Science.gov

Sample records for gene mutation analysis

  1. Patient-oriented gene set analysis for cancer mutation data.

    PubMed

    Boca, Simina M; Kinzler, Kenneth W; Velculescu, Victor E; Vogelstein, Bert; Parmigiani, Giovanni

    2010-01-01

    Recent research has revealed complex heterogeneous genomic landscapes in human cancers. However, mutations tend to occur within a core group of pathways and biological processes that can be grouped into gene sets. To better understand the significance of these pathways, we have developed an approach that initially scores each gene set at the patient rather than the gene level. In mutation analysis, these patient-oriented methods are more transparent, interpretable, and statistically powerful than traditional gene-oriented methods.

  2. Mutational analysis of the human MAOA gene

    SciTech Connect

    Tivol, E.A.; Shalish, C.; Schuback, D.E.; Breakefield, X.O.; Hsu, Yun-Pung

    1996-02-16

    The monoamine oxidases (MAO-A and MAO-B) are the enzymes primarily responsible for the degradation of amine neurotransmitters, such as dopamine, norepinephrine, and serotonin. Wide variations in activity of these isozymes have been reported in control humans. The MAOA and MAOB genes are located next to each other in the p11.3-11.4 region of the human X chromosome. Our recent documentation of an MAO-A-deficiency state, apparently associated with impulsive aggressive behavior in males, has focused attention on genetic variations in the MAOA gene. In the present study, variations in the coding sequence of the MAOA gene were evaluated by RT-PCR, SSCP, and sequencing of mRNA or genomic DNA in 40 control males with >100-fold variations in MAOA activity, as measured in cultured skin fibroblasts. Remarkable conservation of the coding sequence was found, with only 5 polymorphisms observed. All but one of these were in the third codon position and thus did not alter the deduced amino acid sequence. The one amino acid alteration observed, lys{r_arrow}arg, was neutral and should not affect the structure of the protein. This study demonstrates high conservation of coding sequence in the human MAOA gene in control males, and provides primer sets which can be used to search genomic DNA for mutations in this gene in males with neuropsychiatric conditions. 47 refs., 1 fig., 2 tabs.

  3. Mutational analysis of adrenoleukodystrophy (ALD) gene in Japanese ALD patients

    SciTech Connect

    Koike, R.; Onodera, O.; Tabe, H.

    1994-09-01

    Recently a putative ALD gene containing a striking homology with peroxisomal membrane protein (PMP70) has been identified. Besides childhood ALD, various clinical phenotypes have been identified with the onset in adolescence or adulthood (adrenomyeloneuropathy (AMN), adult cerebral ALD or cerebello-brainstem dominant type). The different clinical phenotypes occasionally coexist even in the same family. To investigate if there is a correlation between the clinical phenotypes and genotypes of the mutations in the ALD gene, we have analyzed 43 Japanese ALD patients. By Southern blot analysis, we identified non-overlapping deletions of 0.5 kb to 10.4 kb involving the ALD gene in 3 patients with adult onset cerebello-brainstem dominant type. By detailed direct sequence analysis, we found 4 patients who had point mutations in the coding region. An AMN patient had a point mutation leading to {sup 266}Gly{r_arrow}Arg change, and another patient with adult cerebral ALD had a 3 bp deletion resulting in the loss of glutamic acid at codon 291, which is a conserved amino acid both in ALD protein and PMP70. Two patients with childhood ALD had point mutations leading to {sup 507}Gly{r_arrow}Val, and {sup 518}Arg{r_arrow}Gln, respectively. Since amino acids from 507 to 520 are highly conserved as ATP-binding cassette transporter proteins, mutations in this region are expected to result in dramatic changes of the function of this protein. Although there is a tendancy for mutation in childhood ALD to be present within the ATP-binding site motif, we found two adult patients who had large deletions involving the region. Taken together, strong correlation between genotypes and clinical phenotypes is unlikely to exist, and some other modifying factors might well play an important role for the clinical manifestations of ALD.

  4. Mutation analysis of the Fanconi Anemia Gene FACC

    SciTech Connect

    Verlander, P.C.; Lin, J.D.; Udono, M.U.; Zhang, Q.; Auerbach, A.D. ); Gibson, R.A.; Mathew, C.G. )

    1994-04-01

    Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. The authors have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. They have identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14. Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A [yields] T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in the study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A [yields] T have Jewish ancestry and have a severe phenotype. 19 refs., 1 fig., 3 tabs.

  5. Systematic analysis of somatic mutations impacting gene expression in 12 tumour types

    PubMed Central

    Ding, Jiarui; McConechy, Melissa K.; Horlings, Hugo M.; Ha, Gavin; Chun Chan, Fong; Funnell, Tyler; Mullaly, Sarah C.; Reimand, Jüri; Bashashati, Ali; Bader, Gary D.; Huntsman, David; Aparicio, Samuel; Condon, Anne; Shah, Sohrab P.

    2015-01-01

    We present a novel hierarchical Bayes statistical model, xseq, to systematically quantify the impact of somatic mutations on expression profiles. We establish the theoretical framework and robust inference characteristics of the method using computational benchmarking. We then use xseq to analyse thousands of tumour data sets available through The Cancer Genome Atlas, to systematically quantify somatic mutations impacting expression profiles. We identify 30 novel cis-effect tumour suppressor gene candidates, enriched in loss-of-function mutations and biallelic inactivation. Analysis of trans-effects of mutations and copy number alterations with xseq identifies mutations in 150 genes impacting expression networks, with 89 novel predictions. We reveal two important novel characteristics of mutation impact on expression: (1) patients harbouring known driver mutations exhibit different downstream gene expression consequences; (2) expression patterns for some mutations are stable across tumour types. These results have critical implications for identification and interpretation of mutations with consequent impact on transcription in cancer. PMID:26436532

  6. Analysis of gene mutations among South Indian patients with maple syrup urine disease: identification of four novel mutations.

    PubMed

    Narayanan, M P; Menon, Krishnakumar N; Vasudevan, D M

    2013-10-01

    Maple syrup urine disease (MSUD) is predominantly caused by mutations in the BCKDHA, BCKDHB and DBT genes, which encode for the E1alpha, E1beta and E2 subunits of the branched-chain alpha-keto acid dehydrogenase complex, respectively. Because disease causing mutations play a major role in the development of the disease, prenatal diagnosis at gestational level may have significance in making decisions by parents. Thus, this study was aimed to screen South Indian MSUD patients for mutations and assess the genotype-phenotype correlation. Thirteen patients diagnosed with MSUD by conventional biochemical screening such as urine analysis by DNPH test, thin layer chromatography for amino acids and blood amino acid quantification by HPLC were selected for mutation analysis. The entire coding regions of the BCKDHA, BCKDHB and DBT genes were analyzed for mutations by PCR-based direct DNA sequencing. BCKDHA and BCKDHB mutations were seen in 43% of the total ten patients, while disease-causing DBT gene mutation was observed only in 14%. Three patients displayed no mutations. Novel mutations were c.130C>T in BCKDHA gene, c. 599C>T and c.121_122delAC in BCKDHB gene and c.190G>A in DBT gene. Notably, patients harbouring these mutations were non-responsive to thiamine supplementation and other treatment regimens and might have a worse prognosis as compared to the patients not having such mutations. Thus, identification of these mutations may have a crucial role in the treatment as well as understanding the molecular mechanisms in MSUD. PMID:24772966

  7. Mutational analysis of a histone deacetylase in Drosophila melanogaster: missense mutations suppress gene silencing associated with position effect variegation.

    PubMed Central

    Mottus, R; Sobel, R E; Grigliatti, T A

    2000-01-01

    For many years it has been noted that there is a correlation between acetylation of histones and an increase in transcriptional activity. One prediction, based on this correlation, is that hypomorphic or null mutations in histone deacetylase genes should lead to increased levels of histone acetylation and result in increased levels of transcription. It was therefore surprising when it was reported, in both yeast and fruit flies, that mutations that reduced or eliminated a histone deacetylase resulted in transcriptional silencing of genes subject to telomeric and heterochromatic position effect variegation (PEV). Here we report the first mutational analysis of a histone deacetylase in a multicellular eukaryote by examining six new mutations in HDAC1 of Drosophila melanogaster. We observed a suite of phenotypes accompanying the mutations consistent with the notion that HDAC1 acts as a global transcriptional regulator. However, in contrast to recent findings, here we report that specific missense mutations in the structural gene of HDAC1 suppress the silencing of genes subject to PEV. We propose that the missense mutations reported here are acting as antimorphic mutations that "poison" the deacetylase complex and propose a model that accounts for the various phenotypes associated with lesions in the deacetylase locus. PMID:10655219

  8. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  9. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  10. Identification of gene mutation in patients with osteogenesis imperfect using high resolution melting analysis

    PubMed Central

    Wang, Jianhai; Ren, Xiuzhi; Bai, Xue; Zhang, Tianke; Wang, Yi; Li, Keqiu; Li, Guang

    2015-01-01

    Osteogenesis imperfecta (OI), a congenital bone disorder, is caused by mutations in COL1A1 and COL1A2 genes, leading to deficiency of type I collagen. The high resolution melting (HRM) analysis has been used for detecting mutations, polymorphisms and epigenetic alteration in double-stranded DNAs. This study was to evaluate the potential application of HRM analysis for identifying gene mutations in patients with OI. This study included four children with OI and their parents and fifty normal people as controls. Blood samples were collected for HRM analysis of PCR-amplified exons and flanking DNA sequences of COL1A1 and COL1A2 genes. Direct gene sequencing was performed to validate HRM-identified gene mutations. As compared to controls, HRM analysis of samples form children with OI showed abnormal melting curves in exons 11 and 33–34 of the COL1A1 gene and exons 19 and 48 of the COL1A2 gene, which indicates the presence of heterozygous mutations in COL1A1 and COL1A2 genes. In addition to two known mutations in the COL1A2 gene, c.982G > A and c.3197G > T, sequencing analysis identified two novel mutations in the COL1A1 gene, c.2321delC and c.768dupC mutations, which function as premature stop codons. These results support future studies of applying HRM analysis as a diagnostic approach for OI. PMID:26307460

  11. Identification of gene mutation in patients with osteogenesis imperfect using high resolution melting analysis.

    PubMed

    Wang, Jianhai; Ren, Xiuzhi; Bai, Xue; Zhang, Tianke; Wang, Yi; Li, Keqiu; Li, Guang

    2015-01-01

    Osteogenesis imperfecta (OI), a congenital bone disorder, is caused by mutations in COL1A1 and COL1A2 genes, leading to deficiency of type I collagen. The high resolution melting (HRM) analysis has been used for detecting mutations, polymorphisms and epigenetic alteration in double-stranded DNAs. This study was to evaluate the potential application of HRM analysis for identifying gene mutations in patients with OI. This study included four children with OI and their parents and fifty normal people as controls. Blood samples were collected for HRM analysis of PCR-amplified exons and flanking DNA sequences of COL1A1 and COL1A2 genes. Direct gene sequencing was performed to validate HRM-identified gene mutations. As compared to controls, HRM analysis of samples form children with OI showed abnormal melting curves in exons 11 and 33-34 of the COL1A1 gene and exons 19 and 48 of the COL1A2 gene, which indicates the presence of heterozygous mutations in COL1A1 and COL1A2 genes. In addition to two known mutations in the COL1A2 gene, c.982G > A and c.3197G > T, sequencing analysis identified two novel mutations in the COL1A1 gene, c.2321delC and c.768dupC mutations, which function as premature stop codons. These results support future studies of applying HRM analysis as a diagnostic approach for OI. PMID:26307460

  12. Mutation analysis of 13 driver genes of colorectal cancer-related pathways in Taiwanese patients

    PubMed Central

    Chang, Yuli Christine; Chang, Jan-Gowth; Liu, Ta-Chih; Lin, Chien-Yu; Yang, Shu-Fen; Ho, Cheng-Mao; Chen, William Tzu-Liang; Chang, Ya-Sian

    2016-01-01

    AIM: To investigate the driver gene mutations associated with colorectal cancer (CRC) in the Taiwanese population. METHODS: In this study, 103 patients with CRC were evaluated. The samples consisted of 66 men and 37 women with a median age of 59 years and an age range of 26-86 years. We used high-resolution melting analysis (HRM) and direct DNA sequencing to characterize the mutations in 13 driver genes of CRC-related pathways. The HRM assays were conducted using the LightCycler® 480 Instrument provided with the software LightCycler® 480 Gene Scanning Software Version 1.5. We also compared the clinicopathological data of CRC patients with the driver gene mutation status. RESULTS: Of the 103 patients evaluated, 73.79% had mutations in one of the 13 driver genes. We discovered 18 novel mutations in APC, MLH1, MSH2, PMS2, SMAD4 and TP53 that have not been previously reported. Additionally, we found 16 de novo mutations in APC, BMPR1A, MLH1, MSH2, MSH6, MUTYH and PMS2 in cancerous tissues previously reported in the dbSNP database; however, these mutations could not be detected in peripheral blood cells. The APC mutation correlates with lymph node metastasis (34.69% vs 12.96%, P = 0.009) and cancer stage (34.78% vs 14.04%, P = 0.013). No association was observed between other driver gene mutations and clinicopathological features. Furthermore, having two or more driver gene mutations correlates with the degree of lymph node metastasis (42.86% vs 24.07%, P = 0.043). CONCLUSION: Our findings confirm the importance of 13 CRC-related pathway driver genes in the development of CRC in Taiwanese patients. PMID:26900293

  13. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    SciTech Connect

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R.; Moxley, R.T.

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  14. Sequence analysis of tyrosinase gene in ocular and oculocutaneous albinism patients: introducing three novel mutations

    PubMed Central

    Khordadpoor-Deilamani, Faravareh; Karimipoor, Morteza; Javadi, Gholamreza

    2015-01-01

    Purpose Albinism is a heterogeneous genetic disorder of melanin synthesis that results in hypopigmented eyes (in patients with ocular albinism) or hair, skin, and eyes (in individuals with oculocutaneous albinism). It is associated with decreased visual acuity, nystagmus, strabismus, and photophobia. The tyrosinase gene is known to be involved in both oculocutaneous albinism and autosomal recessive ocular albinism. In this study, we aimed to screen the mutations in the TYR gene in the nonsyndromic OCA and autosomal recessive ocular albinism patients from Iran. Methods The tyrosinase gene was examined in 23 unrelated patients with autosomal recessive ocular albinism or nonsyndromic OCA using DNA sequencing and bioinformatics analysis. Results TYR gene mutations were identified in 14 (app. 60%) albinism patients. Conclusions We found 10 mutations, 3 of which were novel. No mutation was found in our ocular albinism patients, but one of them was heterozygous for the p.R402Q polymorphism. PMID:26167114

  15. Mutational analysis of the androgen receptor gene in two Chinese families with complete androgen insensitivity syndrome

    PubMed Central

    WANG, SONG; XU, HAIKUN; AN, WEI; ZHU, DECHUN; LI, DEJUN

    2016-01-01

    Androgens are essential for normal male sex differentiation and are responsible for the normal development of male secondary sexual characteristics at puberty. The physiological effects of androgens are mediated by the androgen receptor (AR). Mutations in the AR gene are the most common cause of androgen insensitivity syndrome. The present study undertook a genetic analysis of the AR gene in two unrelated families affected by complete androgen insensitivity syndrome (CAIS) in China. In family 1, a previously reported nonsense mutation (G-to-A; p.W751X) was identified in exon 5 of the AR gene. In addition, a novel missense mutation was detected in exon 6 of the AR gene from family 2; this mutation resulted in a predicted amino acid change from phenylalanine to serine at codon 804 (T-to-C; p.F804S) in the ligand-binding domain (LBD) of AR. Computer simulation of the structural changes generated by the p.F804S substitution revealed marked conformational alterations in the hydrophobic core responsible for the stability and function of the AR-LBD. In conclusion, the present study identified two mutations from two unrelated Chinese families affected by CAIS. The novel mutation (p.F804S) may provide insights into the molecular mechanism underlying CAIS. Furthermore, it expands on the number of mutational hot spots in the international AR mutation database, which may be useful in the future for prenatal diagnosis and genetic counseling. PMID:27284311

  16. MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY MUTAGENS IN THE TK GENE OF MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY BROMATE AND N- ETHYL-N-NITROSOUREA IN THE TK GENE OF MOUSE L YMPHOMA CELLS

    The mouse lymphoma assay is widely used to identify chemical mutagens The Tk +1- gene located on an autosome in mouse lymphoma cells may recover a wide ra...

  17. Molecular Analysis of CYP21A2 Gene Mutations among Iraqi Patients with Congenital Adrenal Hyperplasia

    PubMed Central

    Al-Obaidi, Ruqayah G. Y.; Al-Zubaidi, Munib Ahmed K.; Oberkanins, Christian; Németh, Stefan; Al-Obaidi, Yusra G. Y.

    2016-01-01

    Congenital adrenal hyperplasia is a group of autosomal recessive disorders. The most frequent one is 21-hydroxylase deficiency. Analyzing CYP21A2 gene mutations was so far not reported in Iraq. This work aims to analyze the spectrum and frequency of CYP21A2 mutations among Iraqi CAH patients. Sixty-two children were recruited from the Pediatric Endocrine Consultation Clinic, Children Welfare Teaching Hospital, Baghdad, Iraq, from September 2014 till June 2015. Their ages ranged between one day and 15 years. They presented with salt wasting, simple virilization, or pseudoprecocious puberty. Cytogenetic study was performed for cases with ambiguous genitalia. Molecular analysis of CYP21A2 gene was done using the CAH StripAssay (ViennaLab Diagnostics) for detection of 11 point mutations and >50% of large gene deletions/conversions. Mutations were found in 42 (67.7%) patients; 31 (50%) patients were homozygotes, 9 (14.5%) were heterozygotes, and 2 (3.2%) were compound heterozygotes with 3 mutations, while 20 (32.3%) patients had none of the tested mutations. The most frequently detected mutations were large gene deletions/conversions found in 12 (19.4%) patients, followed by I2Splice and Q318X in 8 (12.9%) patients each, I172N in 5 (8.1%) patients, and V281L in 4 (6.5%) patients. Del 8 bp, P453S, and R483P were each found in one (1.6%) and complex alleles were found in 2 (3.2%). Four point mutations (P30L, Cluster E6, L307 frameshift, and R356W) were not identified in any patient. In conclusion, gene deletions/conversions and 7 point mutations were recorded in varying proportions, the former being the commonest, generally similar to what was reported in regional countries. PMID:27777794

  18. Mutation analysis of the STRA6 gene in isolated and non-isolated anophthalmia/microphthalmia.

    PubMed

    Chassaing, N; Ragge, N; Kariminejad, A; Buffet, A; Ghaderi-Sohi, S; Martinovic, J; Calvas, P

    2013-03-01

    PDAC syndrome [Pulmonary hypoplasia/agenesis, Diaphragmatic hernia/eventration, Anophthalmia/microphthalmia (A/M) and Cardiac Defect] is a condition associated with recessive mutations in the STRA6 gene in some of these patients. Recently, cases with isolated anophthalmia have been associated with STRA6 mutations. To determine the minimal findings associated with STRA6 mutations, we performed mutation analysis of the STRA6 gene in 28 cases with anophthalmia. In 7 of the cases the anophthalmia was isolated, in 14 cases it was associated with one of the major features included in PDAC and 7 had other abnormalities. Mutations were identified in two individuals: one with bilateral anophthalmia and some features included in PDAC, who was a compound heterozygote for a missense mutation and a large intragenic deletion, and the second case with all the major features of PDAC and who had a homozygous splicing mutation. This study suggests that STRA6 mutations are more likely to be identified in individuals with A/M and other abnormalities included in the PDAC spectrum, rather than in isolated A/M cases.

  19. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes

    PubMed Central

    Shukla, Sachet A.; Rooney, Michael S.; Rajasagi, Mohini; Tiao, Grace; Dixon, Philip M.; Lawrence, Michael S.; Stevens, Jonathan; Lane, William J.; Dellagatta, Jamie L.; Steelman, Scott; Sougnez, Carrie; Cibulskis, Kristian; Kiezun, Adam; Brusic, Vladimir; Wu, Catherine J.; Getz, Gad

    2015-01-01

    Detection of somatic mutations in HLA genes using whole-exome sequencing (WES) is hampered by the high polymorphism of the HLA loci, which prevents alignment of sequencing reads to the human reference genome. We describe a computational pipeline that enables accurate inference of germline alleles of class I HLA-A, -B and -C genes and subsequent detection of mutations in these genes using the inferred alleles as a reference. Analysis of WES data from 7,930 pairs of tumor and healthy tissue from the same patient revealed 298 non-silent HLA mutations in tumors from 266 patients. These 298 mutations are enriched for likely functional mutations, including putative loss-of-function events. Recurrence of mutations suggested that these ‘hotspot’ sites were positively selected. Cancers with recurrent somatic HLA mutations were associated with upregulation of signatures of cytolytic activity characteristic of tumor infiltration by effector lymphocytes, supporting immune evasion by altered HLA function as a contributory mechanism in cancer. PMID:26372948

  20. Mutation analysis of the CYP21A2 gene in congenital adrenal hyperplasia.

    PubMed

    Forouzanfar, K; Seifi, M; Hashemi-Gorji, F; Karimi, N; Estiar, M A; Karimoei, M; Sakhinia, E; Karimipour, M; Ghergherehchi, R

    2015-01-01

    Congenital adrenal hyperplasia (CAH) is an inherited autosomal recessive enzymatic disorder involving the synthesis of adrenal corticosteroids. 21-Hydroxylase deficiency (21-OHD) is the most common form of the disease which is observed in more than 90% of patients with CAH. Early identification of mutations in the genes involved in this disease is critical. A marker of the disease, errors in the CYP21A2 gene, is thought to be part of the pathophysiology of CAH. Therefore, the identification of gene mutations would be very beneficial in the early detection of CAH. This research was a descriptive epidemiological study conducted on individuals elected by the inclusion criteria whom were referred to the Genetic Diagnosis Center of Tabriz during 2012 to 2013. After sampling and DNA extraction, PCR for the detection of mutations in the CYP21A2 gene was performed followed by sequencing. For data analysis, the results of sequencing were compared with the reference gene by blast, Gene Runner and MEGA-5 software. Obtained changes were compared with NCBI databases. The analysis of the sequencing determined the mutations located in Exons 6, 7, 8 and 10. The most frequent findings were Q318X (53%) and R356W (28%). Exon 6 cluster (7%), E431k (4%), V237E (2%), V281L (2%), E351K (2%), R426C (2%) were also frequent in our patients. The most frequent genotype was compound heterozygote, Q318X/R356W. Three rare mutations in our study were E431K, E351K and R426C. Observed mutation frequencies in this study were much higher than those reported in previous studies in Iranian populations. Thus, it seems that it is necessary to follow-up screening programs and use sequencing methods to better identify mutations in the development of the disease.

  1. PCR-sequencing is a complementary method to amplification refractory mutation system for EGFR gene mutation analysis in FFPE samples.

    PubMed

    Jiang, Junchang; Wang, Chunhua; Yu, Xiaoli; Sheng, Danli; Zuo, Chen; Ren, Minpu; Wu, Yaqin; Shen, Jie; Jin, Mei; Xu, Songxiao

    2015-12-01

    Amplification Refractory Mutation System (ARMS) is the most popular technology for EGFR gene mutation analysis in China. Cutoff Ct or ΔCt values were used to differentiate low mutation abundance cases from no mutation cases. In this study, all of 359 NSCLC samples were tested by ARMS. Seventeen samples with larger Ct or ΔCt than cutoff values were retested by PCR-sequencing. TKI treatment responses were monitored on the cases with ARMS negative and PCR-sequencing positive results. One exon 18 G719X case, 67 exon 19 deletion cases, 2 exon 20 insertion cases, 1 exon 20 T790M case, 60 exon 21 L858R cases, 5 exon 21 L861Q cases and 201 wild type cases were identified by ARMS. Another 22 cases were evaluated as wild type but had later amplification fluorescent curves. Seventeen out of these 22 cases were retested by PCR-sequencing. It turns out that 3 out of 3 cases with exon 19 deletion later amplifications, 2 out of 2 cases with L858R later amplifications and 4 out of 12 cases with T790M later amplifications were identified as mutation positive. Two cases with exon 19 deletion and L858R respectively were treated by TKI and got responses. Our study indicated that PCR-sequencing might be a complementary way to confirm ARMS results with later amplifications.

  2. PCR-sequencing is a complementary method to amplification refractory mutation system for EGFR gene mutation analysis in FFPE samples.

    PubMed

    Jiang, Junchang; Wang, Chunhua; Yu, Xiaoli; Sheng, Danli; Zuo, Chen; Ren, Minpu; Wu, Yaqin; Shen, Jie; Jin, Mei; Xu, Songxiao

    2015-12-01

    Amplification Refractory Mutation System (ARMS) is the most popular technology for EGFR gene mutation analysis in China. Cutoff Ct or ΔCt values were used to differentiate low mutation abundance cases from no mutation cases. In this study, all of 359 NSCLC samples were tested by ARMS. Seventeen samples with larger Ct or ΔCt than cutoff values were retested by PCR-sequencing. TKI treatment responses were monitored on the cases with ARMS negative and PCR-sequencing positive results. One exon 18 G719X case, 67 exon 19 deletion cases, 2 exon 20 insertion cases, 1 exon 20 T790M case, 60 exon 21 L858R cases, 5 exon 21 L861Q cases and 201 wild type cases were identified by ARMS. Another 22 cases were evaluated as wild type but had later amplification fluorescent curves. Seventeen out of these 22 cases were retested by PCR-sequencing. It turns out that 3 out of 3 cases with exon 19 deletion later amplifications, 2 out of 2 cases with L858R later amplifications and 4 out of 12 cases with T790M later amplifications were identified as mutation positive. Two cases with exon 19 deletion and L858R respectively were treated by TKI and got responses. Our study indicated that PCR-sequencing might be a complementary way to confirm ARMS results with later amplifications. PMID:26477713

  3. Mutation analysis of tuberous sclerosis families using the chromosome 16 (TSC2) tuberin gene

    SciTech Connect

    Gilbert, J.; Wolpert, C.; Kumar, A.

    1994-09-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder which affects numerous body systems, especially brain and kidneys. The estimated prevalence of TSC is 1 per 10,000 population and the disease occurs in all racial groups. TSC exhibits both incomplete penetrance and variable expression and it is estimated that approximately 50% of affected individuals are the result of new mutations. TSC is a heterogeneous disorder with at least two disease loci which linkage studies have mapped to chromosomes 9q34 (TSC1) and 16p13.3 (TSC2). The chromosome 16 TSC gene, a 5.5 kb transcript which has been named tuberin, has recently been isolated and the characterization of the gene and mutational analysis of chromosome 16 families are presently underway. Using cDNA clones which cover approximately 90%, including the 3{prime} end, of the tuberin gene, we have screened Southern blots of 44 confirmed familial and sporadic TSC cases using the restriction enzymes Bam HI, Hind III and Taq I. To date, we have detected no confirmed deletions in any of these cases. We are in the process of screening using Pvu II blots. In addition, our laboratory is beginning to screen the TSC cases for mutations using SSCP in conjunction with RT-PCR of lymphoblast RNA and PCR of lymphoblast DNA using primers prepared from the gene sequence. We have recently ascertained an additional 20 sproadic TSC cases which will be subjected to analysis and these results together with our mutation findings will be presented. Our results would indicate that the number of mutations detectable using Southern blotting is small, especially in the larger chromosome 16 TSC families as opposed to sporadic mutations, and that more detailed technical analysis will be necessary to determine the full range of mutations in the large majority of TSC cases.

  4. Analysis of mutations in the entire coding sequence of the factor VIII gene

    SciTech Connect

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M.

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  5. Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic.

    PubMed

    Borecka, M; Zemankova, P; Vocka, M; Soucek, P; Soukupova, J; Kleiblova, P; Sevcik, J; Kleibl, Z; Janatova, M

    2016-05-01

    Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among common solid cancer diagnoses. It has been shown that up to 10% of PDAC cases have a familial component. Characterization of PDAC-susceptibility genes could reveal high-risk individuals and patients that may benefit from tailored therapy. Hereditary mutations in PALB2 (Partner and Localizer of BRCA2) gene has been shown to predispose, namely to PDAC and breast cancers; however, frequencies of mutations vary among distinct geographical populations. Using the combination of sequencing, high-resolution melting and multiplex ligation-dependent probe amplification analyses, we screened the entire PALB2 gene in 152 unselected Czech PDAC patients. Truncating mutations were identified in three (2.0%) patients. Genotyping of found PALB2 variants in 1226 control samples revealed one carrier of PALB2 truncating variant (0.08%; P = 0.005). The mean age at PDAC diagnosis was significantly lower among PALB2 mutation carriers (51 years) than in non-carriers (63 years; P = 0.016). Only one patient carrying germline PALB2 mutation had a positive family breast cancer history. Our results indicate that hereditary PALB2 mutation represents clinically considerable genetic factor increasing PDAC susceptibility in our population and that analysis of PALB2 should be considered not only in PDAC patients with familial history of breast or pancreatic cancers but also in younger PDAC patients without family cancer history. PMID:27106063

  6. Mutational analysis of Btk, the defective gene in X-linked agammaglobulinemia

    SciTech Connect

    Conley, M.E.; Fitch-Hilgenberg, M.E.; Rohrer, J.

    1994-09-01

    Recent studies have shown that X-linked agammaglobulinemia (XLA), a disorder of B cell development, is due to mutations in an scr-like cytoplasmic tyrosine kinase, Btk. Thus far, mutations in this gene have been identified by sequencing of cDNA. To permit the detection of mutations in genomic DNA, we determined the structure of Btk and identified 19 exons in 37 kb of DNA. PCR primers were designed to amplify each exon with its splice sites. Two overlapping PCR products were employed for exons longer than 230 base pairs. Single strand conformation polymorphism (SSCP) analysis was used to screen genomic DNA from 30 unrelated families presumed to carry a mutation in Btk. It was possible to amplify DNA in every reaction from every patient. None of the DNA samples demonstrated more than one aberrant SSCP pattern. Twenty three mutations were detected in 25 families. Seven point mutations resulting in amino acid substitutions were seen. An additional 7 base pair substitutions gave rise to premature stop codons. Two splice defects were noted. Small insertions or deletions, all resulting in frameshifts and premature stop codons were seen in eight patients. One patient had an A to G transition in the ATG start codon. Two mutations, both at CpG dinucleotides, were seen in more than one family. Haplotype analysis, using CA repeats closely linked to Btk, demonstrated that the mutations in these families arose independently. We conclude from these studies that the mutations in Btk in patients with XLA are highly variable. Large deletions are uncommon, although small 1 to 4 bp insertions or deletions constitute as many as one third of the mutations. Further analysis of patients with amino acid substitutions will permit structure/function correlations.

  7. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.

    PubMed

    Cho, Ara; Shim, Jung Eun; Kim, Eiru; Supek, Fran; Lehner, Ben; Lee, Insuk

    2016-01-01

    A major challenge for distinguishing cancer-causing driver mutations from inconsequential passenger mutations is the long-tail of infrequently mutated genes in cancer genomes. Here, we present and evaluate a method for prioritizing cancer genes accounting not only for mutations in individual genes but also in their neighbors in functional networks, MUFFINN (MUtations For Functional Impact on Network Neighbors). This pathway-centric method shows high sensitivity compared with gene-centric analyses of mutation data. Notably, only a marginal decrease in performance is observed when using 10 % of TCGA patient samples, suggesting the method may potentiate cancer genome projects with small patient populations. PMID:27333808

  8. ABCG2 in peptic ulcer: gene expression and mutation analysis.

    PubMed

    Salagacka-Kubiak, Aleksandra; Żebrowska, Marta; Wosiak, Agnieszka; Balcerczak, Mariusz; Mirowski, Marek; Balcerczak, Ewa

    2016-08-01

    The aim of this study was to evaluate the participation of polymorphism at position C421A and mRNA expression of the ABCG2 gene in the development of peptic ulcers, which is a very common and severe disease. ABCG2, encoded by the ABCG2 gene, has been found inter alia in the gastrointestinal tract, where it plays a protective role eliminating xenobiotics from cells into the extracellular environment. The materials for the study were biopsies of gastric mucosa taken during a routine endoscopy. For genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) at position C421A, DNA was isolated from 201 samples, while for the mRNA expression level by real-time PCR, RNA was isolated from 60 patients. The control group of healthy individuals consisted of 97 blood donors. The dominant genotype in the group of peptic ulcer patients and healthy individuals was homozygous CC. No statistically significant differences between healthy individuals and the whole group of peptic ulcer patients and, likewise, between the subgroups of peptic ulcer patients (infected and uninfected with Helicobacter pylori) were found. ABCG2 expression relative to GAPDH expression was found in 38 of the 60 gastric mucosa samples. The expression level of the gene varies greatly among cases. The statistically significant differences between the intensity (p = 0.0375) of H. pylori infection and ABCG2 gene expression have been shown. It was observed that the more intense the infection, the higher the level of ABCG2 expression.

  9. Mutation analysis of PALB2 gene in French breast cancer families.

    PubMed

    Damiola, Francesca; Schultz, Inès; Barjhoux, Laure; Sornin, Valérie; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Marcou, Morgane; Caron, Olivier; Gauthier-Villars, Marion; de Pauw, Antoine; Luporsi, Elisabeth; Berthet, Pascaline; Delnatte, Capucine; Bonadona, Valérie; Maugard, Christine; Pujol, Pascal; Lasset, Christine; Longy, Michel; Bignon, Yves-Jean; Fricker, Jean-Pierre; Andrieu, Nadine; Sinilnikova, Olga M; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Muller, Danièle

    2015-12-01

    Several population-based and family-based studies have demonstrated that germline mutations of the PALB2 gene (Partner and Localizer of BRCA2) are associated with an increased risk of breast cancer. Distinct mutation frequencies and spectrums have been described depending on the population studied. Here we describe the first complete PALB2 coding sequence screening in the French population. We screened the complete coding sequence and intron-exon boundaries of PALB2, using the EMMA technique, to assess the contribution of pathogenic mutations in a set of 835 familial breast cancer cases and 662 unrelated controls from the French national study GENESIS and the Paul Strauss Cancer Centre, all previously tested negative for BRCA1 and BRCA2 pathogenic mutations. Our analysis revealed the presence of four novel deleterious mutations: c.1186insT, c.1857delT and c.2850delC in three cases, c.3418dupT in one control. In addition, we identified two in-frame insertion/deletion, 19 missense substitutions (two of them predicted as pathogenic), 9 synonymous variants, 28 variants located in introns and 2 in UTRs, as well as frequent variants. Truncating PALB2 mutations were found in 0.36% of familial breast cancer cases, a frequency lower than the one detected in comparable studies in other populations (0.73-3.40%). This suggests a small but significant contribution of PALB2 mutations to the breast cancer susceptibility in the French population. PMID:26564480

  10. Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly

    PubMed Central

    Buxbaum, Joseph D; Cai, Guiqing; Nygren, Gudrun; Chaste, Pauline; Delorme, Richard; Goldsmith, Juliet; Råstam, Maria; Silverman, Jeremy M; Hollander, Eric; Gillberg, Christopher; Leboyer, Marion; Betancur, Catalina

    2007-01-01

    Background Sotos syndrome is an overgrowth syndrome characterized by macrocephaly, advanced bone age, characteristic facial features, and learning disabilities, caused by mutations or deletions of the NSD1 gene, located at 5q35. Sotos syndrome has been described in a number of patients with autism spectrum disorders, suggesting that NSD1 could be involved in other cases of autism and macrocephaly. Methods We screened the NSD1 gene for mutations and deletions in 88 patients with autism spectrum disorders and macrocephaly (head circumference 2 standard deviations or more above the mean). Mutation analysis was performed by direct sequencing of all exons and flanking regions. Dosage analysis of NSD1 was carried out using multiplex ligation-dependent probe amplification. Results We identified three missense variants (R604L, S822C and E1499G) in one patient each, but none is within a functional domain. In addition, segregation analysis showed that all variants were inherited from healthy parents and in two cases were also present in unaffected siblings, indicating that they are probably nonpathogenic. No partial or whole gene deletions/duplications were observed. Conclusion Our findings suggest that Sotos syndrome is a rare cause of autism spectrum disorders and that screening for NSD1 mutations and deletions in patients with autism and macrocephaly is not warranted in the absence of other features of Sotos syndrome. PMID:18001468

  11. Mutation analysis of the cystic fibrosis transmembrane regulator gene in native American populations of the southwest

    SciTech Connect

    Grebe, T.A. Maricopa Medical Center, Phoenix, AZ ); Doane, W.W.; Norman, R.A.; Rhodes, S.N. ); Richter, S.F. ); Clericuzio, C. ); Seltzer, W.K. ); Goldberg, B.E. ); Hernried, L.S. ); McClure, M.; Kaplan, G.

    1992-10-01

    The authors report DNA and clinical analysis of cystic fibrosis (CF) in two previously unstudied, genetically isolated populations: Pueblo and Navajo Native Americans. Direct mutation analysis of six mutations of the CFTR gene - namely, [Delta]F508, G542X, G551D, R553X, N1303K, and W1282X - was performed on PCR-amplified genomic DNA extracted from blood samples. Haplotype analyses with marker/enzyme pairs XV2c/TaqI and KM29/PstI were performed as well. Of the 12 affected individuals studied, no [Delta]F508 mutation was detected; only one G542X mutation was found. None of the other mutations was detected. All affected individuals have either an AA, AC, or CC haplotype, except for the one carrying the G542X mutation, who has the haplotye AB. Clinically, six of the affected individuals examined exhibit growth deficiency, and five (all from the Zuni Pueblo) have a severe CF phenotype. Four of the six Zunis with CF are also microcephalic, a finding not previously noted in CF patients. The DNA data have serious implications for risk assessment of CF carrier status for these people. 14 refs., 3 tabs.

  12. Genomic structure of the choroideremia (CHM) gene and mutation analysis in CHM patients

    SciTech Connect

    Bokhoven, H. van; Hurk, J. van den; Bogerd, L.

    1994-09-01

    We have isolated the complete open reading frame (ORF) of the choroideremia (CHM) gene and elucidated its exon-intron structure. The ORF of the CHM gene is located on 15 exons and encodes a protein of 653 amino acids. Among 75 CHM patients investigated for large structural abnormalities, 15 (20%) showed deletions of one or more exons of the gene. The deletions vary in size from a few kb spanning one exon to more than 10 megabases encompassing a large part of Xq21. In addition, we have positioned the X-chromosomal breakpoint in a CHM female with an X;7 translocation between exons 3 and 4. Fine mapping of the deletions indicates that there is no clustering of deletion breakpoints. Moreover, only 2 deletions are located entirely within the CHM gene, indicating that most deletions can be detected by PCR amplification of exons 1 and 15. From within the CHM gene we identified two microsatellite markers, a (CA){sub n}- and a [(TA){sub 4-12}C]{sub n}-like repeat, which should be very valuable for CHM diagnostics in clear-cut CHM families. In patients in which the diagnosis of choroideremia is less obvious, mutation analysis can be performed by PCR-SSCP analysis and direct sequencing. The feasibility of this approach was illustrated by the finding of 10 causative mutations in 12 Danish CHM families investigated. Interestingly, all CHM gene mutations detected thus far give rise to the introduction of a premature stop codon. Missense mutations thus far have not been found.

  13. DNA analysis of renal electrolyte transporter genes among patients suffering from Bartter and Gitelman syndromes: summary of mutation screening.

    PubMed

    Urbanová, M; Reiterová, J; Stěkrová, J; Lněnička, P; Ryšavá, R

    2011-01-01

    Patients with renal diseases associated with salt-losing tubulopathies categorized as Gitelman and classic form of Bartter syndrome have undergone genetic screening for possible mutation capture in two different genes: SLC12A3 and CLCNKB. Clinical symptoms of these two diseases may overlap. Patients with clinical symptoms of antenatal form of Bartter syndrome were screened for mutations in two different genes: KCNJ1 and SLC12A1. The aim was to establish genetic mutation screening of Bartter/Gitelman syndrome and to confirm the proposed diagnosis. We have identified seven different causative mutations in the SLC12A3 gene, four in the CLCNKB gene, two in the SLC12A1 gene, and none in the KCNJ1 gene. Nine of these mutations are novel. In one case, genetic analysis led to re-evaluation of diagnosis between the Gitelman and classic form of Bartter syndrome. PMID:21631963

  14. A transposon-based analysis of gene mutations related to skin cancer development.

    PubMed

    Quintana, Rita M; Dupuy, Adam J; Bravo, Ana; Casanova, M Llanos; Alameda, Josefa P; Page, Angustias; Sánchez-Viera, Miguel; Ramírez, Angel; Navarro, Manuel

    2013-01-01

    Nonmelanoma skin cancer (NMSC) is by far the most frequent type of cancer in humans. NMSC includes several types of malignancies with different clinical outcomes, the most frequent being basal and squamous cell carcinomas. We have used the Sleeping Beauty transposon/transposase system to identify somatic mutations associated with NMSC. Transgenic mice bearing multiple copies of a mutagenic Sleeping Beauty transposon T2Onc2 and expressing the SB11 transposase under the transcriptional control of regulatory elements from the keratin K5 promoter were treated with TPA, either in wild-type or Ha-ras mutated backgrounds. After several weeks of treatment, mice with transposition developed more malignant tumors with decreased latency compared with control mice. Transposon/transposase animals also developed basal cell carcinomas. Genetic analysis of the transposon integration sites in the tumors identified several genes recurrently mutated in different tumor samples, which may represent novel candidate cancer genes. We observed alterations in the expression levels of some of these genes in human tumors. Our results show that inactivating mutations in Notch1 and Nsd1, among others, may have an important role in skin carcinogenesis. PMID:22832494

  15. Transcriptome Analysis of Targeted Mouse Mutations Reveals the Topography of Local Changes in Gene Expression

    PubMed Central

    Adkisson, Michael; Nava, A. J.; Kirov, Julia V.; Cipollone, Andreanna; Willis, Brandon; Rapp, Jared; de Jong, Pieter J.; Lloyd, Kent C.

    2016-01-01

    The unintended consequences of gene targeting in mouse models have not been thoroughly studied and a more systematic analysis is needed to understand the frequency and characteristics of off-target effects. Using RNA-seq, we evaluated targeted and neighboring gene expression in tissues from 44 homozygous mutants compared with C57BL/6N control mice. Two allele types were evaluated: 15 targeted trap mutations (TRAP); and 29 deletion alleles (DEL), usually a deletion between the translational start and the 3’ UTR. Both targeting strategies insert a bacterial beta-galactosidase reporter (LacZ) and a neomycin resistance selection cassette. Evaluating transcription of genes in +/- 500 kb of flanking DNA around the targeted gene, we found up-regulated genes more frequently around DEL compared with TRAP alleles, however the frequency of alleles with local down-regulated genes flanking DEL and TRAP targets was similar. Down-regulated genes around both DEL and TRAP targets were found at a higher frequency than expected from a genome-wide survey. However, only around DEL targets were up-regulated genes found with a significantly higher frequency compared with genome-wide sampling. Transcriptome analysis confirms targeting in 97% of DEL alleles, but in only 47% of TRAP alleles probably due to non-functional splice variants, and some splicing around the gene trap. Local effects on gene expression are likely due to a number of factors including compensatory regulation, loss or disruption of intragenic regulatory elements, the exogenous promoter in the neo selection cassette, removal of insulating DNA in the DEL mutants, and local silencing due to disruption of normal chromatin organization or presence of exogenous DNA. An understanding of local position effects is important for understanding and interpreting any phenotype attributed to targeted gene mutations, or to spontaneous indels. PMID:26839965

  16. Mutation analysis of the RET gene in individuals with sporadic and familial pheochromocytoma

    SciTech Connect

    Iyengar, S.; Sirugo, G.; Bale, A.E.

    1994-09-01

    Pheochromocytoma is common to many familial cancer syndromes including multiple endocrine neoplasia type 2A (MEN2A), von Hippel-Lindau (VHL) and neurofibromatosis (NF). Although sporadic cases of pheochromocytoma have been examined for mutations in exons 10, 11 and 16 of the RET gene, only one case with a mutation in exon 16 has been reported thus far. We are performing systematic examination of exons of the RET gene, which has previously been associated with mutation in both MEN2 A and B, to determine the role RET may play in the etiology of pheochromocytoma. Seventeen cases of sporadic pheochromocytoma and 3 cases of sporadic medullary thyroid carcinoma were obtained from the pathology archives. Histopathology of all specimens was confirmed to be either pheochromocytoma or medullary thyroid carcinoma before DNA was extracted from 0.5{mu} thin sections of paraffin-embedded tissue. DNA from familial pheochromocytoma patients was also available for analysis. All sporadic and familial cases were amplified for exons 2, 6 and 16 of the RET gene. Single strand conformational polymorphism (SSCP) analysis was performed for exons 2 and 6. On finding a variation in the SSCP pattern in the pheochromocytoma kindred we sequenced all the samples for exon 2. A single base pair variation was found, which did not segregate with pheochromocytoma in the family. No variant SSCP patterns have been observed with the exon 6 PCR products thus far. Exon 16 PCR products were subjected to DNA restriction analysis with Fok I. This enzyme detects a single base pair change associated with MEN2 B. With the exception of one sample with sporadic medullary thyroid carcinoma, all samples showed the normal pattern on DNA restriction analysis. Thus we can exclude exons 2 and 6 of the RET gene in the pathogenesis of pheochromocytoma. SSCP analyses with other exons in the RET gene are underway.

  17. Mutation Analysis of the LH Receptor Gene in Leydig Cell Adenoma and Hyperplasia and Functional and Biochemical Studies of Activating Mutations of the LH Receptor Gene

    PubMed Central

    Lumbroso, Serge; Verhoef-Post, Miriam; Richter-Unruh, Annette; Looijenga, Leendert H. J.; Funaro, Ada; Beishuizen, Auke; van Marle, André; Drop, Stenvert L. S.; Themmen, Axel P. N.

    2011-01-01

    Context: Germline and somatic activating mutations in the LH receptor (LHR) gene have been reported. Objective: Our objective was to perform mutation analysis of the LHR gene of patients with Leydig cell adenoma or hyperplasia. Functional studies were conducted to compare the D578H-LHR mutant with the wild-type (WT)-LHR and the D578G-LHR mutant, a classic cause of testotoxicosis. The three main signal transduction pathways in which LHR is involved were studied. Patients: We describe eight male patients with gonadotropin-independent precocious puberty due to Leydig cell adenoma or hyperplasia. Results: The D578H-LHR mutation was found in the adenoma or nodule with hyperplasia in all but two patients. D578H-LHR displayed a constitutively increased but noninducible production of cAMP, led to a very high production of inositol phosphates, and induced a slight phosphorylation of p44/42 MAPK in the absence of human chorionic gonadotropin. The D578G-LHR showed a response intermediate between WT-LHR and the D578H-LHR. Subcellular localization studies showed that the WT-LHR was almost exclusively located at the cell membrane, whereas the D578H-LHR showed signs of internalization. D578H-LHR was the only receptor to colocalize with early endosomes in the absence of human chorionic gonadotropin. Conclusions: Although several LHR mutations have been reported in testotoxicosis, the D578H-LHR mutation, which has been found only as a somatic mutation, appears up until now to be specifically responsible for Leydig cell adenomas. This is reflected by the different activation of the signal transduction pathways, when compared with the WT-LHR or D578G-LHR, which may explain the tumorigenesis in the D578H mutant. PMID:21490077

  18. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region

    PubMed Central

    Kamino, Kouzin; Orr, Harry T.; Payami, Haydeh; Wijsman, Ellen M.; Alonso, Ma. Elisa; Pulst, Stefan M.; Anderson, Leojean; O'dahl, Sheldon; Nemens, Ellen; White, June A.; Sadovnick, Adele D.; Ball, Melvyn J.; Kaye, Jeffery; Warren, Andrew; McInnis, Melvin; Antonarakis, Stylianos E.; Korenberg, Julie R.; Sharma, Vikram; Kukull, Walter; Larson, Eric; Heston, Leonard L.; Martin, George M.; Bird, Thomas D.; Schellenberg, Gerard D.

    1992-01-01

    A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu→Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis–Dutch type Glu→Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambiguously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond θ = .10 for the Volga German kindreds, θ = .20 for early-onset non-Volga Germans, and θ = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. ImagesFigure 4p1009-a PMID:1415269

  19. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region

    SciTech Connect

    Kamino, K.; Anderson, L.; O'dahl, S.; Nemens, E.; Bird, T.D.; Schellenberg, G.D.; Wijsman, E.M.; Kukall, W.; Larson, E. ); Heston, L.L.

    1992-11-01

    A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu[yields]Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu[yields]Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambigously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond [theta] = .10 for the Volga German kindreds, [theta] = .20 for early-onset non-Volga Germans, and [theta] = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. 49 refs., 6 figs., 4 tabs.

  20. Mutational analysis of PKD1 gene in a Chinese family with autosomal dominant polycystic kidney disease.

    PubMed

    Liu, Jingyan; Li, Lanrong; Liu, Qingmin

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease and common renal disease. Mutations of PKD genes are responsible for this disease. We analyzed a large Chinese family with ADPKD using Sanger sequencing to identify the mutation responsible for this disease. The family comprised 27 individuals including 10 ADPKD patients. These ADPKD patients had severe renal disease and most of them died very young. We analyzed 6 survival patients gene and found they all had C10529T mutation in exon 35 of PKD1 gene. We did not found gene mutation in any unaffected relatives or 300 unrelated controls. These findings suggested that the C10529T mutation in PKD1 gene might be the pathogenic mutation responsible for the disease in this family. PMID:26722532

  1. Mutational analysis of PKD1 gene in a Chinese family with autosomal dominant polycystic kidney disease

    PubMed Central

    Liu, Jingyan; Li, Lanrong; Liu, Qingmin

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary disease and common renal disease. Mutations of PKD genes are responsible for this disease. We analyzed a large Chinese family with ADPKD using Sanger sequencing to identify the mutation responsible for this disease. The family comprised 27 individuals including 10 ADPKD patients. These ADPKD patients had severe renal disease and most of them died very young. We analyzed 6 survival patients gene and found they all had C10529T mutation in exon 35 of PKD1 gene. We did not found gene mutation in any unaffected relatives or 300 unrelated controls. These findings suggested that the C10529T mutation in PKD1 gene might be the pathogenic mutation responsible for the disease in this family. PMID:26722532

  2. MEFV Gene Profile in Northwest of Iran, Twelve Common MEFV Gene Mutations Analysis in 216 Patients with Familial Mediterranean Fever

    PubMed Central

    Salehzadeh, Farhad; Jafari Asl, Mehdi; Hosseini Asl, Saeid; Jahangiri, Sepideh; Habibzadeh, Shahram

    2015-01-01

    Familial Mediterranean Fever (FMF) is a hereditary autoinflammatory disease with autosomal recessive inheritance pattern often seen around the Mediterranean Sea. It is characterized by recurrent episodes of fever and polyserositis and rash. Recently, MEFV gene analysis determines the definitive diagnosis of FMF. In this study, we analyzed 12 MEFV gene mutations in more than 200 FMF patients, previously diagnosed by Tel-Hashomer clinical criteria, in northwest of Iran, located in the proximity of the Mediterranean Sea. In the northwest of Iran (Ardabil), 216 patients with FMF diagnosis, based on Tel-Hashomer criteria, referred to the genetic laboratory to be tested for the following mutations; P369S, F479L, M680I(G/C), M680I(G/A), I692del, M694V, M694I, K695R, V726A, A744S, R761H, E148Q. All patients were screened for MEFV gene mutations by a reverse hybridization assay (FMF Strip Assay, Vienna lab, Vienna, Austria) according to manufacturer’s instructions. Among these FMF patients, no mutation was detected in 51 (23/62%) patients, but 165 (76/38%) patients had one or two mutations, 33 patients (15/28%) homozygous, 86 patients (39/81%) compound heterozygous and 46 patients (21/29%) were heterozygous. The most common mutations were M694V (23/61%), V726A (11/11%) and E148Q (9/95%) respectively. MEFV gene mutations showed similarities and dissimilarities in different ethnic groups, while it is common among Arabs and Armenians genotype. Since common 12 MEFV gene analysis could not detect up to 50% of our patients, who had FMF on the basis of clinical Tel-Hashomer criteria, clinical criteria is still the best way in the diagnosis of FMF in this area. The abstract of this article has been presented in the 7th Congress of International Society of Systemic Auto-Inflammatory Diseases in Lausanne, Switzerland, 22-26 May 2013. PMID:25648235

  3. Functional Analysis of A Novel Splicing Mutation in The Mutase Gene of Two Unrelated Pedigrees

    PubMed Central

    Miryounesi, Mohammad; Pasalar, Parvin; Keramatipour, Mohammad

    2016-01-01

    Objective Methylmalonic acidura (MMA) is a rare autosomal recessive inborn error of metabolism. In this study we present a novel nucleotide change in the mutase (MUT) gene of two unrelated Iranian pedigrees and introduce the methods used for its functional analysis. Materials and Methods Two probands with definite diagnosis of MMA and a common novel variant in the MUT were included in a descriptive study. Bioinformatic prediction of the splicing variant was done with different prediction servers. Reverse transcriptionpolymerase chain reaction (RT-PCR) was done for splicing analysis and the products were analyzed by sequencing. Results The included index patients showed elevated levels of propionylcarnitine (C3). Urine organic acid analysis confirmed the diagnosis of MMA, and screening for mutations in the MUT revealed a novel C to G variation at the 3´ splice acceptor site in intron 12. In silico analysis suggested the change as a mutation in a conserved sequence. The splicing analysis showed that the C to G nucleotide change at position -3 in the acceptor splice site can lead to retention of the intron 12 sequence. Conclusion This is the first report of a mutation at the position -3 in the MUT intron 12 (c.2125-3C>G). The results suggest that the identified variation can be associated with the typical clinical manifestations of MMA. PMID:27602322

  4. Functional Analysis of A Novel Splicing Mutation in The Mutase Gene of Two Unrelated Pedigrees

    PubMed Central

    Miryounesi, Mohammad; Pasalar, Parvin; Keramatipour, Mohammad

    2016-01-01

    Objective Methylmalonic acidura (MMA) is a rare autosomal recessive inborn error of metabolism. In this study we present a novel nucleotide change in the mutase (MUT) gene of two unrelated Iranian pedigrees and introduce the methods used for its functional analysis. Materials and Methods Two probands with definite diagnosis of MMA and a common novel variant in the MUT were included in a descriptive study. Bioinformatic prediction of the splicing variant was done with different prediction servers. Reverse transcriptionpolymerase chain reaction (RT-PCR) was done for splicing analysis and the products were analyzed by sequencing. Results The included index patients showed elevated levels of propionylcarnitine (C3). Urine organic acid analysis confirmed the diagnosis of MMA, and screening for mutations in the MUT revealed a novel C to G variation at the 3´ splice acceptor site in intron 12. In silico analysis suggested the change as a mutation in a conserved sequence. The splicing analysis showed that the C to G nucleotide change at position -3 in the acceptor splice site can lead to retention of the intron 12 sequence. Conclusion This is the first report of a mutation at the position -3 in the MUT intron 12 (c.2125-3C>G). The results suggest that the identified variation can be associated with the typical clinical manifestations of MMA.

  5. [Mutation analysis of the pathogenic gene in a Chinese family with hereditary hemochromatosis].

    PubMed

    Yuanfeng, Li; Hongxing, Zhang; Haitao, Zhang; Xiaobo, Peng; Lili, Bai; Fuchu, He; Zewu, Qiu; Gangqiao, Zhou

    2014-11-01

    Hereditary hemochromatosis (HHC) is a rare autosomal recessive disorder. We recruited a consanguineous Chinese family including the proband with HHC and other four members without HHC. Using whole-exome sequencing, we identified two homozygous mutations (c.G18C [p.Q6H] and c.GC962_963AA [p.C321X]) in the hemojuvelin gene (HJV) in the proband with HHC. No mutation was found in other four previously identified HHC related genes, HAMP, TFR2, FPN and HFE. The functional impact of p.Q6H mutation is weak whereas p.C321X, a premature termination mutation, results in a truncated HJV protein, which lacks the glycosylphosphatidylinositol (GPI) anchor domain. In addition to the mutations in HJV, other 12 homozygous mutations were identified in this patient. However, none of these mutations showed strong damaging impact and the mutated genes are not related to iron metabolism. Our in-house data further demonstrated that p.C321X is absent in the general Chinese population, suggesting that the homozygous mutation p.C321X in HJV is causative in the patient with HHC. Accordingly, all of the four members without HHC from the same family carried wild-type alleles or heterozygous mutations, but not the homozygous mutation in this site. Thus, we found for the first time that the homozygous mutation p.C321X in HJV can result in HHC, which will help genetic diagnosis and prenatal counseling for HHC.

  6. Mutation analysis of aryl hydrocarbon receptor interacting protein (AIP) gene in colorectal, breast, and prostate cancers.

    PubMed

    Georgitsi, M; Karhu, A; Winqvist, R; Visakorpi, T; Waltering, K; Vahteristo, P; Launonen, V; Aaltonen, L A

    2007-01-29

    Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were recently identified in individuals with pituitary adenoma predisposition (PAP). These patients have prolactin (PRL) or growth hormone (GH) oversecreting pituitary adenomas, the latter exhibiting acromegaly or gigantism. Loss-of-heterozygosity (LOH) analysis revealed that AIP is lost in PAP tumours, suggesting that it acts as a tumour-suppressor gene. Aryl hydrocarbon receptor interacting protein is involved in several pathways, but it is best characterised as a cytoplasmic partner of the aryl hydrocarbon receptor (AHR). To examine the possible role of AIP in the genesis of common cancers, we performed somatic mutation screening in a series of 373 colorectal cancers (CRCs), 82 breast cancers, and 44 prostate tumour samples. A missense R16H (47G>A) change was identified in two CRC samples, as well as in the respective normal tissues, but was absent in 209 healthy controls. The remaining findings were silent, previously unreported, changes of the coding, non-coding, or untranslated regions of AIP. These results suggest that somatic AIP mutations are not common in CRC, breast, and prostate cancers. PMID:17242703

  7. Gene Mutation Analysis in 253 Chinese Children with Unexplained Epilepsy and Intellectual/Developmental Disabilities

    PubMed Central

    Gao, Yang; Liu, Xiaoyan; Gao, Kai; Xie, Han; Wu, Ye; Zhang, Yuehua; Wang, Jingmin; Gao, Feng; Wu, Xiru; Jiang, Yuwu

    2015-01-01

    Objective Epilepsy and intellectual/developmental disabilities (ID/DD) have a high rate of co-occurrence. Here, we investigated gene mutations in Chinese children with unexplained epilepsy and ID/DD. Methods We used targeted next-generation sequencing to detect mutations within 300 genes related to epilepsy and ID/DD in 253 Chinese children with unexplained epilepsy and ID/DD. A series of filtering criteria was used to find the possible pathogenic variations. Validation and parental origin analyses were performed by Sanger sequencing. We reviewed the phenotypes of patients with each mutated gene. Results We identified 32 novel and 16 reported mutations within 24 genes in 46 patients. The detection rate was 18% (46/253) in the whole group and 26% (17/65) in the early-onset (before three months after birth) epilepsy group. To our knowledge, we are the first to report KCNAB1 is a disease-causing gene of epilepsy by identifying a novel de novo mutation (c.1062dupCA p.Leu355HisfsTer5) within this gene in one patient with early infantile epileptic encephalopathy (EIEE). Patients with an SCN1A mutation accounted for the largest proportion, 17% (8/46). A total of 38% (9/24) of the mutated genes re-occurred at least 2 times and 63% (15/24) occurred only one time. Ion channel genes are the most common (8/24) and genes related to synapse are the next most common to occur (5/24). Significance We have established genetic diagnosis for 46 patients of our cohort. Early-onset epilepsy had the highest detection rate. KCNAB1 mutation was first identified in EIEE patient. We expanded the phenotype and mutation spectrum of the genes we identified. The mutated genes in this cohort are mostly isolated. This suggests that epilepsy and ID/DD phenotypes occur as a consequence of brain dysfunction caused by a highly diverse population of mutated genes. Ion channel genes and genes related to synapse were more common mutated in this patient cohort. PMID:26544041

  8. Screening of point mutations by multiple SSCP analysis in the dystrophin gene

    SciTech Connect

    Lasa, A.; Baiget, M.; Gallano, P.

    1994-09-01

    Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder. The population frequency of DMD is one in approximately 3500 boys, of which one third is thought to be a new mutant. The DMD gene is the largest known to date, spanning over 2,3 Mb in band Xp21.2; 79 exons are transcribed into a 14 Kb mRNA coding for a protein of 427 kD which has been named dystrophin. It has been shown that about 65% of affected boys have a gene deletion with a wide variation in localization and size. The remaining affected individuals who have no detectable deletions or duplications would probably carry more subtle mutations that are difficult to detect. These mutations occur in several different exons and seem to be unique to single patients. Their identification represents a formidable goal because of the large size and complexity of the dystrophin gene. SSCP is a very efficient method for the detection of point mutations if the parameters that affect the separation of the strands are optimized for a particular DNA fragment. The multiple SSCP allows the simultaneous study of several exons, and implies the use of different conditions because no single set of conditions will be optimal for all fragments. Seventy-eight DMD patients with no deletion or duplication in the dystrophin gene were selected for the multiple SSCP analysis. Genomic DNA from these patients was amplified using the primers described for the diagnosis procedure (muscle promoter and exons 3, 8, 12, 16, 17, 19, 32, 45, 48 and 51). We have observed different mobility shifts in bands corresponding to exons 8, 12, 43 and 51. In exons 17 and 45, altered electrophoretic patterns were found in different samples identifying polymorphisms already described.

  9. A microsphere-based assay for mutation analysis of the biotinidase gene using dried blood spots.

    PubMed

    Lindau-Shepard, Barbara; Janik, David K; Pass, Kenneth A

    2012-09-01

    Biotinidase deficiency is an autosomal recessive syndrome caused by defects in the biotinidase gene, the product of which affects biotin metabolism. Newborn screening (NBS) for biotinidase deficiency can identify affected infants prior to onset of symptoms; biotin supplementation can resolve or prevent the clinical features. In NBS, dry blood spots (DBS) are usually tested for biotinidase enzyme activity by colorimetric analysis. By taking advantage of the multiplexing capabilities of the Luminex platform, we have developed a microsphere-based array genotyping method for the simultaneous detection of six disease causing mutations in the biotinidase gene, thereby permitting a second tier of molecular analysis. Genomic DNA was extracted from 3.2 mm DBS. Biotinidase gene sequences, containing the mutations of interest, were amplified by multiplexed polymerase chain reaction, followed by multiplexed allele-specific primer extension using universally tagged genotyping primers. The products were then hybridized to anti-tag carrying xTAG microspheres and detected on the Luminex platform. Genotypes were verified by sequencing. Genotyping results of 22 known biotinidase deficient samples by our xTAG biotinidase assay was in concordance with the results obtained from DNA sequencing, for all 6 mutations used in our panel. These results indicate that genotyping by an xTAG microsphere-based array is accurate, flexible, and can be adapted for high-throughput. Since NBS for biotinidase deficiency is by enzymatic assay, less than optimal quality of the DBS itself can compromise enzyme activity, while the DNA from these samples mostly remains unaffected. This assay warrants evaluation as a viable complement to the biotinidase semi-quantitative colorimetric assay. PMID:27625817

  10. A microsphere-based assay for mutation analysis of the biotinidase gene using dried blood spots

    PubMed Central

    Lindau-Shepard, Barbara; Janik, David K.; Pass, Kenneth A.

    2012-01-01

    Biotinidase deficiency is an autosomal recessive syndrome caused by defects in the biotinidase gene, the product of which affects biotin metabolism. Newborn screening (NBS) for biotinidase deficiency can identify affected infants prior to onset of symptoms; biotin supplementation can resolve or prevent the clinical features. In NBS, dry blood spots (DBS) are usually tested for biotinidase enzyme activity by colorimetric analysis. By taking advantage of the multiplexing capabilities of the Luminex platform, we have developed a microsphere-based array genotyping method for the simultaneous detection of six disease causing mutations in the biotinidase gene, thereby permitting a second tier of molecular analysis. Genomic DNA was extracted from 3.2 mm DBS. Biotinidase gene sequences, containing the mutations of interest, were amplified by multiplexed polymerase chain reaction, followed by multiplexed allele-specific primer extension using universally tagged genotyping primers. The products were then hybridized to anti-tag carrying xTAG microspheres and detected on the Luminex platform. Genotypes were verified by sequencing. Genotyping results of 22 known biotinidase deficient samples by our xTAG biotinidase assay was in concordance with the results obtained from DNA sequencing, for all 6 mutations used in our panel. These results indicate that genotyping by an xTAG microsphere-based array is accurate, flexible, and can be adapted for high-throughput. Since NBS for biotinidase deficiency is by enzymatic assay, less than optimal quality of the DBS itself can compromise enzyme activity, while the DNA from these samples mostly remains unaffected. This assay warrants evaluation as a viable complement to the biotinidase semi-quantitative colorimetric assay.

  11. Mutational analysis of RUNX2 gene in Chinese patients with cleidocranial dysplasia.

    PubMed

    Zhang, Chenying; Zheng, Shuguo; Wang, Yixiang; Zhao, Yuming; Zhu, Junxia; Ge, Lihong

    2010-11-01

    Cleidocranial dysplasia (CCD) is a dominantly inherited skeletal dysplasia caused by mutations in the osteoblast-specific transcription factor-encoding gene, RUNX2. To correlate different RUNX2 mutations with CCD clinical spectrum, we studied six independent Chinese CCD patients. In five patients, mutations were detected in the coding region of the RUNX2 gene, including two frameshift mutations and three missense mutations. Of these mutations, four were novel and one had previously been reported. All the detected mutations were exclusively clustered within the Runt domain that affected conserved residues in the Runt domain. In vitro green fluorescent protein fusion studies showed that the three mutations--R225L, 214fs and 172fs--interfered with nuclear accumulation of RUNX2 protein, while T200I mutation had no effect on the subcellular distribution of RUNX2. There was no marked phenotypic difference between patients in craniofacial and clavicles features, while the expressivity of supernumerary teeth in our patient cohort had a striking variation, even among family members. The occurrence of intrafamilial clinical variability raises the view that hypomorphic effects and genetic modifiers may alter the clinical expressivity of these mutations. Our results provide new genetic evidence that mutations involved in RUNX2 contribute to CCD. PMID:20702542

  12. Analysis and application of ATP7B gene mutations in 35 patients with hepatolenticular degeneration.

    PubMed

    Zong, Y N; Kong, X D

    2015-01-01

    We investigated the genetic mutations involved in Wilson's disease to improve prenatal genetic diagnosis and presymptomatic diagnosis. The polymerase chain reaction (PCR) was used to amplify the exons and exon-intron boundaries of the ATP7B gene in 35 Wilson's disease pedigrees. The PCR products were further analyzed by Sanger sequencing. Prenatal genetic diagnoses were performed by chorionic villus sampling after the genotypes of parents of the probands were identified. The overall mutation detection frequency was 92.9%. A total of 24 distinct mutations were detected, seven of which are novel: A1291T (c.3871G>A), c.2593_2594insGTCA, c.2790_2792delCAT, c.3661_3663delGGG, c.3700delG, c.4094_4097delCTGT, and IVS6+1G>A. Three mutations, R778L (c.2333G>T) (45.7%), A874V (c.2621C>T) (7.1%), and P992L (c.2975C>T) (7.1%) are relatively frequent. Two presymptomatic patients were detected through familial screening, and they began taking medicine after diagnosis. Of the subjects with Wilson's disease pedigrees who had received a prenatal genetic diagnosis, three fetuses were normal and one was a carrier. Twenty-four distinct mutations were identified, and our knowledge of the population genetics of Wilson's disease in China has therefore improved. For pedigrees with the Wilson's disease, genetic counseling, prenatal diagnosis, and presymptomatic diagnosis by Sanger sequencing and haplotype analysis are feasible. PMID:26782526

  13. An analysis of substitution, deletion and insertion mutations in cancer genes.

    PubMed

    Iengar, Prathima

    2012-08-01

    Cancer-associated mutations in cancer genes constitute a diverse set of mutations associated with the disease. To gain insight into features of the set, substitution, deletion and insertion mutations were analysed at the nucleotide level, from the COSMIC database. The most frequent substitutions were c → t, g → a, g → t, and the most frequent codon changes were to termination codons. Deletions more than insertions, FS (frameshift) indels more than I-F (in-frame) ones, and single-nucleotide indels, were frequent. FS indels cause loss of significant fractions of proteins. The 5'-cut in FS deletions, and 5'-ligation in FS insertions, often occur between pairs of identical bases. Interestingly, the cut-site and 3'-ligation in insertions, and 3'-cut and join-pair in deletions, were each found to be the same significantly often (p < 0.001). It is suggested that these features aid the incorporation of indel mutations. Tumor suppressors undergo larger numbers of mutations, especially disruptive ones, over the entire protein length, to inactivate two alleles. Proto-oncogenes undergo fewer, less-disruptive mutations, in selected protein regions, to activate a single allele. Finally, catalogues, in ranked order, of genes mutated in each cancer, and cancers in which each gene is mutated, were created. The study highlights the nucleotide level preferences and disruptive nature of cancer mutations.

  14. Mutation analysis of the phospholamban gene in 315 South Africans with dilated, hypertrophic, peripartum and arrhythmogenic right ventricular cardiomyopathies.

