the plant Mildew Locus O (MLO) gene family act as susceptibility factors towards the powdery mildew (PM) fungal disease, causing significant economic losses in agricultural settings. Thus, in order to obtain PM resistant phenotypes, a general breeding strategy has been proposed, based on the selective inactivation of MLO susceptibility genes across cultivated species. In this study, PCR-based methodologies were used in order to isolate MLO genes from cultivated solanaceous crops that are hosts for PM fungi, namely eggplant, potato and tobacco, which were named SmMLO1, StMLO1 and NtMLO1, respectively. Based on phylogenetic analysis and sequence alignment, these genes were predicted to be orthologs of tomato SlMLO1 and pepper CaMLO2, previously shown to be required for PM pathogenesis. Full-length sequence of the tobacco homolog NtMLO1 was used for a heterologous transgenic complementation assay, resulting in its characterization as a PM susceptibility gene. The same assay showed that a single nucleotide change in a mutated NtMLO1 allele leads to complete gene loss-of-function. Results here presented, also including a complete overview of the tobacco and potato MLO gene families, are valuable to study MLO gene evolution in Solanaceae and for molecular breeding approaches aimed at introducing PM resistance using strategies of reverse genetics.

  14. Expression of uncharacterized male germ cell-specific genes and discovery of novel sperm-tail proteins in mice.

    PubMed

    Kwon, Jun Tae; Ham, Sera; Jeon, Suyeon; Kim, Youil; Oh, Seungmin; Cho, Chunghee

    2017-01-01

    The identification and characterization of germ cell-specific genes are essential if we hope to comprehensively understand the mechanisms of spermatogenesis and fertilization. Here, we searched the mouse UniGene databases and identified 13 novel genes as being putatively testis-specific or -predominant. Our in silico and in vitro analyses revealed that the expressions of these genes are testis- and germ cell-specific, and that they are regulated in a stage-specific manner during spermatogenesis. We generated antibodies against the proteins encoded by seven of the genes to facilitate their characterization in male germ cells. Immunoblotting and immunofluorescence analyses revealed that one of these proteins was expressed only in testicular germ cells, three were expressed in both testicular germ cells and testicular sperm, and the remaining three were expressed in sperm of the testicular stages and in mature sperm from the epididymis. Further analysis of the latter three proteins showed that they were all associated with cytoskeletal structures in the sperm flagellum. Among them, MORN5, which is predicted to contain three MORN motifs, is conserved between mouse and human sperm. In conclusion, we herein identify 13 authentic genes with male germ cell-specific expression, and provide comprehensive information about these genes and their encoded products. Our finding will facilitate future investigations into the functional roles of these novel genes in spermatogenesis and sperm functions.

  15. Characterization and Expression Analysis of Common Bean Histone Deacetylase 6 during Development and Cold Stress Response

    PubMed Central

    Ligaba-Osena, Ayalew; Subramani, Mayavan; Brown, Adrianne; Melmaiee, Kalpalatha; Hossain, Khwaja

    2017-01-01

    Histone deacetylases (HDACs) are important regulators of gene transcription thus controlling multiple cellular processes. Despite its essential role in plants, HDA6 is yet to be validated in common bean. In this study, we show that HDA6 is involved in plant development and stress response. Differential expression of HDA6 was determined in various tissues and the expression was seen to be upregulated with plant age (seedling < flowering < maturity). Higher expression was observed in flowers and pods than in stem, leaf, and root. Upregulation of HDA6 gene during cold stress implies its prominent role in abiotic stress. Furthermore, the HDA6 gene was isolated from three common bean genotypes and sequence analyses revealed homology with functionally characterized homologs in model species. The 53 kDa translated product was detected using an HDA6 specific antibody and recombinant protein overexpressed in Escherichia coli showed HDAC activity in vitro. To our knowledge, this is the first report in the agriculturally important crop common bean describing the functional characterization and biological role of HDA6. PMID:28127547

  16. BHC80 ss Critical in Suppression of Snail-LSD1 Interaction and Breast Cancer Metastasis

    DTIC Science & Technology

    2012-01-01

    as well as Snail/LSD1 binding to the target gene promoter. The identification and functional characterization of PAPR1 will potentially help us...demonstrated that LSD1 enhances the protein stability of Snail and cooperates with Snail to induce EMT, the function of BHC80, as well as potential...identified a new protein component of the Snail/LSD1 complex, and have performed initial experiments to characterize the function of this protein, which

  17. Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales

    PubMed Central

    Pabón-Mora, Natalia; Hidalgo, Oriane; Gleissberg, Stefan; Litt, Amy

    2013-01-01

    Gene duplication and loss provide raw material for evolutionary change within organismal lineages as functional diversification of gene copies provide a mechanism for phenotypic variation. Here we focus on the APETALA1/FRUITFULL MADS-box gene lineage evolution. AP1/FUL genes are angiosperm-specific and have undergone several duplications. By far the most significant one is the core-eudicot duplication resulting in the euAP1 and euFUL clades. Functional characterization of several euAP1 and euFUL genes has shown that both function in proper floral meristem identity, and axillary meristem repression. Independently, euAP1 genes function in floral meristem and sepal identity, whereas euFUL genes control phase transition, cauline leaf growth, compound leaf morphogenesis and fruit development. Significant functional variation has been detected in the function of pre-duplication basal-eudicot FUL-like genes, but the underlying mechanisms for change have not been identified. FUL-like genes in the Papaveraceae encode all functions reported for euAP1 and euFUL genes, whereas FUL-like genes in Aquilegia (Ranunculaceae) function in inflorescence development and leaf complexity, but not in flower or fruit development. Here we isolated FUL-like genes across the Ranunculales and used phylogenetic approaches to analyze their evolutionary history. We identified an early duplication resulting in the RanFL1 and RanFL2 clades. RanFL1 genes were present in all the families sampled and are mostly under strong negative selection in the MADS, I and K domains. RanFL2 genes were only identified from Eupteleaceae, Papaveraceae s.l., Menispermaceae and Ranunculaceae and show relaxed purifying selection at the I and K domains. We discuss how asymmetric sequence diversification, new motifs, differences in codon substitutions and likely protein-protein interactions resulting from this Ranunculiid-specific duplication can help explain the functional differences among basal-eudicot FUL-like genes. PMID:24062757

  18. Identification and analysis of unitary loss of long-established protein-coding genes in Poaceae shows evidences for biased gene loss and putatively functional transcription of relics.

    PubMed

    Zhao, Yi; Tang, Liang; Li, Zhe; Jin, Jinpu; Luo, Jingchu; Gao, Ge

    2015-04-18

    Long-established protein-coding genes may lose their coding potential during evolution ("unitary gene loss"). Members of the Poaceae family are a major food source and represent an ideal model clade for plant evolution research. However, the global pattern of unitary gene loss in Poaceae genomes as well as the evolutionary fate of lost genes are still less-investigated and remain largely elusive. Using a locally developed pipeline, we identified 129 unitary gene loss events for long-established protein-coding genes from four representative species of Poaceae, i.e. brachypodium, rice, sorghum and maize. Functional annotation suggested that the lost genes in all or most of Poaceae species are enriched for genes involved in development and response to endogenous stimulus. We also found that 44 mutated genomic loci of lost genes, which we referred as relics, were still actively transcribed, and of which 84% (37 of 44) showed significantly differential expression across different tissues. More interestingly, we found that there were totally five expressed relics may function as competitive endogenous RNA in brachypodium, rice and sorghum genome. Based on comparative genomics and transcriptome data, we firstly compiled a comprehensive catalogue of unitary gene loss events in Poaceae species and characterized a statistically significant functional preference for these lost genes as well showed the potential of relics functioning as competitive endogenous RNAs in Poaceae genomes.

  19. Characterization of mechanisms underlying degradation of sclerotia of Sclerotinia sclerotiorum by Aspergillus aculeatus Asp-4 using a combined qRT-PCR and proteomic approach.

    PubMed

    Hu, Xiaojia; Qin, Lu; Roberts, Daniel P; Lakshman, Dilip K; Gong, Yangmin; Maul, Jude E; Xie, Lihua; Yu, Changbing; Li, Yinshui; Hu, Lei; Liao, Xiangsheng; Liao, Xing

    2017-08-31

    The biological control agent Aspergillus aculeatus Asp-4 colonizes and degrades sclerotia of Sclerotinia sclerotiorum resulting in reduced germination and disease caused by this important plant pathogen. Molecular mechanisms of mycoparasites underlying colonization, degradation, and reduction of germination of sclerotia of this and other important plant pathogens remain poorly understood. An RNA-Seq screen of Asp-4 growing on autoclaved, ground sclerotia of S. sclerotiorum for 48 h identified 997 up-regulated and 777 down-regulated genes relative to this mycoparasite growing on potato dextrose agar (PDA) for 48 h. qRT-PCR time course experiments characterized expression dynamics of select genes encoding enzymes functioning in degradation of sclerotial components and management of environmental conditions, including environmental stress. This analysis suggested co-temporal up-regulation of genes functioning in these two processes. Proteomic analysis of Asp-4 growing on this sclerotial material for 48 h identified 26 up-regulated and 6 down-regulated proteins relative to the PDA control. Certain proteins with increased abundance had putative functions in degradation of polymeric components of sclerotia and the mitigation of environmental stress. Our results suggest co-temporal up-regulation of genes involved in degradation of sclerotial compounds and mitigation of environmental stress. This study furthers the analysis of mycoparasitism of sclerotial pathogens by providing the basis for molecular characterization of a previously uncharacterized mycoparasite-sclerotial interaction.

  20. Evolutionary analysis of the jacalin-related lectin family genes in 11 fishes.

    PubMed

    Cao, Jun; Lv, Yueqing

    2016-09-01

    Jacalin-related lectins are a type of carbohydrate-binding proteins, which are distributed across a wide variety of organisms and involved in some important biological processes. The evolution of this gene family in fishes is unknown. Here, 47 putative jacalin genes in 11 fish species were identified and divided into 4 groups through phylogenetic analysis. Conserved gene organization and motif distribution existed in each group, suggesting their functional conservation. Some fishes have eleven jacalin genes, while others have only one or zero gene in their genomes, suggesting dynamic changes in the number of jacalin genes during the evolution of fishes. Intragenic recombination played a key role in the evolution of jacalin genes. Synteny analyses of jacalin genes in some fishes implied conserved and dynamic evolution characteristics of this gene family and related genome segments. Moreover, a few functional divergence sites were identified within each group pairs. Divergent expression profiles of the zebra fish jacalin genes were further investigated in different stresses. The results provided a foundation for exploring the characterization of the jacalin genes in fishes and will offer insights for additional functional studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Initial characterization of shade avoidance response suggests functional diversity between Populus phytochrome B genes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karve, Abhijit A; Weston, David; Jawdy, Sara

    2012-01-01

    Shade avoidance signaling in higher plants involves perception of the incident red/far-red (R/FR) light by phytochromes and the modulation of downstream transcriptional networks to regulate developmental plasticity in relation to heterogeneous light environments. In this study, we characterized the expression and functional features of Populus phytochrome (PHY) gene family as well as the transcriptional responses of Populus to the changes in R/FR light. Expression data indicated that PHYA is the predominant PHY in the dark grown Populus seedling whereas PHYBs are most abundant in mature tissue types. Out of three Populus PHYs, PHYA is light labile and localized to cytosolmore » in dark whereas both PHYB1 and PHYB2 are light stable and are localized to nucleus in mesophyll protoplasts. When expressed in Arabidopsis, PHYB1 rescued Arabidopsis phyB mutant phenotype whereas PHYB2 did not, suggesting functional diversification between these two gene family members. However, phenotypes of transgenic Populus lines with altered expression of PHYB1, PHYB2 or both and the expression of candidate shade response genes in these transgenic lines suggest that PHYB1 and PHYB2 may have distinct yet overlapping functions. The RNAseq results and analysis of Populus exposed to enriched-FR light indicate that genes associated in cell wall modification and brassinosteroid signaling were induced under far red light. Overall our data indicate that Populus transcriptional responses are at least partially conserved with Arabidopsis.« less

  2. Modularity of Plant Metabolic Gene Clusters: A Trio of Linked Genes That Are Collectively Required for Acylation of Triterpenes in Oat[W][OA

    PubMed Central

    Mugford, Sam T.; Louveau, Thomas; Melton, Rachel; Qi, Xiaoquan; Bakht, Saleha; Hill, Lionel; Tsurushima, Tetsu; Honkanen, Suvi; Rosser, Susan J.; Lomonossoff, George P.; Osbourn, Anne

    2013-01-01

    Operon-like gene clusters are an emerging phenomenon in the field of plant natural products. The genes encoding some of the best-characterized plant secondary metabolite biosynthetic pathways are scattered across plant genomes. However, an increasing number of gene clusters encoding the synthesis of diverse natural products have recently been reported in plant genomes. These clusters have arisen through the neo-functionalization and relocation of existing genes within the genome, and not by horizontal gene transfer from microbes. The reasons for clustering are not yet clear, although this form of gene organization is likely to facilitate co-inheritance and co-regulation. Oats (Avena spp) synthesize antimicrobial triterpenoids (avenacins) that provide protection against disease. The synthesis of these compounds is encoded by a gene cluster. Here we show that a module of three adjacent genes within the wider biosynthetic gene cluster is required for avenacin acylation. Through the characterization of these genes and their encoded proteins we present a model of the subcellular organization of triterpenoid biosynthesis. PMID:23532069

  3. Genetic and Proteomic Interrogation of Lower Confidence Candidate Genes Reveals Signaling Networks in beta-Catenin-Active Cancers | Office of Cancer Genomics

    Cancer.gov

    Genome-scale expression studies and comprehensive loss-of-function genetic screens have focused almost exclusively on the highest confidence candidate genes. Here, we describe a strategy for characterizing the lower confidence candidates identified by such approaches.

  4. HUMAN GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE-2 (GAPD2) GENE IS EXPRESSED SPECIFICALLY IN SPERMATOGENIC CELLS

    EPA Science Inventory

    Although the process of glycolysis is highly conserved in eukaryotes, several glycolytic enzymes have unique structural or functional features in spermatogenic cells. We previously identified and characterized the mouse complementary DNA (cDNA) and a gene for 1 of these enzymes, ...

  5. Transcriptome characterization for genome annotation and functional genomics in Theobroma cacao

    USDA-ARS?s Scientific Manuscript database

    Evidence from leaf transcriptome sequencing using two technology platforms, in combination with protein homology and trained ab initio predictions, previously enabled us to build 35,000 gene models in T. cacao (www.cacaogenomedb.org). Here we review the contribution of each data type to cacao gene a...

  6. Updated Rice Kinase Database RKD 2.0: enabling transcriptome and functional analysis of rice kinase genes.

    PubMed

    Chandran, Anil Kumar Nalini; Yoo, Yo-Han; Cao, Peijian; Sharma, Rita; Sharma, Manoj; Dardick, Christopher; Ronald, Pamela C; Jung, Ki-Hong

    2016-12-01

    Protein kinases catalyze the transfer of a phosphate moiety from a phosphate donor to the substrate molecule, thus playing critical roles in cell signaling and metabolism. Although plant genomes contain more than 1000 genes that encode kinases, knowledge is limited about the function of each of these kinases. A major obstacle that hinders progress towards kinase characterization is functional redundancy. To address this challenge, we previously developed the rice kinase database (RKD) that integrated omics-scale data within a phylogenetics context. An updated version of rice kinase database (RKD) that contains metadata derived from NCBI GEO expression datasets has been developed. RKD 2.0 facilitates in-depth transcriptomic analyses of kinase-encoding genes in diverse rice tissues and in response to biotic and abiotic stresses and hormone treatments. We identified 261 kinases specifically expressed in particular tissues, 130 that are significantly up- regulated in response to biotic stress, 296 in response to abiotic stress, and 260 in response to hormones. Based on this update and Pearson correlation coefficient (PCC) analysis, we estimated that 19 out of 26 genes characterized through loss-of-function studies confer dominant functions. These were selected because they either had paralogous members with PCC values of <0.5 or had no paralog. Compared with the previous version of RKD, RKD 2.0 enables more effective estimations of functional redundancy or dominance because it uses comprehensive expression profiles rather than individual profiles. The integrated analysis of RKD with PCC establishes a single platform for researchers to select rice kinases for functional analyses.

  7. The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development

    PubMed Central

    Bedell, Victoria M.; Person, Anthony D.; Larson, Jon D.; McLoon, Anna; Balciunas, Darius; Clark, Karl J.; Neff, Kevin I.; Nelson, Katie E.; Bill, Brent R.; Schimmenti, Lisa A.; Beiraghi, Soraya; Ekker, Stephen C.

    2012-01-01

    The Homeobox (Hox) and Paired box (Pax) gene families are key determinants of animal body plans and organ structure. In particular, they function within regulatory networks that control organogenesis. How these conserved genes elicit differences in organ form and function in response to evolutionary pressures is incompletely understood. We molecularly and functionally characterized one member of an evolutionarily dynamic gene family, plac8 onzin related protein 1 (ponzr1), in the zebrafish. ponzr1 mRNA is expressed early in the developing kidney and pharyngeal arches. Using ponzr1-targeting morpholinos, we show that ponzr1 is required for formation of the glomerulus. Loss of ponzr1 results in a nonfunctional glomerulus but retention of a functional pronephros, an arrangement similar to the aglomerular kidneys found in a subset of marine fish. ponzr1 is integrated into the pax2a pathway, with ponzr1 expression requiring pax2a gene function, and proper pax2a expression requiring normal ponzr1 expression. In addition to pronephric function, ponzr1 is required for pharyngeal arch formation. We functionally demonstrate that ponzr1 can act as a transcription factor or co-factor, providing the first molecular mode of action for this newly described gene family. Together, this work provides experimental evidence of an additional mechanism that incorporates evolutionarily dynamic, lineage-specific gene families into conserved regulatory gene networks to create functional organ diversity. PMID:22274699

  8. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  9. Plant ion channels: gene families, physiology, and functional genomics analyses.

    PubMed

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  10. Disease Model Discovery from 3,328 Gene Knockouts by The International Mouse Phenotyping Consortium

    PubMed Central

    Meehan, Terrence F.; Conte, Nathalie; West, David B.; Jacobsen, Julius O.; Mason, Jeremy; Warren, Jonathan; Chen, Chao-Kung; Tudose, Ilinca; Relac, Mike; Matthews, Peter; Karp, Natasha; Santos, Luis; Fiegel, Tanja; Ring, Natalie; Westerberg, Henrik; Greenaway, Simon; Sneddon, Duncan; Morgan, Hugh; Codner, Gemma F; Stewart, Michelle E; Brown, James; Horner, Neil; Haendel, Melissa; Washington, Nicole; Mungall, Christopher J.; Reynolds, Corey L; Gallegos, Juan; Gailus-Durner, Valerie; Sorg, Tania; Pavlovic, Guillaume; Bower, Lynette R; Moore, Mark; Morse, Iva; Gao, Xiang; Tocchini-Valentini, Glauco P; Obata, Yuichi; Cho, Soo Young; Seong, Je Kyung; Seavitt, John; Beaudet, Arthur L.; Dickinson, Mary E.; Herault, Yann; Wurst, Wolfgang; de Angelis, Martin Hrabe; Lloyd, K.C. Kent; Flenniken, Ann M; Nutter, Lauryl MJ; Newbigging, Susan; McKerlie, Colin; Justice, Monica J.; Murray, Stephen A.; Svenson, Karen L.; Braun, Robert E.; White, Jacqueline K.; Bradley, Allan; Flicek, Paul; Wells, Sara; Skarnes, William C.; Adams, David J.; Parkinson, Helen; Mallon, Ann-Marie; Brown, Steve D.M.; Smedley, Damian

    2017-01-01

    Although next generation sequencing has revolutionised the ability to associate variants with human diseases, diagnostic rates and development of new therapies are still limited by our lack of knowledge of function and pathobiological mechanism for most genes. To address this challenge, the International Mouse Phenotyping Consortium (IMPC) is creating a genome- and phenome-wide catalogue of gene function by characterizing new knockout mouse strains across diverse biological systems through a broad set of standardised phenotyping tests, with all mice made readily available to the biomedical community. Analysing the first 3328 genes reveals models for 360 diseases including the first for type C Bernard-Soulier, Bardet-Biedl-5 and Gordon Holmes syndromes. 90% of our phenotype annotations are novel, providing the first functional evidence for 1092 genes and candidates in unsolved diseases such as Arrhythmogenic Right Ventricular Dysplasia 3. Finally, we describe our role in variant functional validation with the 100,000 Genomes and other projects. PMID:28650483

  11. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    PubMed

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps.

  12. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics.

    PubMed

    de Angelis, Martin Hrabě; Nicholson, George; Selloum, Mohammed; White, Jacqui; Morgan, Hugh; Ramirez-Solis, Ramiro; Sorg, Tania; Wells, Sara; Fuchs, Helmut; Fray, Martin; Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl Mj; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie; Holmes, Chris; Steel, Karen P; Herault, Yann; Gailus-Durner, Valérie; Mallon, Ann-Marie; Brown, Steve Dm

    2015-09-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.

  13. FUN-L: gene prioritization for RNAi screens.

    PubMed

    Lees, Jonathan G; Hériché, Jean-Karim; Morilla, Ian; Fernández, José M; Adler, Priit; Krallinger, Martin; Vilo, Jaak; Valencia, Alfonso; Ellenberg, Jan; Ranea, Juan A; Orengo, Christine

    2015-06-15

    Most biological processes remain only partially characterized with many components still to be identified. Given that a whole genome can usually not be tested in a functional assay, identifying the genes most likely to be of interest is of critical importance to avoid wasting resources. Given a set of known functionally related genes and using a state-of-the-art approach to data integration and mining, our Functional Lists (FUN-L) method provides a ranked list of candidate genes for testing. Validation of predictions from FUN-L with independent RNAi screens confirms that FUN-L-produced lists are enriched in genes with the expected phenotypes. In this article, we describe a website front end to FUN-L. The website is freely available to use at http://funl.org © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Identification and characterization of the grape WRKY family.

    PubMed

    Zhang, Ying; Feng, Jian Can

    2014-01-01

    WRKY transcription factors have functions in plant growth and development and in response to biotic and abiotic stresses. Many studies have focused on functional identification of WRKY transcription factors, but little is known about the molecular phylogeny or global expression patterns of the complete WRKY family. In this study, we identified 80 WRKY proteins encoded in the grape genome. Based on the structural features of these proteins, the grape WRKY genes were classified into three groups (groups 1-3). Analysis of WRKY genes expression profiles indicated that 28 WRKY genes were differentially expressed in response to biotic stress caused by grape whiterot and/or salicylic acid (SA). In that 16 WRKY genes upregulated both by whiterot pathogenic bacteria and SA. The results indicated that 16 WRKY proteins participated in SA-dependent defense signal pathway. This study provides a basis for cloning genes with specific functions from grape.

  15. The cytochrome P450 gene CsCYP85A1 is a putative candidate for super compact-1 (scp-1) plant architecture mutation in cucumber (Cucumis sativus L.)

    USDA-ARS?s Scientific Manuscript database

    The dwarf plant architecture is an important trait in plant breeding. A number of genes controlling plant height have been cloned and functionally characterized which often involve in biosynthesis or signaling of plant hormones such as brassinosteroids(BRs). No genes for plant height or vine length ...

  16. An (E,E)-a-farnesene synthase gene of soybean has a role in defense against nematodes and is involved in synthesizing insect-induced volatiles

    USDA-ARS?s Scientific Manuscript database

    Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here we report the functional characterization of one member of the soybean TP S gene family, which was designated GmAFS. Recombinant GmAFS produced in E.coli catalyzed the formation of a sesquiterpene (E,E)-a-farnesene....

  17. Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis

    PubMed Central

    2012-01-01

    Background Ethylene production and signalling play an important role in somatic embryogenesis, especially for species that are recalcitrant in in vitro culture. The AP2/ERF superfamily has been identified and classified in Hevea brasiliensis. This superfamily includes the ERFs involved in response to ethylene. The relative transcript abundance of ethylene biosynthesis genes and of AP2/ERF genes was analysed during somatic embryogenesis for callus lines with different regeneration potential, in order to identify genes regulated during that process. Results The analysis of relative transcript abundance was carried out by real-time RT-PCR for 142 genes. The transcripts of ERFs from group I, VII and VIII were abundant at all stages of the somatic embryogenesis process. Forty genetic expression markers for callus regeneration capacity were identified. Fourteen markers were found for proliferating calli and 35 markers for calli at the end of the embryogenesis induction phase. Sixteen markers discriminated between normal and abnormal embryos and, lastly, there were 36 markers of conversion into plantlets. A phylogenetic analysis comparing the sequences of the AP2 domains of Hevea and Arabidopsis genes enabled us to predict the function of 13 expression marker genes. Conclusions This first characterization of the AP2/ERF superfamily in Hevea revealed dramatic regulation of the expression of AP2/ERF genes during the somatic embryogenesis process. The gene expression markers of proliferating callus capacity to regenerate plants by somatic embryogenesis should make it possible to predict callus lines suitable to be used for multiplication. Further functional characterization of these markers opens up prospects for discovering specific AP2/ERF functions in the Hevea species for which somatic embryogenesis is difficult. PMID:23268714

  18. Mining functionally relevant gene sets for analyzing physiologically novel clinical expression data.

    PubMed

    Turcan, Sevin; Vetter, Douglas E; Maron, Jill L; Wei, Xintao; Slonim, Donna K

    2011-01-01

    Gene set analyses have become a standard approach for increasing the sensitivity of transcriptomic studies. However, analytical methods incorporating gene sets require the availability of pre-defined gene sets relevant to the underlying physiology being studied. For novel physiological problems, relevant gene sets may be unavailable or existing gene set databases may bias the results towards only the best-studied of the relevant biological processes. We describe a successful attempt to mine novel functional gene sets for translational projects where the underlying physiology is not necessarily well characterized in existing annotation databases. We choose targeted training data from public expression data repositories and define new criteria for selecting biclusters to serve as candidate gene sets. Many of the discovered gene sets show little or no enrichment for informative Gene Ontology terms or other functional annotation. However, we observe that such gene sets show coherent differential expression in new clinical test data sets, even if derived from different species, tissues, and disease states. We demonstrate the efficacy of this method on a human metabolic data set, where we discover novel, uncharacterized gene sets that are diagnostic of diabetes, and on additional data sets related to neuronal processes and human development. Our results suggest that our approach may be an efficient way to generate a collection of gene sets relevant to the analysis of data for novel clinical applications where existing functional annotation is relatively incomplete.

  19. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus.

    PubMed

    Li, Ting; Liu, Lena; Zhang, Lee; Liu, Nannan

    2014-09-29

    G-protein-coupled receptors regulate signal transduction pathways and play diverse and pivotal roles in the physiology of insects, however, the precise function of GPCRs in insecticide resistance remains unclear. Using quantitative RT-PCR and functional genomic methods, we, for the first time, explored the function of GPCRs and GPCR-related genes in insecticide resistance of mosquitoes, Culex quinquefasciatus. A comparison of the expression of 115 GPCR-related genes at a whole genome level between resistant and susceptible Culex mosquitoes identified one and three GPCR-related genes that were up-regulated in highly resistant Culex mosquito strains, HAmCq(G8) and MAmCq(G6), respectively. To characterize the function of these up-regulated GPCR-related genes in resistance, the up-regulated GPCR-related genes were knockdown in HAmCq(G8) and MAmCq(G6) using RNAi technique. Knockdown of these four GPCR-related genes not only decreased resistance of the mosquitoes to permethrin but also repressed the expression of four insecticide resistance-related P450 genes, suggesting the role of GPCR-related genes in resistance is involved in the regulation of resistance P450 gene expression. This results help in understanding of molecular regulation of resistance development in Cx. quinquefasciatus.

  20. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton.

    PubMed

    Magwanga, Richard Odongo; Lu, Pu; Kirungu, Joy Nyangasi; Lu, Hejun; Wang, Xingxing; Cai, Xiaoyan; Zhou, Zhongli; Zhang, Zhenmei; Salih, Haron; Wang, Kunbo; Liu, Fang

    2018-01-15

    Late embryogenesis abundant (LEA) proteins are large groups of hydrophilic proteins with major role in drought and other abiotic stresses tolerance in plants. In-depth study and characterization of LEA protein families have been carried out in other plants, but not in upland cotton. The main aim of this research work was to characterize the late embryogenesis abundant (LEA) protein families and to carry out gene expression analysis to determine their potential role in drought stress tolerance in upland cotton. Increased cotton production in the face of declining precipitation and availability of fresh water for agriculture use is the focus for breeders, cotton being the backbone of textile industries and a cash crop for many countries globally. In this work, a total of 242, 136 and 142 LEA genes were identified in G. hirsutum, G. arboreum and G. raimondii respectively. The identified genes were classified into eight groups based on their conserved domain and phylogenetic tree analysis. LEA 2 were the most abundant, this could be attributed to their hydrophobic character. Upland cotton LEA genes have fewer introns and are distributed in all chromosomes. Majority of the duplicated LEA genes were segmental. Syntenic analysis showed that greater percentages of LEA genes are conserved. Segmental gene duplication played a key role in the expansion of LEA genes. Sixty three miRNAs were found to target 89 genes, such as miR164, ghr-miR394 among others. Gene ontology analysis revealed that LEA genes are involved in desiccation and defense responses. Almost all the LEA genes in their promoters contained ABRE, MBS, W-Box and TAC-elements, functionally known to be involved in drought stress and other stress responses. Majority of the LEA genes were involved in secretory pathways. Expression profile analysis indicated that most of the LEA genes were highly expressed in drought tolerant cultivars Gossypium tomentosum as opposed to drought susceptible, G. hirsutum. The tolerant genotypes have a greater ability to modulate genes under drought stress than the more susceptible upland cotton cultivars. The finding provides comprehensive information on LEA genes in upland cotton, G. hirsutum and possible function in plants under drought stress.

  1. shinyGISPA: A web application for characterizing phenotype by gene sets using multiple omics data combinations.

    PubMed

    Dwivedi, Bhakti; Kowalski, Jeanne

    2018-01-01

    While many methods exist for integrating multi-omics data or defining gene sets, there is no one single tool that defines gene sets based on merging of multiple omics data sets. We present shinyGISPA, an open-source application with a user-friendly web-based interface to define genes according to their similarity in several molecular changes that are driving a disease phenotype. This tool was developed to help facilitate the usability of a previously published method, Gene Integrated Set Profile Analysis (GISPA), among researchers with limited computer-programming skills. The GISPA method allows the identification of multiple gene sets that may play a role in the characterization, clinical application, or functional relevance of a disease phenotype. The tool provides an automated workflow that is highly scalable and adaptable to applications that go beyond genomic data merging analysis. It is available at http://shinygispa.winship.emory.edu/shinyGISPA/.

  2. shinyGISPA: A web application for characterizing phenotype by gene sets using multiple omics data combinations

    PubMed Central

    Dwivedi, Bhakti

    2018-01-01

    While many methods exist for integrating multi-omics data or defining gene sets, there is no one single tool that defines gene sets based on merging of multiple omics data sets. We present shinyGISPA, an open-source application with a user-friendly web-based interface to define genes according to their similarity in several molecular changes that are driving a disease phenotype. This tool was developed to help facilitate the usability of a previously published method, Gene Integrated Set Profile Analysis (GISPA), among researchers with limited computer-programming skills. The GISPA method allows the identification of multiple gene sets that may play a role in the characterization, clinical application, or functional relevance of a disease phenotype. The tool provides an automated workflow that is highly scalable and adaptable to applications that go beyond genomic data merging analysis. It is available at http://shinygispa.winship.emory.edu/shinyGISPA/. PMID:29415010

  3. Discover mouse gene coexpression landscapes using dictionary learning and sparse coding.

    PubMed

    Li, Yujie; Chen, Hanbo; Jiang, Xi; Li, Xiang; Lv, Jinglei; Peng, Hanchuan; Tsien, Joe Z; Liu, Tianming

    2017-12-01

    Gene coexpression patterns carry rich information regarding enormously complex brain structures and functions. Characterization of these patterns in an unbiased, integrated, and anatomically comprehensive manner will illuminate the higher-order transcriptome organization and offer genetic foundations of functional circuitry. Here using dictionary learning and sparse coding, we derived coexpression networks from the space-resolved anatomical comprehensive in situ hybridization data from Allen Mouse Brain Atlas dataset. The key idea is that if two genes use the same dictionary to represent their original signals, then their gene expressions must share similar patterns, thereby considering them as "coexpressed." For each network, we have simultaneous knowledge of spatial distributions, the genes in the network and the extent a particular gene conforms to the coexpression pattern. Gene ontologies and the comparisons with published gene lists reveal biologically identified coexpression networks, some of which correspond to major cell types, biological pathways, and/or anatomical regions.

  4. Identification and functional characterization of the pepper CaDRT1 gene involved in the ABA-mediated drought stress response.

    PubMed

    Baek, Woonhee; Lim, Sohee; Lee, Sung Chul

    2016-05-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone abscisic acid (ABA) regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we identified the Capsicum annuum DRought Tolerance 1 (CaDRT1) gene from pepper leaves treated with ABA. CaDRT1 was strongly expressed in pepper leaves in response to environmental stresses and after ABA treatment, suggesting that the CaDRT1 protein functions in the abiotic stress response. Knockdown expression of CaDRT1 via virus-induced gene silencing resulted in a high level of drought susceptibility, and this was characterized by increased transpirational water loss via decreased stomatal closure. CaDRT1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative, seedling, and adult stages. Additionally, these CaDRT1-OX plants exhibited a drought-tolerant phenotype characterized by low levels of transpirational water loss, high leaf temperatures, increased stomatal closure, and enhanced expression levels of drought-responsive genes. Taken together, our results suggest that CaDRT1 is a positive regulator of the ABA-mediated drought stress response.

  5. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.).

    PubMed

    Zhang, Xiaohong; Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton.

  6. Characterization and Functional Analysis of PEBP Family Genes in Upland Cotton (Gossypium hirsutum L.)

    PubMed Central

    Wang, Congcong; Pang, Chaoyou; Wei, Hengling; Wang, Hantao; Song, Meizhen; Fan, Shuli; Yu, Shuxun

    2016-01-01

    Upland cotton (Gossypium hirsutum L.) is a naturally occurring photoperiod-sensitive perennial plant species. However, sensitivity to the day length was lost during domestication. The phosphatidylethanolamine-binding protein (PEBP) gene family, of which three subclades have been identified in angiosperms, functions to promote and suppress flowering in photoperiod pathway. Recent evidence indicates that PEBP family genes play an important role in generating mobile flowering signals. We isolated homologues of the PEBP gene family in upland cotton and examined their regulation and function. Nine PEBP-like genes were cloned and phylogenetic analysis indicated the genes belonged to four subclades (FT, MFT, TFL1 and PEBP). Cotton PEBP-like genes showed distinct expression patterns in relation to different cotton genotypes, photoperiod responsive and cultivar maturity. The GhFT gene expression of a semi-wild race of upland cotton were strongly induced under short day condition, whereas the GhPEBP2 gene expression was induced under long days. We also elucidated that GhFT but not GhPEBP2 interacted with FD-like bZIP transcription factor GhFD and promote flowering under both long- and short-day conditions. The present result indicated that GhPEBP-like genes may perform different functions. This work corroborates the involvement of PEBP-like genes in photoperiod response and regulation of flowering time in different cotton genotypes, and contributes to an improved understanding of the function of PEBP-like genes in cotton. PMID:27552108

  7. In-silico identification and characterization of organic and inorganic chemical stress responding genes in yeast (Saccharomyces cerevisiae).