    PubMed

    Fish, Maryam; Shaboodien, Gasnat; Kraus, Sarah; Sliwa, Karen; Seidman, Christine E; Burke, Michael A; Crotti, Lia; Schwartz, Peter J; Mayosi, Bongani M

    2016-01-01

    Cardiomyopathy is an important cause of heart failure in Sub-Saharan Africa, accounting for up to 30% of adult heart failure hospitalisations. This high prevalence poses a challenge in societies without access to resources and interventions essential for disease management. Over 80 genes have been implicated as a cause of cardiomyopathy. Mutations in the phospholamban (PLN) gene are associated with dilated cardiomyopathy (DCM) and severe heart failure. In Africa, the prevalence of PLN mutations in cardiomyopathy patients is unknown. Our aim was to screen 315 patients with arrhythmogenic right ventricular cardiomyopathy (n = 111), DCM (n = 95), hypertrophic cardiomyopathy (n = 40) and peripartum cardiomyopathy (n = 69) for disease-causing PLN mutations by high resolution melt analysis and DNA sequencing. We detected the previously reported PLN c.25C > T (p.R9C) mutation in a South African family with severe autosomal dominant DCM. Haplotype analysis revealed that this mutation occurred against a different haplotype background to that of the original North American family and was therefore unlikely to have been inherited from a common ancestor. No other mutations in PLN were detected (mutation prevalence = 0.2%). We conclude that PLN is a rare cause of cardiomyopathy in African patients. The PLN p.R9C mutation is not well-tolerated, emphasising the importance of this gene in cardiac function. PMID:26917049

  15. Mutation analysis of the phospholamban gene in 315 South Africans with dilated, hypertrophic, peripartum and arrhythmogenic right ventricular cardiomyopathies

    PubMed Central

    Fish, Maryam; Shaboodien, Gasnat; Kraus, Sarah; Sliwa, Karen; Seidman, Christine E.; Burke, Michael A.; Crotti, Lia; Schwartz, Peter J.; Mayosi, Bongani M.

    2016-01-01

    Cardiomyopathy is an important cause of heart failure in Sub-Saharan Africa, accounting for up to 30% of adult heart failure hospitalisations. This high prevalence poses a challenge in societies without access to resources and interventions essential for disease management. Over 80 genes have been implicated as a cause of cardiomyopathy. Mutations in the phospholamban (PLN) gene are associated with dilated cardiomyopathy (DCM) and severe heart failure. In Africa, the prevalence of PLN mutations in cardiomyopathy patients is unknown. Our aim was to screen 315 patients with arrhythmogenic right ventricular cardiomyopathy (n = 111), DCM (n = 95), hypertrophic cardiomyopathy (n = 40) and peripartum cardiomyopathy (n = 69) for disease-causing PLN mutations by high resolution melt analysis and DNA sequencing. We detected the previously reported PLN c.25C > T (p.R9C) mutation in a South African family with severe autosomal dominant DCM. Haplotype analysis revealed that this mutation occurred against a different haplotype background to that of the original North American family and was therefore unlikely to have been inherited from a common ancestor. No other mutations in PLN were detected (mutation prevalence = 0.2%). We conclude that PLN is a rare cause of cardiomyopathy in African patients. The PLN p.R9C mutation is not well-tolerated, emphasising the importance of this gene in cardiac function. PMID:26917049

  16. A novel MIP gene mutation analysis in a Chinese family affected with congenital progressive punctate cataract.

    PubMed

    Ding, Xuchen; Zhou, Nan; Lin, Hui; Chen, Jianjun; Zhao, Chunyuan; Zhou, Guangkai; Hejtmancik, J Fielding; Qi, Yanhua

    2014-01-01

    Congenital cataracts are one of the leading causes of visual impairment and blindness in children, and genetic factors play an important role in their development. This study aimed to identify the genetic defects associated with autosomal dominant congenital progressive punctate cataracts in a Chinese family and to explore the potential pathogenesis. Detailed family history and clinical data were recorded, and all the family members' blood samples were collected for DNA extraction. Linkage analysis was performed by microsatellite markers that are associated with punctate cataracts, and logarithm (base 10) of odds (LOD) scores were calculated using the LINKAGE program. Positive two-point LOD scores were obtained at markers D12S1622 (Zmax = 2.71 at θ = 0.0), D12S1724 (Zmax = 2.71 at θ = 0.0), and D12S90 (Zmax = 2.71 at θ = 0.0), which flank the major intrinsic protein of lens fiber (MIP) gene on chromosomal region 12q13. Direct sequencing of the encoding region of the MIP gene revealed a novel mutation (G>D) in exon 4 at nucleotide 644, which caused a substitution of glycine to aspartic acid at codon 215 (p.G215D) for the MIP protein. The mutation cosegregated with all patients with congenital progressive punctate cataracts, but it was absent in the healthy members. Bioinformatics analysis predicted that the mutation affects the function of the MIP protein. The wild type (WT) and G215D mutant of MIP were transfected with green fluorescent protein (GFP) into Hela cells separately, and it was found that the G215D mutant was aberrantly located in the cytoplasm instead of in the plasma membrane. In summary, our study presented genetic and functional evidence linking the new MIP mutation of G215D to autosomal dominant congenital cataracts, which adds to the list of MIP mutations linked to congenital progressive punctate cataracts.

  17. [Mutation analysis of the pathogenic gene in a Chinese family with hereditary hemochromatosis].

    PubMed

    Yuanfeng, Li; Hongxing, Zhang; Haitao, Zhang; Xiaobo, Peng; Lili, Bai; Fuchu, He; Zewu, Qiu; Gangqiao, Zhou

    2014-11-01

    Hereditary hemochromatosis (HHC) is a rare autosomal recessive disorder. We recruited a consanguineous Chinese family including the proband with HHC and other four members without HHC. Using whole-exome sequencing, we identified two homozygous mutations (c.G18C [p.Q6H] and c.GC962_963AA [p.C321X]) in the hemojuvelin gene (HJV) in the proband with HHC. No mutation was found in other four previously identified HHC related genes, HAMP, TFR2, FPN and HFE. The functional impact of p.Q6H mutation is weak whereas p.C321X, a premature termination mutation, results in a truncated HJV protein, which lacks the glycosylphosphatidylinositol (GPI) anchor domain. In addition to the mutations in HJV, other 12 homozygous mutations were identified in this patient. However, none of these mutations showed strong damaging impact and the mutated genes are not related to iron metabolism. Our in-house data further demonstrated that p.C321X is absent in the general Chinese population, suggesting that the homozygous mutation p.C321X in HJV is causative in the patient with HHC. Accordingly, all of the four members without HHC from the same family carried wild-type alleles or heterozygous mutations, but not the homozygous mutation in this site. Thus, we found for the first time that the homozygous mutation p.C321X in HJV can result in HHC, which will help genetic diagnosis and prenatal counseling for HHC. PMID:25567873

  18. Analysis of hemochromatosis gene mutations in 52 consecutive patients with polycythemia vera.

    PubMed

    Franchini, Massimo; de Matteis, Giovanna; Federici, Francesca; Solero, Pietro; Veneri, Dino

    2004-01-01

    A literature review reports increased erythrocyte indices [hemoglobin concentration, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin (MCH), MCH concentration] in subjects with hereditary hemochromatosis (HH). We, therefore, screened 52 consecutive patients with polycythemia vera for 12 HH gene mutations, comparing iron status and red cell parameters between patients positive or negative for HH gene mutations. Our results support the evidence that there is no association between these two conditions.

  19. Network Analysis of Genome-Wide Selective Constraint Reveals a Gene Network Active in Early Fetal Brain Intolerant of Mutation

    PubMed Central

    Choi, Jinmyung; Samocha, Kaitlin E.; Daly, Mark J.

    2016-01-01

    Using robust, integrated analysis of multiple genomic datasets, we show that genes depleted for non-synonymous de novo mutations form a subnetwork of 72 members under strong selective constraint. We further show this subnetwork is preferentially expressed in the early development of the human hippocampus and is enriched for genes mutated in neurological Mendelian disorders. We thus conclude that carefully orchestrated developmental processes are under strong constraint in early brain development, and perturbations caused by mutation have adverse outcomes subject to strong purifying selection. Our findings demonstrate that selective forces can act on groups of genes involved in the same process, supporting the notion that purifying selection can act coordinately on multiple genes. Our approach provides a statistically robust, interpretable way to identify the tissues and developmental times where groups of disease genes are active. PMID:27305007

  20. Mutational analysis of the extracellular Ca{sup 2+}-sensing receptor gene in human parathyroid tumors

    SciTech Connect

    Hosokawa, Yoshitaka; Arnold, A.; Pollak, M.R.; Brown, E.M.

    1995-10-01

    Despite recent progress, such as the identification of PRAD1/cyclin D1 as a parathyroid oncogene, it is likely that many genes involved in the molecular pathogenesis of parathyroid tumors remain unknown. Individuals heterozygous for inherited mutations in the extracellular Ca{sup 2+}-sensing receptor gene that reduce its biological activity exhibit a disorder termed familial hypocalciuric hypercalcemia or familial benign hypercalcemia, which is characterized by reduced responsiveness of parathyroid and kidney to calcium and by PTH-dependent hypercalcemia. Those who are homozygous for such mutations present with neonatal severe hyperparathyroidism and have marked parathroid hypercellularity. Thus, the Ca{sup 2+}-sensing receptor gene is a candidate parathyroid tumor suppressor gene, with inactivating mutations plausibly explaining set-point abnormalities in the regulation of both parathyroid cellular proliferation and PTH secretion by extracellular Ca{sup 2+} similar to those seen in hyperparathyroidism. Using a ribonuclease A protection assay that has detected multiple mutations in the Ca{sup 2+}-sensing receptor gene in familial hypocalciuric hypercalcemia and covers more than 90% of its coding region, we sought somatic mutations in this gene in a total of 44 human parathyroid tumors (23 adenomas, 4 carcinomas, 5 primary hyperplasias, and 12 secondary hyperplasias). No such mutations were detected in these 44 tumors. Thus, our studies suggest that somatic mutation of the Ca{sup 2+}-sensing receptor gene does not commonly contribute to the pathogenesis of sporadic parathyroid tumors. As such, PTH set-point dysfunction in parathroid tumors may well be secondary to other clonal proliferative defects and/or mutations in other components of the extracellular Ca{sup 2+}-sensing pathway. 29 refs., 2 figs.

  1. Analysis of uridine diphosphate glucuronosyl transferase 1A1 gene mutations in neonates with unconjugated hyperbilirubinemia.

    PubMed

    Guo, X H; Sun, Y F; Cui, M; Wang, J B; Han, S Z; Miao, J

    2016-01-01

    This study was carried out to analyze uridine diphosphate (UDP)-glucuronosyltransferase 1A1 (UGT1A1) gene mutations in neonates with unconjugated hyperbilirubinemia, from two different ethnic groups. Polymerase chain reaction and gene sequencing were used to analyze the differences in genotypes and allele frequencies of different gene mutations among the ethnic groups; this was followed by checking their correlation with the serum bilirubin level and the occurrence of unconjugated hyperbilirubinemia in neonates. Our results reveal that the UGT1A1 mutant genotype, 211G>A, is distributed differently in the case vs control groups, as well as in the Zhuang vs Han ethnic groups. Moreover, this difference is statistically significant (P < 0.05); the total serum bilirubin (TSB) and unconjugated bilirubin (UCB) levels in patients carrying the single homozygous mutation, 211G>A, were markedly higher than that in patients without the mutation (P < 0.05). Furthermore, the TSB and UCB levels were significantly different between patients carrying single or compound 211G>A heterozygous mutation, (TA)6/7, and 1941C>G/2042C>G heterozygous mutation, and patients without mutation (P > 0.05). Our findings suggest that the 211G>A mutation in the first exon may be a risk factor for unconjugated hyperbilirubinemia in Zhuang and Han neonates. The serum bilirubin levels seem to be affected by the homozygosity or heterozygosity of the UGT1A1 gene mutation; 211G>A homozygous mutation is an important factor that causes a rise in bilirubin in neonates with unconjugated hyperbilirubinemia. PMID:27323053

  2. Micropenis and the AR Gene: mutation and CAG repeat-length analysis.

    PubMed

    Ishii, T; Sato, S; Kosaki, K; Sasaki, G; Muroya, K; Ogata, T; Matsuo, N

    2001-11-01

    Various mutations of the AR gene and expanded CAG repeats at exon 1 of that gene have been reported in patients with hypospadias or genital ambiguity. However, the role of the AR gene has not been systemically studied in those with isolated micropenis lacking hypospadias or genital ambiguity. We studied 64 Japanese boys with isolated micropenis (age, 0-14 yr; median, 7 yr), whose stretched penile lengths were between -2.5 and -2.0 SD (borderline micropenis) in 31 patients (age, 0-13 yr; median, 8 yr) and below -2.5 SD (definite micropenis) in 33 patients (age, 0-14 yr; median, 6 yr). Mutation analysis of the AR gene was performed for exons 1-8 and their flanking introns, except for the CAG and GGC repeat regions at exon 1, by denaturing HPLC and direct sequencing, identifying a substitution of cytosine to thymine at a position -3 in the 3' splice site of intron 1 in a patient with definite micropenis. CAG repeat length at exon 1 was determined by electrophoresis with internal size markers and direct sequencing, revealing no statistically significant difference in the distribution of CAG repeat lengths [median (range) and mean +/- SE: total patients with isolated micropenis, 24 (14-34) and 23.5 +/- 0.38; patients with borderline micropenis, 24 (15-29) and 23.5 +/- 0.53; patients with definite micropenis, 23 (14-34) and 23.5 +/- 0.56; and 100 control males, 23 (16-32) and 23.5 +/- 0.29] or in the frequency of long CAG repeats (percentage of CAG repeats > or =26 and > or =28: total patients with isolated micropenis, 17.2 and 4.7%; patients with borderline micropenis, 19.4 and 6.5%; patients with definite micropenis, 15.2 and 3.0%; and 100 control males, 21.0 and 10.0%). These results suggest that an AR gene mutation is rare and that CAG repeat length is not expanded in children with isolated micropenis.

  3. Exome Analysis Reveals Differentially Mutated Gene Signatures of Stage, Grade and Subtype in Breast Cancers

    PubMed Central

    Li, You; Wang, Xiaosheng; Vural, Suleyman; Mishra, Nitish K.; Cowan, Kenneth H.; Guda, Chittibabu

    2015-01-01

    Breast cancers exhibit highly heterogeneous molecular profiles. Although gene expression profiles have been used to predict the risks and prognostic outcomes of breast cancers, the high variability of gene expression limits its clinical application. In contrast, genetic mutation profiles would be more advantageous than gene expression profiles because genetic mutations can be stably detected and the mutational heterogeneity widely exists in breast cancer genomes. We analyzed 98 breast cancer whole exome samples that were sorted into three subtypes, two grades and two stages. The sum deleterious effect of all mutations in each gene was scored to identify differentially mutated genes (DMGs) for this case-control study. DMGs were corroborated using extensive published knowledge. Functional consequences of deleterious SNVs on protein structure and function were also investigated. Genes such as ERBB2, ESP8, PPP2R4, KIAA0922, SP4, CENPJ, PRCP and SELP that have been experimentally or clinically verified to be tightly associated with breast cancer prognosis are among the DMGs identified in this study. We also identified some genes such as ARL6IP5, RAET1E, and ANO7 that could be crucial for breast cancer development and prognosis. Further, SNVs such as rs1058808, rs2480452, rs61751507, rs79167802, rs11540666, and rs2229437 that potentially influence protein functions are observed at significantly different frequencies in different comparison groups. Protein structure modeling revealed that many non-synonymous SNVs have a deleterious effect on protein stability, structure and function. Mutational profiling at gene- and SNV-level revealed differential patterns within each breast cancer comparison group, and the gene signatures correlate with expected prognostic characteristics of breast cancer classes. Some of the genes and SNVs identified in this study show high promise and are worthy of further investigation by experimental studies. PMID:25803781

  4. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1

    PubMed Central

    Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    2016-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome.

  5. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1

    PubMed Central

    Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    2016-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome. PMID:27672653

  6. Immunohistochemical Determination of p53 Protein Overexpression for Predicting p53 Gene Mutations in Hepatocellular Carcinoma: A Meta-Analysis

    PubMed Central

    Deng, Miao; Liu, Dechun; Ma, Qingyong; Feng, Xiaoshan

    2016-01-01

    Background Whether increased expression of the tumor suppressor protein p53 indicates a p53 gene mutation in hepatocellular carcinoma (HCC) remains unclear. We conducted a meta-analysis to determine whether p53 protein overexpression detected by immunohistochemistry (IHC) offers a diagnostic prediction for p53 gene mutations in HCC patients. Methods Systematic literature searches were conducted with an end date of December 2015. A meta-analysis was performed to estimate the diagnostic accuracy of IHC-determined p53 protein overexpression in the prediction of p53 gene mutations in HCC. Sensitivity, subgroup, and publication bias analyses were also conducted. Results Thirty-six studies were included in the meta-analysis. The results showed that the overall sensitivity and specificity for IHC-determined p53 overexpression in the diagnostic prediction of p53 mutations in HCC were 0.83 (95% CI: 0.80–0.86) and 0.74 (95% CI: 0.71–0.76), respectively. The summary positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were 2.65 (95% CI: 2.21–3.18) and 0.36 (95% CI: 0.26–0.50), respectively. The diagnostic odds ratio (DOR) of IHC-determined p53 overexpression in predicting p53 mutations ranged from 0.56 to 105.00 (pooled, 9.77; 95% CI: 6.35–15.02), with significant heterogeneity between the included studies (I2 = 40.7%, P = 0.0067). Moreover, subgroup and sensitivity analyses did not alter the results of the meta-analysis. However, potential publication bias was present in the current meta-analysis. Conclusion The upregulation of the tumor suppressor protein p53 was indeed linked to p53 gene mutations. IHC determination of p53 overexpression can predict p53 gene mutations in HCC patients. PMID:27428001

  7. Mutational analysis of the myelin protein zero (MPZ) gene associated with Charcot-Marie-Tooth neuropathy type 1B

    SciTech Connect

    Roa, B.B.; Warner, L.E.; Lupski, J.R.

    1994-09-01

    The MPZ gene that maps to chromosome 1q22q23 encodes myelin protein zero, which is the most abundant peripheral nerve myelin protein that functions as a homophilic adhesion molecule in myelin compaction. Association of the MPZ gene with the dysmyelinating peripheral neuropathies Charcot-Marie-Tooth disease type 1B (CMT1B) and the more severe Dejerine-Sottas syndrome (DSS) was previously demonstrated by MPZ mutations identified in CMT1B and in rare DSS patients. In this study, the coding region of the MPZ gene was screened for mutations in a cohort of 74 unrelated patients with either CMT type 1 or DSS who do not carry the most common CMT1-associated molecular lesion of a 1.5 Mb DNA duplication on 17p11.2-p12. Heteroduplex analysis detected base mismatches in ten patients that were distributed over three exons of MPZ. Direct sequencing of PCR-amplified genomic DNA identified a de novo MPZ mutation associated with CMT1B that predicts an Ile(135)Thr substitution. This finding further confirms the role of MPZ in the CMT1B disease process. In addition, two polymorphisms were identified within the Gly(200) and Ser(228) codons that do not alter the respective amino acid residues. A fourth base mismatch in MPZ exon 3 detected by heteroduplex analysis is currently being characterized by direct sequence determination. Previously, four unrelated patients in this same cohort were found to have unique point mutations in the coding region of the PMP22 gene. The collective findings on CMT1 point mutations could suggest that regulatory region mutations, and possibly mutations in CMT gene(s) apart from the MPZ, PMP22 and Cx32 genes identified thus far, may prove to be significant for a number of CMT1 cases that do not involve DNA duplication.

  8. [The mutation site analysis on CAPN1 gene of Wild boar, Min pig and Yorkshire].

    PubMed

    Yang, Xiu-Qin; Liu, Hui; Guo, Li-Juan; Xu, Yao; Liu, Di

    2007-05-01

    In order to further evaluate the relationship between the variations of CAPN1 gene and meat tenderness, the CAPN1 genomic sequences were cloned and sequenced, its CDS was analyzed with PCR-SSCP, and the genotype analyses covered 109 individuals from Wild boar, Min pig and Yorkshire. Fifteen of total 21 introns were cloned. Five pairs polymorphic primers for PCR-SSCP analysis were designed based on the CDS of CAPN1 from GenBank and the cloned introns. Eight SNPs, resulting from single point mutation G to C, C to T, T to C, G to A, G to A, G to A, C to T and C to T at the base position 161 in exon2, 60 in exon5, 96 in exon5, 119 in exon5, 270 in intron8, 83 in exon10, 126 in exon13 and 138 in exon13 respectively, were identified, and 3 of which are missense mutations resulting to amino acid substitutions of S/T, G/E, V/I at the amino acid position of 54, 192 and 363 respectively. chi2 analysis showed that the distribution of genotypes among Yorkshire, Min pig and Wild boar are extremely significant difference, while there are no significant difference be-tween Min pig and Wild boar except in the S1 primer. The polymorphic sites may be used as molecular markers for meat tenderness and pork quality.

  9. Molecular analysis of mutations in the CSB (ERCC6) gene in patients with Cockayne syndrome.

    PubMed

    Mallery, D L; Tanganelli, B; Colella, S; Steingrimsdottir, H; van Gool, A J; Troelstra, C; Stefanini, M; Lehmann, A R

    1998-01-01

    Cockayne syndrome is a multisystem sun-sensitive genetic disorder associated with a specific defect in the ability to perform transcription-coupled repair of active genes after UV irradiation. Two complementation groups (CS-A and CS-B) have been identified, and 80% of patients have been assigned to the CS-B complementation group. We have analyzed the sites of the mutations in the CSB gene in 16 patients, to determine the spectrum of mutations in this gene and to see whether the nature of the mutation correlates with the type and severity of the clinical symptoms. In nine of the patients, the mutations resulted in truncated products in both alleles, whereas, in the other seven, at least one allele contained a single amino acid change. The latter mutations were confined to the C-terminal two-thirds of the protein and were shown to be inactivating by their failure to restore UV-irradiation resistance to hamster UV61 cells, which are known to be defective in the CSB gene. Neither the site nor the nature of the mutation correlated with the severity of the clinical features. Severe truncations were found in different patients with either classical or early-onset forms of the disease. PMID:9443879

  10. Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution.

    PubMed

    Chandler, Christopher H; Chari, Sudarshan; Dworkin, Ian

    2013-06-01

    The premise of genetic analysis is that a causal link exists between phenotypic and allelic variation. However, it has long been documented that mutant phenotypes are not a simple result of a single DNA lesion, but are instead due to interactions of the focal allele with other genes and the environment. Although an experimentally rigorous approach focused on individual mutations and isogenic control strains has facilitated amazing progress within genetics and related fields, a glimpse back suggests that a vast complexity has been omitted from our current understanding of allelic effects. Armed with traditional genetic analyses and the foundational knowledge they have provided, we argue that the time and tools are ripe to return to the underexplored aspects of gene function and embrace the context-dependent nature of genetic effects. We assert that a broad understanding of genetic effects and the evolutionary dynamics of alleles requires identifying how mutational outcomes depend upon the 'wild type' genetic background. Furthermore, we discuss how best to exploit genetic background effects to broaden genetic research programs.

  11. Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution

    PubMed Central

    Chandler, Christopher H.; Chari, Sudarshan; Dworkin, Ian

    2013-01-01

    The premise of genetic analysis is that a causal link exists between phenotypic and allelic variation. Yet it has long been documented that mutant phenotypes are not a simple result of a single DNA lesion, but rather are due to interactions of the focal allele with other genes and the environment. Although an experimentally rigorous approach focused on individual mutations and isogenic control strains has facilitated amazing progress within genetics and related fields, a glimpse back suggests that a vast complexity has been omitted from our current understanding of allelic effects. Armed with traditional genetic analyses and the foundational knowledge they have provided, we argue that the time and tools are ripe to return to the under-explored aspects of gene function and embrace the context-dependent nature of genetic effects. We assert that a broad understanding of genetic effects and the evolutionary dynamics of alleles requires identifying how mutational outcomes depend upon the “wild-type” genetic background. Furthermore, we discuss how best to exploit genetic background effects to broaden genetic research programs. PMID:23453263

  12. First molecular analysis of F8 gene in algeria: identification of two novel mutations.

    PubMed

    Abdi, Meriem; Zemani-Fodil, Faouzia; Fodil, Mostefa; Aberkane, Meriem Samia; Touhami, Hadj; Saidi-Mehtar, Nadhira; Costa, Catherine; Boudjema, Abdallah

    2014-10-01

    The aim of this study was to detect the genetic alterations in the Factor 8 gene in 26 patients from Western Algeria. We detected the presence of "intron 22 inversion" with long-range polymerase chain reaction (PCR). Negative patients for this inversion were analyzed for "intron 1 inversion" using multiplex PCR. Patients who were negative for both inversions were analyzed using a direct sequencing. Deleterious effects of novel mutations on protein were assayed with bioinformatics tools. Causing mutations were identified in 85.71% of the families, including 11 "intron 22 inversion," 1 "intron 1 inversion," and 6 different point mutations (2 nonsense, 1 splice site, and 3 missense mutations). Among these mutations, c.2189G > A (p.Cys711Tyr) and c.5219+1G>T are novel. This is the first study that reports spectrum of mutations in the Factor 8 gene in the Western Algerian population. Knowledge of these mutations is important for genetic counseling and medical care of affected families.

  13. Analysis of HFE and TFR2 gene mutations in patients with acute leukemia.

    PubMed

    Veneri, Dino; Franchini, Massimo; Krampera, Mauro; de Matteis, Giovanna; Solero, Pietro; Pizzolo, Giovanni

    2005-06-01

    There are increasing evidences regarding the association between iron overload and extra-hepatic malignancies. We studied the prevalence of 12 hereditary hemochromatosis (HH) gene mutations (C282Y, V53M, V59M, H63D, H63H, S56C, Q127H, E168Q, E168X, W169X and Q283P in the HFE gene and Y250X in the TFR2 gene) and its correlation with the iron status in 82 adult patients with acute leukemia (AL); 48 patients (58.5%) were affected by acute myeloid leukemia (AML) and 34 patients (41.5%) by acute lymphoblastic leukemia (ALL); 27 patients (32.9%) had at least one HH gene mutation (6 heterozygous for C282Y, 6 homozygous for H63D, 13 heterozygous for H63D and 2 heterozygous for S56C). Mean serum ferritin levels at diagnosis were increased (822.5+/-811.4 microg/L). However, there was no difference between patients positive or negative for the HH gene mutations. Similarly, we did not observe any statistically significant difference as far as iron status between AML and ALL patients. Our study does not support the evidence of an association between hemochromatosis gene mutations and iron overload in AL patients.

  14. Expression status and mutational analysis of the PTEN and P13K subunit genes in ovarian granulosa cell tumors.

    PubMed

    Bittinger, Sophie; Alexiadis, Maria; Fuller, Peter J

    2009-04-01

    Granulosa cell tumors (GCT) are a unique subset of ovarian tumors which have a molecular phenotype resembling that of follicle stimulating hormone (FSH)-stimulated pre-ovulatory granulosa cells. FSH acts via its receptor to stimulate signaling pathways including the phosphatidylinositol 3-kinase (PI3K)-AKT pathway. Activation of this pathway occurs in solid tumors, including ovarian epithelial tumors, through mutation of the PI3K subunit genes or inactivation of the tumor suppressor, PTEN. Activation of this pathway would be predicted to be tumorigenic in granulosa cells.Expression of the 2 PI3K subunit genes, PIK3CA, which encodes the catalytic subunit, and PIK3R1, which encodes the regulatory subunit, together with the PTEN gene was determined in a panel of GCT, 2 human GCT-derived cell lines, COV434 and KGN, and normal ovary. Direct sequence analysis was used to screen for mutations. Expression of all 3genes was observed in the GCT without evidence of overexpression for the PI3K subunit genes or loss of expression for PTEN. Sequence analysis of amplicons spanning exons 9and 20, in which greater than 75% of mutations occur in the PIK3CA gene did not identify any missense mutations. Similarly, the previously reported deletions in exons 12 and 13 of the PIK3R1 were not found in the GCT. Three amplicons spanning the entire coding sequence of the PTEN gene were sequenced; neither deletions nor mutations were identified.These findings suggest that activation of PI3K signaling through PI3K/PTEN mutation or altered expression, in contrast to many other types of solid tumor, is not associated with GCT.

  15. Analysis of the Ten-Eleven Translocation 2 (TET2) gene mutation in myeloproliferative neoplasms.

    PubMed

    Ha, Jung-Sook; Jeon, Dong-Seok; Kim, Jae-Ryong; Ryoo, Nam-Hee; Suh, Jang-Soo

    2014-01-01

    Loss-of-function mutations in the putative tumor suppressor gene, Ten-Eleven Ttranslocation 2(TET2), have been identified recently in myeloproliferative neoplasms (MPNs). The present study analyzed the TET2 gene in 99 MPNs patients. The overall TET2 mutational frequency was 12.1% (22.2% in polycythemia vera (PV), 9.7% in essential thrombocythemia (ET), 18.2% in primary myelofibrosis (PMF,) and 0% in unclassified MPNs), and 11 mutations (p.Lys95Asnfs*18, p.Gln967Asnfs*40, p.Lys1022Glufs*4, p.Asp1314Metfs*49, p.Gln1534Alafs*43, p.Tyr1618Leufs*4, p.Leu1609Glufs*45, p.Gly1735*, Q599R, c.3409+1G>T, c.4044+2insT) were identified. All the patients with TET2 mutation were accompanied by the JAK2 V617F mutation. The existence of the TET2 mutation was not related to the patient's age, hematologic indices, JAK2 V617F allele burden, frequencies of organomegaly, marrow fibrosis, or thrombotic/hemorrhagic complications in entire MPN patients. However, tendencies toward higher JAK2 V617F allele burdens (88.0±4.3% vs. 19.1±28.7%, P=0.034) and higher Hct (47.4±5.4% vs. 25.5±6.2%, P=0.037) were detected in PMF patients harboring TET2 mutations. Moreover, a significantly higher frequency of organomegaly was identified in ET patients harboring the TET2 mutation (50% vs. 19.6%, P=0.018). The TET2 mutation most likely contributes to clinical phenotypes and shows a high accompanying rate with JAK2 V617F; larger scale studies involving more MPN patients are needed. PMID:24795056

  16. Analysis of the role of Mycobacterium tuberculosis kasA gene mutations in isoniazid resistance.

    PubMed

    Sun, Y-J; Lee, A S G; Wong, S-Y; Paton, N I

    2007-08-01

    Previous studies have suggested that Mycobacterium tuberculosis kasA G312S and G269S gene mutations may represent sequence polymorphisms of the M. tuberculosis East-African-Indian (EAI) and T families, respectively, rather than relating to isoniazid resistance. The present study examined polymorphisms of these two codons in 98 drug-susceptible M. tuberculosis isolates (68 EAI and 30 T isolates). Twenty-eight isolates belonging to a sub-lineage of the EAI family had the kasA G312S mutation, but none of the 30 T isolates had the G269S mutation. The data suggest that the kasA G312S mutation is not related to isoniazid resistance, but represents a sequence polymorphism in a sub-lineage of the EAI family. PMID:17501974

  17. Mutational analysis of the DTDST gene in a fetus with achondrogenesis type 1B.

    PubMed

    Cai, G; Nakayama, M; Hiraki, Y; Ozono, K

    1998-06-16

    We describe a diastrophic dysplasia (DTDST) gene mutation in a Japanese male fetus with achondrogenesis type 1B and his relatives. Diagnosis in the fetus was based on roentgenographic data and pathological findings of bones and cartilage. Nucleotide sequencing of the DTDST gene demonstrated that the fetus was homozygous for both delVal340 and Thr689Ser and his parents and a healthy brother were heterozygous for the mutations. The former mutation was reported previously in patients with achondrogenesis type 1B, and the latter was detected in 5 alleles of 26 healthy Japanese individuals. These data suggest that delVal340 is associated with achondrogenesis type 1B in the Japanese, whereas a serine to threonine substitution is most likely polymorphic. PMID:9637425

  18. Identification of Novel Mutations in ABCA4 Gene: Clinical and Genetic Analysis of Indian Patients with Stargardt Disease

    PubMed Central

    Battu, Rajani; Verma, Anshuman; Hariharan, Ramesh; Krishna, Shuba; Kiran, Ravi; Jacob, Jemima; Ganapathy, Aparna; Ramprasad, Vedam L.; Kumaramanickavel, Govindasamy; Jeyabalan, Nallathambi; Ghosh, Arkasubhra

    2015-01-01

    Stargardt disease (STGD) is the leading cause of juvenile macular degeneration associated with progressive central vision loss, photophobia, and colour vision abnormalities. In this study, we have described the clinical and genetic features of Stargardt patients from an Indian cohort. The next generation sequencing was carried out in five clinically confirmed unrelated patients and their family members using a gene panel comprising 184 retinal specific genes. Sequencing results were analyzed by read mapping and variant calling in genes of interest, followed by their verification and interpretation. Genetic analysis revealed ABCA4 mutations in all of the five unrelated patients. Among these, four patients were found with compound heterozygous mutations and another one had homozygous mutation. All the affected individuals showed signs and symptoms consistent with the disease phenotype. We report two novel ABCA4 mutations in Indian patients with STGD disease, which expands the existing spectrum of disease-causing variants and the understanding of phenotypic and genotypic correlations. Screening for causative mutations in patients with STGD using panel of targeted gene sequencing by NGS would be a cost effective tool, might be helpful in confirming the precise diagnosis, and contributes towards the genetic counselling of asymptomatic carriers and isolated patients. PMID:25922843

  19. Analysis of hepatitis B virus genotyping and drug resistance gene mutations based on massively parallel sequencing.

    PubMed

    Han, Yingxin; Zhang, Yinxin; Mei, Yanhua; Wang, Yuqi; Liu, Tao; Guan, Yanfang; Tan, Deming; Liang, Yu; Yang, Ling; Yi, Xin

    2013-11-01

    Drug resistance to nucleoside analogs is a serious problem worldwide. Both drug resistance gene mutation detection and HBV genotyping are helpful for guiding clinical treatment. Total HBV DNA from 395 patients who were treated with single or multiple drugs including Lamivudine, Adefovir, Entecavir, Telbivudine, Tenofovir and Emtricitabine were sequenced using the HiSeq 2000 sequencing system and validated using the 3730 sequencing system. In addition, a mixed sample of HBV plasmid DNA was used to determine the cutoff value for HiSeq-sequencing, and 52 of the 395 samples were sequenced three times to evaluate the repeatability and stability of this technology. Of the 395 samples sequenced using both HiSeq and 3730 sequencing, the results from 346 were consistent, and the results from 49 were inconsistent. Among the 49 inconsistent results, 13 samples were detected as drug-resistance-positive using HiSeq but negative using 3730, and the other 36 samples showed a higher number of drug-resistance-positive gene mutations using HiSeq 2000 than using 3730. Gene mutations had an apparent frequency of 1% as assessed by the plasmid testing. Therefore, a 1% cutoff value was adopted. Furthermore, the experiment was repeated three times, and the same results were obtained in 49/52 samples using the HiSeq sequencing system. HiSeq sequencing can be used to analyze HBV gene mutations with high sensitivity, high fidelity, high throughput and automation and is a potential method for hepatitis B virus gene mutation detection and genotyping.

  20. Mutation analysis of hBUB1, human mitotic checkpoint gene in multiple carcinomas.

    PubMed

    Mimori, K; Inoue, H; Alder, H; Ueo, H; Tanaka, Y; Mori, M

    2001-01-01

    hBUB1 is a human homolog of yeast mitotic check point gene that plays an important role in chromosome segregation. Recently mutations of hBUB1 were reported in colorectal cancer cell lines, indicating that inactivation of this gene could be directly involved in aneuploidy in human carcinoma cells. To obtain information of the magnitude of hBUB1 inactivation in multiple carcinomas, we examined mutations in 59 multiple carcinoma cell lines showing single base alteration, however, there was no mutation of hBUB1 with amino acid change in these carcinomas. There were four silent mutations at codon 93, codon 735, codon 430 and codon 98 in KYSE190, TE8 esophageal carcinoma cells, KATOIII gastric carcinoma cells and 697 B cell leukemia cells, respectively. Two candidates of mutation were identified in TE3 esophageal carcinoma cells and 697 B cell leukemia cell line at codon 9 and codon 285, respectively. This result suggests that the inactivation of hBUB1 may be very rare in human carcinomas, or restricted to certain cell lines of colorectal carcinomas. PMID:11115566

  1. Mutational analysis of the envelope gene of Moloney murine leukemia virus.

    PubMed Central

    Gray, K D; Roth, M J

    1993-01-01

    The env gene products of Moloney murine leukemia virus are required for binding and entry of the virus into the target cell. Thirty-three linker insertion mutations were constructed throughout the env gene of Moloney murine leukemia virus. Twenty of the mutations were located in the surface protein (SU), and the remaining thirteen were located in the transmembrane protein (TM). The viability of the viruses containing these env gene mutations was determined by performing transient transfections and screening for the release of reverse transcriptase. Eleven viable mutants were isolated, nine in SU and two in TM. Three of the viable mutants were temperature sensitive. Four of the viable mutants were clustered in the carboxy terminus of SU. The env gene products of transfected cell lines which produced viable virus were analyzed. Our results indicated two regions of SU important for the stability of the SU/TM heteropolymer and one region important for the interaction of the env gene products with the viral core. Images PMID:7684467

  2. [Analysis of CYP21A2 gene mutation in one case of congenital adrenal hyperplasia].

    PubMed

    Lin, Xiao-Mei; Wu, Ben-Qing; Huang, Jin-Jie; Li, Bo; Fan, Yi; Lin, Lin-Hua; Yao, Qiu-Xuan; Wu, Wen-Yuan; Yu, Lian

    2013-11-01

    CYP21A2 gene mutations in a child with congenital adrenal hyperplasia (CAH), and the child's parents, were detected in the study. The clinical features, treatment monitoring and molecular genetic mechanism of CAH are reviewed. In the study, DNA was extracted from peripheral blood samples using the QIAGEN Blood DNA Mini Kit; a highly specific PCR primer for CYP21A2 gene was designed according to the sequence difference between CYP2lA2 gene and its pseudogene; the whole CYP2lA2 gene was amplified with PrimeSTAR DNA polymerase (Takara), and the amplification product was directly sequenced to detect and analyze CYP2lA2 gene mutation. The child was clinically diagnosed with CAH (21-hydroxylase deficiency, 21-OHD) at the age of 36 days, and the case was confirmed by genetic diagnosis at the age of 1.5 years. The proband had a homozygous mutation at c.293-13C in the second intron of CYP21 gene, while the parents had heterozygous mutations. Early diagnosis and standard treatment of CAH (21-OHD) should be performed to prevent salt-wasting crisis and reduce mortality; bone aging should be avoided to increase final adult height (FAH), and reproductive dysfunction due to oligospermia in adulthood should be avoided. These factors are helpful for improving prognosis and increasing FAH. Investigating the molecular genetic mechanism of CAH can improve recognition and optimize diagnosis of this disease. In addition, carrier diagnosis and genetic counseling for the proband family are of great significance.

  3. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans.

    PubMed

    de Boer, A P; van der Oost, J; Reijnders, W N; Westerhoff, H V; Stouthamer, A H; van Spanning, R J

    1996-12-15

    The genes that encode the hc-type nitric-oxide reductase from Paracoccus denitrificans have been identified. They are part of a cluster of six genes (norCBQDEF) and are found near the gene cluster that encodes the cd1-type nitrite reductase, which was identified earlier [de Boer, A. P. N., Reijnders, W. N. M., Kuenen, J. G., Stouthamer, A. H. & van Spanning, R. J. M. (1994) Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans, Antonie Leeu wenhoek 66, 111-127]. norC and norB encode the cytochrome-c-containing subunit II and cytochrome b-containing subunit I of nitric-oxide reductase (NO reductase), respectively. norQ encodes a protein with an ATP-binding motif and has high similarity to NirQ from Pseudomonas stutzeri and Pseudomonas aeruginosa and CbbQ from Pseudomonas hydrogenothermophila. norE encodes a protein with five putative transmembrane alpha-helices and has similarity to CoxIII, the third subunit of the aa3-type cytochrome-c oxidases. norF encodes a small protein with two putative transmembrane alpha-helices. Mutagenesis of norC, norB, norQ and norD resulted in cells unable to grow anaerobically. Nitrite reductase and NO reductase (with succinate or ascorbate as substrates) and nitrous oxide reductase (with succinate as substrate) activities were not detected in these mutant strains. Nitrite extrusion was detected in the medium, indicating that nitrate reductase was active. The norQ and norD mutant strains retained about 16% and 23% of the wild-type level of NorC, respectively. The norE and norF mutant strains had specific growth rates and NorC contents similar to those of the wild-type strain, but had reduced NOR and NIR activities, indicating that their gene products are involved in regulation of enzyme activity. Mutant strains containing the norCBQDEF region on the broad-host-range vector pEG400 were able to grow anaerobically, although at a lower specific growth rate and with lower

  4. Analysis by illegitimate transcription of a mutation in the 5{prime} splice site in exon 8 of the PAH gene

    SciTech Connect

    Desviat, L.R.; Perez, B.; Ugarte, M.

    1994-09-01

    Up to now, 12 splice defects have been described within the PAH gene. Using PCR-SSCP and sequence analysis we have found a point mutation involving the last nucleotide in exon 8 (CAG/CAA). The G to A substitution does not alter the amino acid (Q204Q), but it may cause a splice defect, as it is included in the 5{prime} splice donor site, and the G at this position is highly conserved (80%) in all eukaryotic genes. We have analyzed by illegitimate transcription the PAH mRNA in lymphocytes of a patient bearing the mutation in a heterozygous fashion. After RT-PCR we observed once the appearance of an extra larger band, which could be due to the use of a cryptic splice site instead of the mutated one. Furthermore, sequencing of 6 clones of the band of expected size in the patient revealed that all had the normal sequence, in spite of the G to A substitution being found in the genomic DNA. In view of these results, we believe that the larger extra band represents the allele with the mutation which causes a highly unstable mis-spliced RNA. This splice defect could be, therefore, the disease causing mutation in the patient.

  5. PTEN gene mutations correlate to poor prognosis in glioma patients: a meta-analysis

    PubMed Central

    Han, Feng; Hu, Rong; Yang, Hua; Liu, Jian; Sui, Jianmei; Xiang, Xin; Wang, Fan; Chu, Liangzhao; Song, Shibin

    2016-01-01

    Background We conducted this meta-analysis based on eligible trials to investigate the relationship between phosphatase and tensin homolog (PTEN) genetic mutation and glioma patients’ survival. Methods PubMed, Web of Science, and EMBASE were searched for eligible studies regarding the relationship between PTEN genetic mutation and glioma patients’ survival. The primary outcome was the overall survival of glioma patient with or without PTEN genetic mutation, and second outcome was prognostic factors for the survival of glioma patient. A fixed-effects or random-effects model was used to pool the estimates according to the heterogeneity among the included studies. Results Nine cohort studies, involving 1,173 patients, were included in this meta-analysis. Pooled results suggested that glioma patients with PTEN genetic mutation had a significant shorter overall survival than those without PTEN genetic mutation (hazard ratio [HR] =2.23, 95% confidence interval [CI]: 1.35, 3.67; P=0.002). Furthermore, subgroup analysis indicated that this association was only observed in American patients (HR =2.19, 95% CI: 1.23, 3.89; P=0.008), but not in Chinese patients (HR =1.44, 95% CI: 0.29, 7.26; P=0.657). Histopathological grade (HR =1.42, 95% CI: 0.07, 28.41; P=0.818), age (HR =0.94, 95% CI: 0.43, 2.04; P=0.877), and sex (HR =1.28, 95% CI: 0.55, 2.98; P=0.564) were not significant prognostic factors for the survival of patients with glioma. Conclusion Current evidence indicates that PTEN genetic mutation is associated with poor prognosis in glioma patients. However, this finding is derived from data in observational studies, potentially subject to selection bias, and hence well conducted, high-quality randomized controlled trials are warranted. PMID:27366085

  6. Mutations in cardiovascular connexin genes.

    PubMed

    Molica, Filippo; Meens, Merlijn J P; Morel, Sandrine; Kwak, Brenda R

    2014-09-01

    Connexins (Cxs) form a family of transmembrane proteins comprising 21 members in humans. Cxs differ in their expression patterns, biophysical properties and ability to combine into homomeric or heteromeric gap junction channels between neighbouring cells. The permeation of ions and small metabolites through gap junction channels or hemichannels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. Among others, Cx37, Cx40, Cx43, Cx45 and Cx47 are found in heart, blood and lymphatic vessels. Mutations or polymorphisms in the genes coding for these Cxs have not only been implicated in cardiovascular pathologies but also in a variety of other disorders. While mutations in Cx43 are mostly linked to oculodentodigital dysplasia, Cx47 mutations are associated with Pelizaeus-Merzbacher-like disease and lymphoedema. Cx40 mutations are principally linked to atrial fibrillation. Mutations in Cx37 have not yet been described, but polymorphisms in the Cx37 gene have been implicated in the development of arterial disease. This review addresses current knowledge on gene mutations in cardiovascular Cxs systematically and links them to alterations in channel properties and disease.

  7. ANO5 gene analysis in a large cohort of patients with anoctaminopathy: confirmation of male prevalence and high occurrence of the common exon 5 gene mutation.

    PubMed

    Sarkozy, Anna; Hicks, Debbie; Hudson, Judith; Laval, Steve H; Barresi, Rita; Hilton-Jones, David; Deschauer, Marcus; Harris, Elizabeth; Rufibach, Laura; Hwang, Esther; Bashir, Rumaisa; Walter, Maggie C; Krause, Sabine; van den Bergh, Peter; Illa, Isabel; Pénisson-Besnier, Isabelle; De Waele, Liesbeth; Turnbull, Doug; Guglieri, Michela; Schrank, Bertold; Schoser, Benedikt; Seeger, Jürgen; Schreiber, Herbert; Gläser, Dieter; Eagle, Michelle; Bailey, Geraldine; Walters, Richard; Longman, Cheryl; Norwood, Fiona; Winer, John; Muntoni, Francesco; Hanna, Michael; Roberts, Mark; Bindoff, Laurence A; Brierley, Charlotte; Cooper, Robert G; Cottrell, David A; Davies, Nick P; Gibson, Andrew; Gorman, Gráinne S; Hammans, Simon; Jackson, Andrew P; Khan, Aijaz; Lane, Russell; McConville, John; McEntagart, Meriel; Al-Memar, Ali; Nixon, John; Panicker, Jay; Parton, Matt; Petty, Richard; Price, Christopher J; Rakowicz, Wojtek; Ray, Partha; Schapira, Anthony H; Swingler, Robert; Turner, Chris; Wagner, Kathryn R; Maddison, Paul; Shaw, Pamela J; Straub, Volker; Bushby, Kate; Lochmüller, Hanns

    2013-08-01

    Limb girdle muscular dystrophy type 2L or anoctaminopathy is a condition mainly characterized by adult onset proximal lower limb muscular weakness and raised CK values, due to recessive ANO5 gene mutations. An exon 5 founder mutation (c.191dupA) has been identified in most of the British and German LGMD2L patients so far reported. We aimed to further investigate the prevalence and spectrum of ANO5 gene mutations and related clinical phenotypes, by screening 205 undiagnosed patients referred to our molecular service with a clinical suspicion of anoctaminopathy. A total of 42 unrelated patients had two ANO5 mutations (21%), whereas 14 carried a single change. We identified 34 pathogenic changes, 15 of which are novel. The c.191dupA mutation represents 61% of mutated alleles and appears to be less prevalent in non-Northern European populations. Retrospective clinical analysis corroborates the prevalently proximal lower limb phenotype, the male predominance and absence of major cardiac or respiratory involvement. Identification of cases with isolated hyperCKaemia and very late symptomatic male and female subjects confirms the extension of the phenotypic spectrum of the disease. Anoctaminopathy appears to be one of the most common adult muscular dystrophies in Northern Europe, with a prevalence of about 20%-25% in unselected undiagnosed cases. PMID:23606453

  8. Sensitive cytometry based system for enumeration, capture and analysis of gene mutations of circulating tumor cells.

    PubMed

    Sawada, Takeshi; Watanabe, Masaru; Fujimura, Yuu; Yagishita, Shigehiro; Shimoyama, Tatsu; Maeda, Yoshiharu; Kanda, Shintaro; Yunokawa, Mayu; Tamura, Kenji; Tamura, Tomohide; Minami, Hironobu; Koh, Yasuhiro; Koizumi, Fumiaki

    2016-03-01

    Methods for the enumeration and molecular characterization of circulating tumor cells (CTC) have been actively investigated. However, such methods are still technically challenging. We have developed a novel epithelial cell adhesion molecule independent CTC enumeration system integrated with a sorting system using a microfluidics chip. We compared the number of CTC detected using our system with those detected using the CellSearch system in 46 patients with various cancers. We also evaluated epidermal growth factor receptor (EGFR) and PIK3CA mutations of captured CTC in a study of 4 lung cancer and 4 breast cancer patients. The percentage of samples with detected CTC was significantly higher with our system (65.2%) than with CellSearch (28.3%). The number of detected CTC per patient using our system was statistically higher than that using CellSearch (median 5, 0; P = 0.000172, Wilcoxon test). In the mutation analysis study, the number of detected CTC per patient was low (median for lung, 4.5; median for breast, 5.5); however, it was easy to detect EGFR and PIK3CA mutations in the CTC of 2 lung and 1 breast cancer patient, respectively, using a commercially available kit. Our system is more sensitive than CellSearch in CTC enumeration of various cancers and is also capable of detecting EGFR and PIK3CA mutations in the CTC of lung and breast cancer patients, respectively. PMID:26708016

  9. Sensitive cytometry based system for enumeration, capture and analysis of gene mutations of circulating tumor cells.

    PubMed

    Sawada, Takeshi; Watanabe, Masaru; Fujimura, Yuu; Yagishita, Shigehiro; Shimoyama, Tatsu; Maeda, Yoshiharu; Kanda, Shintaro; Yunokawa, Mayu; Tamura, Kenji; Tamura, Tomohide; Minami, Hironobu; Koh, Yasuhiro; Koizumi, Fumiaki

    2016-03-01

    Methods for the enumeration and molecular characterization of circulating tumor cells (CTC) have been actively investigated. However, such methods are still technically challenging. We have developed a novel epithelial cell adhesion molecule independent CTC enumeration system integrated with a sorting system using a microfluidics chip. We compared the number of CTC detected using our system with those detected using the CellSearch system in 46 patients with various cancers. We also evaluated epidermal growth factor receptor (EGFR) and PIK3CA mutations of captured CTC in a study of 4 lung cancer and 4 breast cancer patients. The percentage of samples with detected CTC was significantly higher with our system (65.2%) than with CellSearch (28.3%). The number of detected CTC per patient using our system was statistically higher than that using CellSearch (median 5, 0; P = 0.000172, Wilcoxon test). In the mutation analysis study, the number of detected CTC per patient was low (median for lung, 4.5; median for breast, 5.5); however, it was easy to detect EGFR and PIK3CA mutations in the CTC of 2 lung and 1 breast cancer patient, respectively, using a commercially available kit. Our system is more sensitive than CellSearch in CTC enumeration of various cancers and is also capable of detecting EGFR and PIK3CA mutations in the CTC of lung and breast cancer patients, respectively.

  10. Molecular analysis of the PAX6 gene in Mexican patients with congenital aniridia: report of four novel mutations

    PubMed Central

    Villarroel, Camilo E.; Villanueva-Mendoza, Cristina; Orozco, Lorena; Alcántara-Ortigoza, Miguel Angel; Jiménez, Diana F.; Ordaz, Juan C.

    2008-01-01

    Purpose Paired box gene 6 (PAX6) heterozygous mutations are well known to cause congenital non-syndromic aniridia. These mutations produce primarily protein truncations and have been identified in approximately 40%–80% of all aniridia cases worldwide. In Mexico, there is only one previous report describing three intragenic deletions in five cases. In this study, we further analyze PAX6 variants in a group of Mexican aniridia patients and describe associated ocular findings. Methods We evaluated 30 nonrelated probands from two referral hospitals. Mutations were detected by single-strand conformation polymorphism (SSCP) and direct sequencing, and novel missense mutations and intronic changes were analyzed by in silico analysis. One intronic variation (IVS2+9G>A), which in silico analysis suggested had no pathological effects, was searched in 103 unaffected controls. Results Almost all cases exhibited phenotypes that were at the severe end of the aniridia spectrum with associated ocular alterations such as nystagmus, macular hypoplasia, and congenital cataracts. The mutation detection rate was 30%. Eight different mutations were identified: four (c.184_188dupGAGAC, c.361T>C, c.879dupC, and c.277G>A) were novel, and four (c.969C>T, IVS6+1G>C, c.853delC, and IVS7–2A>G) have been previously reported. The substitution at position 969 was observed in two patients. None of the intragenic deletions previously reported in Mexican patients were found. Most of the mutations detected predict either truncation of the PAX6 protein or conservative amino acid changes in the paired domain. We also detected two intronic non-pathogenic variations, IVS9–12C>T and IVS2+9G>A, that had been previously reported. Because the latter variation was considered potentially pathogenic, it was analyzed in 103 healthy Mexican newborns where we found an allelic frequency of 0.1116 for the A allele. Conclusions This study adds four novel mutations to the worldwide PAX6 mutational spectrum, and

  11. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema.

    PubMed

    Sandilands, Aileen; Terron-Kwiatkowski, Ana; Hull, Peter R; O'Regan, Gráinne M; Clayton, Timothy H; Watson, Rosemarie M; Carrick, Thomas; Evans, Alan T; Liao, Haihui; Zhao, Yiwei; Campbell, Linda E; Schmuth, Matthias; Gruber, Robert; Janecke, Andreas R; Elias, Peter M; van Steensel, Maurice A M; Nagtzaam, Ivo; van Geel, Michel; Steijlen, Peter M; Munro, Colin S; Bradley, Daniel G; Palmer, Colin N A; Smith, Frances J D; McLean, W H Irwin; Irvine, Alan D

    2007-05-01

    We recently reported two common filaggrin (FLG) null mutations that cause ichthyosis vulgaris and predispose to eczema and secondary allergic diseases. We show here that these common European mutations are ancestral variants carried on conserved haplotypes. To facilitate comprehensive analysis of other populations, we report a strategy for full sequencing of this large, highly repetitive gene, and we describe 15 variants, including seven that are prevalent. All the variants are either nonsense or frameshift mutations that, in representative cases, resulted in loss of filaggrin production in the epidermis. In an Irish case-control study, the five most common European mutations showed a strong association with moderate-to-severe childhood eczema (chi2 test: P = 2.12 x 10(-51); Fisher's exact test: heterozygote odds ratio (OR) = 7.44 (95% confidence interval (c.i.) = 4.9-11.3), and homozygote OR = 151 (95% c.i. = 20-1,136)). We found three additional rare null mutations in this case series, suggesting that the genetic architecture of filaggrin-related atopic dermatitis consists of both prevalent and rare risk alleles.

  12. Mutational analysis of the Caenorhabditis elegans cell-death gene ced-3.

    PubMed Central

    Shaham, S; Reddien, P W; Davies, B; Horvitz, H R

    1999-01-01

    Mutations in the gene ced-3, which encodes a protease similar to interleukin-1beta converting enzyme and related proteins termed caspases, prevent programmed cell death in the nematode Caenorhabditis elegans. We used site-directed mutagenesis to demonstrate that both the presumptive active-site cysteine of the CED-3 protease and the aspartate residues at sites of processing of the CED-3 proprotein are required for programmed cell death in vivo. We characterized the phenotypes caused by and the molecular lesions of 52 ced-3 alleles. These alleles can be ordered in a graded phenotypic series. Of the 30 amino acid sites altered by ced-3 missense mutations, 29 are conserved with at least one other caspase, suggesting that these residues define sites important for the functions of all caspases. Animals homozygous for the ced-3(n2452) allele, which is deleted for the region of the ced-3 gene that encodes the protease domain, seemed to be incompletely blocked in programmed cell death, suggesting that some programmed cell death can occur independently of CED-3 protease activity. PMID:10581274

  13. Gene mutations in Cushing's disease

    PubMed Central

    Xiong, Qi; Ge, Wei

    2016-01-01

    Cushing's disease (CD) is a severe (and potentially fatal) disease caused by adrenocorticotropic hormone (ACTH)-secreting adenomas of the pituitary gland (often termed pituitary adenomas). The majority of ACTH-secreting corticotroph tumors are sporadic and CD rarely appears as a familial disorder, thus, the genetic mechanisms underlying CD are poorly understood. Studies have reported that various mutated genes are associated with CD, such as those in menin 1, aryl hydrocarbon receptor-interacting protein and the nuclear receptor subfamily 3 group C member 1. Recently it was identified that ubiquitin-specific protease 8 mutations contribute to CD, which was significant towards elucidating the genetic mechanisms of CD. The present study reviews the associated gene mutations in CD patients. PMID:27588171

  14. Detection of mutations of the RB1 gene in retinoblastoma patients by using exon-by-exon PCR-SSCP analysis

    SciTech Connect

    Shimizu, Takashi; Toguchida, Junya; Kato, Mitsuo V.; Ishizaki, Kanji; Sasaki, Masao S. ); Kaneko, A. )

    1994-05-01

    Most sporadic cases of retinoblastoma, malignant eye tumor of children, may require the identification of a mutation of the retinoblastoma gene (RB1 gene) for precise genetic counseling. The authors established a mutation detection system of and screened for the RB1 gene mutation in 24 patients with retinoblastoma - 12 bilateral patients and 12 unilateral patients. Mutation analysis was performed by PCR-mediated SSCP analysis in the entire coding region and promoter region, as an initial screening method, followed by direct genomic sequencing. Possible oncogenic mutations were identified in 14 (58%) of 24 tumors, of which 6 were single base substitutions, 4 were small deletions, 3 were small insertions, and 1 was a complex alteration due to deletion-insertion. A constitutional somatic mosaicism was suggested in one bilateral patient. A majority (57%) of mutations were found in E1A binding domains, and all were presumed to truncate the normal gene products. The mutation analysis presented here may provide a basis for the screening system of RB1 gene mutations in retinoblastoma patients. 32 refs., 3 figs., 2 tabs.

  15. System analysis of gene mutations and clinical phenotype in Chinese patients with autosomal-dominant polycystic kidney disease

    PubMed Central

    Jin, Meiling; Xie, Yuansheng; Chen, Zhiqiang; Liao, Yujie; Li, Zuoxiang; Hu, Panpan; Qi, Yan; Yin, Zhiwei; Li, Qinggang; Fu, Ping; Chen, Xiangmei

    2016-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disorder mainly caused by mutation in PKD1/PKD2. However, ethnic differences in mutations, the association between mutation genotype/clinical phenotype, and the clinical applicable value of mutation detection are poorly understood. We made systematically analysis of Chinese ADPKD patients based on a next-generation sequencing platform. Among 148 ADPKD patients enrolled, 108 mutations were detected in 127 patients (85.8%). Compared with mutations in Caucasian published previously, the PKD2 mutation detection rate was lower, and patients carrying the PKD2 mutation invariably carried the PKD1 mutation. The definite pathogenic mutation detection rate was lower, whereas the multiple mutations detection rate was higher in Chinese patients. Then, we correlated PKD1/PKD2 mutation data and clinical data: patients with mutation exhibited a more severe phenotype; patients with >1 mutations exhibited a more severe phenotype; patients with pathogenic mutations exhibited a more severe phenotype. Thus, the PKD1/PKD2 mutation status differed by ethnicity, and the PKD1/PKD2 genotype may affect the clinical phenotype of ADPKD. Furthermore, it makes sense to detect PKD1/PKD2 mutation status for early diagnosis and prognosis, perhaps as early as the embryo/zygote stage, to facilitate early clinical intervention and family planning. PMID:27782177

  16. Mutational Analysis of the Arabidopsis Nucleotide Binding Site–Leucine-Rich Repeat Resistance Gene RPS2

    PubMed Central

    Tao, Yi; Yuan, Fenghua; Leister, R. Todd; Ausubel, Frederick M.; Katagiri, Fumiaki

    2000-01-01

    Disease resistance proteins containing a nucleotide binding site (NBS) and a leucine-rich repeat (LRR) region compose the largest class of disease resistance proteins. These so-called NBS-LRR proteins confer resistance against a wide variety of phytopathogens. To help elucidate the mechanism by which NBS-LRR proteins recognize and transmit pathogen-derived signals, we analyzed mutant versions of the Arabidopsis NBS-LRR protein RPS2. The RPS2 gene confers resistance against Pseudomonas syringae strains carrying the avirulence gene avrRpt2. The activity of RPS2 derivatives in response to AvrRpt2 was measured by using a functional transient expression assay or by expressing the mutant proteins in transgenic plants. Directed mutagenesis revealed that the NBS and an N-terminal leucine zipper (LZ) motif were critical for RPS2 function. Mutations near the N terminus, including an LZ mutation, resulted in proteins that exhibited a dominant negative effect on wild-type RPS2. Scanning the RPS2 molecule with a small in-frame internal deletion demonstrated that RPS2 does not have a large dispensable region. Overexpression of RPS2 in the transient assay in the absence of avrRpt2 also led to an apparent resistant response, presumably a consequence of a low basal activity of RPS2. The NBS and LZ were essential for this overdose effect, whereas the entire LRR was dispensable. RPS2 interaction with a 75-kD protein (p75) required an N-terminal portion of RPS2 that is smaller than the region required for the overdose effect. These findings illuminate the pathogen recognition mechanisms common among NBS-LRR proteins. PMID:11148296

  17. Analysis of the vp2 gene sequence of a new mutated mink enteritis parvovirus strain in PR China

    PubMed Central

    2010-01-01

    Background Mink enteritis virus (MEV) causes a highly contagious viral disease of mink with a worldwide distribution. MEV has a linear, single-stranded, negative-sense DNA with a genome length of approximately 5,000 bp. The VP2 protein is the major structural protein of the parvovirus encoded by the vp2 gene. VP2 is highly antigenic and plays important roles in determining viral host ranges and tissue tropisms. This study describes the bionomics and vp2 gene analysis of a mutated strain, MEV-DL, which was isolated recently in China and outlines its homologous relationships with other selected strains registered in Genbank. Results The MEV-DL strain can infect F81 cells with cytopathic effects. Pig erythrocytes were agglutinated by the MEV-DL strain. The generation of MEV-DL in F81 cells could infect mink within three months and cause a disease that was similar to that caused by wild-type MEV. A comparative analysis of the vp2 gene nucleotide (nt) sequence of MEV-DL showed that this was more than 99% homologous with other mink enteritis parvoviruses in Genbank. However, the nucleotide residues at positions 1,065 and 1,238 in the MEV-DL strain of the vp2 gene differed from those of all the other MEV strains described previously. It is noteworthy that the mutation at the nucleotide residues position 1,238 led to Asp/Gly replacement. This may lead to structural changes. A phylogenetic tree and sequence distance table were obtained, which showed that the MEV-DL and ZYL-1 strains had the closest inheritance distance. Conclusions A new variation of the vp2 gene exists in the MEV-DL strain, which may lead to structural changes of the VP2 protein. Phylogenetic analysis showed that MEV-DL may originate from the ZYL-1 strain in DaLian. PMID:20540765

  18. Systematic Phenomics Analysis Deconvolutes Genes Mutated in Intellectual Disability into Biologically Coherent Modules.

    PubMed

    Kochinke, Korinna; Zweier, Christiane; Nijhof, Bonnie; Fenckova, Michaela; Cizek, Pavel; Honti, Frank; Keerthikumar, Shivakumar; Oortveld, Merel A W; Kleefstra, Tjitske; Kramer, Jamie M; Webber, Caleb; Huynen, Martijn A; Schenck, Annette

    2016-01-01

    Intellectual disability (ID) disorders are genetically and phenotypically extremely heterogeneous. Can this complexity be depicted in a comprehensive way as a means of facilitating the understanding of ID disorders and their underlying biology? We provide a curated database of 746 currently known genes, mutations in which cause ID (ID-associated genes [ID-AGs]), classified according to ID manifestation and associated clinical features. Using this integrated resource, we show that ID-AGs are substantially enriched with co-expression, protein-protein interactions, and specific biological functions. Systematic identification of highly enriched functional themes and phenotypes revealed typical phenotype combinations characterizing process-defined groups of ID disorders, such as chromatin-related disorders and deficiencies in DNA repair. Strikingly, phenotype classification efficiently breaks down ID-AGs into subsets with significantly elevated biological coherence and predictive power. Custom-made functional Drosophila datasets revealed further characteristic phenotypes among ID-AGs and specific clinical classes. Our study and resource provide systematic insights into the molecular and clinical landscape of ID disorders, represent a significant step toward overcoming current limitations in ID research, and prove the utility of systematic human and cross-species phenomics analyses in highly heterogeneous genetic disorders.

  19. Systematic Phenomics Analysis Deconvolutes Genes Mutated in Intellectual Disability into Biologically Coherent Modules

    PubMed Central

    Kochinke, Korinna; Zweier, Christiane; Nijhof, Bonnie; Fenckova, Michaela; Cizek, Pavel; Honti, Frank; Keerthikumar, Shivakumar; Oortveld, Merel A.W.; Kleefstra, Tjitske; Kramer, Jamie M.; Webber, Caleb; Huynen, Martijn A.; Schenck, Annette

    2016-01-01

    Intellectual disability (ID) disorders are genetically and phenotypically extremely heterogeneous. Can this complexity be depicted in a comprehensive way as a means of facilitating the understanding of ID disorders and their underlying biology? We provide a curated database of 746 currently known genes, mutations in which cause ID (ID-associated genes [ID-AGs]), classified according to ID manifestation and associated clinical features. Using this integrated resource, we show that ID-AGs are substantially enriched with co-expression, protein-protein interactions, and specific biological functions. Systematic identification of highly enriched functional themes and phenotypes revealed typical phenotype combinations characterizing process-defined groups of ID disorders, such as chromatin-related disorders and deficiencies in DNA repair. Strikingly, phenotype classification efficiently breaks down ID-AGs into subsets with significantly elevated biological coherence and predictive power. Custom-made functional Drosophila datasets revealed further characteristic phenotypes among ID-AGs and specific clinical classes. Our study and resource provide systematic insights into the molecular and clinical landscape of ID disorders, represent a significant step toward overcoming current limitations in ID research, and prove the utility of systematic human and cross-species phenomics analyses in highly heterogeneous genetic disorders. PMID:26748517

  20. Nucleotide sequences and mutational analysis of the structural genes for nitrogenase 2 of Azotobacter vinelandii.

    PubMed Central

    Joerger, R D; Loveless, T M; Pau, R N; Mitchenall, L A; Simon, B H; Bishop, P E

    1990-01-01

    The nucleotide sequence (6,559 base pairs) of the genomic region containing the structural genes for nitrogenase 2 (V nitrogenase) from Azotobacter vinelandii was determined. The open reading frames present in this region are organized into two transcriptional units. One contains vnfH (encoding dinitrogenase reductase 2) and a ferredoxinlike open reading frame (Fd). The second one includes vnfD (encoding the alpha subunit of dinitrogenase 2), vnfG (encoding a product similar to the delta subunit of dinitrogenase 2 from A. chroococcum), and vnfK (encoding the beta subunit of dinitrogenase 2). The 5'-flanking regions of vnfH and vnfD contain sequences similar to ntrA-dependent promoters. This gene arrangement allows independent expression of vnfH-Fd and vnfDGK. Mutant strains (CA80 and CA11.80) carrying an insertion in vnfH are still able to synthesize the alpha and beta subunits of dinitrogenase 2 when grown in N-free, Mo-deficient, V-containing medium. A strain (RP1.11) carrying a deletion-plus-insertion mutation in the vnfDGK region produced only dinitrogenase reductase 2. Images PMID:2345152

  1. Nucleotide sequences and mutational analysis of the structural genes for nitrogenase 2 of Azotobacter vinelandii.

    PubMed

    Joerger, R D; Loveless, T M; Pau, R N; Mitchenall, L A; Simon, B H; Bishop, P E

    1990-06-01

    The nucleotide sequence (6,559 base pairs) of the genomic region containing the structural genes for nitrogenase 2 (V nitrogenase) from Azotobacter vinelandii was determined. The open reading frames present in this region are organized into two transcriptional units. One contains vnfH (encoding dinitrogenase reductase 2) and a ferredoxinlike open reading frame (Fd). The second one includes vnfD (encoding the alpha subunit of dinitrogenase 2), vnfG (encoding a product similar to the delta subunit of dinitrogenase 2 from A. chroococcum), and vnfK (encoding the beta subunit of dinitrogenase 2). The 5'-flanking regions of vnfH and vnfD contain sequences similar to ntrA-dependent promoters. This gene arrangement allows independent expression of vnfH-Fd and vnfDGK. Mutant strains (CA80 and CA11.80) carrying an insertion in vnfH are still able to synthesize the alpha and beta subunits of dinitrogenase 2 when grown in N-free, Mo-deficient, V-containing medium. A strain (RP1.11) carrying a deletion-plus-insertion mutation in the vnfDGK region produced only dinitrogenase reductase 2.

  2. Mathematical analysis of antigen selection in somatically mutated immunoglobulin genes associated with autoimmunity.

    PubMed

    MacDonald, C M; Boursier, L; D'Cruz, D P; Dunn-Walters, D K; Spencer, J

    2010-09-01

    Affinity maturation is a process by which low-affinity antibodies are transformed into highly specific antibodies in germinal centres. This process occurs by hypermutation of immunoglobulin heavy chain variable (IgH V) region genes followed by selection for high-affinity variants. It has been proposed that statistical tests can identify affinity maturation and antigen selection by analysing the frequency of replacement and silent mutations in the complementarity determining regions (CDRs) that contact antigen and the framework regions (FRs) that encode structural integrity. In this study three different methods that have been proposed for detecting selection: the binomial test, the multinomial test and the focused binomial test, have been assessed for their reliability and ability to detect selection in human IgH V genes. We observe first that no statistical test is able to identify selection in the CDR antigen-binding sites, second that tests can reliably detect selection in the FR and third that antibodies from nasal biopsies from patients with Wegener's granulomatosis and pathogenic antibodies from systemic lupus erythematosus do not appear to be as stringently selected for structural integrity as other groups of functional sequences.

  3. Mediastinal paragangliomas related to SDHx gene mutations

    PubMed Central

    Ćwikła, Jarosław; Prejbisz, Aleksander; Kwiatek, Paweł; Szperl, Małgorzata; Michalski, Wojciech; Wyrwicz, Lucjan; Kuśmierczyk, Mariusz; Januszewicz, Andrzej; Maciejczyk, Anna; Roszczynko, Marta; Pęczkowska, Mariola

    2016-01-01

    Introduction Paragangliomas (PGLs) related to hereditary syndromes are rare mediastinal tumors. Paragangliomas are caused by mutations in genes encoding subunits of succinate dehydrogenase enzyme (SDH). Aim To evaluate clinical, anatomical and functional characteristics of mediastinal paragangliomas related to SDHx gene mutations. Material and methods Retrospective analysis of 75 patients with confirmed SDHx gene mutations (24 patients with SDHB, 5 SDHC, 46 with SDHD mutations) was performed. Patients underwent evaluation using computed tomography (CT), somatostatin receptor scintigraphy (SRS) (99mTc-[HYNIC,Tyr3]-octreotide), 123I mIBG scintigraphy and urinary excretion of total methoxycatecholamines. Results Out of 75 patients, 16 (21%) patients (1 SDHB, 15 SDHD mutations) had 17 PGLs localized in the mediastinum. Fourteen PGLs were localized in the middle mediastinum (intrapericardial) and 3 PGLs in the posterior mediastinum. The median diameter of paragangliomas measured on the axial slice was 24.3 mm (interquartile range (IQR): 14.7–36.6), and the median volume was 2.78 ml (IQR: 0.87–16.16). Twelve out of 16 patients (75%) underwent SRS, and 11 of them (92.3%) had pathological uptake of the radiotracer. Eleven (68.75%) out of 16 patients underwent 123 I mIBG, with only 3 positive results. Symptoms of catecholamine excretion were observed in 3 patients with PGLs localized in the posterior mediastinum. All PGLs were benign except in 1 patient with the SDHB mutation and PGL detected in the posterior mediastinum, who had a metastatic disease. Conclusions Most mediastinal paragangliomas were related to SDHD gene mutations. They were asymptomatic, localized in the medial mediastinum, intrapericardially. PMID:27785149

  4. Single strand conformation polymorphism analysis of androgen receptor gene mutations in patients with androgen insensitivity syndromes: Application for diagnosis, genetic counseling, and therapy

    SciTech Connect

    Hiort, O. Tufts-New England Medical Center, Boston, MA ); Huang, Q. ); Sinnecker, G.H.G.; Kruse, K. ); Sadeghi-Nejad, A.; Wolfe, H.J. ); Yandell, D.W. ) Harvard School of Public Health, Boston, MA )

    1993-07-01

    Recent studies indicate that mutations in the androgen receptor gene are associated with androgen insensitivity syndromes, a heterogeneous group of related disorders involving defective sexual differentiation in karyotypic males. In this report, the authors address the possibility of rapid mutational analysis of the androgen receptor gene for initial diagnosis, genetic counseling, and molecular subclassification of affected patients and their families. DNA from peripheral blood leukocytes of six patients from five families with various degrees of androgen insensitivity was studied. Exons 2 to 8 of the androgen receptor gene were analyzed using a combination of single strand conformation polymorphism analysis and direct DNA sequencing. Female family members were also studied to identify heterozygote carriers. Point mutations in the AR gene were identified in all six patients, and all mutations caused amino acid substitutions. One patient with incomplete androgen insensitivity was a mosaic for the mutation. Four of the five mothers, as well as a young sister of one patient, were carriers of the mutation present in the affected child. The data show that new mutations may occur in the androgen receptor gene leading to sporadic androgen insensitivity syndrome. Molecular genetic characterization of the variant allele can serve as a primary tool for diagnosis and subsequent therapy, and can provide a basis for distinguishing heterozygous carriers in familial androgen resistance. The identification of carriers is of substantial clinical importance for genetic counseling. 29 refs., 2 figs., 1 tab.

  5. Analysis of the VAV3 as candidate gene for schizophrenia: evidences from voxel-based morphometry and mutation screening.

    PubMed

    Aleksic, Branko; Kushima, Itaru; Hashimoto, Ryota; Ohi, Kazutaka; Ikeda, Masashi; Yoshimi, Akira; Nakamura, Yukako; Ito, Yoshihito; Okochi, Tomo; Fukuo, Yasuhisa; Yasuda, Yuka; Fukumoto, Motoyuki; Yamamori, Hidenaga; Ujike, Hiroshi; Suzuki, Michio; Inada, Toshiya; Takeda, Masatoshi; Kaibuchi, Kozo; Iwata, Nakao; Ozaki, Norio

    2013-05-01

    In recently completed Japanese genome-wide association studies (GWAS) of schizophrenia (JPN_GWAS) one of the top association signals was detected in the region of VAV3, a gene that maps to the chromosome 1p13.3. In order to complement JPN_GWAS findings, we tested the association of rs1410403 with brain structure in healthy individuals and schizophrenic patients and performed exon resequencing of VAV3. We performed voxel-based morphometry (VBM) and mutation screening of VAV3. Four independent samples were used in the present study: (1) for VBM analysis, we used case-control sample comprising 100 patients with schizophrenia and 264 healthy controls, (2) mutation analysis was performed on a total of 321 patients suffering from schizophrenia, and 2 case-control samples (3) 729 unrelated patients with schizophrenia and 564 healthy comparison subjects, and (4) sample comprising 1511 cases and 1517 healthy comparison subjects and were used for genetic association analysis of novel coding variants with schizophrenia. The VBM analysis suggests that rs1410403 might affect the volume of the left superior and middle temporal gyri (P=.011 and P=.013, respectively), which were reduced in patients with schizophrenia compared with healthy subjects. Moreover, 4 rare novel missense variants were detected. The mutations were followed-up in large independent sample, and one of the novel variants (Glu741Gly) was associated with schizophrenia (P=.02). These findings demonstrate that VAV3 can be seen as novel candidate gene for schizophrenia in which both rare and common variants may be related to increased genetic risk for schizophrenia in Japanese population.

  6. Mutation analysis in 129 genes associated with other forms of retinal dystrophy in 157 families with retinitis pigmentosa based on exome sequencing

    PubMed Central

    Xu, Yan; Guan, Liping; Xiao, Xueshan; Zhang, Jianguo; Li, Shiqiang; Jiang, Hui; Jia, Xiaoyun; Yang, Jianhua; Guo, Xiangming; Yin, Ye; Wang, Jun

    2015-01-01

    Purpose Mutations in 60 known genes were previously identified by exome sequencing in 79 of 157 families with retinitis pigmentosa (RP). This study analyzed variants in 129 genes associated with other forms of hereditary retinal dystrophy in the same cohort. Methods Apart from the 73 genes previously analyzed, a further 129 genes responsible for other forms of hereditary retinal dystrophy were selected based on RetNet. Variants in the 129 genes determined by whole exome sequencing were selected and filtered by bioinformatics analysis. Candidate variants were confirmed by Sanger sequencing and validated by analysis of available family members and controls. Results A total of 90 candidate variants were present in the 129 genes. Sanger sequencing confirmed 83 of the 90 variants. Analysis of family members and controls excluded 76 of these 83 variants. The remaining seven variants were considered to be potential pathogenic mutations; these were c.899A>G, c.1814C>G, and c.2107C>T in BBS2; c.1073C>T and c.1669C>T in INPP5E; and c.3582C>G and c.5704–5C>G in CACNA1F. Six of these seven mutations were novel. The mutations were detected in five unrelated patients without a family history, including three patients with homozygous or compound heterozygous mutations in BBS2 and INPP5E, and two patients with hemizygous mutations in CACNA1F. None of the patients had mutations in the genes associated with autosome dominant retinal dystrophy. Conclusions Only a small portion of patients with RP, about 3% (5/157), had causative mutations in the 129 genes associated with other forms of hereditary retinal dystrophy. PMID:25999675

  7. Spectral Analysis of EEG in Familial Alzheimer's Disease with E280A Presenilin-1 Mutation Gene

    PubMed Central

    Rodriguez, Rene; Lopera, Francisco; Alvarez, Alfredo; Fernandez, Yuriem; Galan, Lidice; Quiroz, Yakeel; Bobes, Maria Antonieta

    2014-01-01

    To evaluate the hypothesis that quantitative EEG (qEEG) analysis is susceptible to detect early functional changes in familial Alzheimer's disease (AD) preclinical stages. Three groups of subjects were selected from five extended families with hereditary AD: a Probable AD group (18 subjects), an asymptomatic carrier (ACr) group (21 subjects), with the mutation but without any clinical symptoms of dementia, and a normal group of 18 healthy subjects. In order to reveal significant differences in the spectral parameter, the Mahalanobis distance (D2) was calculated between groups. To evaluate the diagnostic efficiency of this statistic D2, the ROC models were used. The ROC curve was summarized by accuracy index and standard deviation. The D2 using the parameters of the energy in the fast frequency bands shows accurate discrimination between normal and ACr groups (area ROC = 0.89) and between AD probable and ACr groups (area ROC = 0.91). This is more significant in temporal regions. Theses parameters could be affected before the onset of the disease, even when cognitive disturbance is not clinically evident. Spectral EEG parameter could be firstly used to evaluate subjects with E280A Presenilin-1 mutation without impairment in cognitive function. PMID:24551475

  8. Spectral Analysis of EEG in Familial Alzheimer's Disease with E280A Presenilin-1 Mutation Gene.

    PubMed

    Rodriguez, Rene; Lopera, Francisco; Alvarez, Alfredo; Fernandez, Yuriem; Galan, Lidice; Quiroz, Yakeel; Bobes, Maria Antonieta

    2014-01-01

    To evaluate the hypothesis that quantitative EEG (qEEG) analysis is susceptible to detect early functional changes in familial Alzheimer's disease (AD) preclinical stages. Three groups of subjects were selected from five extended families with hereditary AD: a Probable AD group (18 subjects), an asymptomatic carrier (ACr) group (21 subjects), with the mutation but without any clinical symptoms of dementia, and a normal group of 18 healthy subjects. In order to reveal significant differences in the spectral parameter, the Mahalanobis distance (D (2)) was calculated between groups. To evaluate the diagnostic efficiency of this statistic D (2), the ROC models were used. The ROC curve was summarized by accuracy index and standard deviation. The D (2) using the parameters of the energy in the fast frequency bands shows accurate discrimination between normal and ACr groups (area ROC = 0.89) and between AD probable and ACr groups (area ROC = 0.91). This is more significant in temporal regions. Theses parameters could be affected before the onset of the disease, even when cognitive disturbance is not clinically evident. Spectral EEG parameter could be firstly used to evaluate subjects with E280A Presenilin-1 mutation without impairment in cognitive function.

  9. Mutation analysis of the p73 gene in nonastrocytic brain tumours

    PubMed Central

    Alonso, M E; Bello, M J; Gonzalez-Gomez, P; Lomas, J; Arjona, D; Campos, J M de; Kusak, M E; Sarasa, J L; Isla, A; Rey, J A

    2001-01-01

    Loss of heterozygosity (LOH) involving the distal chromosome 1p36region occurs frequently in nonastrocytic brain tumours, but the tumour suppressor gene targeted by this deletion is unknown. p73is a novel gene that has high sequence homology and similar gene structure to thep53 gene; it has been mapped to 1p36, and may thus represent a candidate for this tumour suppressor gene. To determine whether p73is involved in nonastrocytic brain tumour development, we analysed 65 tumour samples including 26 oligodendrogliomas, 4 ependymomas, 5 medulloblastomas, 10 meningiomas, 2 meningeal haemangiopericytomas, 2 neurofibrosarcomas, 3 primary lymphomas, 8 schwannomas and 5 metastatic tumours to the brain, for p73 alterations. Characterization of allelic loss at 1p36–p35 showed LOH in about 50% of cases, primarily involving oligodendroglial tumours (22 of 26 cases analysed; 85%) and meningiomas (4 of 10; 40%). PCR-SSCP and direct DNA sequencing of exons 2 to 14 of p73 revealed a missense mutation in one primary lymphoma: a G-to-A transition, with Glu291Lys change. 8 additional cases displayed no tumour-specific alterations, as 3 distinct polymorphic changes were identified: a double polymorphic change of exon 5 was found in one ependymoma and both samples derived from an oligodendroglioma, as follows: a G-to-A transition with no change in Pro 146, and a C-to-T variation with no change in Asn 204: a delG at exon 3/+12 position was identified in 4 samples corresponding to 2 oligodendrogliomas, 1 ependymoma and 1 meningioma, and a C-to-T change at exon 2/+10 position was present in a metastatic tumour. Although both LOH at 1p36 and p73 sequence changes were evidenced in 4 cases, it is difficult to establish a causal role of the p73 variations and nonastrocytic brain tumours development. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461077

  10. Mutation Analysis of the Common Deafness Genes in Patients with Nonsyndromic Hearing Loss in Linyi by SNPscan Assay

    PubMed Central

    Zhang, Fengguo; Xu, Lei; Zhang, Xue; Zhang, Guodong; Li, Jianfeng; Lv, Huaiqing; Bai, Xiaohui; Wang, Haibo

    2016-01-01

    Hearing loss is a common sensory disorder, and at least 50% of cases are due to a genetic etiology. Although hundreds of genes have been reported to be associated with nonsyndromic hearing loss, GJB2, SLC26A4, and mtDNA12SrRNA are the major contributors. However, the mutation spectrum of these common deafness genes varies among different ethnic groups. The present work summarized mutations in these three genes and their prevalence in 339 patients with nonsyndromic hearing loss at three different special education schools and one children's hospital in Linyi, China. A new multiplex genetic screening system “SNPscan assay” was employed to detect a total of 115 mutations of the above three genes. Finally, 48.67% of the patients were identified with hereditary hearing loss caused by mutations in GJB2, SLC26A4, and mtDNA12SrRNA. The carrying rate of mutations in the three genes was 37.76%, 19.75%, and 4.72%, respectively. This mutation profile in our study is distinct from other parts of China, with high mutation rate of GJB2 suggesting a unique mutation spectrum in this area. PMID:27247933

  11. MDE heteroduplex analysis of PCR products spanning each exon of the fibrillin (FBN1) gene greatly increases the efficiency of mutation detection in the Marfan syndrome

    SciTech Connect

    Nijbroek, G.; Dietz, H.C.; Pereira, L.; Ramirz, F.

    1994-09-01

    Defects in fibrillin (FNB1) cause the Marfan syndrome (MFS). Classic Marfan phenotype cosegregates with intragenic and/or flanking marker alleles in all families tested and a significant number of FBN1 mutations have been identified in affected individuals. Using a standard method of mutation detection, SSCP analysis of overlapping RT-PCR amplimers that span the entire coding sequence, the general experience has been a low yield of identifiable mutations, ranging from 10-20%. Possible explanations included low sensitivity of mutation screening procedures, under-representation of mutant transcript in patient samples either due to deletions or mutant alleles containing premature termination codons, clustering of mutations in yet uncharacterized regions of the gene, including regulatory elements, or genetic heterogeneity. In order to compensate for a potential reduced mutant transcript stability, we have devised a method to screen directly from genomic DNA. The intronic boundaries flanking each of the 65 FBN1 exons were characterized and primer pairs were fashioned such that all splice junctions would be included in the resultant amplimers. The entire gene was screened for a panel of 9 probands with classic Marfan syndrome using mutation detection enhancement (MDE) gel heteroduplex analysis. A mutation was identified in 5/9 (55%) of patient samples. All were either missense mutations involving a cysteine residue or small deletions that did not create a frame shift. In addition, 10 novel polymorphisms were found. We conclude that the majority of mutations causing Marfan syndrome reside in the FBN1 gene and that mutations creating premature termination codons are not the predominant cause of inefficient mutation detection using RT-PCR. We are currently modifying screening methods to increase sensitivity and targeting putative FBN1 gene promoter sequences for study.

  12. Targeted re-sequencing analysis of 25 genes commonly mutated in myeloid disorders in del(5q) myelodysplastic syndromes

    PubMed Central

    Fernandez-Mercado, Marta; Burns, Adam; Pellagatti, Andrea; Giagounidis, Aristoteles; Germing, Ulrich; Agirre, Xabier; Prosper, Felipe; Aul, Carlo; Killick, Sally; Wainscoat, James S.; Schuh, Anna; Boultwood, Jacqueline

    2013-01-01

    Interstitial deletion of chromosome 5q is the most common chromosomal abnormality in myelodysplastic syndromes. The catalogue of genes involved in the molecular pathogenesis of myelodysplastic syndromes is rapidly expanding and next-generation sequencing technology allows detection of these mutations at great depth. Here we describe the design, validation and application of a targeted next-generation sequencing approach to simultaneously screen 25 genes mutated in myeloid malignancies. We used this method alongside single nucleotide polymorphism-array technology to characterize the mutational and cytogenetic profile of 43 cases of early or advanced del(5q) myelodysplastic syndromes. A total of 29 mutations were detected in our cohort. Overall, 45% of early and 66.7% of advanced cases had at least one mutation. Genes with the highest mutation frequency among advanced cases were TP53 and ASXL1 (25% of patients each). These showed a lower mutation frequency in cases of 5q- syndrome (4.5% and 13.6%, respectively), suggesting a role in disease progression in del(5q) myelodysplastic syndromes. Fifty-two percent of mutations identified were in genes involved in epigenetic regulation (ASXL1, TET2, DNMT3A and JAK2). Six mutations had allele frequencies <20%, likely below the detection limit of traditional sequencing methods. Genomic array data showed that cases of advanced del(5q) myelodysplastic syndrome had a complex background of cytogenetic aberrations, often encompassing genes involved in myeloid disorders. Our study is the first to investigate the molecular pathogenesis of early and advanced del(5q) myelodysplastic syndromes using next-generation sequencing technology on a large panel of genes frequently mutated in myeloid malignancies, further illuminating the molecular landscape of del(5q) myelodysplastic syndromes. PMID:23831921

  13. Rapid deoxyribonucleic acid analysis by allele-specific polymerase chain reaction for detection of mutations in the steroid 21-hydroxylase gene

    SciTech Connect

    Wilson, R.C.; Wei, J.Q.; Cheng, K.C.

    1995-05-01

    Rapid DNA analysis based on allele-specific polymerase chain reaction (PCR) using mutation site-specific primers was developed to detect mutations in the CYP21 gene known to cause steroid 21-hydroxylase deficiency. In contrast to the previous method, in which PCR of genomic DNA was followed by dot blot analysis with radio active probes and multiple rounds of stripping and reprobing for each of the 8 most common mutation sites, the results using this new method were immediately visualized after the PCR run by ethidium bromide-stained agarose gel electrophoresis. Using allele-specific PCR, mutation(s) were identified on 148 affected chromosomes out of 160 tested. Although mutation(s) were identified on only one chromosome of 11 of these patients, their parents showed a consistent pattern on DNA analysis. The only exception was that in one family, in which the parents each had a detectable mutation, a mutation was detected on only one allele of the patient. Most likely there is a mutation in the patient`s other allele that could have arisen de novo or was inherited from the parent and was not evident in the transmitting parent`s phenotype. When compared with the dot blot procedure, allele-specific PCR is more rapid, less labor-intensive, and avoids the use of radioactivity. 26 refs., 3 figs., 2 tabs.

  14. Gene Mutation Analysis in EGFR Wild Type NSCLC Responsive to Erlotinib: Are There Features to Guide Patient Selection?

    PubMed Central

    Ulivi, Paola; Delmonte, Angelo; Chiadini, Elisa; Calistri, Daniele; Papi, Maximilian; Mariotti, Marita; Verlicchi, Alberto; Ragazzini, Angela; Capelli, Laura; Gamboni, Alessandro; Puccetti, Maurizio; Dubini, Alessandra; Burgio, Marco Angelo; Casanova, Claudia; Crinò, Lucio; Amadori, Dino; Dazzi, Claudio

    2014-01-01

    Tyrosine kinase inhibitors (TKIs) are very efficacious in non-small-cell lung cancer (NSCLC) patients harboring activating Epidermal Growth Factor Receptor (EGFR) mutations. However, about 10% of EGFR wild type (wt) patients respond to TKI, with unknown molecular mechanisms of sensitivity. We considered a case series of 34 EGFR wt NSCLC patients responsive to erlotinib after at least one line of therapy. Responsive patients were matched with an equal number of non-responsive EGFR wt patients. A panel of 26 genes, for a total of 214 somatic mutations, was analyzed by MassARRAY® System (Sequenom, San Diego, CA, USA). A 15% KRAS mutation was observed in both groups, with a prevalence of G12C in non-responders (80% vs. 40% in responders). NOTCH1, p53 and EGFR-resistance-related mutations were found more frequently in non-responders, whereas EGFR-sensitizing mutations and alterations in genes involved in proliferation pathways were more frequent in responders. In conclusion, our findings indicate that p53, NOTCH1 and exon 20 EGFR mutations seem to be related to TKI resistance. KRAS mutations do not appear to influence the TKI response, although G12C mutation is more frequent in non-responders. Finally, the use of highly sensitive methodologies could lead to the identification of under-represented EGFR mutations potentially associated with TKI sensitivity. PMID:25561229

  15. The Wilson disease gene: Haplotypes and mutations

    SciTech Connect

    Thomas, G.R.; Roberts, E.A.; Cox, D.W.; Walshe, J.M.

    1994-09-01

    Wilson disease (WND) is an autosomal recessive defect of copper transport. The gene involved in WND, located on chromosome 13, has recently been shown to be a putative copper transporting P-type ATPase, designated ATP7B. The gene is highly similar to ATP7A, located on the X chromosome, which is defective in Menkes disease, another disorder of copper transport. We have available for study WND families from Canada (34 families), the United Kingdom (32 families), Japan (4 families), Iceland (3 families) and Hong Kong (2 families). We have utilized four highly polymorphic CA repeat markers (D13S296, D13S301, D13S314 and D13S316) surrounding the ATP7B locus to construct haplotypes in these families. Analysis indicates that there are many unique WND haplotypes not present on normal chromosomes and that there may be a large number of different WND mutations. We have screened the WND patients for mutations in the ATP7B gene. Fifty six patients, representing all of the identified haplotypes, have been screened using single strand conformational polymorphism (SSCP), followed by selective sequencing. To date, 19 mutations and 12 polymorphisms have been identified. All of the changes are nucleotide substitutions or small insertions/deletions and there is no evidence for larger deletions as seen in the similar gene on the X chromosome, ATP7A. Haplotypes of close markers and the ability to detect some of the mutations present in the gene allow for more reliable molecular diagnosis of presymptomatic sibs of WND patients. A reassessment of individuals previously diagnosed in the presymptomatic phase is now required, as we have have identified some heterozygotes who are biochemically indistinguishable from affected homozygotes. The identification of specific mutations will soon allow direct diagnosis of WND patients with a high level of certainty.

  16. Functional analysis of a proline to serine mutation in codon 453 of the thyroid hormone receptor {beta}1 gene

    SciTech Connect

    Ozata, M.; Suzuki, Satoru; Takeda, Teiji

    1995-10-01

    Mutations in the gene encoding human thyroid hormone receptor {beta}(hTR{beta}) have been associated with generalized resistance to thyroid hormone (GRTH). This disorder is associated with significant behavoral abnormalities. We examined the hTR{beta} gene in a family with members who manifest inappropriately normal TSH, elevated free T{sub 4}, and free and total T{sub 3}. Sequence analysis showed a cytosine to thymine transition at nucleotide 1642 in one allele of the index patient`s genomic DNA. This altered proline to serine at codon 453. The resulting mutant receptor when expressed in vitro bound DNA with high affinity, but the T{sub 3} affinity of the receptor was impaired. The mutant TR demonstrated a dominant negative effect when cotransfected with two isoforms of wild-type receptor and also in the presence of TR variant {alpha}2 in COS-1 cells. Mutations of codon 453 occur more frequently than at other sites, and four different amino acid substitutions have been reported. Significant differences in phenotype occur among affected individuals, varying from normality to moderately severe GRTH. There is no clear correlation between K{sub a} or in vitro function of the mutant receptor, and phenotype. This study extends the association between GRTH and illness, and indicates that early diagnosis and counseling are needed in families with TR{beta}1 abnormalities. 34 refs., 5 figs., 2 tabs.

  17. Mutation analysis of the genes associated with anterior segment dysgenesis, microcornea and microphthalmia in 257 patients with glaucoma.

    PubMed

    Huang, Xiaobo; Xiao, Xueshan; Jia, Xiaoyun; Li, Shiqiang; Li, Miaoling; Guo, Xiangming; Liu, Xing; Zhang, Qingjiong

    2015-10-01

    Genetic factors have an important role in the development of glaucoma; however, the exact genetic defects remain to be identified in the majority of patients. Glaucoma is frequently observed in patients with anterior segment dysgenesis (ASD), microcornea or microphthalmia. The present study aimed to detect the potential mutations in the genes associated with ASD, microcornea and microphthalmia in 257 patients with glaucoma. Variants in 43 of the 46 genes, which are associated with ASD, microcornea or microphthalmia, were available in whole‑exome sequencing. Candidate variants in the 43 genes were selected following multi‑step bioinformatic analysis and were subsequently confirmed by Sanger sequencing. Confirmed variants were further validated by segregation analysis and analysis of controls. Overall, 70 candidate variants were selected from whole‑exome sequencing, of which 53 (75.7%) were confirmed by Sanger sequencing. In total, 27 of the 53 were considered potentially pathogenic based on bioinformatic analysis and analysis of controls. Of the 27, 6 were identified in BEST1, 4 in EYA1, 3 in GDF6, 2 in BMP4, 2 in CRYBA4, 2 in HCCS, and 1 in each of CRYAA, CRYGC, CRYGD, COL4A1, FOXC1, GJA8, PITX2 and SHH. The 27 variants were detected in 28 of 257 (10.9%) patients, including 11 of 125 patients with primary open‑angle glaucoma and 17 of 132 patients with primary angle‑closure glaucoma. Variants in these genes may be a potential risk factor for primary glaucoma. Careful clinical observation and analysis of additional patients in different populations are expected to further these findings.

  18. Mutational analysis of methyl-CpG binding protein 2 (MECP2) gene in Indian cases of Rett syndrome.

    PubMed

    Das, Dhanjit Kumar; Udani, Vrajesh; Sanghavi, Daksha; Adhia, Rashmi; Maitra, Anurupa

    2013-03-01

    Rett syndrome (RTT) is an X-linked postnatal neurological disorder, primarily affecting females and characterized by regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. RTT is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 200 individual nucleotide changes in the gene, which cause pathogenic mutations, have been reported; however, eight most commonly occurring missense and nonsense mutations account for almost 70% of all mutations. RTT cases have also been reported from India. The phenotype (classical and atypical inclusive) has many differentials. However, a genetically based confirmed diagnosis would help in management and counseling. In this pilot study we have analyzed MECP2 mutations in ten Indian sporadic patients diagnosed clinically as having RTT. Two mutations and one novel variant in MECP2 have been detected. Missense mutations p.R133C and c.806delG have been detected. The missence mutation p.R133C was the part of eight hotspots reported in Rett patients. This patient met all the essential criteria except delayed onset of regression. The other c.806delG mutation positive patient also fulfilled all the obligatory criteria of classical RTT. Another clinically atypical Rett patient showed a novel mutation p.C339S in MECP2 gene. The preliminary result necessitates a large-scale study of RTT patients to determine more precisely the influence of MECP2 mutations in Indian patients and their correlation with clinical phenotypes.

  19. Molecular analysis of the fibrinogen gene cluster in 16 patients with congenital afibrinogenemia: novel truncating mutations in the FGA and FGG genes.

    PubMed

    Neerman-Arbez, M; de Moerloose, P; Honsberger, A; Parlier, G; Arnuti, B; Biron, C; Borg, J Y; Eber, S; Meili, E; Peter-Salonen, K; Ripoll, L; Vervel, C; d'Oiron, R; Staeger, P; Antonarakis, S E; Morris, M A

    2001-03-01

    Congenital afibrinogenemia is an autosomal recessive disorder characterized by the complete absence of detectable fibrinogen. We previously identified the first causative mutations for this disease in a non-consanguineous Swiss family. These were homozygous deletions of approximately 11 kb of the fibrinogen alpha chain gene (FGA). Our subsequent study revealed that the majority of cases were attributable to truncating mutations in FGA, with the most common mutation affecting the donor splice site in FGA intron 4 (IVS4+1 G-->T). Here, we report 13 further unrelated patients with mutations in FGA, confirming the relative importance of this gene compared with FGG and FGB in the molecular aetiology of afibrinogenemia. Three other patients were homozygous for mutations in FGG. Eight novel mutations were identified: five in FGA and three in FGG. Sufficient mutation data is now available to permit an effective strategy for the genetic diagnosis of congenital afibrinogenemia.

  20. Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii.

    PubMed Central

    Joerger, R D; Jacobson, M R; Premakumar, R; Wolfinger, E D; Bishop, P E

    1989-01-01

    The nucleotide sequence of a region of the Azotobacter vinelandii genome exhibiting sequence similarity to nifH has been determined. The order of open reading frames within this 6.1-kilobase-pair region was found to be anfH (alternative nitrogen fixation, nifH-like gene), anfD (nifD-like gene), anfG (potentially encoding a protein similar to the product of vnfG from Azotobacter chroococcum), anfK (nifK-like gene), followed by two additional open reading frames. The 5'-flanking region of anfH contains a nif promoter similar to that found in the A. vinelandii nifHDK gene cluster. The presumed products of anfH, anfD, and anfK are similar in predicted Mr and pI to the previously described subunits of nitrogenase 3. Deletion plus insertion mutations introduced into the anfHDGK region of wild-type strain A. vinelandii CA resulted in mutant strains that were unable to grow in Mo-deficient, N-free medium but grew in the presence of 1 microM Na2MoO4 or V2O5. Introduction of the same mutations into the nifHDK deletion strain CA11 resulted in strains that grew under diazotrophic conditions only in the presence of vanadium. The lack of nitrogenase 3 subunits in these mutant strains was demonstrated through two-dimensional gel analysis of protein extracts from cells derepressed for nitrogenase under Mo and V deficiency. These results indicate that anfH, anfD, and anfK encode structural proteins for nitrogenase 3. Images PMID:2644222

  1. Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii.

    PubMed

    Joerger, R D; Jacobson, M R; Premakumar, R; Wolfinger, E D; Bishop, P E

    1989-02-01

    The nucleotide sequence of a region of the Azotobacter vinelandii genome exhibiting sequence similarity to nifH has been determined. The order of open reading frames within this 6.1-kilobase-pair region was found to be anfH (alternative nitrogen fixation, nifH-like gene), anfD (nifD-like gene), anfG (potentially encoding a protein similar to the product of vnfG from Azotobacter chroococcum), anfK (nifK-like gene), followed by two additional open reading frames. The 5'-flanking region of anfH contains a nif promoter similar to that found in the A. vinelandii nifHDK gene cluster. The presumed products of anfH, anfD, and anfK are similar in predicted Mr and pI to the previously described subunits of nitrogenase 3. Deletion plus insertion mutations introduced into the anfHDGK region of wild-type strain A. vinelandii CA resulted in mutant strains that were unable to grow in Mo-deficient, N-free medium but grew in the presence of 1 microM Na2MoO4 or V2O5. Introduction of the same mutations into the nifHDK deletion strain CA11 resulted in strains that grew under diazotrophic conditions only in the presence of vanadium. The lack of nitrogenase 3 subunits in these mutant strains was demonstrated through two-dimensional gel analysis of protein extracts from cells derepressed for nitrogenase under Mo and V deficiency. These results indicate that anfH, anfD, and anfK encode structural proteins for nitrogenase 3. PMID:2644222

  2. Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii.

    PubMed

    Joerger, R D; Jacobson, M R; Premakumar, R; Wolfinger, E D; Bishop, P E

    1989-02-01

    The nucleotide sequence of a region of the Azotobacter vinelandii genome exhibiting sequence similarity to nifH has been determined. The order of open reading frames within this 6.1-kilobase-pair region was found to be anfH (alternative nitrogen fixation, nifH-like gene), anfD (nifD-like gene), anfG (potentially encoding a protein similar to the product of vnfG from Azotobacter chroococcum), anfK (nifK-like gene), followed by two additional open reading frames. The 5'-flanking region of anfH contains a nif promoter similar to that found in the A. vinelandii nifHDK gene cluster. The presumed products of anfH, anfD, and anfK are similar in predicted Mr and pI to the previously described subunits of nitrogenase 3. Deletion plus insertion mutations introduced into the anfHDGK region of wild-type strain A. vinelandii CA resulted in mutant strains that were unable to grow in Mo-deficient, N-free medium but grew in the presence of 1 microM Na2MoO4 or V2O5. Introduction of the same mutations into the nifHDK deletion strain CA11 resulted in strains that grew under diazotrophic conditions only in the presence of vanadium. The lack of nitrogenase 3 subunits in these mutant strains was demonstrated through two-dimensional gel analysis of protein extracts from cells derepressed for nitrogenase under Mo and V deficiency. These results indicate that anfH, anfD, and anfK encode structural proteins for nitrogenase 3.

  3. Identification and Functional Analysis of a Novel MIP Gene Mutation Associated with Congenital Cataract in a Chinese Family.

    PubMed

    Shentu, Xingchao; Miao, Qi; Tang, Xiajing; Yin, Houfa; Zhao, Yingying

    2015-01-01

    Congenital cataracts are major cause of visual impairment and blindness in children and previous studies have shown about 1/3 of non-syndromic congenital cataracts are inherited. Major intrinsic protein of the lens (MIP), also known as AQP0, plays a critical role in transparency and development of the lens. To date, more than 10 mutations in MIP have been linked to hereditary cataracts in humans. In this study, we investigated the genetic and functional defects underlying a four-generation Chinese family affected with congenital progressive cortical punctate cataract. Mutation screening of the candidate genes revealed a missense mutation at position 448 (c.448G>C) of MIP, which resulted in the substitution of a conserved aspartic acid with histidine at codon 150 (p.D150H). By linkage and haplotype analysis, we obtained positive multipoint logarithm of odds (LOD) scores at microsatellite markers D12S1632 (Zmax = 1.804 at α = 1.000) and D12S1691 (Zmax = 1.806 at α = 1.000), which flanked the candidate locus. The prediction results of PolyPhen-2 and SIFT indicated that the p.D150H mutation was likely to damage to the structure and function of AQP0. The wild type and p.D150H mutant AQP0 were expressed in HeLa cells separately and the immunofluorescence results showed that the WT-AQP0 distributed at the plasma membrane and in cytoplasm, while AQP0-D150H failed to reach the plasma membrane and was mainly retained in the Golgi apparatus. Moreover, protein levels of AQP0-D150H were significantly lower than those of wide type AQP0 in membrane-enriched lysates when the HEK-293T cells were transfected with the same amount of wild type and mutant plasmids individually. Taken together, our data suggest the p.D150H mutation is a novel disease-causing mutation in MIP, which leads to congenital progressive cortical punctate cataract by impairing the trafficking mechanism of AQP0.

  4. Evaluating the performance of clinical criteria for predicting mismatch repair gene mutations in Lynch syndrome: a comprehensive analysis of 3,671 families.

    PubMed

    Steinke, Verena; Holzapfel, Stefanie; Loeffler, Markus; Holinski-Feder, Elke; Morak, Monika; Schackert, Hans K; Görgens, Heike; Pox, Christian; Royer-Pokora, Brigitte; von Knebel-Doeberitz, Magnus; Büttner, Reinhard; Propping, Peter; Engel, Christoph

    2014-07-01

    Carriers of mismatch repair (MMR) gene mutations have a high lifetime risk for colorectal and endometrial cancers, as well as other malignancies. As mutation analysis to detect these patients is expensive and time-consuming, clinical criteria and tumor-tissue analysis are widely used as pre-screening methods. The aim of our study was to evaluate the performance of commonly applied clinical criteria (the Amsterdam I and II Criteria, and the original and revised Bethesda Guidelines) and the results of tumor-tissue analysis in predicting MMR gene mutations. We analyzed 3,671 families from the German HNPCC Registry and divided them into nine mutually exclusive groups with different clinical criteria. A total of 680 families (18.5%) were found to have a pathogenic MMR gene mutation. Among all 1,284 families with microsatellite instability-high (MSI-H) colorectal cancer, the overall mutation detection rate was 53.0%. Mutation frequencies and their distribution between the four MMR genes differed significantly between clinical groups (p < 0.001). The highest frequencies were found in families fulfilling the Amsterdam Criteria (46.4%). Families with loss of MSH2 expression had higher mutation detection rates (69.5%) than families with loss of MLH1 expression (43.1%). MMR mutations were found significantly more often in families with at least one MSI-H small-bowel cancer (p < 0.001). No MMR mutations were found among patients under 40-years-old with only colorectal adenoma. Familial clustering of Lynch syndrome-related tumors, early age of onset, and familial occurrence of small-bowel cancer were clinically relevant predictors for Lynch syndrome.

  5. Molecular genetic analysis of some mutations in the cystic fibrosis gene in Moldova: Characterization of molecular markers and their linkage to various mutations

    SciTech Connect

    Gimbovskaya, S.D.; Kalinin, V.N.; Ivashchenko, T.E.; Baranov, V.S.

    1994-12-01

    Sixty-one patients with cystic fibrosis (CF) from Moldova were tested for mutations {Delta}F508, G551D, and R553X. Frequencies of various alleles of the repeated GATT sequence in intron 6B of the GFTR gene, their linkage to other polymorphic markers, and various mutations were determined. The frequency of occurrence of mutation {Delta}F508 was only 25%. An absolute majority of CF patients (80%) had pancreatic insufficiency. Mutations G551D and R553X were not found in our sample. Each of 31 chromosomes with mutation {Delta}F508 carry the 6-GATT allele. Most {open_quotes}non {Delta}F508{close_quotes} (78%) and normal (80%) chromosomes were marked by the 7-GATT allele. Twenty-seven {Delta}F508 chromosomes (96.4%) belong to haplotype B6, and only one to D6. Most chromosomes with {open_quotes}non {Delta}F508{close_quotes} mutations are associated with haplotypes D7 (26.3%) and C7 (21%). In addition, a significant portion of chromosomes from this subgroup were associated with haplotypes A7 (23.7%), A6 (10.5%), and C6 (2.7%), which are not yet described for mutant chromosomes. The results obtained demonstrate that CF in Moldova is mainly associated with mutations other than {Delta}F508, G551D, and R553X. Severe forms of the disease, with pancreatic insufficiency, are more frequently caused by these mutations; moreover, our data provides strong evidence for the presence of at least seven additional CF mutations in Moldova, apart from {Delta}F508, G551D, and R553X. Some of these are probably not described.

  6. Parkinson disease (PARK) genes are somatically mutated in cutaneous melanoma

    PubMed Central

    Samuels, Yardena; Azizi, Esther; Qutob, Nouar; Inzelberg, Lilah; Domany, Eytan; Schechtman, Edna; Friedman, Eitan

    2016-01-01

    Objective: To assess whether Parkinson disease (PD) genes are somatically mutated in cutaneous melanoma (CM) tissue, because CM occurs in patients with PD at higher rates than in the general population and PD is more common than expected in CM cohorts. Methods: We cross-referenced somatic mutations in metastatic CM detected by whole-exome sequencing with the 15 known PD (PARK) genes. We computed the empirical distribution of the sum of mutations in each gene (Smut) and of the number of tissue samples in which a given gene was mutated at least once (SSampl) for each of the analyzable genes, determined the 90th and 95th percentiles of the empirical distributions of these sums, and verified the location of PARK genes in these distributions. Identical analyses were applied to adenocarcinoma of lung (ADENOCA-LUNG) and squamous cell carcinoma of lung (SQUAMCA-LUNG). We also analyzed the distribution of the number of mutated PARK genes in CM samples vs the 2 lung cancers. Results: Somatic CM mutation analysis (n = 246) detected 315,914 mutations in 18,758 genes. Somatic CM mutations were found in 14 of 15 PARK genes. Forty-eight percent of CM samples carried ≥1 PARK mutation and 25% carried multiple PARK mutations. PARK8 mutations occurred above the 95th percentile of the empirical distribution for SMut and SSampl. Significantly more CM samples harbored multiple PARK gene mutations compared with SQUAMCA-LUNG (p = 0.0026) and with ADENOCA-LUNG (p < 0.0001). Conclusions: The overrepresentation of somatic PARK mutations in CM suggests shared dysregulated pathways for CM and PD. PMID:27123489

  7. Mutational analysis of JAK2, CBL, RUNX1, and NPM1 genes in familial aggregation of hematological malignancies.

    PubMed

    Hamadou, Walid S; Bourdon, Violaine; Gaildrat, Pascaline; Besbes, Sawsen; Fabre, Aurélie; Youssef, Yosra B; Regaieg, Haifa; Laatiri, Mohamed A; Eisinger, François; Mari, Véronique; Gesta, Paul; Dreyfus, Hélène; Bonadona, Valérie; Dugast, Catherine; Zattara, Hélène; Faivre, Laurence; Jemni, Saloua Yacoub; Noguchi, Testsuro; Khélif, Abderrahim; Sobol, Hagay; Soua, Zohra

    2016-06-01

    Familial aggregation of hematological malignancies has been reported highlighting inherited genetic predisposition. In this study, we targeted four candidate genes: JAK2 and RUNX1 genes assuring a prominent function in hematological process and CBL and NPM1 as proto-oncogenes. Their disruption was described in several sporadic hematological malignancies. The aim of this study is to determine whether JAK2, CBL, RUNX1, and NPM1 germline genes mutations are involved in familial hematological malignancies. Using direct sequencing, we analyzed JAK2 (exons 12 and 14); CBL (exons 7, 8 and 9); NPM1 (exon 12) and the entire RUNX1 in 88 independent families belonging to Tunisian and French populations. Twenty-one sporadic acute leukemias were included in this study. We reported a heterozygous intronic c.1641 + 6 T > C JAK2 variant (rs182123615) found in two independent familial cases diagnosed with gastric lymphoma and Hodgkin lymphoma. The in silico analysis suggested a potential impact on splicing, but the functional splicing minigene reporter assay on rs182123615 variant showed no aberrant transcripts. In one sporadic acute myeloblastic leukemia, we reported an insertion 846 in. TGTT in exon 12 of NPM1 gene that may impact the normal reading frame. The rs182123615 JAK2 variant was described in several contexts including myeloproliferative neoplasms and congenital erythrocytosis and was supposed to be pathogenic. Through this current study, we established the assessment of pathogenicity of rs182123615 and we classified it rather as rare polymorphism. PMID:27106701

  8. Somatic mutation analysis of KRAS, BRAF, HER2 and PTEN in EGFR mutation-negative non-small cell lung carcinoma: determination of frequency, distribution pattern and identification of novel deletion in HER2 gene from Indian patients.

    PubMed

    Bhaumik, Sangeet; Ahmad, Firoz; Das, Bibhu Ranjan

    2016-10-01

    Somatic mutations of KRAS, BRAF, HER2, PTEN genes are the most important molecular markers after the EGFR gene mutation. The current study evaluated the frequency and distribution pattern of KRAS, BRAF, HER2, PTEN mutation in Indian non-small cell lung carcinoma patients. The frequency of KRAS, BRAF, HER2, PTEN mutations was 6.4 % (14/204), 1.5 % (3/204), 1.5 % (3/204), 0 % (0/204), respectively. KRAS, BRAF, HER2 mutations were more prevalent in males than in females. KRAS and HER2 showed a trend of a higher frequency of mutation in the age group of <60 years, whereas BRAF mutations were more frequent in the age group of ≥60 years. Sequencing analysis of KRAS gene revealed c.34G>T (G12C) (n = 8), c.35G>A (G12D) (n = 3), c.35G>T (G12 V) (n = 1) and c.34G>T (G12C)/c.41T>C (V14A) (n = 2) mutations. Three different BRAF mutations (L584P: n = 1, V600E: n = 1, K601E: n = 1) were detected. Two cases harboured c.2324_2325ins12 (ATACGTGATGGC duplication) in HER2 gene, and one case was positive for NG_007503.2 (NM_001005862.2):c.2218-4del. It is less certain, but still quite possible that this mutation will affect splicing as the deletion of one C actually brings in one additional purine into the region. In conclusion, the present study demonstrates an instance of diverse nature of KRAS, BRAF, HER2 and PTEN gene in Indian patients and confirms that the frequency of these gene mutations varies globally. To the best of our knowledge, this is the first Indian study to evaluate KRAS, BRAF, HER2 and PTEN gene mutations.

  9. Somatic mutation analysis of KRAS, BRAF, HER2 and PTEN in EGFR mutation-negative non-small cell lung carcinoma: determination of frequency, distribution pattern and identification of novel deletion in HER2 gene from Indian patients.

    PubMed

    Bhaumik, Sangeet; Ahmad, Firoz; Das, Bibhu Ranjan

    2016-10-01

    Somatic mutations of KRAS, BRAF, HER2, PTEN genes are the most important molecular markers after the EGFR gene mutation. The current study evaluated the frequency and distribution pattern of KRAS, BRAF, HER2, PTEN mutation in Indian non-small cell lung carcinoma patients. The frequency of KRAS, BRAF, HER2, PTEN mutations was 6.4 % (14/204), 1.5 % (3/204), 1.5 % (3/204), 0 % (0/204), respectively. KRAS, BRAF, HER2 mutations were more prevalent in males than in females. KRAS and HER2 showed a trend of a higher frequency of mutation in the age group of <60 years, whereas BRAF mutations were more frequent in the age group of ≥60 years. Sequencing analysis of KRAS gene revealed c.34G>T (G12C) (n = 8), c.35G>A (G12D) (n = 3), c.35G>T (G12 V) (n = 1) and c.34G>T (G12C)/c.41T>C (V14A) (n = 2) mutations. Three different BRAF mutations (L584P: n = 1, V600E: n = 1, K601E: n = 1) were detected. Two cases harboured c.2324_2325ins12 (ATACGTGATGGC duplication) in HER2 gene, and one case was positive for NG_007503.2 (NM_001005862.2):c.2218-4del. It is less certain, but still quite possible that this mutation will affect splicing as the deletion of one C actually brings in one additional purine into the region. In conclusion, the present study demonstrates an instance of diverse nature of KRAS, BRAF, HER2 and PTEN gene in Indian patients and confirms that the frequency of these gene mutations varies globally. To the best of our knowledge, this is the first Indian study to evaluate KRAS, BRAF, HER2 and PTEN gene mutations. PMID:27637917

  10. Genomic Profiling Identifies Novel Mutations and SNPs in ABCD1 Gene: A Molecular, Biochemical and Clinical Analysis of X-ALD Cases in India

    PubMed Central

    Kumar, Neeraj; Taneja, Krishna Kant; Kalra, Veena; Behari, Madhuri; Aneja, Satinder; Bansal, Surendra Kumar

    2011-01-01

    X-linked adrenoleukodystrophy (X-ALD) affects the nervous system white matter and adrenal cortex secondary to mutations in the ABCD1 gene that encode the peroxisomal membrane protein. We conducted a genomic and protein expression study of susceptibility gene with its clinical and biochemical analysis. To the best of our knowledge this is the first preliminary comprehensive study in Indian population that identified novel mutations and SNPs in a relatively large group. We screened 17 Indian indigenous X-linked adrenoleukodystrophy cases and 70 controls for mutations and SNPs in the exonic regions (including flanking regions) of ABCD1 gene by direct sequencing with ABI automated sequencer along with Western blot analysis of its endogenous protein, ALDP, levels in peripheral blood mononuclear cells. Single germ line mutation was identified in each index case in ABCD1 gene. We detected 4 novel mutations (2 missense and 2 deletion/insertion) and 3 novel single nucleotide polymorphisms. We observed a variable protein expression in different patients. These findings were further extended to biochemical and clinical observations as it occurs with great clinical expression variability. This is the first major study in this population that presents a different molecular genetic spectrum as compared to Caucasian population due to geographical distributions of ethnicity of patients. It enhances our knowledge of the causative mutations of X-ALD that grants holistic base to develop effective medicine against X-ALD. PMID:21966424

  11. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi.

    PubMed

    Papp, T; Pemsel, H; Zimmermann, R; Bastrop, R; Weiss, D G; Schiffmann, D

    1999-08-01

    Eighteen human congenital melanocytic naevi (CMN) from 17 patients were screened for activating point mutations in the oncogenes N-ras and CDK4 and for sequence variants in the MC1R gene by combined RFLP-PCR/SSCP analysis. In addition, all lesions were screened for deletions and point mutations in the tumour suppressor genes p53 and p16INK4a (CDKN2A) by combined multiplex PCR/SSCP analysis. Positive screening data were specified by sequencing of the corresponding PCR product. Activating point mutations in the N-ras gene (nine CAA (Gln) to AAA (Lys) transversions and one CAA (Gln) to CGA (Arg) transition at codon 61) were detected at high frequency (56%). Furthermore, three missense mutations (V92M) and two silent mutations (CGA (Arg) to CGG (Arg), codon 213, exon 6) were found in the MC1R and p53 genes, respectively. No mutations were found in p16 or CDK4. The activated N-ras oncogene, which is also found in human cutaneous melanomas, may constitute a potential risk factor for melanoma formation within CMN.

  12. Genomic profiling identifies novel mutations and SNPs in ABCD1 gene: a molecular, biochemical and clinical analysis of X-ALD cases in India.

    PubMed

    Kumar, Neeraj; Taneja, Krishna Kant; Kalra, Veena; Behari, Madhuri; Aneja, Satinder; Bansal, Surendra Kumar

    2011-01-01

    X-linked adrenoleukodystrophy (X-ALD) affects the nervous system white matter and adrenal cortex secondary to mutations in the ABCD1 gene that encode the peroxisomal membrane protein. We conducted a genomic and protein expression study of susceptibility gene with its clinical and biochemical analysis. To the best of our knowledge this is the first preliminary comprehensive study in Indian population that identified novel mutations and SNPs in a relatively large group. We screened 17 Indian indigenous X-linked adrenoleukodystrophy cases and 70 controls for mutations and SNPs in the exonic regions (including flanking regions) of ABCD1 gene by direct sequencing with ABI automated sequencer along with Western blot analysis of its endogenous protein, ALDP, levels in peripheral blood mononuclear cells. Single germ line mutation was identified in each index case in ABCD1 gene. We detected 4 novel mutations (2 missense and 2 deletion/insertion) and 3 novel single nucleotide polymorphisms. We observed a variable protein expression in different patients. These findings were further extended to biochemical and clinical observations as it occurs with great clinical expression variability. This is the first major study in this population that presents a different molecular genetic spectrum as compared to Caucasian population due to geographical distributions of ethnicity of patients. It enhances our knowledge of the causative mutations of X-ALD that grants holistic base to develop effective medicine against X-ALD.

  13. The androgen receptor gene mutations database.

    PubMed

    Patterson, M N; Hughes, I A; Gottlieb, B; Pinsky, L

    1994-09-01

    The androgen receptor gene mutations database is a comprehensive listing of mutations published in journals and meetings proceedings. The majority of mutations are point mutations identified in patients with androgen insensitivity syndrome. Information is included regarding the phenotype, the nature and location of the mutations, as well as the effects of the mutations on the androgen binding activity of the receptor. The current version of the database contains 149 entries, of which 114 are unique mutations. The database is available from EMBL (NetServ@EMBL-Heidelberg.DE) or as a Macintosh Filemaker file (mc33001@musica.mcgill.ca).

  14. Refining the locus for Best vitelliform macular dystrophy and mutation analysis of the candidate gene ROM1

    SciTech Connect

    Nichols, B.E.; Stone, E.M.; Sheffield, V.C. ); McInnes, R.; Bascom, R. ); Litt, M. )

    1994-01-01

    Vitelliform macular dystrophy (Best disease) is an autosomal dominant macular dystrophy which shares important clinical features with age-related macular degeneration, the most common cause of legal blindness in the elderly. Unfortunately, understanding and treatment for this common age-related disorder is limited. Discovery of the gene which causes Best disease has the potential to increase the understanding of the pathogenesis of all types of macular degeneration, including the common age-related form. Best disease has recently been mapped to chromosome 11q13. The photoreceptor-specific protein ROM1 has also been recently mapped to this location, and the ROM1 gene is a candidate gene for Best disease. Using highly polymorphic markers, the authors have narrowed the genetic region which contains the Best disease gene to the 10-cM region between markers D11S871 and PYGM. Marker D11S956 demonstrated no recombinants with Best disease in three large families and resulted in a lod score of 18.2. In addition, a polymorphism within the ROM1 gene also demonstrated no recombinants and resulted in a lod score of 10.0 in these same three families. The authors used a combination of SSCP analysis, denaturing gradient gel electrophoresis, and DNA sequencing to screen the entire coding region of the ROM1 gene in 11 different unrelated patients affected with Best disease. No nucleotide changes were found in the coding sequence of any affected patient, indicating that mutations within the coding sequence are unlikely to cause Best disease. 28 refs., 3 figs., 2 tabs.

  15. Analysis of gene mutations associated with isoniazid, rifampicin and ethambutol resistance among Mycobacterium tuberculosis isolates from Ethiopia

    PubMed Central

    2012-01-01

    Background The emergence of drug resistance is one of the most important threats to tuberculosis control programs. This study was aimed to analyze the frequency of gene mutations associated with resistance to isoniazid (INH), rifampicin (RMP) and ethambutol (EMB) among Mycobacterium tuberculosis isolates from Northwest Ethiopia, and to assess the performance of the GenoType® MTBDRplus and GenoType® MTBDRsl assays as compared to the BacT/ALERT 3D system. Methods Two hundred sixty Mycobacterium tuberculosis isolates from smear positive tuberculosis patients diagnosed between March 2009 and July 2009 were included in this study. Drug susceptibility tests were performed in the Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital of Leipzig, Germany. Results Of 260 isolates, mutations conferring resistance to INH, RMP, or EMB were detected in 35, 15, and 8 isolates, respectively, while multidrug resistance (MDR) was present in 13 of the isolates. Of 35 INH resistant strains, 33 had mutations in the katG gene at Ser315Thr 1 and two strains had mutation in the inhA gene at C15T. Among 15 RMP resistant isolates, 11 had rpoB gene mutation at Ser531Leu, one at His526Asp, and three strains had mutations only at the wild type probes. Of 8 EMB resistant strains, two had mutations in the embB gene at Met306Ile, one at Met306Val, and five strains had mutations only at the wild type probes. The GenoType® MTBDRplus assay had a sensitivity of 92% and specificity of 99% for INH resistance, and 100% sensitivity and specificity to detect RMP resistance and MDR. The GenoType® MTBDRsl assay had a sensitivity of 42% and specificity of 100% for EMB resistance. Conclusion The dominance of single gene mutations associated with the resistance to INH and RMP was observed in the codon 315 of the katG gene and codon 531 of the rpoB gene, respectively. The GenoType® MTBDRplus assay is a sensitive and specific tool for diagnosis of resistance to INH

  16. A previously undescribed mutation detected by sequence analysis of CYP21A2 gene in an infant with salt wasting congenital adrenal hyperplasia.

    PubMed

    Girgis, Rose; Ajamian, Faria; Metcalfe, Peter

    2013-01-01

    The Human Cytochrome P450 (CYP) Allele Nomenclature Committee (http:www.imm.Ki.se/CYPalleles/cyp21.htm) has created a CYP21A2 database which include a list of all reported CYP21A2 mutations and the last update of this database was in 2006. The most up to date list of the CYP21A2 mutations reported over the last four years was published in a recent article by Concolino et al. We report a previously undescribed mutation detected by sequence analysis of CYP21A2 gene in an infant resulting in salt wasting congenital adrenal hyperplasia.

  17. Mutational analysis of the Drosophila DNA repair and recombination gene mei-9.

    PubMed Central

    Yildiz, Ozlem; Kearney, Hutton; Kramer, Benjamin C; Sekelsky, Jeff J

    2004-01-01

    Drosophila mei-9 is essential for several DNA repair and recombination pathways, including nucleotide excision repair (NER), interstrand crosslink repair, and meiotic recombination. To better understand the role of MEI-9 in these processes, we characterized 10 unique mutant alleles of mei-9. These include a P-element insertion that disrupts repair functions but not the meiotic function; three nonsense mutations, one of which has nearly wild-type levels of protein; three missense mutations, one of which disrupts the meiotic function but not repair functions; two small in-frame deletions; and one frameshift. PMID:15166153

  18. Analysis of P gene mutations in patients with type II (tyrosinase-positive) oculocutaneous albinism (OCA2)

    SciTech Connect

    Lee, S.T.; Nicholls, R.D.; Schnur, R. ||

    1994-09-01

    OCA2 is an autosomal recessive disorder in which the biosynthesis of melanin pigment is greatly reduced in the skin, hair, and eyes. Recently, we showed that OCA2 results from mutations of the P gene, in chromosome segment 15q11-q13. In addition to OCA2, mutations of P account for OCA associated with the Prader-Willi syndrome and some cases of {open_quotes}autosomal recessive ocular albinism{close_quotes} (AROA). We have now studied 38 unrelated patients with various forms of OCA2 or AROA from a variety of different ethnic groups. None of these patients had detectable abnormalities of the tyrosinase (TYR) gene. Among 8 African-American patients with OCA2 we observed apparent locus homogeneity. We detected abnormalities of the P gene in all 8 patients, including 12 different mutations and deletions, most of which are unique to this group and none of which is predominant. In contrast, OCA2 in other populations appears to be genetically heterogeneous. Among 21 Caucasian patients we detected abnormalities of the P gene in only 8, comprising 9 different point mutations and deletions, some of which also occurred among the African-American patients. Among 3 Middle-Eastern, 3 Indo-Pakistani, and 3 Asian patients we detected mutations of the P gene in only one from each group. In a large Indo-Pakistani kindred with OCA2 we have excluded both the TYR and P genes on the basis of genetic linkage. The prevalence of mutations of the P gene thus appears to be much higher among African-Americans with OCA2 than among patients from other ethnic groups. The incidence of OCA2 in some parts of equatorial Africa is extremely high, as frequent as 1 per 1100, and the disease has been linked to P in South African Bantu. The eventual characterization of P gene mutations in Africans will be informative with regard to the origins of P gene mutations in African-American patients.

  19. Mutation Analysis of Exons 10 and 17a of CFTR Gene in Patients with Cystic Fibrosis in Kermanshah Province, Western Iran

    PubMed Central

    Sahami, Abbas; Alibakhshi, Reza; Ghadiri, Keyghobad; Sadeghi, Hamid

    2014-01-01

    Background Cystic fibrosis (CF) is the most common genetic disorder with autosomal recessive inheritance among Caucasian populations. So far, more than 1950 different mutations were identified in cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR gene has 27 exons. The type and distribution of mutations vary widely among different countries and/or ethnic groups. Therefore, a comprehensive analysis was performed on exon10 and exon17a of CFTR gene in CF patients in the Kermanshah province, western Iran. Methods We tested 27 patients admitted to the medical genetics laboratory of Kermanshah University of Medical Sciences. The patients were from different cities of Kermanshah province. All the patients had the clinical signals and two positive sweat tests. After filling agreement forms and questionnaire, the peripheral blood sampling and DNA extraction were done. DNA samples were extracted. PCR and sequencing special PCR were done. Finally analysis of the results with DNA sequencing analysis version 5.2 software was performed. Results CFTR mutations analysis identified 4 different mutations in our CF patients. The disease-causing mutations were p.F508del (ΔF508) (14.81%), p.S466X (1.85%), and p.T1036I (1.85%). M470V polymorphism with frequency of 74.1% was found in 23 patients (17 homozygous and 6 heterozygous). Conclusion Three disease-causing mutations in CF patients in the present study account for approximately 18.51% of mutations. The frequency of p.F508del, the most common mutation was 16−18.1% in Iranian population. The results of the present study can be applied for genetic counseling, population screening and prenatal diagnosis. PMID:24696795

  20. Data in support of a functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II.

    PubMed

    Matos, Liliana; Gonçalves, Vânia; Pinto, Eugénia; Laranjeira, Francisco; Prata, Maria João; Jordan, Peter; Desviat, Lourdes R; Pérez, Belén; Alves, Sandra

    2015-12-01

    This data article contains insights into the methodology used for the analysis of three exonic mutations altering the splicing of the IDS gene: c.241C>T, c.257C>T and c.1122C>T. We have performed splicing assays for the wild-type and mutant minigenes corresponding to these substitutions. In addition, bioinformatic predictions of splicing regulatory sequence elements as well as RNA interference and overexpression experiments were conducted. The interpretation of these data and further extensive experiments into the analysis of these three mutations and also into the methodology applied to correct one of them can be found in "Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II" Matos et al. (2015) [1].

  1. Qualitative analysis of mouse specific-locus mutations: information on genetic organization, gene expression, and the chromosomal nature of induced lesions

    SciTech Connect

    Russell, L.B.

    1982-01-01

    Analysis of mouse specific-locus (SL) mutations at three loci has identified over 33 distinct complementation groups - most of which are probably overlapping deficiencies - and 13 to 14 new functional units. The complementation maps that have been generated for the d-se and c regions include numerous vital functions; however, some of the genes in these regions are non-vital. At such loci, hypomorphic mutants must represent intragenic alterations, and some viable nulls could conceivably be intragenic lesions also. Analysis of SL mutations has provided information on genetic expression. Homozygous deficiencies can be completely viable or can kill at any one of a range of developmental stages. Heterozygonus deficiencies of up to 6 cM or more in genetic length have been recovered and propagated. The time of death of homozygous and the degree of inviability of heterozygous deficiencies are related more to specific content of the missing segment than to its length. Combinations of deficiencies with x-autosome translocations that inactivate the homologous region in a mosaic fashion have shown that organismic lethals are not necessarily cell lethal. The spectrum of mutations induced depends on the nature of the mutagen and the type of germ cell exposed. Radiation of spermatogonia produces intragenic as well as null mutations. Spontaneous mutations have an admixture of types not present in populations of mutations induced in germ cells, and this raises doubts concerning the accuracy of doubling-dose calculations in genetic risk estimation. The analysis of SL mutations has yielded genetic tools for the construction of detailed gene-dosage series, cis-trans comparisons, the mapping of known genes and identification of new genes, genetic rescue of various types, and the identification and isolation of DNA sequences. (ERB)

  2. Mutation survey and genotype-phenotype analysis of COL2A1 and COL11A1 genes in 16 Chinese patients with Stickler syndrome

    PubMed Central

    Wang, Xun; Jia, Xiaoyun; Xiao, Xueshan; Li, Shiqiang; Li, Jie; Li, Yadi; Wei, Yantao; Liang, Xiaoling

    2016-01-01

    Purpose To identify mutations in COL2A1 and COL11A1 genes and to examine the genotype-phenotype correlation in a cohort of Chinese patients with Stickler syndrome. Methods A total of 16 Chinese probands with Stickler syndrome were recruited, including nine with a family history of an autosomal dominant pattern and seven sporadic cases. All patients underwent full ocular and systemic examinations. Sanger sequencing was used to analyze all coding and adjacent regions of the COL2A1 and COL11A1 genes. Multiplex ligation-dependent probe amplification was performed to detect the gross indels of COL2A1 and COL11A1. Bioinformatics analysis was performed to evaluate the pathogenicity of the variants. Results Five mutations in COL2A1 were identified in six of 16 probands, including three novel (c.85C>T, c.3356delG, c.3401delG) mutations and two known mutations (c.1693C>T, c.2710C>T). Of the five mutations, three were truncated mutations, and the other two were missense mutations. Putative pathogenic mutations of the COL11A1 gene were absent in this cohort of patients. Gross indels were not found in COL2A1 or COL11A1 in any of the probands. High myopia was the most frequent initial ocular phenotype of Stickler syndrome. In this study, 12 Chinese probands lacked obvious systemic phenotypes. Conclusions In this study, three novel and two known mutations in the COL2A1 gene were identified in six of 16 Chinese patients with Stickler syndrome. This is the first study in a cohort of Chinese patients with Stickler syndrome, and the results expand the mutation spectrum of the COL2A1 gene. Analysis of the genotype-phenotype correlation showed that the early onset of high myopia with vitreous abnormalities may serve as a key indicator of Stickler syndrome, while the existence of mandibular protrusion in pediatric patients may be an efficient indicator for the absence of mutations in COL2A1 and COL11A1. PMID:27390512

  3. Epidermal Growth Factor Receptor Mutation and Anaplastic Lymphoma Kinase Gene Fusion: Detection in Malignant Pleural Effusion by RNA or PNA Analysis

    PubMed Central

    Chen, Yi-Lin; Lee, Chung-Ta; Lu, Cheng-Chan; Yang, Shu-Ching; Chen, Wan-Li; Lee, Yang-Cheng; Yang, Chung-Hsien; Peng, Shu-Ling; Su, Wu-Chou; Chow, Nan-Haw; Ho, Chung-Liang

    2016-01-01

    Analyzing EGFR mutations and detecting ALK gene fusion are indispensable when planning to treat pulmonary adenocarcinoma. Malignant pleural effusion (MPE) is a devastating complication of lung cancer and sometimes the only source for mutation analysis. The percentage of tumor cells in the pleural effusion may be low; therefore, mutant enrichment is required for a successful analysis. The EGFR mutation status in MPE was determined using three methods: (1) PCR sequencing of genomic DNA (direct sequencing), (2) mutant-enriched PCR sequencing of genomic DNA using peptide nucleic acid (PNA-sequencing), and (3) PCR sequencing of cDNA after reverse transcription for cellular RNA (RNA-sequencing). RT-PCR was also used to test cases for ALK gene fusion. PNA-sequencing and RNA-sequencing had similar analytical sensitivities (< 1%), which indicates similar enrichment capabilities. The clinical sensitivity in 133 cases when detecting the common EGFR exon 19 and exon 21 mutations was 56.4% (75/133) for direct sequencing, 63.2% (84/133) for PNA-sequencing, and 65.4% (87/133) for RNA-sequencing. RT-PCR and sequencing showed 5 cases (3.8%) with ALK gene fusion. All had wild-type EGFR. For EGFR analysis of MPE, RNA-sequencing is at least as sensitive as PNA-sequencing but not limited to specific mutations. Detecting ALK fusion can be incorporated in the same RNA workflow. Therefore, RNA is a better source for comprehensive molecular diagnoses in MPE. PMID:27352172

  4. Gene mutations in chronic lymphocytic leukemia.

    PubMed

    Amin, Nisar A; Malek, Sami N

    2016-04-01

    The recent discovery of genes mutated in chronic lymphocytic leukemia (CLL) has stimulated new research into the role of these genes in CLL pathogenesis. CLL cases carry approximately 5-20 mutated genes per exome, a lower number than detected in many human tumors. Of the recurrently mutated genes in CLL, all are mutated in 10% or less of patients when assayed in unselected CLL cohorts at diagnosis. Mutations in TP53 are of major clinical relevance, are often associated with del17p and gain in frequency over time. TP53 mutated and associated del17p states substantially lower response rates, remission duration, and survival in CLL. Mutations in NOTCH1 and SF3B1 are recurrent, often associated with progressive CLL that is also IgVH unmutated and ZAP70-positive and are under investigation as targets for novel therapies and as factors influencing CLL outcome. There are an estimated 20-50 additional mutated genes with frequencies of 1%-5% in CLL; more work is needed to identify these and to study their significance. Finally, of the major biological aberration categories influencing CLL as a disease, gene mutations will need to be placed into context with regard to their ultimate role and importance. Such calibrated appreciation necessitates studies incorporating multiple CLL driver aberrations into biological and clinical analyses. PMID:27040699

  5. Analysis of p53 gene mutations in human gliomas by polymerase chain reaction-based single-strand conformation polymorphism and DNA sequencing.

    PubMed

    Sarkar, F H; Kupsky, W J; Li, Y W; Sreepathi, P

    1994-03-01

    Mutations in the p53 gene have been recognized in brain tumors, and clonal expansion of p53 mutant cells has been shown to be associated with glioma progression. However, studies on the p53 gene have been limited by the need for frozen tissues. We have developed a method utilizing polymerase chain reaction (PCR) for the direct analysis of p53 mutation by single-strand conformation polymorphism (SSCP) and by direct DNA sequencing of the p53 gene using a single 10-microns paraffin-embedded tissue section. We applied this method to screen for p53 gene mutations in exons 5-8 in human gliomas utilizing paraffin-embedded tissues. Twenty paraffin blocks containing tumor were selected from surgical specimens from 17 different adult patients. Tumors included six anaplastic astrocytomas (AAs), nine glioblastomas (GBs), and two mixed malignant gliomas (MMGs). The tissue section on the stained glass slide was used to guide microdissection of an unstained adjacent tissue section to ensure > 90% of the tumor cell population for p53 mutational analysis. Simultaneously, microdissection of the tissue was also carried out to obtain normal tissue from adjacent areas as a control. Mutations in the p53 gene were identified in 3 of 17 (18%) patients by PCR-SSCP analysis and subsequently confirmed by PCR-based DNA sequencing. Mutations in exon 5 resulting in amino acid substitution were found in one thalamic AA (codon 158, CGC > CTT: Arg > Leu) and one cerebral hemispheric GB (codon 151, CCG > CTG: Pro > Leu).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Molecular analysis of HEXA gene in Argentinean patients affected with Tay-Sachs disease: possible common origin of the prevalent c.459+5A>G mutation.

    PubMed

    Zampieri, Stefania; Montalvo, Annalisa; Blanco, Mariana; Zanin, Irene; Amartino, Hernan; Vlahovicek, Kristian; Szlago, Marina; Schenone, Andrea; Pittis, Gabriela; Bembi, Bruno; Dardis, Andrea

    2012-05-15

    Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the deficient activity of hexosaminidase A due to mutations in the HEXA gene. Up to date there is no information regarding the molecular genetics of TSD in Argentinean patients. In the present study we have studied 17 Argentinean families affected by TSD, including 20 patients with the acute infantile form and 3 with the sub-acute form. Overall, we identified 14 different mutations accounting for 100% of the studied alleles. Eight mutations were novel: 5 were single base changes leading to drastic residue changes or truncated proteins, 2 were small deletions and one was an intronic mutation that may cause a splicing defect. Although the spectrum of mutations was highly heterogeneous, a high frequency of the c.459+5G>A mutation, previously described in different populations was found among the studied cohort. Haplotype analysis suggested that in these families the c.459+5G>A mutation might have arisen by a single mutational event.