    PubMed

    Barozai, Muhammad Younas Khan; Bashir, Farrukh; Muzaffar, Shafia; Afzal, Saba; Behlil, Farida; Khan, Muzaffar

    2014-10-15

    To study the life processes of all eukaryotes, yeast (Saccharomyces cerevisiae) is a significant model organism. It is also one of the best models to study the responses of genes at transcriptional level. In a living organism, gene expression is changed by chemical stresses. The genes that give response to chemical stresses will provide good source for the strategies in engineering and formulating mechanisms which are chemical stress resistant in the eukaryotic organisms. The data available through microarray under the chemical stresses like lithium chloride, lactic acid, weak organic acids and tomatidine were studied by using computational tools. Out of 9335 yeast genes, 388 chemical stress responding genes were identified and characterized under different chemical stresses. Some of these are: Enolases 1 and 2, heat shock protein-82, Yeast Elongation Factor 3, Beta Glucanase Protein, Histone H2A1 and Histone H2A2 Proteins, Benign Prostatic Hyperplasia, ras GTPase activating protein, Establishes Silent Chromatin protein, Mei5 Protein, Nondisjunction Protein and Specific Mitogen Activated Protein Kinase. Characterization of these genes was also made on the basis of their molecular functions, biological processes and cellular components. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. TMV-Gate vectors: Gateway compatible tobacco mosaic virus based expression vectors for functional analysis of proteins

    PubMed Central

    Kagale, Sateesh; Uzuhashi, Shihomi; Wigness, Merek; Bender, Tricia; Yang, Wen; Borhan, M. Hossein; Rozwadowski, Kevin

    2012-01-01

    Plant viral expression vectors are advantageous for high-throughput functional characterization studies of genes due to their capability for rapid, high-level transient expression of proteins. We have constructed a series of tobacco mosaic virus (TMV) based vectors that are compatible with Gateway technology to enable rapid assembly of expression constructs and exploitation of ORFeome collections. In addition to the potential of producing recombinant protein at grams per kilogram FW of leaf tissue, these vectors facilitate either N- or C-terminal fusions to a broad series of epitope tag(s) and fluorescent proteins. We demonstrate the utility of these vectors in affinity purification, immunodetection and subcellular localisation studies. We also apply the vectors to characterize protein-protein interactions and demonstrate their utility in screening plant pathogen effectors. Given its broad utility in defining protein properties, this vector series will serve as a useful resource to expedite gene characterization efforts. PMID:23166857

  9. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat

    PubMed Central

    Buchner, Peter; Hawkesford, Malcolm J.

    2014-01-01

    NPF (formerly referred to as low-affinity NRT1) and ‘high-affinity’ NRT2 nitrate transporter genes are involved in nitrate uptake by the root, and transport and distribution of nitrate within the plant. The NPF gene family consists of 53 members in Arabidopsis thaliana, however only 11 of these have been functionally characterized. Although homologous genes have been identified in genomes of different plant species including some cereals, there is little information available for wheat (Triticum aestivum). Sixteen genes were identified in wheat homologous to characterized Arabidopsis low-affinity nitrate transporter NPF genes, suggesting a complex wheat NPF gene family. The regulation of wheat NFP genes by plant N-status indicated involvement of these transporters in substrate transport in relation to N-metabolism. The complex expression pattern in relation to tissue specificity, nitrate availability and senescence may be associated with the complex growth patterns of wheat depending on sink/source demands, as well as remobilization during grain filling. PMID:24913625

  10. The microbiome of uncontacted Amerindians.

    PubMed

    Clemente, Jose C; Pehrsson, Erica C; Blaser, Martin J; Sandhu, Kuldip; Gao, Zhan; Wang, Bin; Magris, Magda; Hidalgo, Glida; Contreras, Monica; Noya-Alarcón, Óscar; Lander, Orlana; McDonald, Jeremy; Cox, Mike; Walter, Jens; Oh, Phaik Lyn; Ruiz, Jean F; Rodriguez, Selena; Shen, Nan; Song, Se Jin; Metcalf, Jessica; Knight, Rob; Dantas, Gautam; Dominguez-Bello, M Gloria

    2015-04-03

    Most studies of the human microbiome have focused on westernized people with life-style practices that decrease microbial survival and transmission, or on traditional societies that are currently in transition to westernization. We characterize the fecal, oral, and skin bacterial microbiome and resistome of members of an isolated Yanomami Amerindian village with no documented previous contact with Western people. These Yanomami harbor a microbiome with the highest diversity of bacteria and genetic functions ever reported in a human group. Despite their isolation, presumably for >11,000 years since their ancestors arrived in South America, and no known exposure to antibiotics, they harbor bacteria that carry functional antibiotic resistance (AR) genes, including those that confer resistance to synthetic antibiotics and are syntenic with mobilization elements. These results suggest that westernization significantly affects human microbiome diversity and that functional AR genes appear to be a feature of the human microbiome even in the absence of exposure to commercial antibiotics. AR genes are likely poised for mobilization and enrichment upon exposure to pharmacological levels of antibiotics. Our findings emphasize the need for extensive characterization of the function of the microbiome and resistome in remote nonwesternized populations before globalization of modern practices affects potentially beneficial bacteria harbored in the human body.

  11. The microbiome of uncontacted Amerindians

    PubMed Central

    Clemente, Jose C.; Pehrsson, Erica C.; Blaser, Martin J.; Sandhu, Kuldip; Gao, Zhan; Wang, Bin; Magris, Magda; Hidalgo, Glida; Contreras, Monica; Noya-Alarcón, Óscar; Lander, Orlana; McDonald, Jeremy; Cox, Mike; Walter, Jens; Oh, Phaik Lyn; Ruiz, Jean F.; Rodriguez, Selena; Shen, Nan; Song, Se Jin; Metcalf, Jessica; Knight, Rob; Dantas, Gautam; Dominguez-Bello, M. Gloria

    2015-01-01

    Most studies of the human microbiome have focused on westernized people with life-style practices that decrease microbial survival and transmission, or on traditional societies that are currently in transition to westernization. We characterize the fecal, oral, and skin bacterial microbiome and resistome of members of an isolated Yanomami Amerindian village with no documented previous contact with Western people. These Yanomami harbor a microbiome with the highest diversity of bacteria and genetic functions ever reported in a human group. Despite their isolation, presumably for >11,000 years since their ancestors arrived in South America, and no known exposure to antibiotics, they harbor bacteria that carry functional antibiotic resistance (AR) genes, including those that confer resistance to synthetic antibiotics and are syntenic with mobilization elements. These results suggest that westernization significantly affects human microbiome diversity and that functional AR genes appear to be a feature of the human microbiome even in the absence of exposure to commercial antibiotics. AR genes are likely poised for mobilization and enrichment upon exposure to pharmacological levels of antibiotics. Our findings emphasize the need for extensive characterization of the function of the microbiome and resistome in remote nonwesternized populations before globalization of modern practices affects potentially beneficial bacteria harbored in the human body. PMID:26229982

  12. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli.

    PubMed

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-04-16

    The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  13. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    PubMed Central

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-01-01

    Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983

  14. GExplore: a web server for integrated queries of protein domains, gene expression and mutant phenotypes

    PubMed Central

    2009-01-01

    Background The majority of the genes even in well-studied multi-cellular model organisms have not been functionally characterized yet. Mining the numerous genome wide data sets related to protein function to retrieve potential candidate genes for a particular biological process remains a challenge. Description GExplore has been developed to provide a user-friendly database interface for data mining at the gene expression/protein function level to help in hypothesis development and experiment design. It supports combinatorial searches for proteins with certain domains, tissue- or developmental stage-specific expression patterns, and mutant phenotypes. GExplore operates on a stand-alone database and has fast response times, which is essential for exploratory searches. The interface is not only user-friendly, but also modular so that it accommodates additional data sets in the future. Conclusion GExplore is an online database for quick mining of data related to gene and protein function, providing a multi-gene display of data sets related to the domain composition of proteins as well as expression and phenotype data. GExplore is publicly available at: http://genome.sfu.ca/gexplore/ PMID:19917126

  15. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.

    PubMed

    Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin

    2017-10-01

    Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Identification, characterization and functional analysis of regulatory region of nanos gene from half-smooth tongue sole (Cynoglossus semilaevis).

    PubMed

    Huang, Jinqiang; Li, Yongjuan; Shao, Changwei; Wang, Na; Chen, Songlin

    2017-06-20

    The nanos gene encodes an RNA-binding zinc finger protein, which is required in the development and maintenance of germ cells. However, there is very limited information about nanos in flatfish, which impedes its application in fish breeding. In this study, we report the molecular cloning, characterization and functional analysis of the 3'-untranslated region of the nanos gene (Csnanos) from half-smooth tongue sole (Cynoglossus semilaevis), which is an economically important flatfish in China. The 1233-bp cDNA sequence, 1709-bp genomic sequence and flanking sequences (2.8-kb 5'- and 1.6-kb 3'-flanking regions) of Csnanos were cloned and characterized. Sequence analysis revealed that CsNanos shares low homology with Nanos in other species, but the zinc finger domain of CsNanos is highly similar. Phylogenetic analysis indicated that CsNanos belongs to the Nanos2 subfamily. Csnanos expression was widely detected in various tissues, but the expression level was higher in testis and ovary. During early development and sex differentiation, Csnanos expression exhibited a clear sexually dimorphic pattern, suggesting its different roles in the migration and differentiation of primordial germ cells (PGCs). Higher expression levels of Csnanos mRNA in normal females and males than in neomales indicated that the nanos gene may play key roles in maintaining the differentiation of gonad. Moreover, medaka PGCs were successfully labeled by the microinjection of synthesized mRNA consisting of green fluorescence protein and the 3'-untranslated region of Csnanos. These findings provide new insights into nanos gene expression and function, and lay the foundation for further study of PGC development and applications in tongue sole breeding. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. HnRNP A3 genes and pseudogenes in the vertebrate genomes.

    PubMed

    Makeyev, Aleksandr V; Kim, Chang Bae; Ruddle, Frank H; Enkhmandakh, Badam; Erdenechimeg, Lkhamsuren; Bayarsaihan, Dashzeveg

    2005-04-01

    The hnRNP A/B type proteins are abundant nuclear factors that bind to Pol II transcripts and are involved in numerous RNA-related activities. To date most data on the hnRNP A/B family have been obtained with recombinant proteins and cell cultures. Further characterization can result from an examination of the impact of various modifications in intact functional loci; however, such characterization is hampered by the presence of numerous and widely dispersed hnRNP A/B-related sequences in the mammalian genome. We have found hnRNP A3, a poorly recognized member of the hnRNP A/B family, among candidate transcription factors that interact with the regulatory region of the Hoxc8 gene and screened the human and mouse genomes for genes that encode hnRNP A3. We demonstrate that the sequence reported previously as the human hnRNP A3 gene (Accession number S63912) and located on 10p11.1 belongs to a processed pseudogene of the functional intron-containing locus HNRPA3, which we have identified on 2q31.2. We have also identified its murine orthologs on mouse chromosome 2D and rat chromosome 3q23. Alternative splices were revealed at the N-terminus and in the middle of hnRNP A3. 14 and 28 additional loci in the human and mouse genome, respectively, were mapped and identified as hnRNP A3 processed pseudogenes. In addition, we have found and compared hnRNP A3 orthologous genes in Gallus gallus, Xenopus tropicalis, and Danio rerio. The present in silico analysis serves as a necessary step toward a further functional characterization of hnRNP A3. (c) 2005 Wiley-Liss, Inc.

  18. Rapid functional analysis of computationally complex rare human IRF6 gene variants using a novel zebrafish model.

    PubMed

    Li, Edward B; Truong, Dawn; Hallett, Shawn A; Mukherjee, Kusumika; Schutte, Brian C; Liao, Eric C

    2017-09-01

    Large-scale sequencing efforts have captured a rapidly growing catalogue of genetic variations. However, the accurate establishment of gene variant pathogenicity remains a central challenge in translating personal genomics information to clinical decisions. Interferon Regulatory Factor 6 (IRF6) gene variants are significant genetic contributors to orofacial clefts. Although approximately three hundred IRF6 gene variants have been documented, their effects on protein functions remain difficult to interpret. Here, we demonstrate the protein functions of human IRF6 missense gene variants could be rapidly assessed in detail by their abilities to rescue the irf6 -/- phenotype in zebrafish through variant mRNA microinjections at the one-cell stage. The results revealed many missense variants previously predicted by traditional statistical and computational tools to be loss-of-function and pathogenic retained partial or full protein function and rescued the zebrafish irf6 -/- periderm rupture phenotype. Through mRNA dosage titration and analysis of the Exome Aggregation Consortium (ExAC) database, IRF6 missense variants were grouped by their abilities to rescue at various dosages into three functional categories: wild type function, reduced function, and complete loss-of-function. This sensitive and specific biological assay was able to address the nuanced functional significances of IRF6 missense gene variants and overcome many limitations faced by current statistical and computational tools in assigning variant protein function and pathogenicity. Furthermore, it unlocked the possibility for characterizing yet undiscovered human IRF6 missense gene variants from orofacial cleft patients, and illustrated a generalizable functional genomics paradigm in personalized medicine.

  19. Expression pattern and signalling pathways in neutrophil like HL-60 cells after treatment with estrogen receptor selective ligands.

    PubMed

    Blesson, Chellakkan Selvanesan; Sahlin, Lena

    2012-09-25

    Estrogens play a role in the regulation of genes associated with inflammation and immunity in neutrophils. Estrogen signalling is mediated by estrogen receptor (ER)α, ERβ, and G-protein-coupled estrogen receptor-1 (GPER). The mechanisms by which estrogen regulate genes in neutrophils are poorly understood. Our aim was to identify the presence of ERs and to characterize estrogen responsive genes in terminally differentiated neutrophil like HL-60 (nHL-60) cells using estradiol and selective ER agonists. ERs were identified by Western blotting and immunocytochemistry. Microarray technique was used to screen for differentially expressed genes and the selected genes were verified by quantitative PCR. We show the presence of functional ERα, ERβ and GPER. Microarray analysis showed the presence of genes that are uniquely regulated by a single ligand and also genes that are regulated by multiple ligands. We conclude that ERs are functionally active in nHL-60 cells regulating genes involved in key physiological functions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.).

    PubMed

    Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Khan, Yusuf; Parida, Swarup Kumar; Prasad, Manoj

    2014-01-01

    WD40 proteins play a crucial role in diverse protein-protein interactions by acting as scaffolding molecules and thus assisting in the proper activity of proteins. Hence, systematic characterization and expression profiling of these WD40 genes in foxtail millet would enable us to understand the networks of WD40 proteins and their biological processes and gene functions. In the present study, a genome-wide survey was conducted and 225 potential WD40 genes were identified. Phylogenetic analysis categorized the WD40 proteins into 5 distinct sub-families (I-V). Gene Ontology annotation revealed the biological roles of the WD40 proteins along with its cellular components and molecular functions. In silico comparative mapping with sorghum, maize and rice demonstrated the orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of WD40 genes. Estimation of synonymous and non-synonymous substitution rates revealed its evolutionary significance in terms of gene-duplication and divergence. Expression profiling against abiotic stresses provided novel insights into specific and/or overlapping expression patterns of SiWD40 genes. Homology modeling enabled three-dimensional structure prediction was performed to understand the molecular functions of WD40 proteins. Although, recent findings had shown the importance of WD40 domains in acting as hubs for cellular networks during many biological processes, it has invited a lesser research attention unlike other common domains. Being a most promiscuous interactors, WD40 domains are versatile in mediating critical cellular functions and hence this genome-wide study especially in the model crop foxtail millet would serve as a blue-print for functional characterization of WD40s in millets and bioenergy grass species. In addition, the present analyses would also assist the research community in choosing the candidate WD40s for comprehensive studies towards crop improvement of millets and biofuel grasses.

  1. Genome-Wide Investigation and Expression Analyses of WD40 Protein Family in the Model Plant Foxtail Millet (Setaria italica L.)

    PubMed Central

    Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Khan, Yusuf; Parida, Swarup Kumar; Prasad, Manoj

    2014-01-01

    WD40 proteins play a crucial role in diverse protein-protein interactions by acting as scaffolding molecules and thus assisting in the proper activity of proteins. Hence, systematic characterization and expression profiling of these WD40 genes in foxtail millet would enable us to understand the networks of WD40 proteins and their biological processes and gene functions. In the present study, a genome-wide survey was conducted and 225 potential WD40 genes were identified. Phylogenetic analysis categorized the WD40 proteins into 5 distinct sub-families (I–V). Gene Ontology annotation revealed the biological roles of the WD40 proteins along with its cellular components and molecular functions. In silico comparative mapping with sorghum, maize and rice demonstrated the orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of WD40 genes. Estimation of synonymous and non-synonymous substitution rates revealed its evolutionary significance in terms of gene-duplication and divergence. Expression profiling against abiotic stresses provided novel insights into specific and/or overlapping expression patterns of SiWD40 genes. Homology modeling enabled three-dimensional structure prediction was performed to understand the molecular functions of WD40 proteins. Although, recent findings had shown the importance of WD40 domains in acting as hubs for cellular networks during many biological processes, it has invited a lesser research attention unlike other common domains. Being a most promiscuous interactors, WD40 domains are versatile in mediating critical cellular functions and hence this genome-wide study especially in the model crop foxtail millet would serve as a blue-print for functional characterization of WD40s in millets and bioenergy grass species. In addition, the present analyses would also assist the research community in choosing the candidate WD40s for comprehensive studies towards crop improvement of millets and biofuel grasses. PMID:24466268

  2. The Expression and Function of the Achaete-Scute Genes in Tribolium castaneum Reveals Conservation and Variation in Neural Pattern Formation and Cell Fate Specification

    NASA Technical Reports Server (NTRS)

    Wheeler, Scott R.; Carrico, Michelle L.; Wilson, Beth A.; Brown, Susan J.; Skeath, James B.

    2003-01-01

    SUMMARY The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ache genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ache genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we fmd that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Triboliurn and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Triboliurn proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-use is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Triboliurn ache genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.

  3. The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification

    NASA Technical Reports Server (NTRS)

    Wheeler, Scott R.; Carrico, Michelle L.; Wilson, Beth A.; Brown, Susan J.; Skeath, James B.

    2003-01-01

    The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ac/sc genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ac/sc genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we find that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Tribolium and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Tribolium proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-ase is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Tribolium ac/sc genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.

  4. Functional Neuroprotection and Efficient Regulation of GDNF Using Destabilizing Domains in a Rodent Model of Parkinson's Disease

    PubMed Central

    Quintino, Luis; Manfré, Giuseppe; Wettergren, Erika Elgstrand; Namislo, Angrit; Isaksson, Christina; Lundberg, Cecilia

    2013-01-01

    Glial cell line–derived neurotrophic factor (GDNF) has great potential to treat Parkinson's disease (PD). However, constitutive expression of GDNF can over time lead to side effects. Therefore, it would be useful to regulate GDNF expression. Recently, a new gene inducible system using destabilizing domains (DD) from E. coli dihydrofolate reductase (DHFR) has been developed and characterized. The advantage of this novel DD is that it is regulated by trimethoprim (TMP), a well-characterized drug that crosses the blood–brain barrier and can therefore be used to regulate gene expression in the brain. We have adapted this system to regulate expression of GDNF. A C-terminal fusion of GDNF and a DD with an additional furin cleavage site was able to be efficiently regulated in vitro, properly processed and was able to bind to canonical GDNF receptors, inducing a signaling cascade response in target cells. In vivo characterization of the protein showed that it could be efficiently induced by TMP and it was only functional when gene expression was turned on. Further characterization in a rodent model of PD showed that the regulated GDNF protected neurons, improved motor behavior of animals and was efficiently regulated in a pathological setting. PMID:23881415

  5. Combining functional genomics and chemical biology to identify targets of bioactive compounds.

    PubMed

    Ho, Cheuk Hei; Piotrowski, Jeff; Dixon, Scott J; Baryshnikova, Anastasia; Costanzo, Michael; Boone, Charles

    2011-02-01

    Genome sequencing projects have revealed thousands of suspected genes, challenging researchers to develop efficient large-scale functional analysis methodologies. Determining the function of a gene product generally requires a means to alter its function. Genetically tractable model organisms have been widely exploited for the isolation and characterization of activating and inactivating mutations in genes encoding proteins of interest. Chemical genetics represents a complementary approach involving the use of small molecules capable of either inactivating or activating their targets. Saccharomyces cerevisiae has been an important test bed for the development and application of chemical genomic assays aimed at identifying targets and modes of action of known and uncharacterized compounds. Here we review yeast chemical genomic assays strategies for drug target identification. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Human tRNA genes function as chromatin insulators

    PubMed Central

    Raab, Jesse R; Chiu, Jonathan; Zhu, Jingchun; Katzman, Sol; Kurukuti, Sreenivasulu; Wade, Paul A; Haussler, David; Kamakaka, Rohinton T

    2012-01-01

    Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes. PMID:22085927

  7. Preparation of fosmid libraries and functional metagenomic analysis of microbial community DNA.

    PubMed

    Martínez, Asunción; Osburne, Marcia S

    2013-01-01

    One of the most important challenges in contemporary microbial ecology is to assign a functional role to the large number of novel genes discovered through large-scale sequencing of natural microbial communities that lack similarity to genes of known function. Functional screening of metagenomic libraries, that is, screening environmental DNA clones for the ability to confer an activity of interest to a heterologous bacterial host, is a promising approach for bridging the gap between metagenomic DNA sequencing and functional characterization. Here, we describe methods for isolating environmental DNA and constructing metagenomic fosmid libraries, as well as methods for designing and implementing successful functional screens of such libraries. © 2013 Elsevier Inc. All rights reserved.

  8. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE PAGES

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  9. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  10. Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossi, Flavia; Fan, Jue; Xiao, Jun

    Here, the molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. As a result, to identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation.more » We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.« less

  11. Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction

    DOE PAGES

    Bossi, Flavia; Fan, Jue; Xiao, Jun; ...

    2017-06-26

    Here, the molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. As a result, to identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation.more » We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.« less

  12. The perimenopausal aging transition in the female rat brain: decline in bioenergetic systems and synaptic plasticity.

    PubMed

    Yin, Fei; Yao, Jia; Sancheti, Harsh; Feng, Tao; Melcangi, Roberto C; Morgan, Todd E; Finch, Caleb E; Pike, Christian J; Mack, Wendy J; Cadenas, Enrique; Brinton, Roberta D

    2015-07-01

    The perimenopause is an aging transition unique to the female that leads to reproductive senescence which can be characterized by multiple neurological symptoms. To better understand potential underlying mechanisms of neurological symptoms of perimenopause, the present study determined genomic, biochemical, brain metabolic, and electrophysiological transformations that occur during this transition using a rat model recapitulating fundamental characteristics of the human perimenopause. Gene expression analyses indicated two distinct aging programs: chronological and endocrine. A critical period emerged during the endocrine transition from regular to irregular cycling characterized by decline in bioenergetic gene expression, confirmed by deficits in fluorodeoxyglucose-positron emission tomography (FDG-PET) brain metabolism, mitochondrial function, and long-term potentiation. Bioinformatic analysis predicted insulin/insulin-like growth factor 1 and adenosine monophosphate-activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1 alpha (AMPK/PGC1α) signaling pathways as upstream regulators. Onset of acyclicity was accompanied by a rise in genes required for fatty acid metabolism, inflammation, and mitochondrial function. Subsequent chronological aging resulted in decline of genes required for mitochondrial function and β-amyloid degradation. Emergence of glucose hypometabolism and impaired synaptic function in brain provide plausible mechanisms of neurological symptoms of perimenopause and may be predictive of later-life vulnerability to hypometabolic conditions such as Alzheimer's. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A post-gene silencing bioinformatics protocol for plant-defence gene validation and underlying process identification: case study of the Arabidopsis thaliana NPR1.

    PubMed

    Yocgo, Rosita E; Geza, Ephifania; Chimusa, Emile R; Mazandu, Gaston K

    2017-11-23

    Advances in forward and reverse genetic techniques have enabled the discovery and identification of several plant defence genes based on quantifiable disease phenotypes in mutant populations. Existing models for testing the effect of gene inactivation or genes causing these phenotypes do not take into account eventual uncertainty of these datasets and potential noise inherent in the biological experiment used, which may mask downstream analysis and limit the use of these datasets. Moreover, elucidating biological mechanisms driving the induced disease resistance and influencing these observable disease phenotypes has never been systematically tackled, eliciting the need for an efficient model to characterize completely the gene target under consideration. We developed a post-gene silencing bioinformatics (post-GSB) protocol which accounts for potential biases related to the disease phenotype datasets in assessing the contribution of the gene target to the plant defence response. The post-GSB protocol uses Gene Ontology semantic similarity and pathway dataset to generate enriched process regulatory network based on the functional degeneracy of the plant proteome to help understand the induced plant defence response. We applied this protocol to investigate the effect of the NPR1 gene silencing to changes in Arabidopsis thaliana plants following Pseudomonas syringae pathovar tomato strain DC3000 infection. Results indicated that the presence of a functionally active NPR1 reduced the plant's susceptibility to the infection, with about 99% of variability in Pseudomonas spore growth between npr1 mutant and wild-type samples. Moreover, the post-GSB protocol has revealed the coordinate action of target-associated genes and pathways through an enriched process regulatory network, summarizing the potential target-based induced disease resistance mechanism. This protocol can improve the characterization of the gene target and, potentially, elucidate induced defence response by more effectively utilizing available phenotype information and plant proteome functional knowledge.

  14. Competitive Genomic Screens of Barcoded Yeast Libraries

    PubMed Central

    Urbanus, Malene; Proctor, Michael; Heisler, Lawrence E.; Giaever, Guri; Nislow, Corey

    2011-01-01

    By virtue of advances in next generation sequencing technologies, we have access to new genome sequences almost daily. The tempo of these advances is accelerating, promising greater depth and breadth. In light of these extraordinary advances, the need for fast, parallel methods to define gene function becomes ever more important. Collections of genome-wide deletion mutants in yeasts and E. coli have served as workhorses for functional characterization of gene function, but this approach is not scalable, current gene-deletion approaches require each of the thousands of genes that comprise a genome to be deleted and verified. Only after this work is complete can we pursue high-throughput phenotyping. Over the past decade, our laboratory has refined a portfolio of competitive, miniaturized, high-throughput genome-wide assays that can be performed in parallel. This parallelization is possible because of the inclusion of DNA 'tags', or 'barcodes,' into each mutant, with the barcode serving as a proxy for the mutation and one can measure the barcode abundance to assess mutant fitness. In this study, we seek to fill the gap between DNA sequence and barcoded mutant collections. To accomplish this we introduce a combined transposon disruption-barcoding approach that opens up parallel barcode assays to newly sequenced, but poorly characterized microbes. To illustrate this approach we present a new Candida albicans barcoded disruption collection and describe how both microarray-based and next generation sequencing-based platforms can be used to collect 10,000 - 1,000,000 gene-gene and drug-gene interactions in a single experiment. PMID:21860376

  15. Ca2+/Cation Antiporters (CaCA): Identification, Characterization and Expression Profiling in Bread Wheat (Triticum aestivum L.)

    PubMed Central

    Taneja, Mehak; Tyagi, Shivi; Sharma, Shailesh; Upadhyay, Santosh Kumar

    2016-01-01

    The Ca2+/cation antiporters (CaCA) superfamily proteins play vital function in Ca2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat). Herein, we identified 34 TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL, and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B, and D subgenome and homeologous chromosome (HC), except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs) due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about 10 transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections) and abiotic stresses (heat, drought, salt) suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However, the role of individual gene needs to be established. The present study unfolded the opportunity for detail functional characterization of TaCaCA proteins and their utilization in future crop improvement programs. PMID:27965686

  16. Ca2+/Cation Antiporters (CaCA): Identification, Characterization and Expression Profiling in Bread Wheat (Triticum aestivum L.).

    PubMed

    Taneja, Mehak; Tyagi, Shivi; Sharma, Shailesh; Upadhyay, Santosh Kumar

    2016-01-01

    The Ca 2+ /cation antiporters (CaCA) superfamily proteins play vital function in Ca 2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat). Herein, we identified 34 TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL, and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B, and D subgenome and homeologous chromosome (HC), except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs) due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about 10 transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections) and abiotic stresses (heat, drought, salt) suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However, the role of individual gene needs to be established. The present study unfolded the opportunity for detail functional characterization of TaCaCA proteins and their utilization in future crop improvement programs.

  17. Probing the Xenopus laevis inner ear transcriptome for biological function

    PubMed Central

    2012-01-01

    Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors) facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome, thereby addressing the impediment imposed by insufficient gene annotation. These findings heighten the relevance of Xenopus as a model organism for genetic investigations of inner ear organogenesis, morphogenesis, and regeneration. PMID:22676585

  18. Discovering Functions of Unannotated Genes from a Transcriptome Survey of Wild Fungal Isolates

    PubMed Central

    Ellison, Christopher E.; Kowbel, David; Glass, N. Louise; Taylor, John W.

    2014-01-01

    ABSTRACT Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. PMID:24692637

  19. Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya (Carica papaya L.)

    PubMed Central

    Devitt, Luke C.; Fanning, Kent; Dietzgen, Ralf G.; Holton, Timothy A.

    2010-01-01

    The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to β-carotene (yellow) is catalysed by lycopene β-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene β-cyclases (lcy-β1 and lcy-β2) from red (Tainung) and yellow (Hybrid 1B) papaya cultivars. A mutation in the lcy-β2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-β1 and lcy-β2 genes is similar and low in leaves, but lcy-β2 expression increases markedly in ripe fruit. Isolation of the lcy-β2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties. PMID:19887502

  20. Genetic Basis of Melanin Pigmentation in Butterfly Wings

    PubMed Central

    Zhang, Linlin; Martin, Arnaud; Perry, Michael W.; van der Burg, Karin R. L.; Matsuoka, Yuji; Monteiro, Antónia; Reed, Robert D.

    2017-01-01

    Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui. This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale, Ddc, and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d, ebony, and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway. PMID:28193726

  1. Comparative Transcriptomic Characterization of the Early Development in Pacific White Shrimp Litopenaeus vannamei

    PubMed Central

    Wei, Jiankai; Zhang, Xiaojun; Yu, Yang; Huang, Hao; Li, Fuhua; Xiang, Jianhai

    2014-01-01

    Penaeid shrimp has a distinctive metamorphosis stage during early development. Although morphological and biochemical studies about this ontogeny have been developed for decades, researches on gene expression level are still scarce. In this study, we have investigated the transcriptomes of five continuous developmental stages in Pacific white shrimp (Litopenaeus vannamei) with high throughput Illumina sequencing technology. The reads were assembled and clustered into 66,815 unigenes, of which 32,398 have putative homologues in nr database, 14,981 have been classified into diverse functional categories by Gene Ontology (GO) annotation and 26,257 have been associated with 255 pathways by KEGG pathway mapping. Meanwhile, the differentially expressed genes (DEGs) between adjacent developmental stages were identified and gene expression patterns were clustered. By GO term enrichment analysis, KEGG pathway enrichment analysis and functional gene profiling, the physiological changes during shrimp metamorphosis could be better understood, especially histogenesis, diet transition, muscle development and exoskeleton reconstruction. In conclusion, this is the first study that characterized the integrated transcriptomic profiles during early development of penaeid shrimp, and these findings will serve as significant references for shrimp developmental biology and aquaculture research. PMID:25197823

  2. Isolation and functional characterization of a lycopene beta-cyclase gene that controls fruit colour of papaya (Carica papaya L.).

    PubMed

    Devitt, Luke C; Fanning, Kent; Dietzgen, Ralf G; Holton, Timothy A

    2010-01-01

    The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to beta-carotene (yellow) is catalysed by lycopene beta-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene beta-cyclases (lcy-beta1 and lcy-beta2) from red (Tainung) and yellow (Hybrid 1B) papaya cultivars. A mutation in the lcy-beta2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-beta1 and lcy-beta2 genes is similar and low in leaves, but lcy-beta2 expression increases markedly in ripe fruit. Isolation of the lcy-beta2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties.

  3. Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz).

    PubMed

    Wu, Jun-Zheng; Liu, Qin; Geng, Xiao-Shan; Li, Kai-Mian; Luo, Li-Juan; Liu, Jin-Ping

    2017-03-14

    Cassava (Manihot esculenta Crantz) is a major crop extensively cultivated in the tropics as both an important source of calories and a promising source for biofuel production. Although stable gene expression have been used for transgenic breeding and gene function study, a quick, easy and large-scale transformation platform has been in urgent need for gene functional characterization, especially after the cassava full genome was sequenced. Fully expanded leaves from in vitro plantlets of Manihot esculenta were used to optimize the concentrations of cellulase R-10 and macerozyme R-10 for obtaining protoplasts with the highest yield and viability. Then, the optimum conditions (PEG4000 concentration and transfection time) were determined for cassava protoplast transient gene expression. In addition, the reliability of the established protocol was confirmed for subcellular protein localization. In this work we optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and PEG-mediated transient gene expression in cassava. The suitable enzyme digestion system was established with the combination of 1.6% cellulase R-10 and 0.8% macerozyme R-10 for 16 h of digestion in the dark at 25 °C, resulting in the high yield (4.4 × 10 7 protoplasts/g FW) and vitality (92.6%) of mesophyll protoplasts. The maximum transfection efficiency (70.8%) was obtained with the incubation of the protoplasts/vector DNA mixture with 25% PEG4000 for 10 min. We validated the applicability of the system for studying the subcellular localization of MeSTP7 (an H + /monosaccharide cotransporter) with our transient expression protocol and a heterologous Arabidopsis transient gene expression system. We optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and transient gene expression in cassava, which will facilitate large-scale characterization of genes and pathways in cassava.

  4. University of Texas MD Anderson Cancer Center: Characterization of PIK3R1 Neomorphic Mutations | Office of Cancer Genomics

    Cancer.gov

    The goal of this project was to functionally characterize the most frequent mutation of the PIK3R1 gene and to explore potential therapeutic approaches to target the aberration. Read the abstract Experimental Approaches Cytotoxicity Screen

  5. University of Texas MD Anderson Cancer Center (UT-MDACC): Characterization of PIK3R1 Neomorphic Mutations | Office of Cancer Genomics

    Cancer.gov

    The goal of this project was to functionally characterize the most frequent mutation of the PIK3R1 gene and to explore potential therapeutic approaches to target the aberration. Read the abstract Experimental Approaches Cytotoxicity Screen

  6. Nine co-localized cytochrome P450 genes of the CYP2N, CYP2AD, and CYP2P gene families in the mangrove killifish Kryptolebias marmoratus genome: Identification and expression in response to B[α]P, BPA, OP, and NP.