  7. Molecular analysis of HEXA gene in Argentinean patients affected with Tay-Sachs disease: possible common origin of the prevalent c.459+5A>G mutation.

    PubMed

    Zampieri, Stefania; Montalvo, Annalisa; Blanco, Mariana; Zanin, Irene; Amartino, Hernan; Vlahovicek, Kristian; Szlago, Marina; Schenone, Andrea; Pittis, Gabriela; Bembi, Bruno; Dardis, Andrea

    2012-05-15

    Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the deficient activity of hexosaminidase A due to mutations in the HEXA gene. Up to date there is no information regarding the molecular genetics of TSD in Argentinean patients. In the present study we have studied 17 Argentinean families affected by TSD, including 20 patients with the acute infantile form and 3 with the sub-acute form. Overall, we identified 14 different mutations accounting for 100% of the studied alleles. Eight mutations were novel: 5 were single base changes leading to drastic residue changes or truncated proteins, 2 were small deletions and one was an intronic mutation that may cause a splicing defect. Although the spectrum of mutations was highly heterogeneous, a high frequency of the c.459+5G>A mutation, previously described in different populations was found among the studied cohort. Haplotype analysis suggested that in these families the c.459+5G>A mutation might have arisen by a single mutational event. PMID:22441121

  8. Genetic analysis of chromosomal mutations in the polysialic acid gene cluster of Escherichia coli K1.

    PubMed Central

    Vimr, E R; Aaronson, W; Silver, R P

    1989-01-01

    The kps gene cluster of Escherichia coli K1 encodes functions for sialic acid synthesis, activation, polymerization, and possibly translocation of polymer to the cell surface. The size and complexity of this membrane polysaccharide biosynthetic cluster have hindered genetic mapping and functional descriptions of the kps genes. To begin a detailed investigation of the polysialic acid synthetic mechanism, acapsular mutants were characterized to determine their probable defects in polymer synthesis. The mutants were tested for complementation with kps fragments subcloned from two separately isolated, functionally intact kps gene clusters. Complementation was assayed by immunological and biochemical methods and by sensitivity to the K1-specific bacteriophage K1F. The kps cluster consisted of a central 5.8-kilobase region that contained at least two genes coding for sialic acid synthetic enzymes, a gene encoding the sialic acid-activating enzyme, and a gene encoding the sialic acid polymerase. This biosynthetic region is flanked on one side by an approximately 2.8-kilobase region that contains a potential regulatory locus and at least one structural gene for a polypeptide that appears to function in polysialic acid assembly. Flanking the biosynthetic region on the opposite side is a 6- to 8.4-kilobase region that codes for at least three proteins which may also function in polymer assembly and possibly in translocating polymer to the outer cell surface. Results of transduction crosses supported these conclusions and indicated that some of the kps genes flanking the central biosynthetic region may not function directly in transporting polymer to the cell surface. The results also demonstrate that the map position and probable function of most of the kps cluster genes have been identified. Images PMID:2644224

  9. Functional and structural analysis of four novel mutations of CYP21A2 gene in Italian patients with 21-hydroxylase deficiency.

    PubMed

    Massimi, A; Malaponti, M; Federici, L; Vinciguerra, D; Manca Bitti, M L; Vottero, A; Ghizzoni, L; Maccarrone, M; Cappa, M; Bernardini, S; Porzio, O

    2014-06-01

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder mainly caused by defects in the 21-hydroxylase gene (CYP21A2), coding for the enzyme 21-hydroxylase (21-OH). About 95% of the mutations arise from gene conversion between CYP21A2 and the inactive pseudogene CYP21A1P: only 5% are novel CYP21A2 mutations, in which functional analysis of mutant enzymes has been helpful to correlate genotype-phenotype. In the present study, we describe 3 novel point mutations (p.L122P, p.Q481X, and p.E161X) in 3 Italian patients with CAH: the fourth mutation (p.M150R) was found in the carrier state. Molecular modeling suggests a major impact on 21-hydroxylase activity, and functional analysis after expression in COS-7 cells confirms reduced enzymatic activity of the mutant enzymes. Only the p.M150R mutation affected the activity to a minor extent, associated with NC CAH. CYP21A2 genotyping and functional characterization of each disease-causing mutation has relevance both for treatment and genetic counseling to the patients.

  10. Analysis of mutations in the gyrA and gyrB genes and their association with the resistance of Mycobacterium tuberculosis to levofloxacin, moxifloxacin and gatifloxacin.

    PubMed

    Nosova, Elena Yu; Bukatina, Anastasia A; Isaeva, Yulia D; Makarova, Marina V; Galkina, Ksenia Yu; Moroz, Arkadyi M

    2013-01-01

    The purpose of the present study was to analyse mutations in the gyrA and gyrB genes of Mycobacterium tuberculosis and define the possible correlation between these mutations and resistance to levofloxacin (LVX), moxifloxacin (MFX) and gatifloxacin (GAT), based on their MICs. One hundred and forty-two M. tuberculosis clinical isolates were collected from pulmonary tuberculosis patients in the Moscow region. All M. tuberculosis strains were tested for drug susceptibility to rifampicin and isoniazid using the BACTEC MGIT 960 System and to ofloxacin (OFX) using the absolute concentration method on solid Lowenstein-Jensen slants. All in all, 68 strains were selected at random (38 strains were resistant and 30 were susceptible to OFX) for further analysis using the TB-BIOCHIP-2 test system and DNA sequence analysis. The MICs of LVX, MFX and GAT for selected strains were determined using the BACTEC MGIT 960 System. Mutations in the gyrA gene were observed in 36 out of 38 (94.7 %) OFX-resistant M. tuberculosis strains. Asn538Asp and Asp500His substitutions in the gyrB gene only were found in two (5.3 %) strains. Twenty-nine out of 30 OFX-sensitive M. tuberculosis strains had no mutations in either gene. One (3.3 %) OFX-sensitive M. tuberculosis strain carried an Arg485His substitution in gyrB. The results of our investigation showed that there is no clear correlation between the type of mutation in the genes gyrA and gyrB, and the MIC levels of LVX, MFX and GAT for resistant strains. Mutations in gyrA and Asn538Asp, and Asp500His substitutions in gyrB were associated with cross-resistance of M. tuberculosis to fluoroquinolones. The substitution Arg485His in gyrB does not confer resistance to LVX, MFX and GAT in M. tuberculosis.

  11. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): codon 178 mutation and codon 129 polymorphism.

    PubMed Central

    Medori, R; Tritschler, H J

    1993-01-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp)-->AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. We confirmed the 178Asn mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178Asn reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Sträussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129Met/Val. Moreover, of five 178Asn individuals who are above age-at-onset range and who are well, two have 129Met and three have 129Met/Val, suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178Asn mutation. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:8105681

  12. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): Codon 178 mutation and codon 129 polymorphism

    SciTech Connect

    Medori, R.; Tritschler, H.J. )

    1993-10-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178[sup Asn] reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Straeussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129[sup Met/Val]. Moreover, of five 178[sup Asn] individuals who are above age-at-onset range and who are well, two have 129[sup Met] and three have 129[sup Met/Val], suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178[sup Asn] mutation. 32 refs., 5 figs., 1 tab.

  13. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    SciTech Connect

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ..omega../sup 70/ promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs.

  14. Databases and software for the analysis of mutations in the human p53 gene, human hprt gene and both the lacI and lacZ gene in transgenic rodents.

    PubMed

    Cariello, N F; Douglas, G R; Gorelick, N J; Hart, D W; Wilson, J D; Soussi, T

    1998-01-01

    We have created databases and software applications for the analysis of DNA mutations at the human p53 gene, the human hprt gene and both the rodent transgenic lacI and lacZ loci. The databases themselves are stand-alone dBASE files and the software for analysis of the databases runs on IBM-compatible computers with Microsoft Windows. Each database has a separate software analysis program. The software created for these databases permit the filtering, ordering, report generation and display of information in the database. In addition, a significant number of routines have been developed for the analysis of single base substitutions. One method of obtaining the databases and software is via the World Wide Web. Open the following home page with a Web Browser: http://sunsite.unc.edu/dnam/mainpage. html . Alternatively, the databases and programs are available via public FTP from: anonymous@sunsite.unc.edu. There is no password required to enter the system. The databases and software are found beneath the subdirectory: pub/academic/biology/dna-mutations. Two other programs are available at the site, a program for comparison of mutational spectra and a program for entry of mutational data into a relational database.

  15. Two novel DAX1 gene mutations in Chinese patients with X-linked adrenal hypoplasia congenita: clinical, hormonal and genetic analysis.

    PubMed

    Wu, C M; Zhang, H B; Zhou, Q; Wan, L; Jin, J; Ni, L; Pan, Y J; Wu, X Y; Ruan, L Y

    2011-09-01

    Mutations in the DAX1 gene result in X-linked congenital adrenal hypoplasia (AHC). Affected boys usually present with primary adrenal failure in early infancy or childhood and hypogonadotropic hypogonadism (HH) at puberty. This paper describes the clinical, hormonal, radiological, and genetic characteristics of 2 Chinese patients with X-linked AHC. Primary adrenal insufficiency occurred in the 2 patients during their childhood and HH was recognized at puberty. Genomic DNA was extracted from their peripheral blood leukocytes and coding sequence abnormalities of the DAX1 gene were assessed by PCR and direct sequencing analysis. Genetic analysis of the DAX1 gene revealed 2 novel mutations c.572-575 dupGGGC, p.Thr193Gly,fs,205X and c.773- 774 dupCC, p.Ser259Pro,fs,264X in exon 1, causing frameshifts and yeilding premature stop codons at 205 and 264, respectively. This study identifies 2 novel mutations in the DAX1 gene which can further expand the mutation database and benefit patients in the diagnosis and treatment of AHC. PMID:21270512

  16. Identification of eight novel mutations in a collaborative analysis of a part of the second transmembrane domain of the CFTR gene

    SciTech Connect

    Mercier, B.; Audrezet, M.P.; Guillermit, H.; Quere, I.; Verlingue, C.; Ferec, C. ); Lissens, W.; Bonduelle, M.; Liebaers, I. ); Novelli, G.; Sangiuolo, F.; Dallapiccola, B. ); Kalaydjieva, L. ); Arce, M. De; Cashman, S. ); Kapranov, N. ); Canki Klain, N. ); Lenoir, G. ); Chauveau, P. ); Lanaerts, C. ); Rault, G. )

    1993-04-01

    Cystic fibrosis transmembrane conductance regulator (CFTR), the gene responsible, when mutated, for cystic fibrosis (CF), spans over 230 kb on the long arm of chromosome 7 and is composed of 27 exons. The most common mutation responsible for CF worldwide is the deletion of a phenylalanine amino acid at codon 508 in the first nucleotide-binding fold and accounts for approximately 70% of CF chromosomes studied. More than 250 other mutations have been reported through the CF Genetic Analysis Consortium. The majority of the mutations previously described lie in the two nucleotide-binding folds. To explore exhaustively other regions of the gene, particularly exons coding for transmembrane domains, the authors have initiated a collaborative study between different laboratories to screen 369 non-[Delta]F508 CF chromosomes of seven ethnic European populations (Belgian, French, Breton, Irish, Italian, Yugoslavian, Russian). Among these chromosomes carrying an unidentified mutation, 63 were from Brittany, 50 of various French origin, 45 of Irish origin, 56 of Italian origin, 41 of Belgian origin, 2 of Turkish origin, 38 of Yugoslavian origin, 22 of Russian origin, and 52 of Bulgarian origin. Diagnostic criteria for CF included at least one positive sweat test and pulmonary disease with or without pancreatic disease. Using a denaturing gradient gel electrophoresis (DGGE) assay, they have identified eight novel mutations in exon 17b coding for part of the second transmembrane domain of the CFTR and they describe them in this report. 8 refs., 1 fig., 1 tab.

  17. In silico analysis of a disease-causing mutation in PCDH15 gene in a consanguineous Pakistani family with Usher phenotype

    PubMed Central

    Saleha, Shamim; Ajmal, Muhammad; Jamil, Muhammad; Nasir, Muhammad; Hameed, Abdul

    2016-01-01

    AIM To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. METHODS A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH). To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR) markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. RESULTS By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A) of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. CONCLUSION The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment. PMID:27275418

  18. Mapping of the human cone transducin {alpha}-subunit (GNAT2) gene to 1p13 and negative mutation analysis in patients with Stargardt disease

    SciTech Connect

    Magovcevic, I.; Weremowicz, S.; Morton, C.C.

    1995-01-01

    We report localization of the human cone transducin (GNAT2) gene using fluorescence in situ hybridization on chromosome 1 in band p13. The recent assignment of a gene for Stargardt disease to the same chromosomal region by linkage analysis prompted us to investigate the possible role of GNAT2 in the pathogenesis of this disease. We investigated 66 unrelated patients for mutations in the coding region of the GNAT2 gene using polymerase chain reaction-single strand conformation polymorphism analysis (SSCP) and direct sequencing. No disease-specific mutations were found, indicating that GNAT2 is probably not involved in the pathogenesis of most cases of Stargardt disease. 19 refs., 1 fig., 1 tab.

  19. Charcot-Marie-Tooth neuropathy due to a novel EGR2 gene mutation with mild phenotype--usefulness of human mapping chip linkage analysis in a Czech family.

    PubMed

    Safka Brožková, Dana; Nevšímalová, Soňa; Mazanec, Radim; Rautenstrauss, Bernd; Seeman, Pavel

    2012-08-01

    Charcot-Marie-Tooth neuropathies (CMT) are a group of clinically and genetically heterogeneous disorders of the peripheral nervous system. Selection of candidate disease genes for mutation analysis is sometimes difficult since more than 40 genes and loci are known to be associated with CMT neuropathies. Hence a Czech family Cz-CMT with demyelinating type of autosomal dominant CMT disease was investigated by genome-wide linkage analysis by means of single-nucleotide polymorphism (SNP) arrays. Among 35 regions with linkage, five carried known CMT genes. In the final result a novel early growth response 2 - missense mutation c.1235 A>G, p.Glu412Gly was found. Surprisingly, the more severely affected proband carried an additional heterozygous myelin protein zero variant p.Asp246Asn detected previously, which may modify the phenotype. However, this MPZ variant is benign in heterozygous state alone, because it is also carried by the patient's healthy father. PMID:22546699

  20. Analysis of the CYP21A1P pseudogene: indication of mutational diversity and CYP21A2-like and duplicated CYP21A2 genes.

    PubMed

    Tsai, Li-Ping; Cheng, Ching-Feng; Chuang, Shu-Hua; Lee, Hsien-Hsiung

    2011-06-15

    The CYP21A1P gene downstream of the XA gene, carrying 15 deteriorated mutations, is a nonfunctional pseudogene that shares 98% nucleotide sequence homology with CYP21A2 located on chromosome 6p21.3. However, these mutations in the CYP21A1P gene are not totally involved in each individual. From our analysis of 100 healthy ethnic Chinese (i.e., Taiwanese) (n=200 chromosomes) using the polymerase chain reaction (PCR) products combined with an amplification-created restriction site (ACRS) method and DNA sequencing, we found that approximately 10% of CYP21A1P alleles (n=195 chromosomes) presented the CYP21A2 sequence; frequencies of P30, V281, Q318, and R356 in that locus were approximately 24%, 21%, 11%, and 34%, respectively, and approximately 90% of the CYP21A1P alleles had 15 mutated loci. In addition, approximately 2.5% (n=5 chromosomes) showed four haplotypes of the 3.7-kb TaqI-produced fragment of the CYP21A2-like gene and one duplicated CYP21A2 gene. We conclude that the pseudogene of the CYP21A1P mutation presents diverse variants. Moreover, the existence of the CYP21A2-like gene is more abundant than that of the duplicated CYP21A2 gene downstream of the XA gene and could not be distinguished from the CYP21A2-TNXB gene; thus, it may be misdiagnosed by previously established methods for congenital adrenal hyperplasia caused by a 21-hydroxylase deficiency.

  1. CFTR gene mutations in isolated chronic obstructive pulmonary disease

    SciTech Connect

    Pignatti, P.F.; Bombien, C.; Marigo, C.

    1994-09-01

    In order to identify a possible hereditary predisposition to the development of chronic obstructive pulmonary disease (COPD), we have looked for the presence of cystic fibrosis transmembrane regulator (CFTR) gene DNA sequence modifications in 28 unrelated patients with no signs of cystic fibrosis. The known mutations in Italian CF patients, as well as the most frequent worldwide CF mutations, were investigated. In addition, a denaturing gradient gel electrophoresis analysis of about half of the coding sequence of the gene in 56 chromosomes from the patients and in 102 chromosomes from control individuals affected by other pulmonary diseases and from normal controls was performed. Nine different CFTR gene mutations and polymorphisms were found in seven patients, a highly significant increase over controls. Two of the patients were compound heterozygotes. Two frequent CF mutations were detected: deletion F508 and R117H; two rare CF mutations: R1066C and 3667ins4; and five CF sequence variants: R75Q (which was also described as a disease-causing mutation in male sterility cases due to the absence of the vasa deferentia), G576A, 2736 A{r_arrow}G, L997F, and 3271+18C{r_arrow}T. Seven (78%) of the mutations are localized in transmembrane domains. Six (86%) of the patients with defined mutations and polymorphisms had bronchiectasis. These results indicate that CFTR gene mutations and sequence alterations may be involved in the etiopathogenesis of some cases of COPD.

  2. Mutational analysis of SCN5A gene in long QT syndrome.

    PubMed

    Qureshi, Sameera Fatima; Ali, Altaf; John, Princy; Jadhav, Amol P; Venkateshwari, Ananthapur; Rao, Hygriv; Jayakrishnan, M P; Narasimhan, Calambur; Shenthar, Jayaprakash; Thangaraj, Kumarasamy; Nallari, Pratibha

    2015-12-01

    The SCN5A gene encodes for the INa channel implicated in long QT syndrome type-3 (LQTS-type-3). Clinical symptoms of this type are lethal as most patients had a sudden death during sleep. Screening of SCN5A in South Indian cohort by PCR-SSCP analyses revealed five polymorphisms - A29A (exon-2), H558R (exon-12), E1061E and S1074R (exon-17) and IVS25 + 65G > A (exon-25) respectively. In-silico and statistical analyses were performed on all the polymorphisms. Exon-2 of SCN5A gene revealed A282G polymorphism (rs6599230), resulting in alanine for alanine (A29A) silent substitution in the N-terminus of SCN5A protein. Exon-12 showed A1868G polymorphism (H558R - rs1805124) and its 'AA' genotype and 'A' allele frequency were found to be higher in LQTS patients pointing towards its role in LQTS etiology. Two polymorphisms A3378G (E1061E) and the novel C3417A (S1074R) were identified as compound heterozygotes/genetic compounds in exon-17 of SCN5A located in the DIIS6-DIIIS1 domain of the SCN5A transmembrane protein. IVS25 + 65G > A was identified in intron-25 of SCN5A. The 'G' allele was identified as the risk allele. Variations were identified in in-silico analyses which revealed that these genetic compounds may lead to downstream signaling variations causing aberrations in sodium channel functions leading to prolonged QTc. The compound heterozygotes of SCN5A gene polymorphisms revealed a significant association which may be deleterious/lethal leading to an aberrant sodium ion channel causing prolonged QTc. PMID:26401487

  3. High-throughput discovery of mutations in tef semi-dwarfing genes by next-generation sequencing analysis.

    PubMed

    Zhu, Qihui; Smith, Shavannor M; Ayele, Mulu; Yang, Lixing; Jogi, Ansuya; Chaluvadi, Srinivasa R; Bennetzen, Jeffrey L

    2012-11-01

    Tef (Eragrostis tef) is a major cereal crop in Ethiopia. Lodging is the primary constraint to increasing productivity in this allotetraploid species, accounting for losses of ∼15-45% in yield each year. As a first step toward identifying semi-dwarf varieties that might have improved lodging resistance, an ∼6× fosmid library was constructed and used to identify both homeologues of the dw3 semi-dwarfing gene of Sorghum bicolor. An EMS mutagenized population, consisting of ∼21,210 tef plants, was planted and leaf materials were collected into 23 superpools. Two dwarfing candidate genes, homeologues of dw3 of sorghum and rht1 of wheat, were sequenced directly from each superpool with 454 technology, and 120 candidate mutations were identified. Out of 10 candidates tested, six independent mutations were validated by Sanger sequencing, including two predicted detrimental mutations in both dw3 homeologues with a potential to improve lodging resistance in tef through further breeding. This study demonstrates that high-throughput sequencing can identify potentially valuable mutations in under-studied plant species like tef and has provided mutant lines that can now be combined and tested in breeding programs for improved lodging resistance.

  4. Mutation screening of the ARX gene in patients with autism

    PubMed Central

    Chaste, Pauline; Nygren, Gudrun; Anckarsäter, Henrik; Råstam, Maria; Coleman, Mary; Leboyer, Marion; Gillberg, Christopher; Betancur, Catalina

    2007-01-01

    Mutations in the ARX gene are associated with a broad spectrum of disorders, including nonsyndromic X-linked mental retardation, sometimes associated with epilepsy, as well as syndromic forms with brain abnormalities and abnormal genitalia. Furthermore, ARX mutations have been described in a few patients with autism or autistic features. In this study, we screened the ARX gene in 226 male patients with autism spectrum disorders and mental retardation; 42 of the patients had epilepsy. The mutation analysis was performed by direct sequencing of all exons and flanking regions. No ARX mutations were identified in any of the patients tested. These findings indicate that mutations in the ARX gene are very rare in autism. PMID:17044103

  5. Mutational analysis of the biglycan gene excludes it as a candidate for x-linked dominant chondrodysplasia punctata, dyskeratosis congenita, and incontinentia pigmenti

    SciTech Connect

    Das, S.; Metzenberg, A.; Gitschier, J. ); Pai, G.S. )

    1994-05-01

    Biglycan is a small proteoglycan expressed mainly in cells of connective tissue, including chondrocytes, ostocytes, epithelial cells, and endothelial cells. The biglycan cDNA is 1,685 bp long. The biglycan gene was amplified in six segments by using nested PCR. Primers were synthesized to amplify exons 2-8 of the biglycan gene. Exon 1 was not amplified, as it consists entirely of 5[prime] untranslated sequence. Each exon was separately amplified, except for exons 5-7, which, because of their small size, were amplified in two segments and were subjected to SSCP analysis. Results indicate the presence of two different haplotypes for exon 2 and three different haplotypes for exon 4. Further SSCP analysis of control samples from nine females and one male confirmed that the exon 2 and exon 4 haplotypes consist of polymorphisms, rather than of mutations that specifically affect this patient population. Our results support recently described work that proposes that the biglycan gene may not be involved in X-linked dominant chondrodysplasia punctata. The absence of mutations in the biglycan gene in X-linked dominant chondrodysplasia punctata, dyskeratosis congenita, and incontinentia pigmenti suggest it is highly unlikely that mutations in this gene are responsible for any of these disorders.

  6. Changing in lipid profile induced by the mutation of Foxn1 gene: A lipidomic analysis of Nude mice skin.

    PubMed

    Lanzini, Justine; Dargère, Delphine; Regazzetti, Anne; Tebani, Abdellah; Laprévote, Olivier; Auzeil, Nicolas

    2015-11-01

    Nude mice carry a spontaneous mutation affecting the gene Foxn1 mainly expressed in the epidermis. This gene is involved in several skin functions, especially in the proliferation and the differentiation of keratinocytes which are key cells of epithelial barrier. The skin, a protective barrier for the body, is essentially composed of lipids. Taking into account these factors, we conducted a lipidomic study to search for any changes in lipid composition of skin possibly related to Foxn1 mutation. Lipids were extracted from skin biopsies of Nude and BALB/c mice to be analyzed by liquid chromatography coupled to a high resolution mass spectrometer (HRMS). Multivariate and univariate data analyses were carried out to compare lipid extracts. Identification was performed using HRMS data, retention time and mass spectrometry fragmentation study. These results indicate that mutation of Foxn1 leads to significant modifications in the lipidome in Nude mice skin. An increase in cholesterol sulfate, phospholipids, sphingolipids and fatty acids associated with a decrease in glycerolipids suggest that the lipidome in mice skin is regulated by the Foxn1 gene.

  7. Computational analysis of a novel mutation in ETFDH gene highlights its long-range effects on the FAD-binding motif

    PubMed Central

    2011-01-01

    Background Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is an autosomal recessive disease caused by the defects in the mitochondrial electron transfer system and the metabolism of fatty acids. Recently, mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene, encoding electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) have been reported to be the major causes of riboflavin-responsive MADD. To date, no studies have been performed to explore the functional impact of these mutations or their mechanism of disrupting enzyme activity. Results High resolution melting (HRM) analysis and sequencing of the entire ETFDH gene revealed a novel mutation (p.Phe128Ser) and the hotspot mutation (p.Ala84Thr) from a patient with MADD. According to the predicted 3D structure of ETF:QO, the two mutations are located within the flavin adenine dinucleotide (FAD) binding domain; however, the two residues do not have direct interactions with the FAD ligand. Using molecular dynamics (MD) simulations and normal mode analysis (NMA), we found that the p.Ala84Thr and p.Phe128Ser mutations are most likely to alter the protein structure near the FAD binding site as well as disrupt the stability of the FAD binding required for the activation of ETF:QO. Intriguingly, NMA revealed that several reported disease-causing mutations in the ETF:QO protein show highly correlated motions with the FAD-binding site. Conclusions Based on the present findings, we conclude that the changes made to the amino acids in ETF:QO are likely to influence the FAD-binding stability. PMID:22013910

  8. Mutational analysis of the HLA-DQ3.2 insulin-dependent diabetes mellitus susceptibility gene.

    PubMed Central

    Kwok, W W; Lotshaw, C; Milner, E C; Knitter-Jack, N; Nepom, G T

    1989-01-01

    The human major histocompatibility complex includes approximately 14 class II HLA genes within the HLA-D region, most of which exist in multiple allelic forms. One of these genes, the DQ3.2 beta gene, accounts for the well-documented association of HLA-DR4 with insulin-dependent diabetes mellitus and is the single allele most highly correlated with this disease. We analyzed the amino acid substitutions that lead to the structural differences distinguishing DQ3.2 beta from its nondiabetogenic, but closely related allele, DQ3.1 beta. Site-directed mutagenesis of the DQ3.2 beta gene was used to convert key nucleotides into DQ3.1 beta codons. Subsequent expression studies of these mutated DQ3.2 beta clones using retroviral vectors defined amino acid 45 as critical for generating serologic epitopes characterizing the DQw3.1 beta and DQw3.2 beta molecules. Images PMID:2783780

  9. Replication and Meta-Analysis of Common Gene Mutations in TTF1 and TTF2 with Papillary Thyroid Cancer.

    PubMed

    Gao, Yan; Chen, Fei; Niu, Shuli; Lin, Shiyu; Li, Suping

    2015-09-01

    Papillary thyroid cancer (PTC), one of the most common malignant thyroid tumors, exits widely in the thyroid of adolescents. Thyroid transcription factor 1 (TTF1) and 2 (TTF2) were thyroid-specific transcription factors, and regulated expression of the thyroid-specific genes. Hence, the aim of the present study was to evaluate the correlation between gene variants of TTF1 and TTF2 and the risk of PTC in Chinese population.Two tagging single-nucleotide polymorphisms (tSNPs) on TTF1 and TTF2 were selected and genotyped by matrix-assisted laser desorption/ionization time-of-flight (MALDITOF) mass spectrometry in a hospital-based case-control study of 297 PTC patients and 594 healthy controls. Furthermore, a meta-analysis of the association between TTF1 and TTF2 and PTC risk was also performed.We found that the rs944289 on the TTF1 was significantly associated with increased PTC risk (TT vs CC, OR = 1.53, 95% CI = 1.05-2.24; CT + TT vs TT, OR = 1.34, 95% CI = 1.00-1.79; T vs C, OR = 1.27, 95% CI = 1.04-1.55). Similarly, the rs965513 on the TTF2 can also elevate the risk of PTC significantly (GA vs GG, OR = 1.67, 95% CI = 1.07-2.59; AA+GA vs AA, OR = 1.37, 95% CI = 1.09-1.82; A vs G, OR = 1.29, 95% CI = 1.05-1.59). Furthermore, results of stratified analysis revealed that the risk effects of rs944289 and rs965513 were more overpowering in the subgroups of patients with MNG, as well as subjects without metastasis. Results of meta-analysis from the previous study and our new data indicated that variants of rs944289 and rs965513 might be the genetic susceptible factors both in Asians and Caucasians.We get the conclusion that mutations of TTF1 and TTF2 are significantly associated with an increasing risk of PTC in Chinese. However, more detailed investigations and further large-scale studies on genetic functions to provide more conclusive and accurate evidence are required in the future. PMID:26356687

  10. Replication and Meta-Analysis of Common Gene Mutations in TTF1 and TTF2 with Papillary Thyroid Cancer

    PubMed Central

    Gao, Yan; Chen, Fei; Niu, Shuli; Lin, Shiyu; Li, Suping

    2015-01-01

    Abstract Papillary thyroid cancer (PTC), one of the most common malignant thyroid tumors, exits widely in the thyroid of adolescents. Thyroid transcription factor 1 (TTF1) and 2 (TTF2) were thyroid-specific transcription factors, and regulated expression of the thyroid-specific genes. Hence, the aim of the present study was to evaluate the correlation between gene variants of TTF1 and TTF2 and the risk of PTC in Chinese population. Two tagging single-nucleotide polymorphisms (tSNPs) on TTF1 and TTF2 were selected and genotyped by matrix-assisted laser desorption/ionization time-of-flight (MALDITOF) mass spectrometry in a hospital-based case-control study of 297 PTC patients and 594 healthy controls. Furthermore, a meta-analysis of the association between TTF1 and TTF2 and PTC risk was also performed. We found that the rs944289 on the TTF1 was significantly associated with increased PTC risk (TT vs CC, OR = 1.53, 95% CI = 1.05–2.24; CT + TT vs TT, OR = 1.34, 95% CI = 1.00–1.79; T vs C, OR = 1.27, 95% CI = 1.04–1.55). Similarly, the rs965513 on the TTF2 can also elevate the risk of PTC significantly (GA vs GG, OR = 1.67, 95% CI = 1.07–2.59; AA+GA vs AA, OR = 1.37, 95% CI = 1.09–1.82; A vs G, OR = 1.29, 95% CI = 1.05–1.59). Furthermore, results of stratified analysis revealed that the risk effects of rs944289 and rs965513 were more overpowering in the subgroups of patients with MNG, as well as subjects without metastasis. Results of meta-analysis from the previous study and our new data indicated that variants of rs944289 and rs965513 might be the genetic susceptible factors both in Asians and Caucasians. We get the conclusion that mutations of TTF1 and TTF2 are significantly associated with an increasing risk of PTC in Chinese. However, more detailed investigations and further large-scale studies on genetic functions to provide more conclusive and accurate evidence are required in the future. PMID

  11. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy

    PubMed Central

    Ceyhan-Birsoy, Ozge; Agrawal, Pankaj B.; Hidalgo, Carlos; Schmitz-Abe, Klaus; DeChene, Elizabeth T.; Swanson, Lindsay C.; Soemedi, Rachel; Vasli, Nasim; Iannaccone, Susan T.; Shieh, Perry B.; Shur, Natasha; Dennison, Jane M.; Lawlor, Michael W.; Laporte, Jocelyn; Markianos, Kyriacos; Fairbrother, William G.; Granzier, Henk

    2013-01-01

    Objective: To identify causative genes for centronuclear myopathies (CNM), a heterogeneous group of rare inherited muscle disorders that often present in infancy or early life with weakness and hypotonia, using next-generation sequencing of whole exomes and genomes. Methods: Whole-exome or -genome sequencing was performed in a cohort of 29 unrelated patients with clinicopathologic diagnoses of CNM or related myopathy depleted for cases with mutations of MTM1, DNM2, and BIN1. Immunofluorescence analyses on muscle biopsies, splicing assays, and gel electrophoresis of patient muscle proteins were performed to determine the molecular consequences of mutations of interest. Results: Autosomal recessive compound heterozygous truncating mutations of the titin gene, TTN, were identified in 5 individuals. Biochemical analyses demonstrated increased titin degradation and truncated titin proteins in patient muscles, establishing the impact of the mutations. Conclusions: Our study identifies truncating TTN mutations as a cause of congenital myopathy that is reported as CNM. Unlike the classic CNM genes that are all involved in excitation-contraction coupling at the triad, TTN encodes the giant sarcomeric protein titin, which forms a myofibrillar backbone for the components of the contractile machinery. This study expands the phenotypic spectrum associated with TTN mutations and indicates that TTN mutation analysis should be considered in cases of possible CNM without mutations in the classic CNM genes. PMID:23975875

  12. Analysis of mutations in trfA, the replication initiation gene of the broad-host-range plasmid RK2.

    PubMed Central

    Lin, J; Helinski, D R

    1992-01-01

    Plasmids with mutations in trfA, the gene encoding the replication initiation protein of the broad-host-range plasmid RK2, were isolated and characterized. Mutants identified from a nitrosoguanidine bank were defective in supporting the replication of a wild-type RK2 origin in Escherichia coli. Most of the mutations were clustered in a region of trfA corresponding to the carboxy-terminal quarter of the TrfA protein. 5' and 3' deletion mutants of trfA were also constructed. A C-terminal deletion of three amino acids of the Tr A protein was completely nonfunctional for RK2 replication. However, a deletion of 25 amino acids from the start of the 33-kDa TrfA protein was still competent for replication. Further characterization of the point and deletion trfA mutants in vivo revealed that a subset was capable of supporting RK2 replication in other gram-negative bacteria, including Pseudomonas putida, Agrobacterium tumefaciens, and Azotobacter vinelandii. Selected mutant TrfA proteins were partially purified and characterized in vitro. Velocity sedimentation analysis of these partially purified TrfA proteins indicated that the wild-type protein and all mutant TrfA proteins examined exist as dimers in solution. Results from in vitro replication assays corroborated the experimental findings in vivo. Gel retardation results clearly indicated that the point mutant TrfA-33:151S, which was completely defective in replication of an RK2 origin in all of the bacterial hosts tested in vivo, and a carboxy-terminal deletion mutant, TrfA-33:C delta 305, were not able to bind iterons in vitro. In addition to the partially defective or could not be distinguished from the wild-type protein in binding to the origin region. The mutant proteins with apparently normal DNA-binding activity in vitro either were inactive in all four gram-negative bacteria tested or exhibited differences in functionality depending on the host organism. These mutant TrfA proteins may be altered in the ability to

  13. Mutational analysis of the Sonic Hedgehog gene in 220 newborns with oral clefts in a South American (ECLAMC) population.

    PubMed

    Orioli, Iêda M; Vieira, Alexandre R; Castilla, Eduardo E; Ming, Jeffrey E; Muenke, Maximilian

    2002-02-15

    Oral clefts generally have a multifactorial etiology. A number of genes contribute to the formation of the face and palate. Cleft lip and/or palate can occur in pedigrees with autosomal dominant holoprosencephaly due to mutations in Sonic Hedgehog (SHH). In addition, animal models have shown that SHH is involved in face development. We thus examined the human SHH gene in 220 newborn infants with nonsyndromic oral clefts registered by the Estudio Colaborativo Latinoamericano de Malformaciones Congenitas: ECLAMC (Latin American Collaborative Study of Congenital Malformations). We found 15 variant bands in 13 patients with oral clefts, representing five different base changes, all of which were found by sequencing to represent silent polymorphisms. Four occurred in introns. The alteration occurring in an exon, Ser190Ser, may create a consensus sequence for the 3'splice site 6 bp downstream of the original consensus sequence. Thus, we did not identify any clearly disease-causing mutation in SHH in these patients, and conclude that SHH mutations are not a frequent cause of isolated oral clefts in humans.

  14. Mutation analysis of the HOX paralogous 4-13 genes in children with acute lymphoid malignancies: identification of a novel germline mutation of HOXD4 leading to a partial loss-of-function.

    PubMed

    van Scherpenzeel Thim, Virginie; Remacle, Sophie; Picard, Jacques; Cornu, Guy; Gofflot, Françoise; Rezsohazy, René; Verellen-Dumoulin, Christine

    2005-04-01

    The molecular basis of susceptibility to childhood malignant hemopathy remains largely unknown. An excess of skeletal congenital anomalies has been reported among children with hematological malignancy and points towards involvement of developmental genes, like those belonging to the HOX gene family. In addition to their role in embryogenesis, HOX transcription factors are known to be regulators of proliferation and differentiation of hematopoietic cells. We aimed to explore the possibility that germline alterations of HOX genes might be involved in childhood acute lymphoid malignancies. A cohort of 86 children diagnosed with acute lymphoid malignancy was studied, 20 of them concurrently presenting a congenital anomaly of the skeleton. First, we screened for nucleotide changes throughout the HOX genes of paralogous groups 4 to 13 in the 20 patients with skeletal defects, following a skeletal phenotype-based strategy. Subsequently, we extended the HOX mutation screening to the other 66 children having a malignant lymphoproliferative disorder, but without skeletal defects. In total, 16 germline mutations were identified. While 13 changes were also observed in healthy controls, three variants were exclusively found in acute lymphoid malignancy cases. These comprised the germline c.242A>T (p.Glu81Val) missense mutation of HOXD4, detected in two children diagnosed with acute lymphoblastic leukemia (ALL). Furthermore, this mutation was found in association with other specific HOX variants of cluster D (2q31-q37), defining a unique haplotype. Functional analysis of the murine Hoxd4 homolog revealed that mutant Hoxd4 protein had lower transcriptional activity than wild-type protein in vitro. The p.Glu81Val mutation of HOXD4 thus results in a partial loss-of-function, which might be involved in childhood ALL.

  15. Comprehensive mutation analysis of the CYP21A2 gene: an efficient multistep approach to the molecular diagnosis of congenital adrenal hyperplasia.

    PubMed

    Xu, Zhi; Chen, Wuyan; Merke, Deborah P; McDonnell, Nazli B

    2013-11-01

    Congenital adrenal hyperplasia, due to 21-hydroxylase deficiency (21-OHD) is an autosomal recessive disorder of adrenal steroidogenesis caused by mutations in the CYP21A2 gene. Direct comparison of established and novel methodologies of CYP21A2 genetic analysis in a large cohort representing a wide range of genotypes has not been previously reported. We genotyped a cohort of 129 unrelated patients with 21-OHD, along with 145 available parents, using Southern blot (SB) analysis, multiplex ligation-dependent probe amplification (MLPA), PCR-based restriction fragment length polymorphism (RFLP) analysis, multiplex minisequencing and conversion-specific PCR, duplication-specific amplification, and DNA sequencing. CYP21A2 genotyping identified four duplicated CYP21A2 genes (1.53%) and 79 chimeric CYP21A1P/CYP21A2 genes (30.15%). Parental SB data were essential for determining the CYP21 haplotype in three cases, whereas PCR-based RFLP analysis was necessary for MLPA results to be accurately interpreted in the majority of cases. The comparison of different methods in detecting deletion and duplication showed that MLPA with PCR-based RFLP was comparable with SB analysis, with parental data of 100% sensitivity and specificity. DNA sequencing was required for the identification of 16 (6.1%) rare point mutations and determination of clinically significant chimera junction sites. MLPA with PCR-based RFLP analysis is an excellent substitute for SB analysis in detecting CYP21A2 deletion and duplication and a combination of MLPA, PCR-based RFLP, duplication-specific amplification, and DNA sequencing is a convenient and comprehensive strategy for mutation analysis of the CYP21A2 gene in patients with 21-OHD.

  16. Mutational analysis of cat-86 gene expression controlled by lactococcal promoters in Lactococcus lactis subsp. lactis and Escherichia coli.

    PubMed Central

    Bojovic, B; Djordjevic, G; Banina, A; Topisirovic, L

    1994-01-01

    Promoters were cloned from the chromosomal DNA of Lactococcus lactis subsp. lactis NP4510 by using promoter-probe vector pGKV210. N-Methyl-N'-nitro-N-nitrosoguanidine-induced mutagenesis of L. lactis-(pBV413), with low-level expression of the cat-86 gene, resulted in enhanced expression. Subcloning and sequencing of the mutated plasmid designated pBV415 revealed that the mutation is located within the PstI-HindIII fragment containing the coding sequence of the cat-86 gene (the 10th CTG codon was replaced by a TTG; both code for leucine). A set of otherwise identical plasmids with four combinations of CTG and TTG codons at the 10th and 46th positions in the cat-86 gene were constructed by site-directed mutagenesis. These plasmids containing cat-86 derivatives displayed a significant variation in cat expression in L. lactis and E. coli. The data suggest that cat expression is dependent on the secondary structure of the cat mRNA. New cat-86 derivatives described here can be used in lactococci, in which they provide additional flexibility for promoter cloning. PMID:7961430

  17. Mutational Analysis of EYA1, SIX1 and SIX5 Genes and Strategies for Management of Hearing Loss in Patients with BOR/BO Syndrome

    PubMed Central

    Jeon, Ju Hyun; Baek, Jeong-In; Lee, Won-Sang; Kim, Un-Kyung; Choi, Jae Young

    2013-01-01

    Background Branchio-oto-renal (BOR) or branchio-otic (BO) syndrome is one of the most common forms of autosomal dominant syndromic hearing loss. Mutations in EYA1, SIX1 and SIX5 genes have been associated with BOR syndrome. In this study, clinical and genetic analyses were performed in patients with BOR/BO syndrome focusing on auditory manifestations and rehabilitation. Methods The audiologic manifestations were reviewed in 10 patients with BOR/BO syndrome. The operative findings and hearing outcome were analyzed in patients who underwent middle ear surgeries. The modality and outcome of auditory rehabilitation were evaluated. Genetic analysis was performed for EYA1, SIX1, and SIX5 genes. Results All patients presented with mixed hearing loss. Five patients underwent middle ear surgeries without successful hearing gain. Cochlear implantation performed in two patients resulted in significant hearing improvement. Genetic analysis revealed four novel EYA1 mutations and a large deletion encompassing the EYA1 gene. Conclusions Auditory rehabilitation in BOR/BO syndrome should be individually tailored keeping in mind the high failure rate after middle ear surgeries. Successful outcome can be expected with cochlear implantations in patients with BOR/BO syndrome who cannot benefit from hearing aids. The novel EYA1 mutations may add to the genotypic and phenotypic spectrum of BOR syndrome in the East Asian population. PMID:23840632

  18. Flow cytometric analysis of Pig-a gene mutation and chromosomal damage induced by procarbazine hydrochloride in CD-1 mice.

    PubMed

    Phonethepswath, Souk; Avlasevich, Svetlana L; Torous, Dorothea K; Mereness, Jared; Bemis, Jeffrey C; Macgregor, James T; Dertinger, Stephen D

    2013-05-01

    Procarbazine is a genotoxic carcinogen whose DNA-damaging activities are not reliably detected in vitro. We evaluated the in vivo genotoxic effects of procarbazine on hematopoietic cells of male CD-1 mice using a multi-endpoint study design that scored micronucleated reticulocyte (MN-RET) frequency and gene mutation at the Pig-a locus. CD-1 mice were treated for 3 days with procarbazine, up to 150 mg/kg/day. Blood samples collected on Day 3 exhibited robust induction of MN-RETs, with the high dose group exhibiting a mean 29-fold increase. Blood collected 15 and 30 days after treatment began was analyzed for Pig-a mutation with a dual labeling method that facilitated mutant cell frequency measurements in both total erythrocytes and the reticulocyte subpopulation. Procarbazine significantly increased mutant reticulocyte frequencies by Day 15. Mutant erythrocyte responses were also apparent, with a peak incidence observed for the high dose group on Day 30. These results demonstrate that the complex metabolism and resulting genotoxicity of procarbazine is best evaluated in intact animal models, and show that the flow cytometric methods employed offer a means to efficiently monitor both in vivo chromosomal damage and mutation.

  19. Chromosome 3p loss of heterozygosity and mutation analysis of the FHIT and beta-cat genes in squamous cell carcinoma of the head and neck.

    PubMed Central

    González, M V; Pello, M F; Ablanedo, P; Suárez, C; Alvarez, V; Coto, E

    1998-01-01

    AIMS: To study the loss of heterozygosity at the short arm of chromosome 3 in primary tumours from patients with squamous cell carcinoma of the head and neck; to determine whether the FHIT gene, mapped to 3p14.2 and the CTNNB1 (beta-cat) gene, mapped to 3p21, are deleted or mutated in these tumours. METHODS: DNA was extracted from fresh tumours. Loss of heterozygosity was assessed by microsatellite analysis of the following markers: D3S1283 and D3S1286 (3p24), D3S966 (3p21), and D3S1300 (3P14.2). Homozygous deletion was determined by radioactive multiplex polymerase chain reaction of exons 5 and 6 of the FHIT gene. The presence of mutations in FHIT exon 5 and beta-cat exon 3 was studied by single strand conformation polymorphism. RESULTS: 50% of informative cases (25/50) showed loss of heterozygosity for at least one of the 3p markers. 3p21 was the region with the highest rate of allelic deletion (63%). No point mutation was found in FHIT exon 5 or beta-cat exon 3. No case showed homozygous deletion for the FHIT (exons 5 and 6) or the beta-cat exon 3. CONCLUSIONS: The short arm of chromosome 3 is often deleted in the head and neck squamous cell carcinomas. In the remaining alleles of the FHIT or beta-cat genes, no evidence was found for point mutations or deletions, documented in other common carcinomas. Inactivation could occur by different mechanisms such as methylation, or other genes (not studied here) could be target of allelic losses in squamous cell carcinoma of the head and neck. Images PMID:9797729

  20. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations.

    PubMed

    Arte, Sirpa; Parmanen, Satu; Pirinen, Sinikka; Alaluusua, Satu; Nieminen, Pekka

    2013-01-01

    Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%), with a mean number of missing teeth of 11.7 (range 4 to 34). Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes. PMID:23991204

  1. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations.

    PubMed

    Arte, Sirpa; Parmanen, Satu; Pirinen, Sinikka; Alaluusua, Satu; Nieminen, Pekka

    2013-01-01

    Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%), with a mean number of missing teeth of 11.7 (range 4 to 34). Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes.

  2. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Vasiliou, D M; Pinsky, L

    1996-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. We have added (if available) data on the androgen binding phenotype of the mutant AR, the clinical phenotype of the affected persons, the family history and whether the pathogenicity of a mutation has been proven. Exonic mutations are now listed in 5'-->3' sequence regardless of type and single base pair changes are presented in codon context. Splice site and intronic mutations are listed separately. The database has allowed us to substantiate and amplify the observation of mutational hot spots within exons encoding the AR androgen binding domain. The database is available from EML (ftp://www.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker file (MC33@musica.mcgill.ca).

  3. Mutation analysis of exon1 of bone morphogenetic protein-15 gene in Iranian patients with polycystic ovarian syndrome

    PubMed Central

    Mehdizadeh, Anahita; Sheikhha, Mohammad Hasan; Kalantar, Seyed Mehdi; Aali, Bibi Shahnaz; Ghanei, Azam

    2016-01-01

    Background: With the prevalence of 6-10%, polycystic ovarian syndrome (PCOS) is considered the most common endocrinological disorder affecting women in their reproductive age. It has been suggested that genetic factors participate in the development of PCOS. Follicular development has been considered as one of the impaired processes in PCOS. Bone morphogenetic protein-15 (BMP-15) gene is a candidate gene in follicular development and its variants may play role in pathogenesis of PCOS. Objective: To investigate whether BMP-15 gene mutations are present in Iranian women with PCOS. Materials and Methods: In this cross-sectional study 5 ml venous blood samples was taken from 70 PCOS women referring to Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran, between January to December 2014. Genomic DNA was extracted from the blood sample by salting out method. Then a set of PCR reactions for exon1 of BMP-15 gene was performed using specific primers followed by genotyping with direct sequencing. Results: Two different polymorphisms were found in the gene under study. In total 20 patients (28.6%) were heterozygote (C/G), and 2 patients (2.86%) were homozygous (G/G) for c.-9C>G in 5´UTR promoter region of BMP-15 gene (rs3810682). In addition, in the coding region of exon1, three patients (4.3%) were heterozygote (G/A) for c.A308G (rs41308602). Two PCOS patients (2.86%) appeared to have both c.-9C>G (C/G) and c.A308G (G/A) variants simultaneously. Conclusion: Our research detected two polymorphisms of BMP-15 gene among PCOS patients, indicating that even though it cannot be concluded that variants of BMP-15 gene are the principal cause of polycystic ovarian syndrome; they could be involved in pathogenic process in development of PCOS.

  4. Mutation analysis of exon1 of bone morphogenetic protein-15 gene in Iranian patients with polycystic ovarian syndrome

    PubMed Central

    Mehdizadeh, Anahita; Sheikhha, Mohammad Hasan; Kalantar, Seyed Mehdi; Aali, Bibi Shahnaz; Ghanei, Azam

    2016-01-01

    Background: With the prevalence of 6-10%, polycystic ovarian syndrome (PCOS) is considered the most common endocrinological disorder affecting women in their reproductive age. It has been suggested that genetic factors participate in the development of PCOS. Follicular development has been considered as one of the impaired processes in PCOS. Bone morphogenetic protein-15 (BMP-15) gene is a candidate gene in follicular development and its variants may play role in pathogenesis of PCOS. Objective: To investigate whether BMP-15 gene mutations are present in Iranian women with PCOS. Materials and Methods: In this cross-sectional study 5 ml venous blood samples was taken from 70 PCOS women referring to Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran, between January to December 2014. Genomic DNA was extracted from the blood sample by salting out method. Then a set of PCR reactions for exon1 of BMP-15 gene was performed using specific primers followed by genotyping with direct sequencing. Results: Two different polymorphisms were found in the gene under study. In total 20 patients (28.6%) were heterozygote (C/G), and 2 patients (2.86%) were homozygous (G/G) for c.-9C>G in 5´UTR promoter region of BMP-15 gene (rs3810682). In addition, in the coding region of exon1, three patients (4.3%) were heterozygote (G/A) for c.A308G (rs41308602). Two PCOS patients (2.86%) appeared to have both c.-9C>G (C/G) and c.A308G (G/A) variants simultaneously. Conclusion: Our research detected two polymorphisms of BMP-15 gene among PCOS patients, indicating that even though it cannot be concluded that variants of BMP-15 gene are the principal cause of polycystic ovarian syndrome; they could be involved in pathogenic process in development of PCOS. PMID:27679828

  5. Deep Sequence Analysis of Non-Small Cell Lung Cancer: Integrated Analysis of Gene Expression, Alternative Splicing, and Single Nucleotide Variations in Lung Adenocarcinomas with and without Oncogenic KRAS Mutations

    PubMed Central

    Kalari, Krishna R.; Rossell, David; Necela, Brian M.; Asmann, Yan W.; Nair, Asha; Baheti, Saurabh; Kachergus, Jennifer M.; Younkin, Curtis S.; Baker, Tiffany; Carr, Jennifer M.; Tang, Xiaojia; Walsh, Michael P.; Chai, High-Seng; Sun, Zhifu; Hart, Steven N.; Leontovich, Alexey A.; Hossain, Asif; Kocher, Jean-Pierre; Perez, Edith A.; Reisman, David N.; Fields, Alan P.; Thompson, E. Aubrey

    2012-01-01

    KRAS mutations are highly prevalent in non-small cell lung cancer (NSCLC), and tumors harboring these mutations tend to be aggressive and resistant to chemotherapy. We used next-generation sequencing technology to identify pathways that are specifically altered in lung tumors harboring a KRAS mutation. Paired-end RNA-sequencing of 15 primary lung adenocarcinoma tumors (8 harboring mutant KRAS and 7 with wild-type KRAS) were performed. Sequences were mapped to the human genome, and genomic features, including differentially expressed genes, alternate splicing isoforms and single nucleotide variants, were determined for tumors with and without KRAS mutation using a variety of computational methods. Network analysis was carried out on genes showing differential expression (374 genes), alternate splicing (259 genes), and SNV-related changes (65 genes) in NSCLC tumors harboring a KRAS mutation. Genes exhibiting two or more connections from the lung adenocarcinoma network were used to carry out integrated pathway analysis. The most significant signaling pathways identified through this analysis were the NFκB, ERK1/2, and AKT pathways. A 27 gene mutant KRAS-specific sub network was extracted based on gene–gene connections from the integrated network, and interrogated for druggable targets. Our results confirm previous evidence that mutant KRAS tumors exhibit activated NFκB, ERK1/2, and AKT pathways and may be preferentially sensitive to target therapeutics toward these pathways. In addition, our analysis indicates novel, previously unappreciated links between mutant KRAS and the TNFR and PPARγ signaling pathways, suggesting that targeted PPARγ antagonists and TNFR inhibitors may be useful therapeutic strategies for treatment of mutant KRAS lung tumors. Our study is the first to integrate genomic features from RNA-Seq data from NSCLC and to define a first draft genomic landscape model that is unique to tumors with oncogenic KRAS mutations. PMID:22655260

  6. Regression Modeling and Meta-Analysis of Diagnostic Accuracy of SNP-Based Pathogenicity Detection Tools for UGT1A1 Gene Mutation

    PubMed Central

    Rahim, Fakher; Galehdari, Hamid; Mohammadi-asl, Javad; Saki, Najmaldin

    2013-01-01

    Aims. This review summarized all available evidence on the accuracy of SNP-based pathogenicity detection tools and introduced regression model based on functional scores, mutation score, and genomic variation degree. Materials and Methods. A comprehensive search was performed to find all mutations related to Crigler-Najjar syndrome. The pathogenicity prediction was done using SNP-based pathogenicity detection tools including SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Results. Comparing the diagnostic OR, our model showed high detection potential (diagnostic OR: 16.71, 95% CI: 3.38–82.69). The highest MCC and ACC belonged to our suggested model (46.8% and 73.3%), followed by SIFT (34.19% and 62.71%). The AUC analysis showed a significance overall performance of our suggested model compared to the selected SNP-based pathogenicity detection tool (P = 0.046). Conclusion. Our suggested model is comparable to the well-established SNP-based pathogenicity detection tools that can appropriately reflect the role of a disease-associated SNP in both local and global structures. Although the accuracy of our suggested model is not relatively high, the functional impact of the pathogenic mutations is highlighted at the protein level, which improves the understanding of the molecular basis of mutation pathogenesis. PMID:23997956

  7. Mutational analysis of multiple tumor suppressor 1 (MTS1) gene in human primary breast tumors and established breast tumor cell lines

    SciTech Connect

    Xu, L.; Sgroi, D.; Sterner, C.

    1994-09-01

    A putative tumor suppressor gene on the short arm of human chromosome 9 has been identified recently and named as multiple tumor suppressor 1 (MTS1). MTS1 is identical to the previously identified cyclin-dependent kinase-4 inhibitor gene p16, a cell cycle regulatory protein. Frequent homozygous deletions of MTS1 gene has been documented recently in cell lines derived from different types of tumors including breast tumors, suggesting that MTS1 is a tumor suppressor gene that is probably involved in a variety of human tumors. To determine the frequency of MTS1 mutations in primary breast tumors, we screened 39 primary breast tumors (16 lobular carcinoma and 23 ductal carcinoma) and 5 established breast tumor cell lines by utilizing single stranded conformational polymorphism (SSCP) analysis. SSCP analysis was carried out for all 3 exons of the MTS1 gene utilizing primers in the flanking intronic sequences. Two of the five breast cancer tumor cell lines analyzed exhibited deletion of the entire MTS1 gene. However, only one of the thirty-nine primary breast tumors revealed a potential SSCP variation in exon 2 of the MTS1 gene which is currently characterized by sequencing. SSCP analysis also revealed two intragenic polymorphisms, one in exon 2 and one in the 3{prime} untranslated region, that could be used to assay allelic loss directly at the MTS1 locus. These results suggest that the mutation of the MTS1 gene may not be a critical genetic change in the formation of primary breast cancer, and the deletions observed in breast tumor cell lines may be due to product of cell growth in vitro.

  8. Novel mutations in the human HPRT gene.

    PubMed

    Nguyen, Khue Vu; Naviaux, Robert K; Paik, Kacie K; Nyhan, William L

    2011-06-01

    Inherited mutation of a purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT), gives rise to Lesch-Nyhan Syndrome (LNS) or HPRT-related gout. Here, we report five novel independent mutations in the coding region of the HPRT gene from five unrelated male patients manifesting different clinical phenotypes associated with LNS: exon 2: c.133A > G, p.45R > G; c.35A > C, p.12D > A; c.88delG; exon 7: c.530A > T, p.177D > V; and c.318 + 1G > C: IVS3 + 1G > C splice site mutation.

  9. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    PubMed Central

    Kotecha, Udhaya H.; Movva, Sireesha; Sharma, Deepak; Verma, Jyotsna; Puri, Ratna Dua; Verma, Ishwar Chander

    2014-01-01

    Background & objectives: Multiple suphphatase deficiency (MSD) is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1). We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E) substitution in exon 3 and a single base insertion mutation (c.690_691 InsT) in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein. PMID:25222778

  10. Preservation of duplicate genes by complementary, degenerative mutations.

    PubMed Central

    Force, A; Lynch, M; Pickett, F B; Amores, A; Yan, Y L; Postlethwait, J

    1999-01-01

    The origin of organismal complexity is generally thought to be tightly coupled to the evolution of new gene functions arising subsequent to gene duplication. Under the classical model for the evolution of duplicate genes, one member of the duplicated pair usually degenerates within a few million years by accumulating deleterious mutations, while the other duplicate retains the original function. This model further predicts that on rare occasions, one duplicate may acquire a new adaptive function, resulting in the preservation of both members of the pair, one with the new function and the other retaining the old. However, empirical data suggest that a much greater proportion of gene duplicates is preserved than predicted by the classical model. Here we present a new conceptual framework for understanding the evolution of duplicate genes that may help explain this conundrum. Focusing on the regulatory complexity of eukaryotic genes, we show how complementary degenerative mutations in different regulatory elements of duplicated genes can facilitate the preservation of both duplicates, thereby increasing long-term opportunities for the evolution of new gene functions. The duplication-degeneration-complementation (DDC) model predicts that (1) degenerative mutations in regulatory elements can increase rather than reduce the probability of duplicate gene preservation and (2) the usual mechanism of duplicate gene preservation is the partitioning of ancestral functions rather than the evolution of new functions. We present several examples (including analysis of a new engrailed gene in zebrafish) that appear to be consistent with the DDC model, and we suggest several analytical and experimental approaches for determining whether the complementary loss of gene subfunctions or the acquisition of novel functions are likely to be the primary mechanisms for the preservation of gene duplicates. For a newly duplicated paralog, survival depends on the outcome of the race between

  11. DNA Microarray and Gene Ontology Enrichment Analysis Reveals That a Mutation in opsX Affects Virulence and Chemotaxis in Xanthomonas oryzae pv. oryzae

    PubMed Central

    Kim, Hong-Il; Park, Young-Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) in rice (Oryza sativa L.). In this study, we investigated the effect of a mutation in opsX (XOO1056), which encodes a saccharide biosynthesis regulatory protein, on the virulence and bacterial chemotaxis of Xoo. We performed DNA microarray analysis, which showed that 63 of 2,678 genes, including genes related to bacterial motility (flagellar and chemotaxis proteins) were significantly downregulated (<−2 log2 fold changes) by the mutation in opsX. Indeed, motility assays showed that the mutant strain was nonmotile on semisolid agar swarm plates. In addition, a mutant strain (opsX::Tn5) showed decreased virulence against the susceptible rice cultivar, IR24. Quantitative real-time RT-PCR reaction was performed to confirm the expression levels of these genes, including those related to flagella and chemotaxis, in the opsX mutant. Our findings revealed that mutation of opsX affects both virulence and bacterial motility. These results will help to improve our understanding of Xoo and provide insight into Xoo-rice interactions. PMID:27298594

  12. DNA Microarray and Gene Ontology Enrichment Analysis Reveals That a Mutation in opsX Affects Virulence and Chemotaxis in Xanthomonas oryzae pv. oryzae.

    PubMed

    Kim, Hong-Il; Park, Young-Jin

    2016-06-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) in rice (Oryza sativa L.). In this study, we investigated the effect of a mutation in opsX (XOO1056), which encodes a saccharide biosynthesis regulatory protein, on the virulence and bacterial chemotaxis of Xoo. We performed DNA microarray analysis, which showed that 63 of 2,678 genes, including genes related to bacterial motility (flagellar and chemotaxis proteins) were significantly downregulated (<-2 log2 fold changes) by the mutation in opsX. Indeed, motility assays showed that the mutant strain was nonmotile on semisolid agar swarm plates. In addition, a mutant strain (opsX::Tn5) showed decreased virulence against the susceptible rice cultivar, IR24. Quantitative real-time RT-PCR reaction was performed to confirm the expression levels of these genes, including those related to flagella and chemotaxis, in the opsX mutant. Our findings revealed that mutation of opsX affects both virulence and bacterial motility. These results will help to improve our understanding of Xoo and provide insight into Xoo-rice interactions.

  13. Genome-wide association analysis identifies a mutation in the thiamine transporter 2 (SLC19A3) gene associated with Alaskan Husky encephalopathy.

    PubMed

    Vernau, Karen M; Runstadler, Jonathan A; Brown, Emily A; Cameron, Jessie M; Huson, Heather J; Higgins, Robert J; Ackerley, Cameron; Sturges, Beverly K; Dickinson, Peter J; Puschner, Birgit; Giulivi, Cecilia; Shelton, G Diane; Robinson, Brian H; DiMauro, Salvatore; Bollen, Andrew W; Bannasch, Danika L

    2013-01-01

    Alaskan Husky Encephalopathy (AHE) has been previously proposed as a mitochondrial encephalopathy based on neuropathological similarities with human Leigh Syndrome (LS). We studied 11 Alaskan Husky dogs with AHE, but found no abnormalities in respiratory chain enzyme activities in muscle and liver, or mutations in mitochondrial or nuclear genes that cause LS in people. A genome wide association study was performed using eight of the affected dogs and 20 related but unaffected control AHs using the Illumina canine HD array. SLC19A3 was identified as a positional candidate gene. This gene controls the uptake of thiamine in the CNS via expression of the thiamine transporter protein THTR2. Dogs have two copies of this gene located within the candidate interval (SLC19A3.2 - 43.36-43.38 Mb and SLC19A3.1 - 43.411-43.419 Mb) on chromosome 25. Expression analysis in a normal dog revealed that one of the paralogs, SLC19A3.1, was expressed in the brain and spinal cord while the other was not. Subsequent exon sequencing of SLC19A3.1 revealed a 4bp insertion and SNP in the second exon that is predicted to result in a functional protein truncation of 279 amino acids (c.624 insTTGC, c.625 C>A). All dogs with AHE were homozygous for this mutation, 15/41 healthy AH control dogs were heterozygous carriers while 26/41 normal healthy AH dogs were wild type. Furthermore, this mutation was not detected in another 187 dogs of different breeds. These results suggest that this mutation in SLC19A3.1, encoding a thiamine transporter protein, plays a critical role in the pathogenesis of AHE.

  14. Protein and gene expression analysis of Phf6, the gene mutated in the Börjeson-Forssman-Lehmann Syndrome of intellectual disability and obesity.

    PubMed

    Voss, Anne K; Gamble, Robin; Collin, Caitlin; Shoubridge, Cheryl; Corbett, Mark; Gécz, Jozef; Thomas, Tim

    2007-10-01

    The Plant homeodomain finger gene 6 (PHF6) was identified as the gene mutated in patients suffering from the Börjeson-Forssman-Lehmann Syndrome (BFLS), an X-linked mental retardation disorder. BFLS mental disability is evident from an early age, suggesting a developmental brain defect. The PHF6 protein contains four nuclear localisation signals and two imperfect plant homeodomain (PHD) fingers similar to the third, imperfect PHD fingers in members of the trithorax family of transcriptional regulators. The PHF6 gene is highly conserved in vertebrate species. Despite the devastating effects of mutation of the PHF6 gene, nothing is known about the cellular function of PHF6. In order to lay the base for functional studies, we identify here the cell types that express the murine Phf6 gene and protein during prenatal and postnatal development. The Phf6 gene and protein are expressed widely. However, expression levels vary from strong to barely detectable. Strongest Phf6 gene expression and nuclear localisation of Phf6 protein were observed in the developing central nervous system, the anterior pituitary gland, the primordia of facial structures and the limb buds. Expression levels of both mRNA and protein decline over the course of development. In the adult brain moderate Phf6 expression is maintained in projection neurons, such as mitral cells in the olfactory bulb, cerebrocortical pyramidal cells and cerebellar Purkinje cells. Phf6 gene expression and nuclear localisation of Phf6 protein correlate with clinical symptoms in BFLS patients, namely mental disability, pan-anterior pituitary hormonal deficiency and facial as well digit abnormalities.

  15. The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Trifiro, M; Lumbroso, R; Pinsky, L

    1997-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 212 to 272. We have expanded the database: (i) by adding a large amount of new data on somatic mutations in prostatic cancer tissue; (ii) by defining a new constitutional phenotype, mild androgen insensitivity (MAI); (iii) by placing additional relevant information on an internet site (http://www.mcgill.ca/androgendb/ ). The database has allowed us to examine the contribution of CpG sites to the multiplicity of reports of the same mutation in different families. The database is also available from EMBL (ftp.ebi.ac.uk/pub/databases/androgen) or as a Macintosh Filemaker Pro or Word file (MC33@musica,mcgill.ca)

  16. Mapping of the human cone transducin {alpha} subunit (GNAT2) gene to 1p13 and mutation analysis in patients with Stargardt`s disease

    SciTech Connect

    Magovcevic, I.; Weremowicz, S.; Morton, C.C.

    1994-09-01

    Transducin {alpha} subunits are members of a large family of G-proteins and play an important role in phototransduction in rod and cone photoreceptors. We report the localization of the human cone {alpha} transducin (GNAT2) gene using fluorescence in situ hybridization (FISH) on chromosome 1 in band p13. The recent assignment of a gene for Stargardt`s disease to the same chromosomal region by linkage analysis prompted us to investigate the possible role of GNAT2 in the pathogenesis of this disease. Stargardt`s disease is characterized by degeneration in late childhood or early adulthood of the macula of the retina, a region rich in cones. We screened patients with Stargardt`s disease, with or without peripheral cone involvement as monitored by the full-field ERG, for mutations in this gene. We investigated 66 unrelated patients including 22 with peripheral cone dysfunction for mutations in the coding region of the GNAT2 gene using polymerase chain reaction-single strand conformation polymorphism analysis (SSCP) and direct sequencing. One patient (034-16) was heterozygous for a silent change in exon VI, Asp238Asp (GAT to GAC). Two patients, one (035-005) with peripheral cone involvement and one (071-001) without peripheral cone involvement, were heterozygous for the missense change Val124Met (GTG to ATG) in exon IV. A subsequent screen of 96 unrelated, unaffected controls revealed one individual (N10) who was also heterozygous for the Val124Met alteration. We concluded that Asp238Asp and Val124Met are rare variants not causing Stargardt`s disease. Hence, no disease-specific mutations were found indicating that GNAT2 is probably not involved in the pathogenesis of most cases of Stargardt`s disease.

  17. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.

    PubMed

    Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris

    2015-09-23

    In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. PMID:27135912

  18. From Gene Mutation to Protein Characterization

    ERIC Educational Resources Information Center

    Moffet, David A.

    2009-01-01

    A seven-week "gene to protein" laboratory sequence is described for an undergraduate biochemistry laboratory course. Student pairs were given the task of introducing a point mutation of their choosing into the well studied protein, enhanced green fluorescent protein (EGFP). After conducting literature searches, each student group chose the…

  19. Big Blue Transgenic Mouse lacl mutation analysis

    SciTech Connect

    Stiegler, G.L.; Stillwell, L.C. )

    1993-01-01

    In this report the authors describe a rapid general method for mutant blue plaque molecular analysis. The mutant analysis discussed here resulted from radon inhalation exposure. The described method circumvents Stratagene's plasmid isolation and ensuing sequence analysis of the entire lac1 gene. The authors have adapted the polymerase chain reaction (PCR) method and single-strand conformation polymorphism (SSCP) analysis for localizing mutations within the lac1 coding region. Three overlapping PCR products of approximately 450 bp representing the entire lac1 coding region are used for SSCP analysis. Those PCR products with an altered SSCP electrophoretic migration focus the mutation to a smaller region of the lac1 gene that is analyzed by direct cycle sequencing. 5 refs., 1 fig.

  20. Whole-exome Sequencing Analysis Identifies Mutations in the EYS Gene in Retinitis Pigmentosa in the Indian Population.

    PubMed

    Di, Yanan; Huang, Lulin; Sundaresan, Periasamy; Li, Shujin; Kim, Ramasamy; Ballav Saikia, Bibhuti; Qu, Chao; Zhu, Xiong; Zhou, Yu; Jiang, Zhilin; Zhang, Lin; Lin, Ying; Zhang, Dingding; Li, Yuanfen; Zhang, Houbin; Yin, Yibing; Lu, Fang; Zhu, Xianjun; Yang, Zhenglin

    2016-01-20

    Retinitis pigmentosa (RP) is a rare heterogeneous genetic retinal dystrophy disease, and despite years of research, known genetic mutations can explain only approximately 60% of RP cases. We sought to identify the underlying genetic mutations in a cohort of fourteen Indian autosomal recessive retinitis pigmentosa (arRP) families and 100 Indian sporadic RP cases. Whole-exome sequencing (WES) was performed on the probands of the arRP families and sporadic RP patients, and direct Sanger sequencing was used to confirm the causal mutations identified by WES. We found that the mutations of EYS are likely pathogenic mutations in two arRP families and eight sporadic patients. Specifically, we found a novel pair of compound heterozygous mutations and a novel homozygous mutation in two separate arRP families, and found two novel heterozygous mutations in two sporadic RP patients, whereas we found six novel homozygous mutations in six sporadic RP patients. Of these, one was a frameshift mutation, two were stop-gain mutations, one was a splicing mutation, and the others were missense mutations. In conclusion, our findings expand the spectrum of EYS mutations in RP in the Indian population and provide further support for the role of EYS in the pathogenesis and clinical diagnosis of RP.

  1. Frequent mutations in chromatin-remodeling genes in pulmonary carcinoids

    PubMed Central

    Lu, Xin; Sun, Ruping; Ozretić, Luka; Seidal, Danila; Zander, Thomas; Leenders, Frauke; George, Julie; Müller, Christian; Dahmen, Ilona; Pinther, Berit; Bosco, Graziella; Konrad, Kathryn; Altmüller, Janine; Nürnberg, Peter; Achter, Viktor; Lang, Ulrich; Schneider, Peter M; Bogus, Magdalena; Soltermann, Alex; Brustugun, Odd Terje; Helland, Åslaug; Solberg, Steinar; Lund-Iversen, Marius; Ansén, Sascha; Stoelben, Erich; Wright, Gavin M.; Russell, Prudence; Wainer, Zoe; Solomon, Benjamin; Field, John K; Hyde, Russell; Davies, Michael PA.; Heukamp, Lukas C; Petersen, Iver; Perner, Sven; Lovly, Christine; Cappuzzo, Federico; Travis, William D; Wolf, Jürgen; Vingron, Martin; Brambilla, Elisabeth; Haas, Stefan A.; Buettner, Reinhard; Thomas, Roman K

    2014-01-01

    Pulmonary carcinoids are rare neuroendocrine tumors of the lung. The molecular alterations underlying the pathogenesis of these tumors have not been systematically studied so far. Here we perform gene copy number analysis (n=54), genome/exome (n=44) and transcriptome (n=69) sequencing of pulmonary carcinoids and observe frequent mutations in chromatin-remodeling genes. Covalent histone modifiers and subunits of the SWI/SNF complex are mutated in 40% and 22.2% of the cases respectively, with MEN1, PSIP1 and ARID1A being recurrently affected. In contrast to small-cell lung cancer and large-cell neuroendocrine tumors, TP53 and RB1 mutations are rare events, suggesting that pulmonary carcinoids are not early progenitor lesions of the highly aggressive lung neuroendocrine tumors but arise through independent cellular mechanisms. These data also suggest that inactivation of chromatin remodeling genes is sufficient to drive transformation in pulmonary carcinoids. PMID:24670920

  2. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation.

    PubMed

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-12-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation.

  3. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation.

    PubMed

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-12-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. PMID:26417021

  4. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation

    PubMed Central

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-01-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant ‘Blondee’ (BLO) and its red-skin parent ‘Kidd’s D-8’ (KID), the original name of ‘Gala’, to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10–13) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. PMID:26417021

  5. Analysis of the pdx-1 (snz-1/sno-1) region of the Neurospora crassa genome: correlation of pyridoxine-requiring phenotypes with mutations in two structural genes.

    PubMed Central

    Bean, L E; Dvorachek, W H; Braun, E L; Errett, A; Saenz, G S; Giles, M D; Werner-Washburne, M; Nelson, M A; Natvig, D O

    2001-01-01

    We report the analysis of a 36-kbp region of the Neurospora crassa genome, which contains homologs of two closely linked stationary phase genes, SNZ1 and SNO1, from Saccharomyces cerevisiae. Homologs of SNZ1 encode extremely highly conserved proteins that have been implicated in pyridoxine (vitamin B6) metabolism in the filamentous fungi Cercospora nicotianae and in Aspergillus nidulans. In N. crassa, SNZ and SNO homologs map to the region occupied by pdx-1 (pyridoxine requiring), a gene that has been known for several decades, but which was not sequenced previously. In this study, pyridoxine-requiring mutants of N. crassa were found to possess mutations that disrupt conserved regions in either the SNZ or SNO homolog. Previously, nearly all of these mutants were classified as pdx-1. However, one mutant with a disrupted SNO homolog was at one time designated pdx-2. It now appears appropriate to reserve the pdx-1 designation for the N. crassa SNZ homolog and pdx-2 for the SNO homolog. We further report annotation of the entire 36,030-bp region, which contains at least 12 protein coding genes, supporting a previous conclusion of high gene densities (12,000-13,000 total genes) for N. crassa. Among genes in this region other than SNZ and SNO homologs, there was no evidence of shared function. Four of the genes in this region appear to have been lost from the S. cerevisiae lineage. PMID:11238395

  6. Analysis of the pdx-1 (snz-1/sno-1) region of the Neurospora crassa genome: correlation of pyridoxine-requiring phenotypes with mutations in two structural genes.

    PubMed

    Bean, L E; Dvorachek, W H; Braun, E L; Errett, A; Saenz, G S; Giles, M D; Werner-Washburne, M; Nelson, M A; Natvig, D O

    2001-03-01

    We report the analysis of a 36-kbp region of the Neurospora crassa genome, which contains homologs of two closely linked stationary phase genes, SNZ1 and SNO1, from Saccharomyces cerevisiae. Homologs of SNZ1 encode extremely highly conserved proteins that have been implicated in pyridoxine (vitamin B6) metabolism in the filamentous fungi Cercospora nicotianae and in Aspergillus nidulans. In N. crassa, SNZ and SNO homologs map to the region occupied by pdx-1 (pyridoxine requiring), a gene that has been known for several decades, but which was not sequenced previously. In this study, pyridoxine-requiring mutants of N. crassa were found to possess mutations that disrupt conserved regions in either the SNZ or SNO homolog. Previously, nearly all of these mutants were classified as pdx-1. However, one mutant with a disrupted SNO homolog was at one time designated pdx-2. It now appears appropriate to reserve the pdx-1 designation for the N. crassa SNZ homolog and pdx-2 for the SNO homolog. We further report annotation of the entire 36,030-bp region, which contains at least 12 protein coding genes, supporting a previous conclusion of high gene densities (12,000-13,000 total genes) for N. crassa. Among genes in this region other than SNZ and SNO homologs, there was no evidence of shared function. Four of the genes in this region appear to have been lost from the S. cerevisiae lineage.

  7. LEOPARD Syndrome: Clinical Features and Gene Mutations

    PubMed Central

    Martínez-Quintana, E.; Rodríguez-González, F.

    2012-01-01

    The RAS/MAPK pathway proteins with germline mutations in their respective genes are associated with some disorders such as Noonan, LEOPARD (LS), neurofibromatosis type 1, Costello and cardio-facio-cutaneous syndromes. LEOPARD is an acronym, mnemonic for the major manifestations of this disorder, characterized by multiple lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonic stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness. Though it is not included in the acronym, hypertrophic cardiomyopathy is the most frequent cardiac anomaly observed, representing a potentially life-threatening problem in these patients. PTPN11, RAF1 and BRAF are the genes known to be associated with LS, identifying molecular genetic testing of the 3 gene mutations in about 95% of affected individuals. PTPN11 mutations are the most frequently found. Eleven different missense PTPN11 mutations (Tyr279Cys/Ser, Ala461Thr, Gly464Ala, Thr468Met/Pro, Arg498Trp/Leu, Gln506Pro, and Gln510Glu/Pro) have been reported so far in LS, 2 of which (Tyr279Cys and Thr468Met) occur in about 65% of the cases. Here, we provide an overview of clinical aspects of this disorder, the molecular mechanisms underlying pathogenesis and major genotype-phenotype correlations. PMID:23239957

  8. Mutated Genes in Schizophrenia Map to Brain Networks

    MedlinePlus

    ... 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the prefrontal cortex area of the brain. ... of spontaneous mutations in genes that form a network in the front region of the brain. The ...

  9. Molecular analysis of Hurler syndrome in Druze and Muslim Arab patients in Israel: Multiple allelic mutations of the IDUA gene in a small geographic area

    SciTech Connect

    Bach, G. ); Moskowitz, S.M.; Tieu, P.T.; Matynia, A.; Neufeld, E.F. )

    1993-08-01

    The mutations underlying Hurler syndrome (mucopolysaccharidosis IH) in Druze and Muslim Israeli Arab patients have been characterized. Four alleles were identified, using a combination of (a) PCR amplification of reverse-transcribed RNA or genomic DNA segments, (b) cycle sequencing of PCR products, and (c) restriction-enzyme analysis. One allele has two amino acid substitutions, Gly[sub 409][yields]Arg in exon 9 and Ter[yields]Cys in exon 14. The other three alleles have mutations in exon 2 (Tyr[sub 64][yields]Ter), exon 7 (Gln[sub 310][yields]Ter), or exon 8 (Thr[sub 366][yields]Pro). Transfection of mutagenized cDNAs into Cos-1 cells showed that two missense mutations, Thr[sub 366][yields]Pro and Ter[yields]Cys, permitted the expression of only trace amounts of [alpha]-L-iduronidase activity, whereas Gly[sub 409][yields]Arg permitted the expression of 60% as much enzyme as did the normal cDNA. The nonsense mutations were associated with abnormalities of RNA processing: (1) both a very low level of mRNA and skipping of exon 2 for Tyr[sub 64][yields]Ter and (2) utilization of a cryptic splice site for Gln[sub 310][yields]Ter. In all instances, the probands were found homozygous, and the parents heterozygous, for the mutant alleles, as anticipated from the consanguinity in each family. The two-mutation allele was identified in a family from Gaza; the other three alleles were found in seven families, five of them Druze, residing in a very small area of northern Israel. Since such clustering suggests a classic founder effect, the presence of three mutant alleles of the IDUA gene was unexpected. 28 refs., 4 figs., 3 tabs.

  10. Mutational analysis of the breast cancer susceptibility gene BRIP1 /BACH1/FANCJ in high-risk non-BRCA1/BRCA2 breast cancer families.

    PubMed

    Guénard, Frédéric; Labrie, Yvan; Ouellette, Geneviève; Joly Beauparlant, Charles; Simard, Jacques; Durocher, Francine

    2008-01-01

    The BRIP1 gene encodes a helicase interacting with BRCA1, which contributes to BRCA1-associated DNA repair function. Germ-line BRIP1 mutations affecting the helicase domain activity have been identified in early onset breast cancer patients. In addition, BRIP1 was recently identified as deficient in Fanconi anemia (FA) complementation group J. Given the growing evidence now linking BRCA1, BRCA2, and the FA pathway, as well as the involvement of FA proteins (BRCA2/FANCD1 and PALB2/FANCN) in breast cancer susceptibility, we sought to evaluate the contribution of FANCJ gene alterations regarding breast cancer susceptibility among our cohort of 96 breast cancer individuals from high-risk non-BRCA1/2 French Canadian families. No deleterious mutation, exon deletion, or retention of intronic portions could be identified. However, extensive analysis of the promoter and whole exonic and flanking intronic regions of FANCJ led to the identification of 42 variants, including 22 novel variants not previously reported, four of which were located in the promoter region. Transcription factors analysis revealed a potential involvement of FANCJ promoter variants in regulation of FANCJ expression, and reporter gene assays were performed. The allelic frequency was assessed in a cohort of 73 unaffected French Canadian individuals, and haplotype analysis and tagging single nucleotide polymorphism (SNP) identification were also performed. Although our study unlikely involves FANCJ as a high-risk predisposition gene in non-BRCA1/2 high-risk French Canadian families, the possible association of FANCJ missense variants with phenotypes associated with FA, such as childhood cancer, cannot be excluded.

  11. DNA sequence and mutational analysis of genes involved in the production and resistance of the antibiotic peptide trifolitoxin.

    PubMed Central

    Breil, B T; Ludden, P W; Triplett, E W

    1993-01-01

    The 7.1-kb fragment of Rhizobium leguminosarum bv. trifolii T24 DNA which confers trifolitoxin production and resistance to nonproducing, sensitive Rhizobium strains (E. W. Triplett, M. J. Schink, and K. L. Noeldner, Mol. Plant-Microbe Interact. 2:202-208, 1989) was subcloned, sequenced, and mutagenized with a transcriptional fusion cassette. The sequence of this fragment revealed seven complete open reading frames, tfxABCDEFG, all transcribed in the same direction. TfxA has an 11-amino-acid carboxy terminus identical to the known amino acid sequence of the trifolitoxin backbone, DIGGSRXGCVA, where X is an UV-absorbing chromophore. This is evidence that trifolitoxin is synthesized ribosomally as a prepeptide that is posttranslationally modified to yield the active peptide. TfxB shows 27.6% identity with McbC, a protein required for the production of the ribosomally synthesized antibiotic microcin B17. Tn3GUS transcriptional fusion insertions in tfxA, tfxB, tfxD, or tfxF caused a nonproducing, trifolitoxin-resistant phenotype and confirmed the direction of transcription of these frames. No insertion mutations were found in tfxE or tfxG. Sequence analysis along with insertion and deletion mutation analysis suggest that (i) trifolitoxin is synthesized ribosomally from tfxA; (ii) tfxA, tfxE, and tfxG have their own promoters; (iii) TfxG is required for immunity; (iv) TfxB, TfxD, and TfxF are required for trifolitoxin production; and (v) the UV-absorbing chromophore is derived from glutamine. PMID:8509324

  12. SEQUENCE ANALYSIS OF MUTATIONS INDUCED BY N-ETHYL-N-NITROSOUREA IN THE TK AND HPRT GENES OF MOUSE LYMPHOMA CELLS.

    EPA Science Inventory

    The mouse lymphoma assay is widely used to identify chemicals that are capable of inducing mutational damages. The Tk+/- gene located on an autosome in mouse lymphoma cells may recover a wider range of mutational events than the X-linked Hprt locus. However, chemical-induced muta...

  13. Developmental expression analysis of the mouse and chick orthologues of IRF6: the gene mutated in Van der Woude syndrome.

    PubMed

    Knight, Alexandra S; Schutte, Brian C; Jiang, Rulang; Dixon, Michael J

    2006-05-01

    Development of the lip and palate involves a complex series of events that are frequently disturbed resulting in the congenital anomalies cleft lip and cleft palate. Van der Woude syndrome (VWS) is an autosomal dominant disorder that is characterised by cleft lip, cleft palate, lower lip pits, and hypodontia. VWS arises as the result of mutations in the gene encoding interferon regulatory factor 6 (IRF6). To provide insights into the role of IRF6 during embryogenesis, we have analysed the expression of this molecule during mouse and chick facial development. Irf6 was expressed in the ectoderm covering the facial processes during their fusion to form the upper lip and primary palate in both mouse and chick. However, while Irf6 was expressed in the medial edge epithelia of the developing secondary palate of the mouse, which fuses as in man, Irf6 was not expressed in the medial edge epithelia of the naturally cleft chick secondary palate. Similarly, Irf6 was found to be down-regulated in the medial edge epithelia of transforming growth factor beta3-null mice, which also exhibit cleft palate. Together, these results support a role for IRF6 during the fusion events that occur during development of the lip and palate. PMID:16245336

  14. The Androgen Receptor Gene Mutations Database.

    PubMed

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  15. Mutational analysis of CHRNB2, CHRNA2 and CHRNA4 genes in Chinese population with autosomal dominant nocturnal frontal lobe epilepsy

    PubMed Central

    Chen, Zhihong; Wang, Lingan; Wang, Chun; Chen, Qian; Zhai, Qiongxiang; Guo, Yuxiong; Zhang, Yuxin

    2015-01-01

    Objective: The present study aims to investigate the gene mutations of CHRNB2, CHRNA2 and CHRNA4 in Chinese population with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Methods: 257 ADNFLE patients (74 sporadic and 32 familial) were collected, including 42 pedigree patients and 215 sporadic cases. Exon mutational screening of CHRNB2, CHRNA2 and CHRNA4 was performed by direct PCR sequencing. Results: No published mutations of CHRNB2, CHRNA4 and CHRNA2 genes were detected in this study. Three kinds of c.SNP (c.66C> T, c.249C> T, c.375A> G) were detected on the 2nd and 5th exons of CHRNA2; six kinds of c.SNP (c.639T> C, c.678T> C, c.1209G> T, c.1227T> C, c.1659G> A, c.1629C> T) were detected on the 5th exon of CHRNA4. Three novel mutations were discovered, respectively locating on the exon 5 of CHRNA4 gene (c.570C> T), 5th and 6th exons of CHRNB2 gene (c.483C> T and c.1407C> G). The three mutations were absent in 200 healthy controls, indicating that the mutations were very rare. Conclusion: CHRNA4, CHRNB2 and CHRNA2 may be not the causative genes of Chinese ADNFLE population. Whether the three novel synonymous mutations were genetic factors of ADNFLE pathogenesis in Chinese Han population needs to be further studied. PMID:26309560

  16. Exclusion of growth hormone (GH)-releasing hormone gene mutations in familial isolated GH deficiency by linkage and single strand conformation analysis

    SciTech Connect

    Perez Jurado, L.A.; Francke, U.; Phillips, J.A. III

    1994-03-01

    The molecular basis and the locus responsible for most familial cases of isolated GH deficiency (IGHD) are still unknown. The GH-releasing hormone (GHRH) gene has been evaluated as a possible candidate in 23 unrelated families with IGHD, 14 of whom were classified as having autosomal recessive IGHD type IB and 9 of whom had autosomal dominant IGHD type II. Three highly polymorphic microsatellites (dinucleotide repeats), mapped close to GHRH on chromosome 20 by previous linkage studies, were analyzed as markers for the GHRH locus. All available family members were genotyped for D20S44 [no recombination with GHRH at a LOD (logarithm of the odds) score of 3.6]. Noninformative families were also genotyped for D20S45 and/or D20S54 (located at {approximately} 1 and 3 centiMorgan of genetic distance from GHRH, respectively). Twenty families were informative for linkage analysis with 1 or more of these markers. They found at least 1 obligate recombinant with discordance between phenotype and genotype in 19 of the 23 families (83%). There is only a very small chance (1-3% or less) that the discordances observed are due to recombination between the GHRH locus and the marker tested. Concordant segregation was seen in only 1 type IB family (4%). When probands from this and the 3 noninformative families were screened for sequence variants in the 5 exons of the GHRH gene by single strand conformation analysis, no abnormal patterns were observed. They conclude that mutations responsible for IGHD are not within or near the structural gene for GHRH on chromosome 20 in the 23 families studied. As linkage to the GH-1 gene has also been previously excluded in 65% of these families, mutations in a locus or loci unlinked to GH-1 and GHRH must be responsible for the majority of these IGHD families. 31 refs., 4 figs., 1 tab.

  17. Mutations in the circadian gene CLOCK in colorectal cancer.

    PubMed

    Alhopuro, Pia; Björklund, Mikael; Sammalkorpi, Heli; Turunen, Mikko; Tuupanen, Sari; Biström, Mia; Niittymäki, Iina; Lehtonen, Heli J; Kivioja, Teemu; Launonen, Virpi; Saharinen, Juha; Nousiainen, Kari; Hautaniemi, Sampsa; Nuorva, Kyösti; Mecklin, Jukka-Pekka; Järvinen, Heikki; Orntoft, Torben; Arango, Diego; Lehtonen, Rainer; Karhu, Auli; Taipale, Jussi; Aaltonen, Lauri A

    2010-07-01

    The circadian clock regulates daily variations in physiologic processes. CLOCK acts as a regulator in the circadian apparatus controlling the expression of other clock genes, including PER1. Clock genes have been implicated in cancer-related functions; in this work, we investigated CLOCK as a possible target of somatic mutations in microsatellite unstable colorectal cancers. Combining microarray gene expression data and public gene sequence information, we identified CLOCK as 1 of 790 putative novel microsatellite instability (MSI) target genes. A total of 101 MSI colorectal carcinomas (CRC) were sequenced for a coding microsatellite in CLOCK. The effect of restoring CLOCK expression was studied in LS180 cells lacking wild-type CLOCK by stably expressing GST-CLOCK or glutathione S-transferase empty vector and testing the effects of UV-induced apoptosis and radiation by DNA content analysis using flow cytometry. Putative novel CLOCK target genes were searched by using ChIP-seq. CLOCK mutations occurred in 53% of MSI CRCs. Restoring CLOCK expression in cells with biallelic CLOCK inactivation resulted in protection against UV-induced apoptosis and decreased G(2)-M arrest in response to ionizing radiation. Using ChIP-Seq, novel CLOCK-binding elements were identified near DNA damage genes p21, NBR1, BRCA1, and RAD50. CLOCK is shown to be mutated in cancer, and altered response to DNA damage provides one plausible mechanism of tumorigenesis.

  18. T-STAR gene: fine mapping in the candidate region for childhood absence epilepsy on 8q24 and mutational analysis in patients.

    PubMed

    Sugimoto, Y; Morita, R; Amano, K; Shah, P U; Pascual-Castroviejo, I; Khan, S; Delgado-Escueta, A V; Yamakawa, K

    2001-08-01

    Childhood absence epilepsy (CAE) is one of the most common epilepsies in children. At least four phenotypic subcategories of CAE have been proposed. Among them, a subtype persisting with tonic-clonic seizures has been mapped to 8q24 (ECA1 MIM 600131). By constructing a physical map for the 8q24 region, we recently narrowed the ECA1 locus to a 1.5-Mb region. In the present communication, we show that T-STAR gene is located within the ECA1 region. T-STAR is a novel member of STAR (for signal transduction and activation of RNA) family, and is predicted to encode a spermatogenesis related RNA-binding protein. T-STAR is located within the markers D8S2049 and D8S1753 and its complete coding region spans nine exons. In addition to its known expression in testis, moderate level of transcripts for T-STAR gene was detected in brain, heart and is highly abundant in skeletal muscle. Mutational analysis for the T-SATR gene in CAE families did not show any sequence variation in the coding region, and this suggests that the T-STAR gene is not involved in the pathogenesis of persisting CAE. However, genomic organization of T-STAR gene characterized in the present report might help in understanding the biological functions of T-STAR as well as its suspected involvement in other disorders mapped on this region.

  19. Mutational analysis of the mitochondrial 12S rRNA and tRNA{sup Ser(UCN)} genes in Tunisian patients with nonsyndromic hearing loss

    SciTech Connect

    Mkaouar-Rebai, Emna . E-mail: emna_mkaouar@mail2world.com; Tlili, Abdelaziz; Masmoudi, Saber; Louhichi, Nacim; Charfeddine, Ilhem; Amor, Mohamed Ben; Lahmar, Imed; Driss, Nabil; Drira, Mohamed; Ayadi, Hammadi; Fakhfakh, Faiza

    2006-02-24

    We explored the mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes in 100 Tunisian families affected with NSHL and in 100 control individuals. We identified the mitochondrial A1555G mutation in one out of these 100 families and not in the 100 control individuals. Members of this family harbouring the A1555G mutation showed phenotypic heterogeneity which could be explained by an eventual nuclear-mitochondrial interaction. So, we have screened three nuclear genes: GJB2, GJB3, and GJB6 but we have not found correlation between the phenotypic heterogeneity and variants detected in these genes. We explored also the entire mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes. We detected five novel polymorphisms: T742C, T794A, A813G, C868T, and C954T, and 12 known polymorphisms in the mitochondrial 12S rRNA gene. None of the 100 families or the 100 controls were found to carry mutations in the tRNA{sup Ser(UCN)} gene. We report here First mutational screening of the mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes in the Tunisian population which describes the second family harbouring the A1555G mutation in Africa and reveals novel polymorphisms in the mitochondrial 12S rRNA gene.

  20. Screening of sarcomere gene mutations in young athletes with abnormal findings in electrocardiography: identification of a MYH7 mutation and MYBPC3 mutations.

    PubMed

    Kadota, Chika; Arimura, Takuro; Hayashi, Takeharu; Naruse, Taeko K; Kawai, Sachio; Kimura, Akinori

    2015-10-01

    There is an overlap between the physiological cardiac remodeling associated with training in athletes, the so-called athlete's heart, and mild forms of hypertrophic cardiomyopathy (HCM), the most common hereditary cardiac disease. HCM is often accompanied by unfavorable outcomes including a sudden cardiac death in the adolescents. Because one of the initial signs of HCM is abnormality in electrocardiogram (ECG), athletes may need to monitor for ECG findings to prevent any unfavorable outcomes. HCM is caused by mutations in genes for sarcomere proteins, but there is no report on the systematic screening of gene mutations in athletes. One hundred and two genetically unrelated young Japanese athletes with abnormal ECG findings were the subjects for the analysis of four sarcomere genes, MYH7, MYBPC3, TNNT2 and TNNI3. We found that 5 out of 102 (4.9%) athletes carried mutations: a heterozygous MYH7 Glu935Lys mutation, a heterozygous MYBPC3 Arg160Trp mutation and another heterozygous MYBPC3 Thr1046Met mutation, all of which had been reported as HCM-associated mutations, in 1, 2 and 2 subjects, respectively. This is the first study of systematic screening of sarcomere gene mutations in a cohort of athletes with abnormal ECG, demonstrating the presence of sarcomere gene mutations in the athlete's heart.

  1. Computational analysis of the mutations in BAP1, PBRM1 and SETD2 genes reveals the impaired molecular processes in renal cell carcinoma

    PubMed Central

    Occhipinti, Giulia; Santoni, Matteo; Massari, Francesco; Sotte, Valeria; Iacovelli, Roberto; Burattini, Luciano; Santini, Daniele; Montironi, Rodolfo; Cascinu, Stefano; Principato, Giovanni

    2015-01-01

    Clear cell Renal Cell Carcinoma (ccRCC) is due to loss of von Hippel–Lindau (VHL) gene and at least one out of three chromatin regulating genes BRCA1-associated protein-1 (BAP1), Polybromo-1 (PBRM1) and Set domain-containing 2 (SETD2). More than 350, 700 and 500 mutations are known respectively for BAP1, PBRM1 and SETD2 genes. Each variation damages these genes with different severity levels. Unfortunately for most of these mutations the molecular effect is unknown, so precluding a severity classification. Moreover, the huge number of these gene mutations does not allow to perform experimental assays for each of them. By bioinformatic tools, we performed predictions of the molecular effects of all mutations lying in BAP1, PBRM1 and SETD2 genes. Our results allow to distinguish whether a mutation alters protein function directly or by splicing pattern destruction and how much severely. This classification could be useful to reveal correlation with patients’ outcome, to guide experiments, to select the variations that are worth to be included in translational/association studies, and to direct gene therapies. PMID:26452128

  2. Mutational analysis of ABCC8, KCNJ11, GLUD1, HNF4A and GCK genes in 30 Chinese patients with congenital hyperinsulinism.

    PubMed

    Sang, Yanmei; Xu, Zidi; Liu, Min; Yan, Jie; Wu, Yujun; Zhu, Cheng; Ni, Guichen

    2014-01-01

    We conducted a cohort study to elucidate the molecular spectrum of congenital hyperinsulinism (CHI) in Chinese pediatric patients. Thirty Chinese children with CHI were chosen as research subjects, 16 of whom were responsive to diazoxide and 13 of whom were not (1 patient was not given the drug for medical reasons). All exons of the adenosine triphosphate (ATP)-sensitive potassium channel (KATP channel) genes KCNJ11 and ABCC8, the hepatocyte nuclear factor 4 α (HNF4A) gene, and the Glucokinase (GCK) gene as well as exons 6 and 7 and 10-12 of the glutamate dehydrogenase 1 (GLUD1) gene were amplified from genomic DNA and directly sequenced. Mutations were identified in 14 of 30 patients (47%): 3 in GLUD1 (10%) and 11 in the KATP channel genes (37%). Six patients had paternally derived monoallelic KATP channel mutations predictive of the focal CHI form. We found a novel de novo ABCC8 mutation, p. C1000*, a novel paternally inherited ABCC8 mutation, D1505H, and a dominantly inherited ABCC8 mutation, R1217K. The GLUD1 activating mutation R269H was found in 2 patients: 1 de novo and the other paternally inherited. A de novo S445L mutation was found in 1 patient. No significant HNF4A or GCK mutations were found. CHI has complex genetic onset mechanisms. Paternally inherited monoallelic mutations of ABCC8 and KCNJ11 are likely the main causes of KATP-CHI in Chinese patients. Glutamate dehydrogenase-CHI is the second most common cause of CHI, while HNF4A and GCK are rare types of CHI in Chinese patients.

  3. Functional analysis of splicing mutations in the IDS gene and the use of antisense oligonucleotides to exploit an alternative therapy for MPS II.

    PubMed

    Matos, Liliana; Gonçalves, Vânia; Pinto, Eugénia; Laranjeira, Francisco; Prata, Maria João; Jordan, Peter; Desviat, Lourdes R; Pérez, Belén; Alves, Sandra

    2015-12-01

    Mucopolysaccharidosis II is a lysosomal storage disorder caused by mutations in the IDS gene, including exonic alterations associated with aberrant splicing. In the present work, cell-based splicing assays were performed to study the effects of two splicing mutations in exon 3 of IDS, i.e., c.241C>T and c.257C>T, whose presence activates a cryptic splice site in exon 3 and one in exon 8, i.e., c.1122C>T that despite being a synonymous mutation is responsible for the creation of a new splice site in exon 8 leading to a transcript shorter than usual. Mutant minigene analysis and overexpression assays revealed that SRSF2 and hnRNP E1 might be involved in the use and repression of the constitutive 3' splice site of exon 3 respectively. For the c.1122C>T the use of antisense therapy to correct the splicing defect was explored, but transfection of patient fibroblasts with antisense morpholino oligonucleotides (n=3) and a locked nucleic acid failed to abolish the abnormal transcript; indeed, it resulted in the appearance of yet another aberrant splicing product. Interestingly, the oligonucleotides transfection in control fibroblasts led to the appearance of the aberrant transcript observed in patients' cells after treatment, which shows that the oligonucleotides are masking an important cis-acting element for 5' splice site regulation of exon 8. These results highlight the importance of functional studies for understanding the pathogenic consequences of mis-splicing and highlight the difficulty in developing antisense therapies involving gene regions under complex splicing regulation.

  4. Immunohistochemical analysis of the skin in junctional epidermolysis bullosa using laminin 5 chain specific antibodies is of limited value in predicting the underlying gene mutation.

    PubMed

    McMillan, J R; McGrath, J A; Pulkkinen, L; Kon, A; Burgeson, R E; Ortonne, J P; Meneguzzi, G; Uitto, J; Eady, R A

    1997-06-01

    The anchoring filament protein laminin 5 is composed of three polypeptide chains (alpha 3, beta 3 and gamma 2) each encoded by separate genes (LAMA3, LAMB3 and LAMC2, respectively). Mutations in any of these three genes may give rise to the autosomal recessive blistering skin disease, junctional epidermolysis bullosa. At present, there is no easy way of predicting which of these three genes might harbour the pathogenetic laminin 5 mutations in a case of junctional epidermolysis bullosa. In this study, we assessed whether immunohistochemistry might be helpful in this regard. We performed immunohistochemical labelling of the dermal-epidermal junction using alpha 3, beta 3 and gamma 2 chain-specific antibodies in 11 patients with junctional epidermolysis bullosa, in whom the laminin 5 mutations had been previously delineated. Although, labelling for the laminin 5 chain bearing the mutations was attenuated or undetectable in all cases, a complete absence of labelling or a reduction in the staining intensity for the other two chains was also seen in all cases. The results showed that immunohistochemical labelling of the dermal-epidermal junction using alpha 3, beta 3 and gamma 2 chain-specific antibodies is not a specific indicator for which of the laminin 5 chain genes contains the pathogenetic mutations, and is therefore unreliable in screening for individual laminin 5 gene mutations in cases of junctional epidermolysis bullosa. PMID:9217810

  5. Analysis of a splice-site mutation in the sap-precursor gene of a patient with metachromatic leukodystrophy.

    PubMed Central

    Henseler, M.; Klein, A.; Reber, M.; Vanier, M. T.; Landrieu, P.; Sandhoff, K.

    1996-01-01

    Sphingolipid activator proteins (SAPs) are small, nonenzymatic glycoproteins required for the lysosomal degradation of various sphingolipids with a short oligosaccharide chain by their exohydrolases. Four of the five known activator proteins (sap-A-sap-D), also called "saposins," are derived from a common precursor by proteolytic processing. sap-B stimulates hydrolysis of sulfatides by arylsulfatase A in vivo. Its recessively inherited deficiency results in a metabolic disorder similar to classical metachromatic leukodystrophy, which is caused by a defect of arylsulfatase A. Here we report on a patient with sap-B deficiency. Reverse-transcription-PCR studies on the patient's mRNA revealed the occurrence of two distinct mutant species: one with an in-frame deletion of the first 21 bases of exon 6, the other with a complete in-frame deletion of this exon. The patient was homozygous for the underlying mutation, which was found to be a G-->T transversion within the acceptor splice site between intron e and exon 6, abolishing normal RNA splicing. Allele-specific oligonucleotide hybridization revealed that the parents and both grandfathers of the patient were carriers of this mutation. In order to analyze the fate of the mutant precursor proteins, both abnormal cDNAs were stably expressed in baby hamster kidney cells. Pulse-chase experiments showed that the deletion of 21 bp had no effect on the transport and the maturation of the encoded precursor. All sap forms except sap-B were detectable by immunochemical methods. The cDNA bearing a complete deletion of exon 6 encoded a shortened precursor of only 60 kD, and no mature SAPs were detectable. The carbohydrate chains of this polypeptide were of the high-mannose and hybrid type, indicating no transport of the mutant precursor beyond early Golgi apparatus. An endoplasmic-reticulum localization of this polypeptide was supported by indirect immunofluorescence analysis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

  6. Novel recurrently mutated genes in African American colon cancers

    PubMed Central

    Guda, Kishore; Veigl, Martina L.; Varadan, Vinay; Nosrati, Arman; Ravi, Lakshmeswari; Lutterbaugh, James; Beard, Lydia; Willson, James K. V.; Sedwick, W. David; Wang, Zhenghe John; Molyneaux, Neil; Miron, Alexander; Adams, Mark D.; Elston, Robert C.; Markowitz, Sanford D.; Willis, Joseph E.

    2015-01-01

    We used whole-exome and targeted sequencing to characterize somatic mutations in 103 colorectal cancers (CRC) from African Americans, identifying 20 new genes as significantly mutated in CRC. Resequencing 129 Caucasian derived CRCs confirmed a 15-gene set as a preferential target for mutations in African American CRCs. Two predominant genes, ephrin type A receptor 6 (EPHA6) and folliculin (FLCN), with mutations exclusive to African American CRCs, are by genetic and biological criteria highly likely African American CRC driver genes. These previously unsuspected differences in the mutational landscapes of CRCs arising among individuals of different ethnicities have potential to impact on broader disparities in cancer behaviors. PMID:25583493

  7. Novel recurrently mutated genes in African American colon cancers.

    PubMed

    Guda, Kishore; Veigl, Martina L; Varadan, Vinay; Nosrati, Arman; Ravi, Lakshmeswari; Lutterbaugh, James; Beard, Lydia; Willson, James K V; Sedwick, W David; Wang, Zhenghe John; Molyneaux, Neil; Miron, Alexander; Adams, Mark D; Elston, Robert C; Markowitz, Sanford D; Willis, Joseph E

    2015-01-27

    We used whole-exome and targeted sequencing to characterize somatic mutations in 103 colorectal cancers (CRC) from African Americans, identifying 20 new genes as significantly mutated in CRC. Resequencing 129 Caucasian derived CRCs confirmed a 15-gene set as a preferential target for mutations in African American CRCs. Two predominant genes, ephrin type A receptor 6 (EPHA6) and folliculin (FLCN), with mutations exclusive to African American CRCs, are by genetic and biological criteria highly likely African American CRC driver genes. These previously unsuspected differences in the mutational landscapes of CRCs arising among individuals of different ethnicities have potential to impact on broader disparities in cancer behaviors. PMID:25583493

  8. Comparative analysis of drug resistance mutations in the human immunodeficiency virus reverse transcriptase gene in patients who are non-responsive, responsive and naive to antiretroviral therapy.

    PubMed

    Misbah, Mohammad; Roy, Gaurav; Shahid, Mudassar; Nag, Nalin; Kumar, Suresh; Husain, Mohammad

    2016-05-01

    Drug resistance mutations in the Pol gene of human immunodeficiency virus 1 (HIV-1) are one of the critical factors associated with antiretroviral therapy (ART) failure in HIV-1 patients. The issue of resistance to reverse transcriptase inhibitors (RTIs) in HIV infection has not been adequately addressed in the Indian subcontinent. We compared HIV-1 reverse transcriptase (RT) gene sequences to identify mutations present in HIV-1 patients who were ART non-responders, ART responders and drug naive. Genotypic drug resistance testing was performed by sequencing a 655-bp region of the RT gene from 102 HIV-1 patients, consisting of 30 ART-non-responding, 35 ART-responding and 37 drug-naive patients. The Stanford HIV Resistance Database (HIVDBv 6.2), IAS-USA mutation list, ANRS_09/2012 algorithm, and Rega v8.02 algorithm were used to interpret the pattern of drug resistance. The majority of the sequences (96 %) belonged to subtype C, and a few of them (3.9 %) to subtype A1. The frequency of drug resistance mutations observed in ART-non-responding, ART-responding and drug-naive patients was 40.1 %, 10.7 % and 20.58 %, respectively. It was observed that in non-responders, multiple mutations were present in the same patient, while in responders, a single mutation was found. Some of the drug-naive patients had more than one mutation. Thymidine analogue mutations (TAMs), however, were found in non-responders and naive patients but not in responders. Although drug resistance mutations were widely distributed among ART non-responders, the presence of resistance mutations in the viruses of drug-naive patients poses a big concern in the absence of a genotyping resistance test. PMID:26801790

  9. Functional analysis of a promoter variant identified in the CFTR gene in cis of a frameshift mutation.

    PubMed

    Viart, Victoria; Des Georges, Marie; Claustres, Mireille; Taulan, Magali

    2012-02-01

    In monogenic diseases, the presence of several sequence variations in the same allele may complicate our understanding of genotype-phenotype relationships. We described new alterations identified in a cystic fibrosis (CF) patient harboring a 48C>G promoter sequence variation associated in cis of a 3532AC>GTA mutation and in trans with the F508del mutation. Functional analyses including in vitro experiments confirmed the deleterious effect of the 3532GTA frameshift mutation through the creation of a premature termination codon. The analyses also revealed that the 48G promoter variant has a negative effect on both transcription and mRNA level, thus demonstrating the importance of analyzing all mutations or sequence variations with potential impact on CF transmembrane conductance regulator processing, even when the two known disease-causing mutations have already been detected. Our results emphasize the need to perform, wherever possible, functional studies that may greatly assist the interpretation of the disease-causing potential of rare mutation-associated sequence variations.

  10. Molecular genetic analysis in mild hyperhomocysteinemia: A common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease

    SciTech Connect

    Kluijtmans, L.A.J.; Heuvel, L.P.W.J. van den; Stevens, E.M.B.

    1996-01-01

    Mild hyperhomocysteinemia is an established risk factor for cardiovascular disease. Genetic aberrations in the cystathionine P-synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) genes may account for reduced enzyme activities and elevated plasma homocysteine levels. In 15 unrelated Dutch patients with homozygous CBS deficiency, we observed the 833T{yields}C (1278T) mutation in 50% of the alleles. Very recently, we identified a common mutation (677C{yields}T; A{yields}V) in the MTHFR gene, which, in homozygous state, is responsible for the thermolabile phenotype and which is associated with decreased specific MTHFR activity and elevated homocysteine levels. We screened 60 cardiovascular patients and 111 controls for these two mutations, to determine whether these mutations are risk factors for premature cardiovascular disease. Heterozygosity for the 833T{yields}C mutation in the CBS gene was observed in one individual of the control group but was absent in patients with premature cardiovascular disease. Homozygosity for the 677C-{yields}T mutation in the MTHFR gene was found in 9 (15%) of 60 cardiovascular patients and in only 6 ({approximately}5%) of 111 control individuals (odds ratio 3.1 [95% confidence interval 1.0-9.21]). Because of both the high prevalence of the 833T-{yields}C mutation among homozygotes for CBS deficiency and its absence in 60 cardiovascular patients, we may conclude that heterozygosity for CBS deficiency does not appear to be involved in premature cardiovascular disease. However, a frequent homozygous mutation in the MTHFR gene is associated with a threefold increase in risk for premature cardiovascular disease. 35 refs., 3 figs., 1 tab.

  11. PDCD10 Gene Mutations in Multiple Cerebral Cavernous Malformations

    PubMed Central

    Cigoli, Maria Sole; Avemaria, Francesca; De Benedetti, Stefano; Gesu, Giovanni P.; Accorsi, Lucio Giordano; Parmigiani, Stefano; Corona, Maria Franca; Capra, Valeria; Mosca, Andrea; Giovannini, Simona; Notturno, Francesca; Ciccocioppo, Fausta; Volpi, Lilia; Estienne, Margherita; De Michele, Giuseppe; Antenora, Antonella; Bilo, Leda; Tavoni, Antonietta; Zamponi, Nelia; Alfei, Enrico; Baranello, Giovanni; Riva, Daria; Penco, Silvana

    2014-01-01

    Cerebral cavernous malformations (CCMs) are vascular abnormalities that may cause seizures, intracerebral haemorrhages, and focal neurological deficits. Familial form shows an autosomal dominant pattern of inheritance with incomplete penetrance and variable clinical expression. Three genes have been identified causing familial CCM: KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3. Aim of this study is to report additional PDCD10/CCM3 families poorly described so far which account for 10-15% of hereditary cerebral cavernous malformations. Our group investigated 87 consecutive Italian affected individuals (i.e. positive Magnetic Resonance Imaging) with multiple/familial CCM through direct sequencing and Multiplex Ligation-Dependent Probe Amplification (MLPA) analysis. We identified mutations in over 97.7% of cases, and PDCD10/CCM3 accounts for 13.1%. PDCD10/CCM3 molecular screening revealed four already known mutations and four novel ones. The mutated patients show an earlier onset of clinical manifestations as compared to CCM1/CCM2 mutated patients. The study of further families carrying mutations in PDCD10/CCM3 may help define a possible correlation between genotype and phenotype; an accurate clinical follow up of the subjects would help define more precisely whether mutations in PDCD10/CCM3 lead to a characteristic phenotype. PMID:25354366

  12. Micropenis and the 5alpha-reductase-2 (SRD5A2) gene: mutation and V89L polymorphism analysis in 81 Japanese patients.

    PubMed

    Sasaki, Goro; Ogata, Tsutomu; Ishii, Tomohiro; Kosaki, Kenjiro; Sato, Seiji; Homma, Keiko; Takahashi, Takao; Hasegawa, Tomonobu; Matsuo, Nobutake

    2003-07-01

    The 5alpha-reductase-2 encoded by the SRD5A2 gene plays a critical role in male sex differentiation by converting testosterone into 5alpha dihydrotestosterone in the peripheral target tissues. In this study, we examined the SRD5A2 gene in 81 Japanese patients with micropenis (age, 0-14 yr; median, 7 yr) whose stretched penile lengths were between -2.5 SD and -2.0 SD in 39 patients (age, 0-13 yr; median, 8 yr) and below -2.5 SD in 42 patients (age, 0-14 yr; median, 6 yr), together with 100 control males (50 boys and 50 fertile adult males). Mutation analysis was performed for exons 1-5 and their flanking introns by denaturing HPLC and direct sequencing, revealing Y26X/R227Q in an 11-yr-old boy with a penile length of -2.6 SD, G34R/R227Q in a 9-yr-old boy with a penile length of -3.6 SD, and R227Q/R227Q in a 3-yr-old boy with a penile length of -2.4 SD, together with heterozygous R227Q in a control boy and a fertile adult male. Polymorphism analysis was carried out for the most frequent V89L known to reduce the enzyme activity by approximately 30% in 78 patients, except for the three patients with SRD5A2 mutations, and in the 100 control males by direct sequencing, showing that allele and genotype frequencies were similar between 78 patients with micropenis below -2.0 SD or 40 patients with micropenis below -2.5 SD and the 100 control males, the 50 boys, or the 50 fertile adult males, with no statistically significant differences. The results suggest that, in Japanese patients, micropenis can be caused by SRD5A2 gene mutations, especially by R227Q which has been shown to retain approximately 3.2% of normal enzyme activity and appears relatively frequent in Asian populations, and that V89L polymorphism is unlikely to raise the susceptibility to the development of micropenis.

  13. Mutations of the tyrosinase gene produce autosomal recessive ocular albinism

    SciTech Connect

    King, R.A.; Summers, C.G.; Oetting, W.S.

    1994-09-01

    Albinism has historically been divided into ocular (OA) and oculocutaneous (OCA) types based on the presence or absence of clinically apparent skin and hair involvement in an individual with the ocular features of albinism. The major genes for OCA include the tyrosinase gene in OCA1 and the P gene in OCA2. X-linked and autosomal recessive OA have been described and the responsible genes have not been identified. We now present six Caucasian individuals who have the phenotype of autosomal recessive OA but who have OCA1 as shown by the presence of mutations of the tyrosinase. They had white or very light hair and white skin at birth, and cutaneous pigment developed in the first decade of life. At ages ranging from 1.5-23 years, hair color was dark blond to light brown. The skin had generalized pigment and well developed tan was present on the exposed arm and face skin of four. Iris pigment was present and iris translucency varied. Molecular analysis of the tyrosinase gene, using PCR amplification and direct di-deoxy sequencing showed the following mutations: E398Z/E398Q, P406S/g346a, R402E/T373K, ?/D383N, and H211N/T373K. The homozygous individual was not from a known consanguineous mating. T373K is the most common tyrosinase gene mutation in our laboratory. Three of these mutations are associated with a total loss of tyrosinase activity (g346a splice-site, T373K, and D383N), while four are associated with residual enzyme activity (H211N, R402E, E398Q, and P406S). These studies show that mutations of the tyrosinase gene can produce the phenotype of autosomal recessive OA in an individual who has normal amounts of cutaneous pigment and the ability to tan after birth. This extends the phenotypic range of OCA1 to normal cutaneous pigment after early childhood, and suggest that mutations of the tyrosinase gene account for a significant number of individuals with autosomal recessive OA.

  14. Integrated Microfluidic Card with TaqMan Probes and High-Resolution Melt Analysis To Detect Tuberculosis Drug Resistance Mutations across 10 Genes

    PubMed Central

    Pholwat, Suporn; Liu, Jie; Stroup, Suzanne; Gratz, Jean; Banu, Sayera; Rahman, S. M. Mazidur; Ferdous, Sara Sabrina; Foongladda, Suporn; Boonlert, Duangjai; Ogarkov, Oleg; Zhdanova, Svetlana; Kibiki, Gibson; Heysell, Scott

    2015-01-01

    ABSTRACT Genotypic methods for drug susceptibility testing of Mycobacterium tuberculosis are desirable to speed the diagnosis and proper therapy of tuberculosis (TB). However, the numbers of genes and polymorphisms implicated in resistance have proliferated, challenging diagnostic design. We developed a microfluidic TaqMan array card (TAC) that utilizes both sequence-specific probes and high-resolution melt analysis (HRM), providing two layers of detection of mutations. Twenty-seven primer pairs and 40 probes were designed to interrogate 3,200 base pairs of critical regions of the inhA, katG, rpoB, embB, rpsL, rrs, eis, gyrA, gyrB, and pncA genes. The method was evaluated on 230 clinical M. tuberculosis isolates from around the world, and it yielded 96.1% accuracy (2,431/2,530) in comparison to that of Sanger sequencing and 87% accuracy in comparison to that of the slow culture-based susceptibility testing. This TAC-HRM method integrates assays for 10 genes to yield fast, comprehensive, and accurate drug susceptibility results for the 9 major antibiotics used to treat TB and could be deployed to improve treatment outcomes. PMID:25714709

  15. Clinical characteristics and prognosis of acute myeloid leukemia associated with DNA-methylation regulatory gene mutations.

    PubMed

    Ryotokuji, Takeshi; Yamaguchi, Hiroki; Ueki, Toshimitsu; Usuki, Kensuke; Kurosawa, Saiko; Kobayashi, Yutaka; Kawata, Eri; Tajika, Kenji; Gomi, Seiji; Kanda, Junya; Kobayashi, Anna; Omori, Ikuko; Marumo, Atsushi; Fujiwara, Yusuke; Yui, Shunsuke; Terada, Kazuki; Fukunaga, Keiko; Hirakawa, Tsuneaki; Arai, Kunihito; Kitano, Tomoaki; Kosaka, Fumiko; Tamai, Hayato; Nakayama, Kazutaka; Wakita, Satoshi; Fukuda, Takahiro; Inokuchi, Koiti

    2016-09-01

    In recent years, it has been reported that the frequency of DNA-methylation regulatory gene mutations - mutations of the genes that regulate gene expression through DNA methylation - is high in acute myeloid leukemia. The objective of the present study was to elucidate the clinical characteristics and prognosis of acute myeloid leukemia with associated DNA-methylation regulatory gene mutation. We studied 308 patients with acute myeloid leukemia. DNA-methylation regulatory gene mutations were observed in 135 of the 308 cases (43.8%). Acute myeloid leukemia associated with a DNA-methylation regulatory gene mutation was more frequent in older patients (P<0.0001) and in patients with intermediate cytogenetic risk (P<0.0001) accompanied by a high white blood cell count (P=0.0032). DNA-methylation regulatory gene mutation was an unfavorable prognostic factor for overall survival in the whole cohort (P=0.0018), in patients aged ≤70 years, in patients with intermediate cytogenetic risk, and in FLT3-ITD-negative patients (P=0.0409). Among the patients with DNA-methylation regulatory gene mutations, 26.7% were found to have two or more such mutations and prognosis worsened with increasing number of mutations. In multivariate analysis DNA-methylation regulatory gene mutation was an independent unfavorable prognostic factor for overall survival (P=0.0424). However, patients with a DNA-methylation regulatory gene mutation who underwent allogeneic stem cell transplantation in first remission had a significantly better prognosis than those who did not undergo such transplantation (P=0.0254). Our study establishes that DNA-methylation regulatory gene mutation is an important unfavorable prognostic factor in acute myeloid leukemia.

  16. Clinical characteristics and prognosis of acute myeloid leukemia associated with DNA-methylation regulatory gene mutations

    PubMed Central

    Ryotokuji, Takeshi; Yamaguchi, Hiroki; Ueki, Toshimitsu; Usuki, Kensuke; Kurosawa, Saiko; Kobayashi, Yutaka; Kawata, Eri; Tajika, Kenji; Gomi, Seiji; Kanda, Junya; Kobayashi, Anna; Omori, Ikuko; Marumo, Atsushi; Fujiwara, Yusuke; Yui, Shunsuke; Terada, Kazuki; Fukunaga, Keiko; Hirakawa, Tsuneaki; Arai, Kunihito; Kitano, Tomoaki; Kosaka, Fumiko; Tamai, Hayato; Nakayama, Kazutaka; Wakita, Satoshi; Fukuda, Takahiro; Inokuchi, Koiti

    2016-01-01

    In recent years, it has been reported that the frequency of DNA-methylation regulatory gene mutationsmutations of the genes that regulate gene expression through DNA methylation – is high in acute myeloid leukemia. The objective of the present study was to elucidate the clinical characteristics and prognosis of acute myeloid leukemia with associated DNA-methylation regulatory gene mutation. We studied 308 patients with acute myeloid leukemia. DNA-methylation regulatory gene mutations were observed in 135 of the 308 cases (43.8%). Acute myeloid leukemia associated with a DNA-methylation regulatory gene mutation was more frequent in older patients (P<0.0001) and in patients with intermediate cytogenetic risk (P<0.0001) accompanied by a high white blood cell count (P=0.0032). DNA-methylation regulatory gene mutation was an unfavorable prognostic factor for overall survival in the whole cohort (P=0.0018), in patients aged ≤70 years, in patients with intermediate cytogenetic risk, and in FLT3-ITD-negative patients (P=0.0409). Among the patients with DNA-methylation regulatory gene mutations, 26.7% were found to have two or more such mutations and prognosis worsened with increasing number of mutations. In multivariate analysis DNA-methylation regulatory gene mutation was an independent unfavorable prognostic factor for overall survival (P=0.0424). However, patients with a DNA-methylation regulatory gene mutation who underwent allogeneic stem cell transplantation in first remission had a significantly better prognosis than those who did not undergo such transplantation (P=0.0254). Our study establishes that DNA-methylation regulatory gene mutation is an important unfavorable prognostic factor in acute myeloid leukemia. PMID:27247325

  17. Analysis of the T354P mutation of the sodium/iodide cotransporter gene in children with congenital hypothyroidism due to dyshormonogenesis

    PubMed Central

    Miranzadeh-Mahabadi, Hajar; Emadi-Baygi, Modjtaba; Nikpour, Parvaneh; Mostofizade, Neda; Hovsepian, Silva; Hashemipour, Mahin

    2016-01-01

    Background: Congenital hypothyroidism (CH) due to the thyroid dyshormonogenesis is more prevalent in Iran in comparison to other countries. Sodium iodide symporter (NIS) is one of the plasma membrane glycoproteins that is located on the basolateral side of thyroid follicular cells and mediates active I− trapping into these cells. Playing a prominent role in thyroid hormone synthesis, NIS gene mutations can be a cause of permanent CH with the etiology of dyshormonogenesis. The aim of this study was to investigate the occurrence of T354P mutation of the NIS gene, in a group of children affected with permanent CH in Isfahan. Materials and Methods: Thirty-five patients with the etiology of dyshormonogenesis, and 35 healthy children, collected between 2002 and 2011 in Isfahan Endocrine and Metabolism Research Center, were examined for T354P mutation of the NIS gene by direct polymerase chain reaction-sequencing method. Results: No T354P mutation was detected in any of the studied children. Conclusions: More subjects with confirmed iodide transport defects should be screened for detecting the frequency of different reported NIS gene mutations in our population. PMID:27169104

  18. Mutations of epigenetic regulatory genes are common in thymic carcinomas.

    PubMed

    Wang, Yisong; Thomas, Anish; Lau, Christopher; Rajan, Arun; Zhu, Yuelin; Killian, J Keith; Petrini, Iacopo; Pham, Trung; Morrow, Betsy; Zhong, Xiaogang; Meltzer, Paul S; Giaccone, Giuseppe

    2014-12-08

    Genetic alterations and etiology of thymic epithelial tumors (TETs) are largely unknown, hampering the development of effective targeted therapies for patients with TETs. Here TETs of advanced-stage patients enrolled in a clinical trial of molecularly-guided targeted therapies were employed for targeted sequencing of 197 cancer-associated genes. Comparative sequence analysis of 78 TET/blood paired samples obtained from 47 thymic carcinoma (TC) and 31 thymoma patients revealed a total of 86 somatic non-synonymous sequence variations across 39 different genes in 33 (42%) TETs. TCs (62%; 29/47) showed higher incidence of somatic non-synonymous mutations than thymomas (13%; 4/31; p < 0.0001). TP53 was the most frequently mutated gene in TETs (n = 13; 17%), especially in TCs (26%), and was associated with a poorer overall survival (p < 0.0001). Genes in histone modification [BAP1 (n = 6; 13%), SETD2 (n = 5; 11%), ASXL1 (n = 2; 4%)], chromatin remodeling [SMARCA4 (n = 2; 4%)], and DNA methylation [DNMT3A (n = 3; 7%), TET2 (n = 2; 4%), WT1 (n = 2; 4%)] pathways were recurrently mutated in TCs, but not in thymomas. Our results suggest a potential disruption of epigenetic homeostasis in TCs, and a substantial difference in genetic makeup between TCs and thymomas. Further investigation is warranted into the roles of epigenetic dysregulation in TC development and its potential for targeted therapy.

  19. Mutations of epigenetic regulatory genes are common in thymic carcinomas

    PubMed Central

    Wang, Yisong; Thomas, Anish; Lau, Christopher; Rajan, Arun; Zhu, Yuelin; Killian, J. Keith; Petrini, Iacopo; Pham, Trung; Morrow, Betsy; Zhong, Xiaogang; Meltzer, Paul S.; Giaccone, Giuseppe

    2014-01-01

    Genetic alterations and etiology of thymic epithelial tumors (TETs) are largely unknown, hampering the development of effective targeted therapies for patients with TETs. Here TETs of advanced-stage patients enrolled in a clinical trial of molecularly-guided targeted therapies were employed for targeted sequencing of 197 cancer-associated genes. Comparative sequence analysis of 78 TET/blood paired samples obtained from 47 thymic carcinoma (TC) and 31 thymoma patients revealed a total of 86 somatic non-synonymous sequence variations across 39 different genes in 33 (42%) TETs. TCs (62%; 29/47) showed higher incidence of somatic non-synonymous mutations than thymomas (13%; 4/31; p < 0.0001). TP53 was the most frequently mutated gene in TETs (n = 13; 17%), especially in TCs (26%), and was associated with a poorer overall survival (p < 0.0001). Genes in histone modification [BAP1 (n = 6; 13%), SETD2 (n = 5; 11%), ASXL1 (n = 2; 4%)], chromatin remodeling [SMARCA4 (n = 2; 4%)], and DNA methylation [DNMT3A (n = 3; 7%), TET2 (n = 2; 4%), WT1 (n = 2; 4%)] pathways were recurrently mutated in TCs, but not in thymomas. Our results suggest a potential disruption of epigenetic homeostasis in TCs, and a substantial difference in genetic makeup between TCs and thymomas. Further investigation is warranted into the roles of epigenetic dysregulation in TC development and its potential for targeted therapy. PMID:25482724

  20. Rapid and Reliable Detection of Glucose-6-Phosphate Dehydrogenase (G6PD) Gene Mutations in Han Chinese Using High-Resolution Melting Analysis

    PubMed Central

    Yan, Jing-bin; Xu, Hong-ping; Xiong, Can; Ren, Zhao-rui; Tian, Guo-li; Zeng, Fanyi; Huang, Shu-zhen

    2010-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked inherited disease, is one of the most common enzymopathies and affects over 400 million people worldwide. In China at least 21 distinct point mutations have been identified so far. In this study high-resolution melting (HRM) analysis was used to screen for G6PD mutations in 260 unrelated Han Chinese individuals, and the rapidity and reliability of this method was investigated. The mutants were readily differentiated by using HRM analysis, which produced distinct melting curves for each tested mutation. Interestingly, G1388A and G1376T, the two most common variants accounting for 50% to 60% of G6PD deficiency mutations in the Chinese population, could be differentiated in a single reaction. Further, two G6PD mutations not previously reported in the Chinese population were identified in this study. One of these mutations, designated “G6PD Jiangxi G1340T,” involved a G1340T substitution in exon 11, predicting a Gly447Val change in the protein. The other mutation involved a C406T substitution in exon 5. The frequencies of the common polymorphism site C1311T/IVS (intervening sequence) XI t93c between patients with G6PD and healthy volunteers were not significantly different. Thus, HRM analysis will be a useful alternative for screening G6PD mutations. PMID:20203002

  1. Rapid and reliable detection of glucose-6-phosphate dehydrogenase (G6PD) gene mutations in Han Chinese using high-resolution melting analysis.

    PubMed

    Yan, Jing-bin; Xu, Hong-ping; Xiong, Can; Ren, Zhao-rui; Tian, Guo-li; Zeng, Fanyi; Huang, Shu-zhen

    2010-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked inherited disease, is one of the most common enzymopathies and affects over 400 million people worldwide. In China at least 21 distinct point mutations have been identified so far. In this study high-resolution melting (HRM) analysis was used to screen for G6PD mutations in 260 unrelated Han Chinese individuals, and the rapidity and reliability of this method was investigated. The mutants were readily differentiated by using HRM analysis, which produced distinct melting curves for each tested mutation. Interestingly, G1388A and G1376T, the two most common variants accounting for 50% to 60% of G6PD deficiency mutations in the Chinese population, could be differentiated in a single reaction. Further, two G6PD mutations not previously reported in the Chinese population were identified in this study. One of these mutations, designated "G6PD Jiangxi G1340T," involved a G1340T substitution in exon 11, predicting a Gly447Val change in the protein. The other mutation involved a C406T substitution in exon 5. The frequencies of the common polymorphism site C1311T/IVS (intervening sequence) XI t93c between patients with G6PD and healthy volunteers were not significantly different. Thus, HRM analysis will be a useful alternative for screening G6PD mutations. PMID:20203002

  2. Mutational analysis of BRCA1/2 gene and pathologic characteristics from Kazakh population with sporadic breast cancer in northwestern China.

    PubMed

    Yang, S Y; Aisimutula, D; Li, H F; Hu, Y; Du, X; Li, J; Luan, M X

    2015-10-27

    Mutations in the BRCA1/2 genes are associated with an increased risk of breast cancer, but no large-scale research have examined the BRCA1/2 mutations in Chinese Kazakh women. We evaluated the frequency and distributions of BRCA1 and BRCA2 gene mutations in Kazakh sporadic breast cancer patients and healthy women in China. The association between the clinical-pathologic features of Kazakh breast cancer patients and BRCA1/2 mutations were also investigated. Two unclassified variants (T539M and T1915M) and 16 polymorphisms were detected in this study, 4 of which (G356A, His743, Asn991Asp, Val1269) were detected more frequently in breast cancer patients than in healthy controls. We observed a higher prevalence of BRCA1/2 common sequence alterations and a large number of Kazakh women carrying multiple co-existing BRCA1/2 mutations. The prevalence of BRCA1 mutations was similar to that of BRCA2 mutations. Although no significant differences were observed, BRCA1/2 carriers were generally younger at diagnosis of wild-type breast cancer patients. BRCA1-associated Kazakh sporadic breast cancers present with high tumor grade, early stage, negative lymph node status, absence of estrogen receptor expression and progesterone-positive status. Estrogen receptor expression was the only predominant histological type in BRCA2 carriers. In this study, we determined the BRCA1 and BRCA2 gene mutation status and determined the association with clinical-pathologic characteristics in a Chinese Kazakh population. Larger population-based screening studies screening the entire coding region of BRCA1/2 are required to evaluate the breast cancer risk induced by the sequence alterations detected in this study.

  3. The role of objective facial analysis using FDNA in making diagnoses following whole exome analysis. Report of two patients with mutations in the BAF complex genes.

    PubMed

    Gripp, Karen W; Baker, Laura; Telegrafi, Aida; Monaghan, Kristin G

    2016-07-01

    The genetic basis of numerous intellectual disability (ID) syndromes has recently been identified by applying exome analysis on a research or clinical basis. There is significant clinical overlap of biologically related syndromes, as exemplified by Nicolaides-Baraitser (NCBRS) and Coffin-Siris (CSS) syndrome. Both result from mutations affecting the BAF (mSWI/SNF) complex and belong to the growing category of BAFopathies. In addition to the notable clinical overlap between these BAFopathies, heterogeneity exists for patients clinically diagnosed with one of these conditions. We report two teenagers with ID whose molecular diagnosis of a SMARC2A or ARID1B mutation, respectively, was established through clinical exome analysis. Interestingly, using only the information provided in a single clinically obtained facial photograph from each patient, the facial dysmorphology analysis detected similarities to facial patterns associated with NCBRS as the first suggestion for both individuals, followed by CSS as the second highest ranked in the individual with the ARID1B mutation. Had this information been available to the laboratory performing the exome analysis, it could have been utilized during the variant analysis and reporting process, in conjunction with the written summary provided with each test requisition. While the available massive parallel sequencing technology, variant calling and variant interpretation are constantly evolving, clinical information remains critical for this diagnostic process. When trio analysis is not feasible, additional diagnostic tools may become particularly valuable. Facial dysmorphology analysis data may supplement the clinical phenotype summary and provide data independent of the clinician's personal experience and bias. © 2016 Wiley Periodicals, Inc. PMID:27112773

  4. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy.

    PubMed

    Guo, Ruolan; Zhu, Guosheng; Zhu, Huimin; Ma, Ruiyu; Peng, Ying; Liang, Desheng; Wu, Lingqian

    2015-08-01

    Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.

  5. Multidimensional analysis of intracellular bacteriophage T7 DNA: effects of amber mutations in genes 3 and 19.

    PubMed Central

    Serwer, P; Watson, R H; Hayes, S J

    1987-01-01

    By use of rate-zonal centrifugation, followed by either one- or two-dimensional agarose gel electrophoresis, the forms of intracellular bacteriophage T7 DNA produced by replication, recombination, and packaging have been analyzed. Previous studies had shown that at least some intracellular DNA with sedimentation coefficients between 32S (the S value of mature T7 DNA) and 100S is concatemeric, i.e., linear and longer than mature T7 DNA. The analysis presented here confirmed that most of this DNA is linear, but also revealed a significant amount of circular DNA. The data suggest that these circles are produced during DNA packaging. It is proposed that circles are produced after a capsid has bound two sequential genomes in a concatemer. The size distribution of the linear, concatemeric DNA had peaks at the positions of dimeric and trimeric concatemers. Restriction endonuclease analysis revealed that most of the mature T7 DNA subunits of concatemers were joined left end to right end. However, these data also suggest that a comparatively small amount of left-end to left-end joining occurs, possibly by blunt-end ligation. A replicating form of T7 DNA that had an S value greater than 100 (100S+ DNA) was also found to contain concatemers. However, some of the 100S+ DNA, probably the most branched component, remained associated with the origin after agarose gel electrophoresis. It has been found that T7 protein 19, known to be required for DNA packaging, was also required to prevent loss, probably by nucleolytic degradation, of the right end of all forms of intracellular T7 DNA. T7 gene 3 endonuclease, whose activity is required for both recombination of T7 DNA and degradation of host DNA, was required for the formation of the 32S to 100S molecules that behaved as concatemers during gel electrophoresis. In the absence of gene 3 endonuclease, the primary accumulation product was origin-associated 100S+ DNA with properties that suggest the accumulation of branches, primarily

  6. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism.

    PubMed

    Rauch, Anita; Thiel, Christian T; Schindler, Detlev; Wick, Ursula; Crow, Yanick J; Ekici, Arif B; van Essen, Anthonie J; Goecke, Timm O; Al-Gazali, Lihadh; Chrzanowska, Krystyna H; Zweier, Christiane; Brunner, Han G; Becker, Kristin; Curry, Cynthia J; Dallapiccola, Bruno; Devriendt, Koenraad; Dörfler, Arnd; Kinning, Esther; Megarbane, André; Meinecke, Peter; Semple, Robert K; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Dörr, Helmuth-Günther; Reis, André

    2008-02-01

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism type II (MOPD II) in 25 patients. Adults with this rare inherited condition have an average height of 100 centimeters and a brain size comparable to that of a 3-month-old baby, but are of near-normal intelligence. Absence of PCNT results in disorganized mitotic spindles and missegregation of chromosomes. Mutations in related genes are known to cause primary microcephaly (MCPH1, CDK5RAP2, ASPM, and CENPJ). PMID:18174396

  7. Inv(X)(p21.1;q22.1) in a man with mental retardation, short stature, general muscle wasting, and facial dysmorphism: clinical study and mutation analysis of the NXF5 gene.

    PubMed

    Frints, Suzanna G M; Jun, Lin; Fryns, Jean-Pierre; Devriendt, Koen; Teulingkx, Rudi; Van den Berghe, Lut; De Vos, Bernice; Borghgraef, Martine; Chelly, Jamel; Des Portes, Vincent; Van Bokhoven, Hans; Hamel, Ben; Ropers, Hans-Hilger; Kalscheuer, Vera; Raynaud, Martine; Moraine, Claude; Marynen, Peter; Froyen, Guy

    2003-06-15

    We describe a 59-year-old male (patient A059) with moderate to severe mental retardation (MR) and a pericentric inversion of the X-chromosome: inv(X)(p21.1;q22.1). He had short stature, pectus excavatum, general muscle wasting, and facial dysmorphism. Until now, no other patients with similar clinical features have been described in the literature. Molecular analysis of both breakpoints led to the identification of a novel "Nuclear RNA export factor" (NXF) gene cluster on Xq22.1. Within this cluster, the NXF5 gene was interrupted with subsequent loss of gene expression. Hence, mutation analysis of the NXF5 and its neighboring homologue, the NXF2 gene was performed in 45 men with various forms of syndromic X-linked MR (XLMR) and in 70 patients with nonspecific XLMR. In the NXF5 gene four nucleotide changes: one intronic, two silent, and one missense (K23E), were identified. In the NXF2 gene two changes (one intronic and one silent) were found. Although none of these changes were causative mutations, we propose that NXF5 is a good candidate gene for this syndromic form of XLMR, given the suspected role of NXF proteins is within mRNA export/transport in neurons. Therefore, mutation screening of the NXF gene family in phenotypically identical patients is recommended.

  8. Heterogeneous AVPR2 gene mutations in congenital nephrogenic diabetes insipidus

    SciTech Connect

    Wildin, R.S.; Antush, M.J.; Bennett, R.L.; Schoof, J.M.; Scott, C.R. )

    1994-08-01

    Mutations in the AVPR2 gene encoding the receptor for arginine vasopressin in the kidney (V2 ADHR) have been reported in patients with congenital nephrogenic diabetes insipidus, a predominantly X-linked disorder of water homeostasis. The authors have used restriction-enzyme analysis and direct DNA sequencing of genomic PCR product to evaluate the AVPR2 gene in 11 unrelated affected males. Each patient has a different DNA sequence variation, and only one matches a previously reported mutation. Cosegregation of the variations with nephrogenic diabetes insipidus was demonstrated for two families, and a de novo mutation was accomplished in one family. All the variations predict frameshifts, truncations, or nonconservative amino acid substitutions in evolutionarily conserved positions in the V2 ADHR and related receptors. Of interest, a 28-bp deletion is found in one patient, while another, unrelated patient has a tandem duplication of the same 28-bp segment, suggesting that both resulted from the same unusual unequal crossing-over mechanism facilitated by 9-mer direct sequence repeats. Since the V2 ADHR is a member of the seven-transmembrane-domain, G-protein-coupled receptor superfamily, the loss-of-function mutations from this study and others provide important clues to the structure-function relationship of this and related receptors. 55 refs., 4 figs., 2 tabs.