    PubMed

    Puthumana, Jayesh; Kim, Bo-Mi; Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Jung, Jee-Hyun; Kim, Il-Chan; Hwang, Un-Ki; Lee, Jae-Seong

    2017-06-01

    The CYP2 genes are the largest and most diverse cytochrome P450 (CYP) subfamily in vertebrates. We have identified nine co-localized CYP2 genes (∼55kb) in a new cluster in the genome of the highly resilient ecotoxicological fish model Kryptolebias marmoratus. Molecular characterization, temporal and tissue-specific expression pattern, and response to xenobiotics of these genes were examined. The CYP2 gene clusters were characterized and designated CYP2N22-23, CYP2AD12, and CYP2P16-20. Gene synteny analysis confirmed that the cluster in K. marmoratus is similar to that found in other teleost fishes, including zebrafish. A gene duplication event with diverged catalytic function was observed in CYP2AD12. Moreover, a high level of divergence in expression was observed among the co-localized genes. Phylogeny of the cluster suggested an orthologous relationship with similar genes in zebrafish and Japanese medaka. Gene expression analysis showed that CYP2P19 and CYP2N20 were consecutively expressed throughout embryonic development, whereas CYP2P18 was expressed in all adult tissues, suggesting that members of each CYP2 gene family have different physiological roles even though they are located in the same cluster. Among endocrine-disrupting chemicals (EDCs), benzo[α]pyrene (B[α]P) induced expression of CYP2N23, bisphenol A (BPA) induced CYP2P18 and CYP2P19, and 4-octylphenol (OP) induced CYP2AD12, but there was no significant response to 4-nonylphenol (NP), implying differential catalytic roles of the enzyme. In this paper, we identify and characterize a CYP2 gene cluster in the mangrove killifish K. marmoratus with differing catalytic roles toward EDCs. Our findings provide insights on the roles of nine co-localized CYP2 genes and their catalytic functions for better understanding of chemical-biological interactions in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Fungal Genes in Context: Genome Architecture Reflects Regulatory Complexity and Function

    PubMed Central

    Noble, Luke M.; Andrianopoulos, Alex

    2013-01-01

    Gene context determines gene expression, with local chromosomal environment most influential. Comparative genomic analysis is often limited in scope to conserved or divergent gene and protein families, and fungi are well suited to this approach with low functional redundancy and relatively streamlined genomes. We show here that one aspect of gene context, the amount of potential upstream regulatory sequence maintained through evolution, is highly predictive of both molecular function and biological process in diverse fungi. Orthologs with large upstream intergenic regions (UIRs) are strongly enriched in information processing functions, such as signal transduction and sequence-specific DNA binding, and, in the genus Aspergillus, include the majority of experimentally studied, high-level developmental and metabolic transcriptional regulators. Many uncharacterized genes are also present in this class and, by implication, may be of similar importance. Large intergenic regions also share two novel sequence characteristics, currently of unknown significance: they are enriched for plus-strand polypyrimidine tracts and an information-rich, putative regulatory motif that was present in the last common ancestor of the Pezizomycotina. Systematic consideration of gene UIR in comparative genomics, particularly for poorly characterized species, could help reveal organisms’ regulatory priorities. PMID:23699226

  8. Function and regulation of AUTS2, a gene implicated in autism and human evolution.

    PubMed

    Oksenberg, Nir; Stevison, Laurie; Wall, Jeffrey D; Ahituv, Nadav

    2013-01-01

    Nucleotide changes in the AUTS2 locus, some of which affect only noncoding regions, are associated with autism and other neurological disorders, including attention deficit hyperactivity disorder, epilepsy, dyslexia, motor delay, language delay, visual impairment, microcephaly, and alcohol consumption. In addition, AUTS2 contains the most significantly accelerated genomic region differentiating humans from Neanderthals, which is primarily composed of noncoding variants. However, the function and regulation of this gene remain largely unknown. To characterize auts2 function, we knocked it down in zebrafish, leading to a smaller head size, neuronal reduction, and decreased mobility. To characterize AUTS2 regulatory elements, we tested sequences for enhancer activity in zebrafish and mice. We identified 23 functional zebrafish enhancers, 10 of which were active in the brain. Our mouse enhancer assays characterized three mouse brain enhancers that overlap an ASD-associated deletion and four mouse enhancers that reside in regions implicated in human evolution, two of which are active in the brain. Combined, our results show that AUTS2 is important for neurodevelopment and expose candidate enhancer sequences in which nucleotide variation could lead to neurological disease and human-specific traits.

  9. Isolation and Characterization of Canthaxanthin Biosynthesis Genes from the Photosynthetic Bacterium Bradyrhizobium sp. Strain ORS278

    PubMed Central

    Hannibal, Laure; Lorquin, Jean; D'Ortoli, Nicolas Angles; Garcia, Nelly; Chaintreuil, Clemence; Masson-Boivin, Catherine; Dreyfus, Bernard; Giraud, Eric

    2000-01-01

    A carotenoid biosynthesis gene cluster involved in canthaxanthin production was isolated from the photosynthetic Bradyrhizobium sp. strain ORS278. This cluster includes five genes identified as crtE, crtY, crtI, crtB, and crtW that are organized in at least two operons. The functional assignment of each open reading frame was confirmed by complementation studies. PMID:10851005

  10. Identification of genetic elements in metabolism by high-throughput mouse phenotyping.

    PubMed

    Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A; Schütt, Christine; Ravindranath, Aakash Chavan; Leuchtenberger, Stefanie; Sharma, Sapna; Kistler, Martin; Willershäuser, Monja; Brommage, Robert; Meehan, Terrence F; Mason, Jeremy; Haselimashhadi, Hamed; Hough, Tertius; Mallon, Ann-Marie; Wells, Sara; Santos, Luis; Lelliott, Christopher J; White, Jacqueline K; Sorg, Tania; Champy, Marie-France; Bower, Lynette R; Reynolds, Corey L; Flenniken, Ann M; Murray, Stephen A; Nutter, Lauryl M J; Svenson, Karen L; West, David; Tocchini-Valentini, Glauco P; Beaudet, Arthur L; Bosch, Fatima; Braun, Robert B; Dobbie, Michael S; Gao, Xiang; Herault, Yann; Moshiri, Ala; Moore, Bret A; Kent Lloyd, K C; McKerlie, Colin; Masuya, Hiroshi; Tanaka, Nobuhiko; Flicek, Paul; Parkinson, Helen E; Sedlacek, Radislav; Seong, Je Kyung; Wang, Chi-Kuang Leo; Moore, Mark; Brown, Steve D; Tschöp, Matthias H; Wurst, Wolfgang; Klingenspor, Martin; Wolf, Eckhard; Beckers, Johannes; Machicao, Fausto; Peter, Andreas; Staiger, Harald; Häring, Hans-Ulrich; Grallert, Harald; Campillos, Monica; Maier, Holger; Fuchs, Helmut; Gailus-Durner, Valerie; Werner, Thomas; Hrabe de Angelis, Martin

    2018-01-18

    Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.

  11. A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is a useful technique for functional characterization of plant genes. However, the silencing efficiency of the VIGS system is variable largely depending on compatibility between the host and the virus. Antiviral RNA silencing is involved in plant antiviral defense...

  12. Identification of loci and functional characterization of trichothecene biosynthesis genes in the filamentous fungus of the genus Trichoderma

    USDA-ARS?s Scientific Manuscript database

    Trichothecenes are mycotoxins produced by Trichoderma, Fusarium and at least four other genera in the fungal order Hypocreales. Fusarium has a trichothecene biosynthetic gene (TRI) cluster that encodes transport and regulatory proteins as well as most enzymes required for formation of the mycotoxin...

  13. PhOBF1, a petunia OCS element binding factor, plays an important role in antiviral RNA silencing

    USDA-ARS?s Scientific Manuscript database

    Virus-induced gene silencing (VIGS) is a common strategy of reverse genetics for characterizing function of genes in plant. The detailed mechanism governing RNA silencing efficiency triggered by virus is largely unclear. Here, we revealed that a petunia (Petunia hybrida) ocs element binding factor, ...

  14. Structural and Biochemical Characterization of a Novel Aminopeptidase from Human Intestine

    DOE PAGES

    Tykvart, Jan; Bařinka, Cyril; Svoboda, Michal; ...

    2015-03-09

    N-acetylated α-linked acidic dipeptidase-like protein (NAALADase L), encoded by the NAALADL1 gene, is a close homolog of glutamate carboxypeptidase II, a metallopeptidase that has been intensively studied as a target for imaging and therapy of solid malignancies and neuropathologies. However, neither the physiological functions nor structural features of NAALADase L are known at present. In this paper, we report a thorough characterization of the protein product of the human NAALADL1 gene, including heterologous overexpression and purification, structural and biochemical characterization, and analysis of its expression profile. By solving the NAALADase L x-ray structure, we provide the first experimental evidence thatmore » it is a zinc-dependent metallopeptidase with a catalytic mechanism similar to that of glutamate carboxypeptidase II yet distinct substrate specificity. A proteome-based assay revealed that the NAALADL1 gene product possesses previously unrecognized aminopeptidase activity but no carboxy- or endopeptidase activity. These findings were corroborated by site-directed mutagenesis and identification of bestatin as a potent inhibitor of the enzyme. Analysis of NAALADL1 gene expression at both the mRNA and protein levels revealed the small intestine as the major site of protein expression and points toward extensive alternative splicing of the NAALADL1 gene transcript. Taken together, our data imply that the NAALADL1 gene product's primary physiological function is associated with the final stages of protein/peptide digestion and absorption in the human digestive system. Finally, based on these results, we suggest a new name for this enzyme: human ileal aminopeptidase (HILAP).« less

  15. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element

    PubMed Central

    Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro

    2013-01-01

    A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar ‘Daisy’ carries both defective genes, whereas a spontaneous deep-colored mutant ‘Daisy-VPR’ lost the element from DcGSTF2-dTac1. This finding confirmed that dTac1 is active and that the resulting reverted gene, DcGSTF2rev1, missing the element is responsible for this color change. Crosses between the pale-colored cultivar ‘06-LA’ and a deep-colored cultivar ‘Spectrum’ produced segregating progeny. Only the deep-colored progeny had DcGSTF2rev2 derived from the ‘Spectrum’ parent, whereas progeny with pale-colored flowers had defective forms from both parents, DcGSTF2mu and DcGSTF2-dTac1. Thus, DcGSTF2rev2 had functional activity and likely originated from excision of dTac1 since there was a footprint sequence at the vacated site of the dTac1 insertion. Characterizing the DcGSTF2 genes in several cultivars revealed that the two functional genes, DcGSTF2rev1 and DcGSTF2rev2, have been used for some time in carnation breeding with the latter in use for more than half a century. PMID:24399917

  16. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element.

    PubMed

    Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro

    2013-12-01

    A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar 'Daisy' carries both defective genes, whereas a spontaneous deep-colored mutant 'Daisy-VPR' lost the element from DcGSTF2-dTac1. This finding confirmed that dTac1 is active and that the resulting reverted gene, DcGSTF2rev1, missing the element is responsible for this color change. Crosses between the pale-colored cultivar '06-LA' and a deep-colored cultivar 'Spectrum' produced segregating progeny. Only the deep-colored progeny had DcGSTF2rev2 derived from the 'Spectrum' parent, whereas progeny with pale-colored flowers had defective forms from both parents, DcGSTF2mu and DcGSTF2-dTac1. Thus, DcGSTF2rev2 had functional activity and likely originated from excision of dTac1 since there was a footprint sequence at the vacated site of the dTac1 insertion. Characterizing the DcGSTF2 genes in several cultivars revealed that the two functional genes, DcGSTF2rev1 and DcGSTF2rev2, have been used for some time in carnation breeding with the latter in use for more than half a century.

  17. High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis.

    PubMed

    Meeske, Alexander J; Rodrigues, Christopher D A; Brady, Jacqueline; Lim, Hoong Chuin; Bernhardt, Thomas G; Rudner, David Z

    2016-01-01

    The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell-cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes.

  18. High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis

    PubMed Central

    Brady, Jacqueline; Lim, Hoong Chuin; Bernhardt, Thomas G.; Rudner, David Z.

    2016-01-01

    The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell–cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes. PMID:26735940

  19. Assessing gene function in the ruminant placenta.

    PubMed

    Anthony, R V; Cantlon, J D; Gates, K C; Purcell, S H; Clay, C M

    2010-01-01

    The placenta provides the means for nutrient transfer from the mother to the fetus, waste transfer from the fetus to the mother, protection of the fetus from the maternal immune system, and is an active endocrine organ. While many placental functions have been defined and investigated, assessing the function of specific genes expressed by the placenta has been problematic, since classical ablation-replacement methods are not feasible with the placenta. The pregnant sheep has been a long-standing animal model for assessing in vivo physiology during pregnancy, since surgical placement of indwelling catheters into both maternal and fetal vasculature has allowed the assessment of placental nutrient transfer and utilization, as well as placental hormone secretion, under unanesthetized-unstressed steady state sampling conditions. However, in ruminants the lack of well-characterized trophoblast cell lines and the inefficiency of creating transgenic pregnancies in ruminants have inhibited our ability to assess specific gene function. Recently, sheep and cattle primary trophoblast cell lines have been reported, and may further our ability to investigate trophoblast function and transcriptional regulation of genes expressed by the placenta. Furthermore, viral infection of the trophoectoderm layer of hatched blastocysts, as a means for placenta-specific transgenesis, holds considerable potential to assess gene function in the ruminant placenta. This approach has been used successfully to "knockdown" gene expression in the developing sheep conceptus, and has the potential for gain-of-function experiments as well. While this technology is still being developed, it may provide an efficient approach to assess specific gene function in the ruminant placenta.

  20. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins.

    PubMed

    Shaw, Joseph R; Colbourne, John K; Davey, Jennifer C; Glaholt, Stephen P; Hampton, Thomas H; Chen, Celia Y; Folt, Carol L; Hamilton, Joshua W

    2007-12-21

    Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences.

  1. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    PubMed Central

    Shaw, Joseph R; Colbourne, John K; Davey, Jennifer C; Glaholt, Stephen P; Hampton, Thomas H; Chen, Celia Y; Folt, Carol L; Hamilton, Joshua W

    2007-01-01

    Background Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Results Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. Conclusion The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences. PMID:18154678

  2. Characterization of embryo-specific genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Z.R.

    1988-01-01

    The objective of the proposed research is to characterize the structure and function of a set of genes whose expression is regulated in embryo development, and that are not expressed in mature tissues -- the embryogenic genes. In order to isolate these genes, we immunized a rabbit with total extracts of somatic embryos of carrot, and enriched the anti-embryo antiserum for antibodies reacting with extracts of carrot somatic embryos. Using this enriched antiserum, we screened a lambda gt11 cDNA library constructed from embryo poly A{sup +} RNA, and isolated 10 cDNA clones that detect embryogenic mRNAs. Monospecific antibodies have beenmore » purified for proteins corresponding to each cDNA sequence. Four cDNA clones were further characterized in terms of the expression of their corresponding mRNA and protein in somatic embryos of carrot. In some cases, comparable gene sequences or products have been detected in somatic and zygotic embryos of other plant species. The characteristics of these 4 cDNA clones -- clone Nos. 8, 59, and 66 -- are described in this report. 3 figs.« less

  3. Characterization of CG6178 gene product with high sequence similarity to firefly luciferase in Drosophila melanogaster.

    PubMed

    Oba, Yuichi; Ojika, Makoto; Inouye, Satoshi

    2004-03-31

    This is the first identification of a long-chain fatty acyl-CoA synthetase in Drosophila by enzymatic characterization. The gene product of CG6178 (CG6178) in Drosophila melanogaster genome, which has a high sequence similarity to firefly luciferase, has been expressed and characterized. CG6178 showed long-chain fatty acyl-CoA synthetic activity in the presence of ATP, CoA and Mg(2+), suggesting a fatty acyl adenylate is an intermediate. Recently, it was revealed that firefly luciferase has two catalytic functions, monooxygenase (luciferase) and AMP-mediated CoA ligase (fatty acyl-CoA synthetase). However, unlike firefly luciferase, CG6178 did not show luminescence activity in the presence of firefly luciferin, ATP, CoA and Mg(2+). The enzymatic properties of CG6178 including substrate specificity, pH dependency and optimal temperature were close to those of firefly luciferase and rat fatty acyl-CoA synthetase. Further, phylogenic analyses strongly suggest that the firefly luciferase gene may have evolved from a fatty acyl-CoA synthetase gene as a common ancestral gene.

  4. Molecular and functional characterization of cry1Ac transgenic pea lines.

    PubMed

    Teressa Negawo, Alemayehu; Baranek, Linda; Jacobsen, Hans-Jörg; Hassan, Fathi

    2016-10-01

    Transgenic pea lines transformed with the cry1Ac gene were characterized at molecular (PCR, RT-PCR, qRT-PCR and immunostrip assay) and functional levels (leaf paint and insect feeding bioassays). The results showed the presence, expression, inheritance and functionality of the introduced transgene at different progeny levels. Variation in the expression of the cry1Ac gene was observed among the different transgenic lines. In the insect bioassay studies using the larvae of Heliothis virescens, both larval survival and plant damage were highly affected on the different transgenic plants. Up to 100 % larval mortality was observed on the transgenic plants compared to 17.42 % on control plants. Most of the challenged transgenic plants showed very negligible to substantially reduced feeding damage indicating the insect resistance of the developed transgenic lines. Further analysis under field condition will be required to select promising lines for future uses.

  5. Molecular and functional characterization of cry1Ac transgenic pea lines

    PubMed Central

    Teressa Negawo, Alemayehu; Baranek, Linda; Jacobsen, Hans-Jörg; Hassan, Fathi

    2016-01-01

    ABSTRACT Transgenic pea lines transformed with the cry1Ac gene were characterized at molecular (PCR, RT-PCR, qRT-PCR and immunostrip assay) and functional levels (leaf paint and insect feeding bioassays). The results showed the presence, expression, inheritance and functionality of the introduced transgene at different progeny levels. Variation in the expression of the cry1Ac gene was observed among the different transgenic lines. In the insect bioassay studies using the larvae of Heliothis virescens, both larval survival and plant damage were highly affected on the different transgenic plants. Up to 100 % larval mortality was observed on the transgenic plants compared to 17.42 % on control plants. Most of the challenged transgenic plants showed very negligible to substantially reduced feeding damage indicating the insect resistance of the developed transgenic lines. Further analysis under field condition will be required to select promising lines for future uses. PMID:27764552

  6. Distinct ontogenic and regional expressions of newly identified Cajal-Retzius cell-specific genes during neocorticogenesis.

    PubMed

    Yamazaki, Hiroshi; Sekiguchi, Mariko; Takamatsu, Masako; Tanabe, Yasuto; Nakanishi, Shigetada

    2004-10-05

    Cajal-Retzius (CR) cells are early-generated transient neurons and are important in the regulation of cortical neuronal migration and cortical laminar formation. Molecular entities characterizing the CR cell identity, however, remain largely elusive. We purified mouse cortical CR cells expressing GFP to homogeneity by fluorescence-activated cell sorting and examined a genome-wide expression profile of cortical CR cells at embryonic and postnatal periods. We identified 49 genes that exceeded hybridization signals by >10-fold in CR cells compared with non-CR cells at embryonic day 13.5, postnatal day 2, or both. Among these CR cell-specific genes, 25 genes, including the CR cell marker genes such as the reelin and calretinin genes, are selectively and highly expressed in both embryonic and postnatal CR cells. These genes, which encode generic properties of CR cell specificity, are eminently characterized as modulatory composites of voltage-dependent calcium channels and sets of functionally related cellular components involved in cell migration, adhesion, and neurite extension. Five genes are highly expressed in CR cells at the early embryonic period and are rapidly down-regulated thereafter. Furthermore, some of these genes have been shown to mark two distinctly different focal regions corresponding to the CR cell origins. At the late prenatal and postnatal periods, 19 genes are selectively up-regulated in CR cells. These genes include functional molecules implicated in synaptic transmission and modulation. CR cells thus strikingly change their cellular phenotypes during cortical development and play a pivotal role in both corticogenesis and cortical circuit maturation.

  7. Divergent Expression Patterns and Function Implications of Four nanos Genes in a Hermaphroditic Fish, Epinephelus coioides

    PubMed Central

    Sun, Zhi-Hui; Wang, Yang; Lu, Wei-Jia; Li, Zhi; Liu, Xiao-Chun; Li, Shui-Sheng; Zhou, Li; Gui, Jian-Fang

    2017-01-01

    Multiple nanos genes have been characterized in several fishes, but the functional implications of their various expression patterns remain unclear. In this study, we identified and characterized four nanos genes from a hermaphroditic fish orange-spotted grouper, Epinephelus coioides. Ecnanos1a and Ecnanos1b show divergent expression patterns, and the dynamic expression change of Ecnanos1a in pituitaries during sex change is associated with testis differentiation and spermatogenesis. Ecnanos2 and Ecnanos3 might be germline stem cells (GSCs) and primordial germ cells (PGCs)-specific markers, respectively. Significantly, Ecnanos3 3′-untranslated region (UTR) is necessary for PGC specific expression, where a non-canonical “GCACGTTT” sequence is required for miR-430-mediated repression of Ecnanos3 RNA. Furthermore, grouper Dead end (Dnd) can relieve miR-430 repression in PGCs by associating with a 23 bp U-rich region (URR) in Ecnanos3 3′-UTR. The current study revealed the functional association of multiple nanos genes with PGC formation and germ cell development in orange-spotted grouper, and opened up new possibilities for developing biotechnologies through utilizing the associations between Ecnanos3 and PGCs or between Ecnanos2 and GSCs in the hermaphroditic fish. PMID:28333083

  8. Molecular and functional characterization of an invertase secreted by Ashbya gossypii.

    PubMed

    Aguiar, Tatiana Q; Dinis, Cláudia; Magalhães, Frederico; Oliveira, Carla; Wiebe, Marilyn G; Penttilä, Merja; Domingues, Lucília

    2014-06-01

    The repertoire of hydrolytic enzymes natively secreted by the filamentous fungus Ashbya (Eremothecium) gossypii has been poorly explored. Here, an invertase secreted by this flavinogenic fungus was for the first time molecularly and functionally characterized. Invertase activity was detected in A. gossypii culture supernatants and cell-associated fractions. Extracellular invertase migrated in a native polyacrylamide gel as diffuse protein bands, indicating the occurrence of at least two invertase isoforms. Hydrolytic activity toward sucrose was approximately 10 times higher than toward raffinose. Inulin and levan were not hydrolyzed. Production of invertase by A. gossypii was repressed by the presence of glucose in the culture medium. The A. gossypii invertase was demonstrated to be encoded by the AFR529W (AgSUC2) gene, which is highly homologous to the Saccharomyces cerevisiae SUC2 (ScSUC2) gene. Agsuc2 null mutants were unable to hydrolyze sucrose, proving that invertase is encoded by a single gene in A. gossypii. This mutation was functionally complemented by the ScSUC2 and AgSUC2 genes, when expressed from a 2-μm-plasmid. The signal sequences of both AgSuc2p and ScSuc2p were able to direct the secretion of invertase into the culture medium in A. gossypii.

  9. Protein interaction network topology uncovers melanogenesis regulatory network components within functional genomics datasets.

    PubMed

    Ho, Hsiang; Milenković, Tijana; Memisević, Vesna; Aruri, Jayavani; Przulj, Natasa; Ganesan, Anand K

    2010-06-15

    RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis. In this study, we utilize a PPI network topology-based approach to identify targets within our RNAi dataset that may be components of known melanogenesis regulatory pathways. Our computational approach identifies a set of screen targets that cluster topologically in a human PPI network with the known pigment regulator Endothelin receptor type B (EDNRB). Validation studies reveal that these genes impact pigment production and EDNRB signaling in pigmented melanoma cells (MNT-1) and normal melanocytes. We present an approach that identifies novel components of well-characterized biological pathways from functional genomics datasets that could not have been identified by existing statistical and computational approaches.

  10. Protein interaction network topology uncovers melanogenesis regulatory network components within functional genomics datasets

    PubMed Central

    2010-01-01

    Background RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis. Results In this study, we utilize a PPI network topology-based approach to identify targets within our RNAi dataset that may be components of known melanogenesis regulatory pathways. Our computational approach identifies a set of screen targets that cluster topologically in a human PPI network with the known pigment regulator Endothelin receptor type B (EDNRB). Validation studies reveal that these genes impact pigment production and EDNRB signaling in pigmented melanoma cells (MNT-1) and normal melanocytes. Conclusions We present an approach that identifies novel components of well-characterized biological pathways from functional genomics datasets that could not have been identified by existing statistical and computational approaches. PMID:20550706

  11. Cloning and functional characterization of three new pheromone receptors from the diamondback moth, Plutella xylostella.

    PubMed

    Liu, Yipeng; Liu, Yang; Jiang, Xingchuan; Wang, Guirong

    The highly specialized olfactory receptor neurons (ORNs) on the antennae of male moths can recognize blends of several pheromone components. In previous studies, a total of six candidate pheromone receptor (PR) genes were cloned and functionally characterized in the diamondback moth, Plutella xylostella. In the present work, we report on three novel candidate pheromone receptor genes: PxylOR8, PxylOR41, and PxylOR45 in the same species. Gene expression analysis revealed that PxylOR8 is specifically expressed in female adult antennae, while PxylOR41 and PxylOR45 are expressed in antennae in both sexes, but with a male bias. In situ hybridization revealed that PxylOR8, PxylOR41 and PxylOR45 are localized in long trichoid sensilla. Functional analyses on the three pheromone receptor genes were then performed using the heterologous expression system of Xenopus oocytes. PxylOR41 was tuned to two minor pheromone components Z9-14:Ac, Z9-14:OH, and their analog Z9-14:Ald. PxylOR8 and PxylOR45 did not respond to any tested pheromone components and analogs. These results may contribute to clarifying how pheromone detection works in P. xylostella. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Functional characterization of the gene FoOCH1 encoding a putative α-1,6-mannosyltransferase in Fusarium oxysporum f. sp. cubense.

    PubMed

    Li, Min-Hui; Xie, Xiao-Ling; Lin, Xian-Feng; Shi, Jin-Xiu; Ding, Zhao-Jian; Ling, Jin-Feng; Xi, Ping-Gen; Zhou, Jia-Nuan; Leng, Yueqiang; Zhong, Shaobin; Jiang, Zi-De

    2014-04-01

    Fusarium oxysporum f. sp. cubense (FOC) is the causal agent of banana Fusarium wilt and has become one of the most destructive pathogens threatening the banana production worldwide. However, few genes related to morphogenesis and pathogenicity of this fungal pathogen have been functionally characterized. In this study, we identified and characterized the disrupted gene in a T-DNA insertional mutant (L953) of FOC with significantly reduced virulence on banana plants. The gene disrupted by T-DNA insertion in L953 harbors an open reading frame, which encodes a protein with homology to α-1,6-mannosyltransferase (OCH1) in fungi. The deletion mutants (ΔFoOCH1) of the OCH1 orthologue (FoOCH1) in FOC were impaired in fungal growth, exhibited brighter staining with fluorescein isothiocyanate (FITC)-Concanavalin A, had less cell wall proteins and secreted more proteins into liquid media than the wild type. Furthermore, the mutation or deletion of FoOCH1 led to loss of ability to penetrate cellophane membrane and decline in hyphal attachment and colonization as well as virulence to the banana host. The mutant phenotypes were fully restored by complementation with the wild type FoOCH1 gene. Our data provide a first evidence for the critical role of FoOCH1 in maintenance of cell wall integrity and virulence of F. oxysporum f. sp. cubense. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Distribution, function and evolution characterization of microsatellite in Sargassum thunbergii (Fucales, Phaeophyta) transcriptome and their application in marker development

    PubMed Central

    Liu, Fuli; Hu, Zimin; Liu, Wenhui; Li, Jingjing; Wang, Wenjun; Liang, Zhourui; Wang, Feijiu; Sun, Xiutao

    2016-01-01

    Using transcriptome data to mine microsatellite and develop markers has growingly become prevalent. However, characterizing the possible function of microsatellite is relatively rare. In this study, we explored microsatellites in the transcriptome of the brown alga Sargassum thunbergii and characterized the frequencies, distribution, function and evolution, and developed primers to validate these microsatellites. Our results showed that Tri-nucleotide is the most abundant, followed by di- and mono-nucleotide. The length of microsatellite was significantly affected by the repeat motif size. The density of microsatellite in the CDS region is significantly lower than that in the UTR region. The annotation of the transcripts containing microsatellite showed that 573 transcripts have GO terms and can be categorized into 42 groups. Pathways enrichment showed that microsatellites were significantly overrepresented in the genes involved in pathways such as Ubiquitin mediated proteolysis, RNA degradation, Spliceosome, etc. Primers flanking 961 microsatellite loci were designed, and among the 30 pairs of primer selected randomly for availability test, 23 were proved to be efficient. These findings provided new insight into the function and evolution of microsatellite in transcriptome, and the identified microsatellite loci within the annotated gene will be useful for developing functional markers in S. thunbergii. PMID:26732855

  14. Identification and Characterization of the Genes and Enzymes Belonging to the Bile Acid Catabolic Pathway in Pseudomonas.

    PubMed

    Luengo, José M; Olivera, Elías R

    2017-01-01

    The study of the catabolic potential of microbial species isolated from different habitats has allowed the identification and characterization of bacteria able to assimilate bile acids and other steroids (e.g., testosterone and 4-androsten-3,17-dione). From soil samples, we have isolated several strains belonging to genus Pseudomonas that grow efficiently in chemical defined media containing some cyclopentane-perhydro-phenantrene derivatives as carbon sources. Genetic and biochemical studies performed with one of these bacteria (P. putida DOC21) allowed the identification of the genes and enzymes belonging to the 9,10-seco pathway, the route involved in the aerobic assimilation of steroids. In this manuscript, we describe the most relevant methods required for (1) isolation and characterization of these species; (2) determining the chromosomal location, nucleotide sequence, and functional analysis of the catabolic genes (or gene clusters) encoding the enzymes from this pathway; and (3) the tools employed to establish the role of some of the proteins that participate in this route.

  15. Characterization of a Bombyx mori nucleopolyhedrovirus with Bmvp80 disruption.

    PubMed

    Tang, Xu-Dong; Xu, Yi-Peng; Yu, Lin-Lin; Lang, Guo-Jun; Tian, Cai-Hong; Zhao, Jin-Fang; Zhang, Chuan-Xi

    2008-12-01

    A BmNPV Bacmid with the Bmvp80 gene disrupted was constructed using the ET-recombination system in Escherichia coli to investigate the role of Bmvp80 during the baculovirus life cycle. Disruption of Bmvp80 resulted in single cell infection phenotype, whereas a rescue BmBacmid restored budded virus titers to wild type levels; however, the homologous gene Ac104 (Acvp80) from AcMNPV could not complement the BmBacmid lacking a functional Bmvp80 gene. Electron microscopy of cells transfected with BmNPV lacking functional Bmvp80 revealed that the number of nucleocapsids was markedly lower. These results suggest that Bmvp80 is essential for normal budded virus production and nucleocapsid maturation, and is functionally divergent between baculovirus species.

  16. Correlated gene expression and anatomical communication support synchronized brain activity in the mouse functional connectome.

    PubMed

    Mills, Brian D; Grayson, David S; Shunmugavel, Anandakumar; Miranda-Dominguez, Oscar; Feczko, Eric; Earl, Eric; Neve, Kim; Fair, Damien A

    2018-05-22

    Cognition and behavior depend on synchronized intrinsic brain activity that is organized into functional networks across the brain. Research has investigated how anatomical connectivity both shapes and is shaped by these networks, but not how anatomical connectivity interacts with intra-areal molecular properties to drive functional connectivity. Here, we present a novel linear model to explain functional connectivity by integrating systematically obtained measurements of axonal connectivity, gene expression, and resting state functional connectivity MRI in the mouse brain. The model suggests that functional connectivity arises from both anatomical links and inter-areal similarities in gene expression. By estimating these effects, we identify anatomical modules in which correlated gene expression and anatomical connectivity support functional connectivity. Along with providing evidence that not all genes equally contribute to functional connectivity, this research establishes new insights regarding the biological underpinnings of coordinated brain activity measured by BOLD fMRI. SIGNIFICANCE STATEMENT Efforts at characterizing the functional connectome with fMRI have risen exponentially over the last decade. Yet despite this rise, the biological underpinnings of these functional measurements are still largely unknown. The current report begins to fill this void by investigating the molecular underpinnings of the functional connectome through an integration of systematically obtained structural information and gene expression data throughout the rodent brain. We find that both white matter connectivity and similarity in regional gene expression relate to resting state functional connectivity. The current report furthers our understanding of the biological underpinnings of the functional connectome and provides a linear model that can be utilized to streamline preclinical animal studies of disease. Copyright © 2018 the authors.

  17. Splice-mediated Variants of Proteins (SpliVaP) - data and characterization of changes in signatures among protein isoforms due to alternative splicing.

    PubMed

    Floris, Matteo; Orsini, Massimiliano; Thanaraj, Thangavel Alphonse

    2008-10-02

    It is often the case that mammalian genes are alternatively spliced; the resulting alternate transcripts often encode protein isoforms that differ in amino acid sequences. Changes among the protein isoforms can alter the cellular properties of proteins. The effect can range from a subtle modulation to a complete loss of function. (i) We examined human splice-mediated protein isoforms (as extracted from a manually curated data set, and from a computationally predicted data set) for differences in the annotation for protein signatures (Pfam domains and PRINTS fingerprints) and we characterized the differences & their effects on protein functionalities. An important question addressed relates to the extent of protein isoforms that may lack any known function in the cell. (ii) We present a database that reports differences in protein signatures among human splice-mediated protein isoform sequences. (i) Characterization: The work points to distinct sets of alternatively spliced genes with varying degrees of annotation for the splice-mediated protein isoforms. Protein molecular functions seen to be often affected are those that relate to: binding, catalytic, transcription regulation, structural molecule, transporter, motor, and antioxidant; and the processes that are often affected are nucleic acid binding, signal transduction, and protein-protein interactions. Signatures are often included/excluded and truncated in length among protein isoforms; truncation is seen as the predominant type of change. Analysis points to the following novel aspects: (a) Analysis using data from the manually curated Vega indicates that one in 8.9 genes can lead to a protein isoform of no "known" function; and one in 18 expressed protein isoforms can be such an "orphan" isoform; the corresponding numbers as seen with computationally predicted ASD data set are: one in 4.9 genes and one in 9.8 isoforms. (b) When swapping of signatures occurs, it is often between those of same functional classifications. (c) Pfam domains can occur in varying lengths, and PRINTS fingerprints can occur with varying number of constituent motifs among isoforms - since such a variation is seen in large number of genes, it could be a general mechanism to modulate protein function. (ii) The reported resource (at http://www.bioinformatica.crs4.org/tools/dbs/splivap/) provides the community ability to access data on splice-mediated protein isoforms (with value-added annotation such as association with diseases) through changes in protein signatures.

  18. The Arabidopsis ELP3/ELO3 and ELP4/ELO1 genes enhance disease resistance in Fragaria vesca L.

    PubMed

    Silva, Katchen Julliany P; Brunings, Asha M; Pereira, Juliana A; Peres, Natalia A; Folta, Kevin M; Mou, Zhonglin

    2017-12-01

    Plant immune response is associated with a large-scale transcriptional reprogramming, which is regulated by numerous transcription regulators such as the Elongator complex. Elongator is a multitasking protein complex involved in diverse cellular processes, including histone modification, DNA methylation, and tRNA modification. In recent years, Elongator is emerging as a key regulator of plant immune responses. However, characterization of Elongator's function in plant immunity has been conducted only in the model plant Arabidopsis thaliana. It is thus unclear whether Elongator's role in plant immunity is conserved in higher plants. The objective of this study is to characterize transgenic woodland strawberry (Fragaria vesca L.) overexpressing the Arabidopsis Elongator (AtELP) genes, AtELP3 and AtELP4, and to determine whether F. vesca carries a functional Elongator complex. Transgenic F. vesca and Arabidopsis plants were produced via Agrobacterium-mediated genetic transformation and characterized by morphology, PCR, real-time quantitative PCR, and disease resistance test. The Student's t test was used to analyze the data. Overexpression of AtELP3 and AtELP4 in F. vesca impacts plant growth and development and confers enhanced resistance to anthracnose crown rot, powdery mildew, and angular leaf spot, which are caused by the hemibiotrophic fungal pathogen Colletotrichum gloeosporioides, the obligate biotrophic fungal pathogen Podosphaera aphanis, and the hemibiotrophic bacterial pathogen Xanthomonas fragariae, respectively. Moreover, the F. vesca genome encodes all six Elongator subunits by single-copy genes with the exception of FvELP4, which is encoded by two homologous genes, FvELP4-1 and FvELP4-2. We show that FvELP4-1 complemented the Arabidopsis Atelp4/elo1-1 mutant, indicating that FvELP4 is biologically functional. This is the first report on overexpression of Elongator genes in plants. Our results indicate that the function of Elongator in plant immunity is most likely conserved in F. vesca and suggest that Elongator genes may hold potential for helping mitigate disease severity and reduce the use of fungicides in strawberry industry.