  9. Analysis of cystic fibrosis gene mutations in children with cystic fibrosis and in 964 infertile couples within the region of Basilicata, Italy: a research study

    PubMed Central

    2014-01-01

    Introduction Cystic fibrosis is the most common autosomal recessive genetic disease in the Caucasian population. Extending knowledge about the molecular pathology on the one hand allows better delineation of the mutations in the CFTR gene and the other to dramatically increase the predictive power of molecular testing. Methods This study reports the results of a molecular screening of cystic fibrosis using DNA samples of patients enrolled from January 2009 to December 2013. Patients were referred to our laboratory for cystic fibrosis screening for infertile couples. In addition, we identified the gene mutations present in 76 patients affected by cystic fibrosis in the pediatric population of Basilicata. Results In the 964 infertile couples examined, 132 subjects (69 women and 63 men) resulted heterozygous for one of the CFTR mutations, with a recurrence of carriers of 6.85%. The recurrence of carriers in infertile couples is significantly higher from the hypothetical value of the general population (4%). Conclusions This study shows that in the Basilicata region of Italy the CFTR phenotype is caused by a small number of mutations. Our aim is to develop a kit able to detect not less than 96% of CTFR gene mutations so that the relative risk for screened couples is superimposable with respect to the general population. PMID:25304080

  10. Analysis of DNA gyrA Gene Mutation in Clinical and Environmental Ciprofloxacin-Resistant Isolates of Non-Tuberculous Mycobacteria Using Molecular Methods

    PubMed Central

    Nasr Esfahani, Bahram; Zarkesh Esfahani, Fatemeh Sadat; Bahador, Nima; Moghim, Sharareh; Radaei, Tooba; Rezaei Yazdi, Hadi; Ghasemian Safaei, Hajiyeh; Fazeli, Hossein

    2016-01-01

    Background During the past several years, nontuberculous mycobacteria (NTM) have been reported as some of the most important agents of infection in immunocompromised patients. Objectives The aim of this study was to evaluate the ciprofloxacin susceptibility of clinical and environmental NTM species isolated from Isfahan province, Iran, using the agar dilution method, and to perform an analysis of gyrA gene-related ciprofloxacin resistance. Materials and Methods A total of 41 clinical and environmental isolates of NTM were identified by conventional and multiplex PCR techniques. The isolates were separated out of water, blood, abscess, and bronchial samples. The susceptibility of the isolates to 1 µg/mL, 2 µg/mL and 4 µg/mL of ciprofloxacin concentrations was determined by the agar dilution method according to CLSI guidelines. A 120-bp area of the gyrA gene was amplified, and PCR-SSCP templates were defined using polyacrylamide gel electrophoresis. The 120-bp of gyrA amplicons with different PCR-SSCP patterns were sequenced. Results The frequency of the identified isolates was as follows: Mycobacterium fortuitum, 27 cases; M. gordonae, 10 cases; M. smegmatis, one case; M. conceptionense, one case; and M. abscessus, two cases. All isolates except for M. abscessus were sensitive to all three concentrations of ciprofloxacin. The PCR-SSCP pattern of the gyrA gene of resistant M. abscessus isolates showed four different bands. The gyrA sequencing of resistant M. abscessus isolates showed 12 alterations in nucleotides compared to the M. abscessus ATCC 19977 resistant strain; however, the amino acid sequences were similar. Conclusions This study demonstrated the specificity and sensitivity of the PCR-SSCP method for finding mutations in the gyrA gene. Due to the sensitivity of most isolates to ciprofloxacin, this antibiotic should be considered an appropriate drug for the treatment of related diseases. PMID:27217921

  11. PCR-SSCP analysis of the type VII collagen gene (COL7A1): Detection of a point mutation in five patients

    SciTech Connect

    Dunnil, M.G.S.; Richards, A.J.; Pope, F.M.

    1994-09-01

    Type VII collagen is the major component of anchoring fibrils, structures which extend below the lamina densa of the epidermal basement membrane in stratified squamous epithelia. Genetic linkage studies and two mutation reports have implicated the type VII collagen gene, COL7A1, in dystrophic epidermolysis bullosa (DEB), an inherited disorder characterized by blistering and scarring of the skin and mucous membranes after minor trauma. We have used PCR-SSCP of genomic DNA to screen exons of COL7A1 for mutations in recessive DEB patients. Band mobility shifts were detected in exon FN4-B in five patients. Sequencing revealed a C to T transition changing a codon for arginine into a stop codon, homozygous in two related patients and heterozygous in the others. We are currently searching for a second mutation in these three heterozygous patients who are presumably genetic compounds. Screening for an informative Xho I restriction site altered by the mutation showed parental heterozygosity but no evidence for the mutation in 50 normal chromosomes. Segregation of COL7A1 markers in these patients suggests that the mutation has arisen independently in at least two of our families. The premature stop mutation in the 5{prime} end of the gene predicts a severely shortened collagen VII molecule. The homozygote formation of anchoring fibrils would be impaired providing an explanation at the molecular level for the ultrastructural findings of reduced numbers or absence of anchoring fibrils in this disease. In conclusion, these data strongly suggest that this novel premature stop mutation is the cause of DEB in the homozygotes and contributes to the disease in the other patients. The important role of anchoring fibrils in dermal-epidermal adhesion is also underlined.

  12. TAT gene mutation analysis in three Palestinian kindreds with oculocutaneous tyrosinaemia type II; characterization of a silent exonic transversion that causes complete missplicing by exon 11 skipping.

    PubMed

    Maydan, G; Andresen, B S; Madsen, P P; Zeigler, M; Raas-Rothschild, A; Zlotogorski, A; Gutman, A; Korman, S H

    2006-10-01

    Deficiency of the hepatic cytosolic enzyme tyrosine aminotransferase (TAT) causes marked hypertyrosinaemia leading to painful palmoplantar hyperkeratoses, pseudodendritic keratitis and variable mental retardation (oculocutaneous tyrosinaemia type II or Richner-Hanhart syndrome). Parents may therefore seek prenatal diagnosis, but this is not possible by biochemical assays as tyrosine does not accumulate in amniotic fluid and TAT is not expressed in chorionic villi or amniocytes. Molecular analysis is therefore the only possible approach for prenatal diagnosis and carrier detection. To this end, we sought TAT gene mutations in 9 tyrosinaemia II patients from three consanguineous Palestinian kindreds. In two kindreds (7 patients), the only potential abnormality identified after sequencing all 12 exons and exon-intron boundaries was homozygosity for a silent, single-nucleotide transversion c.1224G > T (p.T408T) at the last base of exon 11. This was predicted to disrupt the 5' donor splice site of exon 11 and result in missplicing. However, as TAT is expressed exclusively in liver, patient mRNA could not be obtained for splicing analysis. A minigene approach was therefore used to assess the effect of c.1224G > T on exon 11 splicing. Transfection experiments with wild-type and c.1224G > T mutant minigene constructs demonstrated that c.1224G > T results in complete exon 11 skipping, illustrating the utility of this approach for confirming a putative splicing defect when cDNA is unavailable. Homozygosity for a c.1249C > T (R417X) exon 12 nonsense mutation (previously reported in a French patient) was identified in both patients from the third kindred, enabling successful prenatal diagnosis of an unaffected fetus using chorionic villous tissue.

  13. Linkage disequilibrium analysis reveals an albuminuria risk haplotype containing three missense mutations in the cubilin gene with striking differences among European and African ancestry populations

    PubMed Central

    2012-01-01

    Background A recent meta-analysis described a variant (p.Ile2984Val) in the cubilin gene (CUBN) that is associated with levels of albuminuria in the general population and in diabetics. Methods We implemented a Linkage Disequilibrium (LD) search with data from the 1000 Genomes Project, on African and European population genomic sequences. Results We found that the p.Ile2984Val variation is part of a larger haplotype in European populations and it is almost absent in west Africans. This haplotype contains 19 single nucleotide polymorphisms (SNPs) in very high LD, three of which are missense mutations (p.Leu2153Phe, p.Ile2984Val, p.Glu3002Gly), and two have not been previously reported. Notably, this European haplotype is absent in west African populations, and the frequency of each individual polymorphism differs significantly in Africans. Conclusions Genotyping of these variants in existing African origin sample sets coupled to measurements of urine albumin excretion levels should reveal which is the most likely functional candidate for albuminuria risk. The unique haplotypic structure of CUBN in different populations may leverage the effort to identify the functional variant and to shed light on evolution of the CUBN gene locus. PMID:23114252

  14. Fine mapping and conditional analysis identify a new mutation in the autoimmunity susceptibility gene BLK that leads to reduced half-life of the BLK protein

    PubMed Central

    Delgado-Vega, Angélica M; Dozmorov, Mikhail G; Quirós, Manuel Bernal; Wu, Ying-Yu; Martínez-García, Belén; Kozyrev, Sergey V; Frostegård, Johan; Truedsson, Lennart; de Ramón, Enrique; González-Escribano, María F; Ortego-Centeno, Norberto; Pons-Estel, Bernardo A; D'Alfonso, Sandra; Sebastiani, Gian Domenico; Witte, Torsten; Lauwerys, Bernard R; Endreffy, Emoke; Kovács, László; Vasconcelos, Carlos; da Silva, Berta Martins; Wren, Jonathan D; Martin, Javier; Castillejo-López, Casimiro; Alarcón-Riquelme, Marta E

    2012-01-01

    Objectives To perform fine mapping of the autoimmunity susceptibility gene BLK and identify functional variants involved in systemic lupus erythematosus (SLE). Methods Genotyping of 1163 European SLE patients and 1482 controls and imputation were performed covering the BLK gene with 158 single-nucleotide polymorphisms. Logistic regression analysis was done using PLINK and conditional analyses using GENABEL's test score. Transfections of BLK constructs on HEK293 cells containing the novel mutation or the wild type form were analysed for their effect on protein half-life using a protein stability assay, cycloheximide and western blot. CHiP-qPCR for detection of nuclear factor κ B (NFkB) binding. Results Fine mapping of BLK identified two independent genetic effects with functional consequences: one represented by two tightly linked associated haplotype blocks significantly enriched for NFκB-binding sites and numerous putative regulatory variants whose risk alleles correlated with low BLK mRNA levels. Binding of NFkBp50 and p65 to an associated 1.2 Kb haplotype segment was confirmed. A second independent genetic effect was represented by an Ala71Thr, low-frequency missense substitution with an OR=2.31 (95% CI 1.38 to 3.86). The 71Thr decreased BLK protein half-life. Conclusions These results show that rare and common regulatory variants in BLK are involved in disease susceptibility and both, albeit independently, lead to reduced levels of BLK protein. PMID:22696686

  15. Analysis of Mutations in the Gene Encoding Cytomegalovirus DNA Polymerase in a Phase 2 Clinical Trial of Brincidofovir Prophylaxis

    PubMed Central

    Lanier, E. Randall; Foster, Scott; Brundage, Tom; Chou, Sunwen; Prichard, Mark N.; Kleiboeker, Steven; Wilson, Chad; Colville, Donella; Mommeja-Marin, Herve

    2016-01-01

    Brincidofovir is an oral antiviral in development for prevention of cytomegalovirus disease. Cytomegalovirus genotyping results from a phase 2 trial comparing brincidofovir to placebo for prophylaxis against cytomegalovirus infection in hematopoietic cell transplant recipients provided initial data on the clinical resistance profile for brincidofovir. In this study, no known resistance-associated mutations were detected in brincidofovir-treated subjects; identified genotypic substitutions did not confer resistance to cytomegalovirus antivirals in vitro, suggesting that these changes represent polymorphisms unrelated to brincidofovir resistance. Lack of evidence for genotypic resistance during prophylaxis suggests that first-line use of brincidofovir for prevention of cytomegalovirus infection may preserve downstream options for patients. PMID:26941282

  16. Analysis of mutational characteristics of the drug-resistant gene katG in multi-drug resistant Mycobacterium tuberculosis L-form among patients with pneumoconiosis complicated with tuberculosis.

    PubMed

    Lu, Jun; Jiang, Shan; Liu, Qian-Ying; Ma, Shuai; Li, Ying; Li, Chao-Pin

    2014-05-01

    The aim of the present study was to investigate the mutational characteristics of drug‑resistant genetic mutations in the katG gene to isoniazid (INH) in multi‑drug resistant Mycobacterium tuberculosis (MTB) L‑form among patients with pneumoconiosis complicated with tuberculosis (TB), in order to reduce the occurrence of drug resistance in patients, and gain further insight into the mechanisms underlying drug resistance in MDR‑TB L‑form. A total of 114 clinically isolated strains of MTB L‑forms were collected. The MDR‑TB L‑forms were identified using a conventional antimicrobial susceptibility test (AST). The DNA genomes were extracted, the target genes were amplified by polymerase chain reaction technology and the hotspot mutational regions in the katG gene were analyzed by direct sequencing. The results of AST analysis demonstrated that there were 31 strains of MDR‑TB L‑forms in 114 clinical isolates. The mutation rate of katG was 61.29% (19/31) in INH‑resistant isolates, mainly concentrated in codon 315 (Ser315Thr, 48.39% and Ser315Asn, 9.68%) and 431 (Ala431Val, 3.23%). Base substitutions were identified, however, no multisite mutations were found. No mutations in katG were identified in 10 INH‑sensitive strains that were randomly selected. INH‑resistance was more severe in MDR‑TB L‑form isolates among patients with pneumoconiosis complicated with TB. The substitution of highly conserved amino acids encoded by the katG gene resulted in the molecular mechanisms responsible for INH resistance in MDR‑TB L‑form isolates. It was also verified that the katG gene was in diversiform. The katG Ser315Thr mutation is one of the main causes of resistance to INH in MDR‑TB L-form isolates.

  17. High prevalence of DUOX2 gene mutations among children with congenital hypothyroidism in central China.

    PubMed

    Jiang, Hong; Wu, Jinhua; Ke, Shengzhong; Hu, Yue; Fei, Anxing; Zhen, Yan; Yu, Jin; Zhu, Kuichun

    2016-10-01

    Congenial hypothyroidism (CH) is the most common congenital endocrine disease and is treatable when recognized early enough. We investigated the genetic variants in 12 children diagnosed with CH by newborn screening in Huangshi area central China. Twelve genes commonly involved in CH development were studied. Genomic DNA from peripheral blood was used to amplify all exons of the selected genes, and the constructed sequencing libraries were subjected to next generation high throughput DNA sequencing (NGS). Analysis of the sequencing results identified rare genetic variants in 11 of the 12 patients (91.7%), and two novel rare variants were found in DUOX2 gene and two in TPO gene. Mutations in DUOX2 gene were identified in 10 patients (83.3%), and all these patients were found to carry bi-allelic, tri-allelic mutations or compound mutations with other genes. Recurrent DUOX2 mutations include K530X, R683L, R1110Q, and L1343F. Truncating, splicing, and proven deleterious DUOX2 missense mutations were detected in 50% of the patients. Mutations in TG gene were identified in four patients, and mutations in TPO, THSR, SLC26A4 genes were identified, one in each patient, respectively. The high prevalence of DUOX2 mutations in this cohort of children with CH appears striking and surprising. The clinical implications were discussed. PMID:27498126

  18. High prevalence of DUOX2 gene mutations among children with congenital hypothyroidism in central China.

    PubMed

    Jiang, Hong; Wu, Jinhua; Ke, Shengzhong; Hu, Yue; Fei, Anxing; Zhen, Yan; Yu, Jin; Zhu, Kuichun

    2016-10-01

    Congenial hypothyroidism (CH) is the most common congenital endocrine disease and is treatable when recognized early enough. We investigated the genetic variants in 12 children diagnosed with CH by newborn screening in Huangshi area central China. Twelve genes commonly involved in CH development were studied. Genomic DNA from peripheral blood was used to amplify all exons of the selected genes, and the constructed sequencing libraries were subjected to next generation high throughput DNA sequencing (NGS). Analysis of the sequencing results identified rare genetic variants in 11 of the 12 patients (91.7%), and two novel rare variants were found in DUOX2 gene and two in TPO gene. Mutations in DUOX2 gene were identified in 10 patients (83.3%), and all these patients were found to carry bi-allelic, tri-allelic mutations or compound mutations with other genes. Recurrent DUOX2 mutations include K530X, R683L, R1110Q, and L1343F. Truncating, splicing, and proven deleterious DUOX2 missense mutations were detected in 50% of the patients. Mutations in TG gene were identified in four patients, and mutations in TPO, THSR, SLC26A4 genes were identified, one in each patient, respectively. The high prevalence of DUOX2 mutations in this cohort of children with CH appears striking and surprising. The clinical implications were discussed.

  19. Molecular screening of pituitary adenomas for gene mutations and rearrangements

    SciTech Connect

    Herman, V.; Drazin, N.Z.; Gonskey, R.; Melmed, S. )

    1993-07-01

    Although pituitary tumors arise as benign monoclonal neoplasms, genetic alterations have not readily been identified in these adenomas. The authors studied restriction fragment abnormalities involving the GH gene locus, and mutations in the p53 and H-, K-, and N-ras genes in 22 human GH cell adenomas. Twenty two nonsecretory adenomas were also examined for p53 and ras gene mutations. Seven prolactinoma DNA samples were tested for deletions in the multiple endocrine neoplasia-1 (MEN-1) locus, as well as for rearrangements in the hst gene, a member of the fibroblast growth factor family. In DNA from GH-cell adenomas, identical GH restriction patterns were detected in both pituitary and lymphocyte DNA in all patients and in one patient with a mixed GH-TSH cell adenoma. Using polymerase chain reaction (PCR)-single stranded conformation polymorphism analysis, no mutations were detected in exons 5, 6, 7 and 8 of the p53 gene in GH cell adenomas nor in 22 nonsecretory adenomas. Codons 12/13 and 61 of H-ras, K-ras, and N-ras genes were also intact on GH cell adenomas and in nonsecretory adenomas. Site-specific probes for chromosome 11q13 including, PYGM, D11S146, and INT2 were used in 7 sporadic PRL-secreting adenomas to detect deletions of the MEN-1 locus on chromosome 11. One patient was identified with a loss of 11p, and the remaining 6 patients did not demonstrate loss of heterozygosity in the pituitary 11q13 locus, compared to lymphocyte DNA. None of these patients demonstrated hst gene rearrangements which also maps to this locus. These results show that p53 and ras gene mutations are not common events in the pathogenesis of acromegaly and nonsecretory tumors. Although hst gene rearrangements and deletions of 11q13 are not associated with sporadic PRl-cell adenoma formation, a single patient was detected with a partial loss of chromosome 11, including the putative MEN-1 site. 31 refs., 5 figs., 2 tabs.

  20. Molecular analysis of mucopolysaccharidosis IVA: Common mutations and racial difference

    SciTech Connect

    Tomatsu, S.; Hori, T.; Nakashima, Y.

    1994-09-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine -6-sulfate sulfatase (GALNS). Studies on the molecular basis of MPS IVA have been facilitated following cloning of the full-length cDNA and genomic DNA. In this study we detected mutations from 20 Caucasian and 19 Japanese MPS IVA patients using SSCP system and compared mutations of Caucasian origin with those of Japanese origin. The results showed the presence of 16 various mutations (3 small, deletions, 2 nonsense and 11 missense mutations) for Caucasian patients and 15 (1 deletion, 1 large alteration and 13 missense mutations) for Japanese. Moreover, two common mutations existed; one is double gene deletion characteristic for Japanese (6 alleles; 15%) and the other is a point mutation (1113F A{yields}T transition) characteristic for Caucasian (9 alleles; 22.5%). And the clear genotype/phenotype relationship among 1342delCA, IVS1(-2), P151S, Q148X, R386C, I113F, Q473X, W220G, P151L, A291T, R90W, and P77R, for a severe type, G96B N204K and V138A for a milder type, was observed. Only R386 mutation was seen in both of the populations. Further, the precise DNA analysis for double gene deletion of a common double gene deletion has been performed by defining the breakpoints and the results showed that one deletion was caused by homologous recombination due to Alu repetitive sequences and the other was due to nonhomologous recombination of short direct repeat. Haplotype analysis for six alleles with double deletion were different, indicating the different origin of this mutation or the frequent recombination events before a mutational event. Thus the mutations in GALNS gene are very heterogeneous and the racial difference is characteristic.

  1. De novo mutation of keratin 9 gene in two Taiwanese patients with epidermolytic palmoplantar keratoderma.

    PubMed

    Yang, Mei-Hui; Lee, Julia Yu-Yun; Lin, Jeng-Hsien; Chao, Sheau-Chiou

    2003-07-01

    Epidermolytic palmoplantar keratoderma (EPPK) is an autosomal dominant hereditary disorder of keratinization. Recent molecular studies have shown that EPPK is caused by mutations in keratin 9 gene (K9). We report 2 unrelated sporadic cases of EPPK in Taiwanese, confirmed by histopathology and electron microscopy. A de novo mutation with a C to T transition at the first nucleotide of codon 162 in K9 was detected in both patients, but not in their parents. The mutation is expected to result in an arginine to tryptophan substitution (R162W) in the beginning region of the alpha-helical 1A domain of K9. Mutations in this region could disrupt keratin filament assembly, leading to degeneration or cytolysis of keratinocytes. Mutations of this arginine codon (R162W, R162Q) are common in pedigrees with EPPK. Our mutation analysis suggests that codon 162 in K9 gene is an important hot spot for mutation in EPPK.

  2. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes

    PubMed Central

    Walter, MJ; Shen, D; Shao, J; Ding, L; White, BS; Kandoth, C; Miller, CA; Niu, B; McLellan, MD; Dees, ND; Fulton, R; Elliot, K; Heath, S; Grillot, M; Westervelt, P; Link, DC; DiPersio, JF; Mardis, E; Ley, TJ; Wilson, RK; Graubert, TA

    2013-01-01

    Recent studies suggest that most cases of myelodysplastic syndrome (MDS) are clonally heterogeneous, with a founding clone and multiple subclones. It is not known whether specific gene mutations typically occur in founding clones or subclones. We screened a panel of 94 candidate genes in a cohort of 157 patients with MDS or secondary acute myeloid leukemia (sAML). This included 150 cases with samples obtained at MDS diagnosis and 15 cases with samples obtained at sAML transformation (8 were also analyzed at the MDS stage). We performed whole-genome sequencing (WGS) to define the clonal architecture in eight sAML genomes and identified the range of variant allele frequencies (VAFs) for founding clone mutations. At least one mutation or cytogenetic abnormality was detected in 83% of the 150 MDS patients and 17 genes were significantly mutated (false discovery rate ≤0.05). Individual genes and patient samples displayed a wide range of VAFs for recurrently mutated genes, indicating that no single gene is exclusively mutated in the founding clone. The VAFs of recurrently mutated genes did not fully recapitulate the clonal architecture defined by WGS, suggesting that comprehensive sequencing may be required to accurately assess the clonal status of recurrently mutated genes in MDS. PMID:23443460

  3. Laminin 5 genes and Herlitz junctional epidermolysis bullosa: novel mutations and polymorphisms in the LAMB3 and LAMC2 genes. Mutations in brief no. 190. Online.

    PubMed

    Kon, A; Pulkkinen, L; Hara, M; Tamai, K; Tagami, H; Hashimoto, I; Uitto, J

    1998-01-01

    Herlitz junctional epidermolysis bullosa (H-JEB; OMIM #226700) is a lethal, autosomal recessive blistering disorder characterized by fragility of the skin and other specialized epithelia. Previously, mutations in the laminin 5 genes (LAMA3, LAMB3, and LAMC2) have been disclosed, most of them in LAMB3. In this study, we have examined the genetic basis of H-JEB in three families utilizing heteroduplex analysis and automated nucleotide sequencing. In one family, the proband was compound heterozygote for previously unpublished LAMB3 mutations, 1482delC and W95X. In two other families, the probands were found to be homozygous for novel nonsense mutations C553X and K822X in the LAMC2 gene. These mutations result in premature termination codons and predict truncation of the corresponding polypeptides. Also, during the search of laminin 5 mutations, 18 LAMB3 and LAMC2 polymorphisms were discovered, 9 of them being previously undescribed. Delineation of novel homozygous nonsense mutations in the LAMB3 and LAMC2 genes, with previous demonstrations of LAMA3 mutations, re-emphasizes the concept that stop codon mutations in both alleles of any of the three laminin 5 genes result in the severe H-JEB phenotype. PMID:10660342

  4. Combined analysis of gene expression, DNA copy number, and mutation profiling data to display biological process anomalies in individual breast cancers.

    PubMed

    Shi, Weiwei; Balazs, Balint; Györffy, Balazs; Jiang, Tingting; Symmans, W Fraser; Hatzis, Christos; Pusztai, Lajos

    2014-04-01

    The goal of this analysis was to develop a computational tool that integrates the totality of gene expression, DNA copy number, and sequence abnormalities in individual cancers in the framework of biological processes. We used the hierarchical structure of the gene ontology (GO) database to create a reference network and projected mRNA expression, DNA copy number and mutation anomalies detected in single samples into this space. We applied our method to 59 breast cancers where all three types of molecular data were available. Each cancer had a large number of disturbed biological processes. Locomotion, multicellular organismal process, and signal transduction pathways were the most commonly affected GO terms, but the individual molecular events were different from case-to-case. Estrogen receptor-positive and -negative cancers had different repertoire of anomalies. We tested the functional impact of 27 mRNAs that had overexpression in cancer with variable frequency (<2-42 %) using an siRNA screen. Each of these genes inhibited cell growth in at least some of 18 breast cancer cell lines. We developed a free, on-line software tool ( http://netgoplot.org ) to display the complex genomic abnormalities in individual cancers in the biological framework of the GO biological processes. Each cancer harbored a variable number of pathway anomalies and the individual molecular events that caused an anomaly varied from case-to-case. Our in vitro experiments indicate that rare case-specific molecular abnormalities can play a functional role and driver events may vary from case-to-case depending on the constellation of other molecular anomalies.

  5. K-ras gene mutation in gall bladder carcinomas and dysplasia.

    PubMed Central

    Ajiki, T; Fujimori, T; Onoyama, H; Yamamoto, M; Kitazawa, S; Maeda, S; Saitoh, Y

    1996-01-01

    Epithelial dysplasia of gall bladder is an important precancerous lesion of gall bladder carcinogenesis. To investigate the frequency of K-ras gene mutation in gall bladder carcinoma and dysplasia, K-ras codon 12 mutations were investigated by the polymerase chain reaction/restriction enzyme based method following direct sequencing. Mutation was detected in 59% (30 of 51) of gall bladder carcinomas, in 73% (8 of 11) of gall bladder dysplasia in gall stone cases, and in 0% of the normal gall bladder epithelium. There was, however, no correlation between K-ras mutation and clinicopathological factors of gall bladder carcinoma. K-ras gene mutation occurs even in gall bladder dysplasia at an incidence similar to that in carcinomas, suggesting that testing for K-ras gene mutation may prove useful as an adjunct to bile cytological or biopsy analysis. Images Figure 1 Figure 2 Figure 3 PMID:8675098

  6. Determination of HER2 and p53 Mutations by Sequence Analysis Method and EGFR/Chromosome 7 Gene Status by Fluorescence in Situ Hybridization for the Predilection of Targeted Therapy Modalities in Immunohistochemically Triple Negative Breast Carcinomas in Turkish Population.

    PubMed

    Pala, Emel Ebru; Bayol, Umit; Keskin, Elif Usturali; Ozguzer, Alp; Kucuk, Ulku; Ozer, Ozge; Koc, Altug

    2015-09-01

    Triple negative breast cancer (TNBC), an agressive subtype accounts nearly 15 % of all breast carcinomas. Conventional chemotherapy is the only treatment modality thus new, effective targeted therapy methods have been investigated. Epidermal growth factor receptor (EGFR) inhibitors give hope according to the recent studies results. Also therapeutic agents have been tried against aberrant p53 signal activity as TNBC show high p53 mutation rates. Our aim was to detect the incidence of mutations/amplifications identified in TNBC in our population. Here we used sequence analysis to detect HER2 (exon 18-23), p53 (exon 5-8) mutations; fluorescence in situ hybridization (FISH) method to analyse EGFR/chromosome 7 centromere gene status in 82 immunohistochemically TNBC. Basaloid phenotype was identified in 49 (59.8 %) patients. EGFR amplification was noted in 5 cases (6.1 %). All EGFR amplified cases showed EGFR overexpression by immunohistochemistry (IHC). p53 mutations were identified in 33 (40.2 %) cases. Almost 60 % of the basal like breast cancer cases showed p53 mutation. Only one case showed HER2 mutation (exon 20:g.36830_3). Our results showed that gene amplification is not the unique mechanism in EGFR overexpression. IHC might be used in the decision of anti-EGFR therapy in routine practice. p53 mutation rate was lower than the rates reported in the literature probably due to ethnic differences and low sensitivity of sanger sequences in general mutation screening. We also established the rarity of HER2 mutation in TNBC. In conclusion EGFR and p53 are the major targets in TNBC also for our population.

  7. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia.

    PubMed

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-08-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  8. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia

    PubMed Central

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  9. Chromatin accessibility contributes to simultaneous mutations of cancer genes

    PubMed Central

    Shi, Yi; Su, Xian-Bin; He, Kun-Yan; Wu, Bing-Hao; Zhang, Bo-Yu; Han, Ze-Guang

    2016-01-01

    Somatic mutations of many cancer genes tend to co-occur (termed co-mutations) in certain patterns during tumor initiation and progression. However, the genetic and epigenetic mechanisms that contribute to the co-mutations of these cancer genes have yet to be explored. Here, we systematically investigated the association between the somatic co-mutations of cancer genes and high-order chromatin conformation. Significantly, somatic point co-mutations in protein-coding genes were closely associated with high-order spatial chromatin folding. We propose that these regions be termed Spatial Co-mutation Hotspots (SCHs) and report their occurrence in different cancer types. The conserved mutational signatures and DNA sequences flanking these point co-mutations, as well as CTCF-binding sites, are also enriched within the SCH regions. The genetic alterations that are harboured in the same SCHs tend to disrupt cancer driver genes involved in multiple signalling pathways. The present work demonstrates that high-order spatial chromatin organisation may contribute to the somatic co-mutations of certain cancer genes during tumor development. PMID:27762310

  10. Spectrum of mutations and genotype-phenotype analysis in Noonan syndrome patients with RIT1 mutations.

    PubMed

    Yaoita, Masako; Niihori, Tetsuya; Mizuno, Seiji; Okamoto, Nobuhiko; Hayashi, Shion; Watanabe, Atsushi; Yokozawa, Masato; Suzumura, Hiroshi; Nakahara, Akihiko; Nakano, Yusuke; Hokosaki, Tatsunori; Ohmori, Ayumi; Sawada, Hirofumi; Migita, Ohsuke; Mima, Aya; Lapunzina, Pablo; Santos-Simarro, Fernando; García-Miñaúr, Sixto; Ogata, Tsutomu; Kawame, Hiroshi; Kurosawa, Kenji; Ohashi, Hirofumi; Inoue, Shin-Ichi; Matsubara, Yoichi; Kure, Shigeo; Aoki, Yoko

    2016-02-01

    RASopathies are autosomal dominant disorders caused by mutations in more than 10 known genes that regulate the RAS/MAPK pathway. Noonan syndrome (NS) is a RASopathy characterized by a distinctive facial appearance, musculoskeletal abnormalities, and congenital heart defects. We have recently identified mutations in RIT1 in patients with NS. To delineate the clinical manifestations in RIT1 mutation-positive patients, we further performed a RIT1 analysis in RASopathy patients and identified 7 RIT1 mutations, including two novel mutations, p.A77S and p.A77T, in 14 of 186 patients. Perinatal abnormalities, including nuchal translucency, fetal hydrops, pleural effusion, or chylothorax and congenital heart defects, are observed in all RIT1 mutation-positive patients. Luciferase assays in NIH 3T3 cells demonstrated that the newly identified RIT1 mutants, including p.A77S and p.A77T, and the previously identified p.F82V, p.T83P, p.Y89H, and p.M90I, enhanced Elk1 transactivation. Genotype-phenotype correlation analyses of previously reported NS patients harboring RIT1, PTPN11, SOS1, RAF1, and KRAS revealed that hypertrophic cardiomyopathy (56 %) was more frequent in patients harboring a RIT1 mutation than in patients harboring PTPN11 (9 %) and SOS1 mutations (10 %). The rates of hypertrophic cardiomyopathy were similar between patients harboring RIT1 mutations and patients harboring RAF1 mutations (75 %). Short stature (52 %) was less prevalent in patients harboring RIT1 mutations than in patients harboring PTPN11 (71 %) and RAF1 (83 %) mutations. These results delineate the clinical manifestations of RIT1 mutation-positive NS patients: high frequencies of hypertrophic cardiomyopathy, atrial septal defects, and pulmonary stenosis; and lower frequencies of ptosis and short stature. PMID:26714497

  11. Association of PAX2 and Other Gene Mutations with the Clinical Manifestations of Renal Coloboma Syndrome

    PubMed Central

    Higashide, Tomomi; Sakurai, Mayumi; Hashimoto, Shin-ichi; Shinozaki, Yasuyuki; Hara, Akinori; Iwata, Yasunori; Sakai, Norihiko; Sugiyama, Kazuhisa; Kaneko, Shuichi; Wada, Takashi

    2015-01-01

    Background Renal coloboma syndrome (RCS) is characterized by renal anomalies and optic nerve colobomas. PAX2 mutations contribute to RCS. However, approximately half of the patients with RCS have no mutation in PAX2 gene. Methods To investigate the incidence and effects of mutations of PAX2 and 25 candidate genes, patient genes were screened using next-generation sequence analysis, and candidate mutations were confirmed using Sanger sequencing. The correlation between mutations and clinical manifestation was evaluated. Result Thirty patients, including 26 patients (two families of five and two, 19 sporadic cases) with RCS, and 4 optic nerve coloboma only control cases were evaluated in the present study. Six PAX2 mutations in 21 probands [28%; two in family cohorts (n = 5 and n = 2) and in 4 out of 19 patients with sporadic disease] including four novel mutations were confirmed using Sanger sequencing. Moreover, four other sequence variants (CHD7, SALL4, KIF26B, and SIX4) were also confirmed, including a potentially pathogenic novel KIF26B mutation. Kidney function and proteinuria were more severe in patients with PAX2 mutations than in those without the mutation. Moreover, the coloboma score was significantly higher in patients with PAX2 gene mutations. Three out of five patients with PAX2 mutations had focal segmental glomerulosclerosis (FSGS) diagnosed from kidney biopsies. Conclusion The results of this study identify several new mutations of PAX2, and sequence variants in four additional genes, including a novel potentially pathogenic mutation in KIF26B, which may play a role in the pathogenesis of RCS. PMID:26571382

  12. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer

    PubMed Central

    Yu, Jun; Wu, William K K; Li, Xiangchun; He, Jun; Li, Xiao-Xing; Ng, Simon S M; Yu, Chang; Gao, Zhibo; Yang, Jie; Li, Miao; Wang, Qiaoxiu; Liang, Qiaoyi; Pan, Yi; Tong, Joanna H; To, Ka F; Wong, Nathalie; Zhang, Ning; Chen, Jie; Lu, Youyong; Lai, Paul B S; Chan, Francis K L; Li, Yingrui; Kung, Hsiang-Fu; Yang, Huanming; Wang, Jun; Sung, Joseph J Y

    2015-01-01

    Background Characterisation of colorectal cancer (CRC) genomes by next-generation sequencing has led to the discovery of novel recurrently mutated genes. Nevertheless, genomic data has not yet been used for CRC prognostication. Objective To identify recurrent somatic mutations with prognostic significance in patients with CRC. Method Exome sequencing was performed to identify somatic mutations in tumour tissues of 22 patients with CRC, followed by validation of 187 recurrent and pathway-related genes using targeted capture sequencing in additional 160 cases. Results Seven significantly mutated genes, including four reported (APC, TP53, KRAS and SMAD4) and three novel recurrently mutated genes (CDH10, FAT4 and DOCK2), exhibited high mutation prevalence (6–14% for novel cancer genes) and higher-than-expected number of non-silent mutations in our CRC cohort. For prognostication, a five-gene-signature (CDH10, COL6A3, SMAD4, TMEM132D, VCAN) was devised, in which mutation(s) in one or more of these genes was significantly associated with better overall survival independent of tumor-node-metastasis (TNM) staging. The median survival time was 80.4 months in the mutant group versus 42.4 months in the wild type group (p=0.0051). The prognostic significance of this signature was successfully verified using the data set from the Cancer Genome Atlas study. Conclusions The application of next-generation sequencing has led to the identification of three novel significantly mutated genes in CRC and a mutation signature that predicts survival outcomes for stratifying patients with CRC independent of TNM staging. PMID:24951259

  13. Dysferlin Gene Mutation Spectrum in a Large Cohort of Chinese Patients with Dysferlinopathy

    PubMed Central

    Jin, Su-Qin; Yu, Meng; Zhang, Wei; Lyu, He; Yuan, Yun; Wang, Zhao-Xia

    2016-01-01

    Background: Dysferlinopathy is caused by mutations in the dysferlin (DYSF) gene. Here, we described the genetic features of a large cohort of Chinese patients with this disease. Methods: Eighty-nine index patients were included in the study. DYSF gene analysis was performed by Sanger sequencing in 41 patients and targeted next generation sequencing (NGS) in 48 patients. Multiplex ligation-dependent probe amplification (MLPA) was performed to detect exon duplication/deletion in patients with only one pathogenic mutation. Results: Among the 89 index patients, 79 patients were demonstrated to carry two disease-causing (73 cases) or possibly disease-causing mutations (6 cases), including 26 patients with homozygous mutations. We identified 105 different mutations, including 59 novel ones. Notably, in 13 patients in whom only one pathogenic mutation was initially found by Sanger sequencing or NGS, 3 were further identified to carry exon deletions by MLPA. The mutations identified in this study appeared to cluster in the N-terminal region. Mutation types included missense mutations (30.06%), nonsense mutations (17.18%), frameshift mutations (30.67%), in-frame deletions (2.45%), intronic mutations (17.79%), and exonic rearrangement (1.84%). No genotype-phenotype correlation was identified. Conclusions: DYSF mutations in Chinese patients clustered in the N-terminal region of the gene. Exonic rearrangements were found in 23% of patients with only one pathogenic mutation identified by Sanger sequencing or NGS. The novel mutations found in this study greatly expanded the mutational spectrum of dysferlinopathy. PMID:27647186

  14. Analysis of p16 gene mutation, deletion and methylation in patients with arseniasis produced by indoor unventilated-stove coal usage in Guizhou, China.

    PubMed

    Zhang, Ai-Hua; Bin, Hai-Hua; Pan, Xue-Li; Xi, Xu-Guang

    2007-06-01

    The aim of this study was to determine p16 gene mutation, deletion, and promoter 5' CpG island hypermethylation in peripheral blood mononuclear leukocyte of patients with arseniasis as attributed to exposure to indoor unventilated coal stove. The role of the aberrant change of p16 gene in the induction and development of carcinogenesis in endemic arsenisiasis region in China was also examined. Polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP), multiplex PCR (mPCR), methylation-specific PCR (MSP), and sequencing techniques were performed to detect (1) mutation of the p16 gene exon 2, (2) homozygous deletion of the p16 gene exon 1 and exon 2, and (3) hypermethylation of the promoter CpG island in peripheral blood mononuclear leukocyte of patients with arseniasis. Results showed no mutation was found in exon 2 of p16 gene. The homozygous deletion frequency of p16 gene was 5 and 15% in control and arseniasis patients, respectively. The homozygous deletion occurred mainly in exon 2, with significant deletion frequencies of 9, 13, and 20% in mild, intermediate, and severe arseniasis groups. The significant homozygous deletion frequency was 9 and 39% in noncarcinoma and carcinoma individuals. The positive rate of p16 gene promoter CpG island hyermethylation was 42 and 2% in the exposed group and the control group, respectively. The positive rate was 26, 42, and 50% in mild, intermediate, and severe arseniasis. The marked different positive rate was 22 and 56% in noncarcinoma and carcinoma individuals, respectively. In conclusion, homozygous deletion and hypermethylation of p16 gene may play an important role in the initiation and development of manifestations seen in endemic arseniasis including carcinogenesis.

  15. Comparison of somatic mutation frequency among immunoglobulin genes.

    PubMed

    Motoyama, N; Miwa, T; Suzuki, Y; Okada, H; Azuma, T

    1994-02-01

    We analyzed the frequency of somatic mutation in immunoglobulin genes from hybridomas that secrete anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) monoclonal antibodies. A high frequency of mutation (3.3-4.4%) was observed in both the rearranged VH186.2 and V lambda 1 genes, indicating that somatic mutation occurs with similar frequency in these genes in spite of the absence of an intron enhancer in lambda 1 chain genes. In contrast to the high frequency in J-C introns, only two nucleotide substitutions occurred at positions -462 and -555 in the 5' noncoding region in one of the lambda 1-chain genes and in none of the other three so far studied. Since a similar low frequency of somatic mutation was observed in the 5' noncoding region of inactive lambda 2-chain genes rendered inactive because of incorrect rearrangement, this region may not be a target or alternatively, may be protected from the mutator system. We observed a low frequency of nucleotide substitution in unrearranged V lambda 1 genes (approximately 1/15 that of rearranged genes). Together with previous results (Azuma T., N. Motoyama, L. Fields, and D. Loh, 1993. Int. Immunol. 5:121), these findings suggest that the 5' noncoding region, which contains the promoter element, provides a signal for the somatic mutator system and that rearrangement, which brings the promoter into close proximity to the enhancer element, should increase mutation efficiency.

  16. A Common Founder Mutation in the EDA-A1 Gene in X-Linked Hypodontia

    PubMed Central

    Kurban, Mazen; Michailidis, Eleni; Wajid, Muhammad; Shimomura, Yutaka; Christiano, Angela M.

    2010-01-01

    Background X-linked recessive hypohidrotic ectodermal dysplasia (XLHED; OMIM 305100) is a rare genodermatosis characterized clinically by developmental abnormalities affecting the teeth, hair and sweat glands. Mutations in the EDA-A1 gene have been associated with XLHED. Recently, mutations in the EDA-A1 gene have also been implicated in isolated X-linked recessive hypodontia (XLRH; OMIM 313500). Methods We analyzed the DNA from members of 3 unrelated Pakistani families with XLRH for mutations in the EDA-A1 gene through direct sequencing and performed haplotype analysis. Results We identified a common missense mutation in both families designated c.1091T→C (p.M364T). Haplotype analysis revealed that this is a founder mutation in the 3 families. Conclusion XLHED is a syndrome with variable clinical presentations that contain a spectrum of findings, including hypodontia. We suggest that XLRH should be grouped under XLHED as both share several phenotypic and genotypic similarities. PMID:20628232

  17. Androgen receptor gene mutation, rearrangement, polymorphism.

    PubMed

    Eisermann, Kurtis; Wang, Dan; Jing, Yifeng; Pascal, Laura E; Wang, Zhou

    2013-09-01

    Genetic aberrations of the androgen receptor (AR) caused by mutations, rearrangements, and polymorphisms result in a mutant receptor that has varied functions compared to wild type AR. To date, over 1,000 mutations have been reported in the AR with most of these being associated with androgen insensitivity syndrome (AIS). While mutations of AR associated with prostate cancer occur less often in early stage localized disease, mutations in castration-resistant prostate cancer (CRPC) patients treated with anti-androgens occur more frequently with 10-30% of these patients having some form of mutation in the AR. Resistance to anti-androgen therapy usually results from gain-of-function mutations in the LBD such as is seen with bicalutamide and more recently with enzalutamide (MDV3100). Thus, it is crucial to investigate these new AR mutations arising from drug resistance to anti-androgens and other small molecule pharmacological agents.

  18. Charcot-Marie-Tooth disease due to a de novo mutation of the RAB7 gene.

    PubMed

    Meggouh, F; Bienfait, H M E; Weterman, M A J; de Visser, M; Baas, F

    2006-10-24

    We report a 32-year-old patient with Charcot-Marie-Tooth (CMT2B) including foot ulcerations. Genetic analysis identified a de novo mutation in the small GTP-ase late endosomal RAB7 gene, consisting of a c.471G>C, p.Lys157Asn missense mutation. This observation strongly supports the hypothesis that RAB7 mutations are responsible for CMT2B. PMID:17060578

  19. LHON/MELAS overlap syndrome associated with a mitochondrial MTND1 gene mutation.

    PubMed

    Blakely, Emma L; de Silva, Rajith; King, Andrew; Schwarzer, Verena; Harrower, Tim; Dawidek, Gervase; Turnbull, Douglass M; Taylor, Robert W

    2005-05-01

    Pathogenic point mutations in the mitochondrial MTND1 gene have previously been described in association with two distinct clinical phenotypes -- Leber hereditary optic neuropathy (LHON) and mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Here we report the first heteroplasmic mitochondrial DNA (mtDNA) point mutation (3376G>A) in the MTND1 gene associated with an overlap syndrome comprising the clinical features of both LHON and MELAS. Muscle histochemistry revealed subtle mitochondrial abnormalities, while biochemical analysis showed an isolated complex I deficiency. Our findings serve to highlight the growing importance of mutations in mitochondrial complex I structural genes in MELAS and its associated overlap syndromes.

  20. Mutations of the tyrosinase gene in Indo-Pakistani patients with type I (tyrosinase-deficient) oculocutaneous albinsm (OCA)

    SciTech Connect

    Tripathi, R.K.; Droetto, S.; Strunk, K.M.; Holmes, S.A.; Spritz, R.A. ); Bundey, S.; Musarella, M.A.

    1993-12-01

    Oculocutaneous albinism (OCA) is a group of autosomal recessive disorders characterized by deficient synthesis of melanin pigment. Type I (tyrosinase-deficient) OCA results from mutations of the tyrosinase gene (TYR gene) encoding tyrosinase, the enzyme that catalyzes the first two steps of melanin biosynthesis. Mutations of the TYR gene have been identified in a large number of patients, most of Caucasian ethnic origin, with various forms of type I OCA. The authors present an analysis of the TYR gene in eight Indo-Pakistani patients with type I OCA. The authors describe four novel TYR gene mutations and a fifth mutation previously observed in a Caucasian patient. 16 refs., 6 figs.

  1. DRUMS: a human disease related unique gene mutation search engine.

    PubMed

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html.

  2. Mutational analysis of CYP21A2 gene and CYP21A1P pseudogene: long-range PCR on genomic DNA.

    PubMed

    Lee, Hsien-Hsiung

    2014-01-01

    CYP21A2, the gene that codes for P450c21 (Steroid 21-hydroxylase), has a duplicated pseudogene called CYP21A1P. The gene and the pseudogene share 98 % and 96 % sequence homology in exons and in noncoding sequences, respectively, and are located 30 kb apart within the HLA class III human histocompatibility complex locus on chromosome 6p21.3. CYP21A1P is inactive due to the presence of 11 deteriorated mutations in its coding region. These mutations can be transferred to the functional CYP21A2 through intergenic recombination during meiosis or mitosis and lead to the congenital adrenal hyperplasia (CAH) resulting from 21-hydroxylase deficiency. Conversely, portions of CYP21A2 sequence can be transferred to CYP21A1P, modifying the haplotype. Here, we describe a well-established protocol that can be used to unambiguously study the mutational profile of CYP21A2 gene and CYP21A1P pseudogene. The protocol is based on long-range PCR amplification with allele-specific primers, followed by DNA sequencing of smaller fragments.

  3. Mutation analysis of the gene encoding Bruton`s tyrosine kinase in a family with a sporadic case of X-linked agammaglobulinemia reveals three female carriers

    SciTech Connect

    Hagemann, T.L.; Kwan, Sau-Ping; Assa`ad, A.H.

    1995-11-06

    Bruton`s tyrosine kinase (Btk) has been identified as the protein responsible for the primary immunodeficiency X-linked agammaglobulinemia (XLA). We and others have cloned the gene for Btk and recently reported the genomic organization. Nineteen exons were positioned within the 37 kb gene. With the sequence data derived from our genomic map, we have designed a PCR based assay to directly identify mutations of the Btk gene in germline DNA of patients with XLA. In this report, the assay was used to analyze a family with a sporadic case of XLA to determine if other female relatives carry the disease. A four base-pair deletion was found in the DNA of the affected boy and was further traced through three generations. With the direct identification of the mutations responsible for XLA, we can now diagnose conclusively the disease and identify the immunologically normal female carriers. This same technique can easily be applied to prenatal diagnosis in families where the mutation can be identified. 34 refs., 3 figs.

  4. Mutational analysis of patients with neurofibromatosis 2

    SciTech Connect

    MacCollin, M.; Ramesh, V.; Pulaski, K.; Trofatter, J.A.; Short, M.P.; Bove, C.; Jacoby, L.B.; Louis, D.N.; Rubio, M.P.; Eldridge, R.

    1994-08-01

    Neurofibromatosis 2 (NF2) is a genetic disorder characterized by the development of multiple nervous-system tumors in young adulthood. The NF2 gene has recently been isolated and found to encode a new member, merlin, of the protein 4.1 family of cytoskeleton-associated proteins. To define the molecular basis of NF2 in affected individuals, the authors have used SSCP analysis to scan the exons of the NF2 gene from 33 unrelated patients with NF2. Twenty unique SSCP variants were seen in 21 patients; 10 of these individuals were known to be the only affected person in their kindred, while 7 had at least one other known affected relative. In all cases in which family members were available, the SSCP variant segregated with the disease; comparison of sporadic cases with their parents confirmed the de novo variants. DNA sequence analysis revealed that 19 of the 20 variants observed are predicted to lead to a truncated protein due to frameshift, creation of a stop codon, or interference with normal RNA splicing. A single patient carried a 3-bp deletion removing a phenylalanine residue. The authors conclude that the majority of NF2 patients carry an inactivating mutation of the NF2 gene and that neutral polymorphism in the gene is rare. 18 refs., 3 figs., 2 tabs.

  5. Association of CFTR gene mutation with bronchial asthma

    PubMed Central

    Maurya, Nutan; Awasthi, Shally; Dixit, Pratibha

    2012-01-01

    Mutation on both the copies of cystic fibrosis transmembrane conductance regulator (CFTR) gene results in cystic fibrosis (CF), which is a recessively transmitted genetic disorder. It is hypothesized that individuals heterozygous for CFTR gene mutation may develop obstructive pulmonary diseases like asthma. There is great heterogeneity in the phenotypic presentation and severity of CF lung disease. This could be due to genetic or environmental factors. Several modifier genes have been identified which may directly or indirectly interact with CFTR pathway and affect the severity of disease. This review article discusses the information related to the association of CFTR gene mutation with asthma. Association between CFTR gene mutation and asthma is still unclear. Report ranges from studies showing positive or protective association to those showing no association. Therefore, studies with sufficiently large sample size and detailed phenotype are required to define the potential contribution of CFTR in the pathogenesis of asthma. PMID:22664493

  6. Genetic analysis of the Kirsten-ras-revertant 1 gene: Potentiation of its tumor suppressor activity by specific point mutations

    SciTech Connect

    Kitayama, Hitoshi Univ. of Tsukuba, Ibaraki ); Matsuzaki, Tomoko; Ikawa, Yoji; Noda, Makoto )

    1990-06-01

    Kirsten-ras-revertant 1 (Krev-1) cDNA encodes a ras-related protein and exhibits an activity of inducing flat revertants at certain frequencies (2-5% of total transfectants) when introduced into a v-K-ras-transformed mouse NIH 3T3 cell line, DT. Toward understanding the mechanism of action of Krev-1 protein, the authors constructed a series of point mutants of Krev-1 cDNA and tested their biological activities in DT cells and HT1080 human fibrosarcoma cells harboring the activated N-ras gene. Substitutions of the amino acid residues in the putative guanine nucleotide-binding regions (Asp{sup 17} and Asn{sup 116}), in the putative effector-binding domain (residue 38), at the putative acylation site (Cys{sup 181}), and at the unique Thr{sup 61} all decreased the transformation suppressor activity. On the other hand, substitutions such as Gly{sup 12} to Val{sup 12} and Gln{sup 63} to Glu{sup 63} were found to significantly increase the transformation suppressor/tumor suppressor activity of Krev-1. These findings are consistent with the idea that Krev-1 protein is regulated like many other G proteins by the guanine triphosphate/guanine diphosphate-exchange mechanism probably in response to certain negative growth-regulatory signals.

  7. Molecular diagnostics for myelin proteolipid protein gene mutations in Pelizaeus-Merzbacher disease.

    PubMed Central

    Doll, R; Natowicz, M R; Schiffmann, R; Smith, F I

    1992-01-01

    Pelizaeus-Merzbacher disease (PMD) is a clinically heterogeneous, slowly progressive leukodystrophy. The recent detection of mutations in the myelin proteolipid protein (PLP) gene in several PMD patients offers the opportunity both to design DNA-based tests that would be useful in diagnosing a proportion of PMD cases and, in particular, to evaluate the diagnostic utility of single-strand conformation polymorphism (SSCP) analysis for this disease. A combination of SSCP analysis and direct sequencing of PCR-amplified DNA was used to screen for PLP mutations in 24 patients affected with leukodystrophies of unknown etiology. Two heretofore undescribed mutations in the PLP gene were identified, Asp202His in exon 4 and Gly73Arg in exon 3. The ease and efficiency of SSCP analysis in detecting new mutations support the utilization of this technique in screening for PLP mutations in patients with unexplained leukodystrophies. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1376966

  8. Mutation spectrum of the TYR and SLC45A2 genes in patients with oculocutaneous albinism.

    PubMed

    Ko, Jung Min; Yang, Jung-Ah; Jeong, Seon-Yong; Kim, Hyon-Ju

    2012-04-01

    Oculocutaneous albinism (OCA) is a group of inherited disorders characterized by defective melanin biosynthesis. OCA1, the most common and severe form, is caused by mutations in the tyrosinase (TYR) gene. OCA4, caused by mutations in the SLC45A2 gene, has frequently been reported in the Japanese population. To determine the mutational spectrum in Korean OCA patients, 12 patients were recruited. The samples were first screened for TYR mutations, and negative samples were screened for SLC45A2 mutations. OCA1 was confirmed in 8 of 12 (66.7%) patients, and OCA4 was diagnosed in 1 (8.3%) patient. In the OCA1 patients, a total of 6 distinct TYR mutations were found in 15 of 16 (93.8%) alleles, all of which had been previously reported. Out of the 6 alleles, c.929insC was the most frequently detected (31.3%), and was mainly associated with OCA1A phenotypes. Other TYR mutations identified included c.1037-7T>A/c.1037-10delTT, p.D383N, p.R77Q and p.R299H. These largely overlapped with mutations found in Japanese and Chinese patients. The SLC45A2 gene analysis identified 1 novel mutation, p.D93N, in 1 patient. This study has provided information on the mutation spectrum in Korean OCA patients, and allows us to estimate the relative frequencies of OCA1 and OCA4 in Korea.

  9. Ataxia Telangiectasia–Mutated Gene Polymorphisms and Acute Normal Tissue Injuries in Cancer Patients After Radiation Therapy: A Systematic Review and Meta-analysis

    SciTech Connect

    Dong, Lihua; Cui, Jingkun; Tang, Fengjiao; Cong, Xiaofeng; Han, Fujun

    2015-04-01

    Purpose: Studies of the association between ataxia telangiectasia–mutated (ATM) gene polymorphisms and acute radiation injuries are often small in sample size, and the results are inconsistent. We conducted the first meta-analysis to provide a systematic review of published findings. Methods and Materials: Publications were identified by searching PubMed up to April 25, 2014. Primary meta-analysis was performed for all acute radiation injuries, and subgroup meta-analyses were based on clinical endpoint. The influence of sample size and radiation injury incidence on genetic effects was estimated in sensitivity analyses. Power calculations were also conducted. Results: The meta-analysis was conducted on the ATM polymorphism rs1801516, including 5 studies with 1588 participants. For all studies, the cut-off for differentiating cases from controls was grade 2 acute radiation injuries. The primary meta-analysis showed a significant association with overall acute radiation injuries (allelic model: odds ratio = 1.33, 95% confidence interval: 1.04-1.71). Subgroup analyses detected an association between the rs1801516 polymorphism and a significant increase in urinary and lower gastrointestinal injuries and an increase in skin injury that was not statistically significant. There was no between-study heterogeneity in any meta-analyses. In the sensitivity analyses, small studies did not show larger effects than large studies. In addition, studies with high incidence of acute radiation injuries showed larger effects than studies with low incidence. Power calculations revealed that the statistical power of the primary meta-analysis was borderline, whereas there was adequate power for the subgroup analysis of studies with high incidence of acute radiation injuries. Conclusions: Our meta-analysis showed a consistency of the results from the overall and subgroup analyses. We also showed that the genetic effect of the rs1801516 polymorphism on acute radiation injuries was

  10. Update of the androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  11. Diaphanous gene mutation affects spiral cleavage and chirality in snails

    PubMed Central

    Kuroda, Reiko; Fujikura, Kohei; Abe, Masanori; Hosoiri, Yuji; Asakawa, Shuichi; Shimizu, Miho; Umeda, Shin; Ichikawa, Futaba; Takahashi, Hiromi

    2016-01-01

    L-R (left and right) symmetry breaking during embryogenesis and the establishment of asymmetric body plan are key issues in developmental biology, but the onset including the handedness-determining gene locus still remains unknown. Using pure dextral (DD) and sinistral (dd) strains of the pond snail Lymnaea stagnalis as well as its F2 through to F10 backcrossed lines, the single handedness-determining-gene locus was mapped by genetic linkage analysis, BAC cloning and chromosome walking. We have identified the actin-related diaphanous gene Lsdia1 as the strongest candidate. Although the cDNA and derived amino acid sequences of the tandemly duplicated Lsdia1 and Lsdia2 genes are very similar, we could discriminate the two genes/proteins in our molecular biology experiments. The Lsdia1 gene of the sinistral strain carries a frameshift mutation that abrogates full-length LsDia1 protein expression. In the dextral strain, it is already translated prior to oviposition. Expression of Lsdia1 (only in the dextral strain) and Lsdia2 (in both chirality) decreases after the 1-cell stage, with no asymmetric localization throughout. The evolutionary relationships among body handedness, SD/SI (spiral deformation/spindle inclination) at the third cleavage, and expression of diaphanous proteins are discussed in comparison with three other pond snails (L. peregra, Physa acuta and Indoplanorbis exustus). PMID:27708420

  12. Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene (SLC26A2): 22 novel mutations, mutation review, associated skeletal phenotypes, and diagnostic relevance.

    PubMed

    Rossi, A; Superti-Furga, A

    2001-03-01

    Mutations in the DTDST gene can result in a family of skeletal dysplasia conditions which comprise two lethal disorders, achondrogenesis type 1B (ACG1B) and atelosteogenesis type 2 (AO2); and two non-lethal disorders, diastrophic dysplasia (DTD) and recessive multiple epiphyseal dysplasia (rMED). The gene product is a sulfate-chloride exchanger of the cell membrane. Inactivation of the sulfate exchanger leads to intracellular sulfate depletion and to the synthesis of undersulfated proteoglycans in susceptible cells such as chondrocytes and fibroblasts. Genotype-phenotype correlations are recognizable, with mutations predicting a truncated protein or a non-conservative amino acid substitution in a transmembrane domain giving the severe phenotypes, and non-transmembrane amino acid substitutions and splice site mutations giving the milder phenotypes. The clinical phenotype is modulated strictly by the degree of residual activity. Over 30 mutations have been observed, including 22 novel mutations reported here. The most frequent mutation, 862C>T (R279W), is a mild mutation giving the rMED phenotype when homozygous and mostly DTD when compounded; occurrence at a CpG dinucleotide and its panethnic distribution suggest independent recurrence. Mutation IVS1+2T>C is the second most common mutation, but is very frequent in Finland. It produces low levels of correctly spliced mRNA, and results in DTD when homozygous. Two other mutations, 1045-1047delGTT (V340del) and 558C>T (R178X), are associated with severe phenotypes and have been observed in multiple patients. Most other mutations are rare. Heterozygotes are clinically unaffected. When clinical samples are screened for radiologic and histologic features compatible with the ACG1B/AO2/DTD/rMED spectrum prior to analysis, the mutation detection rate is high (over 90% of alleles), and appropriate genetic counseling can be given. The sulfate uptake or sulfate incorporation assays in cultured fibroblasts have largely been

  13. Mutational screening of the RB1 gene in Italian patients with retinoblastoma reveals 11 novel mutations.

    PubMed

    Sampieri, Katia; Hadjistilianou, Theodora; Mari, Francesca; Speciale, Caterina; Mencarelli, Maria Antonietta; Cetta, Francesco; Manoukian, Siranoush; Peissel, Bernard; Giachino, Daniela; Pasini, Barbara; Acquaviva, Antonio; Caporossi, Aldo; Frezzotti, Renato; Renieri, Alessandra; Bruttini, Mirella

    2006-01-01

    Retinoblastoma (RB, OMIM#180200) is the most common intraocular tumour in infancy and early childhood. Constituent mutations in the RB1 gene predispose individuals to RB development. We performed a mutational screening of the RB1 gene in Italian patients affected by RB referred to the Medical Genetics of the University of Siena. In 35 unrelated patients, we identified germline RB1 mutations in 6 out of 9 familial cases (66%) and in 7 out of 26 with no family history of RB (27%). Using the single-strand conformational polymorphism (SSCP) technique, 11 novel mutations were detected, including 3 nonsense, 5 frameshift and 4 splice-site mutations. Only two of these mutations (1 splice site and 1 missense) were previously reported. The mutation spectrum reflects the published literature, encompassing predominately nonsense or frameshift and splicing mutations. RB1 germline mutation was detected in 37% of our cases. Gross rearrangements outside the investigated region, altered DNA methylation, or mutations in non-coding regions, may be the cause of disease in the remainder of the patients. Some cases, e.g. a case of incomplete penetrance, or variable expressivity ranging from retinoma to multiple tumours, are discussed in detail. In addition, a case of pre-conception genetic counselling resolved by rescue of banked cordonal blood of the affected deceased child is described.

  14. Identification of a novel mutation of the EDA gene in X-linked hypohidrotic ectodermal dysplasia.

    PubMed

    Xue, J J; Tan, B; Gao, Q P; Zhu, G S; Liang, D S; Wu, L Q

    2015-01-01

    This study aimed to identify the disease-causing mutation in the ectodysplasin A (EDA) gene in a Chinese family affected by X-linked hypohidrotic ectodermal dysplasia (XLHED). A family clinically diagnosed with XLHED was investigated. For mutation analysis, the coding region of EDA of 2 patients and 7 unaffected members of the family was sequenced. The detected mutation in EDA was investigated in 120 normal controls. A missense mutation (c.878T>G) in EDA was detected in 2 patients and 3 female carriers, but not in 4 unaffected members of the family. The mutation was not found in the 120 healthy controls and has not been reported previously. Our findings indicate that a novel mutation (c.878T>G) of EDA is associated with XLHED and adds to the repertoire of EDA mutations.

  15. Variable expressivity and mutation databases: The androgen receptor gene mutations database.

    PubMed

    Gottlieb, B; Beitel, L K; Trifiro, M A

    2001-05-01

    For over 50 years genetics has presumed that variations in phenotypic expression have, for the most part, been the result of alterations in genotype. The importance and value of mutation databases has been based on the premise that the same gene or allelic variation in a specific gene that has been proven to determine a specific phenotype, will always produce the same phenotype. However, recent evidence has shown that so called "simple" Mendelian disorders or monogenic traits are often far from simple, exhibiting phenotypic variation (variable expressivity) that cannot be explained solely by a gene or allelic alteration. The AR gene mutations database now lists 25 cases where different degrees of androgen insensitivity are caused by identical mutations in the androgen receptor gene. In five of these cases the phenotypic variability is due to somatic mosaicism, that is, somatic mutations that occur in only certain cells of androgen-sensitive tissue. Recently, a number of other cases of variable expressivity have also been linked to somatic mosaicism. The impact of variable expressivity due to somatic mutations and mosaicism on mutation databases is discussed. In particular, the effect of an organism exhibiting genetic heterogeneity within its tissues, and the possibility of an organism's genotype changing over its lifetime, are considered to have important implications for mutation databases in the future. PMID:11317353

  16. Target gene mutational pattern in Lynch syndrome colorectal carcinomas according to tumour location and germline mutation

    PubMed Central

    Pinheiro, Manuela; Pinto, Carla; Peixoto, Ana; Veiga, Isabel; Lopes, Paula; Henrique, Rui; Baldaia, Helena; Carneiro, Fátima; Seruca, Raquel; Tomlinson, Ian; Kovac, Michal; Heinimann, Karl; Teixeira, Manuel R

    2015-01-01

    Background: We previously reported that the target genes in sporadic mismatch repair (MMR)-deficient colorectal carcinomas (CRCs) in the distal colon differ from those occurring elsewhere in the colon. This study aimed to compare the target gene mutational pattern in microsatellite instability (MSI) CRC from Lynch syndrome patients stratified by tumour location and germline mutation, as well as with that of sporadic disease. Methods: A series of CRC from Lynch syndrome patients was analysed for MSI in genes predicted to be selective MSI targets and known to be involved in several pathways of colorectal carcinogenesis. Results: The most frequently mutated genes belong to the TGF-β superfamily pathway, namely ACVR2A and TGFBR2. A significantly higher frequency of target gene mutations was observed in CRC from patients with germline mutations in MLH1 or MSH2 when compared with MSH6. Mutations in microsatellite sequences (A)7 of BMPR2 and (A)8 of MSH3 were significantly more frequent in the distal CRC. Additionally, we observed differences in MSH3 and TGFBR2 mutational frequency between Lynch syndrome and sporadic MSI CRC regarding tumour location. Conclusions: Our results indicate that the pattern of genetic changes differs in CRC depending on tumour location and between Lynch syndrome and sporadic MSI CRC, suggesting that carcinogenesis can occur by different pathways even if driven by generalised MSI. PMID:26247575

  17. Phenotypic Involvement in Females with the FMR1 Gene Mutation.

    ERIC Educational Resources Information Center

    Riddle, J. E.; Cheema, A.; Sobesky, W. E.; Gardner, S. C.; Taylor, A. K.; Pennington, B. F.; Hagerman, R. J.

    1998-01-01

    A study investigated phenotypic effects seen in 114 females with premutation and 41 females (ages 18-58) with full Fragile X mental retardation gene mutation. Those with the full mutation had a greater incidence of hand-flapping, eye contact problems, special education help for reading and math, and grade retention. (Author/CR)

  18. Simulation of gene evolution under directional mutational pressure

    NASA Astrophysics Data System (ADS)

    Dudkiewicz, Małgorzata; Mackiewicz, Paweł; Kowalczuk, Maria; Mackiewicz, Dorota; Nowicka, Aleksandra; Polak, Natalia; Smolarczyk, Kamila; Banaszak, Joanna; R. Dudek, Mirosław; Cebrat, Stanisław

    2004-05-01

    The two main mechanisms generating the genetic diversity, mutation and recombination, have random character but they are biased which has an effect on the generation of asymmetry in the bacterial chromosome structure and in the protein coding sequences. Thus, like in a case of two chiral molecules-the two possible orientations of a gene in relation to the topology of a chromosome are not equivalent. Assuming that the sequence of a gene may oscillate only between certain limits of its structural composition means that the gene could be forced out of these limits by the directional mutation pressure, in the course of evolution. The probability of the event depends on the time the gene stays under the same mutation pressure. Inversion of the gene changes the directional mutational pressure to the reciprocal one and hence it changes the distance of the gene to its lower and upper bound of the structural tolerance. Using Monte Carlo methods we were able to simulate the evolution of genes under experimentally found mutational pressure, assuming simple mechanisms of selection. We found that the mutation and recombination should work in accordance to lower their negative effects on the function of the products of coding sequences.

  19. Screening for germline mutations in the neurofibromatosis type 2 (NF2) gene in NF2 patients

    SciTech Connect

    Andermann, A.A.; Ruttledge, M.H.; Rangaratnam, A.

    1994-09-01

    Neurofibromatosis type 2 (NF2) is an autosomal dominant disease with over 95% penetrance which predisposes gene carriers to develop multiple tumors of the central nervous system. The NF2 gene is a putative tumor suppressor gene which was previously mapped to the long arm of chromosome 22, and has recently been identified, using positional cloning techniques. The gene encodes a protein, schwannomin (SCH), which is highly homologous to the band 4.1 protein family. In an attempt to identify and characterize mutations which lead to the manifestation of the disease, we have used single strand conformation analysis (SSCA) to screen for germline mutations in all 17 exons of the NF2 gene in 59 unrelated NF2 patients, representing both familial and new mutations. A total of 27 migration abnormalities was found in 26 patients. Using direct sequencing analysis, the majority of these variants were found to result in nonsense, splice-site or frameshift mutations. Mutations identified in familial NF2 patients segregate in the family, and may prove to be useful tools for a simple and direct SSCA-based technique of presymptomatic or prenatal diagnosis in relatives of patients with NF2. This may be of particular importance in children of patients who have new mutations in the NF2 gene, where linkage analysis may not be feasible.

  20. Sequencing of the rat beta-catenin gene (Ctnnb1) and mutational analysis of liver tumors induced by 2-amino-3-methylimidazo[4,5-f]quinoline.