  19. Characterization of Mutants Deficient in the l,d-Carboxypeptidase (DacB) and WalRK (VicRK) Regulon, Involved in Peptidoglycan Maturation of Streptococcus pneumoniae Serotype 2 Strain D39▿†

    PubMed Central

    Barendt, Skye M.; Sham, Lok-To; Winkler, Malcolm E.

    2011-01-01

    Peptidoglycan (PG) hydrolases play critical roles in the remodeling of bacterial cell walls during division. PG hydrolases have been studied extensively in several bacillus species, such as Escherichia coli and Bacillus subtilis, but remain relatively uncharacterized in ovococcus species, such as Streptococcus pneumoniae (pneumococcus). In this work, we identified genes that encode proteins with putative PG hydrolytic domains in the genome of S. pneumoniae strain D39. Knockout mutations in these genes were constructed, and the resulting mutants were characterized in comparison with the parent strain for growth, cell morphology, PG peptide incorporation, and in some cases, PG peptide composition. In addition, we characterized deletion mutations in nonessential genes of unknown function in the WalRKSpn two-component system regulon, which also contains the essential pcsB cell division gene. Several mutants did not show overt phenotypes, which is perhaps indicative of redundancy. In contrast, two new mutants showed distinct defects in PG biosynthesis. One mutation was in a gene designated dacB (spd_0549), which we showed encodes an l,d-carboxypeptidase involved in PG maturation. Notably, dacB mutants, similar to dacA (d,d-carboxypeptidase) mutants, exhibited defects in cell shape and septation, consistent with the idea that the availability of PG peptide precursors is important for proper PG biosynthesis. Epistasis analysis indicated that DacA functions before DacB in d-Ala removal, and immunofluorescence microscopy showed that DacA and DacB are located over the entire surface of pneumococcal cells. The other mutation was in WalRKSpn regulon gene spd_0703, which encodes a putative membrane protein that may function as a type of conserved streptococcal shape, elongation, division, and sporulation (SEDS) protein. PMID:21378199

  20. Genome-wide evolutionary characterization and expression analyses of major latex protein (MLP) family genes in Vitis vinifera.

    PubMed

    Zhang, Ningbo; Li, Ruimin; Shen, Wei; Jiao, Shuzhen; Zhang, Junxiang; Xu, Weirong

    2018-04-27

    The major latex protein/ripening-related protein (MLP/RRP) subfamily is known to be involved in a wide range of biological processes of plant development and various stress responses. However, the biological function of MLP/RRP proteins is still far from being clear and identification of them may provide important clues for understanding their roles. Here, we report a genome-wide evolutionary characterization and gene expression analysis of the MLP family in European Vitis species. A total of 14 members, was found in the grape genome, all of which are located on chromosome 1, where are predominantly arranged in tandem clusters. We have noticed, most surprisingly, promoter-sharing by several non-identical but highly similar gene members to a greater extent than expected by chance. Synteny analysis between the grape and Arabidopsis thaliana genomes suggested that 3 grape MLP genes arose before the divergence of the two species. Phylogenetic analysis provided further insights into the evolutionary relationship between the genes, as well as their putative functions, and tissue-specific expression analysis suggested distinct biological roles for different members. Our expression data suggested a couple of candidate genes involved in abiotic stresses and phytohormone responses. The present work provides new insight into the evolution and regulation of Vitis MLP genes, which represent targets for future studies and inclusion in tolerance-related molecular breeding programs.

  1. Diversity of the RFamide Peptide Family in Mollusks

    PubMed Central

    Zatylny-Gaudin, Celine; Favrel, Pascal

    2014-01-01

    Since the initial characterization of the cardioexcitatory peptide FMRFamide in the bivalve mollusk Macrocallista nimbosa, a great number of FMRFamide-like peptides (FLPs) have been identified in mollusks. FLPs were initially isolated and molecularly characterized in model mollusks using biochemical methods. The development of recombinant technologies and, more recently, of genomics has boosted knowledge on their diversity in various mollusk classes. Today, mollusk FLPs represent approximately 75 distinct RFamide peptides that appear to result from the expression of only five genes: the FMRFamide-related peptide gene, the LFRFamide gene, the luqin gene, the neuropeptide F gene, and the cholecystokinin/sulfakinin gene. FLPs display a complex spatiotemporal pattern of expression in the central and peripheral nervous system. Working as neurotransmitters, neuromodulators, or neurohormones, FLPs are involved in the control of a great variety of biological and physiological processes including cardiovascular regulation, osmoregulation, reproduction, digestion, and feeding behavior. From an evolutionary viewpoint, the major challenge will then logically concern the elucidation of the FLP repertoire of orphan mollusk classes and the way they are functionally related. In this respect, deciphering FLP signaling pathways by characterizing the specific receptors these peptides bind remains another exciting objective. PMID:25386166

  2. Norrie disease gene: characterization of deletions and possible function.

    PubMed

    Chen, Z Y; Battinelli, E M; Hendriks, R W; Powell, J F; Middleton-Price, H; Sims, K B; Breakefield, X O; Craig, I W

    1993-05-01

    Positional cloning experiments have resulted recently in the isolation of a candidate gene for Norrie disease (pseudoglioma; NDP), a severe X-linked neurodevelopmental disorder. Here we report the isolation and analysis of human genomic DNA clones encompassing the NDP gene. The gene spans 28 kb and consists of 3 exons, the first of which is entirely contained within the 5' untranslated region. Detailed analysis of genomic deletions in Norrie patients shows that they are heterogeneous, both in size and in position. By PCR analysis, we found that expression of the NDP gene was not confined to the eye or to the brain. An extensive DNA and protein sequence comparison between the human NDP gene and related genes from the database revealed homology with cysteine-rich protein-binding domains of immediate--early genes implicated in the regulation of cell proliferation. We propose that NDP is a molecule related in function to these genes and may be involved in a pathway that regulates neural cell differentiation and proliferation.

  3. Functional Conservation of MIKC*-Type MADS Box Genes in Arabidopsis and Rice Pollen Maturation[C][W

    PubMed Central

    Liu, Yuan; Cui, Shaojie; Wu, Feng; Yan, Shuo; Lin, Xuelei; Du, Xiaoqiu; Chong, Kang; Schilling, Susanne; Theißen, Günter; Meng, Zheng

    2013-01-01

    There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKCC type and MIKC* type. In seed plants, the MIKCC type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago. PMID:23613199

  4. Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L.

    PubMed Central

    Bhat, Archana; Mishra, Sonal; Kaul, Sanjana

    2018-01-01

    The dried stigmas of Crocus sativus constitute the saffron, which is considered to be the costliest spice of the world. Saffron is valuable for its constituents, which are mainly apocarotenoids. In order to enhance the production of apocarotenoids, it is imperative to understand the regulation of apocarotenoid biosynthetic pathway. In C. sativus, although the pathway has been elucidated, the information regarding the regulation of the pathwaygenes is scanty. During the present investigation, the characterization of promoters regulating the expression of two important genes i.e. CsPSY and CsUGT was performed. We successfully cloned the promoters of both the genes, which were functionally characterized in Crocus sativus and Nicotiana tabaccum. In silico analysis of the promoters demonstrated the presence of several important cis regulatory elements responding tolight, hormonesand interaction with transcription factors (TFs). Further analysis suggested the regulation of CsPSY promoter by Abscisic acid (ABA) and that of CsUGT by Gibberellic acid (GA). In addition, we also observed ABA and GA mediated modulation in the expression of significant TFs and CsPSY and CsUGT transcripts. Overall, the study addresses issues related to regulation of key genes of apocarotenoid pathway in C.sativus. PMID:29634744

  5. Molecular bases of diseases characterized by hypophosphatemia and phosphaturia: new understanding.

    PubMed

    Ozono, Keiichi; Michigami, Toshimi; Namba, Noriyuki; Nakajima, Shigeo; Yamamoto, Takehisa

    2006-01-01

    Serum phosphate levels are regulated in both calcium-dependent and -independent fashions. Active vitamin D increases while PTH decreases serum phosphate levels in association with the elevation of serum calcium. On the other hand, a calcium-independent phosphaturic factor, historically called phosphatonin is believed to exert a physiological function based on findings in hereditary and tumor-induced diseases characterized by hypophosphatemia with normocalcemia. Among them, autosomal dominant hypophosphatemic rickets (ADHR) has contributed greatly to its elucidation because the gene responsible for ADHR encodes fibroblast growth factor 23 (FGF23) that has been found to have a phosphaturic effect. In addition, FGF23 has been proved to be involved in most cases of oncogenic osteomalacia and X-linked hypophosphatemic rickets that are also characterized by hypophosphatemia and normocalcemia. Moreover, familial tumoral calcinosis, which represents the metabolic mirror image of hypophosphatemic conditions, is caused by a loss-of-function mutation in the FGF23 gene in some patients. Very recently, hereditary hypophosphatemic rickets with hypercalciuria has been found to be caused by mutations in the SLC34A1 gene which encodes a type of sodium phosphate cotransporter. These findings may provide new strategies for treating patients with abnormal phosphate metabolism.

  6. Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L.

    PubMed

    Bhat, Archana; Mishra, Sonal; Kaul, Sanjana; Dhar, Manoj K

    2018-01-01

    The dried stigmas of Crocus sativus constitute the saffron, which is considered to be the costliest spice of the world. Saffron is valuable for its constituents, which are mainly apocarotenoids. In order to enhance the production of apocarotenoids, it is imperative to understand the regulation of apocarotenoid biosynthetic pathway. In C. sativus, although the pathway has been elucidated, the information regarding the regulation of the pathwaygenes is scanty. During the present investigation, the characterization of promoters regulating the expression of two important genes i.e. CsPSY and CsUGT was performed. We successfully cloned the promoters of both the genes, which were functionally characterized in Crocus sativus and Nicotiana tabaccum. In silico analysis of the promoters demonstrated the presence of several important cis regulatory elements responding tolight, hormonesand interaction with transcription factors (TFs). Further analysis suggested the regulation of CsPSY promoter by Abscisic acid (ABA) and that of CsUGT by Gibberellic acid (GA). In addition, we also observed ABA and GA mediated modulation in the expression of significant TFs and CsPSY and CsUGT transcripts. Overall, the study addresses issues related to regulation of key genes of apocarotenoid pathway in C.sativus.

  7. Proteomic characterization of hempseed (Cannabis sativa L.).

    PubMed

    Aiello, Gilda; Fasoli, Elisa; Boschin, Giovanna; Lammi, Carmen; Zanoni, Chiara; Citterio, Attilio; Arnoldi, Anna

    2016-09-16

    This paper presents an investigation on hempseed proteome. The experimental approach, based on combinatorial peptide ligand libraries (CPLLs), SDS-PAGE separation, nLC-ESI-MS/MS identification, and database search, permitted identifying in total 181 expressed proteins. This very large number of identifications was achieved by searching in two databases: Cannabis sativa L. (56 gene products identified) and Arabidopsis thaliana (125 gene products identified). By performing a protein-protein association network analysis using the STRING software, it was possible to build the first interactomic map of all detected proteins, characterized by 137 nodes and 410 interactions. Finally, a Gene Ontology analysis of the identified species permitted to classify their molecular functions: the great majority is involved in the seed metabolic processes (41%), responses to stimulus (8%), and biological process (7%). Hempseed is an underexploited non-legume protein-rich seed. Although its protein is well known for its digestibility, essential amino acid composition, and useful techno-functional properties, a comprehensive proteome characterization is still lacking. The objective of this work was to fill this knowledge gap and provide information useful for a better exploitation of this seed in different food products. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Characterization of Aryl Hydrocarbon Receptor Interacting Protein (AIP) Mutations in Familial Isolated Pituitary Adenoma Families

    PubMed Central

    Igreja, Susana; Chahal, Harvinder S; King, Peter; Bolger, Graeme B; Srirangalingam, Umasuthan; Guasti, Leonardo; Chapple, J Paul; Trivellin, Giampaolo; Gueorguiev, Maria; Guegan, Katie; Stals, Karen; Khoo, Bernard; Kumar, Ajith V; Ellard, Sian; Grossman, Ashley B; Korbonits, Márta

    2010-01-01

    Familial isolated pituitary adenoma (FIPA) is an autosomal dominant condition with variable genetic background and incomplete penetrance. Germline mutations of the aryl hydrocarbon receptor interacting protein (AIP) gene have been reported in 15–40% of FIPA patients. Limited data are available on the functional consequences of the mutations or regarding the regulation of the AIP gene. We describe a large cohort of FIPA families and characterize missense and silent mutations using minigene constructs, luciferase and β-galactosidase assays, as well as in silico predictions. Patients with AIP mutations had a lower mean age at diagnosis (23.6±11.2 years) than AIP mutation-negative patients (40.4±14.5 years). A promoter mutation showed reduced in vitro activity corresponding to lower mRNA expression in patient samples. Stimulation of the protein kinase A-pathway positively regulates the AIP promoter. Silent mutations led to abnormal splicing resulting in truncated protein or reduced AIP expression. A two-hybrid assay of protein–protein interaction of all missense variants showed variable disruption of AIP-phosphodiesterase-4A5 binding. In summary, exonic, promoter, splice-site, and large deletion mutations in AIP are implicated in 31% of families in our FIPA cohort. Functional characterization of AIP changes is important to identify the functional impact of gene sequence variants. Hum Mutat 31:1–11, 2010. © 2010 Wiley-Liss, Inc. PMID:20506337

  9. Extreme Mutation Tolerance: Nearly Half of the Archaeal Fusellovirus Sulfolobus Spindle-Shaped Virus 1 Genes Are Not Required for Virus Function, Including the Minor Capsid Protein Gene vp3

    PubMed Central

    Iverson, Eric A.; Goodman, David A.; Gorchels, Madeline E.

    2017-01-01

    ABSTRACT Viruses infecting the Archaea harbor a tremendous amount of genetic diversity. This is especially true for the spindle-shaped viruses of the family Fuselloviridae, where >90% of the viral genes do not have detectable homologs in public databases. This significantly limits our ability to elucidate the role of viral proteins in the infection cycle. To address this, we have developed genetic techniques to study the well-characterized fusellovirus Sulfolobus spindle-shaped virus 1 (SSV1), which infects Sulfolobus solfataricus in volcanic hot springs at 80°C and pH 3. Here, we present a new comparative genome analysis and a thorough genetic analysis of SSV1 using both specific and random mutagenesis and thereby generate mutations in all open reading frames. We demonstrate that almost half of the SSV1 genes are not essential for infectivity, and the requirement for a particular gene correlates well with its degree of conservation within the Fuselloviridae. The major capsid gene vp1 is essential for SSV1 infectivity. However, the universally conserved minor capsid gene vp3 could be deleted without a loss in infectivity and results in virions with abnormal morphology. IMPORTANCE Most of the putative genes in the spindle-shaped archaeal hyperthermophile fuselloviruses have no sequences that are clearly similar to characterized genes. In order to determine which of these SSV genes are important for function, we disrupted all of the putative genes in the prototypical fusellovirus, SSV1. Surprisingly, about half of the genes could be disrupted without destroying virus function. Even deletions of one of the known structural protein genes that is present in all known fuselloviruses, vp3, allows the production of infectious viruses. However, viruses lacking vp3 have abnormal shapes, indicating that the vp3 gene is important for virus structure. Identification of essential genes will allow focused research on minimal SSV genomes and further understanding of the structure of these unique, ubiquitous, and extremely stable archaeal viruses. PMID:28148789

  10. Extreme Mutation Tolerance: Nearly Half of the Archaeal Fusellovirus Sulfolobus Spindle-Shaped Virus 1 Genes Are Not Required for Virus Function, Including the Minor Capsid Protein Gene vp3.

    PubMed

    Iverson, Eric A; Goodman, David A; Gorchels, Madeline E; Stedman, Kenneth M

    2017-05-15

    Viruses infecting the Archaea harbor a tremendous amount of genetic diversity. This is especially true for the spindle-shaped viruses of the family Fuselloviridae , where >90% of the viral genes do not have detectable homologs in public databases. This significantly limits our ability to elucidate the role of viral proteins in the infection cycle. To address this, we have developed genetic techniques to study the well-characterized fusellovirus Sulfolobus spindle-shaped virus 1 (SSV1), which infects Sulfolobus solfataricus in volcanic hot springs at 80°C and pH 3. Here, we present a new comparative genome analysis and a thorough genetic analysis of SSV1 using both specific and random mutagenesis and thereby generate mutations in all open reading frames. We demonstrate that almost half of the SSV1 genes are not essential for infectivity, and the requirement for a particular gene correlates well with its degree of conservation within the Fuselloviridae The major capsid gene vp1 is essential for SSV1 infectivity. However, the universally conserved minor capsid gene vp3 could be deleted without a loss in infectivity and results in virions with abnormal morphology. IMPORTANCE Most of the putative genes in the spindle-shaped archaeal hyperthermophile fuselloviruses have no sequences that are clearly similar to characterized genes. In order to determine which of these SSV genes are important for function, we disrupted all of the putative genes in the prototypical fusellovirus, SSV1. Surprisingly, about half of the genes could be disrupted without destroying virus function. Even deletions of one of the known structural protein genes that is present in all known fuselloviruses, vp3 , allows the production of infectious viruses. However, viruses lacking vp3 have abnormal shapes, indicating that the vp3 gene is important for virus structure. Identification of essential genes will allow focused research on minimal SSV genomes and further understanding of the structure of these unique, ubiquitous, and extremely stable archaeal viruses. Copyright © 2017 American Society for Microbiology.

  11. An improved method on stimulated T-lymphocytes to functionally characterize novel and known LDLR mutations[S

    PubMed Central

    Romano, Maria; Di Taranto, Maria Donata; Mirabelli, Peppino; D'Agostino, Maria Nicoletta; Iannuzzi, Arcangelo; Marotta, Gennaro; Gentile, Marco; Raia, Maddalena; Di Noto, Rosa; Del Vecchio, Luigi; Rubba, Paolo; Fortunato, Giuliana

    2011-01-01

    The main causes of familial hypercholesterolemia (FH) are mutations in LDL receptor (LDLR) gene. Functional studies are necessary to demonstrate the LDLR function impairment caused by mutations and would be useful as a diagnostic tool if they allow discrimination between FH patients and controls. In order to identify the best method to detect LDLR activity, we compared continuous Epstein-Barr virus (EBV)-transformed B-lymphocytes and mitogen stimulated T-lymphocytes. In addition, we characterized both novel and known mutations in the LDLR gene. T-lymphocytes and EBV-transformed B-lymphocytes were obtained from peripheral blood of 24 FH patients and 24 control subjects. Functional assays were performed by incubation with fluorescent LDL followed by flow cytometry analysis. Residual LDLR activity was calculated normalizing fluorescence for the mean fluorescence of controls. With stimulated T-lymphocytes we obtained a better discrimination capacity between controls and FH patients compared with EBV-transformed B-lymphocytes as demonstrated by receiver operating characteristic (ROC) curve analysis (the areas under the curve are 1.000 and 0.984 respectively; P < 0.0001 both). The characterization of LDLR activity through T-lymphocytes is more simple and faster than the use of EBV-transformed B-lymphocytes and allows a complete discrimination between controls and FH patients. Therefore the evaluation of residual LDLR activity could be helpful not only for mutation characterization but also for diagnostic purposes. PMID:21865347

  12. Characteristics of microbial community functional structure of a biological coking wastewater treatment system.

    PubMed

    Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min

    2018-01-01

    Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.

  13. Characterization of TM8, a MADS-box gene expressed in tomato flowers.

    PubMed

    Daminato, Margherita; Masiero, Simona; Resentini, Francesca; Lovisetto, Alessandro; Casadoro, Giorgio

    2014-11-30

    The identity of flower organs is specified by various MIKC MADS-box transcription factors which act in a combinatorial manner. TM8 is a MADS-box gene that was isolated from the floral meristem of a tomato mutant more than twenty years ago, but is still poorly known from a functional point of view in spite of being present in both Angiosperms and Gymnosperms, with some species harbouring more than one copy of the gene. This study reports a characterization of TM8 that was carried out in transgenic tomato plants with altered expression of the gene. Tomato plants over-expressing either TM8 or a chimeric repressor form of the gene (TM8:SRDX) were prepared. In the TM8 up-regulated plants it was possible to observe anomalous stamens with poorly viable pollen and altered expression of several floral identity genes, among them B-, C- and E-function ones, while no apparent morphological modifications were visible in the other whorls. Oblong ovaries and fruits, that were also parthenocarpic, were obtained in the plants expressing the TM8:SRDX repressor gene. Such ovaries showed modified expression of various carpel-related genes. No apparent modifications could be seen in the other flower whorls. The latter plants had also epinastic leaves and malformed flower abscission zones. By using yeast two hybrid assays it was possible to show that TM8 was able to interact in yeast with MACROCALIX. The impact of the ectopically altered TM8 expression on the reproductive structures suggests that this gene plays some role in the development of the tomato flower. MACROCALYX, a putative A-function MADS-box gene, was expressed in all the four whorls of fully developed flowers, and showed quantitative variations that were opposite to those of TM8 in the anomalous stamens and ovaries. Since the TM8 protein interacted in vitro only with the A-function MADS-box protein MACROCALYX, it seems that for the correct differentiation of the tomato reproductive structures possible interactions between TM8 and MACROCALYX proteins might be important.

  14. Characterization of a Vibrio alginolyticus Strain, Isolated from Alaskan Oysters, Carrying a Hemolysin Gene Similar to the Thermostable Direct Hemolysin-Related Hemolysin Gene (trh) of Vibrio parahaemolyticus▿

    PubMed Central

    González-Escalona, Narjol; Blackstone, George M.; DePaola, Angelo

    2006-01-01

    A Vibrio strain isolated from Alaskan oysters and classified by its biochemical characteristics as Vibrio alginolyticus possessed a thermostable direct hemolysin-related hemolysin (trh) gene previously reported only in Vibrio parahaemolyticus. This trh-like gene was cloned and sequenced and was 98% identical to the trh2 gene of V. parahaemolyticus. This gene seems to be functional since it was transcriptionally active in early-stationary-phase growing cells. To our knowledge, this is the first report of V. alginolyticus possessing a trh gene. PMID:17056701

  15. Immune and inflammatory gene signature in rat cerebrum in subarachnoid hemorrhage with microarray analysis.

    PubMed

    Lee, Chu-I; Chou, An-Kuo; Lin, Ching-Chih; Chou, Chia-Hua; Loh, Joon-Khim; Lieu, Ann-Shung; Wang, Chih-Jen; Huang, Chi-Ying F; Howng, Shen-Long; Hong, Yi-Ren

    2012-01-01

    Cerebral vasospasm following subarachnoid hemorrhage (SAH) has been studied in terms of a contraction of the major cerebral arteries, but the effect of cerebrum tissue in SAH is not yet well understood. To gain insight into the biology of SAH-expressing cerebrum, we employed oligonucleotide microarrays to characterize the gene expression profiles of cerebrum tissue at the early stage of SAH. Functional gene expression in the cerebrum was analyzed 2 h following stage 1-hemorrhage in Sprague-Dawley rats. mRNA was investigated by performing microarray and quantitative real-time PCR analyses, and protein expression was determined by Western blot analysis. In this study, 18 upregulated and 18 downregulated genes displayed at least a 1.5-fold change. Five genes were verified by real-time PCR, including three upregulated genes [prostaglandin E synthase (PGES), CD14 antigen, and tissue inhibitor of metalloproteinase 1 (TIMP1)] as well as two downregulated genes [KRAB-zinc finger protein-2 (KZF-2) and γ-aminobutyric acid B receptor 1 (GABA B receptor)]. Notably, there were functional implications for the three upregulated genes involved in the inflammatory SAH process. However, the mechanisms leading to decreased KZF-2 and GABA B receptor expression in SAH have never been characterized. We conclude that oligonucleotide microarrays have the potential for use as a method to identify candidate genes associated with SAH and to provide novel investigational targets, including genes involved in the immune and inflammatory response. Furthermore, understanding the regulation of MMP9/TIMP1 during the early stages of SAH may elucidate the pathophysiological mechanisms in SAH rats.

  16. Generation and analysis of expression sequence tags from haustoria of the wheat stripe rust fungus Puccinia striiformis f. sp. Tritici

    PubMed Central

    2009-01-01

    Background Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. In spite of its agricultural importance, the genomics and genetics of the pathogen are poorly characterized. Pst transcripts from urediniospores and germinated urediniospores have been examined previously, but little is known about genes expressed during host infection. Some genes involved in virulence in other rust fungi have been found to be specifically expressed in haustoria. Therefore, the objective of this study was to generate a cDNA library to characterize genes expressed in haustoria of Pst. Results A total of 5,126 EST sequences of high quality were generated from haustoria of Pst, from which 287 contigs and 847 singletons were derived. Approximately 10% and 26% of the 1,134 unique sequences were homologous to proteins with known functions and hypothetical proteins, respectively. The remaining 64% of the unique sequences had no significant similarities in GenBank. Fifteen genes were predicted to be proteins secreted from Pst haustoria. Analysis of ten genes, including six secreted protein genes, using quantitative RT-PCR revealed changes in transcript levels in different developmental and infection stages of the pathogen. Conclusions The haustorial cDNA library was useful in identifying genes of the stripe rust fungus expressed during the infection process. From the library, we identified 15 genes encoding putative secreted proteins and six genes induced during the infection process. These genes are candidates for further studies to determine their functions in wheat-Pst interactions. PMID:20028560

  17. Functional genomics analysis of low concentration of ethanol in human hepatocellular carcinoma (HepG2) cells. Role of genes involved in transcriptional and translational processes.

    PubMed

    Castaneda, Francisco; Rosin-Steiner, Sigrid; Jung, Klaus

    2006-12-21

    We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line.

  18. Functional genomics analysis of low concentration of ethanol in human hepatocellular carcinoma (HepG2) cells. Role of genes involved in transcriptional and translational processes

    PubMed Central

    Castaneda, Francisco; Rosin-Steiner, Sigrid; Jung, Klaus

    2007-01-01

    We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line. PMID:17211498

  19. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity.

    PubMed

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B

    2017-07-01

    The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. MATRIX FACTORIZATION-BASED DATA FUSION FOR GENE FUNCTION PREDICTION IN BAKER’S YEAST AND SLIME MOLD

    PubMed Central

    ŽITNIK, MARINKA; ZUPAN, BLAŽ

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker’s yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps. PMID:24297565

  1. Social Responsiveness and Competence in Prader-Willi Syndrome: Direct Comparison to Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Dimitropoulos, Anastasia; Ho, Alan; Feldman, Benjamin

    2013-01-01

    Prader-Willi syndrome (PWS), a neurodevelopmental disorder primarily characterized by hyperphagia and food preoccupations, is caused by the absence of expression of the paternally active genes in the proximal arm of chromosome 15. Although maladaptive behavior and the cognitive profile in PWS have been well characterized, social functioning has…

  2. Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera: Tenebrionidae)

    USDA-ARS?s Scientific Manuscript database

    The availability of sequenced insect genomes has allowed for discovery and functional characterization of novel genes and proteins. We report use of the Tribolium castaneum (Herbst) (red flour beetle) genome to identify, clone, express, and characterize a novel endo-ß-1,4-glucanase we named TcEG1 (...

  3. The Genome of Ganderma lucidum Provide Insights into Triterpense Biosynthesis and Wood Degradation

    PubMed Central

    Huang, Zhuo; Zhang, Hong-Mei; Liu, Wei; Liu, Le; Ma, Junping; Xia, Zhilan; Chen, Yuxin; Chen, Yuewen; Wang, Depeng; Ni, Peixiang; Guo, An-Yuan; Xiong, Xingyao

    2012-01-01

    Background Ganoderma lucidum (Reishi or Ling Zhi) is one of the most famous Traditional Chinese Medicines and has been widely used in the treatment of various human diseases in Asia countries. It is also a fungus with strong wood degradation ability with potential in bioenergy production. However, genes, pathways and mechanisms of these functions are still unknown. Methodology/Principal Findings The genome of G. lucidum was sequenced and assembled into a 39.9 megabases (Mb) draft genome, which encoded 12,080 protein-coding genes and ∼83% of them were similar to public sequences. We performed comprehensive annotation for G. lucidum genes and made comparisons with genes in other fungi genomes. Genes in the biosynthesis of the main G. lucidum active ingredients, ganoderic acids (GAs), were characterized. Among the GAs synthases, we identified a fusion gene, the N and C terminal of which are homologous to two different enzymes. Moreover, the fusion gene was only found in basidiomycetes. As a white rot fungus with wood degradation ability, abundant carbohydrate-active enzymes and ligninolytic enzymes were identified in the G. lucidum genome and were compared with other fungi. Conclusions/Significance The genome sequence and well annotation of G. lucidum will provide new insights in function analyses including its medicinal mechanism. The characterization of genes in the triterpene biosynthesis and wood degradation will facilitate bio-engineering research in the production of its active ingredients and bioenergy. PMID:22567134

  4. Genomic structure of the human D-site binding protein (DBP) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutler, G.; Glassco, T.; Kang, Xiaolin

    1996-06-15

    The human gene for the D-Site Binding Protein (DBP) has been sequenced and characterized. This gene is a member of the b/ZIP family of transcription factors and is one of three genes forming the PAR sub-family. DBP has been implicated in the diurnal regulation of a variety of liver-specific genes. Examination of the genomic structure of DBP reveals that the gene is divided into four exons and is contained within a relatively compact region of approximately 6 kb. These exons appear to correspond to functional divisions the DBP protein. Exon 1 contains a long 5{prime} UTR, and conservation between themore » rat and the human genes of the presence of small open reading frames within this region suggests that is may play a role in translational control. Exon 2 contains a limited region of similarity to the other PAR domain genes, which may be part of a potential activation domain. Exon 3 contains the PAR domain and differs by only 1 of 71 amino acids between rat and human. Exon 4, containing both the basic and the leucine zipper domains, is likewise highly conserved. The overall degree of homology between the rat and the human cDNA sequences is 82% for the nucleic acid sequence and 92% for the protein sequence. comparison of the rat and human proximal promoters reveals extensive sequence conservation, with two previously characterized DNA binding sites being conserved at the functional and sequence levels. 31 refs., 4 figs.« less

  5. Development and characterization of rice mutants for functional genomic studies and breeding

    USDA-ARS?s Scientific Manuscript database

    Mutagenesis is a powerful tool for creating genetic materials for studying functional genomics, breeding, and understanding the molecular basis of disease resistance. Approximately 100,000 putative mutants of rice (Oryza sativa L.) have been generated with mutagens. Numerous mutant genes involved in...

  6. Polyglycerol-functionalized nanodiamond as a platform for gene delivery: Derivatization, characterization, and hybridization with DNA

    PubMed Central

    Zhao, Li; Nakae, Yuki; Qin, Hongmei; Ito, Tadamasa; Kimura, Takahide; Kojima, Hideto; Chan, Lawrence

    2014-01-01

    Summary A gene vector consisting of nanodiamond, polyglycerol, and basic polypeptide (ND-PG-BPP) has been designed, synthesized, and characterized. The ND-PG-BPP was synthesized by PG functionalization of ND through ring-opening polymerization of glycidol on the ND surface, multistep organic transformations (–OH → –OTs (tosylate) → –N3) in the PG layer, and click conjugation of the basic polypeptides (Arg8, Lys8 or His8) terminated with propargyl glycine. The ND-PG-BPP exhibited good dispersibility in water (>1.0 mg/mL) and positive zeta potential ranging from +14.2 mV to +44.1 mV at neutral pH in Milli-Q water. It was confirmed by gel retardation assay that ND-PG-Arg8 and ND-PG-Lys8 with higher zeta potential hybridized with plasmid DNA (pDNA) through electrostatic attraction, making them promising as nonviral vectors for gene delivery. PMID:24778723

  7. Characterization of vacuolar amino acid transporter from Fusarium oxysporum in Saccharomyces cerevisiae.

    PubMed

    Lunprom, Siriporn; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi; Akiyama, Koichi

    2015-01-01

    Fusarium oxysporum causes wilt disease in many plant families, and many genes are involved in its development or growth in host plants. A recent study revealed that vacuolar amino acid transporters play an important role in spore formation in Schizosaccharomyces pombe and Saccharomyces cerevisiae. To investigate the role of vacuolar amino acid transporters of this phytopathogenic fungus, the FOXG_11334 (FoAVT3) gene from F. oxysporum was isolated and its function was characterized. Transcription of FoAVT3 was upregulated after rapamycin treatment. A green fluorescent protein fusion of FoAvt3p was localized to vacuolar membranes in both S. cerevisiae and F. oxysporum. Analysis of the amino acid content of the vacuolar fraction and amino acid transport activities using vacuolar membrane vesicles from S. cerevisiae cells heterologously expressing FoAVT3 revealed that FoAvt3p functions as a vacuolar amino acid transporter, exporting neutral amino acids. We conclude that the FoAVT3 gene encodes a vacuolar neutral amino acid transporter.

  8. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).

    PubMed

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-06-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  9. THE TRANSCRIPTIONAL PROFILE OF THE KIDNEY IN TSC2 HETEROZYGOUS MUTANT LONG EVANS (EKER) RATS COMPARED TO WILD-TYPE

    EPA Science Inventory

    Hereditary renal cell carcinoma (RCC) in Eker rats results from an inherited insertional mutation in the Tsc2 tumor suppressor gene and provides a valuable experimental model to characterize the function of the Tsc2 gene product, tuberin in vivo. The Tsc2 mutation predisposes the...

  10. Mutations in the F-box gene SNEEZY result in decreased arabidopsis GA signaling

    USDA-ARS?s Scientific Manuscript database

    We previously reported that the SLEEPY1 (SLY1) homolog, F-box gene SNEEZY/SLEEPY2 (SNE/SLY2), can partly replace SLY1 in gibberellin (GA) hormone signaling through interaction with DELLAs RGA and GAI. To determine whether SNE normally functions in GA signaling, we characterized the phenotypes of tw...

  11. The Fragile X Syndrome: From Molecular Genetics to Neurobiology

    ERIC Educational Resources Information Center

    Willemsen, Rob; Oostra, Ben A.; Bassell, Gary J.; Dictenberg, Jason

    2004-01-01

    Since the identification of the FMR1 gene basic research has been focused on the molecular characterization of the FMR1 gene product, the fragile X mental retardation protein (FMRP). Recent developments in fragile X research have provided new insights and knowledge about the physiological function of FMRP in the cell and the nerve cell in…

  12. A Target Region Amplified Polymorphism (TRAP) Marker for Fertility Restorer Gene Rf1 and Chromosomal Localization of Rf1 and Rf2 in Cotton

    USDA-ARS?s Scientific Manuscript database

    Cytoplasmic male sterility (CMS), a maternally inherited trait and characterized as an inability to produce functional pollen , is an important biological system for economically producing hybrid seed to enhance crop yield and studying cytoplasmic and nuclear gene interactions. In cultivated tetrapl...

  13. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  14. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection

    PubMed Central

    Zhang, Jianzhi; Dyer, Kimberly D.; Rosenberg, Helene F.