    PubMed

    Li, Qingjie; Dixon, Brian M; Al-Fageeh, Mohamed; Blum, Carmen A; Dashwood, Roderick H

    2002-01-23

    beta-Catenin, a protein that functions in cadherin-mediated cell-cell adhesion as well as in signal transduction, has received increasing attention in recent years due to its role as an oncogene in various human cancers. The primary sequence of the human beta-catenin gene (CTNNB1) has been known for some time, but that of the rat beta-catenin gene (Ctnnb1) has not heretofore been studied in detail. We report here the primary structure of Ctnnb1 using PCR-based methods and direct sequencing. The size of the complete Ctnnb1 gene was determined to be 9082 bp. We found the rat Ctnnb1 gene to contain 14 exons, ranging in size from 61 to 356 bp, and 13 introns ranging in size from 76 to 2524 bp. The transcription start site appears to be 157 bp upstream of the ATG codon located in exon 1. The resulting transcript is 2650 nucleotides long (encoding a protein of 781 amino acids). We found the 5' UTR to consist of 157 nucleotides and the 3' UTR to be 147 nucleotides long. The region coding for the glycogen synthase kinase-3beta domain of beta-catenin is located in exon 2 of rat Ctnnb1, in contrast to human CTNNB1 in which it is found in exon 3. Based on the newly acquired knowledge of the primary sequence, more than a dozen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-induced rat liver tumors were screened for the presence or absence of mutations in all 14 exons of rat Ctnnb1. Surprisingly, no mutations were found. The results are discussed in the context of the organ-specificity of IQ-induced mutations in beta-catenin, being highly prevalent in colon tumors, but much less common in liver tumors.

  1. Keratin 9 gene mutations in epidermolytic palmoplantar keratoderma (EPPK).

    PubMed

    Reis, A; Hennies, H C; Langbein, L; Digweed, M; Mischke, D; Drechsler, M; Schröck, E; Royer-Pokora, B; Franke, W W; Sperling, K

    1994-02-01

    We have isolated the gene for human type I keratin 9 (KRT9) and localised it to chromosome 17q21. Patients with epidermolytic palmoplantar keratoderma (EPPK), an autosomal dominant skin disease, were investigated. Three KRT9 mutations, N160K, R162Q, and R162W, were identified. All the mutations are in the highly conserved coil 1A of the rod domain, thought to be important for heterodimerisation. R162W was detected in five unrelated families and affects the corresponding residue in the keratin 14 and keratin 10 genes that is also altered in cases of epidermolysis bullosa simplex and generalised epidermolytic hyperkeratosis, respectively. These findings provide further evidence that mutations in keratin genes may cause epidermolysis and hyperkeratosis and that hyperkeratosis of palms and soles may be caused by different mutations in the KRT9 gene.

  2. Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and consequences.

    PubMed Central

    Teraoka, S N; Telatar, M; Becker-Catania, S; Liang, T; Onengüt, S; Tolun, A; Chessa, L; Sanal, O; Bernatowska, E; Gatti, R A; Concannon, P

    1999-01-01

    Mutations resulting in defective splicing constitute a significant proportion (30/62 [48%]) of a new series of mutations in the ATM gene in patients with ataxia-telangiectasia (AT) that were detected by the protein-truncation assay followed by sequence analysis of genomic DNA. Fewer than half of the splicing mutations involved the canonical AG splice-acceptor site or GT splice-donor site. A higher percentage of mutations occurred at less stringently conserved sites, including silent mutations of the last nucleotide of exons, mutations in nucleotides other than the conserved AG and GT in the consensus splice sites, and creation of splice-acceptor or splice-donor sites in either introns or exons. These splicing mutations led to a variety of consequences, including exon skipping and, to a lesser degree, intron retention, activation of cryptic splice sites, or creation of new splice sites. In addition, 5 of 12 nonsense mutations and 1 missense mutation were associated with deletion in the cDNA of the exons in which the mutations occurred. No ATM protein was detected by western blotting in any AT cell line in which splicing mutations were identified. Several cases of exon skipping in both normal controls and patients for whom no underlying defect could be found in genomic DNA were also observed, suggesting caution in the interpretation of exon deletions observed in ATM cDNA when there is no accompanying identification of genomic mutations. PMID:10330348

  3. High accuracy mutation detection in leukemia on a selected panel of cancer genes.

    PubMed

    Kalender Atak, Zeynep; De Keersmaecker, Kim; Gianfelici, Valentina; Geerdens, Ellen; Vandepoel, Roel; Pauwels, Daphnie; Porcu, Michaël; Lahortiga, Idoya; Brys, Vanessa; Dirks, Willy G; Quentmeier, Hilmar; Cloos, Jacqueline; Cuppens, Harry; Uyttebroeck, Anne; Vandenberghe, Peter; Cools, Jan; Aerts, Stein

    2012-01-01

    With the advent of whole-genome and whole-exome sequencing, high-quality catalogs of recurrently mutated cancer genes are becoming available for many cancer types. Increasing access to sequencing technology, including bench-top sequencers, provide the opportunity to re-sequence a limited set of cancer genes across a patient cohort with limited processing time. Here, we re-sequenced a set of cancer genes in T-cell acute lymphoblastic leukemia (T-ALL) using Nimblegen sequence capture coupled with Roche/454 technology. First, we investigated how a maximal sensitivity and specificity of mutation detection can be achieved through a benchmark study. We tested nine combinations of different mapping and variant-calling methods, varied the variant calling parameters, and compared the predicted mutations with a large independent validation set obtained by capillary re-sequencing. We found that the combination of two mapping algorithms, namely BWA-SW and SSAHA2, coupled with the variant calling algorithm Atlas-SNP2 yields the highest sensitivity (95%) and the highest specificity (93%). Next, we applied this analysis pipeline to identify mutations in a set of 58 cancer genes, in a panel of 18 T-ALL cell lines and 15 T-ALL patient samples. We confirmed mutations in known T-ALL drivers, including PHF6, NF1, FBXW7, NOTCH1, KRAS, NRAS, PIK3CA, and PTEN. Interestingly, we also found mutations in several cancer genes that had not been linked to T-ALL before, including JAK3. Finally, we re-sequenced a small set of 39 candidate genes and identified recurrent mutations in TET1, SPRY3 and SPRY4. In conclusion, we established an optimized analysis pipeline for Roche/454 data that can be applied to accurately detect gene mutations in cancer, which led to the identification of several new candidate T-ALL driver mutations.

  4. Identification and functional analysis of novel THAP1 mutations.

    PubMed

    Lohmann, Katja; Uflacker, Nils; Erogullari, Alev; Lohnau, Thora; Winkler, Susen; Dendorfer, Andreas; Schneider, Susanne A; Osmanovic, Alma; Svetel, Marina; Ferbert, Andreas; Zittel, Simone; Kühn, Andrea A; Schmidt, Alexander; Altenmüller, Eckart; Münchau, Alexander; Kamm, Christoph; Wittstock, Matthias; Kupsch, Andreas; Moro, Elena; Volkmann, Jens; Kostic, Vladimir; Kaiser, Frank J; Klein, Christine; Brüggemann, Norbert

    2012-02-01

    Mutations in THAP1 have been associated with dystonia 6 (DYT6). THAP1 encodes a transcription factor that represses the expression of DYT1. To further evaluate the mutational spectrum of THAP1 and its associated phenotype, we sequenced THAP1 in 567 patients with focal (n = 461), segmental (n = 68), or generalized dystonia (n = 38). We identified 10 novel variants, including six missense substitutions within the DNA-binding Thanatos-associated protein domain (Arg13His, Lys16Glu, His23Pro, Lys24Glu, Pro26Leu, Ile80Val), a 1bp-deletion downstream of the nuclear localization signal (Asp191Thrfs*9), and three alterations in the untranslated regions. The effect of the missense variants was assessed using prediction tools and luciferase reporter gene assays. This indicated the Ile80Val substitution as a benign variant. The subcellular localization of Asp191Thrfs*9 suggests a disturbed nuclear import for this mutation. Thus, we consider six of the 10 novel variants as pathogenic mutations accounting for a mutation frequency of 1.1%. Mutation carriers presented mainly with early onset dystonia (<12 years in five of six patients). Symptoms started in an arm or neck and spread to become generalized in three patients or segmental in two patients. Speech was affected in four mutation carriers. In conclusion, THAP1 mutations are rare in unselected dystonia patients and functional analysis is necessary to distinguish between benign variants and pathogenic mutations. PMID:21847143

  5. Identification and functional analysis of novel THAP1 mutations

    PubMed Central

    Lohmann, Katja; Uflacker, Nils; Erogullari, Alev; Lohnau, Thora; Winkler, Susen; Dendorfer, Andreas; Schneider, Susanne A; Osmanovic, Alma; Svetel, Marina; Ferbert, Andreas; Zittel, Simone; Kühn, Andrea A; Schmidt, Alexander; Altenmüller, Eckart; Münchau, Alexander; Kamm, Christoph; Wittstock, Matthias; Kupsch, Andreas; Moro, Elena; Volkmann, Jens; Kostic, Vladimir; Kaiser, Frank J; Klein, Christine; Brüggemann, Norbert

    2012-01-01

    Mutations in THAP1 have been associated with dystonia 6 (DYT6). THAP1 encodes a transcription factor that represses the expression of DYT1. To further evaluate the mutational spectrum of THAP1 and its associated phenotype, we sequenced THAP1 in 567 patients with focal (n=461), segmental (n=68), or generalized dystonia (n=38). We identified 10 novel variants, including six missense substitutions within the DNA-binding Thanatos-associated protein domain (Arg13His, Lys16Glu, His23Pro, Lys24Glu, Pro26Leu, Ile80Val), a 1bp-deletion downstream of the nuclear localization signal (Asp191Thrfs*9), and three alterations in the untranslated regions. The effect of the missense variants was assessed using prediction tools and luciferase reporter gene assays. This indicated the Ile80Val substitution as a benign variant. The subcellular localization of Asp191Thrfs*9 suggests a disturbed nuclear import for this mutation. Thus, we consider six of the 10 novel variants as pathogenic mutations accounting for a mutation frequency of 1.1%. Mutation carriers presented mainly with early onset dystonia (<12 years in five of six patients). Symptoms started in an arm or neck and spread to become generalized in three patients or segmental in two patients. Speech was affected in four mutation carriers. In conclusion, THAP1 mutations are rare in unselected dystonia patients and functional analysis is necessary to distinguish between benign variants and pathogenic mutations. PMID:21847143

  6. Mutational and Phylogenetic Analyses of the Mycobacterial mbt Gene Cluster ▿§

    PubMed Central

    Chavadi, Sivagami Sundaram; Stirrett, Karen L.; Edupuganti, Uthamaphani R.; Vergnolle, Olivia; Sadhanandan, Gigani; Marchiano, Emily; Martin, Che; Qiu, Wei-Gang; Soll, Clifford E.; Quadri, Luis E. N.

    2011-01-01

    The mycobactin siderophore system is present in many Mycobacterium species, including M. tuberculosis and other clinically relevant mycobacteria. This siderophore system is believed to be utilized by both pathogenic and nonpathogenic mycobacteria for iron acquisition in both in vivo and ex vivo iron-limiting environments, respectively. Several M. tuberculosis genes located in a so-called mbt gene cluster have been predicted to be required for the biosynthesis of the core scaffold of mycobactin based on sequence analysis. A systematic and controlled mutational analysis probing the hypothesized essential nature of each of these genes for mycobactin production has been lacking. The degree of conservation of mbt gene cluster orthologs remains to be investigated as well. In this study, we sought to conclusively establish whether each of nine mbt genes was required for mycobactin production and to examine the conservation of gene clusters orthologous to the M. tuberculosis mbt gene cluster in other bacteria. We report a systematic mutational analysis of the mbt gene cluster ortholog found in Mycobacterium smegmatis. This mutational analysis demonstrates that eight of the nine mbt genes investigated are essential for mycobactin production. Our genome mining and phylogenetic analyses reveal the presence of orthologous mbt gene clusters in several bacterial species. These gene clusters display significant organizational differences originating from an intricate evolutionary path that might have included horizontal gene transfers. Altogether, the findings reported herein advance our understanding of the genetic requirements for the biosynthesis of an important mycobacterial secondary metabolite with relevance to virulence. PMID:21873494

  7. Meta-analysis diagnostic accuracy of SNP-based pathogenicity detection tools: a case of UTG1A1 gene mutations

    PubMed Central

    Galehdari, Hamid; Saki, Najmaldin; Mohammadi-asl, Javad; Rahim, Fakher

    2013-01-01

    Crigler-Najjar syndrome (CNS) type I and type II are usually inherited as autosomal recessive conditions that result from mutations in the UGT1A1 gene. The main objective of the present review is to summarize results of all available evidence on the accuracy of SNP-based pathogenicity detection tools compared to published clinical result for the prediction of in nsSNPs that leads to disease using prediction performance method. A comprehensive search was performed to find all mutations related to CNS. Database searches included dbSNP, SNPdbe, HGMD, Swissvar, ensemble, and OMIM. All the mutation related to CNS was extracted. The pathogenicity prediction was done using SNP-based pathogenicity detection tools include SIFT, PHD-SNP, PolyPhen2, fathmm, Provean, and Mutpred. Overall, 59 different SNPs related to missense mutations in the UGT1A1 gene, were reviewed. Comparing the diagnostic OR, PolyPhen2 and Mutpred have the highest detection 4.983 (95% CI: 1.24 – 20.02) in both, following by SIFT (diagnostic OR: 3.25, 95% CI: 1.07 – 9.83). The highest MCC of SNP-based pathogenicity detection tools, was belong to SIFT (34.19%) followed by Provean, PolyPhen2, and Mutpred (29.99%, 29.89%, and 29.89%, respectively). Hence the highest SNP-based pathogenicity detection tools ACC, was fit to SIFT (62.71%) followed by PolyPhen2, and Mutpred (61.02%, in both). Our results suggest that some of the well-established SNP-based pathogenicity detection tools can appropriately reflect the role of a disease-associated SNP in both local and global structures. PMID:23875061

  8. Point Mutations Effects on Charge Transport Properties of the Tumor-Suppressor Gene p53

    NASA Astrophysics Data System (ADS)

    Roemer, Rudolf A.; Shih, Chi-Tin; Roche, Stephan

    2008-03-01

    We report on a theoretical study of point mutations effects on charge transfer properties in the DNA sequence of the tumor-suppressor p53 gene. On the basis of effective tight-binding models which simulate hole propagation along the DNA, a statistical analysis of mutation-induced charge transfer modifications is performed. In contrast to non-cancerous mutations, mutation hotspots tend to result in significantly weaker changes of transmission properties. This suggests that charge transport could play a significant role for DNA-repairing deficiency yielding carcinogenesis.

  9. Novel mutations in the COL2A1 gene in Japanese patients with Stickler syndrome.

    PubMed

    Kondo, Hiroyuki; Matsushita, Itsuka; Nagata, Tatsuo; Hayashi, Takaaki; Kakinoki, Masashi; Uchio, Eiichi; Kondo, Mineo; Ohji, Masahito; Kusaka, Shunji

    2016-01-01

    Stickler syndrome is an inherited connective tissue disorder that affects the eyes, cartilage and articular tissues. The phenotypes of Stickler syndrome include congenital high myopia, retinal detachment, premature joint degeneration, hearing impairment and craniofacial anomalies, such as cleft palate and midline facial hypoplasia. The disease is genetically heterogeneous, and the majority of the cases are caused by mutations in the COL2A1 gene. We examined 40 Japanese patients with Stickler syndrome from 23 families to determine whether they had mutations in the COL2A1 gene. This analysis was conducted by examining each patient's genomic DNA by Sanger sequencing. Five nonsense, 4 splicing and 8 deletion mutations in the COL2A1 gene were identified, accounting for 21 of the 23 families. Different mutations of the COL2A1 gene were associated with similar phenotypes but with different degrees of expressivity. PMID:27408751

  10. Novel mutations in the COL2A1 gene in Japanese patients with Stickler syndrome

    PubMed Central

    Kondo, Hiroyuki; Matsushita, Itsuka; Nagata, Tatsuo; Hayashi, Takaaki; Kakinoki, Masashi; Uchio, Eiichi; Kondo, Mineo; Ohji, Masahito; Kusaka, Shunji

    2016-01-01

    Stickler syndrome is an inherited connective tissue disorder that affects the eyes, cartilage and articular tissues. The phenotypes of Stickler syndrome include congenital high myopia, retinal detachment, premature joint degeneration, hearing impairment and craniofacial anomalies, such as cleft palate and midline facial hypoplasia. The disease is genetically heterogeneous, and the majority of the cases are caused by mutations in the COL2A1 gene. We examined 40 Japanese patients with Stickler syndrome from 23 families to determine whether they had mutations in the COL2A1 gene. This analysis was conducted by examining each patient’s genomic DNA by Sanger sequencing. Five nonsense, 4 splicing and 8 deletion mutations in the COL2A1 gene were identified, accounting for 21 of the 23 families. Different mutations of the COL2A1 gene were associated with similar phenotypes but with different degrees of expressivity. PMID:27408751

  11. Molecular spectrum of α-globin gene mutations in the Aegean region of Turkey: first observation of three α-globin gene mutations in the Turkish population.

    PubMed

    Onay, Hüseyin; Aykut, Ayça; Karaca, Emin; Durmaz, Asude; Solmaz, Aslı Ece; Çoğulu, Özgür; Aydınok, Yeşim; Vergin, Canan; Özkınay, Ferda

    2015-07-01

    Molecular test results of 231 individuals referred to our molecular genetics laboratory for analysis of α-globin gene mutations between the years 2007 and 2013 were evaluated. Analysis of α-thalassemia gene mutations was performed using reverse dot-blot hybridisation, which includes 21 common mutations. Twelve distinct α-thalassemia mutations and 23 different genotypes have been detected in the Aegean region of Turkey. The most frequent mutations were -α3.7 (52.28 %), -(α)20.5 (14.74 %), --MED (10.53 %), and αPA-1α (8.77 %). Three α-thalassemia mutations (αcd142α, --SEA, and αICα), which are more prevalent in Southeast Asia, are identified for the first time in Turkey in this study. We find that a broad spectrum of α-thalassemia mutations is present in the Aegean region of Turkey. The results obtained in this study may help inform decisions in the design and implementation of prevention strategies and diagnostic approaches.

  12. Convergence in pigmentation at multiple levels: mutations, genes and function

    PubMed Central

    Manceau, Marie; Domingues, Vera S.; Linnen, Catherine R.; Rosenblum, Erica Bree; Hoekstra, Hopi E.

    2010-01-01

    Convergence—the independent evolution of the same trait by two or more taxa—has long been of interest to evolutionary biologists, but only recently has the molecular basis of phenotypic convergence been identified. Here, we highlight studies of rapid evolution of cryptic coloration in vertebrates to demonstrate that phenotypic convergence can occur at multiple levels: mutations, genes and gene function. We first show that different genes can be responsible for convergent phenotypes even among closely related populations, for example, in the pale beach mice inhabiting Florida's Gulf and Atlantic coasts. By contrast, the exact same mutation can create similar phenotypes in distantly related species such as mice and mammoths. Next, we show that different mutations in the same gene need not be functionally equivalent to produce similar phenotypes. For example, separate mutations produce divergent protein function but convergent pale coloration in two lizard species. Similarly, mutations that alter the expression of a gene in different ways can, nevertheless, result in similar phenotypes, as demonstrated by sister species of deer mice. Together these studies underscore the importance of identifying not only the genes, but also the precise mutations and their effects on protein function, that contribute to adaptation and highlight how convergence can occur at different genetic levels. PMID:20643733

  13. Convergence in pigmentation at multiple levels: mutations, genes and function.

    PubMed

    Manceau, Marie; Domingues, Vera S; Linnen, Catherine R; Rosenblum, Erica Bree; Hoekstra, Hopi E

    2010-08-27

    Convergence--the independent evolution of the same trait by two or more taxa--has long been of interest to evolutionary biologists, but only recently has the molecular basis of phenotypic convergence been identified. Here, we highlight studies of rapid evolution of cryptic coloration in vertebrates to demonstrate that phenotypic convergence can occur at multiple levels: mutations, genes and gene function. We first show that different genes can be responsible for convergent phenotypes even among closely related populations, for example, in the pale beach mice inhabiting Florida's Gulf and Atlantic coasts. By contrast, the exact same mutation can create similar phenotypes in distantly related species such as mice and mammoths. Next, we show that different mutations in the same gene need not be functionally equivalent to produce similar phenotypes. For example, separate mutations produce divergent protein function but convergent pale coloration in two lizard species. Similarly, mutations that alter the expression of a gene in different ways can, nevertheless, result in similar phenotypes, as demonstrated by sister species of deer mice. Together these studies underscore the importance of identifying not only the genes, but also the precise mutations and their effects on protein function, that contribute to adaptation and highlight how convergence can occur at different genetic levels. PMID:20643733

  14. Two missense mutations of the IRF6 gene in two Japanese families with popliteal pterygium syndrome.

    PubMed

    Matsuzawa, Noriko; Kondo, Shinji; Shimozato, Kazuo; Nagao, Toru; Nakano, Motoi; Tsuda, Masayoshi; Hirano, Akiyoshi; Niikawa, Norio; Yoshiura, Koh-Ichiro

    2010-09-01

    Mutations in the interferon regulatory factor 6 gene (IRF6) cause either popliteal pterygium syndrome (PPS) or Van der Woude syndrome (VWS), allelic autosomal dominant orofacial clefting conditions. To further investigate the IRF6 mutation profile in PPS, we performed mutation analysis of patients from two unrelated Japanese families with PPS and identified mutations in IRF6: c.251G>T (R84L) and c.1271C>T (S424L). We also found R84L, which together with previous reports on R84 mutations, provided another line of evidence that both syndromes could result from the same mutation probably under an influence of a modifier gene(s). This supports the idea that the R84 residue in the DNA binding domain of IRF6 is a mutational hot spot for PPS. A luciferase assay of the S424L protein in the other family demonstrated that the mutation decreased the IRF6 transcriptional activity significantly to 6% of that of the wild-type. This finding suggests that the C-terminus region of IRF6 could have an important function in phosphorylation or protein interaction. To our knowledge, this is the first report of mutations observed in Japanese PPS patients. PMID:20803643

  15. Isolation and Analysis of a Novel Class of Suppressor of Ty Insertion Mutations in Saccharomyces Cerevisiae

    PubMed Central

    Fassler, J. S.; Winston, F.

    1988-01-01

    Using a new scheme for the isolation of suppressor of Ty insertion mutations (spt mutations) in yeast, we have identified six new SPT genes. Mutations in two of these genes, SPT13 and SPT14, exhibit a novel suppression pattern: suppression of complete Ty insertion mutations, but not of solo δ insertion mutations. Transcriptional analysis shows that spt13- and spt14-mediated suppression of Ty insertion mutations is the result of an elevation in the levels of adjacent gene transcription. In spite of the failure of these mutations to suppress solo δ insertion mutations, they do cause changes in transcription of at least one solo δ insertion mutation. In addition, spt13 and spt14 mutations are epistatic to mutations in certain other SPT genes that do suppress solo δ insertion mutations. These results suggest that the SPT13 and SPT14 gene products may act via sequences in both the δ and ε regions of Ty elements. Finally, mutations in SPT13 cause sporulation and mating defects and SPT14 is essential for growth, suggesting that these two genes have important roles in general cellular functions. PMID:2834263

  16. Suppressor of cytokine signaling 1 gene mutation status as a prognostic biomarker in classical Hodgkin lymphoma

    PubMed Central

    Bubolz, Anna-Maria; Lessel, Davor; Welke, Claudia; Rüther, Nele; Viardot, Andreas; Möller, Peter

    2015-01-01

    Suppressor of cytokine signaling 1 (SOCS1) mutations are among the most frequent somatic mutations in classical Hodgkin lymphoma (cHL), yet their prognostic relevance in cHL is unexplored. Here, we performed laser-capture microdissection of Hodgkin/Reed-Sternberg (HRS) cells from tumor samples in a cohort of 105 cHL patients. Full-length SOCS1 gene sequencing showed mutations in 61% of all cases (n = 64/105). Affected DNA-motifs and mutation pattern suggest that many of these SOCS1 mutations are the result of aberrant somatic hypermutation and we confirmed expression of mutant alleles at the RNA level. Contingency analysis showed no significant differences of patient-characteristics with HRS-cells containing mutant vs. wild-type SOCS1. By predicted mutational consequence, mutations can be separated into those with non-truncating point mutations (‘minor’ n = 49/64 = 77%) and those with length alteration (‘major’; n = 15/64 = 23%). Subgroups did not differ in clinicopathological characteristics; however, patients with HRS-cells that contained SOCS1 major mutations suffered from early relapse and significantly shorter overall survival (P = 0.03). The SOCS1 major status retained prognostic significance in uni-(P = 0.016) and multivariate analyses (P = 0.005). Together, our data indicate that the SOCS1 mutation type qualifies as a single-gene prognostic biomarker in cHL. PMID:26336985

  17. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance.

    PubMed

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara; Benfield, Thomas; Miller, Robert; Rabodonirina, Meja; Helweg-Larsen, Jannik

    2004-10-01

    Pneumocystis pneumonia (PCP) remains a major cause of illness and death in HIV-infected persons. Sulfa drugs, trimethoprim-sulfamethoxazole (TMP-SMX) and dapsone are mainstays of PCP treatment and prophylaxis. While prophylaxis has reduced the incidence of PCP, its use has raised concerns about development of resistant organisms. The inability to culture human Pneumocystis, Pneumocystis jirovecii, in a standardized culture system prevents routine susceptibility testing and detection of drug resistance. In other microorganisms, sulfa drug resistance has resulted from specific point mutations in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim for PCP treatment remains unclear. We review studies of DHPS mutations in P. jirovecii and summarize the evidence for resistance to sulfamethoxazole and dapsone.

  18. Phenotypic heterogeneity in British patients with a founder mutation in the FHL1 gene

    PubMed Central

    Sarkozy, Anna; Windpassinger, Christian; Hudson, Judith; Dougan, Charlotte F; Lecky, Bryan; Hilton-Jones, David; Eagle, Michelle; Charlton, Richard; Barresi, Rita; Lochmüller, Hanns; Bushby, Kate; Straub, Volker

    2011-01-01

    Mutations in the four-and-a-half LIM domain 1 (FHL1) gene, which encodes a 280-amino-acid protein containing four LIM domains and a single zinc-finger domain in the N-terminal region, have been associated with a broad clinical spectrum of X-linked muscle diseases encompassing a variety of different phenotypes. Patients might present with a scapuloperoneal myopathy, a myopathy with postural muscle atrophy and generalized hypertrophy, an Emery–Dreifuss muscular dystrophy, or an early onset myopathy with reducing bodies. It has been proposed that the phenotypic variability is related to the position of the mutation within the FHL1 gene. Here, we report on three British families with a heterogeneous clinical presentation segregating a single FHL1 gene mutation and haplotype, suggesting that this represents a founder mutation. The underlying FHL1 gene mutation was detected by direct sequencing and the founder effect was verified by haplotype analysis of the FHL1 gene locus. A 3-bp insertion mutation (p.Phe127_Thr128insIle) within the second LIM domain of the FHL1 gene was identified in all available affected family members of the three families. Haplotype analysis of the FHL1 region on Xq26 revealed that the families shared a common haplotype. The p.Phe127_Thr128insIle mutation in the FHL1 gene therefore appears to be a British founder mutation and FHL1 gene screening, in particular of exon 6, should therefore be indicated in British patients with a broad phenotypic spectrum of X-linked muscle diseases. PMID:21629301

  19. Gigaxonin mutation analysis in patients with NIFID.

    PubMed

    Dequen, Florence; Cairns, Nigel J; Bigio, Eileen H; Julien, Jean-Pierre

    2011-08-01

    Neuronal intermediate filament inclusion disease (NIFID) is a frontotemporal lobar degeneration (FTLD) characterized by frontotemporal dementia (FTD), pyramidal and extrapyramidal signs. The disease is histologically characterized by the presence of abnormal neuronal cytoplasmic inclusions (NCIs) which contain α-internexin and other neuronal intermediate filament (IF) proteins. Gigaxonin (GAN) is a cytoskeletal regulating protein and the genetic cause of giant axonal neuropathy. Since the immunoreactive profile of NCIs in NIFID is similar to that observed in brain sections from Gan(Δex1/Δex1) mice, we speculated that GAN could be a candidate gene causing NIFID. Therefore, we performed a mutation analysis of GAN in NIFID patients. Although the NCIs of NIFID and Gan(Δex1/Δex1) mice were immunohistochemically similar, no GAN variant was identified in DNA obtained from well-characterized cases of NIFID. PMID:19782434

  20. Analysis of sh-m6233, a mutation induced by the transposable element Ds in the sucrose synthase gene of Zea mays.

    PubMed

    Weck, E; Courage, U; Döring, H P; Fedoroff, N; Starlinger, P

    1984-08-01

    The unstable allele sh-m6233 caused by insertion of the transposable element Ds into the sucrose synthase gene of maize, was cloned. The mutation is caused by the insertion of an 4 kb DNA segment, consisting of two identical Ds elements of 2000 bp length, of which one is inserted into the center of the other in inverted orientation. This structure is, at the level of restriction mapping and partial DNA sequencing, identical to the double Ds element found in a larger insert in the mutant allele sh-m5933. 8 bp of host DNA are duplicated upon insertion. In a revertant, a 6-bp duplication is retained. PMID:16453542

  1. [Molecular genetic analysis of TUB18 and TUB20 intragenic polymorphism and various mutations of the CFTR gene in the Moscow region].

    PubMed

    Sazonova, M A; Amosenko, F A; Kapranov, N I; Kalinin, V N

    1997-09-01

    Allelic frequencies of two intron polymorphisms in the cystic fibrosis transmembrane regulator (CFTR) gene, TUB18 and TUB20, were estimated on chromosomes of 67 cystic fibrosis patients and on that of 37 healthy donors from Moscow and the Moscow oblast. Allele 2 of the TUB 18, and allele 1 of the TUB20 were 2.1 and 1.5 times more frequent on the non-delta F508 chromosomes of the cystic fibrosis patients than on chromosomes of healthy donors, i.e. these alleles were in linkage disequilibrium with the CFTR gene. Allele 1 of the TUB18 marker and allele 2 of the TUB20 marker demonstrated absolute linkage disequilibrium with the delta F508 mutation of the CFTR gene. The degree of association between the TUB18 and TUB20 intron polymorphisms and the GATT and T854T intragenic polymorphisms was analyzed. Of all 62 delta F508 chromosomes tested, 98.3% shared the 2-1-1-2 GATT- T854T-TUB18-TUB20 haplotype. Eight major (more frequent) GATT-T854T-TUB18-TUB20 haplotypes were found in 89.5% of normal, and in 97.9% of non-delta F508 chromosomes of cystic fibrosis patients from the Moscow region. Three of these major haplotypes, 2-1-1-2, 1-2-2-1, and 2-2-1-2, were respectively 2.5, 2, and 1.5 times more frequent on non-delta F508 cystic fibrosis chromosomes than on normal chromosomes. Data on screening for the G542X, N1303K, and 394delTT mutations of the CFTR gene, carried out on 134 chromosomes of cystic fibrosis patients from the Moscow region are presented. The frequencies of the G542X and 394delTT mutations were estimated as 1.5%, while the frequency of the N1303K mutation was 2.2%.

  2. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene.

    PubMed

    Win, Aung Ko; Reece, Jeanette C; Buchanan, Daniel D; Clendenning, Mark; Young, Joanne P; Cleary, Sean P; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G; MacInnis, Robert J; Tucker, Katherine M; Winship, Ingrid M; Macrae, Finlay A; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W; Newcomb, Polly A; Thibodeau, Stephen N; Lindor, Noralane M; Hopper, John L; Gallinger, Steven; Jenkins, Mark A

    2015-12-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understandin g the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95% confidence interval (CI) 9.19-50.1; p < 0.001], but not different from that for carriers of a MMR gene mutation alone (HR 1.94, 95% CI 0.63-5.99; p = 0.25). Within the limited power of this study, there was no evidence that a monoallelic MUTYH gene mutation confers additional risk of colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative.

  3. A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: functional analysis of the mutant protein.

    PubMed

    Ersoy Tunalı, Nagehan; Marobbio, Carlo M T; Tiryakioğlu, N Ozan; Punzi, Giuseppe; Saygılı, Seha K; Onal, Hasan; Palmieri, Ferdinando

    2014-05-01

    The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome is a rare autosomal recessive disorder caused by the functional deficiency of the mitochondrial ornithine transporter 1 (ORC1). ORC1 is encoded by the SLC25A15 gene and catalyzes the transport of cytosolic ornithine into mitochondria in exchange for citrulline. Although the age of onset and the severity of the symptoms vary widely, the disease usually manifests in early infancy. The typical clinical features include protein intolerance, lethargy, episodic confusion, cerebellar ataxia, seizures and mental retardation. In this study, we identified a novel p.Ala15Val (c.44C>T) mutation by genomic DNA sequencing in a Turkish child presenting severe tantrum, confusion, gait disturbances and loss of speech abilities in addition to hyperornithinemia, hyperammonemia and homocitrullinuria. One hundred Turkish control chromosomes did not possess this variant. The functional effect of the novel mutation was assessed by both complementation of the yeast ORT1 null mutant and transport assays. Our study demonstrates that the A15V mutation dramatically interferes with the transport properties of ORC1 since it was shown to inhibit ornithine transport nearly completely. PMID:24721342

  4. Intronic breakpoint definition and transcription analysis in DMD/BMD patients with deletion/duplication at the 5' mutation hot spot of the dystrophin gene.

    PubMed

    Gualandi, F; Rimessi, P; Trabanelli, C; Spitali, P; Neri, M; Patarnello, T; Angelini, C; Yau, S C; Abbs, S; Muntoni, F; Calzolari, E; Ferlini, A

    2006-03-29

    Dystrophin mutations occurring at the 5' end of the gene frequently behave as exceptions to the "frame rule," their clinical severity being variable and often not related to the perturbation of the translation reading frame. The molecular mechanisms underlying the phenotypic variability of 5' dystrophin mutations have not been fully clarified. We have characterized the genomic breakpoints within introns 2, 6 and 7 and identified the splicing profiles in a cohort of DMD/BMD patients with deletion of dystrophin exons 3-7, 3-6 and duplication of exons 2-4. Our findings indicate that the occurrence of intronic cryptic promoter as well as corrective splicing events are unlikely to play a role in exons 3-7 deleted patients phenotypic variability. Our data suggest that re-initiation of translation could represent a major mechanism responsible for the production of a residual dystrophin in some patients with exons 3-7 deletion. Furthermore, we observed that the out-of-frame exon 2a is almost constantly spliced into a proportion of the dystrophin transcripts in the analysed patients. In the exons 2-4 duplicated DMD patient, producing both in-frame and out-of-frame transcripts, this splicing behaviour might represent a critical factor contributing to the severe phenotype. In conclusion, we suggest that multiple mechanisms may have a role in modulating the outcome of 5' dystrophin mutations, including recoding mechanisms and unusual splicing choices.

  5. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  6. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  7. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  8. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  9. Gene Coexpression Analyses Differentiate Networks Associated with Diverse Cancers Harboring TP53 Missense or Null Mutations

    PubMed Central

    Oros Klein, Kathleen; Oualkacha, Karim; Lafond, Marie-Hélène; Bhatnagar, Sahir; Tonin, Patricia N.; Greenwood, Celia M. T.

    2016-01-01

    In a variety of solid cancers, missense mutations in the well-established TP53 tumor suppressor gene may lead to the presence of a partially-functioning protein molecule, whereas mutations affecting the protein encoding reading frame, often referred to as null mutations, result in the absence of p53 protein. Both types of mutations have been observed in the same cancer type. As the resulting tumor biology may be quite different between these two groups, we used RNA-sequencing data from The Cancer Genome Atlas (TCGA) from four different cancers with poor prognosis, namely ovarian, breast, lung and skin cancers, to compare the patterns of coexpression of genes in tumors grouped according to their TP53 missense or null mutation status. We used Weighted Gene Coexpression Network analysis (WGCNA) and a new test statistic built on differences between groups in the measures of gene connectivity. For each cancer, our analysis identified a set of genes showing differential coexpression patterns between the TP53 missense- and null mutation-carrying groups that was robust to the choice of the tuning parameter in WGCNA. After comparing these sets of genes across the four cancers, one gene (KIR3DL2) consistently showed differential coexpression patterns between the null and missense groups. KIR3DL2 is known to play an important role in regulating the immune response, which is consistent with our observation that this gene's strongly-correlated partners implicated many immune-related pathways. Examining mutation-type-related changes in correlations between sets of genes may provide new insight into tumor biology. PMID:27536319

  10. Novel mutations in the IRF6 gene in Brazilian families with Van der Woude syndrome.

    PubMed

    Paranaíba, Lívia Máris Ribeiro; Martelli-Júnior, Hercílio; Oliveira Swerts, Mário Sergio; Line, Sergio R P; Coletta, Ricardo D

    2008-10-01

    Van der Woude Syndrome (VWS) is an autosomal craniofacial disorder characterized by lower lip pits and cleft lip and/or palate. Mutations in the interferon regulatory factor 6 (IRF6) gene have been identified in patients with VWS. To identify novel IRF6 mutations in patients affected by VWS, we screened 2 Brazilian families, sequencing the entire IRF6-coding region and flanking intronic boundaries. Two novel heterozygous mutations were identified: a frame shift mutation with deletion of G at the nucleotide position 520 in the exon 6 (520delG), and a missense single nucleotide substitution from T to A at nucleotide position 1135 in exon 8 (T1135A). By using restriction enzyme analysis, we were able to demonstrate the lack of similar mutations in unrelated healthy individuals and non-syndromic cleft lip and palate patients. Our results further confirmed that haploinsufficiency of the IRF6 gene results in VWS. PMID:18813858

  11. HFE gene mutation and transferrin saturation in very low birthweight infants

    PubMed Central

    Maier, R.; Witt, H.; Buhrer, C.; Monch, E.; Kottgen, E.

    1999-01-01

    AIM—To determine if there is an association between high transferrin saturation and the C282Y HFE gene mutation in very low birthweight (VLBW) infants.
METHODS—One hundred and forty three VLBW infants receiving recombinant erythropoietin and 3 to 9 mg/kg/day of enteral iron were studied. Genomic DNA was extracted from filter paper cards. The C282Y mutation was determined by restriction fragment length polymorphism analysis.
RESULTS—Six infants were heterozygous for the mutation; none was homozygous. Ten infants had a transferrin saturation above 80% at least once. No infant was positive for both transferrin saturation above 80% and the mutation.
CONCLUSIONS—The data strongly suggest that there is no association between high transferrin saturation and the HFE gene mutation in VLBW infants during the first weeks of life.

 PMID:10448186

  12. The Association of Factor V Leiden and Prothrombin Gene Mutation and Placenta-Mediated Pregnancy Complications: A Systematic Review and Meta-analysis of Prospective Cohort Studies

    PubMed Central

    Rodger, Marc A.; Betancourt, Marisol T.; Clark, Peter; Lindqvist, Pelle G.; Dizon-Townson, Donna; Said, Joanne; Seligsohn, Uri; Carrier, Marc; Salomon, Ophira; Greer, Ian A.

    2010-01-01

    Background Factor V Leiden (FVL) and prothrombin gene mutation (PGM) are common inherited thrombophilias. Retrospective studies variably suggest a link between maternal FVL/PGM and placenta-mediated pregnancy complications including pregnancy loss, small for gestational age, pre-eclampsia and placental abruption. Prospective cohort studies provide a superior methodologic design but require larger sample sizes to detect important effects. We undertook a systematic review and a meta-analysis of prospective cohort studies to estimate the association of maternal FVL or PGM carrier status and placenta-mediated pregnancy complications. Methods and Findings A comprehensive search strategy was run in Medline and Embase. Inclusion criteria were: (1) prospective cohort design; (2) clearly defined outcomes including one of the following: pregnancy loss, small for gestational age, pre-eclampsia or placental abruption; (3) maternal FVL or PGM carrier status; (4) sufficient data for calculation of odds ratios (ORs). We identified 322 titles, reviewed 30 articles for inclusion and exclusion criteria, and included ten studies in the meta-analysis. The odds of pregnancy loss in women with FVL (absolute risk 4.2%) was 52% higher (OR = 1.52, 95% confidence interval [CI] 1.06–2.19) as compared with women without FVL (absolute risk 3.2%). There was no significant association between FVL and pre-eclampsia (OR = 1.23, 95% CI 0.89–1.70) or between FVL and SGA (OR = 1.0, 95% CI 0.80–1.25). PGM was not associated with pre-eclampsia (OR = 1.25, 95% CI 0.79–1.99) or SGA (OR 1.25, 95% CI 0.92–1.70). Conclusions Women with FVL appear to be at a small absolute increased risk of late pregnancy loss. Women with FVL and PGM appear not to be at increased risk of pre-eclampsia or birth of SGA infants. Please see later in the article for the Editors' Summary PMID:20563311

  13. First Polish Cowden syndrome patient with confirmed PTEN gene mutation.

    PubMed

    Podralska, Marta; Nowakowska, Dorota; Steffen, Jan; Cichy, Wojciech; Slomski, Ryszard; Plawski, Andrzej

    2010-03-01

    Cowden syndrome is a rare hereditary disease. Incidence of the disease is conditioned by occurrence of mutations in the PTEN gene. The disease has a frequency of 1/120,000 newborn and it predisposes to the occurrence of hamartoma polyps in the gastrointestinal tract, skin tumours, as well as tumours of the breast, ovary and thyroid. Here we describe the case of a Polish patient diagnosed with Cowden syndrome with an identified mutation in the PTEN gene. The disease course of the patient is described and discussed along with other cases of carriers of substitution 68T>A in the PTEN gene.

  14. Activation of Developmentally Mutated Human Globin Genes by Cell Fusion

    NASA Astrophysics Data System (ADS)

    Papayannopoulou, Thalia; Enver, Tariq; Takegawa, Susumu; Anagnou, Nicholas P.; Stamatoyannopoulos, George

    1988-11-01

    Human fetal globin genes are not expressed in hybrid cells produced by the fusion of normal human lymphocytes with mouse erythroleukemia cells. In contrast, when lymphocytes from persons with globin gene developmental mutations (hereditary persistence of fetal hemoglobin) are used for these fusions, fetal globin is expressed in the hybrid cells. Thus, mutations of developmental origin can be reconstituted in vitro by fusing mutant lymphoid cells with differentiated cell lines of the proper lineage. This system can readily be used for analyses, such as globin gene methylation, that normally require large numbers of pure nucleated erythroid cells, which are difficult to obtain.

  15. Progressive myoclonus epilepsy associated with SACS gene mutations.

    PubMed

    Nascimento, Fábio A; Canafoglia, Laura; Aljaafari, Danah; Muona, Mikko; Lehesjoki, Anna-Elina; Berkovic, Samuel F; Franceschetti, Silvana; Andrade, Danielle M

    2016-08-01

    Pathogenic variants in the SACS gene (OMIM #604490) cause autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). ARSACS is a neurodegenerative early-onset progressive disorder, originally described in French Canadians, but later observed elsewhere.(1) Whole-exome sequencing of a large group of patients with unclassified progressive myoclonus epilepsies (PMEs) identified 2 patients bearing SACS gene mutations.(2) We detail the PME clinical features associated with SACS mutations and suggest the inclusion of the SACS gene in diagnostic screening of PMEs. PMID:27433545

  16. DNA mismatch repair gene mutations in human cancer.

    PubMed Central

    Peltomäki, P

    1997-01-01

    A new pathogenetic mechanism leading to cancer has been delineated in the past 3 years when human homologues of DNA mismatch repair (MMR) genes have been identified and shown to be involved in various types of cancer. Germline mutations of MMR genes cause susceptibility to a hereditary form of colon cancer, hereditary nonpolyposis colon cancer (HNPCC), which represents one of the most common syndromes associated with cancer predisposition in man. Tumors from HNPCC patients are hypermutable and show length variation at short tandem repeat sequences, a phenomenon referred to as microsatellite instability or replication errors. A similar abnormality is found in a proportion of sporadic tumors of the colorectum as well as a variety of other organs; acquired mutations in MMR genes or other endogenous or exogenous causes may underlie these cases. Genetic and biochemical characterization of the functions of normal and mutated MMR genes elucidates mechanisms of cancer development and provides tools for diagnostic applications. PMID:9255561

  17. Neurocognitive Profiles in Duchenne Muscular Dystrophy and Gene Mutation Site

    PubMed Central

    D’Angelo, Maria Grazia; Lorusso, Maria Luisa; Civati, Federica; Comi, Giacomo Pietro; Magri, Francesca; Del Bo, Roberto; Guglieri, Michela; Molteni, Massimo; Turconi, Anna Carla; Bresolin, Nereo

    2011-01-01

    The presence of nonprogressive cognitive impairment is recognized as a common feature in a substantial proportion of patients with Duchenne muscular dystrophy. To investigate the possible role of mutations along the dystrophin gene affecting different brain dystrophin isoforms and specific cognitive profiles, 42 school-age children affected with Duchenne muscular dystrophy, subdivided according to sites of mutations along the dystrophin gene, underwent a battery of tests tapping a wide range of intellectual, linguistic, and neuropsychologic functions. Full-scale intelligence quotient was approximately 1 S.D. below the population average in the whole group of dystrophic children. Patients with Duchenne muscular dystrophy and mutations located in the distal portion of the dystrophin gene (involving the 140-kDa brain protein isoform, called Dp140) were generally more severely affected and expressed different patterns of strengths and impairments, compared with patients with Duchenne muscular dystrophy and mutations located in the proximal portion of the dystrophin gene (not involving Dp140). Patients with Duchenne muscular dystrophy and distal mutations demonstrated specific impairments in visuospatial functions and visual memory (which seemed intact in proximally mutated patients) and greater impairment in syntactic processing. PMID:22000308

  18. Analysis of APC mutation in human ameloblastoma and clinical significance.

    PubMed

    Li, Ning; Liu, Bing; Sui, Chengguang; Jiang, Youhong

    2016-01-01

    As a highly conserved signaling pathway, Wnt/β-catenin signal transduction pathway plays an important role in many processes. Either in the occurrence or development of tumor, activation of this pathway takes an important place. APC inhibits Wnt/β-catenin pathway to regulate cell proliferation and differentiation. This study aimed to investigate the function of cancer suppressor gene. PCR amplification and sequencing method was used to analyze APC mutations of human clinical specimens. The pathological specimens were collected for PCR and clear electrophoretic bands were obtained after electrophoresis. The gene sequence obtained after purification and sequencing analysis was compared with the known APC gene sequence (NM_000038.5). Base mutations at APC 1543 (T → C), APC-4564 (G → A), APC-5353 (T → G), APC-5550 (T → A) and APC-5969 (G → A) locus existed in 22 (27.5 %), 12 (15 %), 5 (6.25 %), 13 (16.25 %) and 12 patients (15 %), respectively. Gene mutations existed in ameloblastoma, and the mutation loci were 1543 locus (T → C), 4564 locus (G → A), 5353 locus (T → G), 5550 locus (T → A) and 5969 locus (G → A) 15 %, respectively. APC mutation plays a certain role in monitoring the tumor malignant degree as it may indicate the transition process of ameloblastoma malignant phenotype. PMID:27065015

  19. Congenital neurogenic muscular atrophy in megaconial myopathy due to a mutation in CHKB gene.

    PubMed

    Castro-Gago, Manuel; Dacruz-Alvarez, David; Pintos-Martínez, Elena; Beiras-Iglesias, Andrés; Arenas, Joaquín; Martín, Miguel Ángel; Martínez-Azorín, Francisco

    2016-01-01

    Choline kinase beta gene (CHKB) mutations have been identified in Megaconial Congenital Muscular Dystrophy (MDCMC) patients, a very rare inborn error of metabolism with 21 cases reported worldwide. We report the case of a Spanish boy of Caucasian origin who presented a generalized congenital muscular hypotonia, more intense at lower limb muscles, mildly elevated creatine kinase (CK), serum aspartate transaminase (AST) and lactate. Electromyography (EMG) showed neurogenic potentials in the proximal muscles. Histological studies of a muscle biopsy showed neurogenic atrophy with enlarged mitochondria in the periphery of the fibers, and complex I deficiency. Finally, genetic analysis showed the presence of a homozygous mutation in the gene for choline kinase beta (CHKB: NM_005198.4:c.810T>A, p.Tyr270(∗)). We describe here the second Spanish patient whit mutation in CHKB gene, who despite having the same mutation, presented an atypical aspect: congenital neurogenic muscular atrophy progressing to a combined neuropathic and myopathic phenotype (mixed pattern).

  20. A common FGFR3 gene mutation is present in achondroplasia but not in hypochondroplasia

    SciTech Connect

    Stoilov, I.; Kilpatrick, M.W.; Tsipouras, P.

    1995-01-02

    Achondroplasia is the most common type of genetic dwarfism. It is characterized by disproportionate short stature and other skeletal anomalies resulting from a defect in the maturation of the chondrocytes in the growth plate of the cartilage. Recent studies mapped the achondroplasia gene on chromosome region 4p16.3 and identified a common mutation in the gene encoding the fibroblast growth factor receptor 3 (FGFR3). In an analysis of 19 achondroplasia families from a variety of ethnic backgrounds we confirmed the presence of the G380R mutation in 21 of 23 achondroplasia chromosomes studied. In contrast, the G380R mutation was not found in any of the 8 hypochondroplasia chromosomes studied. Futhermore, linkage studies in a 3-generation family with hypochondroplasia show discordant segregation with markers in the 4p16.3 region suggesting that at least some cases of hypochondroplasia are caused by mutations in a gene other than FGFR3. 27 refs., 2 figs.

  1. Tyrosinase gene mutations in the Chinese Han population with OCA1.

    PubMed

    Liu, Ning; Kong, Xiang Dong; Shi, Hui Rong; Wu, Qing Hua; Jiang, Miao

    2014-01-01

    Oculocutaneous albinism (OCA) is a heterogeneous autosomal recessive genetic disorder that affects melanin synthesis. OCA results in reduced or absent pigmentation in the hair, skin and eyes. Type 1 OCA (OCA1) is the result of tyrosinase (TYR) gene mutations and is a severe disease type. This study investigated TYR mutations in a Chinese cohort with OCA1. This study included two parts: patient genetic study and prenatal genetic diagnosis. A total of 30 OCA1 patients were subjected to TYR gene mutation analysis. Ten pedigrees were included for prenatal genetic diagnosis. A total of 100 unrelated healthy Chinese individuals were genotyped for controls. The coding sequence and the intron/exon junctions of TYR were analysed by bidirectional DNA sequencing. In this study, 20 mutations were identified, four of which were novel. Of these 30 OCA1 patients, 25 patients were TYR compound heterozygous; two patients carried homozygous TYR mutations; and three were heterozygous. Among the ten prenatally genotyped fetuses, three fetuses carried compound heterozygous mutations and seven carried no mutation or only one mutant allele of TYR and appeared normal at birth. In conclusion, we identified four novel TYR mutations and showed that molecular-based prenatal screening to detect TYR mutations in a fetus at risk for OCA1 provided essential information for genetic counselling of couples at risk. PMID:25577957

  2. A novel mutation of the beta-glucocerebrosidase gene associated with neurologic manifestations in three sibs.

    PubMed

    Parenti, G; Filocamo, M; Titomanlio, L; Rizzolo, G; Silvestro, E; Perretti, A; Gatti, R; Andria, G

    1998-04-01

    We report on a sibship in which three members were affected by Gaucher disease. Molecular analysis of the patients showed homozygosity for a novel mutation (C5390G) of the beta-glucocerebrosidase gene, resulting in the substitution of the arginine 353 with a glycine. Western blot analysis showed a reduced amount of beta-glucocerebrosidase-related polypeptides in fibroblasts. The phenotype resulting from this mutation is characterized by visceral and skeletal manifestations. In addition, the presence of seizures and electrophysiological abnormalities only in the 3 patients and in none of the other unaffected sibs suggests that the mutation is responsible for neurologic involvement. PMID:9650766

  3. Prioritization of neurodevelopmental disease genes by discovery of new mutations.

    PubMed

    Hoischen, Alexander; Krumm, Niklas; Eichler, Evan E

    2014-06-01

    Advances in genome sequencing technologies have begun to revolutionize neurogenetics, allowing the full spectrum of genetic variation to be better understood in relation to disease. Exome sequencing of hundreds to thousands of samples from patients with autism spectrum disorder, intellectual disability, epilepsy and schizophrenia provides strong evidence of the importance of de novo and gene-disruptive events. There are now several hundred new candidate genes and targeted resequencing technologies that allow screening of dozens of genes in tens of thousands of individuals with high specificity and sensitivity. The decision of which genes to pursue depends on many factors, including recurrence, previous evidence of overlap with pathogenic copy number variants, the position of the mutation in the protein, the mutational burden among healthy individuals and membership of the candidate gene in disease-implicated protein networks. We discuss these emerging criteria for gene prioritization and the potential impact on the field of neuroscience. PMID:24866042

  4. Prioritization of neurodevelopmental disease genes by discovery of new mutations

    PubMed Central

    Hoischen, Alexander; Krumm, Niklas; Eichler, Evan E.

    2014-01-01

    Advances in genome sequencing technologies have begun to revolutionize neurogenetics allowing the full spectrum of genetic variation to be better understood in relationship to disease. Exome sequencing of hundreds to thousands of samples from patients with autism spectrum disorder, intellectual disability, epilepsy, and schizophrenia provide strong evidence of the importance of de novo and gene-disruptive events. There are now several hundred new candidate genes and targeted resequencing technologies that allow screening of dozens of genes in tens of thousands of individuals with high specificity and sensitivity. The decision of which genes to pursue depends on numerous factors including recurrence, prior evidence of overlap with pathogenic copy number variants, the position of the mutation within the protein, the mutational burden among healthy individuals, and membership of the candidate gene within disease-implicated protein networks. We discuss these emerging criteria for gene prioritization and the potential impact on the field of neuroscience. PMID:24866042

  5. Gene mutation-based and specific therapies in precision medicine.

    PubMed

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses. PMID:26994883

  6. Novel PRKAR1A gene mutations in Carney Complex.

    PubMed

    Pan, Lorraine; Peng, Lan; Jean-Gilles, J; Zhang, Ximin; Wieczorek, Rosemary; Jain, Shilpa; Levine, Vicki; Osman, Iman; Prieto, Victor G; Lee, Peng

    2010-01-01

    Carney complex is a syndrome that may include cardiac and mucocutaneous myxomas, spotting skin pigmentation, and endocrine lesions. Many patients with Carney complex have been shown to have a stop codon mutation in the PRKAR1A gene in the 17q22-24 region. Here we present the case of a 57 year-old man with multiple skin lesions and cardiac myxomas. Histology of the skin lesions showed lentigenous melanocytic hyperplasia and cutaneous myxomas, confirming the diagnosis of Carney complex. Lesional and control normal tissue from the patient were identified and sequenced for the PRKAR1A gene. A germline missense mutation was identified at exon 1A. This is the first report of this mutation, and one of the few reported missense mutation associated with Carney complex. This finding strengthens the argument that there are alternative ways in which the protein kinase A 1-alpha subunit plays a role in tumorigenesis. PMID:20606737

  7. Mutations in the filaggrin gene and food allergy

    PubMed Central

    Markiewicz, Lidia; Wróblewska, Barbara

    2014-01-01

    The results of long-term epidemiological studies show that the number of people suffering from allergic diseases, especially from food allergies and atopic dermatitis (AD), is still increasing. Although the research thus far has been conducted mainly in Europe, North America, and Asia, there are also data appearing from the first studies in that field among the African population. This may indicate the importance of the problem of allergic diseases. The discovery that loss-of-function mutations in the gene coding filaggrin (FLG) are the cause of ichthyosis vulgaris marked a significant breakthrough in understanding the pathogenesis of allergic diseases. The presence of mutations in the filaggrin gene is also an important factor that predisposes to such allergic diseases as: allergic rhinitis, atopic dermatitis, atopic asthma, and food allergy. So far, over 40 loss-of-function mutations and numerous silent mutations in filaggrin have been discovered. PMID:25276250

  8. Novel mutations of the PRKAR1A gene in patients with acrodysostosis.

    PubMed

    Muhn, F; Klopocki, E; Graul-Neumann, L; Uhrig, S; Colley, A; Castori, M; Lankes, E; Henn, W; Gruber-Sedlmayr, U; Seifert, W; Horn, D

    2013-12-01

    Acrodysostosis is characterized by a peripheral dysostosis that is accompanied by short stature, midface hypoplasia, and developmental delay. Recently, it was shown that heterozygous point mutations in the PRKAR1A gene cause acrodysostosis with hormone resistance. By mutational analysis of the PRKAR1A gene we detected four different mutations (p.Arg368Stop, p.Ala213Thr, p.Tyr373Cys, and p.Arg335Cys) in four of seven affected patients with acrodysostosis. The combination of clinical results, endocrinological parameters and in silico mutation analysis gives evidence to suppose a pathogenic effect of each mutation. This assumption is supported by the de novo origin of these mutations. Apart from typical radiological abnormalities of the hand bones, elevated thyroid stimulating hormone and parathyroid hormone values as well as short stature are the most common findings. Less frequent features are characteristic facial dysmorphisms, sensorineural hearing loss and mild intellectual disability. These results lead to the conclusion that mutations of PKRAR1A are the major molecular cause for acrodysostosis with endocrinological abnormalities. In addition, in our cohort of 44 patients affected with brachydactyly type E (BDE) we detected only one sequence variant of PRKAR1A (p.Asp227Asn) with an unclear effect on protein function. Thus, we conclude that PRKAR1A mutations may play no major role in the pathogenesis of BDE. PMID:23425300

  9. [Mutations in the gene encoding filaggrin cause ichthyosis vulgaris].

    PubMed

    Prasad, Sumangali Chandra; Rasmussen, Kirsten; Bygum, Anette

    2011-02-14

    Ichthyosis vulgaris is a common genetic skin disorder with an estimated prevalence of 1:250 caused by mutations in the gene encoding filaggrin. This disorder manifests itself within the first year of life and is clinically characterized by dry, scaly skin, keratosis pilaris, palmar hyperlinearity and atopic manifestations. Patients with a severe phenotype are homozygous or compound heterozygous for the mutations, whereas heterozygous patients show mild disease, suggesting semidominant inheritance with incomplete penetrance. We present a patient with classic severe ichthyosis vulgaris, atopic eczema and two loss-of-function mutations.

  10. Cystic fibrosis transmembrane regulator gene mutations in Bahrain.

    PubMed

    Eskandarani, H A

    2002-12-01

    A genotypic study was undertaken to characterize the cystic fibrosis transmembrane regulator gene mutations (CFTR) in the Bahraini cystic fibrosis (CF) population using a polymerase chain reaction-based direct gene test to search for 15 common CF mutations amongst Arabs. During the period October 2000 to May 2001, 19 patients (12 males and seven females; aged at time of study between 4 months and 14 years with a mean age of 5.4 +/- 4.3 years) from 13 families were recruited in the study. Patients were diagnosed as having CF, based on a typical clinical picture and sweat chloride levels > 60 mmol/l and were screened for CFTR mutations. The rate of consanguinity among the families was 77 per cent. Eight mutations were detected in 21 of the 26 alleles examined. The overall detection rate was approximately 81 per cent. The allele frequency of the eight mutations was estimated to be approximately 73 per cent. There was no specific phenotypic pattern that correlated with a specific genotype. All families except two were of Bahraini origin. Of the eight mutations detected, four were common among Bahrainis (2043delG > 548A --> T > 4041C --> G = deltaF508, in order of decreasing frequency), accounting for 66 per cent of the Bahraini CF alleles. However, we also detected four different heterozygous mutations, namely: 1161delC, 1756G -->T, 3120 + 1G --> A, and 3661A --> T, accounting for 16 per cent of the Bahraini CF alleles.

  11. Mutation analysis in patients with Wilson disease: identification of 4 novel mutations. Mutation in brief no. 250. Online.

    PubMed

    Haas, R; Gutierrez-Rivero, B; Knoche, J; Böker, K; Manns, M P; Schmidt, H H

    1999-01-01

    In order to obtain novel mutations in the recently discovered Wilson disease gene, we screened 5 unrelated German individuals for mutations in the 21 exons and their flanking intronic sequences. We detected 9 mutations affecting the Wilson disease gene. Four of those, designated 802-808delTGTAAGT, 2008-2013delTATATG, Cys985Thr, and Ile1148Thr have not yet been reported. One patient had a homozygous mutation whereas the remaining four subjects were compound heterozygous. Therefore these data confirm, that mutations causing Wilson disease are frequently found in affected subjects and they are very heterogenous. PMID:10447265

  12. Factor IX gene mutations in haemophilia B: a New Zealand population-based study.

    PubMed

    VAN DE Water, N S; Williams, R; Berry, E W; Ockelford, P A; Browett, P J

    1996-01-01

    Haemophilia B (Christmas disease) is an X-linked bleeding disorder resulting from an inherited deficiency of coagulation factor IX activity. Due to the heterogeneity of mutations within the factor IX gene there is a marked clinical variability in disease severity. By applying techniques of mutational analysis and direct sequencing of PCR products it is now potentially possible to determine the pathogenic gene defect in entire haemophilia B populations. We report here characterization of the factor IX gene defect in all the haemophilia B patients in New Zealand as part of a nationwide approach towards providing efficient and cost-effective haemophilia B genetic counselling services for these families. Twenty-six different mutations were identified in 32 unrelated haemophilia B families. Three defects at nucleotide positions +8,6659 and 17696 are novel mutations which have not been reported by other laboratories. A PCR-based diagnostic screening test for direct mutational analysis could be performed in most cases; 17 of the 26 mutations altered a restriction enzyme recognition sequence and, with the exception of the total gene deletion, base changes not affecting a restriction enzyme site could be detected by allele-specific PCR.

  13. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures.

    PubMed

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5-13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known. We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations. PMID:24879340

  14. DNA sequence analysis of the imp UV protection and mutation operon of the plasmid TP110: identification of a third gene.

    PubMed Central

    Lodwick, D; Owen, D; Strike, P

    1990-01-01

    The sequence of the imp operon of the plasmid TP110 (which belongs to the Incl1 incompatibility group) has been determined, and is shown to contain three open reading frames. This operon, involved in UV protection and mutation, is functionally analogous to the umuDC operon of E. coli and the mucAB operon of the plasmid pKM101, which belongs to the quite unrelated IncN incompatibility group. The umu and muc operons however contain only two open reading frames, coding for proteins of approximately 16kD and 46kD. The high degree of homology between the two 16kD proteins (UmuD and MucA) and between the two 46kD proteins (UmuC and MucB) clearly shows their relatedness. This is shown also to extend to the imp gene products, with ImpA sharing homology with UmuD and MucA, and ImpB sharing homology with UmuC and MucB. However, the two imp genes are preceded in the operon by a third gene, impC, which encodes a small protein of 9.5kD and which has no equivalent in the umu and muc operons. Images PMID:2129552

  15. Mutation/SNP analysis in EF-hand calcium binding domain of mitochondrial Ca[Formula: see text] uptake 1 gene in bipolar disorder patients.

    PubMed

    Safari, Roghaiyeh; Salimi, Reza; Tunca, Zeliha; Ozerdem, Aysegul; Ceylan, Deniz; Sakizli, Meral

    2016-06-01

    Calcium signaling is important for synaptic plasticity, generation of brain rhythms, regulating neuronal excitability, data processing and cognition. Impairment in calcium homeostasis contributed to the development of psychiatric disorders such as bipolar disorder (BP). MCU is the most important calcium transporter in mitochondria inner membrane responsible for influx of Ca[Formula: see text]. MICU1 is linked with MCU and has two canonical EF hands that are vital for its activity and regulates MCU-mediated Ca[Formula: see text] influx. In the current study, we aimed to investigate the role of genetic alteration of EF hand calcium binding motifs of MICU1 on the development of BP. We examined patients with BP, first degree relatives of these patients and healthy volunteers for mutations and polymorphisms in EF hand calcium binding motifs of MICU1. The result showed no SNP/mutation in BP patients, in healthy subjects and in first degree relatives. Additionally, alignment of the EF hand calcium binding regions among species (Gallus-gallus, Canis-lupus-familiaris, Bos-taurus, Mus-musculus, Rattus-norvegicus, Pan-troglodytes, Homosapiens and Danio-rerio) showed exactly the same amino acids (DLNGDGEVDMEE and DCDGNGELSNKE) except in one of the calcium binding domain of Danio-rerio that there was only one difference; leucine instead of Methionine. Our results showed that the SNP on EF-hand Ca[Formula: see text] binding domains of MICU1 gene had no effect in phenotypic characters of BP patients. PMID:27297032

  16. Burkitt's lymphoma is a malignancy of mature B cells expressing somatically mutated V region genes.

    PubMed Central

    Klein, U.; Klein, G.; Ehlin-Henriksson, B.; Rajewsky, K.; Küppers, R.

    1995-01-01

    BACKGROUND: The developmental stage from which stems the malignant B cell population in Burkitt's lymphoma (BL) is unclear. An approach to answering this question is provided by the sequence analysis of rear-ranged immunoglobulin (Ig) variable region (V) genes from BL for evidence of somatic mutations, together with a phenotypic characterization. As somatic hypermutation of Ig V region genes occurs in germinal center B cells, somatically mutated Ig genes are found in germinal center B cells and their descendents. MATERIALS AND METHODS: Rearranged V kappa region genes from 10 kappa-expressing sporadic and endemic BL-derived cell lines (9 IgM and 1 IgG positive) and three kappa-expressing endemic BL biopsy specimens were amplified by polymerase chain reaction and sequenced. In addition, VH region gene sequences from these cell lines were determined. RESULTS: All BL cell lines and the three biopsy specimens carried somatically mutated V region genes. The average mutation frequency of rearranged V kappa genes from eight BL cell lines established from sporadic BL was 1.8%. A higher frequency (6%) was found in five endemic cases (three biopsy specimens and two BL cell lines). CONCLUSIONS: The detection of somatic mutations in the rearranged V region genes suggests that both sporadic and endemic BL represent a B-cell malignancy originating from germinal center B cells or their descendants. Interestingly, the mutation frequency detected in sporadic BL is in a range similar to that characteristic for IgM-expressing B cells in the human peripheral blood and for mu chain-expressing germinal center B cells, whereas the mutation frequency found in endemic BL is significantly higher. PMID:8529116

  17. Exome Analyses of Long QT Syndrome Reveal Candidate Pathogenic Mutations in Calmodulin-Interacting Genes.

    PubMed

    Shigemizu, Daichi; Aiba, Takeshi; Nakagawa, Hidewaki; Ozaki, Kouichi; Miya, Fuyuki; Satake, Wataru; Toda, Tatsushi; Miyamoto, Yoshihiro; Fujimoto, Akihiro; Suzuki, Yutaka; Kubo, Michiaki; Tsunoda, Tatsuhiko; Shimizu, Wataru; Tanaka, Toshihiro

    2015-01-01

    Long QT syndrome (LQTS) is an arrhythmogenic disorder that can lead to sudden death. To date, mutations in 15 LQTS-susceptibility genes have been implicated. However, the genetic cause for approximately 20% of LQTS patients remains elusive. Here, we performed whole-exome sequencing analyses on 59 LQTS and 61 unaffected individuals in 35 families and 138 unrelated LQTS cases, after genetic screening of known LQTS genes. Our systematic analysis of familial cases and subsequent verification by Sanger sequencing identified 92 candidate mutations in 88 genes for 23 of the 35 families (65.7%): these included eleven de novo, five recessive (two homozygous and three compound heterozygous) and seventy-three dominant mutations. Although no novel commonly mutated gene was identified other than known LQTS genes, protein-protein interaction (PPI) network analyses revealed ten new pathogenic candidates that directly or indirectly interact with proteins encoded by known LQTS genes. Furthermore, candidate gene based association studies using an independent set of 138 unrelated LQTS cases and 587 controls identified an additional novel candidate. Together, mutations in these new candidates and known genes explained 37.1% of the LQTS families (13 in 35). Moreover, half of the newly identified candidates directly interact with calmodulin (5 in 11; comparison with all genes; p=0.042). Subsequent variant analysis in the independent set of 138 cases identified 16 variants in the 11 genes, of which 14 were in calmodulin-interacting genes (87.5%). These results suggest an important role of calmodulin and its interacting proteins in the pathogenesis of LQTS. PMID:26132555

  18. NF1 gene mutations and loss of heterozygosity in constitutional and tumor tissues

    SciTech Connect

    Abernathy, C.R.; Colman, S.D.; Ho, V.T.

    1994-09-01

    Neurofibromatosis type 1 (NF1) is a common autosomal dominant disorder characterized by neurofibromas, cafe-au-lait spots, and Lisch nodules. NF1 patients are at increased risk for certain types of malignancies such as brain tumors, sarcomas, and leukemias. NF1 is caused by disrupting mutations of the NF1 gene (17q11.2), with half of cases caused by new mutation. Less than 50 constitutional mutations have thus far been reported, with only one recurring. We are pursuing mutation analysis in germline and tumor tissues from NF1 patients (and non-NF1 tumors) by heteroduplex analysis (HDA) and SSCP, simultaneously testing for large deletions by Southern blots and loss-of-heterozygosity (LOH) studies. HDA has so far identified 18 exon mutations/variants in 110 unrelated patients (3/4 of exons tested), including splice mutations, insertions, deletions, and point changes. RT-PCR analysis in our four clearly-inactivating mutations showed that all four mutant alleles are expressed. This suggests that aberrant forms of the protein (neurofibromin) may be produced, which may shed light on yet-unknown functions. In a study of 10 new-mutations parent-child sets, one very mildly-affected patient showed LOH of an entire NF1 allele, in contrast to other patients reported who have similar deletions and a severe phenotype. This mutation is materally-derived, which is unusual given that over 90% of new mutations are thought to be of paternal origin. Preliminary LOH studies in one new-mutation patient indicate large independent somatic deletions involving the maternal NF1 allele in several neurofibromas, implicating the two-hit tumor suppressor system in neurofibroma formation. no other losses on chromosome 17 are evident, and blood and tumor karyotypes are normal. We are attempting to identify the germline mutation, confirm the somatic findings, and find the boundaries of the deletions.

  19. Genetic epidemiology of Paget's disease of bone in italy: sequestosome1/p62 gene mutational test and haplotype analysis at 5q35 in a large representative series of sporadic and familial Italian cases of Paget's disease of bone.