    2000-01-01

    The mammalian RNase A superfamily comprises a diverse array of ribonucleolytic proteins that have a variety of biochemical activities and physiological functions. Two rapidly evolving RNases of higher primates are of particular interest as they are major secretory proteins of eosinophilic leukocytes and have been found to possess anti-pathogen activities in vitro. To understand how these RNases acquired this function during evolution and to develop animal models for the study of their functions in vivo, it is necessary to investigate these genes in many species. Here, we report the sequences of 38 functional genes and 23 pseudogenes of the eosinophil-associated RNase (EAR) family from 5 rodent species. Our phylogenetic analysis of these genes showed a clear pattern of evolution by a rapid birth-and-death process and gene sorting, a process characterized by rapid gene duplication and deactivation occurring differentially among lineages. This process ultimately generates distinct or only partially overlapping inventories of the genes, even in closely related species. Positive Darwinian selection also contributed to the diversification of these EAR genes. The striking similarity between the evolutionary patterns of the EAR genes and those of the major histocompatibility complex, immunoglobulin, and T cell receptor genes stands in strong support of the hypothesis that host-defense and generation of diversity are among the primary physiological function of the rodent EARs. The discovery of a large number of divergent EARs suggests the intriguing possibility that these proteins have been specifically tailored to fight against distinct rodent pathogens. PMID:10758160

  15. Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice

    PubMed Central

    2012-01-01

    Background WD40 proteins represent a large family in eukaryotes, which have been involved in a broad spectrum of crucial functions. Systematic characterization and co-expression analysis of OsWD40 genes enable us to understand the networks of the WD40 proteins and their biological processes and gene functions in rice. Results In this study, we identify and analyze 200 potential OsWD40 genes in rice, describing their gene structures, genome localizations, and evolutionary relationship of each member. Expression profiles covering the whole life cycle in rice has revealed that transcripts of OsWD40 were accumulated differentially during vegetative and reproductive development and preferentially up or down-regulated in different tissues. Under phytohormone treatments, 25 OsWD40 genes were differentially expressed with treatments of one or more of the phytohormone NAA, KT, or GA3 in rice seedlings. We also used a combined analysis of expression correlation and Gene Ontology annotation to infer the biological role of the OsWD40 genes in rice. The results suggested that OsWD40 genes may perform their diverse functions by complex network, thus were predictive for understanding their biological pathways. The analysis also revealed that OsWD40 genes might interact with each other to take part in metabolic pathways, suggesting a more complex feedback network. Conclusions All of these analyses suggest that the functions of OsWD40 genes are diversified, which provide useful references for selecting candidate genes for further functional studies. PMID:22429805

  16. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research

    DOE PAGES

    Liu, Degao; Hu, Rongbin; Palla, Kaitlin J.; ...

    2016-02-18

    Genome editing with site-specific nucleases has become a powerful tool for functional characterization of plant genes and genetic improvement of agricultural crops. Among the various site-specific nuclease-based technologies available for genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems have shown the greatest potential for rapid and efficient editing of genomes in plant species. Here, this article reviews the current status of application of CRISPR/Cas9 to plant genomics research, with a focus on loss-of-function and gain-of-function analysis of individual genes in the context of perennial plants and the potential application of CRISPR/Cas9 to perturbation ofmore » gene expression, as well as identification and analysis of gene modules as part of an accelerated domestication and synthetic biology effort.« less

  17. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Degao; Hu, Rongbin; Palla, Kaitlin J.

    Genome editing with site-specific nucleases has become a powerful tool for functional characterization of plant genes and genetic improvement of agricultural crops. Among the various site-specific nuclease-based technologies available for genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems have shown the greatest potential for rapid and efficient editing of genomes in plant species. Here, this article reviews the current status of application of CRISPR/Cas9 to plant genomics research, with a focus on loss-of-function and gain-of-function analysis of individual genes in the context of perennial plants and the potential application of CRISPR/Cas9 to perturbation ofmore » gene expression, as well as identification and analysis of gene modules as part of an accelerated domestication and synthetic biology effort.« less

  18. A functional genomics screen identifies an Importin-α homolog as a regulator of stem cell function and tissue patterning during planarian regeneration.

    PubMed

    Hubert, Amy; Henderson, Jordana M; Cowles, Martis W; Ross, Kelly G; Hagen, Matthew; Anderson, Christa; Szeterlak, Claudia J; Zayas, Ricardo M

    2015-10-12

    Planarians are renowned for their regenerative capacity and are an attractive model for the study of adult stem cells and tissue regeneration. In an effort to better understand the molecular mechanisms underlying planarian regeneration, we performed a functional genomics screen aimed at identifying genes involved in this process in Schmidtea mediterranea. We used microarrays to detect changes in gene expression in regenerating and non-regenerating tissues in planarians regenerating one side of the head and followed this with high-throughput screening by in situ hybridization and RNAi to characterize the expression patterns and function of the differentially expressed genes. Along with five previously characterized genes (Smed-cycD, Smed-morf41/mrg-1, Smed-pdss2/dlp1, Smed-slbp, and Smed-tph), we identified 20 additional genes necessary for stem cell maintenance (Smed-sart3, Smed-smarcc-1, Smed-espl1, Smed-rrm2b-1, Smed-rrm2b-2, Smed-dkc1, Smed-emg1, Smed-lig1, Smed-prim2, Smed-mcm7, and a novel sequence) or general regenerative capability (Smed-rbap46/48-2, Smed-mcm2, Smed-ptbp1, and Smed-fen-1) or that caused tissue-specific defects upon knockdown (Smed-ddc, Smed-gas8, Smed-pgbd4, and Smed-b9d2). We also found that a homolog of the nuclear transport factor Importin-α plays a role in stem cell function and tissue patterning, suggesting that controlled nuclear import of proteins is important for regeneration. Through this work, we described the roles of several previously uncharacterized genes in planarian regeneration and implicated nuclear import in this process. We have additionally created an online database to house our in situ and RNAi data to make it accessible to the planarian research community.

  19. The Eucalyptus terpene synthase gene family.

    PubMed

    Külheim, Carsten; Padovan, Amanda; Hefer, Charles; Krause, Sandra T; Köllner, Tobias G; Myburg, Alexander A; Degenhardt, Jörg; Foley, William J

    2015-06-11

    Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.

  20. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Gupta, Vidya S

    2012-05-08

    The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were flax diverged. Flax has a large number of UGT genes including few flax diverged ones. Phylogenetic analysis and expression profiles of these genes identified tissue and condition specific repertoire of UGT genes from this crop. This study would facilitate precise selection of candidate genes and their further characterization of substrate specificities and in planta functions.

  1. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns

    PubMed Central

    2012-01-01

    Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were flax diverged. Conclusions Flax has a large number of UGT genes including few flax diverged ones. Phylogenetic analysis and expression profiles of these genes identified tissue and condition specific repertoire of UGT genes from this crop. This study would facilitate precise selection of candidate genes and their further characterization of substrate specificities and in planta functions. PMID:22568875

  2. Isolation and characterization of a novel gene sfig in rat skeletal muscle up-regulated by spaceflight (STS-90)

    NASA Technical Reports Server (NTRS)

    Kano, Mihoko; Kitano, Takako; Ikemoto, Madoka; Hirasaka, Katsuya; Asanoma, Yuki; Ogawa, Takayuki; Takeda, Shinichi; Nonaka, Ikuya; Adams, Gregory R.; Baldwin, Kenneth M.; hide

    2003-01-01

    We obtained the skeletal muscle of rats exposed to weightless conditions during a 16-day-spaceflight (STS-90). By using a differential display technique, we identified 6 up-regulated and 3 down-regulated genes in the gastrocnemius muscle of the spaceflight rats, as compared to the ground control. The up-regulated genes included those coding Casitas B-lineage lymphoma-b, insulin growth factor binding protein-1, titin and mitochondrial gene 16 S rRNA and two novel genes (function unknown). The down-regulated genes included those encoding RNA polymerase II elongation factor-like protein, NADH dehydrogenase and one novel gene (function unknown). In the present study, we isolated and characterized one of two novel muscle genes that were remarkably up-regulated by spaceflight. The deduced amino acid sequence of the spaceflight-induced gene (sfig) comprises 86 amino acid residues and is well conserved from Drosophila to Homo sapiens. A putative leucine-zipper structure located at the N-terminal region of sfig suggests that this gene may encode a transcription factor. The up-regulated expression of this gene, confirmed by Northern blot analysis, was observed not only in the muscles of spaceflight rats but also in the muscles of tail-suspended rats, especially in the early stage of tail-suspension when gastrocnemius muscle atrophy initiated. The gene was predominantly expressed in the kidney, liver, small intestine and heart. When rat myoblastic L6 cells were grown to 100% confluence in the cell culture system, the expression of sfig was detected regardless of the cell differentiation state. These results suggest that spaceflight has many genetic effects on rat skeletal muscle.

  3. Structural Heterogeneity and Functional Domains of Murine Immunoglobulin G Fc Receptors

    NASA Astrophysics Data System (ADS)

    Ravetch, Jeffrey V.; Luster, Andrew D.; Weinshank, Richard; Kochan, Jarema; Pavlovec, Amalia; Portnoy, Daniel A.; Hulmes, Jeffrey; Pan, Yu-Ching E.; Unkeless, Jay C.

    1986-11-01

    Binding of antibodies to effector cells by way of receptors to their constant regions (Fc receptors) is central to the pathway that leads to clearance of antigens by the immune system. The structure and function of this important class of receptors on immune cells is addressed through the molecular characterization of Fc receptors (FcR) specific for the murine immunoglobulin G isotype. Structural diversity is encoded by two genes that by alternative splicing result in expression of molecules with highly conserved extracellular domains and different transmembrane and intracytoplasmic domains. The proteins encoded by these genes are members of the immunoglobulin supergene family, most homologous to the major histocompatibility complex molecule Eβ. Functional reconstitution of ligand binding by transfection of individual FcR genes demonstrates that the requirements for ligand binding are encoded in a single gene. These studies demonstrate the molecular basis for the functional heterogeneity of FcR's, accounting for the possible transduction of different signals in response to a single ligand.

  4. Molecular characterization of the apical organ of the anthozoan Nematostella vectensis

    PubMed Central

    Sinigaglia, Chiara; Busengdal, Henriette; Lerner, Avi; Oliveri, Paola; Rentzsch, Fabian

    2015-01-01

    Apical organs are sensory structures present in many marine invertebrate larvae where they are considered to be involved in their settlement, metamorphosis and locomotion. In bilaterians they are characterised by a tuft of long cilia and receptor cells and they are associated with groups of neurons, but their relatively low morphological complexity and dispersed phylogenetic distribution have left their evolutionary relationship unresolved. Moreover, since apical organs are not present in the standard model organisms, their development and function are not well understood. To provide a foundation for a better understanding of this structure we have characterised the molecular composition of the apical organ of the sea anemone Nematostella vectensis. In a microarray-based comparison of the gene expression profiles of planulae with either a wildtype or an experimentally expanded apical organ, we identified 78 evolutionarily conserved genes, which are predominantly or specifically expressed in the apical organ of Nematostella. This gene set comprises signalling molecules, transcription factors, structural and metabolic genes. The majority of these genes, including several conserved, but previously uncharacterized ones, are potentially involved in different aspects of the development or function of the long cilia of the apical organ. To demonstrate the utility of this gene set for comparative analyses, we further analysed the expression of a subset of previously uncharacterized putative orthologs in sea urchin larvae and detected expression for twelve out of eighteen of them in the apical domain. Our study provides a molecular characterization of the apical organ of Nematostella and represents an informative tool for future studies addressing the development, function and evolutionary history of apical organ cells. PMID:25478911

  5. Constraint and Contingency in Multifunctional Gene Regulatory Circuits

    PubMed Central

    Payne, Joshua L.; Wagner, Andreas

    2013-01-01

    Gene regulatory circuits drive the development, physiology, and behavior of organisms from bacteria to humans. The phenotypes or functions of such circuits are embodied in the gene expression patterns they form. Regulatory circuits are typically multifunctional, forming distinct gene expression patterns in different embryonic stages, tissues, or physiological states. Any one circuit with a single function can be realized by many different regulatory genotypes. Multifunctionality presumably constrains this number, but we do not know to what extent. We here exhaustively characterize a genotype space harboring millions of model regulatory circuits and all their possible functions. As a circuit's number of functions increases, the number of genotypes with a given number of functions decreases exponentially but can remain very large for a modest number of functions. However, the sets of circuits that can form any one set of functions becomes increasingly fragmented. As a result, historical contingency becomes widespread in circuits with many functions. Whether a circuit can acquire an additional function in the course of its evolution becomes increasingly dependent on the function it already has. Circuits with many functions also become increasingly brittle and sensitive to mutation. These observations are generic properties of a broad class of circuits and independent of any one circuit genotype or phenotype. PMID:23762020

  6. Identifying Novel Helix–Loop–Helix Genes in Caenorhabditis elegans through a Classroom Demonstration of Functional Genomics

    PubMed Central

    Griffin, Vernetta; McMiller, Tracee; Jones, Erika; Johnson, Casonya M.

    2003-01-01

    A 14-week, undergraduate-level Genetics and Population Biology course at Morgan State University was modified to include a demonstration of functional genomics in the research laboratory. Students performed a rudimentary sequence analysis of the Caenorhabditis elegans genome and further characterized three sequences that were predicted to encode helix–loop–helix proteins. Students then used reverse transcription–polymerase chain reaction to determine which of the three genes is normally expressed in C. elegans. At the end of this laboratory activity, students were 1) to demonstrate a rudimentary knowledge of bioinformatics, including the ability to differentiate between “having” a gene and “expressing” a gene, and 2) to understand basic approaches to functional genomics, including one specific technique for assaying for gene expression. It was also anticipated that students would increase their skills at effectively communicating their research activities through written and/or oral presentation. This article describes the laboratory activity and the assessment of the effectiveness of the activity. PMID:12822036

  7. Discovering and understanding oncogenic gene fusions through data intensive computational approaches

    PubMed Central

    Latysheva, Natasha S.; Babu, M. Madan

    2016-01-01

    Abstract Although gene fusions have been recognized as important drivers of cancer for decades, our understanding of the prevalence and function of gene fusions has been revolutionized by the rise of next-generation sequencing, advances in bioinformatics theory and an increasing capacity for large-scale computational biology. The computational work on gene fusions has been vastly diverse, and the present state of the literature is fragmented. It will be fruitful to merge three camps of gene fusion bioinformatics that appear to rarely cross over: (i) data-intensive computational work characterizing the molecular biology of gene fusions; (ii) development research on fusion detection tools, candidate fusion prioritization algorithms and dedicated fusion databases and (iii) clinical research that seeks to either therapeutically target fusion transcripts and proteins or leverages advances in detection tools to perform large-scale surveys of gene fusion landscapes in specific cancer types. In this review, we unify these different—yet highly complementary and symbiotic—approaches with the view that increased synergy will catalyze advancements in gene fusion identification, characterization and significance evaluation. PMID:27105842

  8. MsZEP, a novel zeaxanthin epoxidase gene from alfalfa (Medicago sativa), confers drought and salt tolerance in transgenic tobacco.

    PubMed

    Zhang, Zhiqiang; Wang, Yafang; Chang, Leqin; Zhang, Tong; An, Jie; Liu, Yushi; Cao, Yuman; Zhao, Xia; Sha, Xuyang; Hu, Tianming; Yang, Peizhi

    2016-02-01

    The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.

  9. Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans

    PubMed Central

    2013-01-01

    Background Hair is one of the main distinguishing characteristics of mammals and it has many important biological functions. Cetaceans originated from terrestrial mammals and they have evolved a series of adaptations to aquatic environments, which are of evolutionary significance. However, the molecular mechanisms underlying their aquatic adaptations have not been well explored. This study provided insights into the evolution of hair loss during the transition from land to water by investigating and comparing two essential regulators of hair follicle development and hair follicle cycling, i.e., the Hairless (Hr) and FGF5 genes, in representative cetaceans and their terrestrial relatives. Results The full open reading frame sequences of the Hr and FGF5 genes were characterized in seven cetaceans. The sequence characteristics and evolutionary analyses suggested the functional loss of the Hr gene in cetaceans, which supports the loss of hair during their full adaptation to aquatic habitats. By contrast, positive selection for the FGF5 gene was found in cetaceans where a series of positively selected amino acid residues were identified. Conclusions This is the first study to investigate the molecular basis of the hair loss in cetaceans. Our investigation of Hr and FGF5, two indispensable regulators of the hair cycle, provide some new insights into the molecular basis of hair loss in cetaceans. The results suggest that positive selection for the FGF5 gene might have promoted the termination of hair growth and early entry into the catagen stage of hair follicle cycling. Consequently, the hair follicle cycle was disrupted and the hair was lost completely due to the loss of the Hr gene function in cetaceans. This suggests that cetaceans have evolved an effective and complex mechanism for hair loss. PMID:23394579

  10. Isolation and Molecular Characterization of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in Hevea brasiliensis

    PubMed Central

    Zhu, Jia-Hong; Xu, Jing; Chang, Wen-Jun; Zhang, Zhi-Li

    2015-01-01

    Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1–7) of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment.These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production. PMID:25690030

  11. How Artificial Intelligence Can Improve Our Understanding of the Genes Associated with Endometriosis: Natural Language Processing of the PubMed Database

    PubMed Central

    Mashiach, R.; Cohen, S.; Kedem, A.; Baron, A.; Zajicek, M.; Feldman, I.; Seidman, D.; Soriano, D.

    2018-01-01

    Endometriosis is a disease characterized by the development of endometrial tissue outside the uterus, but its cause remains largely unknown. Numerous genes have been studied and proposed to help explain its pathogenesis. However, the large number of these candidate genes has made functional validation through experimental methodologies nearly impossible. Computational methods could provide a useful alternative for prioritizing those most likely to be susceptibility genes. Using artificial intelligence applied to text mining, this study analyzed the genes involved in the pathogenesis, development, and progression of endometriosis. The data extraction by text mining of the endometriosis-related genes in the PubMed database was based on natural language processing, and the data were filtered to remove false positives. Using data from the text mining and gene network information as input for the web-based tool, 15,207 endometriosis-related genes were ranked according to their score in the database. Characterization of the filtered gene set through gene ontology, pathway, and network analysis provided information about the numerous mechanisms hypothesized to be responsible for the establishment of ectopic endometrial tissue, as well as the migration, implantation, survival, and proliferation of ectopic endometrial cells. Finally, the human genome was scanned through various databases using filtered genes as a seed to determine novel genes that might also be involved in the pathogenesis of endometriosis but which have not yet been characterized. These genes could be promising candidates to serve as useful diagnostic biomarkers and therapeutic targets in the management of endometriosis. PMID:29750165

  12. How Artificial Intelligence Can Improve Our Understanding of the Genes Associated with Endometriosis: Natural Language Processing of the PubMed Database.

    PubMed

    Bouaziz, J; Mashiach, R; Cohen, S; Kedem, A; Baron, A; Zajicek, M; Feldman, I; Seidman, D; Soriano, D

    2018-01-01

    Endometriosis is a disease characterized by the development of endometrial tissue outside the uterus, but its cause remains largely unknown. Numerous genes have been studied and proposed to help explain its pathogenesis. However, the large number of these candidate genes has made functional validation through experimental methodologies nearly impossible. Computational methods could provide a useful alternative for prioritizing those most likely to be susceptibility genes. Using artificial intelligence applied to text mining, this study analyzed the genes involved in the pathogenesis, development, and progression of endometriosis. The data extraction by text mining of the endometriosis-related genes in the PubMed database was based on natural language processing, and the data were filtered to remove false positives. Using data from the text mining and gene network information as input for the web-based tool, 15,207 endometriosis-related genes were ranked according to their score in the database. Characterization of the filtered gene set through gene ontology, pathway, and network analysis provided information about the numerous mechanisms hypothesized to be responsible for the establishment of ectopic endometrial tissue, as well as the migration, implantation, survival, and proliferation of ectopic endometrial cells. Finally, the human genome was scanned through various databases using filtered genes as a seed to determine novel genes that might also be involved in the pathogenesis of endometriosis but which have not yet been characterized. These genes could be promising candidates to serve as useful diagnostic biomarkers and therapeutic targets in the management of endometriosis.

  13. Well-characterized sequence features of eukaryote genomes and implications for ab initio gene prediction.

    PubMed

    Huang, Ying; Chen, Shi-Yi; Deng, Feilong

    2016-01-01

    In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.

  14. Phylogenomic detection and functional prediction of genes potentially important for plant meiosis.

    PubMed

    Zhang, Luoyan; Kong, Hongzhi; Ma, Hong; Yang, Ji

    2018-02-15

    Meiosis is a specialized type of cell division necessary for sexual reproduction in eukaryotes. A better understanding of the cytological procedures of meiosis has been achieved by comprehensive cytogenetic studies in plants, while the genetic mechanisms regulating meiotic progression remain incompletely understood. The increasing accumulation of complete genome sequences and large-scale gene expression datasets has provided a powerful resource for phylogenomic inference and unsupervised identification of genes involved in plant meiosis. By integrating sequence homology and expression data, 164, 131, 124 and 162 genes potentially important for meiosis were identified in the genomes of Arabidopsis thaliana, Oryza sativa, Selaginella moellendorffii and Pogonatum aloides, respectively. The predicted genes were assigned to 45 meiotic GO terms, and their functions were related to different processes occurring during meiosis in various organisms. Most of the predicted meiotic genes underwent lineage-specific duplication events during plant evolution, with about 30% of the predicted genes retaining only a single copy in higher plant genomes. The results of this study provided clues to design experiments for better functional characterization of meiotic genes in plants, promoting the phylogenomic approach to the evolutionary dynamics of the plant meiotic machineries. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures.

    PubMed

    Raherison, Elie S M; Giguère, Isabelle; Caron, Sébastien; Lamara, Mebarek; MacKay, John J

    2015-07-01

    Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. FamNet: A Framework to Identify Multiplied Modules Driving Pathway Expansion in Plants1

    PubMed Central

    Tohge, Takayuki; Klie, Sebastian; Fernie, Alisdair R.

    2016-01-01

    Gene duplications generate new genes that can acquire similar but often diversified functions. Recent studies of gene coexpression networks have indicated that, not only genes, but also pathways can be multiplied and diversified to perform related functions in different parts of an organism. Identification of such diversified pathways, or modules, is needed to expand our knowledge of biological processes in plants and to understand how biological functions evolve. However, systematic explorations of modules remain scarce, and no user-friendly platform to identify them exists. We have established a statistical framework to identify modules and show that approximately one-third of the genes of a plant’s genome participate in hundreds of multiplied modules. Using this framework as a basis, we implemented a platform that can explore and visualize multiplied modules in coexpression networks of eight plant species. To validate the usefulness of the platform, we identified and functionally characterized pollen- and root-specific cell wall modules that multiplied to confer tip growth in pollen tubes and root hairs, respectively. Furthermore, we identified multiplied modules involved in secondary metabolite synthesis and corroborated them by metabolite profiling of tobacco (Nicotiana tabacum) tissues. The interactive platform, referred to as FamNet, is available at http://www.gene2function.de/famnet.html. PMID:26754669

  17. Systematic discovery of novel ciliary genes through functional genomics in the zebrafish

    PubMed Central

    Choksi, Semil P.; Babu, Deepak; Lau, Doreen; Yu, Xianwen; Roy, Sudipto

    2014-01-01

    Cilia are microtubule-based hair-like organelles that play many important roles in development and physiology, and are implicated in a rapidly expanding spectrum of human diseases, collectively termed ciliopathies. Primary ciliary dyskinesia (PCD), one of the most prevalent of ciliopathies, arises from abnormalities in the differentiation or motility of the motile cilia. Despite their biomedical importance, a methodical functional screen for ciliary genes has not been carried out in any vertebrate at the organismal level. We sought to systematically discover novel motile cilia genes by identifying the genes induced by Foxj1, a winged-helix transcription factor that has an evolutionarily conserved role as the master regulator of motile cilia biogenesis. Unexpectedly, we find that the majority of the Foxj1-induced genes have not been associated with cilia before. To characterize these novel putative ciliary genes, we subjected 50 randomly selected candidates to a systematic functional phenotypic screen in zebrafish embryos. Remarkably, we find that over 60% are required for ciliary differentiation or function, whereas 30% of the proteins encoded by these genes localize to motile cilia. We also show that these genes regulate the proper differentiation and beating of motile cilia. This collection of Foxj1-induced genes will be invaluable for furthering our understanding of ciliary biology, and in the identification of new mutations underlying ciliary disorders in humans. PMID:25139857

  18. Resolving the homology—function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology

    PubMed Central

    Klinger, Christen M.; Ramirez-Macias, Inmaculada; Herman, Emily K.; Turkewitz, Aaron P.; Field, Mark C.; Dacks, Joel B.

    2016-01-01

    With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage. PMID:27444378

  19. Genome-wide identification and characterization of the NF-Y gene family in grape (vitis vinifera L.).

    PubMed

    Ren, Chong; Zhang, Zhan; Wang, Yi; Li, Shaohua; Liang, Zhenchang

    2016-08-11

    Nuclear factor Y (NF-Y) transcription factor is composed of three distinct subunits: NF-YA, NF-YB and NF-YC. Many members of NF-Y family have been reported to be key regulators in plant development, phytohormone signaling and drought tolerance. However, the function of the NF-Y family is less known in grape (Vitis vinifera L.). A total of 34 grape NF-Y genes that distributed unevenly on grape (V. vinifera) chromosomes were identified in this study. Phylogenetic analysis was performed to predict functional similarities between Arabidopsis thaliana and grape NF-Y genes. Comparison of the structures of grape NF-Y genes (VvNF-Ys) revealed their functional conservation and alteration. Furthermore, we investigated the expression profiles of VvNF-Ys in response to various stresses, phytohormone treatments, and in leaves and grape berries with various sugar contents at different developmental stages. The relationship between VvNF-Y transcript levels and sugar content was examined to select candidates for exogenous sugar treatments. Quantitative real-time PCR (qPCR) indicated that many VvNF-Ys responded to different sugar stimuli with variations in transcript abundance. qPCR and publicly available microarray data suggest that VvNF-Ys exhibit distinct expression patterns in different grape organs and developmental stages, and a number of VvNF-Ys may participate in responses to multiple abiotic and biotic stresses, phytohormone treatments and sugar accumulation or metabolism. In this study, we characterized 34 VvNF-Ys based on their distributions on chromosomes, gene structures, phylogenetic relationship with Arabidopsis NF-Y genes, and their expression patterns. The potential roles of VvNF-Ys in sugar accumulation or metabolism were also investigated. Altogether, the data provide significant insights on VvNF-Ys, and lay foundations for further functional studies of NF-Y genes in grape.

  20. Molecular analysis of the glucocerebrosidase gene locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winfield, S.L.; Martin, B.M.; Fandino, A.

    1994-09-01

    Gaucher disease is due to a deficiency in the activity of the lysosomal enzyme glucocerebrosidase. Both the functional gene for this enzyme and a pseudogene are located in close proximity on chromosome 1q21. Analysis of the mutations present in patient samples has suggested interaction between the functional gene and the pseudogene in the origin of mutant genotypes. To investigate the involvement of regions flanking the functional gene and pseudogene in the origin of mutations found in Gaucher disease, a YAC clone containing DNA from this locus has been subcloned and characterized. The original YAC containing {approximately}360 kb was truncated withmore » the use of fragmentation plasmids to about 85 kb. A lambda library derived from this YAC was screened to obtain clones containing glucocerebrosidase sequences. PCR amplification was used to identify subclones containing 5{prime}, central, or 3{prime} sequences of the functional gene or of the pseudogene. Clones spanning the entire distance from the last exon of the functional gene to intron 1 of the pseudogene, the 5{prime} end of the functional gene and 16 kb of 5{prime} flanking region and approximately 15 kb of 3{prime} flanking region of the pseudogene were sequenced. Sequence data from 48 kb of intergenic and flanking regions of the glucocerebrosidase gene and its pseudogene has been generated. A large number of Alu sequences and several simple repeats have been found. Two of these repeats exhibit fragment length polymorphism. There is almost 100% homology between the 3{prime} flanking regions of the functional gene and the pseudogene, extending to about 4 kb past the termination codons. A much lower degree of homology is observed in the 5{prime} flanking region. Patient samples are currently being screened for polymorphisms in these flanking regions.« less

  1. Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes.

    PubMed

    Hao, Weilong; Palmer, Jeffrey D

    2009-09-29

    The mitochondrial genomes of flowering plants possess a promiscuous proclivity for taking up sequences from the chloroplast genome. All characterized chloroplast integrants exist apart from native mitochondrial genes, and only a few, involving chloroplast tRNA genes that have functionally supplanted their mitochondrial counterparts, appear to be of functional consequence. We developed a novel computational approach to search for homologous recombination (gene conversion) in a large number of sequences and applied it to 22 mitochondrial and chloroplast gene pairs, which last shared common ancestry some 2 billion years ago. We found evidence of recurrent conversion of short patches of mitochondrial genes by chloroplast homologs during angiosperm evolution, but no evidence of gene conversion in the opposite direction. All 9 putative conversion events involve the atp1/atpA gene encoding the alpha subunit of ATP synthase, which is unusually well conserved between the 2 organelles and the only shared gene that is widely sequenced across plant mitochondria. Moreover, all conversions were limited to the 2 regions of greatest nucleotide and amino acid conservation of atp1/atpA. These observations probably reflect constraints operating on both the occurrence and fixation of recombination between ancient homologs. These findings indicate that recombination between anciently related sequences is more frequent than previously appreciated and creates functional mitochondrial genes of chimeric origin. These results also have implications for the widespread use of mitochondrial atp1 in phylogeny reconstruction.

  2. Cloning and characterization of the mouse XPAC gene.

    PubMed Central

    van Oostrom, C T; de Vries, A; Verbeek, S J; van Kreijl, C F; van Steeg, H

    1994-01-01

    Xeroderma Pigmentosum is a human disease, which is, among others, characterized by a high incidence of (sunlight induced) skin cancer, due to a defect in nucleotide excision repair (NER). The human DNA repair gene XPAC corrects this defect in cells isolated from Xeroderma Pigmentosum complementation group A (XP-A) patients. To enable the development of a transgenic mouse model for XP-A by gene targeting in embryonic stem cells, we cloned and characterized the mouse homologue of the XPAC gene. The mouse XPAC gene was found to consist of 6 exons, spanning approximately 21 kb. The nucleotide sequence of the exons is identical to that of the also cloned the mouse XPAC cDNA. Furthermore, the deduced amino acid sequence of the XPAC protein is the same as the one published previously by Tanaka et al. From CAT assay analysis, the promoter of the XPAC gene appeared to be located within 313 bp upstream of the assumed transcriptional start site. Like the promoters of other eukaryotic DNA repair genes (i.e. ERCC-1 and XPBC/ERCC-3), the mouse XPAC promoter region lacks classical promoter elements like TATA-, GC- and CAAT boxes. However, it contains an unique polypyrimidine-rich box, which is so far only found in genes encoding DNA repair enzymes. The function of this box in the regulation of transcription is still unclear. PMID:8127648

  3. Molecular identification of arsenic-resistant estuarine bacteria and characterization of their ars genotype.

    PubMed

    Sri Lakshmi Sunita, M; Prashant, S; Bramha Chari, P V; Nageswara Rao, S; Balaravi, Padma; Kavi Kishor, P B

    2012-01-01

    In the present study, 44 arsenic-resistant bacteria were isolated through serial dilutions on agar plate with concentrations ≥0.05 mM of sodium arsenite and ≥10 mM of sodium arsenate from Mandovi and Zuari--estuarine water systems. The ars genotype characterization in 36 bacterial isolates (resistant to 100 mM of sodium arsenate) revealed that only 17 isolates harboured the arsA (ATPase), B (arsenite permease) and C (arsenate reductase) genes on the plasmid DNA. The arsA, B and C genes were individually detected using PCR in 16, 9 and 13 bacterial isolates respectively. Molecular identification of the 17 isolates bearing the ars genotype was carried using 16S rDNA sequencing. A 1300 bp full length arsB gene encoding arsenite efflux pump and a 409 bp fragment of arsC gene coding for arsenate reductase were isolated from the genera Halomonas and Acinetobacter. Phylogenetic analysis of arsB and arsC genes indicated their close genetic relationship with plasmid borne ars genes of E. coli and arsenate reductase of plant origin. The putative arsenate reductase gene isolated from Acinetobacter species complemented arsenate resistance in E. coli WC3110 and JM109 validating its function. This study dealing with isolation of native arsenic-resistant bacteria and characterization of their ars genes might be useful to develop efficient arsenic detoxification strategies for arsenic contaminated aquifers.

  4. Functional characterization of the turkey macrophage migration inhibitory factor

    USDA-ARS?s Scientific Manuscript database

    Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characte...

  5. Genome-wide characterization of Mediator recruitment, function, and regulation.

    PubMed

    Grünberg, Sebastian; Zentner, Gabriel E

    2017-05-27

    Mediator is a conserved and essential coactivator complex broadly required for RNA polymerase II (RNAPII) transcription. Recent genome-wide studies of Mediator binding in budding yeast have revealed new insights into the functions of this critical complex and raised new questions about its role in the regulation of gene expression.

  6. Structural and Functional Annotation of the Porcine Immunome

    USDA-ARS?s Scientific Manuscript database

    The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. H...

  7. Characterization of the telomere complex, TERF1 and TERF2 genes in muntjac species with fusion karyotypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, Nils; Scherthan, Harry

    The telomere binding proteins TRF1 and TRF2 maintain and protect chromosome ends and confer karyotypic stability. Chromosome evolution in the genus Muntiacus is characterized by numerous tandem (end-to-end) fusions. To study TRF1 and TRF2 telomere binding proteins in Muntiacus species, we isolated and characterized the TERF1 and -2 genes from Indian muntjac (Muntiacus muntjak vaginalis; 2n = 6 female) and from Chinese muntjac (Muntiacus reveesi; 2n = 46). Expression analysis revealed that both genes are ubiquitously expressed and sequence analysis identified several transcript variants of both TERF genes. Control experiments disclosed a novel testis-specific splice variant of TERF1 in humanmore » testes. Amino acid sequence comparisons demonstrate that Muntiacus TRF1 and in particular TRF2 are highly conserved between muntjac and human. In vivo TRF2-GFP and immuno-staining studies in muntjac cell lines revealed telomeric TRF2 localization, while deletion of the DNA binding domain abrogated this localization, suggesting muntjac TRF2 represents a functional telomere protein. Finally, expression analysis of a set of telomere-related genes revealed their presence in muntjac fibroblasts and testis tissue, which suggests the presence of a conserved telomere complex in muntjacs. However, a deviation from the common theme was noted for the TERT gene, encoding the catalytic subunit of telomerase; TERT expression could not be detected in Indian or Chinese muntjac cDNA or genomic DNA using a series of conserved primers, while TRAP assay revealed functional telomerase in Chinese muntjac testis tissues. This suggests muntjacs may harbor a diverged telomerase sequence.« less

  8. Functional characterization of mutations in the myosin Vb gene associated with microvillus inclusion disease

    PubMed Central

    Szperl, Agata M.; Golachowska, Magdalena R.; Bruinenberg, Marcel; Prekeris, Rytis; Thunnissen, Andy-Mark W. H.; Karrenbeld, Arend; Dijkstra, Gerard; Hoekstra, Dick; Mercer, David; Ksiazyk, Janusz; Wijmenga, Cisca; Wapenaar, Martin C.; Rings, Edmond H. H. M.; van IJzendoorn, Sven C. D.

    2010-01-01

    Objectives Microvillus inclusion disease (MVID) is a rare autosomal recessive enteropathy characterized by intractable diarrhea and malabsorption. Recently, various MYO5B gene mutations have been identified in MVID patients. Interestingly, several MVID patients showed only a MYO5B mutation in one allele (heterozygous) or no mutations in the MYO5B gene, illustrating the need to further functionally characterize the cell biological effects of the MYO5B mutations. Methods The genomic DNA of nine patients diagnosed with microvillus inclusion disease was screened for MYO5B mutations, and qPCR and immunohistochemistry on the material of two patients was performed to investigate resultant cellular consequences. Results We demonstrate for the first time that MYO5B mutations can be correlated with altered myosin Vb mRNA expression and with an aberrant subcellular distribution of the myosin Vb protein. Moreover, we demonstrate that the typical and myosin Vb–controlled accumulation of rab11a-and FIP5-positive recycling endosomes in the apical cytoplasm of the cells is abolished in MVID enterocytes, which is indicative for altered myosin Vb function. Also, we report 8 novel MYO5B mutations in 9 MVID patients of various etnic backgrounds, including compound heterozygous mutations. Conclusions Our functional analysis indicate that MYO5B mutations can be correlated with an aberrant subcellular distribution of the myosin Vb protein and apical recycling endosomes which, together with the additional compound heterozygous mutations, significantly strengthen the link between MYO5B and MVID. PMID:21206382

  9. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.

    PubMed

    Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

    2012-06-01

    The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Gene stage-specific expression in the microenvironment of pediatric myelodysplastic syndromes.

    PubMed

    Roela, Rosimeire A; Carraro, Dirce M; Brentani, Helena P; Kaiano, Jane H L; Simão, Daniel F; Guarnieiro, Roberto; Lopes, Luiz Fernando; Borojevic, Radovan; Brentani, M Mitzi

    2007-05-01

    Using cDNA microarray assays we have observed a clear difference in the gene expression pattern between bone marrow stromal cells obtained from healthy children (CT) and from pediatric patients with either myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) associated with MDS (MDS-AML). The global gene function profiling analysis indicated that in the pediatric MDS microenvironment the disease stages may be characterized mainly by underexpression of genes associated with biological processes such as transport. Furthermore, a subset of downregulated genes related to endocytosis and protein secretion was able to discriminate MDS from MDS-AML.

  11. CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana.

    PubMed

    Chen, Jingjing; Lai, Yiling; Wang, Lili; Zhai, Suzhen; Zou, Gen; Zhou, Zhihua; Cui, Chunlai; Wang, Sibao

    2017-04-03

    Beauveria bassiana is an environmentally friendly alternative to chemical insecticides against various agricultural insect pests and vectors of human diseases. However, its application has been limited due to slow kill and sensitivity to abiotic stresses. Understanding of the molecular pathogenesis and physiological characteristics would facilitate improvement of the fungal performance. Loss-of-function mutagenesis is the most powerful tool to characterize gene functions, but it is hampered by the low rate of homologous recombination and the limited availability of selectable markers. Here, by combining the use of uridine auxotrophy as recipient and donor DNAs harboring auxotrophic complementation gene ura5 as a selectable marker with the blastospore-based transformation system, we established a highly efficient, low false-positive background and cost-effective CRISPR/Cas9-mediated gene editing system in B. bassiana. This system has been demonstrated as a simple and powerful tool for targeted gene knock-out and/or knock-in in B. bassiana in a single gene disruption. We further demonstrated that our system allows simultaneous disruption of multiple genes via homology-directed repair in a single transformation. This technology will allow us to study functionally redundant genes and holds significant potential to greatly accelerate functional genomics studies of B. bassiana.

  12. CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana

    PubMed Central

    Chen, Jingjing; Lai, Yiling; Wang, Lili; Zhai, Suzhen; Zou, Gen; Zhou, Zhihua; Cui, Chunlai; Wang, Sibao

    2017-01-01

    Beauveria bassiana is an environmentally friendly alternative to chemical insecticides against various agricultural insect pests and vectors of human diseases. However, its application has been limited due to slow kill and sensitivity to abiotic stresses. Understanding of the molecular pathogenesis and physiological characteristics would facilitate improvement of the fungal performance. Loss-of-function mutagenesis is the most powerful tool to characterize gene functions, but it is hampered by the low rate of homologous recombination and the limited availability of selectable markers. Here, by combining the use of uridine auxotrophy as recipient and donor DNAs harboring auxotrophic complementation gene ura5 as a selectable marker with the blastospore-based transformation system, we established a highly efficient, low false-positive background and cost-effective CRISPR/Cas9-mediated gene editing system in B. bassiana. This system has been demonstrated as a simple and powerful tool for targeted gene knock-out and/or knock-in in B. bassiana in a single gene disruption. We further demonstrated that our system allows simultaneous disruption of multiple genes via homology-directed repair in a single transformation. This technology will allow us to study functionally redundant genes and holds significant potential to greatly accelerate functional genomics studies of B. bassiana. PMID:28368054

  13. Genetic ablation of P65 subunit of NF-κB in mdx mice to improve muscle physiological function.

    PubMed

    Yin, Xi; Tang, Ying; Li, Jian; Dzuricky, Anna T; Pu, Chuanqiang; Fu, Freddie; Wang, Bing

    2017-10-01

    Duchenne muscular dystrophy (DMD) is a genetic muscle disease characterized by dystrophin deficiency. Beyond gene replacement, the question of whether ablation of the p65 gene of nuclear factor-kappa B (NF-κB) in DMD can improve muscle physiology function is unknown. In this study, we investigated muscle physiological improvement in mdx mice (DMD model) with a genetic reduction of NF-κB. Muscle physiological function and histology were studied in 2-month-old mdx/p65 +/- , wild-type, mdx, and human minidystrophin gene transgenic mdx (TghΔDys/mdx) mice. Improved muscle physiological function was found in mdx/p65 +/- mice when compared with mdx mice; however, it was similar to TghΔDys/mdx mice. The results indicate that genetic reduction of p65 levels diminished chronic inflammation in dystrophic muscle, thus leading to amelioration of muscle pathology and improved muscle physiological function. The results show that inhibition of NF-κB may be a promising therapy when combined with gene therapy for DMD. Muscle Nerve 56: 759-767, 2017. © 2016 Wiley Periodicals, Inc.

  14. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize.

    PubMed

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize.

  15. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    PubMed Central

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  16. Functional markers based molecular characterization and cloning of resistance gene analogs encoding NBS-LRR disease resistance proteins in finger millet (Eleusine coracana).

    PubMed

    Panwar, Preety; Jha, Anand Kumar; Pandey, P K; Gupta, Arun K; Kumar, Anil

    2011-06-01

    Magnaporthe grisea, the blast fungus is one of the main pathological threats to finger millet crop worldwide. A systematic search for the blast resistance gene analogs was carried out, using functional molecular markers. Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encodes nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from Eleusine coracana. Genomic DNA sequences sharing homology with NBS region of resistance gene analogs were isolated and characterized from resistant genotypes of finger millet using PCR based approach with primers designed from conserved regions of NBS domain. Attempts were made to identify molecular markers linked to the resistance gene and to differentiate the resistant bulk from the susceptible bulk. A total of 9 NBS-LRR and 11 EST-SSR markers generated 75.6 and 73.5% polymorphism respectively amongst 73 finger millet genotypes. NBS-5, NBS-9, NBS-3 and EST-SSR-04 markers showed a clear polymorphism which differentiated resistant genotypes from susceptible genotypes. By comparing the banding pattern of different resistant and susceptible genotypes, five DNA amplifications of NBS and EST-SSR primers (NBS-05(504,) NBS-09(711), NBS-07(688), NBS-03(509) and EST-SSR-04(241)) were identified as markers for the blast resistance in resistant genotypes. Principal coordinate plot and UPGMA analysis formed similar groups of the genotypes and placed most of the resistant genotypes together showing a high level of genetic relatedness and the susceptible genotypes were placed in different groups on the basis of differential disease score. Our results provided a clue for the cloning of finger millet blast resistance gene analogs which not only facilitate the process of plant breeding but also molecular characterization of blast resistance gene analogs from Eleusine coracana.

  17. A Rapid CRISPR/Cas-based Mutagenesis Assay in Zebrafish for Identification of Genes Involved in Thyroid Morphogenesis and Function.

    PubMed

    Trubiroha, A; Gillotay, P; Giusti, N; Gacquer, D; Libert, F; Lefort, A; Haerlingen, B; De Deken, X; Opitz, R; Costagliola, S

    2018-04-04

    The foregut endoderm gives rise to several organs including liver, pancreas, lung and thyroid with important roles in human physiology. Understanding which genes and signalling pathways regulate their development is crucial for understanding developmental disorders as well as diseases in adulthood. We exploited unique advantages of the zebrafish model to develop a rapid and scalable CRISPR/Cas-based mutagenesis strategy aiming at the identification of genes involved in morphogenesis and function of the thyroid. Core elements of the mutagenesis assay comprise bi-allelic gene invalidation in somatic mutants, a non-invasive monitoring of thyroid development in live transgenic fish, complementary analyses of thyroid function in fixed specimens and quantitative analyses of mutagenesis efficiency by Illumina sequencing of individual fish. We successfully validated our mutagenesis-phenotyping strategy in experiments targeting genes with known functions in early thyroid morphogenesis (pax2a, nkx2.4b) and thyroid functional differentiation (duox, duoxa, tshr). We also demonstrate that duox and duoxa crispants phenocopy thyroid phenotypes previously observed in human patients with bi-allelic DUOX2 and DUOXA2 mutations. The proposed combination of efficient mutagenesis protocols, rapid non-invasive phenotyping and sensitive genotyping holds great potential to systematically characterize the function of larger candidate gene panels during thyroid development and is applicable to other organs and tissues.

  18. Genetic Basis of Melanin Pigmentation in Butterfly Wings.

    PubMed

    Zhang, Linlin; Martin, Arnaud; Perry, Michael W; van der Burg, Karin R L; Matsuoka, Yuji; Monteiro, Antónia; Reed, Robert D

    2017-04-01

    Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale , Ddc , and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d , ebony , and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway. Copyright © 2017 by the Genetics Society of America.

  19. Evidence-based gene models for structural and functional annotations of the oil palm genome.

    PubMed

    Chan, Kuang-Lim; Tatarinova, Tatiana V; Rosli, Rozana; Amiruddin, Nadzirah; Azizi, Norazah; Halim, Mohd Amin Ab; Sanusi, Nik Shazana Nik Mohd; Jayanthi, Nagappan; Ponomarenko, Petr; Triska, Martin; Solovyev, Victor; Firdaus-Raih, Mohd; Sambanthamurthi, Ravigadevi; Murphy, Denis; Low, Eng-Ti Leslie

    2017-09-08

    Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC 3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC 3 -rich genes (GC 3  ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC 3 -rich and intronless), as well as those associated with important functions, such as FA biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to gene prediction and developed a computational framework for combining multiple genome annotations. These results, available in the oil palm annotation database ( http://palmxplore.mpob.gov.my ), will provide important resources for studies on the genomes of oil palm and related crops. This article was reviewed by Alexander Kel, Igor Rogozin, and Vladimir A. Kuznetsov.

  20. Characterization of HKE2: an ancient antigen encoded in the major histocompatibility complex.

    PubMed

    Ostrov, D A; Barnes, C L; Smith, L E; Binns, S; Brusko, T M; Brown, A C; Quint, P S; Litherland, S A; Roopenian, D C; Iczkowski, K A

    2007-02-01

    Genes at the centromeric end of the human leukocyte antigen region influence adaptive autoimmune diseases and cancer. In this study, we characterized protein expression of HKE2, a gene located in the centromeric portion of the class II region of the major histocompatibility complex encoding subunit 6 of prefoldin. Immunohistochemical analysis using an anti-HKE2 antibody indicated that HKE2 protein expression is dramatically upregulated as a consequence of activation. In a tissue microarray and in several tumors, HKE2 was overexpressed in certain cancers compared with normal counterparts. The localization of the HKE2 gene to the class II region, its cytoplasmic expression and putative protein-binding domain suggest that HKE2 may function in adaptive immunity and cancer.

  1. Gene-network inference by message passing

    NASA Astrophysics Data System (ADS)

    Braunstein, A.; Pagnani, A.; Weigt, M.; Zecchina, R.

    2008-01-01

    The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.

  2. Identification of hub subnetwork based on topological features of genes in breast cancer

    PubMed Central

    ZHUANG, DA-YONG; JIANG, LI; HE, QING-QING; ZHOU, PENG; YUE, TAO

    2015-01-01

    The aim of this study was to provide functional insight into the identification of hub subnetworks by aggregating the behavior of genes connected in a protein-protein interaction (PPI) network. We applied a protein network-based approach to identify subnetworks which may provide new insight into the functions of pathways involved in breast cancer rather than individual genes. Five groups of breast cancer data were downloaded and analyzed from the Gene Expression Omnibus (GEO) database of high-throughput gene expression data to identify gene signatures using the genome-wide global significance (GWGS) method. A PPI network was constructed using Cytoscape and clusters that focused on highly connected nodes were obtained using the molecular complex detection (MCODE) clustering algorithm. Pathway analysis was performed to assess the functional relevance of selected gene signatures based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Topological centrality was used to characterize the biological importance of gene signatures, pathways and clusters. The results revealed that, cluster1, as well as the cell cycle and oocyte meiosis pathways were significant subnetworks in the analysis of degree and other centralities, in which hub nodes mostly distributed. The most important hub nodes, with top ranked centrality, were also similar with the common genes from the above three subnetwork intersections, which was viewed as a hub subnetwork with more reproducible than individual critical genes selected without network information. This hub subnetwork attributed to the same biological process which was essential in the function of cell growth and death. This increased the accuracy of identifying gene interactions that took place within the same functional process and was potentially useful for the development of biomarkers and networks for breast cancer. PMID:25573623

  3. Identification and functional characterization of a solute carrier family 15, member 4 gene in Litopenaeus vannamei.

    PubMed

    Chen, Yong-Gui; Yuan, Kai; Zhang, Ze-Zhi; Yuan, Feng-Hua; Weng, Shao-Ping; Yue, Hai-Tao; He, Jian-Guo; Chen, Yi-Hong

    2016-04-01

    Innate immunity in shrimp is important in resisting bacterial infection. The NF-κB pathway is pivotal in such an immune response. This study cloned and functionally characterized the solute carrier family (SLC) 15 member A 4 (LvSLC15A4) gene in Litopenaeus vannamei. The open reading frame of LvSLC15A4 is 1, 902 bp long and encodes a putative 633-amino acid protein, which is localized in the plasma membrane and intracellular vesicular compartments. Results of the reporter gene assay showed that LvSLC15A4 upregulated NF-κB target genes, including the immediate-early gene 1 of white spot syndrome virus, as well as several antimicrobial peptide genes, such as pen4, CecA, AttA, and Mtk in S2 cells. Moreover, knocked-down expression of LvSLC15A4 reduced pen4 expression in L. vannamei. LvSLC15A4 down-regulation also increased the cumulative mortality of Vibrio parahemolyticus-infected L. vannamei. Furthermore, LvSLC15A4 expression was induced by unfolded protein response (UPR) in L. vannamei hematocytes. These results suggest that LvSLC15A4 participates in L. vannamei innate immunity via the NF-κB pathway and thus may be related to UPR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Identification of Differentially Expressed Genes Associated with Apple Fruit Ripening and Softening by Suppression Subtractive Hybridization

    PubMed Central

    Zhang, Zongying; Jiang, Shenghui; Wang, Nan; Li, Min; Ji, Xiaohao; Sun, Shasha; Liu, Jingxuan; Wang, Deyun; Xu, Haifeng; Qi, Sumin; Wu, Shujing; Fei, Zhangjun; Feng, Shouqian; Chen, Xuesen

    2015-01-01

    Apple is one of the most economically important horticultural fruit crops worldwide. It is critical to gain insights into fruit ripening and softening to improve apple fruit quality and extend shelf life. In this study, forward and reverse suppression subtractive hybridization libraries were generated from ‘Taishanzaoxia’ apple fruits sampled around the ethylene climacteric to isolate ripening- and softening-related genes. A set of 648 unigenes were derived from sequence alignment and cluster assembly of 918 expressed sequence tags. According to gene ontology functional classification, 390 out of 443 unigenes (88%) were assigned to the biological process category, 356 unigenes (80%) were classified in the molecular function category, and 381 unigenes (86%) were allocated to the cellular component category. A total of 26 unigenes differentially expressed during fruit development period were analyzed by quantitative RT-PCR. These genes were involved in cell wall modification, anthocyanin biosynthesis, aroma production, stress response, metabolism, transcription, or were non-annotated. Some genes associated with cell wall modification, anthocyanin biosynthesis and aroma production were up-regulated and significantly correlated with ethylene production, suggesting that fruit texture, coloration and aroma may be regulated by ethylene in ‘Taishanzaoxia’. Some of the identified unigenes associated with fruit ripening and softening have not been characterized in public databases. The results contribute to an improved characterization of changes in gene expression during apple fruit ripening and softening. PMID:26719904

  5. Association mapping of starch chain length distribution and amylose content in pea (Pisum sativum L.) using carbohydrate metabolism candidate genes.

    PubMed

    Carpenter, Margaret A; Shaw, Martin; Cooper, Rebecca D; Frew, Tonya J; Butler, Ruth C; Murray, Sarah R; Moya, Leire; Coyne, Clarice J; Timmerman-Vaughan, Gail M

    2017-08-01

    Although starch consists of large macromolecules composed of glucose units linked by α-1,4-glycosidic linkages with α-1,6-glycosidic branchpoints, variation in starch structural and functional properties is found both within and between species. Interest in starch genetics is based on the importance of starch in food and industrial processes, with the potential of genetics to provide novel starches. The starch metabolic pathway is complex but has been characterized in diverse plant species, including pea. To understand how allelic variation in the pea starch metabolic pathway affects starch structure and percent amylose, partial sequences of 25 candidate genes were characterized for polymorphisms using a panel of 92 diverse pea lines. Variation in the percent amylose composition of extracted seed starch and (amylopectin) chain length distribution, one measure of starch structure, were characterized for these lines. Association mapping was undertaken to identify polymorphisms associated with the variation in starch chain length distribution and percent amylose, using a mixed linear model that incorporated population structure and kinship. Associations were found for polymorphisms in seven candidate genes plus Mendel's r locus (which conditions the round versus wrinkled seed phenotype). The genes with associated polymorphisms are involved in the substrate supply, chain elongation and branching stages of the pea carbohydrate and starch metabolic pathways. The association of polymorphisms in carbohydrate and starch metabolic genes with variation in amylopectin chain length distribution and percent amylose may help to guide manipulation of pea seed starch structural and functional properties through plant breeding.

  6. Genetic alteration with variable intron/exon organization amongst five PI-homoeologous genes in Platanus acerifolia.

    PubMed

    Zhang, Jiaqi; Guo, Cong; Liu, Guofeng; Li, Zhineng; Li, Xiaomei; Bao, Manzhu

    2011-03-01

    Flower development has been extensively characterized in the model species Arabidopsis thaliana and Antirrhinum majus. However, there have been few studies in woody species. Here, we report the isolation and characterization of five PISTILLATA (PI) homoeologous genes (PaPI1-to-5) from the London Plane tree (Platanus acerifolia Willd). PaPI1 and PaPI2 show a similar genomic structure to other known PI homoeologs, but PaPI3/4/5 lack intron sequences. In addition, PaPI5 lacks the third, fourth and fifth exons which encode the K-domain. These altered gene copies may have originated as 'processed' retrogenes. PaPI2 appears micro-regulated by alternative splicing, displaying three splice forms (PaPI2a, PaPI2b and PaPI2c). RT-PCR analysis showed different expression profiles and transcript abundance for the five PaPI genes. PaPI transcripts encoding full-length polypeptides were expressed predominantly in male/female inflorescences and PaPI2a was the most abundant transcript (59%) indicating that PaPI2 may be the major functional PI-homoeolog in London Plane. Phenotypic characterization in a heterologous expression system demonstrated that the full-length PaPI product functions as a B class gene. By contrast the PaPI5 form, which lacks the K-domain, had no apparent effect on flower development. In vitro studies also demonstrated that the K-domain is required to form PaPI/PaAP3 heterodimers. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.

    PubMed

    Babcock, Joseph J; Li, Min

    2014-01-01

    The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.

  8. Functional Characterization of PhapLEAFY, a FLORICAULA/LEAFY Ortholog in Phalaenopsis aphrodite.

    PubMed

    Jang, Seonghoe

    2015-11-01

    The plant-specific transcription factor LEAFY (LFY) is considered to be a master regulator of flower development in the model plant, Arabidopsis. This protein plays a dual role in plant growth, integrating signals from the floral inductive pathways and acting as a floral meristem identity gene by activating genes for floral organ development. Although LFY occupies an important position in flower development, the functional divergence of LFY homologs has been demonstrated in several plants including monocots and gymnosperms. In particular, the functional roles of LFY genes from orchid species such as Phalaenopsis that contain unique floral morphologies with distinct expression patterns of floral organ identity genes remain elusive. Here, PhapLFY, an ortholog of Arabidopsis LFY from Phalaenopsis aphrodite subsp. formosana, a Taiwanese native monopodial orchid, was isolated and characterized through analyses of expression and protein activity. PhapLFY transcripts accumulated in the floral primordia of developing inflorescences, and the PhapLFY protein had transcriptional autoactivation activity forming as a homodimer. Furthermore, PhapLFY rescues the aberrant floral phenotypes of Arabidopsis lfy mutants. Overexpression of PhapLFY alone or together with PhapFT1, a P. aphrodite subsp. formosana homolog of Arabidopsis FLOWERING LOCUS T (FT) in rice, caused precocious heading. Consistently, a higher Chl content in the sepals and morphological changes in epidermal cells were observed in the floral organs of PhapLFY knock-down orchids generated by virus-induced gene silencing. Taken together, these results suggest that PhapLFY is functionally distinct from RICE FLORICAULA/LEAFY (RFL) but similar to Arabidopsis LFY based on phenotypes of our transgenic Arabidopsis and rice plants. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Isolation, characterization, and expression analyses of tryptophan aminotransferase genes in a maize dek18 mutant

    USDA-ARS?s Scientific Manuscript database

    The dek18 mutant of maize has decreased auxin content in kernels. Molecular and functional characterization of this mutant line offers the possibility to better understand auxin biology in maize seed development. Seeds of the dek18 mutants are smaller compared to wild type seeds and the vegetative d...

  10. Epigenetic control of learning and memory in Drosophila by Tip60 HAT action.

    PubMed

    Xu, Songjun; Wilf, Rona; Menon, Trisha; Panikker, Priyalakshmi; Sarthi, Jessica; Elefant, Felice

    2014-12-01

    Disruption of epigenetic gene control mechanisms in the brain causes significant cognitive impairment that is a debilitating hallmark of most neurodegenerative disorders, including Alzheimer's disease (AD). Histone acetylation is one of the best characterized of these epigenetic mechanisms that is critical for regulating learning- and memory- associated gene expression profiles, yet the specific histone acetyltransferases (HATs) that mediate these effects have yet to be fully characterized. Here, we investigate an epigenetic role for the HAT Tip60 in learning and memory formation using the Drosophila CNS mushroom body (MB) as a well-characterized cognition model. We show that Tip60 is endogenously expressed in the Kenyon cells, the intrinsic neurons of the MB, and in the MB axonal lobes. Targeted loss of Tip60 HAT activity in the MB causes thinner and shorter axonal lobes while increasing Tip60 HAT levels cause no morphological defects. Functional consequences of both loss and gain of Tip60 HAT levels in the MB are evidenced by defects in immediate-recall memory. Our ChIP-Seq analysis reveals that Tip60 target genes are enriched for functions in cognitive processes, and, accordingly, key genes representing these pathways are misregulated in the Tip60 HAT mutant fly brain. Remarkably, we find that both learning and immediate-recall memory deficits that occur under AD-associated, amyloid precursor protein (APP)-induced neurodegenerative conditions can be effectively rescued by increasing Tip60 HAT levels specifically in the MB. Together, our findings uncover an epigenetic transcriptional regulatory role for Tip60 in cognitive function and highlight the potential of HAT activators as a therapeutic option for neurodegenerative disorders. Copyright © 2014 by the Genetics Society of America.

  11. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses

    PubMed Central

    2011-01-01

    Background Integration of retroviral DNA into a germ cell may lead to a provirus that is transmitted vertically to that host's offspring as an endogenous retrovirus (ERV). In humans, ERVs (HERVs) comprise about 8% of the genome, the vast majority of which are truncated and/or highly mutated and no longer encode functional genes. The most recently active retroviruses that integrated into the human germ line are members of the Betaretrovirus-like HERV-K (HML-2) group, many of which contain intact open reading frames (ORFs) in some or all genes, sometimes encoding functional proteins that are expressed in various tissues. Interestingly, this expression is upregulated in many tumors ranging from breast and ovarian tissues to lymphomas and melanomas, as well as schizophrenia, rheumatoid arthritis, and other disorders. Results No study to date has characterized all HML-2 elements in the genome, an essential step towards determining a possible functional role of HML-2 expression in disease. We present here the most comprehensive and accurate catalog of all full-length and partial HML-2 proviruses, as well as solo LTR elements, within the published human genome to date. Furthermore, we provide evidence for preferential maintenance of proviruses and solo LTR elements on gene-rich chromosomes of the human genome and in proximity to gene regions. Conclusions Our analysis has found and corrected several errors in the annotation of HML-2 elements in the human genome, including mislabeling of a newly identified group called HML-11. HML-elements have been implicated in a wide array of diseases, and characterization of these elements will play a fundamental role to understand the relationship between endogenous retrovirus expression and disease. PMID:22067224

  12. Expression and Functional Characterization of two Pathogenesis-Related Protein 10 Genes from Zea mays

    USDA-ARS?s Scientific Manuscript database

    Pathogenesis-related protein 10 (PR10) is one of seventeen PR protein families and plays important roles in plant response to biotic and abiotic stresses. A novel PR10 gene (ZmPR10.1), which shares 89.8% and 85.7% identity to the previous ZmPR10 at the nucleotide and amino acid sequence level, respe...

  13. Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function

    USDA-ARS?s Scientific Manuscript database

    This study is focused on the characterization and expression of genes in the red flour beetle, Tribolium castaneum, encoding proteins that possess six-cysteine-containing chitin-binding domains (CBDs) related to the peritrophin A domain (ChtBD2). An exhaustive bioinformatics search of the genome of...

  14. Isolation and characterization of two VpYABBY genes from wild Chinese Vitis pseudoreticulata.

    PubMed

    Xiang, J; Liu, R Q; Li, T M; Han, L J; Zou, Y; Xu, T F; Wei, J Y; Wang, Y J; Xu, Y

    2013-12-01

    The establishment of abaxial-adaxial polarity is an important feature of the development of lateral organs in plants. Members of the YABBY gene family may be specific to seed-plant-specific transcriptional regulators that play critical roles in promoting abaxial cell fate in the model eudicot, Arabidopsis thaliana. However, recent study has shown that the roles of YABBY genes are not conserved in the development of angiosperms. The establishment of abaxial-adaxial polarity has not been studied in perennial fruit crops. Grapes are an important fruit crop in many regions of the world. Investigating YABBY genes in grapevines should help us to discover more about the key genetic and molecular pathways in grapevine development. To understand the characterization of YABBY genes in grapevines, two YABBY genes, VpYABBY1 (GenBank accession No. KC139089) and VpYABBY2 (GenBank accession No. KC139090), were isolated from the wild Chinese species Vitis pseudoreticulata. Both of these encode YABBY proteins. Sequence characterization and phylogenetic analyses show that VpYABBY1 is group classified into the FIL subfamily while VpYABBY2 is a member of the YAB2 subfamily of Arabidopsis thaliana. Subcellular localization analysis indicates that VpYABBY1 and VpYABBY2 proteins are localized in the nucleus. Tissue specific expressional analysis reveals that VpYABBY1 is expressed strongly in young leaves of grape but only weakly in the mature leaves. Meanwhile, VpYABBY2 is expressed in grape stems, flowers, tendrils, and leaves. Transgenic Arabidopsis plants ectopically expressing VpYABBY1 caused the partial abaxialization of the adaxial epidermises of leaves, behaving similarly to those over-expressing FIL or YAB3 with abaxialized lateral organs. By contrast, ectopic expression of VpYABBY2 in Arabidopsis did not cause any alteration in the adaxial-abaxial polarity. Sequence characterization and phylogenetic analysis revealed that VpYABBY1 and VpYABBY2 are group-classified into two different subfamilies. They have diverged functionally in the control of lateral organ development. VpYABBY1 may have a function in leaf development, while VpYABBY2 may play a specific role in carpel development and grape berry morphogenesis. It is further possible that during the evolution of different species, YABBY family members have preserved different expression regulatory systems and functions.

  15. Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum.

    PubMed

    Flynn, Christopher M; Schmidt-Dannert, Claudia

    2018-06-01

    The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters. IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide access to this chemodiversity for the discovery and synthesis of molecules with new bioactivities. The identification and successful cloning of the previously elusive hirsutene synthase from the S. hirsutum provide important insights and strategies for biosynthetic gene discovery in Basidiomycota. The finding of a terpene synthase-HMGS fusion, the discovery of other sesquiterpenoid biosynthetic gene clusters with dedicated HMGS genes, and HMGS gene duplications in fungal genomes give new importance to the role of HMGS as a key regulatory enzyme in isoprenoid and sterol biosynthesis that should be exploited for metabolic engineering. Copyright © 2018 American Society for Microbiology.

  16. Genome-wide identification and characterization of aquaporin gene family in Beta vulgaris

    PubMed Central

    Kong, Weilong; Yang, Shaozong; Wang, Yulu; Bendahmane, Mohammed

    2017-01-01

    Aquaporins (AQPs) are essential channel proteins that execute multi-functions throughout plant growth and development, including water transport, uncharged solutes uptake, stress response, and so on. Here, we report the first genome-wide identification and characterization AQP (BvAQP) genes in sugar beet (Beta vulgaris), an important crop widely cultivated for feed, for sugar production and for bioethanol production. Twenty-eight sugar beet AQPs (BvAQPs) were identified and assigned into five subfamilies based on phylogenetic analyses: seven of plasma membrane (PIPs), eight of tonoplast (TIPs), nine of NOD26-like (NIPs), three of small basic (SIPs), and one of x-intrinsic proteins (XIPs). BvAQP genes unevenly mapped on all chromosomes, except on chromosome 4. Gene structure and motifs analyses revealed that BvAQP have conserved exon-intron organization and that they exhibit conserved motifs within each subfamily. Prediction of BvAQPs functions, based on key protein domains conservation, showed a remarkable difference in substrate specificity among the five subfamilies. Analyses of BvAQPs expression, by mean of RNA-seq, in different plant organs and in response to various abiotic stresses revealed that they were ubiquitously expressed and that their expression was induced by heat and salt stresses. These results provide a reference base to address further the function of sugar beet aquaporins and to explore future applications for plants growth and development improvements as well as in response to environmental stresses. PMID:28948097

  17. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders.

    PubMed

    Novarino, Gaia; Fenstermaker, Ali G; Zaki, Maha S; Hofree, Matan; Silhavy, Jennifer L; Heiberg, Andrew D; Abdellateef, Mostafa; Rosti, Basak; Scott, Eric; Mansour, Lobna; Masri, Amira; Kayserili, Hulya; Al-Aama, Jumana Y; Abdel-Salam, Ghada M H; Karminejad, Ariana; Kara, Majdi; Kara, Bulent; Bozorgmehri, Bita; Ben-Omran, Tawfeg; Mojahedi, Faezeh; El Din Mahmoud, Iman Gamal; Bouslam, Naima; Bouhouche, Ahmed; Benomar, Ali; Hanein, Sylvain; Raymond, Laure; Forlani, Sylvie; Mascaro, Massimo; Selim, Laila; Shehata, Nabil; Al-Allawi, Nasir; Bindu, P S; Azam, Matloob; Gunel, Murat; Caglayan, Ahmet; Bilguvar, Kaya; Tolun, Aslihan; Issa, Mahmoud Y; Schroth, Jana; Spencer, Emily G; Rosti, Rasim O; Akizu, Naiara; Vaux, Keith K; Johansen, Anide; Koh, Alice A; Megahed, Hisham; Durr, Alexandra; Brice, Alexis; Stevanin, Giovanni; Gabriel, Stacy B; Ideker, Trey; Gleeson, Joseph G

    2014-01-31

    Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.

  18. Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome

    PubMed Central

    2010-01-01

    Background Salmonids are one of the most intensely studied fish, in part due to their economic and environmental importance, and in part due to a recent whole genome duplication in the common ancestor of salmonids. This duplication greatly impacts species diversification, functional specialization, and adaptation. Extensive new genomic resources have recently become available for Atlantic salmon (Salmo salar), but documentation of allelic versus duplicate reference genes remains a major uncertainty in the complete characterization of its genome and its evolution. Results From existing expressed sequence tag (EST) resources and three new full-length cDNA libraries, 9,057 reference quality full-length gene insert clones were identified for Atlantic salmon. A further 1,365 reference full-length clones were annotated from 29,221 northern pike (Esox lucius) ESTs. Pairwise dN/dS comparisons within each of 408 sets of duplicated salmon genes using northern pike as a diploid out-group show asymmetric relaxation of selection on salmon duplicates. Conclusions 9,057 full-length reference genes were characterized in S. salar and can be used to identify alleles and gene family members. Comparisons of duplicated genes show that while purifying selection is the predominant force acting on both duplicates, consistent with retention of functionality in both copies, some relaxation of pressure on gene duplicates can be identified. In addition, there is evidence that evolution has acted asymmetrically on paralogs, allowing one of the pair to diverge at a faster rate. PMID:20433749

  19. Identification and Characterization of Pathogen-Response Genes (repat) in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    PubMed

    Machado, Vilmar; Serrano, Jose; Galián, Jose

    2016-01-01

    The fall armyworm (Spodoptera frugiperda, Noctuidae, Lepidoptera) is one of the most important crop pests in the Americas, causing significant damage to maize, rice and sorghum. The mechanisms that determine its defences against pathogens are particularly relevant for the development of management and control strategies. We used an in silico approach to identify and characterize pathogen response genes (repat) present in different tissue libraries of S. fugiperda. The analyses revealed complete cDNA for nine repat genes; of these, repat15 and repat39 were found in libraries from a specific tissue--the midgut of larvae fed with xenobiotic substances. High expression levels of some genes were found in different libraries: 39 hits in repat30 in challenged hemocytes, 16 hits in repat31 in fat body, 10 hits in repat32 in fat body and 10 in challenged hemocytes, and 10 hits in repat38 in midgut of non-treated larvae and midgut of larvae fed with natural and xenobiotic substances. The genes corresponded to two ontology categories, stress response and immune response, and their phylogenetic relationships, nucleotide similarity, number of amino acid residues and molecular weights agree with what has been described for repat genes. It is noteworthy that proteins encoded by the repat genes of S. frugiperda have important defence functions in other tissues beyond midgut and that their functional categories are likely diverse, as they are related to cell envelope structure, energy metabolism, transport and binding.

  20. De novo characterization of Lentinula edodes C(91-3) transcriptome by deep Solexa sequencing.

    PubMed

    Zhong, Mintao; Liu, Ben; Wang, Xiaoli; Liu, Lei; Lun, Yongzhi; Li, Xingyun; Ning, Anhong; Cao, Jing; Huang, Min

    2013-02-01

    Lentinula edodes, has been utilized as food, as well as, in popular medicine, moreover, its extract isolated from its mycelium and fruiting body have shown several therapeutic properties. Yet little is understood about its genes involved in these properties, and the absence of L.edodes genomes has been a barrier to the development of functional genomics research. However, high throughput sequencing technologies are now being widely applied to non-model species. To facilitate research on L.edodes, we leveraged Solexa sequencing technology in de novo assembly of L.edodes C(91-3) transcriptome. In a single run, we produced more than 57 million sequencing reads. These reads were assembled into 28,923 unigene sequences (mean size=689bp) including 18,120 unigenes with coding sequence (CDS). Based on similarity search with known proteins, assembled unigene sequences were annotated with gene descriptions, gene ontology (GO) and clusters of orthologous group (COG) terms. Our data provides the first comprehensive sequence resource available for functional genomics studies in L.edodes, and demonstrates the utility of Illumina/Solexa sequencing for de novo transcriptome characterization and gene discovery in a non-model mushroom. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Characterization by Suppression Subtractive Hybridization of Transcripts That Are Differentially Expressed in Leaves of Anthracnose-Resistant Ramie Cultivar.

    PubMed

    Xuxia, Wang; Jie, Chen; Bo, Wang; Lijun, Liu; Hui, Jiang; Diluo, Tang; Dingxiang, Peng

    2012-01-01

    For the purpose of screening putative anthracnose resistance-related genes of ramie ( Boehmeria nivea L. Gaud), a cDNA library was constructed by suppression subtractive hybridization using anthracnose-resistant cultivar Huazhu no. 4. The cDNAs from Huazhu no. 4, which were infected with Colletotrichum gloeosporioides , were used as the tester and cDNAs from uninfected Huazhu no. 4 as the driver. Sequencing analysis and homology searching showed that these clones represented 132 single genes, which were assigned to functional categories, including 14 putative cellular functions, according to categories established for Arabidopsis . These 132 genes included 35 disease resistance and stress tolerance-related genes including putative heat-shock protein 90, metallothionein, PR-1.2 protein, catalase gene, WRKY family genes, and proteinase inhibitor-like protein. Partial disease-related genes were further analyzed by reverse transcription PCR and RNA gel blot. These expressed sequence tags are the first anthracnose resistance-related expressed sequence tags reported in ramie.

  2. From Saccharomyces cerevisiae to human: The important gene co-expression modules.

    PubMed

    Liu, Wei; Li, Li; Ye, Hua; Chen, Haiwei; Shen, Weibiao; Zhong, Yuexian; Tian, Tian; He, Huaqin

    2017-08-01

    Network-based systems biology has become an important method for analyzing high-throughput gene expression data and gene function mining. Yeast has long been a popular model organism for biomedical research. In the current study, a weighted gene co-expression network analysis algorithm was applied to construct a gene co-expression network in Saccharomyces cerevisiae . Seventeen stable gene co-expression modules were detected from 2,814 S. cerevisiae microarray data. Further characterization of these modules with the Database for Annotation, Visualization and Integrated Discovery tool indicated that these modules were associated with certain biological processes, such as heat response, cell cycle, translational regulation, mitochondrion oxidative phosphorylation, amino acid metabolism and autophagy. Hub genes were also screened by intra-modular connectivity. Finally, the module conservation was evaluated in a human disease microarray dataset. Functional modules were identified in budding yeast, some of which are associated with patient survival. The current study provided a paradigm for single cell microorganisms and potentially other organisms.

  3. Molecular Basis for Mycophenolic Acid Biosynthesis in Penicillium brevicompactum▿†

    PubMed Central

    Regueira, Torsten Bak; Kildegaard, Kanchana Rueksomtawin; Hansen, Bjarne Gram; Mortensen, Uffe H.; Hertweck, Christian; Nielsen, Jens

    2011-01-01

    Mycophenolic acid (MPA) is the active ingredient in the increasingly important immunosuppressive pharmaceuticals CellCept (Roche) and Myfortic (Novartis). Despite the long history of MPA, the molecular basis for its biosynthesis has remained enigmatic. Here we report the discovery of a polyketide synthase (PKS), MpaC, which we successfully characterized and identified as responsible for MPA production in Penicillium brevicompactum. mpaC resides in what most likely is a 25-kb gene cluster in the genome of Penicillium brevicompactum. The gene cluster was successfully localized by targeting putative resistance genes, in this case an additional copy of the gene encoding IMP dehydrogenase (IMPDH). We report the cloning, sequencing, and the functional characterization of the MPA biosynthesis gene cluster by deletion of the polyketide synthase gene mpaC of P. brevicompactum and bioinformatic analyses. As expected, the gene deletion completely abolished MPA production as well as production of several other metabolites derived from the MPA biosynthesis pathway of P. brevicompactum. Our work sets the stage for engineering the production of MPA and analogues through metabolic engineering. PMID:21398490

  4. Identification and Characterization of microRNA319a and Its Putative Target Gene, PvPCF5, in the Bioenergy Grass Switchgrass (Panicum virgatum).

    PubMed

    Xie, Qi; Liu, Xue; Zhang, Yinbing; Tang, Jinfu; Yin, Dedong; Fan, Bo; Zhu, Lihuang; Han, Liebao; Song, Guilong; Li, Dayong

    2017-01-01

    Due to its high biomass yield, low environmental impact, and widespread adaptability to poor soils and harsh conditions, switchgrass ( Panicum virgatum L.), a warm-region perennial herbaceous plant, has attracted much attention in recent years. However, little is known about microRNAs (miRNAs) and their functions in this bioenergy grass. Here, we identified and characterized a miRNA gene, Pvi-MIR319a , encoding microRNA319a in switchgrass. Transgenic rice lines generated by overexpressing the Pvi-MIR319a precursor gene exhibited broader leaves and delayed flowering compared with the control. Gene expression analysis indicated at least four putative target genes were downregulated. Additionally, we cloned a putative target gene ( PvPCF5 ) of Pvi-MIR319a from switchgrass. PvPCF5, a TCP transcription factor, is a nuclear-localized protein with transactivation activity and control the development of leaf. Our results suggest that Pvi-MIR319a and its target genes may be used as potential genetic regulators for future switchgrass genetic improvement.

  5. Identification and characterization of six glycosyltransferases involved in the biosynthesis of a new bacterial exopolysaccharide in Paenibacillus elgii.

    PubMed

    Ou, Li; Ang, Li; Chujun, Zhang; Jingyu, Huang; Yongli, Meng; Shenjing, Yuan; Junhua, Huang; Xu, Gao; Yulong, Yao; Rui, Yin; Jinpan, Hu; Bin, Ding; Xiufang, Hu

    2018-02-01

    Paenibacillus elgii B69 produces a new xylose-containing exopolysaccharide (EPS) that effectively removes the pollutants from wastewater through flocculation. However, information about the biosynthesis of this EPS is limited. In this study, sequence analysis showed six putative glycosyltransferases (GTs) genes in polysaccharide gene clusters involved in glycosidic linkages of repeating units. Each gene was deleted and phenotypes were examined to understand the functions of these genes. Two of the genes were deleted successfully to encode a priming glucose GT and a side-chain xylose GT, but other genes were unsuccessfully deleted because of the accumulation of toxic intermediate products. The six genes were cloned and expressed in Escherichia coli, and the corresponding enzymes were purified. The activity of GTs was analyzed through mass spectrometry by using the purified membrane fraction as a lipid carrier receptor after a hexasaccharide repeated unit was reconstructed in vitro. The specificities of six different GTs and the building order of the hexasaccharide were characterized. This study provided a basis for future research on the biosynthetic pathway of EPS in Paenibacillus or other genera.

  6. Gene therapy for achromatopsia.

    PubMed

    Michalakis, Stylianos; Schön, Christian; Becirovic, Elvir; Biel, Martin

    2017-03-01

    The present review summarizes the current status of achromatopsia (ACHM) gene therapy-related research activities and provides an outlook for their clinical application. ACHM is an inherited eye disease characterized by a congenital absence of cone photoreceptor function. As a consequence, ACHM is associated with strongly impaired daylight vision, photophobia, nystagmus and a lack of color discrimination. Currently, six genes have been linked to ACHM. Up to 80% of the patients carry mutations in the genes CNGA3 and CNGB3 encoding the two subunits of the cone cyclic nucleotide-gated channel. Various animal models of the disease have been established and their characterization has helped to increase our understanding of the pathophysiology associated with ACHM. With the advent of adeno-associated virus vectors as valuable gene delivery tools for retinal photoreceptors, a number of promising gene supplementation therapy programs have been initiated. In recent years, huge progress has been made towards bringing a curative treatment for ACHM into clinics. The first clinical trials are ongoing or will be launched soon and are expected to contribute important data on the safety and efficacy of ACHM gene supplementation therapy. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Organization of the human [zeta]-crystallin/quinone reductase gene (CRYZ)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, P.; Rao, P.V.; Zigler, J.S. Jr.

    1994-05-15

    [zeta]-Crystallin is a protein highly expressed in the lens of guinea pigs and camels, where it comprises about 10% of the total soluble protein. It has recently been characterized as a novel quinone oxidoreductase present in a variety of mammalian tissues. The authors report here the isolation and characterization of the human [zeta]-crystallin gene (CRYZ) and its processed pseudogene. The functional gene is composed of nine exons and spans about 20 kb. The 5[prime]-flanking region of the gene is rich in G and C (58%) and lacks TATA and CAAT boxes. Previous analysis of the guinea pig gene revealed themore » presence of two different promoters, one responsible for the high lens-specific expression and the other for expression at the enzymatic level in numerous tissues. Comparative analysis with the guinea pig gene shows that a region of [approximately]2.5 kb that includes the promoter responsible for the high expression in the lens in guinea pig is not present in the human gene. 34 refs., 6 figs., 1 tab.« less

  8. Digestive Organ in the Female Reproductive Tract Borrows Genes from Multiple Organ Systems to Adopt Critical Functions

    PubMed Central

    Meslin, Camille; Plakke, Melissa S.; Deutsch, Aaron B.; Small, Brandon S.; Morehouse, Nathan I.; Clark, Nathan L.

    2015-01-01

    Persistent adaptive challenges are often met with the evolution of novel physiological traits. Although there are specific examples of single genes providing new physiological functions, studies on the origin of complex organ functions are lacking. One such derived set of complex functions is found in the Lepidopteran bursa copulatrix, an organ within the female reproductive tract that digests nutrients from the male ejaculate or spermatophore. Here, we characterized bursa physiology and the evolutionary mechanisms by which it was equipped with digestive and absorptive functionality. By studying the transcriptome of the bursa and eight other tissues, we revealed a suite of highly expressed and secreted gene products providing the bursa with a combination of stomach-like traits for mechanical and enzymatic digestion of the male spermatophore. By subsequently placing these bursa genes in an evolutionary framework, we found that the vast majority of their novel digestive functions were co-opted by borrowing genes that continue to be expressed in nonreproductive tissues. However, a number of bursa-specific genes have also arisen, some of which represent unique gene families restricted to Lepidoptera and may provide novel bursa-specific functions. This pattern of promiscuous gene borrowing and relatively infrequent evolution of tissue-specific duplicates stands in contrast to studies of the evolution of novelty via single gene co-option. Our results suggest that the evolution of complex organ-level phenotypes may often be enabled (and subsequently constrained) by changes in tissue specificity that allow expression of existing genes in novel contexts, such as reproduction. The extent to which the selective pressures encountered in these novel roles require resolution via duplication and sub/neofunctionalization is likely to be determined by the need for specialized reproductive functionality. Thus, complex physiological phenotypes such as that found in the bursa offer important opportunities for understanding the relative role of pleiotropy and specialization in adaptive evolution. PMID:25725432

  9. Phylogeny and phylogeography of functional genes shared among seven terrestrial subsurface metagenomes reveal N-cycling and microbial evolutionary relationships

    PubMed Central

    Lau, Maggie C. Y.; Cameron, Connor; Magnabosco, Cara; Brown, C. Titus; Schilkey, Faye; Grim, Sharon; Hendrickson, Sarah; Pullin, Michael; Sherwood Lollar, Barbara; van Heerden, Esta; Kieft, Thomas L.; Onstott, Tullis C.

    2014-01-01

    Comparative studies on community phylogenetics and phylogeography of microorganisms living in extreme environments are rare. Terrestrial subsurface habitats are valuable for studying microbial biogeographical patterns due to their isolation and the restricted dispersal mechanisms. Since the taxonomic identity of a microorganism does not always correspond well with its functional role in a particular community, the use of taxonomic assignments or patterns may give limited inference on how microbial functions are affected by historical, geographical and environmental factors. With seven metagenomic libraries generated from fracture water samples collected from five South African mines, this study was carried out to (1) screen for ubiquitous functions or pathways of biogeochemical cycling of CH4, S, and N; (2) to characterize the biodiversity represented by the common functional genes; (3) to investigate the subsurface biogeography as revealed by this subset of genes; and (4) to explore the possibility of using metagenomic data for evolutionary study. The ubiquitous functional genes are NarV, NPD, PAPS reductase, NifH, NifD, NifK, NifE, and NifN genes. Although these eight common functional genes were taxonomically and phylogenetically diverse and distinct from each other, the dissimilarity between samples did not correlate strongly with geographical or environmental parameters or residence time of the water. Por genes homologous to those of Thermodesulfovibrio yellowstonii detected in all metagenomes were deep lineages of Nitrospirae, suggesting that subsurface habitats have preserved ancestral genetic signatures that inform the study of the origin and evolution of prokaryotes. PMID:25400621

  10. Quality controls in cellular immunotherapies: rapid assessment of clinical grade dendritic cells by gene expression profiling.

    PubMed

    Castiello, Luciano; Sabatino, Marianna; Zhao, Yingdong; Tumaini, Barbara; Ren, Jiaqiang; Ping, Jin; Wang, Ena; Wood, Lauren V; Marincola, Francesco M; Puri, Raj K; Stroncek, David F

    2013-02-01

    Cell-based immunotherapies are among the most promising approaches for developing effective and targeted immune response. However, their clinical usefulness and the evaluation of their efficacy rely heavily on complex quality control assessment. Therefore, rapid systematic methods are urgently needed for the in-depth characterization of relevant factors affecting newly developed cell product consistency and the identification of reliable markers for quality control. Using dendritic cells (DCs) as a model, we present a strategy to comprehensively characterize manufactured cellular products in order to define factors affecting their variability, quality and function. After generating clinical grade human monocyte-derived mature DCs (mDCs), we tested by gene expression profiling the degrees of product consistency related to the manufacturing process and variability due to intra- and interdonor factors, and how each factor affects single gene variation. Then, by calculating for each gene an index of variation we selected candidate markers for identity testing, and defined a set of genes that may be useful comparability and potency markers. Subsequently, we confirmed the observed gene index of variation in a larger clinical data set. In conclusion, using high-throughput technology we developed a method for the characterization of cellular therapies and the discovery of novel candidate quality assurance markers.

  11. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data.

    PubMed

    Manijak, Mieszko P; Nielsen, Henrik B

    2011-06-11

    Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially circumvented by instead matching gene expression signatures to signatures of other experiments. To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700 Arabidopsis microarray experiments. Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/.

  12. Characterization and expression of the ABC family (G group) in 'Dangshansuli' pear (Pyrus bretschneideri Rehd.) and its russet mutant.

    PubMed

    Hou, Zhaoqi; Jia, Bing; Li, Fei; Liu, Pu; Liu, Li; Ye, Zhenfeng; Zhu, Liwu; Wang, Qi; Heng, Wei

    2018-01-01

    The plant genes encoding ABCGs that have been identified to date play a role in suberin formation in response to abiotic and biotic stress. In the present study, 80 ABCG genes were identified in 'Dangshansuli' Chinese white pear and designated as PbABCGs. Based on the structural characteristics and phylogenetic analysis, the PbABCG family genes could be classified into seven main groups: classes A-G. Segmental and dispersed duplications were the primary forces underlying the PbABCG gene family expansion in 'Dangshansuli' pear. Most of the PbABCG duplicated gene pairs date to the recent whole-genome duplication that occurred 30~45 million years ago. Purifying selection has also played a critical role in the evolution of the ABCG genes. Ten PbABCG genes screened in the transcriptome of 'Dangshansuli' pear and its russet mutant 'Xiusu' were validated, and the expression levels of the PbABCG genes exhibited significant differences at different stages. The results presented here will undoubtedly be useful for better understanding of the complexity of the PbABCG gene family and will facilitate the functional characterization of suberin formation in the russet mutant.

  13. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    PubMed Central

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  14. In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2.

    PubMed

    Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2018-06-01

    In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.

  15. RAS oncogene-mediated deregulation of the transcriptome: from molecular signature to function.

    PubMed

    Schäfer, Reinhold; Sers, Christine

    2011-01-01

    Transcriptome analysis of cancer cells has developed into a standard procedure to elucidate multiple features of the malignant process and to link gene expression to clinical properties. Gene expression profiling based on microarrays provides essentially correlative information and needs to be transferred to the functional level in order to understand the activity and contribution of individual genes or sets of genes as elements of the gene signature. To date, there exist significant gaps in the functional understanding of gene expression profiles. Moreover, the processes that drive the profound transcriptional alterations that characterize cancer cells remain mainly elusive. We have used pathway-restricted gene expression profiles derived from RAS oncogene-transformed cells and from RAS-expressing cancer cells to identify regulators downstream of the MAPK pathway.We describe the role of epigenetic regulation exemplified by the control of several immune genes in generic cell lines and colorectal cancer cells, particularly the functional interaction between signaling and DNA methylation. Moreover, we assess the role of the architectural transcription factor high mobility AT-hook 2 (HMGA2) as a regulator of the RAS-responsive transcriptome in ovarian epithelial cells. Finally, we describe an integrated approach combining pathway interference in colorectal cancer cells, gene expression profiling and computational analysis of regulatory elements of deregulated target genes. This strategy resulted in the identification of Y-box binding protein 1 (YBX1) as a regulator of MAPK-dependent proliferation and gene expression. The implications for a therapeutic application of HMGA2 gene silencing and the role of YBX1 as a prognostic factor are discussed.

  16. Characterization and Quantitation of a Novel β-Lactamase Gene Found in a Wastewater Treatment Facility and the Surrounding Coastal Ecosystem▿

    PubMed Central

    Uyaguari, Miguel I.; Fichot, Erin B.; Scott, Geoffrey I.; Norman, R. Sean

    2011-01-01

    Wastewater treatment plants (WWTPs) are engineered structures that collect, concentrate, and treat human waste, ultimately releasing treated wastewater into local environments. While WWTPs efficiently remove most biosolids, it has been shown that many antibiotics and antibiotic-resistant bacteria can survive the treatment process. To determine how WWTPs influence the concentration and dissemination of antibiotic-resistant genes into the environment, a functional metagenomic approach was used to identify a novel antibiotic resistance gene within a WWTP, and quantitative PCR (qPCR) was used to determine gene copy numbers within the facility and the local coastal ecosystem. From the WWTP metagenomic library, the fosmid insert contained in one highly resistant clone (MIC, ∼416 μg ml−1 ampicillin) was sequenced and annotated, revealing 33 putative genes, including a 927-bp gene that is 42% identical to a functionally characterized β-lactamase from Staphylococcus aureus PC1. Isolation and subcloning of this gene, referred to as blaM-1, conferred ampicillin resistance to its Escherichia coli host. When normalized to volume, qPCR showed increased concentrations of blaM-1 during initial treatment stages but 2-fold-decreased concentrations during the final treatment stage. The concentration ng−1 DNA increased throughout the WWTP process from influent to effluent, suggesting that blaM-1 makes up a significant proportion of the overall genetic material being released into the coastal ecosystem. Average discharge was estimated to be 3.9 × 1014 copies of the blaM-1 gene released daily into this coastal ecosystem. Furthermore, the gene was observed in all sampled coastal water and sediment samples surrounding the facility. Our results suggest that WWTPs may be a pathway for the dissemination of novel antibiotic resistance genes into the environment. PMID:21965412

  17. Identification and characterization of NF-YB family genes in tung tree.

    PubMed

    Yang, Susu; Wang, Yangdong; Yin, Hengfu; Guo, Haobo; Gao, Ming; Zhu, Huiping; Chen, Yicun

    2015-12-01

    The NF-YB transcription factor gene family encodes a subunit of the CCAAT box-binding factor (CBF), a highly conserved trimeric activator that strongly binds to the CCAAT box promoter element. Studies on model plants have shown that NF-YB proteins participate in important developmental and physiological processes, but little is known about NF-YB proteins in trees. Here, we identified seven NF-YB transcription factor-encoding genes in Vernicia fordii, an important oilseed tree in China. A phylogenetic analysis separated the genes into two groups; non-LEC1 type (VfNF-YB1, 5, 7, 9, 11, 13) and LEC1-type (VfNF-YB 14). A gene structure analysis showed that VfNF-YB 5 has three introns and the other genes have no introns. The seven VfNF-YB sequences contain highly conserved domains, a disordered region at the N terminus, and two long helix structures at the C terminus. Phylogenetic analyses showed that VfNF-YB family genes are highly homologous to GmNF-YB genes, and many of them are closely related to functionally characterized NF-YBs. In expression analyses of various tissues (root, stem, leaf, and kernel) and the root during pathogen infection, VfNF-YB1, 5, and 11 were dominantly expressed in kernels, and VfNF-YB7 and 9 were expressed only in the root. Different VfNF-YB family genes showed different responses to pathogen infection, suggesting that they play different roles in the pathogen response. Together, these findings represent the first extensive evaluation of the NF-YB family in tung tree and provide a foundation for dissecting the functions of VfNF-YB genes in seed development, stress adaption, fatty acid synthesis, and pathogen response.

  18. Characterization of expressed sequence tags (ESTs) of pigeonpea (Cajanus cajan L.) and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Priyanka, B; Sekhar, K; Sunita, T; Reddy, V D; Rao, Khareedu Venkateswara

    2010-03-01

    Pigeonpea, a major grain legume crop with remarkable drought tolerance traits, has been used for the isolation of stress-responsive genes. Herein, we report generation of ESTs, transcript profiles of selected genes and validation of candidate genes obtained from the subtracted cDNA libraries of pigeonpea plants subjected to PEG/water-deficit stress conditions. Cluster analysis of 124 selected ESTs yielded 75 high-quality ESTs. Homology searches disclosed that 55 ESTs share significant similarity with the known/putative proteins or ESTs available in the databases. These ESTs were characterized and genes relevant to the specific physiological processes were identified. Of the 75 ESTs obtained from the cDNA libraries of drought-stressed plants, 20 ESTs proved to be unique to the pigeonpea. These sequences are envisaged to serve as a potential source of stress-inducible genes of the drought stress-response transcriptome, and hence may be used for deciphering the mechanism of drought tolerance of the pigeonpea. Expression profiles of selected genes revealed increased levels of m-RNA transcripts in pigeonpea plants subjected to different abiotic stresses. Transgenic Arabidopsis lines, expressing Cajanus cajan hybrid-proline-rich protein (CcHyPRP), C. cajan cyclophilin (CcCYP) and C. cajan cold and drought regulatory (CcCDR) genes, exhibited marked tolerance, increased plant biomass and enhanced photosynthetic rates under PEG/NaCl/cold/heat stress conditions. This study represents the first report dealing with the isolation of drought-specific ESTs, transcriptome analysis and functional validation of drought-responsive genes of the pigeonpea. These genes, as such, hold promise for engineering crop plants bestowed with tolerance to major abiotic stresses.

  19. Discovering functions of unannotated genes from a transcriptome survey of wild fungal isolates.

    PubMed

    Ellison, Christopher E; Kowbel, David; Glass, N Louise; Taylor, John W; Brem, Rachel B

    2014-04-01

    Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. IMPORTANCE Some fungal species cause deadly infections in humans or crop plants, and other fungi are workhorses of industrial chemistry, including the production of biofuels. Advances in medical and industrial mycology require an understanding of the genes that control fungal traits. We developed a method to infer functions of uncharacterized genes by observing correlated expression of their mRNAs with those of known genes across wild fungal isolates. We applied this strategy to a filamentous fungus and predicted functions for thousands of unknown genes. In four cases, we experimentally validated the predictions from our method, discovering novel genes involved in the metabolism of nutrient sources relevant for biofuel production, as well as colony morphology and starvation resistance. Our strategy is straightforward, inexpensive, and applicable for predicting gene function in many fungal species.

  20. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis.

    PubMed

    Bi, Changwei; Xu, Yiqing; Ye, Qiaolin; Yin, Tongming; Ye, Ning

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon-intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of this gene family in flowering plants.

  1. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis

    PubMed Central

    Ye, Qiaolin; Yin, Tongming

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I–III), with five subgroups (IIa–IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon–intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of this gene family in flowering plants. PMID:27651997

  2. Fishing for Fetal Alcohol Spectrum Disorders: Zebrafish as a Model for Ethanol Teratogenesis.

    PubMed

    Lovely, Charles Ben; Fernandes, Yohaan; Eberhart, Johann K

    2016-10-01

    Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of ethanol-induced developmental defects, including craniofacial dysmorphology and cognitive impairments. It affects ∼1 in 100 children born in the United States each year. Due to the pleiotropic effects of ethanol, animal models have proven critical in characterizing the mechanisms of ethanol teratogenesis. In this review, we focus on the utility of zebrafish in characterizing ethanol-induced developmental defects. A growing number of laboratories have focused on using zebrafish to examine ethanol-induced defects in craniofacial, cardiac, ocular, and neural development, as well as cognitive and behavioral impairments. Growing evidence supports that genetic predisposition plays a role in these ethanol-induced defects, yet little is understood about these gene-ethanol interactions. With a high degree of genetic amenability, zebrafish is at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.

  3. Archaeal Viruses from High-Temperature Environments.

    PubMed

    Munson-McGee, Jacob H; Snyder, Jamie C; Young, Mark J

    2018-02-27

    Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  4. Expression Profiling Identifies Klf15 as a Glucocorticoid Target That Regulates Airway Hyperresponsiveness

    PubMed Central

    Masuno, Kiriko; Haldar, Saptarsi M.; Jeyaraj, Darwin; Mailloux, Christina M.; Huang, Xiaozhu; Panettieri, Rey A.; Jain, Mukesh K.

    2011-01-01

    Glucocorticoids (GCs), which activate GC receptor (GR) signaling and thus modulate gene expression, are widely used to treat asthma. GCs exert their therapeutic effects in part through modulating airway smooth muscle (ASM) structure and function. However, the effects of genes that are regulated by GCs on airway function are not fully understood. We therefore used transcription profiling to study the effects of a potent GC, dexamethasone, on human ASM (HASM) gene expression at 4 and 24 hours. After 24 hours of dexamethasone treatment, nearly 7,500 genes had statistically distinguishable changes in expression; quantitative PCR validation of a 40-gene subset of putative GR-regulated genes in 6 HASM cell lines suggested that the early transcriptional targets of GR signaling are similar in independent HASM lines. Gene ontology analysis implicated GR targets in controlling multiple aspects of ASM function. One GR-regulated gene, the transcription factor, Kruppel-like factor 15 (Klf15), was already known to modulate vascular smooth and cardiac muscle function, but had no known role in the lung. We therefore analyzed the pulmonary phenotype of Klf15−/− mice after ovalbumin sensitization and challenge. We found diminished airway responses to acetylcholine in ovalbumin-challenged Klf15−/− mice without a significant change in the induction of asthmatic inflammation. In cultured cells, overexpression of Klf15 reduced proliferation of HASM cells, whereas apoptosis in Klf15−/− murine ASM cells was increased. Together, these results further characterize the GR-regulated gene network in ASM and establish a novel role for the GR target, Klf15, in modulating airway function. PMID:21257922

  5. Transcriptome Analysis of a Premature Leaf Senescence Mutant of Common Wheat (Triticum aestivum L.)

    PubMed Central

    Xia, Chuan; Zhang, Lichao; Dong, Chunhao; Liu, Xu; Kong, Xiuying

    2018-01-01

    Leaf senescence is an important agronomic trait that affects both crop yield and quality. In this study, we characterized a premature leaf senescence mutant of wheat (Triticum aestivum L.) obtained by ethylmethane sulfonate (EMS) mutagenesis, named m68. Genetic analysis showed that the leaf senescence phenotype of m68 is controlled by a single recessive nuclear gene. We compared the transcriptome of wheat leaves between the wild type (WT) and the m68 mutant at four time points. Differentially expressed gene (DEG) analysis revealed many genes that were closely related to senescence genes. Gene Ontology (GO) enrichment analysis suggested that transcription factors and protein transport genes might function in the beginning of leaf senescence, while genes that were associated with chlorophyll and carbon metabolism might function in the later stage. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the genes that are involved in plant hormone signal transduction were significantly enriched. Through expression pattern clustering of DEGs, we identified 1012 genes that were induced during senescence, and we found that the WRKY family and zinc finger transcription factors might be more important than other transcription factors in the early stage of leaf senescence. These results will not only support further gene cloning and functional analysis of m68, but also facilitate the study of leaf senescence in wheat. PMID:29534430

  6. Functional characterization of KanP, a methyltransferase from the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus.

    PubMed

    Nepal, Keshav Kumar; Yoo, Jin Cheol; Sohng, Jae Kyung

    2010-09-20

    KanP, a putative methyltransferase, is located in the kanamycin biosynthetic gene cluster of Streptomyces kanamyceticus ATCC12853. Amino acid sequence analysis of KanP revealed the presence of S-adenosyl-L-methionine binding motifs, which are present in other O-methyltransferases. The kanP gene was expressed in Escherichia coli BL21 (DE3) to generate the E. coli KANP recombinant strain. The conversion of external quercetin to methylated quercetin in the culture extract of E. coli KANP proved the function of kanP as S-adenosyl-L-methionine-dependent methyltransferase. This is the first report concerning the identification of an O-methyltransferase gene from the kanamycin gene cluster. The resistant activity assay and RT-PCR analysis demonstrated the leeway for obtaining methylated kanamycin derivatives from the wild-type strain of kanamycin producer. 2009 Elsevier GmbH. All rights reserved.

  7. An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution

    NASA Technical Reports Server (NTRS)

    Yu, Jr-Kai; Holland, Nicholas D.; Holland, Linda Z.

    2002-01-01

    During amphioxus development, the neural plate is bordered by cells expressing many genes with homologs involved in vertebrate neural crest induction. However, these amphioxus cells evidently lack additional genetic programs for the cell delaminations, migrations, and differentiations characterizing definitive vertebrate neural crest. We characterize an amphioxus winged helix/forkhead gene (AmphiFoxD) closely related to vertebrate FoxD genes. Phylogenetic analysis indicates that the AmphiFoxD is basal to vertebrate FoxD1, FoxD2, FoxD3, FoxD4, and FoxD5. One of these vertebrate genes (FoxD3) consistently marks neural crest during development. Early in amphioxus development, AmphiFoxD is expressed medially in the anterior neural plate as well as in axial (notochordal) and paraxial mesoderm; later, the gene is expressed in the somites, notochord, cerebral vesicle (diencephalon), and hindgut endoderm. However, there is never any expression in cells bordering the neural plate. We speculate that an AmphiFoxD homolog in the common ancestor of amphioxus and vertebrates was involved in histogenic processes in the mesoderm (evagination and delamination of the somites and notochord); then, in the early vertebrates, descendant paralogs of this gene began functioning in the presumptive neural crest bordering the neural plate to help make possible the delaminations and cell migrations that characterize definitive vertebrate neural crest. Copyright 2002 Wiley-Liss, Inc.

  8. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles.

    PubMed

    Gao, Jie; Li, Junling; Li, Bao-Jun; Yagil, Ezra; Zhang, Jianshe; Du, Shao Jun

    2014-01-01

    Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.

  9. Identification of Germ Plasm-Associated Transcripts by Microarray Analysis of Xenopus Vegetal Cortex RNA

    PubMed Central

    Cuykendall, Tawny N.; Houston, Douglas W.

    2011-01-01

    RNA localization is a common mechanism for regulating cell structure and function. Localized RNAs in Xenopus oocytes are critical for early development, including germline specification by the germ plasm. Despite the importance of these localized RNAs, only approximately 25 have been identified and fewer are functionally characterized. Using microarrays, we identified a large set of localized RNAs from the vegetal cortex. Overall, our results indicate a minimum of 275 localized RNAs in oocytes, or 2–3% of maternal transcripts, which are in general agreement with previous findings. We further validated vegetal localization for 24 candidates and further characterized three genes expressed in the germ plasm. We identified novel germ plasm expression for reticulon 3.1, exd2 (a novel exonuclease-domain encoding gene), and a putative noncoding RNA. Further analysis of these and other localized RNAs will likely identify new functions of germ plasm and facilitate the identification of cis-acting RNA localization elements. PMID:20503379

  10. Proteomic characterization of a mouse model of familial Danish dementia.

    PubMed

    Vitale, Monica; Renzone, Giovanni; Matsuda, Shuji; Scaloni, Andrea; D'Adamio, Luciano; Zambrano, Nicola

    2012-01-01

    A dominant mutation in the ITM2B/BRI2 gene causes familial Danish dementia (FDD) in humans. To model FDD in animal systems, a knock-in approach was recently implemented in mice expressing a wild-type and mutant allele, which bears the FDD-associated mutation. Since these FDD(KI) mice show behavioural alterations and impaired synaptic function, we characterized their synaptosomal proteome via two-dimensional differential in-gel electrophoresis. After identification by nanoliquid chromatography coupled to electrospray-linear ion trap tandem mass spectrometry, the differentially expressed proteins were classified according to their gene ontology descriptions and their predicted functional interactions. The Dlg4/Psd95 scaffold protein and additional signalling proteins, including protein phosphatases, were revealed by STRING analysis as potential players in the altered synaptic function of FDD(KI) mice. Immunoblotting analysis finally demonstrated the actual downregulation of the synaptosomal scaffold protein Dlg4/Psd95 and of the dual-specificity phosphatase Dusp3 in the synaptosomes of FDD(KI) mice.

  11. Proteomic Characterization of a Mouse Model of Familial Danish Dementia

    PubMed Central

    Vitale, Monica; Renzone, Giovanni; Matsuda, Shuji; Scaloni, Andrea; D'Adamio, Luciano; Zambrano, Nicola

    2012-01-01

    A dominant mutation in the ITM2B/BRI2 gene causes familial Danish dementia (FDD) in humans. To model FDD in animal systems, a knock-in approach was recently implemented in mice expressing a wild-type and mutant allele, which bears the FDD-associated mutation. Since these FDDKI mice show behavioural alterations and impaired synaptic function, we characterized their synaptosomal proteome via two-dimensional differential in-gel electrophoresis. After identification by nanoliquid chromatography coupled to electrospray-linear ion trap tandem mass spectrometry, the differentially expressed proteins were classified according to their gene ontology descriptions and their predicted functional interactions. The Dlg4/Psd95 scaffold protein and additional signalling proteins, including protein phosphatases, were revealed by STRING analysis as potential players in the altered synaptic function of FDDKI mice. Immunoblotting analysis finally demonstrated the actual downregulation of the synaptosomal scaffold protein Dlg4/Psd95 and of the dual-specificity phosphatase Dusp3 in the synaptosomes of FDDKI mice. PMID:22619496

  12. Genome-wide characterization of Mediator recruitment, function, and regulation

    PubMed Central

    2017-01-01

    ABSTRACT Mediator is a conserved and essential coactivator complex broadly required for RNA polymerase II (RNAPII) transcription. Recent genome-wide studies of Mediator binding in budding yeast have revealed new insights into the functions of this critical complex and raised new questions about its role in the regulation of gene expression. PMID:28301289

  13. Functional metagenomic profiling of intestinal microbiome in extreme ageing.

    PubMed

    Rampelli, Simone; Candela, Marco; Turroni, Silvia; Biagi, Elena; Collino, Sebastiano; Franceschi, Claudio; O'Toole, Paul W; Brigidi, Patrizia

    2013-12-01

    Age-related alterations in human gut microbiota composition have been thoroughly described, but a detailed functional description of the intestinal bacterial coding capacity is still missing. In order to elucidate the contribution of the gut metagenome to the complex mosaic of human longevity, we applied shotgun sequencing to total fecal bacterial DNA in a selection of samples belonging to a well-characterized human ageing cohort. The age-related trajectory of the human gut microbiome was characterized by loss of genes for shortchain fatty acid production and an overall decrease in the saccharolytic potential, while proteolytic functions were more abundant than in the intestinal metagenome of younger adults. This altered functional profile was associated with a relevant enrichment in "pathobionts", i.e. opportunistic pro-inflammatory bacteria generally present in the adult gut ecosystem in low numbers. Finally, as a signature for long life we identified 116 microbial genes that significantly correlated with ageing. Collectively, our data emphasize the relationship between intestinal bacteria and human metabolism, by detailing the modifications in the gut microbiota as a consequence of and/or promoter of the physiological changes occurring in the human host upon ageing.

  14. Usher syndrome: animal models, retinal function of Usher proteins, and prospects for gene therapy

    PubMed Central

    Williams, David S.

    2009-01-01

    Usher syndrome is a deafness-blindness disorder. The blindness occurs from a progressive retinal degeneration that begins after deafness and after the retina has developed. Three clinical subtypes of Usher syndrome have been identified, with mutations in any one of six different genes giving rise to type 1, in any one of three different genes to type 2, and in one identified gene causing Usher type 3. Mutant mice for most of the genes have been studied; while they have clear inner ear defects, retinal phenotypes are relatively mild and have been difficult to characterize. The retinal functions of the Usher proteins are still largely unknown. Protein binding studies have suggested many interactions among the proteins, and a model of interaction among all the proteins in the photoreceptor synapse has been proposed. However this model is not supported by localization data from some laboratories, or the indication of any synaptic phenotype in mutant mice. An earlier suggestion, based on patient pathologies, of Usher protein function in the photoreceptor cilium continues to gain support from immunolocalization and mutant mouse studies, which are consistent with Usher protein interaction in the photoreceptor ciliary/periciliary region. So far, the most characterized Usher protein is myosin VIIa. It is present in the apical RPE and photoreceptor ciliary/periciliary region, where it is required for organelle transport and clearance of opsin from the connecting cilium, respectively. Usher syndrome is amenable to gene replacement therapy, but also has some specific challenges. Progress in this treatment approach has been achieved by correction of mutant phenotypes in Myo7a-null mouse retinas, following lentiviral delivery of MYO7A. PMID:17936325

  15. Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.

    PubMed

    Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A

    2018-04-11

    The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs. Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible for its regulation.

  16. Analysis and functional classification of transcripts from the nematode Meloidogyne incognita

    PubMed Central

    McCarter, James P; Dautova Mitreva, Makedonka; Martin, John; Dante, Mike; Wylie, Todd; Rao, Uma; Pape, Deana; Bowers, Yvette; Theising, Brenda; Murphy, Claire V; Kloek, Andrew P; Chiapelli, Brandi J; Clifton, Sandra W; Bird, David Mck; Waterston, Robert H

    2003-01-01

    Background Plant parasitic nematodes are major pathogens of most crops. Molecular characterization of these species as well as the development of new techniques for control can benefit from genomic approaches. As an entrée to characterizing plant parasitic nematode genomes, we analyzed 5,700 expressed sequence tags (ESTs) from second-stage larvae (L2) of the root-knot nematode Meloidogyne incognita. Results From these, 1,625 EST clusters were formed and classified by function using the Gene Ontology (GO) hierarchy and the Kyoto KEGG database. L2 larvae, which represent the infective stage of the life cycle before plant invasion, express a diverse array of ligand-binding proteins and abundant cytoskeletal proteins. L2 are structurally similar to Caenorhabditis elegans dauer larva and the presence of transcripts encoding glyoxylate pathway enzymes in the M. incognita clusters suggests that root-knot nematode larvae metabolize lipid stores while in search of a host. Homology to other species was observed in 79% of translated cluster sequences, with the C. elegans genome providing more information than any other source. In addition to identifying putative nematode-specific and Tylenchida-specific genes, sequencing revealed previously uncharacterized horizontal gene transfer candidates in Meloidogyne with high identity to rhizobacterial genes including homologs of nodL acetyltransferase and novel cellulases. Conclusions With sequencing from plant parasitic nematodes accelerating, the approaches to transcript characterization described here can be applied to more extensive datasets and also provide a foundation for more complex genome analyses. PMID:12702207

  17. Identifying core gene modules in glioblastoma based on multilayer factor-mediated dysfunctional regulatory networks through integrating multi-dimensional genomic data

    PubMed Central

    Ping, Yanyan; Deng, Yulan; Wang, Li; Zhang, Hongyi; Zhang, Yong; Xu, Chaohan; Zhao, Hongying; Fan, Huihui; Yu, Fulong; Xiao, Yun; Li, Xia

    2015-01-01

    The driver genetic aberrations collectively regulate core cellular processes underlying cancer development. However, identifying the modules of driver genetic alterations and characterizing their functional mechanisms are still major challenges for cancer studies. Here, we developed an integrative multi-omics method CMDD to identify the driver modules and their affecting dysregulated genes through characterizing genetic alteration-induced dysregulated networks. Applied to glioblastoma (GBM), the CMDD identified a core gene module of 17 genes, including seven known GBM drivers, and their dysregulated genes. The module showed significant association with shorter survival of GBM. When classifying driver genes in the module into two gene sets according to their genetic alteration patterns, we found that one gene set directly participated in the glioma pathway, while the other indirectly regulated the glioma pathway, mostly, via their dysregulated genes. Both of the two gene sets were significant contributors to survival and helpful for classifying GBM subtypes, suggesting their critical roles in GBM pathogenesis. Also, by applying the CMDD to other six cancers, we identified some novel core modules associated with overall survival of patients. Together, these results demonstrate integrative multi-omics data can identify driver modules and uncover their dysregulated genes, which is useful for interpreting cancer genome. PMID:25653168

  18. Transcriptional response according to strength of calorie restriction in Saccharomyces cerevisiae.

    PubMed

    Lee, Yae-Lim; Lee, Cheol-Koo

    2008-09-30

    To characterize gene expression that is dependent on the strength of calorie restriction (CR), we obtained transcriptome at different levels of glucose, which is a major energy and carbon source for budding yeast. To faithfully mimic mammalian CR in yeast culture, we reconstituted and grew seeding yeast cells in fresh 2% YPD media before inoculating into 2%, 1%, 0.5% and 0.25% YPD media to reflect different CR strengths. We collected and characterized 160 genes that responded to CR strength based on the rigorous statistical analyses of multiple test corrected ANOVA (adjusted p0.7). Based on the individual gene studies and the GO Term Finder analysis of 160 genes, we found that CR dose-dependently and gradually increased mitochondrial function at the transcriptional level. Therefore, we suggest these 160 genes are markers that respond to CR strength and that might be useful in elucidating CR mechanisms, especially how stronger CR extends life span more.

  19. Microbial metatranscriptomics in a permanent marine oxygen minimum zone.

    PubMed

    Stewart, Frank J; Ulloa, Osvaldo; DeLong, Edward F

    2012-01-01

    Simultaneous characterization of taxonomic composition, metabolic gene content and gene expression in marine oxygen minimum zones (OMZs) has potential to broaden perspectives on the microbial and biogeochemical dynamics in these environments. Here, we present a metatranscriptomic survey of microbial community metabolism in the Eastern Tropical South Pacific OMZ off northern Chile. Community RNA was sampled in late austral autumn from four depths (50, 85, 110, 200 m) extending across the oxycline and into the upper OMZ. Shotgun pyrosequencing of cDNA yielded 180,000 to 550,000 transcript sequences per depth. Based on functional gene representation, transcriptome samples clustered apart from corresponding metagenome samples from the same depth, highlighting the discrepancies between metabolic potential and actual transcription. BLAST-based characterizations of non-ribosomal RNA sequences revealed a dominance of genes involved with both oxidative (nitrification) and reductive (anammox, denitrification) components of the marine nitrogen cycle. Using annotations of protein-coding genes as proxies for taxonomic affiliation, we observed depth-specific changes in gene expression by key functional taxonomic groups. Notably, transcripts most closely matching the genome of the ammonia-oxidizing archaeon Nitrosopumilus maritimus dominated the transcriptome in the upper three depths, representing one in five protein-coding transcripts at 85 m. In contrast, transcripts matching the anammox bacterium Kuenenia stuttgartiensis dominated at the core of the OMZ (200 m; 1 in 12 protein-coding transcripts). The distribution of N. maritimus-like transcripts paralleled that of transcripts matching ammonia monooxygenase genes, which, despite being represented by both bacterial and archaeal sequences in the community DNA, were dominated (> 99%) by archaeal sequences in the RNA, suggesting a substantial role for archaeal nitrification in the upper OMZ. These data, as well as those describing other key OMZ metabolic processes (e.g. sulfur oxidation), highlight gene-specific expression patterns in the context of the entire community transcriptome, as well as identify key functional groups for taxon-specific genomic profiling. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Employing conservation of co-expression to improve functional inference

    PubMed Central

    Daub, Carsten O; Sonnhammer, Erik LL

    2008-01-01

    Background Observing co-expression between genes suggests that they are functionally coupled. Co-expression of orthologous gene pairs across species may improve function prediction beyond the level achieved in a single species. Results We used orthology between genes of the three different species S. cerevisiae, D. melanogaster, and C. elegans to combine co-expression across two species at a time. This led to increased function prediction accuracy when we incorporated expression data from either of the other two species and even further increased when conservation across both of the two other species was considered at the same time. Employing the conservation across species to incorporate abundant model organism data for the prediction of protein interactions in poorly characterized species constitutes a very powerful annotation method. Conclusion To be able to employ the most suitable co-expression distance measure for our analysis, we evaluated the ability of four popular gene co-expression distance measures to detect biologically relevant interactions between pairs of genes. For the expression datasets employed in our co-expression conservation analysis above, we used the GO and the KEGG PATHWAY databases as gold standards. While the differences between distance measures were small, Spearman correlation showed to give most robust results. PMID:18808668

  1. Programming gene expression with combinatorial promoters

    PubMed Central

    Cox, Robert Sidney; Surette, Michael G; Elowitz, Michael B

    2007-01-01

    Promoters control the expression of genes in response to one or more transcription factors (TFs). The architecture of a promoter is the arrangement and type of binding sites within it. To understand natural genetic circuits and to design promoters for synthetic biology, it is essential to understand the relationship between promoter function and architecture. We constructed a combinatorial library of random promoter architectures. We characterized 288 promoters in Escherichia coli, each containing up to three inputs from four different TFs. The library design allowed for multiple −10 and −35 boxes, and we observed varied promoter strength over five decades. To further analyze the functional repertoire, we defined a representation of promoter function in terms of regulatory range, logic type, and symmetry. Using these results, we identified heuristic rules for programming gene expression with combinatorial promoters. PMID:18004278

  2. Genome complexity in the coelacanth is reflected in its adaptive immune system

    USGS Publications Warehouse

    Saha, Nil Ratan; Ota, Tatsuya; Litman, Gary W.; Hansen, John; Parra, Zuly; Hsu, Ellen; Buonocore, Francesco; Canapa, Adriana; Cheng, Jan-Fang; Amemiya, Chris T.

    2014-01-01

    We have analyzed the available genome and transcriptome resources from the coelacanth in order to characterize genes involved in adaptive immunity. Two highly distinctive IgW-encoding loci have been identified that exhibit a unique genomic organization, including a multiplicity of tandemly repeated constant region exons. The overall organization of the IgW loci precludes typical heavy chain class switching. A locus encoding IgM could not be identified either computationally or by using several different experimental strategies. Four distinct sets of genes encoding Ig light chains were identified. This includes a variant sigma-type Ig light chain previously identified only in cartilaginous fishes and which is now provisionally denoted sigma-2. Genes encoding α/β and γ/δ T-cell receptors, and CD3, CD4, and CD8 co-receptors also were characterized. Ig heavy chain variable region genes and TCR components are interspersed within the TCR α/δ locus; this organization previously was reported only in tetrapods and raises questions regarding evolution and functional cooption of genes encoding variable regions. The composition, organization and syntenic conservation of the major histocompatibility complex locus have been characterized. We also identified large numbers of genes encoding cytokines and their receptors, and other genes associated with adaptive immunity. In terms of sequence identity and organization, the adaptive immune genes of the coelacanth more closely resemble orthologous genes in tetrapods than those in teleost fishes, consistent with current phylogenomic interpretations. Overall, the work reported described herein highlights the complexity inherent in the coelacanth genome and provides a rich catalog of immune genes for future investigations.

  3. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments.

    PubMed

    Liu, Juanxu; Li, Jingyu; Wang, Huinan; Fu, Zhaodi; Liu, Juan; Yu, Yixun

    2011-01-01

    Ethylene-responsive element-binding factor (ERF) genes constitute one of the largest transcription factor gene families in plants. In Arabidopsis and rice, only a few ERF genes have been characterized so far. Flower senescence is associated with increased ethylene production in many flowers. However, the characterization of ERF genes in flower senescence has not been reported. In this study, 13 ERF cDNAs were cloned from petunia. Based on the sequence characterization, these PhERFs could be classified into four of the 12 known ERF families. Their predicted amino acid sequences exhibited similarities to ERFs from other plant species. Expression analyses of PhERF mRNAs were performed in corollas and gynoecia of petunia flower. The 13 PhERF genes displayed differential expression patterns and levels during natural flower senescence. Exogenous ethylene accelerates the transcription of the various PhERF genes, and silver thiosulphate (STS) decreased the transcription of several PhERF genes in corollas and gynoecia. PhERF genes of group VII showed a strong association with the rise in ethylene production in both petals and gynoecia, and might be associated particularly with flower senescence in petunia. The effect of sugar, methyl jasmonate, and the plant hormones abscisic acid, salicylic acid, and 6-benzyladenine in regulating the different PhERF transcripts was investigated. Functional nuclear localization signal analyses of two PhERF proteins (PhERF2 and PhERF3) were carried out using fluorescence microscopy. These results supported a role for petunia PhERF genes in transcriptional regulation of petunia flower senescence processes.

  4. The ergot alkaloid gene cluster: functional analyses and evolutionary aspects.

    PubMed

    Lorenz, Nicole; Haarmann, Thomas; Pazoutová, Sylvie; Jung, Manfred; Tudzynski, Paul

    2009-01-01

    Ergot alkaloids and their derivatives have been traditionally used as therapeutic agents in migraine, blood pressure regulation and help in childbirth and abortion. Their production in submerse culture is a long established biotechnological process. Ergot alkaloids are produced mainly by members of the genus Claviceps, with Claviceps purpurea as best investigated species concerning the biochemistry of ergot alkaloid synthesis (EAS). Genes encoding enzymes involved in EAS have been shown to be clustered; functional analyses of EAS cluster genes have allowed to assign specific functions to several gene products. Various Claviceps species differ with respect to their host specificity and their alkaloid content; comparison of the ergot alkaloid clusters in these species (and of clavine alkaloid clusters in other genera) yields interesting insights into the evolution of cluster structure. This review focuses on recently published and also yet unpublished data on the structure and evolution of the EAS gene cluster and on the function and regulation of cluster genes. These analyses have also significant biotechnological implications: the characterization of non-ribosomal peptide synthetases (NRPS) involved in the synthesis of the peptide moiety of ergopeptines opened interesting perspectives for the synthesis of ergot alkaloids; on the other hand, defined mutants could be generated producing interesting intermediates or only single peptide alkaloids (instead of the alkaloid mixtures usually produced by industrial strains).

  5. STM/BP-Like KNOXI Is Uncoupled from ARP in the Regulation of Compound Leaf Development in Medicago truncatula[C][W][OPEN

    PubMed Central

    Zhou, Chuanen; Han, Lu; Li, Guifen; Chai, Maofeng; Fu, Chunxiang; Cheng, Xiaofei; Wen, Jiangqi; Tang, Yuhong; Wang, Zeng-Yu

    2014-01-01

    Class I KNOTTED-like homeobox (KNOXI) genes are critical for the maintenance of the shoot apical meristem. The expression domain of KNOXI is regulated by ASYMMETRIC LEAVES1/ROUGHSHEATH2/PHANTASTICA (ARP) genes, which are associated with leaf morphology. In the inverted repeat-lacking clade (IRLC) of Fabaceae, the orthologs of LEAFY (LFY) function in place of KNOXI to regulate compound leaf development. Here, we characterized loss-of-function mutants of ARP (PHAN) and SHOOTMERISTEMLESS (STM)- and BREVIPEDICELLUS (BP)-like KNOXI in the model IRLC legume species Medicago truncatula. The function of ARP genes is species specific. The repression of STM/BP-like KNOXI genes in leaves is not mediated by PHAN, and no suppression of PHAN by STM/BP-like KNOXI genes was observed either, indicating that STM/BP-like KNOXI genes are uncoupled from PHAN in M. truncatula. Furthermore, comparative analyses of phenotypic output in response to ectopic expression of KNOXI and the M. truncatula LFY ortholog, SINGLE LEAFLET1 (SGL1), reveal that KNOXI and SGL1 regulate parallel pathways in leaf development. We propose that SGL1 probably functions in a stage-specific manner in the regulation of the indeterminate state of developing leaves in M. truncatula. PMID:24781113

  6. Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music.

    PubMed

    Ukkola-Vuoti, Liisa; Kanduri, Chakravarthi; Oikkonen, Jaana; Buck, Gemma; Blancher, Christine; Raijas, Pirre; Karma, Kai; Lähdesmäki, Harri; Järvelä, Irma

    2013-01-01

    Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire.Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception related traits and supports the previous results from AP study.

  7. Genome-Wide Copy Number Variation Analysis in Extended Families and Unrelated Individuals Characterized for Musical Aptitude and Creativity in Music

    PubMed Central

    Oikkonen, Jaana; Buck, Gemma; Blancher, Christine; Raijas, Pirre; Karma, Kai; Lähdesmäki, Harri; Järvelä, Irma

    2013-01-01

    Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire. Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception related traits and supports the previous results from AP study. PMID:23460800

  8. Prediction of operon-like gene clusters in the Arabidopsis thaliana genome based on co-expression analysis of neighboring genes.

    PubMed

    Wada, Masayoshi; Takahashi, Hiroki; Altaf-Ul-Amin, Md; Nakamura, Kensuke; Hirai, Masami Y; Ohta, Daisaku; Kanaya, Shigehiko

    2012-07-15

    Operon-like arrangements of genes occur in eukaryotes ranging from yeasts and filamentous fungi to nematodes, plants, and mammals. In plants, several examples of operon-like gene clusters involved in metabolic pathways have recently been characterized, e.g. the cyclic hydroxamic acid pathways in maize, the avenacin biosynthesis gene clusters in oat, the thalianol pathway in Arabidopsis thaliana, and the diterpenoid momilactone cluster in rice. Such operon-like gene clusters are defined by their co-regulation or neighboring positions within immediate vicinity of chromosomal regions. A comprehensive analysis of the expression of neighboring genes therefore accounts a crucial step to reveal the complete set of operon-like gene clusters within a genome. Genome-wide prediction of operon-like gene clusters should contribute to functional annotation efforts and provide novel insight into evolutionary aspects acquiring certain biological functions as well. We predicted co-expressed gene clusters by comparing the Pearson correlation coefficient of neighboring genes and randomly selected gene pairs, based on a statistical method that takes false discovery rate (FDR) into consideration for 1469 microarray gene expression datasets of A. thaliana. We estimated that A. thaliana contains 100 operon-like gene clusters in total. We predicted 34 statistically significant gene clusters consisting of 3 to 22 genes each, based on a stringent FDR threshold of 0.1. Functional relationships among genes in individual clusters were estimated by sequence similarity and functional annotation of genes. Duplicated gene pairs (determined based on BLAST with a cutoff of E<10(-5)) are included in 27 clusters. Five clusters are associated with metabolism, containing P450 genes restricted to the Brassica family and predicted to be involved in secondary metabolism. Operon-like clusters tend to include genes encoding bio-machinery associated with ribosomes, the ubiquitin/proteasome system, secondary metabolic pathways, lipid and fatty-acid metabolism, and the lipid transfer system. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Characterization of a Mutant Deficient for Ammonium and Nitric Oxide Signalling in the Model System Chlamydomonas reinhardtii

    PubMed Central

    Sanz-Luque, Emanuel; Ocaña-Calahorro, Francisco; Galván, Aurora; Fernández, Emilio; de Montaigu, Amaury

    2016-01-01

    The ubiquitous signalling molecule Nitric Oxide (NO) is characterized not only by the variety of organisms in which it has been described, but also by the wealth of biological processes that it regulates. In contrast to the expanding repertoire of functions assigned to NO, however, the mechanisms of NO action usually remain unresolved, and genes that work within NO signalling cascades are seldom identified. A recent addition to the list of known NO functions is the regulation of the nitrogen assimilation pathway in the unicellular alga Chlamydomonas reinhardtii, a well-established model organism for genetic and molecular studies that offers new possibilities in the search for mediators of NO signalling. By further exploiting a collection of Chlamydomonas insertional mutant strains originally isolated for their insensitivity to the ammonium (NH4+) nitrogen source, we found a mutant which, in addition to its ammonium insensitive (AI) phenotype, was not capable of correctly sensing the NO signal. Similarly to what had previously been described in the AI strain cyg56, the expression of nitrogen assimilation genes in the mutant did not properly respond to treatments with various NO donors. Complementation experiments showed that NON1 (NO Nitrate 1), a gene that encodes a protein containing no known functional domain, was the gene underlying the mutant phenotype. Beyond the identification of NON1, our findings broadly demonstrate the potential for Chlamydomonas reinhardtii to be used as a model system in the search for novel components of gene networks that mediate physiological responses to NO. PMID:27149516

  10. Protein Kinase A Deregulation in the Medial Prefrontal Cortex Impairs Working Memory in Murine Oligophrenin-1 Deficiency.

    PubMed

    Zhang, Chun-Lei; Aime, Mattia; Laheranne, Emilie; Houbaert, Xander; El Oussini, Hajer; Martin, Christelle; Lepleux, Marilyn; Normand, Elisabeth; Chelly, Jamel; Herzog, Etienne; Billuart, Pierre; Humeau, Yann

    2017-11-15

    Classical and systems genetics have identified wide networks of genes associated with cognitive and neurodevelopmental diseases. In parallel to deciphering the role of each of these genes in neuronal or synaptic function, evaluating the response of neuronal and molecular networks to gene loss of function could reveal some pathophysiological mechanisms potentially accessible to nongenetic therapies. Loss of function of the Rho-GAP oligophrenin-1 is associated with cognitive impairments in both human and mouse. Upregulation of both PKA and ROCK has been reported in Ophn1 -/ y mice, but it remains unclear whether kinase hyperactivity contributes to the behavioral phenotypes. In this study, we thoroughly characterized a prominent perseveration phenotype displayed by Ophn1 -deficient mice using a Y-maze spatial working memory (SWM) test. We report that Ophn1 deficiency in the mouse generated severe cognitive impairments, characterized by both a high occurrence of perseverative behaviors and a lack of deliberation during the SWM test. In vivo and in vitro pharmacological experiments suggest that PKA dysregulation in the mPFC underlies cognitive dysfunction in Ophn1 -deficient mice, as assessed using a delayed spatial alternation task results. Functionally, mPFC neuronal networks appeared to be affected in a PKA-dependent manner, whereas hippocampal-PFC projections involved in SWM were not affected in Ophn1 -/y mice. Thus, we propose that discrete gene mutations in intellectual disability might generate "secondary" pathophysiological mechanisms, which are prone to become pharmacological targets for curative strategies in adult patients. SIGNIFICANCE STATEMENT Here we report that Ophn1 deficiency generates severe impairments in performance at spatial working memory tests, characterized by a high occurrence of perseverative behaviors and a lack of decision making. This cognitive deficit is consecutive to PKA deregulation in the mPFC that prevents Ophn1 KO mice to exploit a correctly acquired rule. Functionally, mPFC neuronal networks appear to be affected in a PKA-dependent manner, whereas behaviorally important hippocampal projections were preserved by the mutation. Thus, we propose that discrete gene mutations in intellectual disability can generate "secondary" pathophysiological mechanisms prone to become pharmacological targets for curative strategies in adults. Copyright © 2017 the authors 0270-6474/17/3711114-13$15.00/0.

  11. Genome-wide characterization of the Pectate Lyase-like (PLL) genes in Brassica rapa.

    PubMed

    Jiang, Jingjing; Yao, Lina; Miao, Ying; Cao, Jiashu

    2013-11-01

    Pectate lyases (PL) depolymerize demethylated pectin (pectate, EC 4.2.2.2) by catalyzing the eliminative cleavage of α-1,4-glycosidic linked galacturonan. Pectate Lyase-like (PLL) genes are one of the largest and most complex families in plants. However, studies on the phylogeny, gene structure, and expression of PLL genes are limited. To understand the potential functions of PLL genes in plants, we characterized their intron-exon structure, phylogenetic relationships, and protein structures, and measured their expression patterns in various tissues, specifically the reproductive tissues in Brassica rapa. Sequence alignments revealed two characteristic motifs in PLL genes. The chromosome location analysis indicated that 18 of the 46 PLL genes were located in the least fractionated sub-genome (LF) of B. rapa, while 16 were located in the medium fractionated sub-genome (MF1) and 12 in the more fractionated sub-genome (MF2). Quantitative RT-PCR analysis showed that BrPLL genes were expressed in various tissues, with most of them being expressed in flowers. Detailed qRT-PCR analysis identified 11 pollen specific PLL genes and several other genes with unique spatial expression patterns. In addition, some duplicated genes showed similar expression patterns. The phylogenetic analysis identified three PLL gene subfamilies in plants, among which subfamily II might have evolved from gene neofunctionalization or subfunctionalization. Therefore, this study opens the possibility for exploring the roles of PLL genes during plant development.

  12. The function of dog models in developing gene therapy strategies for human health.

    PubMed

    Nowend, Keri L; Starr-Moss, Alison N; Murphy, Keith E

    2011-08-01

    The domestic dog is of great benefit to humankind, not only through companionship and working activities cultivated through domestication and selective breeding, but also as a model for biomedical research. Many single-gene traits have been well-characterized at the genomic level, and recent advances in whole-genome association studies will allow for better understanding of complex, multigenic hereditary diseases. Additionally, the dog serves as an invaluable large animal model for assessment of novel therapeutic agents. Thus, the dog has filled a crucial step in the translation of basic research to new treatment regimens for various human diseases. Four well-characterized diseases in canine models are discussed as they relate to other animal model availability, novel therapeutic approach, and extrapolation to human gene therapy trials.

  13. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation

    PubMed Central

    Tang, Ho Man; Liu, Sanzhen; Hill-Skinner, Sarah; Wu, Wei; Reed, Danielle; Yeh, Cheng-Ting; Nettleton, Dan; Schnable, Patrick S

    2014-01-01

    The midribs of maize brown midrib (bm) mutants exhibit a reddish-brown color associated with reductions in lignin concentration and alterations in lignin composition. Here, we report the mapping, cloning, and functional and biochemical analyses of the bm2 gene. The bm2 gene was mapped to a small region of chromosome 1 that contains a putative methylenetetrahydrofolate reductase (MTHFR) gene, which is down-regulated in bm2 mutant plants. Analyses of multiple Mu-induced bm2-Mu mutant alleles confirmed that this constitutively expressed gene is bm2. Yeast complementation experiments and a previously published biochemical characterization show that the bm2 gene encodes a functional MTHFR. Quantitative RT-PCR analyses demonstrated that the bm2 mutants accumulate substantially reduced levels of bm2 transcript. Alteration of MTHFR function is expected to influence accumulation of the methyl donor S-adenosyl-l-methionine (SAM). Because SAM is consumed by two methyltransferases in the lignin pathway (Ye et al., 1994), the finding that bm2 encodes a functional MTHFR is consistent with its lignin phenotype. Consistent with this functional assignment of bm2, the expression patterns of genes in a variety of SAM-dependent or -related pathways, including lignin biosynthesis, are altered in the bm2 mutant. Biochemical assays confirmed that bm2 mutants accumulate reduced levels of lignin with altered composition compared to wild-type. Hence, this study demonstrates a role for MTHFR in lignin biosynthesis. PMID:24286468

  14. MAISTAS: a tool for automatic structural evaluation of alternative splicing products.

    PubMed

    Floris, Matteo; Raimondo, Domenico; Leoni, Guido; Orsini, Massimiliano; Marcatili, Paolo; Tramontano, Anna

    2011-06-15

    Analysis of the human genome revealed that the amount of transcribed sequence is an order of magnitude greater than the number of predicted and well-characterized genes. A sizeable fraction of these transcripts is related to alternatively spliced forms of known protein coding genes. Inspection of the alternatively spliced transcripts identified in the pilot phase of the ENCODE project has clearly shown that often their structure might substantially differ from that of other isoforms of the same gene, and therefore that they might perform unrelated functions, or that they might even not correspond to a functional protein. Identifying these cases is obviously relevant for the functional assignment of gene products and for the interpretation of the effect of variations in the corresponding proteins. Here we describe a publicly available tool that, given a gene or a protein, retrieves and analyses all its annotated isoforms, provides users with three-dimensional models of the isoform(s) of his/her interest whenever possible and automatically assesses whether homology derived structural models correspond to plausible structures. This information is clearly relevant. When the homology model of some isoforms of a gene does not seem structurally plausible, the implications are that either they assume a structure unrelated to that of the other isoforms of the same gene with presumably significant functional differences, or do not correspond to functional products. We provide indications that the second hypothesis is likely to be true for a substantial fraction of the cases. http://maistas.bioinformatica.crs4.it/.

  15. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.

    PubMed

    Wei, Pi-Jing; Zhang, Di; Xia, Junfeng; Zheng, Chun-Hou

    2016-12-23

    Cancer is a complex disease which is characterized by the accumulation of genetic alterations during the patient's lifetime. With the development of the next-generation sequencing technology, multiple omics data, such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual. Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which contributes to tumorigenesis, from millions of functional neutral passenger mutations. In this paper, in order to identify driver genes effectively, we applied a generalized additive model to mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed method Length-Net-Driver (LNDriver). Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can identify not only frequently mutated drivers, but also rare candidate driver genes.

  16. Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses

    PubMed Central

    2012-01-01

    Background Carotenoids are isoprenoid pigments, essential for photosynthesis and photoprotection in plants. The enzyme phytoene synthase (PSY) plays an essential role in mediating condensation of two geranylgeranyl diphosphate molecules, the first committed step in carotenogenesis. PSY are nuclear enzymes encoded by a small gene family consisting of three paralogous genes (PSY1-3) that have been widely characterized in rice, maize and sorghum. Results In wheat, for which yellow pigment content is extremely important for flour colour, only PSY1 has been extensively studied because of its association with QTLs reported for yellow pigment whereas PSY2 has been partially characterized. Here, we report the isolation of bread wheat PSY3 genes from a Renan BAC library using Brachypodium as a model genome for the Triticeae to develop Conserved Orthologous Set markers prior to gene cloning and sequencing. Wheat PSY3 homoeologous genes were sequenced and annotated, unravelling their novel structure associated with intron-loss events and consequent exonic fusions. A wheat PSY3 promoter region was also investigated for the presence of cis-acting elements involved in the response to abscisic acid (ABA), since carotenoids also play an important role as precursors of signalling molecules devoted to plant development and biotic/abiotic stress responses. Expression of wheat PSYs in leaves and roots was investigated during ABA treatment to confirm the up-regulation of PSY3 during abiotic stress. Conclusions We investigated the structural and functional determinisms of PSY genes in wheat. More generally, among eudicots and monocots, the PSY gene family was found to be associated with differences in gene copy numbers, allowing us to propose an evolutionary model for the entire PSY gene family in Grasses. PMID:22672222

  17. Identification and Characterization of Candidate Chemosensory Gene Families from Spodoptera exigua Developmental Transcriptomes

    PubMed Central

    Liu, Nai-Yong; Zhang, Ting; Ye, Zhan-Feng; Li, Fei; Dong, Shuang-Lin

    2015-01-01

    Insect chemosensory genes have been considered as potential molecular targets to develop alternative strategies for pest control. However, in Spodoptera exigua, a seriously polyphagous agricultural pest, only a small part of such genes have been identified and characterized to date. Here, using a bioinformatics screen a total of 79 chemosensory genes were identified from a public transcriptomic data of different developmental stages (eggs, 1st to 5th instar larvae, pupae, female and male adults), including 34 odorant binding proteins (OBPs), 20 chemosensory proteins (CSPs), 22 chemosensory receptors (10 odorant receptors (ORs), six gustatory receptors (GRs) and six ionotropic receptors (IRs)) and three sensory neuron membrane proteins (SNMPs). Notably, a new group of lepidopteran SNMPs (SNMP3 group) was found for the first time in S. exigua, and confirmed in four other moth species. Further, reverse transcription PCR (RT-PCR) and quantitative real time PCR (qPCR) were employed respectively to validate the sequences and determine the expression patterns of 69 identified chemosensory genes regarding to sexes, tissues and stages. Results showed that 67 of these genes could be detected and reconstructed in at least one tissue tested. Further, 60 chemosensory genes were expressed in adult antennae and 52 in larval heads with the antennae, whereas over half of the genes were also detected in non-olfactory tissues like egg and thorax. Particularly, S. exigua OBP2 showed a predominantly larval head-biased expression, and functional studies further indicated its potentially olfactory roles in guiding food searching of larvae. This work suggests functional diversities of S. exigua chemosensory genes and could greatly facilitate the understanding of olfactory system in S. exigua and other lepidopteran species. PMID:26221071

  18. De Novo Characterization of the Spleen Transcriptome of the Large Yellow Croaker (Pseudosciaena crocea) and Analysis of the Immune Relevant Genes and Pathways Involved in the Antiviral Response

    PubMed Central

    Ding, Yang; Ao, Jingqun; Hu, Songnian; Chen, Xinhua

    2014-01-01

    The large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China. To understand the molecular basis for antiviral defense in this species, we used Illumia paired-end sequencing to characterize the spleen transcriptome of polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced large yellow croakers. The library produced 56,355,728 reads and assembled into 108,237 contigs. As a result, 15,192 unigenes were found from this transcriptome. Gene ontology analysis showed that 4,759 genes were involved in three major functional categories: biological process, cellular component, and molecular function. We further ascertained that numerous consensus sequences were homologous to known immune-relevant genes. Kyoto Encyclopedia of Genes and Genomes orthology mapping annotated 5,389 unigenes and identified numerous immune-relevant pathways. These immune-relevant genes and pathways revealed major antiviral immunity effectors, including but not limited to: pattern recognition receptors, adaptors and signal transducers, the interferons and interferon-stimulated genes, inflammatory cytokines and receptors, complement components, and B-cell and T-cell antigen activation molecules. Moreover, the partial genes of Toll-like receptor signaling pathway, RIG-I-like receptors signaling pathway, Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and T-cell receptor (TCR) signaling pathway were found to be changed after poly(I:C) induction by real-time polymerase chain reaction (PCR) analysis, suggesting that these signaling pathways may be regulated by poly(I:C), a viral mimic. Overall, the antivirus-related genes and signaling pathways that were identified in response to poly(I:C) challenge provide valuable leads for further investigation of the antiviral defense mechanism in the large yellow croaker. PMID:24820969

  19. Methods to identify and analyze gene products involved in neuronal intracellular transport using Drosophila

    PubMed Central

    Neisch, Amanda L.; Avery, Adam W.; Machame, James B.; Li, Min-gang; Hays, Thomas S.

    2017-01-01

    Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila. PMID:26794520

  20. pico-PLAZA, a genome database of microbial photosynthetic eukaryotes.

    PubMed

    Vandepoele, Klaas; Van Bel, Michiel; Richard, Guilhem; Van Landeghem, Sofie; Verhelst, Bram; Moreau, Hervé; Van de Peer, Yves; Grimsley, Nigel; Piganeau, Gwenael

    2013-08-01

    With the advent of next generation genome sequencing, the number of sequenced algal genomes and transcriptomes is rapidly growing. Although a few genome portals exist to browse individual genome sequences, exploring complete genome information from multiple species for the analysis of user-defined sequences or gene lists remains a major challenge. pico-PLAZA is a web-based resource (http://bioinformatics.psb.ugent.be/pico-plaza/) for algal genomics that combines different data types with intuitive tools to explore genomic diversity, perform integrative evolutionary sequence analysis and study gene functions. Apart from homologous gene families, multiple sequence alignments, phylogenetic trees, Gene Ontology, InterPro and text-mining functional annotations, different interactive viewers are available to study genome organization using gene collinearity and synteny information. Different search functions, documentation pages, export functions and an extensive glossary are available to guide non-expert scientists. To illustrate the versatility of the platform, different case studies are presented demonstrating how pico-PLAZA can be used to functionally characterize large-scale EST/RNA-Seq data sets and to perform environmental genomics. Functional enrichments analysis of 16 Phaeodactylum tricornutum transcriptome libraries offers a molecular view on diatom adaptation to different environments of ecological relevance. Furthermore, we show how complementary genomic data sources can easily be combined to identify marker genes to study the diversity and distribution of algal species, for example in metagenomes, or to quantify intraspecific diversity from environmental strains. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

Top