    PubMed

    Falchetti, Alberto; Di Stefano, Marco; Marini, Francesca; Ortolani, Sergio; Ulivieri, Massimo Fabio; Bergui, Simona; Masi, Laura; Cepollaro, Chiara; Benucci, Maurizio; Di Munno, Ombretta; Rossini, Maurizio; Adami, Silvano; Del Puente, Antonio; Isaia, Giancarlo; Torricelli, Francesca; Brandi, Maria Luisa

    2009-01-01

    Families affected by Paget's disease of bone frequently harbor mutations in the SQSTM1/p62 gene. In this multicentric study we collected 345 sporadic and 12 familial PDB cases throughout Italy, identifying 12 different mutations, 5 of which are newly reported and 3, D335E, A381V, and Y383X, external to the UBA domain. Subjects with truncating mutations, E396X, showed a significantly younger age at clinical diagnosis, while the Y383X subjects had a higher average number of affected skeletal sites. All the mutants exhibited the CGTG-H2 haplotype. In two pairs and one triad of unrelated Italian PDB families from different Italian regions, we detected a common SQSTM1/p62 mutation for each P392L, M404V, and G425R group. Since the CGTG-H2 haplotype frequency was also high in normal subjects, and genetic influence due to migratory fluxes of different ethnic groups exists in the Italian population, to refine the search for a more geographically specific founder effect, we extended the haplotype analysis in these families using polymorphic microsatellite repeat markers, within and flanking the SQSTM1/p62 locus, from chromosome 5q35, other than the exon 6 and 3'UTR polymorphisms. All mutant carriers from two of the three M404V families and from the G425R families exhibited common extended chromosome 5q35 haplotypes, IT01 and IT02, respectively, which may be reflecting influences of past migrations. This may be helpful in estimating the true rate of de novo mutations. We confirm the data on the existence of both a mutational hotspot at the UBA domain of SQSTM1/p62 and a founder effect in the PDB population.

  20. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    PubMed

    Zhang, Junyu; Liu, Hongbin; Liu, Zhiyuan; Liao, Yong; Guo, Luo; Wang, Honglian; He, Lin; Zhang, Xiaodong; Xing, Qinghe

    2013-01-01

    Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE) gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser) in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203) containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.

  1. [A patient with familial amyotrophic lateral sclerosis associated with a new valosin-containing protein (VCP) gene mutation].

    PubMed

    Segawa, Mari; Hoshi, Akihiko; Naruse, Hiroya; Kuroda, Masayuki; Bujo, Hideaki; Ugawa, Yoshikazu

    2015-01-01

    In this communication, we report a patient with familial amyotrophic lateral sclerosis (ALS) associated with a familial dyslipidemia. Genetic analysis revealed a novel heterozygous valosin-containing protein (VCP) mutation (c.466G>T (p.G156C)). The other gene analysis also disclosed a known homozygous LCAT mutation (c.101C>T (p.P10L)). VCP gene mutation shown should be responsible for familial ALS because of following reasons. The patient's father also was also affected by ALS. The VCP gene mutation (p.G156C) in the patient was located in the vicinity of a site frequently associated with pathogenic VCP variants. The same amino acid transformation as that of this patient has been reported to be involved in the pathogenesis of inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia. This is the first case report of rare association of ALS with VCP mutation and dyslipidemia with LCAT mutation. PMID:26511028

  2. Gene-Specific Function Prediction for Non-Synonymous Mutations in Monogenic Diabetes Genes

    PubMed Central

    Li, Quan; Liu, Xiaoming; Gibbs, Richard A.; Boerwinkle, Eric; Polychronakos, Constantin; Qu, Hui-Qi

    2014-01-01

    The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY) molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations. PMID:25136813

  3. Evidence of a founder effect for four cathepsin C gene mutations in Papillon-Lefèvre syndrome patients.

    PubMed

    Zhang, Y; Lundgren, T; Renvert, S; Tatakis, D N; Firatli, E; Uygur, C; Hart, P S; Gorry, M C; Marks, J J; Hart, T C

    2001-02-01

    We describe a mutation and haplotype analysis of Papillon-Lefèvre syndrome probands that provides evidence of a founder effect for four separate cathepsin C mutations. A total of 25 different cathepsin C mutations have been reported in 32 families with Papillon-Lefèvre syndrome (PLS) and associated conditions. A characteristic of these findings is the diversity of different cathepsin C mutations that have been identified. To evaluate the generality of cathepsin C mutations, PLS probands representative of five reportedly unrelated Saudi Arabian families were evaluated by mutational and haplotype analyses. Sequence analysis identified two cathepsin C gene mutations: a novel exon 7 G300D mutation was found in the proband from one family, while probands from four families shared a common R272P mutation in exon 6. The R272P mutation has been previously reported in two other non-Saudi families. The presence of the R272P mutation in probands from these four Saudi families makes this the most frequently reported cathepsin C mutation. To distinguish between the presence of a possible founder effect or a mutational hot spot for the R272P mutation, we performed haplotype analysis using six novel DNA polymorphisms that span a 165 kb interval containing the cathepsin C gene. Results of haplotype analysis for genetic polymorphisms within and flanking the cathepsin C gene are consistent with inheritance of the R272P mutation "identical by descent" from a common ancestor in these four Saudi families. Haplotype analysis of multiple PLS probands homozygous for other cathepsin C mutations (W249X, Q286X, and T153I) also supports inheritance of each of these mutations from common ancestors. These data suggest that four of the more frequently reported cathepsin C mutations have been inherited from common ancestors and provide the first direct evidence for a founder effect for cathepsin C gene mutations in PLS. Identification of these six short tandem repeat polymorphisms that span the

  4. GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations

    SciTech Connect

    Cronn, M.T.; Miyada, C.G.; Fucini, R.V.

    1994-09-01

    GeneChip{sup {trademark}} assays are based on high density, carefully designed arrays of short oligonucleotide probes (13-16 bases) built directly on derivatized silica substrates. DNA target sequence analysis is achieved by hybridizing fluorescently labeled amplification products to these arrays. Fluorescent hybridization signals located within the probe array are translated into target sequence information using the known probe sequence at each array feature. The mutation screening assay for cystic fibrosis includes sets of oligonucleotide probes designed to detect numerous different mutations that have been described in 14 exons and one intron of the CFTR gene. Each mutation site is addressed by a sub-array of at least 40 probe sequences, half designed to detect the wild type gene sequence and half designed to detect the reported mutant sequence. Hybridization with homozygous mutant, homozygous wild type or heterozygous targets results in distinctive hybridization patterns within a sub-array, permitting specific discrimination of each mutation. The GeneChip probe arrays are very small (approximately 1 cm{sup 2}). There miniature size coupled with their high information content make GeneChip probe arrays a useful and practical means for providing CF mutation analysis in a clinical setting.

  5. Novel Mutations in MLH1 and MSH2 Genes in Mexican Patients with Lynch Syndrome.

    PubMed

    Moreno-Ortiz, Jose Miguel; Ayala-Madrigal, María de la Luz; Corona-Rivera, Jorge Román; Centeno-Flores, Manuel; Maciel-Gutiérrez, Víctor; Franco-Topete, Ramón Antonio; Armendáriz-Borunda, Juan; Hotchkiss, Erin; Pérez-Carbonell, Lucia; Rhees, Jennifer; Boland, Clement Richard; Gutiérrez-Angulo, Melva

    2016-01-01

    Background. Lynch Syndrome (LS) is characterized by germline mutations in the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2. This syndrome is inherited in an autosomal dominant pattern and is characterized by early onset colorectal cancer (CRC) and extracolonic tumors. The aim of this study was to identify mutations in MMR genes in three Mexican patients with LS. Methods. Immunohistochemical analysis was performed as a prescreening method to identify absent protein expression. PCR, Denaturing High Performance Liquid Chromatography (dHPLC), and Sanger sequencing complemented the analysis. Results. Two samples showed the absence of nuclear staining for MLH1 and one sample showed loss of nuclear staining for MSH2. The mutations found in MLH1 gene were c.2103+1G>C in intron 18 and compound heterozygous mutants c.1852_1854delAAG (p.K618del) and c.1852_1853delinsGC (p.K618A) in exon 16. In the MSH2 gene, we identified mutation c.638dupT (p.L213fs) in exon 3. Conclusions. This is the first report of mutations in MMR genes in Mexican patients with LS and these appear to be novel.

  6. Novel Mutations in MLH1 and MSH2 Genes in Mexican Patients with Lynch Syndrome

    PubMed Central

    Moreno-Ortiz, Jose Miguel; Ayala-Madrigal, María de la Luz; Corona-Rivera, Jorge Román; Maciel-Gutiérrez, Víctor; Franco-Topete, Ramón Antonio; Armendáriz-Borunda, Juan; Pérez-Carbonell, Lucia; Rhees, Jennifer; Gutiérrez-Angulo, Melva

    2016-01-01

    Background. Lynch Syndrome (LS) is characterized by germline mutations in the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2. This syndrome is inherited in an autosomal dominant pattern and is characterized by early onset colorectal cancer (CRC) and extracolonic tumors. The aim of this study was to identify mutations in MMR genes in three Mexican patients with LS. Methods. Immunohistochemical analysis was performed as a prescreening method to identify absent protein expression. PCR, Denaturing High Performance Liquid Chromatography (dHPLC), and Sanger sequencing complemented the analysis. Results. Two samples showed the absence of nuclear staining for MLH1 and one sample showed loss of nuclear staining for MSH2. The mutations found in MLH1 gene were c.2103+1G>C in intron 18 and compound heterozygous mutants c.1852_1854delAAG (p.K618del) and c.1852_1853delinsGC (p.K618A) in exon 16. In the MSH2 gene, we identified mutation c.638dupT (p.L213fs) in exon 3. Conclusions. This is the first report of mutations in MMR genes in Mexican patients with LS and these appear to be novel. PMID:27247567

  7. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance

    PubMed Central

    Pfeffer, Gerald; Gorman, Gráinne S; Griffin, Helen; Kurzawa-Akanbi, Marzena; Blakely, Emma L.; Wilson, Ian; Sitarz, Kamil; Moore, David; Murphy, Julie L.; Alston, Charlotte L.; Pyle, Angela; Coxhead, Jon; Payne, Brendan; Gorrie, George H.; Longman, Cheryl; Hadjivassiliou, Marios; McConville, John; Dick, David; Imam, Ibrahim; Hilton, David; Norwood, Fiona; Baker, Mark R.; Jaiser, Stephan R.; Yu-Wai-Man, Patrick; Farrell, Michael; McCarthy, Allan; Lynch, Timothy; McFarland, Robert; Schaefer, Andrew M.; Turnbull, Douglass M.; Horvath, Rita; Taylor, Robert W.

    2014-01-01

    Despite being a canonical presenting feature of mitochondrial disease, the genetic basis of progressive external ophthalmoplegia remains unknown in a large proportion of patients. Here we show that mutations in SPG7 are a novel cause of progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions. After excluding known causes, whole exome sequencing, targeted Sanger sequencing and multiplex ligation-dependent probe amplification analysis were used to study 68 adult patients with progressive external ophthalmoplegia either with or without multiple mitochondrial DNA deletions in skeletal muscle. Nine patients (eight probands) were found to carry compound heterozygous SPG7 mutations, including three novel mutations: two missense mutations c.2221G>A; p.(Glu741Lys), c.2224G>A; p.(Asp742Asn), a truncating mutation c.861dupT; p.Asn288*, and seven previously reported mutations. We identified a further six patients with single heterozygous mutations in SPG7, including two further novel mutations: c.184-3C>T (predicted to remove a splice site before exon 2) and c.1067C>T; p.(Thr356Met). The clinical phenotype typically developed in mid-adult life with either progressive external ophthalmoplegia/ptosis and spastic ataxia, or a progressive ataxic disorder. Dysphagia and proximal myopathy were common, but urinary symptoms were rare, despite the spasticity. Functional studies included transcript analysis, proteomics, mitochondrial network analysis, single fibre mitochondrial DNA analysis and deep re-sequencing of mitochondrial DNA. SPG7 mutations caused increased mitochondrial biogenesis in patient muscle, and mitochondrial fusion in patient fibroblasts associated with the clonal expansion of mitochondrial DNA mutations. In conclusion, the SPG7 gene should be screened in patients in whom a disorder of mitochondrial DNA maintenance is suspected when spastic ataxia is prominent. The complex neurological phenotype is likely a result of the clonal

  8. ALS mutations in TLS/FUS disrupt target gene expression.

    PubMed

    Coady, Tristan H; Manley, James L

    2015-08-15

    Amyotrophic lateral sclerosis (ALS) is caused by mutations in a number of genes, including the gene encoding the RNA/DNA-binding protein translocated in liposarcoma or fused in sarcoma (TLS/FUS or FUS). Previously, we identified a number of FUS target genes, among them MECP2. To investigate how ALS mutations in FUS might impact target gene expression, we examined the effects of several FUS derivatives harboring ALS mutations, such as R521C (FUS(C)), on MECP2 expression in transfected human U87 cells. Strikingly, FUS(C) and other mutants not only altered MECP2 alternative splicing but also markedly increased mRNA abundance, which we show resulted from sharply elevated stability. Paradoxically, however, MeCP2 protein levels were significantly reduced in cells expressing ALS mutant derivatives. Providing a parsimonious explanation for these results, biochemical fractionation and in vivo localization studies revealed that MECP2 mRNA colocalized with cytoplasmic FUS(C) in insoluble aggregates, which are characteristic of ALS mutant proteins. Together, our results establish that ALS mutations in FUS can strongly impact target gene expression, reflecting a dominant effect of FUS-containing aggregates.

  9. Frequent NF2 gene transcript mutations in sporadic meningiomas and vestibular schwannomas

    SciTech Connect

    Deprez, R.H.L.; Groen, N.A.; Zwarthoff, E.C.; Hagemeijer, A.; Van Drunen, E.; Bootsma, D.; Koper, J.W.; Avezaat, C.J.J. ); Bianchi, A.B.; Seizinger, B.R. )

    1994-06-01

    The gene for the hereditary disorder neurofibromatosis type 2 (NF2), which predisposes for benign CNS tumors such as vestibular schwannomas and meningiomas, has been assigned to chromosome 22 and recently has been isolated. Mutations in the NF2 gene were found in both sporadic meningiomas and vestibular schwannomas. However, so far only 6 of the 16 exons of the gene have been analyzed. In order to extend the analysis of an involvement of the NF2 gene in the sporadic counterparts of these NF2-related tumors, the authors have used reverse transcriptase-PCR amplification followed by SSCP and DNA sequence analysis to screen for mutations in the coding region of the NF2 gene. Analysis of the NF2 gene transcript in 53 unrelated patients with meningiomas and vestibular schwannomas revealed mutations in 32% of the sporadic meningiomas (n = 44), in 50% of the sporadic vestibular schwannomas (n = 4), in 100% of the tumors found in NF2 patients (n = 2), and in one of three tumors from multiple-meningioma patients. Of the 18 tumors in which a mutation in the NF2 gene transcript was observed and the copy number of chromosome 22 could be established, 14 also showed loss of (parts of) chromosome 22. This suggests that in sporadic meningiomas and NF2-associated tumors the NF2 gene functions as a recessive tumor-suppressor gene. The mutations detected resulted mostly in frameshifts, predicting truncations starting within the N-terminal half of the putative protein. 23 refs., 2 figs. 3 tabs.

  10. Origin and spread of beta-globin gene mutations in India, Africa, and Mediterranea: analysis of the 5' flanking and intragenic sequences of beta S and beta C genes.

    PubMed

    Trabuchet, G; Elion, J; Baudot, G; Pagnier, J; Bouhass, R; Nigon, V M; Labie, D; Krishnamoorthy, R

    1991-06-01

    Nucleotide polymorphisms of both the 5' flanking and intragenic regions of the human beta-globin gene were investigated by directly sequencing genomic DNA after amplification by the polymerase chain reaction in 47 subjects homozygous for the beta S or the beta C mutation. The sickle-cell mutation was found in the context of five different haplotypes defined by eight nucleotide substitutions and various structures of a region of the simple repeated sequence (AT) chi Ty. All subjects from the same geographic origin bear an identical chromosomal structure, defining the Senegal-, Bantu-, Benin-, Cameroon-, and Indian-type chromosomes. These results strengthen our previous conclusions about the multiple occurrence of the sickle-cell mutation. The Benin-type chromosome was also found among Algerian and Sicilian sickle-cell patients, whereas the Indian-type chromosome was observed in two geographically distant tribes, illustrating the spread of these sickle-cell genes. We also found that the intragenic sequence polymorphisms (frameworks) are not always in linkage disequilibrium with the BamH I polymorphism downstream from the beta-globin gene, as had been previously observed. Finally, we present a tentative phylogenetic tree of the different alleles at this locus. Some polymorphisms of this sequence might be contemporary with our last common ancestor, the great apes, that is, about 4-6 millions years old.

  11. Altered Chromosomal Positioning, Compaction, and Gene Expression with a Lamin A/C Gene Mutation

    PubMed Central

    Abuisneineh, Fida; Fahrenbach, John P.; Zhang, Yuan; MacLeod, Heather; Dellefave, Lisa; Pytel, Peter; Selig, Sara; Labno, Christine M.; Reddy, Karen; Singh, Harinder; McNally, Elizabeth

    2010-01-01

    Background Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. Methods/Findings To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. Conclusions These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered. PMID:21179469

  12. Point mutations throughout the GLI3 gene cause Greig cephalopolysyndactyly syndrome.

    PubMed

    Kalff-Suske, M; Wild, A; Topp, J; Wessling, M; Jacobsen, E M; Bornholdt, D; Engel, H; Heuer, H; Aalfs, C M; Ausems, M G; Barone, R; Herzog, A; Heutink, P; Homfray, T; Gillessen-Kaesbach, G; König, R; Kunze, J; Meinecke, P; Müller, D; Rizzo, R; Strenge, S; Superti-Furga, A; Grzeschik, K H

    1999-09-01

    Greig cephalopolysyndactyly syndrome, characterized by craniofacial and limb anomalies (GCPS; MIM 175700), previously has been demonstrated to be associated with translocations as well as point mutations affecting one allele of the zinc finger gene GLI3. In addition to GCPS, Pallister-Hall syndrome (PHS; MIM 146510) and post-axial polydactyly type A (PAP-A; MIM 174200), two other disorders of human development, are caused by GLI3 mutations. In order to gain more insight into the mutational spectrum associated with a single phenotype, we report here the extension of the GLI3 mutation analysis to 24 new GCPS cases. We report the identification of 15 novel mutations present in one of the patient's GLI3 alleles. The mutations map throughout the coding gene regions. The majority are truncating mutations (nine of 15) that engender prematurely terminated protein products mostly but not exclusively N-terminally to or within the central region encoding the DNA-binding domain. Two missense and two splicing mutations mapping within the zinc finger motifs presumably also interfere with DNA binding. The five mutations identified within the protein regions C-terminal to the zinc fingers putatively affect additional functional properties of GLI3. In cell transfection experiments using fusions of the DNA-binding domain of yeast GAL4 to different segments of GLI3, transactivating capacity was assigned to two adjacent independent domains (TA(1)and TA(2)) in the C-terminal third of GLI3. Since these are the only functional domains affected by three C-terminally truncating mutations, we postulate that GCPS may be due either to haploinsufficiency resulting from the complete loss of one gene copy or to functional haploinsufficiency related to compromised properties of this transcription factor such as DNA binding and transactivation. PMID:10441342

  13. Mutation screening of the RYR1 gene in malignant hyperthermia: Detection of a novel Tyr to ser mutation in a pedigree with associated centrl cores

    SciTech Connect

    Quane, K.A.; Keating, K.E.; Healy, J.M.S.

    1994-09-01

    The ryanodine receptor gene (RYR1) has been shown to be mutated in a small number of malignant hyperthermia (MH) predigrees. Missense mutations in this gene have also been identified in two families with central core disease (CCD), a rare myopathy closely associated with MH. In an effort to identify other RYR1 mutations responsible for MH and CCD, we used a SSCP approach to screen the RYR1 gene for mutations in a family exhibiting susceptibility to MH (MHS) where some of the MHS individuals display core regions in their muscle. Sequence analysis of a unique aberrant SSCP has allowed us to identify a point mutation cosegregating with MHS in the described family. The mutation changes a conserved tyrosine residue at position 522 to a serine residue. This mutation is positioned relatively close to five of the six MHS/CCD mutations known to date and provides further evidence that MHS/CCD mutations may cluster in the amino terminal region of the RYR1 protein.

  14. Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity

    PubMed Central

    Bullich, Gemma; Trujillano, Daniel; Santín, Sheila; Ossowski, Stephan; Mendizábal, Santiago; Fraga, Gloria; Madrid, Álvaro; Ariceta, Gema; Ballarín, José; Torra, Roser; Estivill, Xavier; Ars, Elisabet

    2015-01-01

    Genetic diagnosis of steroid-resistant nephrotic syndrome (SRNS) using Sanger sequencing is complicated by the high genetic heterogeneity and phenotypic variability of this disease. We aimed to improve the genetic diagnosis of SRNS by simultaneously sequencing 26 glomerular genes using massive parallel sequencing and to study whether mutations in multiple genes increase disease severity. High-throughput mutation analysis was performed in 50 SRNS and/or focal segmental glomerulosclerosis (FSGS) patients, a validation cohort of 25 patients with known pathogenic mutations, and a discovery cohort of 25 uncharacterized patients with probable genetic etiology. In the validation cohort, we identified the 42 previously known pathogenic mutations across NPHS1, NPHS2, WT1, TRPC6, and INF2 genes. In the discovery cohort, disease-causing mutations in SRNS/FSGS genes were found in nine patients. We detected three patients with mutations in an SRNS/FSGS gene and COL4A3. Two of them were familial cases and presented a more severe phenotype than family members with mutation in only one gene. In conclusion, our results show that massive parallel sequencing is feasible and robust for genetic diagnosis of SRNS/FSGS. Our results indicate that patients carrying mutations in an SRNS/FSGS gene and also in COL4A3 gene have increased disease severity. PMID:25407002

  15. [Identification of a novel mutation of IDS gene from a Chinese pedigree with MPS II].

    PubMed

    GUO, Yi-Bin; PAN, Hong-Da; GUO, Chun-Miao; LI, Yong-Mei; CHEN, Lu-Ming

    2009-11-01

    The purpose of this study was to understand the molecular genetic mechanism of mucopolysaccharidosis type II (MPS II) and to provide a prerequisite for future prenatal gene diagnosis. A preliminary diagnosis was made by qualitative detection of Urinary Glycosaminoglycans of the suspected MPS II proband. Then, mutation detection was performed on the proband and his family members with PCR and direct sequencing of PCR products. After the novel mutation of c.876 del 2 in IDS gene was detected, sequence analysis was performed on exon 6 of IDS gene of the 135 cases, which consisted of 120 randomly selected normal controls, and other 15 patients with MPS I, IV, and VI other than MPS II. Besides, the patho-genicity of the novel mutation was analyzed with the following 2 methods: conservative analysis of the sequence of muta-tion spots of different species and the direct test of the IDS enzyme activity of the patient and his relative family members. The result of uroscopy of the proband was strong positive (GAGs +++). There was a novel deletion mutation of c.876-877 del TC in the coding region of exon 6 of IDS gene, which was a hemizygous mutation. However, the mutation of his mother and sister was a heterozygous mutation. Detection of the exon 6 of IDS gene showed that the mutation was not found among normal controls and other patients with MPS I, IV, and VI other than MPS II. Homology comparison of amino acid sequences from different species showed that the phenylalanine (F) glutamine (Q) of the mutation site of c.876-877 del TC located in p.292-293 was highly conserved. The activity of IDS enzyme of the proband was only 2.3 nmol/4 h/mL, which was much lower than normal; but the activity of IDS enzyme of his father, mother and sister was 641.9 nmol/4 h/mL, 95.8 nmol/4h/mL and 103.2 nmol/4h/mL, respectively. These results illustrated that the deletion and frame-shift mutation of c.876-877 del TC detected was a novel pathologic mutation, which was the underlying cause of

  16. Germline mutation analysis of MLH1 and MSH2 in Malaysian Lynch syndrome patients

    PubMed Central

    Zahary, Mohd Nizam; Kaur, Gurjeet; Abu Hassan, Muhammad Radzi; Singh, Harjinder; Naik, Venkatesh R; Ankathil, Ravindran

    2012-01-01

    AIM: To investigate the protein expression profile of mismatch repair (MMR) genes in suspected cases of Lynch syndrome and to characterize the associated germline mutations. METHODS: Immunohistochemical analysis of tumor samples was performed to determine the protein expression profile of MMR protein. Germline mutation screening was carried out on peripheral blood samples. The entire exon regions of MLH1 and MSH2 genes were amplified by polymerase chain reaction, screened by denaturing high performance liquid chromatography (dHPLC) and analyzed by DNA sequencing to characterize the germline mutations. RESULTS: Three out of 34 tissue samples (8.8%) and four out of 34 tissue samples (11.8%) showed loss of nuclear staining by immunohistochemistry, indicating the absence of MLH1 and MSH2 protein expression in carcinoma cells, respectively. dHPLC analysis followed by DNA sequencing showed these samples to have germline mutations of MSH2 gene. However, no deleterious mutations were identified in any of the 19 exons or coding regions of MLH1 gene, but we were able to identify MLH1 promoter polymorphism, -93G > A (rs1800734), in 21 out of 34 patients (61.8%). We identified one novel mutation, transversion mutation c.2005G > C, which resulted in a missense mutation (Gly669Arg), a transversion mutation in exon 1, c.142G > T, which resulted in a nonsense mutation (Glu48Stop) and splice-site mutation, c.2006-6T > C, which was adjacent to exon 13 of MSH2 gene. CONCLUSION: Germline mutations were identified in four Malaysian Lynch syndrome patients. Immunohistochemical analysis of tumor tissue proved to be a good pre-screening test before proceeding to germline mutation analysis of DNA MMR genes. PMID:22371642

  17. Mutator gene and hereditary non-polyposis colorectal cancer

    DOEpatents

    de la Chapelle, Albert; Vogelstein, Bert; Kinzler, Kenneth W.

    2008-02-05

    The human MSH2 gene, responsible for hereditary non-polyposis colorectal cancer, was identified by virtue of its homology to the MutS class of genes, which are involved in DNA mismatch repair. The sequence of cDNA clones of the human gene are provided, and the sequence of the gene can be used to demonstrate the existence of germ line mutations in hereditary non-polyposis colorectal cancer (HNPCC) kindreds, as well as in replication error.sup.+ (RER.sup.+) tumor cells.

  18. Impact of thrombophilic genes mutations on thrombosis risk in Egyptian nonmetastatic cancer patients.

    PubMed

    Wahba, Mona Ahmed; Ismail, Mona Ahmed; Saad, Abeer Attia; Habashy, Deena Mohamed; Hafeez, Zeinab Mohamed Abdel; Boshnak, Noha Hussein

    2015-04-01

    Venous thromboembolism (VTE) is a common complication in cancer patients. Several genetic risk factors related to thrombophilia are known; however, their contributions to thrombotic tendency in cancer patients have conflicting results. We aimed to determine the prevalence of factor V Leiden (FVL), prothrombin (PTH) G20210A and methylene tetrahydrofolate reductase (MTHFR) C677T gene polymorphisms in Egyptian nonmetastatic cancer patients and their influence on thrombosis risk in those patients. Factor V Leiden, PTH G20210A and MTHFR C677T polymorphisms were detected in 40 cancer patients with VTE (group 1) and 40 cancer patients with no evidence of VTE (group 2) by PCR-based DNA analysis. Factor V and MTHFR mutations were higher in group 1 than in group 2 (factor V heterozygous mutation: 20 vs. 7.5%, homozygous mutation: 10 vs. 2.5%; MTHFR heterozygous mutation: 40 vs. 25%, homozygous mutation 5 vs. 0%, respectively) (P = 0.03). Mortality rate was higher in group 1 (75%) than in group 2 (25%; P < 0.001). No difference was found between those groups regarding PTH mutation (P = 1). Mortality rate was higher in the presence of homozygous and heterozygous factor V mutation (100 and 82%, respectively) compared to the wild type (41%) (P = 0.0006). Having any of the three studied gene mutations worsened the overall survival (P = 0.0003). Cox regression proved that both thrombosis and presence of factor V mutation are independent factors affecting survival in cancer patients (P < 0.001 and P = 0.01, respectively). In conclusion, there is an association between factor V and MTHFR mutations and risk of VTE in Egyptian cancer patients. Thrombosis and presence of factor V mutation are independent factors that influence survival in those patients. PMID:25565385

  19. Activating HER2 mutations in HER2 gene amplification negative breast cancer

    PubMed Central

    Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.

    2012-01-01

    Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880

  20. Mutation analysis in 600 French cystic fibrosis patients.

    PubMed Central

    Chevalier-Porst, F; Bonardot, A M; Gilly, R; Chazalette, J P; Mathieu, M; Bozon, D

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene of 600 unrelated cystic fibrosis (CF) patients living in France (excluding Brittany) was screened for 105 different mutations. This analysis resulted in the identification of 86% of the CF alleles and complete genotyping of 76% of the patients. The most frequent mutations in this population after delta F508 (69% of the CF chromosomes) are G542X (3.3%), N1303K (1.8%), W1282X (1.5%), 1717-1G-->A (1.3%), 2184delA + 2183 A-->G (0.9%), and R553X (0.8%). Images PMID:7525963

  1. Suppressor analysis of temperature-sensitive mutations of the largest subunit of RNA polymerase I in Saccharomyces cerevisiae: a suppressor gene encodes the second-largest subunit of RNA polymerase I.

    PubMed Central

    Yano, R; Nomura, M

    1991-01-01

    The SRP3-1 mutation is an allele-specific suppressor of temperature-sensitive mutations in the largest subunit (A190) of RNA polymerase I from Saccharomyces cerevisiae. Two mutations known to be suppressed by SRP3-1 are in the putative zinc-binding domain of A190. We have cloned the SRP3 gene by using its suppressor activity and determined its complete nucleotide sequence. We conclude from the following evidence that the SRP3 gene encodes the second-largest subunit (A135) of RNA polymerase I. First, the deduced amino acid sequence of the gene product contains several regions with high homology to the corresponding regions of the second-largest subunits of RNA polymerases of various origins, including those of RNA polymerase II and III from S. cerevisiae. Second, the deduced amino acid sequence contains known amino acid sequences of two tryptic peptides from the A135 subunit of RNA polymerase I purified from S. cerevisiae. Finally, a strain was constructed in which transcription of the SRP3 gene was controlled by the inducible GAL7 promoter. When this strain, which can grow on galactose but not on glucose, was shifted from galactose medium to glucose medium, a large decrease in the cellular concentration of A135 was observed by Western blot analysis. We have also identified the specific amino acid alteration responsible for suppression by SRP3-1 and found that it is located within the putative zinc-binding domain conserved among the second-largest subunits of eucaryotic RNA polymerases. From these results, it is suggested that this putative zinc-binding domain is in physical proximity to and interacts with the putative zinc-binding domain of the A190 subunit. Images PMID:1990281

  2. Detection of rarely identified multiple mutations in MECP2 gene do not contribute to enhanced severity in Rett syndrome.

    PubMed

    Chapleau, Christopher A; Lane, Jane; Kirwin, Susan M; Schanen, Carolyn; Vinette, Kathy M B; Stubbolo, Danielle; MacLeod, Patrick; Glaze, Daniel G; Motil, Kathleen J; Neul, Jeffrey L; Skinner, Steven A; Kaufmann, Walter E; Percy, Alan K

    2013-07-01

    The objective of our study was to characterize the influence of multiple mutations in the MECP2 gene in a cohort of individuals with Rett syndrome. Further analysis demonstrated that nearly all resulted from de novo in cis mutations, where the disease severity was indistinguishable from single mutations. Our methods involved enrolling participants in the RTT Natural History Study (NHS). After providing informed consent through their parents or principal caretakers, additional molecular assessments were performed in the participants and their parents to assess the presence and location of more than one mutation in each. Clinical severity was assessed at each visit in those participants in the NHS. Non-contiguous MECP2 gene variations were detected in 12 participants and contiguous mutations involving a deletion and insertion in three participants. Thirteen of 15 participants had mutations that were in cis; four (of 13) had three MECP2 mutations; two (of 15) had mutations that were both in cis and in trans (i.e., on different alleles). Clinical severity did not appear different from NHS participants with a single similar mutation. Mutations in cis were identified in most participants; two individuals had mutations both in cis and in trans. The presence of multiple mutations was not associated with greater severity. Nevertheless, multiple mutations will require greater thought in the future, if genetic assignment to drug treatment protocols is considered.

  3. A novel silent deletion, an insertion mutation and a nonsense mutation in the TCOF1 gene found in two Chinese cases of Treacher Collins syndrome.

    PubMed

    Wang, Yan; Yin, Xiao-Juan; Han, Tao; Peng, Wei; Wu, Hong-Lin; Liu, Xin; Feng, Zhi-Chun

    2014-12-01

    Treacher Collins syndrome (TCS) is the most common and well-known craniofacial disorder caused by mutations in the genes involved in pre-rRNA transcription, which include the TCOF1 gene. This study explored the role of TCOF1 mutations in Chinese patients with TCS. Mutational analysis of the TCOF1 gene was performed in three patients using polymerase chain reaction and direct sequencing. Among these three patients, two additional TCOF1 variations, a novel 18 bp deletion and a novel 1 bp insertion mutation, were found in patient 1, together with a novel nonsense mutation (p.Ser476X) and a previously reported 4 bp deletion (c.1872_1875delTGAG) in other patients. Pedigree analysis allowed for prediction of the character of the mutation, which was either pathological or not. The 18 bp deletion of six amino acids, Ser-Asp-Ser-Glu-Glu-Glu (798*803), which was located in the CKII phosphorylation site of treacle, seemed relatively benign for TCS. By contrast, another novel mutation of c.1072_1073insC (p.Gln358ProfsX23) was a frameshift mutation and expected to result in a premature stop codon. This study provides insights into the functional domain of treacle and illustrates the importance of clinical and family TCS screening for the interpretation of novel sequence alterations.

  4. Compound heterozygous DUOX2 gene mutations (c.2335-1G>C/c.3264_3267delCAGC) associated with congenital hypothyroidism. Characterization of complex cryptic splice sites by minigene analysis.

    PubMed

    Belforte, Fiorella S; Citterio, Cintia E; Testa, Graciela; Olcese, María Cecilia; Sobrero, Gabriela; Miras, Mirta B; Targovnik, Héctor M; Rivolta, Carina M

    2016-01-01

    Iodide Organification defects (IOD) represent 10% of cases of congenital hypothyroidism (CH) being the main genes affected that of TPO (thyroid peroxidase) and DUOX2 (dual oxidasa 2). From a patient with clinical and biochemical criteria suggestive with CH associated with IOD, TPO and DUOX2 genes were analyzed by means of PCR-Single Strand Conformation Polymorphism analysis and sequencing. A novel heterozygous compound to the mutations c.2335-1G>C (paternal mutation, intron 17) and c.3264_3267delCAGC (maternal mutation, exon 24) was identified in the DUOX2 gene. Ex-vivo splicing assays and subsequent RT-PCR and sequencing analyses were performed on mRNA isolated from the HeLa cells transfected with wild-type and mutant pSPL3 expression vectors. The wild-type and c.2335-1G>C mutant alleles result in the complete inclusion or exclusion of exon 18, or in the activation of an exonic cryptic 5' ss with the consequent deletion of 169 bp at the end of this exon. However, we observed only a band of the expected size in normal thyroid tissue by RT-PCR. Additionally, the c.2335-1G>C mutation activates an unusual cryptic donor splice site in intron 17, located at position -14 of the authentic intron 17/exon 18 junction site, with an insertion of the last 14 nucleotides of the intron 17 in mutant transcripts with complete and partial inclusion of exon 18. The theoretical consequences of splice site mutation, predicted with the bioinformatics NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses confirm that c.2335-1G>C mutant allele would result in the abolition of the authentic splice acceptor site. The results suggest the coexistence in our patient of four putative truncated proteins of 786, 805, 806 and 1105 amino acids, with conservation of peroxidase-like domain and loss of gp91(phox)/NOX2-like domain. In conclusion a novel heterozygous compound was identified being responsible of

  5. Systematic Mutational Analysis of Histidine Kinase Genes in the Nosocomial Pathogen Stenotrophomonas maltophilia Identifies BfmAK System Control of Biofilm Development

    PubMed Central

    Zheng, Liu; Wang, Fang-Fang; Ren, Bao-Zhen; Liu, Wei

    2016-01-01

    The Gram-negative bacterium Stenotrophomonas maltophilia lives in diverse ecological niches. As a result of its formidable capabilities of forming biofilm and its resistance to multiple antibiotic agents, the bacterium is also a nosocomial pathogen of serious threat to the health of patients whose immune systems are suppressed or compromised. Besides the histidine kinase RpfC, the two-component signal transduction system (TCS), which is the canonical regulatory machinery used by most bacterial pathogens, has never been experimentally investigated in S. maltophilia. Here, we annotated 62 putative histidine kinase genes in the S. maltophilia genome and successfully obtained 51 mutants by systematical insertional inactivation. Phenotypic characterization identified a series of mutants with deficiencies in bacterial growth, swimming motility, and biofilm development. A TCS, named here BfmA-BfmK (Smlt4209-Smlt4208), was genetically confirmed to regulate biofilm formation in S. maltophilia. Together with interacting partner prediction and chromatin immunoprecipitation screens, six candidate promoter regions bound by BfmA in vivo were identified. We demonstrated that, among them, BfmA acts as a transcription factor that binds directly to the promoter regions of bfmA-bfmK and Smlt0800 (acoT), a gene encoding an acyl coenzyme A thioesterase that is associated with biofilm development, and positively controls their transcription. Genome-scale mutational analyses of histidine kinase genes and functional dissection of BfmK-BfmA regulation in biofilm provide genetic information to support more in-depth studies on cellular signaling in S. maltophilia, in the context of developing novel approaches to fight this important bacterial pathogen. PMID:26873318

  6. Prenatal diagnosis for recessive dystrophic epidermolysis bullosa in 10 families by mutation and haplotype analysis in the type VII collagen gene (COL7A1).

    PubMed Central

    Christiano, A. M.; LaForgia, S.; Paller, A. S.; McGuire, J.; Shimizu, H.; Uitto, J.

    1996-01-01

    BACKGROUND: Epidermolysis bullosa (EB) is a group of heritable diseases that manifest as blistering and erosions of the skin and mucous membranes. In the dystrophic forms of EB (DEB), the diagnostic hallmark is abnormalities in the anchoring fibrils, attachment structures beneath the cutaneous basement membrane zone. The major component of anchoring fibrils is type VII collagen, and DEB has been linked to the type VII collagen gene (COL7A1) at 3p21, with no evidence for locus heterogeneity. Due to life-threatening complications and significant long-term morbidity associated with the severe, mutilating form of recessive dystrophic EB (RDEB), there has been a demand for prenatal diagnosis from families with affected offspring. MATERIALS AND METHODS: Intragenic polymorphisms in COL7A1 and flanking microsatellite markers on chromosome 3p21, as well as detection of pathogenetic mutations in families, were used to perform PCR-based prenatal diagnosis from DNA obtained by chorionic villus sampling at 10-15 weeks or amniocentesis at 12-15 weeks gestation in 10 families at risk for recurrence of RDEB. RESULTS: In nine cases, the fetus was predicted to be normal or a clinically unaffected carrier of a mutation in one allele. These predictions have been validated in nine cases by the birth of a healthy child. In one case, an affected fetus was predicted, and the diagnosis was confirmed by fetal skin biopsy. CONCLUSIONS: DNA-based prenatal diagnosis of RDEB offers an early, expedient method of testing which will largely replace the previously available invasive fetal skin biopsy at 18-20 weeks gestation. Images FIG. 1 FIG. 3 PMID:8900535

  7. Limb-girdle muscular dystrophy in the Agarwals: Utility of founder mutations in CAPN3 gene

    PubMed Central

    Khadilkar, Satish V.; Chaudhari, Chetan R.; Dastur, Rashna S.; Gaitonde, Pradnya S.; Yadav, Jayendra G.

    2016-01-01

    Background and Purpose: Diagnostic evaluation of limb-girdle muscular dystrophy type 2A (LGMD2A) involves specialized studies on muscle biopsy and mutation analysis. Mutation screening is the gold standard for diagnosis but is difficult as the gene is large and multiple mutations are known. This study evaluates the utility of two known founder mutations as a first-line diagnostic test for LGMD2A in the Agarwals. Materials and Methods: The Agarwals with limb-girdle muscular dystrophy (LGMD) phenotype were analyzed for two founder alleles (intron 18/exon 19 c.2051-1G>T and exon 22 c.2338G>C). Asymptomatic first-degree relatives of patients with genetically confirmed mutations and desirous of counseling were screened for founder mutations. Results: Founder alleles were detected in 26 out of 29 subjects with LGMD phenotype (89%). The most common genotype observed was homozygous for exon 22 c.2338 G>C mutation followed by compound heterozygosity. Single founder allele was identified in two. Single allele was detected in two of the five asymptomatic relatives. Conclusion: Eighty-nine percent of the Agarwals having LGMD phenotype have LGMD2A resulting from founder mutations. Founder allele analysis can be utilized as the initial noninvasive diagnostic step for index cases, carrier detection, and counseling. PMID:27011640

  8. Splicing mutation analysis reveals previously unrecognized pathways in lymph node-invasive breast cancer

    PubMed Central

    Dorman, Stephanie N.; Viner, Coby; Rogan, Peter K.

    2014-01-01

    Somatic mutations reported in large-scale breast cancer (BC) sequencing studies primarily consist of protein coding mutations. mRNA splicing mutation analyses have been limited in scope, despite their prevalence in Mendelian genetic disorders. We predicted splicing mutations in 442 BC tumour and matched normal exomes from The Cancer Genome Atlas Consortium (TCGA). These splicing defects were validated by abnormal expression changes in these tumours. Of the 5,206 putative mutations identified, exon skipping, leaky or cryptic splicing was confirmed for 988 variants. Pathway enrichment analysis of the mutated genes revealed mutations in 9 NCAM1-related pathways, which were significantly increased in samples with evidence of lymph node metastasis, but not in lymph node-negative tumours. We suggest that comprehensive reporting of DNA sequencing data should include non-trivial splicing analyses to avoid missing clinically-significant deleterious splicing mutations, which may reveal novel mutated pathways present in genetic disorders. PMID:25394353

  9. Identification of AAAS gene mutation in Allgrove syndrome: A report of three cases

    PubMed Central

    LI, WENJING; GONG, CHUNXIU; QI, ZHAN; WU, DI; CAO, BINGYAN

    2015-01-01

    Allgrove syndrome (AS) is an autosomal recessive congenital disease, caused by mutations in the AAAS gene, and is characterized by the triad of Addison's disease, achalasia and alacrima. The present study describes three newly diagnosed cases of AS, in which genetic analysis of the AAAS gene was used to identify AAAS gene mutations, to enhance the understanding of the pathogenesis and clinical manifestations of AS in the Chinese population. Two of the cases exhibited homozygous mutations of c.771delG (p.Arg258GlyfsX33) in exon 8 and one case exhibited a homozygous mutation of c.1366C>T (p.Q456X) in exon 15. A review of the current literature suggests that the AAAS c.771delG mutation has only been reported in the Chinese population. Genetic analysis of the AAAS gene in Chinese AS patients at a young age may facilitate an earlier diagnosis and the timely initiation of the appropriate treatment, ultimately improving the patient outcome. PMID:26622478

  10. Germline Mutations in Predisposition Genes in Pediatric Cancer

    PubMed Central

    Edmonson, Michael N.; Gruber, Tanja A.; Easton, John; Hedges, Dale; Ma, Xiaotu; Zhou, Xin; Yergeau, Donald A.; Wilkinson, Mark R.; Vadodaria, Bhavin; Chen, Xiang; McGee, Rose B.; Hines-Dowell, Stacy; Nuccio, Regina; Quinn, Emily; Shurtleff, Sheila A.; Rusch, Michael; Patel, Aman; Becksfort, Jared B.; Wang, Shuoguo; Weaver, Meaghann S.; Ding, Li; Mardis, Elaine R.; Wilson, Richard K.; Gajjar, Amar; Ellison, David W.; Pappo, Alberto S.; Pui, Ching-Hon; Downing, James R.

    2016-01-01

    BACKGROUND The prevalence and spectrum of predisposing mutations among children and adolescents with cancer are largely unknown. Knowledge of such mutations may improve the understanding of tumorigenesis, direct patient care, and enable genetic counseling of patients and families. METHODS In 1120 patients younger than 20 years of age, we sequenced the whole genomes (in 595 patients), whole exomes (in 456), or both (in 69). We analyzed the DNA sequences of 565 genes, including 60 that have been associated with autosomal dominant cancer-predisposition syndromes, for the presence of germline mutations. The pathogenicity of the mutations was determined by a panel of medical experts with the use of cancer-specific and locus-specific genetic databases, the medical literature, computational predictions, and second hits identified in the tumor genome. The same approach was used to analyze data from 966 persons who did not have known cancer in the 1000 Genomes Project, and a similar approach was used to analyze data from an autism study (from 515 persons with autism and 208 persons without autism). RESULTS Mutations that were deemed to be pathogenic or probably pathogenic were identified in 95 patients with cancer (8.5%), as compared with 1.1% of the persons in the 1000 Genomes Project and 0.6% of the participants in the autism study. The most commonly mutated genes in the affected patients were TP53 (in 50 patients), APC (in 6), BRCA2 (in 6), NF1 (in 4), PMS2 (in 4), RB1 (in 3), and RUNX1 (in 3). A total of 18 additional patients had protein-truncating mutations in tumor-suppressor genes. Of the 58 patients with a predisposing mutation and available information on family history, 23 (40%) had a family history of cancer. CONCLUSIONS Germline mutations in cancer-predisposing genes were identified in 8.5% of the children and adolescents with cancer. Family history did not predict the presence of an underlying predisposition syndrome in most patients. (Funded by the American

  11. Dinitrofluoranthene: induction, identification and gene mutation.

    PubMed

    Nakagawa, R; Horikawa, K; Sera, N; Kodera, Y; Tokiwa, H

    1987-06-01

    By renitrating 3-nitrofluoranthene in the presence of fuming nitric acid, some additional nitro-derivatives were induced; they were identified as 3,7-, 3,9- and 3,4-dinitrofluoranthene (DNF), and two trinitrofluoranthenes (TNF, 3,4,7- and 3,4,8- or 3,4,9-isomers) on the basis of the results of mass spectrometry and 1H-nuclear magnetic resonance. The yield of 3,7- and 3,9-DNF was about 61.3% in all of the derivatives induced. All of the DNFs yielded positive results in the rec-assay system, inducing DNA-damaging activity in Bacillus subtilis. Both 3,7- and 3,9-DNF converted Salmonella typhimurium His- strains TA98, TA97 and TA1538 from autotrophy to prototrophy, indicating a frameshift-type mutation for both; for strain TA98, 3,7-, 3,9- and 3,4-DNF gave mutagenicity of 422, 355 and 15.5 His+ revertants, respectively, per nanogram, corresponding to the specific activity of 1,6-dinitropyrene (DNP), a powerful mutagen. These DNFs are known to be potential mutagens which are eluted at adjacent retention times with 1,3-, 1,6- and 1,8-DNP on a column for high-performance liquid chromatography.

  12. Linkage and mutation analysis of Thomsen and Becker myotonia families

    SciTech Connect

    Koty, P.P.; Pegoraro, E.; Hoffman, E.P.

    1994-09-01

    Thomsen (autosomal dominant) and Becker (autosomal recessive) myotonias are characterized by the inability for muscle relaxation after voluntary, mechanical, or electrical stimulation. Families with both diseases have been linked to the skeletal muscle chloride channel (CLC1) on chromosome 7q35; however, only 2 gene mutations have been identified, and the reasons underlying the alternative dominant or recessive inheritance are not clear. We used linkage analysis and SSCP of 23 exons to screen 8 families (56 individuals) and 7 isolated cases with the diagnosis of Thomsen/Becker myotonia. A novel mutation (1290M) in exon 8 was detected in a family with Thomsen disease. Three additional families showed the previously described G230E change. Thus, chloride channel mutations could be identified in 4/5 families showing dominant inheritance. We were able to exclude linkage to the CLC1 gene in the fifth family. In patients with recessive Becker disease, an isolated case had two unique conformers, one causing a novel A437T change in exon 12. We also identified the previously reported F413C change in a second family. We found significant differences in the clinical picture between families with different mutations but also in families with the same mutation. Our data indicates that DNA studies are critical for correct diagnosis of the myotonias.

  13. Role of genetic mutations in folate-related enzyme genes on Male Infertility.

    PubMed

    Liu, Kang; Zhao, Ruizhe; Shen, Min; Ye, Jiaxin; Li, Xiao; Huang, Yuan; Hua, Lixin; Wang, Zengjun; Li, Jie

    2015-11-09

    Several studies showed that the genetic mutations in the folate-related enzyme genes might be associated with male infertility; however, the results were still inconsistent. We performed a meta-analysis with trial sequential analysis to investigate the associations between the MTHFR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G mutations and the MTHFR haplotype with the risk of male infertility. Overall, a total of 37 studies were selected. Our meta-analysis showed that the MTHFR C677T mutation was a risk factor for male infertility in both azoospermia and oligoasthenoteratozoospermia patients, especially in Asian population. Men carrying the MTHFR TC haplotype were most liable to suffer infertility while those with CC haplotype had lowest risk. On the other hand, the MTHFR A1298C mutation was not related to male infertility. MTR A2756G and MTRR A66G were potential candidates in the pathogenesis of male infertility, but more case-control studies were required to avoid false-positive outcomes. All of these results were confirmed by the trial sequential analysis. Finally, our meta-analysis with trial sequential analysis proved that the genetic mutations in the folate-related enzyme genes played a significant role in male infertility.

  14. Kallmann syndrome in a female adolescent: a new mutation in the FGFR1 gene

    PubMed Central

    Novo, Ana; Guerra, Isabel Couto; Rocha, Felisbela; Gama-de-Sousa, Susana; Borges, Teresa; Cerqueira, Rita; Tavares, Purificação; Fonseca, Paula

    2012-01-01

    The Kallmann syndrome is characterised by the association of hypogonadotropic hypogonadism and hypo/anosmia. It represents a phenotypically and genotypically heterogeneous clinical entity, with six genes identified so far in the literature—KAL1, FGFR1, PROKR2, PROK2, CHD7 and FGF8. Mutations in the FGFR1 gene can be found in approximately 10% of the patients. The authors present the case of a female adolescent with hypogonadotropic hypogonadism and impaired olfactory acuity in the presence of hypoplasia of the nasal sulcus and agenesis of the olfactory bulbs. The molecular analysis of the fibroblast growth factor receptor 1 identified a heterozygous mutation c.1377_78insA (p.V460SfsX3) in exon 10 of FGFR1 gene. This mutation has not yet been reported in the literature. A theoretical review of clinical features and therapeutic approach of this syndrome is also presented. PMID:22751423

  15. Structural analysis of the 5 prime flanking region of the. beta. -globin gene in African sickle cell anemia patients: Further evidence for three origins of the sickle cell mutation in Africa

    SciTech Connect

    Chebloune, Y.; Pagnier, J.; Trabuchet, G.; Faure, C.; Verdier, G.; Labie, D.; Nigon, V. )

    1988-06-01

    Haplotype analysis of the {beta}-globin gene cluster shows two regions of DNA characterized by nonrandom association of restriction site polymorphisms. These regions are separated by a variable segment containing the repeated sequences (ATTTT){sub n} and (AT){sub x}T{sub y}, which might be involved in recombinational events. Studies of haplotypes linked to the sickle cell gene in Africa provide strong argument for three origins of the mutation: Benin, Senegal, and the Central African Republic. The structure of the variable segment in the three African populations was studied by S1 nuclease mapping of genomic DNA, which allows a comparison of several samples. A 1080-base-pair DNA segment was sequenced for one sample from each population. S1 nuclease mapping confirmed the homogeneity of each population with regard to both (ATTTT){sub n} and (AT){sub x}T{sub y} repeats. The authors found three additional structures for (AT){sub x}T{sub y} correlating with the geographic origin of the patients. Ten other nucleotide positions, 5{prime} and 3{prime} to the (AT){sub x}T{sub y} copies, were found to be variable when compared to homologous sequences from human and monkey DNAs. These results allow us to propose an evolutionary scheme for the polymorphisms in the 5{prime} flanking region of the {beta}-globin gene. The results strongly support the hypothesis of three origins for the sickle mutation in Africa.

  16. Convergence of Mutation and Epigenetic Alterations Identifies Common Genes in Cancer That Predict for Poor Prognosis

    PubMed Central

    Chan, Timothy A; Glockner, Sabine; Yi, Joo Mi; Chen, Wei; Van Neste, Leander; Cope, Leslie; Herman, James G; Velculescu, Victor; Schuebel, Kornel E; Ahuja, Nita; Baylin, Stephen B

    2008-01-01

    Background The identification and characterization of tumor suppressor genes has enhanced our understanding of the biology of cancer and enabled the development of new diagnostic and therapeutic modalities. Whereas in past decades, a handful of tumor suppressors have been slowly identified using techniques such as linkage analysis, large-scale sequencing of the cancer genome has enabled the rapid identification of a large number of genes that are mutated in cancer. However, determining which of these many genes play key roles in cancer development has proven challenging. Specifically, recent sequencing of human breast and colon cancers has revealed a large number of somatic gene mutations, but virtually all are heterozygous, occur at low frequency, and are tumor-type specific. We hypothesize that key tumor suppressor genes in cancer may be subject to mutation or hypermethylation. Methods and Findings Here, we show that combined genetic and epigenetic analysis of these genes reveals many with a higher putative tumor suppressor status than would otherwise be appreciated. At least 36 of the 189 genes newly recognized to be mutated are targets of promoter CpG island hypermethylation, often in both colon and breast cancer cell lines. Analyses of primary tumors show that 18 of these genes are hypermethylated strictly in primary cancers and often with an incidence that is much higher than for the mutations and which is not restricted to a single tumor-type. In the identical breast cancer cell lines in which the mutations were identified, hypermethylation is usually, but not always, mutually exclusive from genetic changes for a given tumor, and there is a high incidence of concomitant loss of expression. Sixteen out of 18 (89%) of these genes map to loci deleted in human cancers. Lastly, and most importantly, the reduced expression of a subset of these genes strongly correlates with poor clinical outcome. Conclusions Using an unbiased genome-wide approach, our analysis has

  17. Activation-Induced Cytidine Deaminase Contributes to Pancreatic Tumorigenesis by Inducing Tumor-Related Gene Mutations.

    PubMed

    Sawai, Yugo; Kodama, Yuzo; Shimizu, Takahiro; Ota, Yuji; Maruno, Takahisa; Eso, Yuji; Kurita, Akira; Shiokawa, Masahiro; Tsuji, Yoshihisa; Uza, Norimitsu; Matsumoto, Yuko; Masui, Toshihiko; Uemoto, Shinji; Marusawa, Hiroyuki; Chiba, Tsutomu

    2015-08-15

    Pancreatic ductal adenocarcinoma (PDAC) develops via an accumulation of various gene mutations. The mechanism underlying the mutations in PDAC development, however, is not fully understood. Recent insight into the close association between the mutation pattern of various cancers and specific mutagens led us to investigate the possible involvement of activation-induced cytidine deaminase (AID), a DNA editing enzyme, in pancreatic tumorigenesis. Our immunohistochemical findings revealed AID protein expression in human acinar ductal metaplasia, pancreatic intraepithelial neoplasia, and PDAC. Both the amount and intensity of the AID protein expression increased with the progression from precancerous to cancerous lesions in human PDAC tissues. To further assess the significance of ectopic epithelial AID expression in pancreatic tumorigenesis, we analyzed the phenotype of AID transgenic (AID Tg) mice. Consistent with our hypothesis that AID is involved in the mechanism of the mutations underlying pancreatic tumorigenesis, we found precancerous lesions developing in the pancreas of AID Tg mice. Using deep sequencing, we also detected Kras and c-Myc mutations in our analysis of the whole pancreas of AID Tg mice. In addition, Sanger sequencing confirmed the presence of Kras, c-Myc, and Smad4 mutations, with the typical mutational footprint of AID in precancerous lesions in AID Tg mice separated by laser capture microdissection. Taken together, our findings suggest that AID contributes to the development of pancreatic precancerous lesions by inducing tumor-related gene mutations. Our new mouse model without intentional manipulation of specific tumor-related genes provides a powerful system for analyzing the mutations involved in PDAC.

  18. Analysis of Dominant Mutations Affecting Muscle Excitation in Caenorhabditis Elegans

    PubMed Central

    Reiner, D. J.; Weinshenker, D.; Thomas, J. H.

    1995-01-01

    We examined mutations that disrupt muscle activation in Caenorhabditis elegans. Fifteen of 17 of these genes were identified previously and we describe new mutations in three of them. We also describe mutations in two new genes, exp-3 and exp-4. We assessed the degree of defect in pharyngeal, body-wall, egg-laying, and enteric muscle activation in animals mutant for each gene. Mutations in all 17 genes are semidominant and, in cases that could be tested, appear to be gain-of-function. Based on their phenotypes, the genes fall into three broad categories: mutations in 11 genes cause defective muscle activation, mutations in four genes cause hyperactivated muscle, and mutations in two genes cause defective activation in some muscle types and hyperactivation in others. In all testable cases, the mutations blocked response to pharmacological activators of egg laying, but did not block muscle activation by irradiation with a laser microbeam. The data suggest that these mutations affect muscle excitation, but not the capacity of the muscle fibers to contract. For most of the genes, apparent loss-of-function mutants have a grossly wild-type phenotype. These observations suggest that there is a large group of genes that function in muscle excitation that can be identified primarily by dominant mutations. PMID:8582640

  19. Identification of a Variety of Mutations in Cancer Predisposition Genes in Patients with Suspected Lynch Syndrome

    PubMed Central

    Yurgelun, Matthew B.; Allen, Brian; Kaldate, Rajesh R.; Bowles, Karla R.; Judkins, Thaddeus; Kaushik, Praveen; Roa, Benjamin B.; Wenstrup, Richard J.; Hartman, Anne-Renee; Syngal, Sapna

    2015-01-01

    Background & Aims Multigene panels are commercially available tools for hereditary cancer risk assessment that allow for next-generation sequencing of numerous genes in parallel. However, it is not clear if these panels offer advantages over traditional genetic testing. We investigated the number of cancer predisposition gene mutations identified by parallel sequencing in individuals with suspected Lynch syndrome. Methods We performed germline analysis with a 25-gene next-generation sequencing panel using DNA from 1260 individuals who underwent clinical genetic testing for Lynch syndrome from 2012 through 2013. All subjects had a history of Lynch syndrome-associated cancer and/or polyps. We classified all identified germline alterations for pathogenicity and calculated the frequencies of pathogenic mutations and variants of uncertain significance (VUS). We also analyzed data on patients’ personal and family history of cancer, including fulfillment of clinical guidelines for genetic testing. Results Of the 1260 subjects, 1112 met National Comprehensive Cancer Network (NCCN) criteria for Lynch syndrome testing (88%; 95% confidence interval [CI], 86%–90%). Multigene panel testing identified 114 probands with Lynch syndrome mutations (9.0%; 95% CI, 7.6%−10.8%) and 71 with mutations in other cancer predisposition genes (5.6%; 95% CI, 4.4%−7.1%). Fifteen individuals had mutations in BRCA1 or BRCA2; 93% of these met the NCCN criteria for Lynch syndrome testing and 33% met NCCN criteria for BRCA1 and BRCA2 analysis (P=.0017). An additional 9 individuals carried mutations in other genes linked to high lifetime risks of cancer (5 had mutations in APC, 3 had bi-allelic mutations in MUTYH, and 1 had a mutation in STK11); all of these patients met NCCN criteria for Lynch syndrome testing. Four hundred seventy-nine individuals had ≥1 VUS (38%; 95% CI, 35%–41%). Conclusions In individuals with suspected Lynch syndrome, multigene panel testing identified high

  20. Missense mutation of the cholecystokinin B receptor gene: Lack of association with panic disorder

    SciTech Connect

    Kato, Tadafumi; Wang, Zhe Wu; Crowe, R.R.; Zoega, T.

    1996-07-26

    Cholecystokinin tetrapeptide (CCK{sub 4}) is known to induce panic attacks in patients with panic disorder at a lower dose than in normal controls. Therefore, the cholecystokinin B (CCK{sub B}) receptor gene is a candidate gene for panic disorder. We searched for mutations in the CCK{sub B} gene in 22 probands of panic disorder pedigrees, using single-strand conformation polymorphism (SSCP) analysis. Two polymorphisms were detected. A polymorphism in an intron (2491 C{yields}A) between exons 4 and 5 was observed in 10 of 22 probands. A missense mutation in the extracellular loop of exon 2 (1550 G{yields}A, Val{sup 125}{yields}Ile) was found in only one proband. This mutation was also examined in additional 34 unrelated patients with panic disorder and 112 controls. The prevalence rate of this mutation was 8.8% in patients with panic disorder (3/34) and 4.4% in controls (5/112). The mutation did not segregate with panic disorder in two families where this could be tested. These results suggest no pathophysiological significance of this mutation in panic disorder. 21 refs., 4 figs., 1 tab.

  1. Mutation of the PAX6 gene in patients with autosomal dominant keratitis

    SciTech Connect

    Mirzayans, F.; Pearce, W.G.; MacDonald, I.M.; Walter, M.A.

    1995-09-01

    Autosomal dominant keratitis (ADK) is an eye disorder chiefly characterized by corneal opacification and vascularization and by foveal hypoplasia. Aniridia (shown recently to result from mutations in the PAX6 gene) has overlapping clinical findings and a similar pattern of inheritance with ADK. On the basis of these similarities, we used a candidate-gene approach to investigate whether mutations in the PAX6 gene also result in ADK. Significant linkage was found between two polymorphic loci in the PAX6 region and ADK in a family with 15 affected members in four generations (peak LOD score = 4.45; {theta} = .00 with D11S914), consistent with PAX6 mutations being responsible for ADK. SSCP analysis and direct sequencing revealed a mutation in the PAX6 exon 11 splice-acceptor site. The predicted consequent incorrect splicing results in truncation of the PAX6 proline-serine-threonine activation domain. The Sey{sup Neu} mouse results from a mutation in the Pax-6 exon 10 splice-donor site that produces a PAX6 protein truncated from the same point as occurs in our family with ADK. Therefore, the Sey{sup Neu} mouse is an excellent animal model of ADK. The finding that mutations in PAX6 also underlie Peters anomaly implicates PAX6 broadly in human anterior segment malformations. 42 refs., 5 figs., 3 tabs.

  2. Novel technique for rapid detection of alpha-globin gene mutations and deletions.

    PubMed

    Liu, Jingzhong; Jia, Xingyuan; Tang, Ning; Zhang, Xu; Wu, Xiaoyi; Cai, Ren; Wang, Lirong; Liu, Quanzhang; Xiao, Bai; Zhu, Jim; Wang, Qingtao

    2010-03-01

    Populations in Southeast Asia and South China have high frequencies of alpha-thalassemia caused by alpha-globin gene mutations and/or deletions. This study was designed to find an efficient and simple diagnostic test for the mutations and deletions. A duplex polymerase chain reaction (PCR)/denaturing high-pressure liquid chromatography (DHPLC) was used to detect the mutations and deletions. A blinded study of 110 samples, which included 92 alpha-thalassemia samples with various genotypes and 18 normal DNA samples, was carried out by the methods. The duplex PCR products of the sample with known Constand spring mutation (CS)/alphaalpha, Quonsze mutation (QS)/alphaalpha, and Weastmead mutation (WS)/alphaalpha DNA showed significantly different profiles, which suggests that DHPLC analysis at 63.8 degrees C can detect potential mutations directly. The DHPLC at 50 degrees C analysis can distinguish the --SEA and nondeletional alleles. The new assay is 100% concordant with the original genotype. In conclusion, the technique including the duplex PCR assay followed by DHPLC analysis can be used to diagnose alpha-thalassemia; this methodology is simple, rapid, accurate, semiautomatic, and high output, and thus, it is suitable for large-scale screening.

  3. Confirmation of the mitochondrial ND1 gene mutation G3635A as a primary LHON mutation.

    PubMed

    Yang, Juhua; Zhu, Yihua; Tong, Yi; Chen, Lu; Liu, Lijuan; Zhang, Zhiqiang; Wang, Xiaoyan; Huang, Dinggou; Qiu, Wentong; Zhuang, Shuliu; Ma, Xu

    2009-08-14

    We report the clinical and genetic characterization of two Chinese LHON families who do not carry the primary LHON-mutations. Mitochondrial genome sequence analysis revealed the presence of a homoplasmic ND1 G3635A mutation in both families. In Family LHON-001, 31 other variants belonging to the East Asian haplogroup R11a were identified and in Family LHON-019, 37 other variants belonging to the East Asian haplogroup D4g were determined. The ND1 G3635A mutation changes the conversed serine110 residue to asparagine. This mutation has been previously described in a single Russian LHON family and has been suggested to contribute to increased LHON expressivity. In addition, a mutation in cytochrome c oxidase subunit II at C7868T (COII/L95F) may act in synergy with G3635A, increasing LHON expressivity in Family LHON-001, which had a higher level of LHON penetrance than Family LHON-019. In summary, the G3635A mutation is confirmed as a rare primary pathogenic mutation for LHON.

  4. Mutations in the gene for X-linked adrenoleukodystrophy in patients with different clinical phenotypes

    SciTech Connect

    Braun, A.; Ambach, H.; Kammerer, S.; Rolinski, B.; Roscher, A.; Rabl, W.; Stoeckler, S.; Gaertner, J.; Zierz, S.

    1995-04-01

    Recently, the gene for the most common peroxisomal disorder, X-linked adrenoleukodystrophy (X-ALD), has been described encoding a peroxisomal membrane transporter protein. We analyzed the entire protein-coding sequence of this gene by reverse-transcription PCR, SSCP, and DNA sequencing in five patients with different clinical expressions were cerebral childhood ALD, adrenomyecloneuropathy (AMN), and {open_quotes}Addison disease only{close_quotes} (AD) phenotype. In the three patients exhibiting the classical picture of severe childhood ALD we identified in the 5{prime} portion of the X-ALD gene a 38-bp deletion that causes a frameshift mutation, a 3-bp deletion leading to a deletion of an amino acid in the ATP-binding domain of the ALD protein, and a missense mutation. In the patient with the clinical phenotype of AMN, a nonsense mutation in codon 212, along with a second site mutation at codon 178, was observed. Analysis of the patient with the ADO phenotype revealed a further missense mutation at a highly conserved position in the ALDP/PMP70 comparison. The disruptive nature of two mutations (i.e., the frameshift and the nonsense mutation) in patients with biochemically proved childhood ALD and AMN further strongly supports the hypothesis that alterations in this gene play a crucial role in the pathogenesis of X-ALD. Since the current biochemical techniques for X-ALD carrier detection in affected families lack sufficient reliability, our procedure described for systematic mutation scanning is also capable of improving genetic counseling and prenatal diagnosis. 19 refs., 6 figs., 3 tabs.

  5. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene Mutations and Risk for Pancreatic Adenocarcinoma

    PubMed Central

    McWilliams, Robert R.; Petersen, Gloria M.; Rabe, Kari G.; Holtegaard, Leonard M.; Lynch, Pamela J.; Bishop, Michele D.; Highsmith, W. Edward

    2009-01-01

    Background Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are common in white persons and are associated with pancreatic disease. The purpose of this case-control study was to determine whether CFTR mutations confer a higher risk of pancreatic cancer. Methods In a case-control study, we compared the rates of 39 common cystic fibrosis–associated CFTR mutations between 949 white patients with pancreatic adenocarcinoma and 13,340 white controls from a clinical laboratory database for prenatal testing for CFTR mutations. The main outcome measure was the CFTR mutation frequency in patients and controls. Results Overall, 50 (5.3%) of 949 patients with pancreatic cancer carried a common CFTR mutation versus 510 (3.8%) of 13,340 controls (odds ratio, 1.40; 95% confidence interval, 1.04–1.89; P=.027). Among patients who were younger when their disease was diagnosed (<60 years), the carrier frequency was higher than in controls (odds ratio, 1.82; 95% CI, 1.14–2.94; P=.011). In patient-only analyses, the presence of a mutation was associated with younger age (median 62 vs 67 years; P=.034). In subgroups, the difference was seen only among ever-smokers, (60 vs 65 years, p=.028). Subsequent sequencing analysis of the CFTR gene detected 8 (16%) compound heterozygotes among the 50 patients initially detected to have 1 mutation. Conclusions Carrying a disease-associated mutation in CFTR is associated with a modest increase in risk for pancreatic cancer. Those affected appear to be diagnosed at a younger age, especially among smokers. Clinical evidence of antecedent pancreatitis was uncommon among both carriers and noncarriers of CFTR mutations. PMID:19885835

  6. Frameshift mutation of WISP3 gene and its regional heterogeneity in gastric and colorectal cancers.

    PubMed

    Lee, Ju Hwa; Choi, Youn Jin; Je, Eun Mi; Kim, Ho Shik; Yoo, Nam Jin; Lee, Sug Hyung

    2016-04-01

    WISP3 is involved in many cancer-related processes including epithelial-mesenchymal transition, cell death, invasion, and metastasis and is considered a tumor suppressor. The aim of our study was to find whether WISP3 gene was mutated and expressionally altered in gastric (GC) and colorectal cancers (CRCs). WISP3 gene possesses a mononucleotide repeat in the coding sequence that could be mutated in cancers with high microsatellite instability (MSI-H). We analyzed 79 GCs and 156 CRCs, and found that GCs (8.8%) and CRCs (10.5%) with MSI-H, but not those with microsatellite stable/low MSI, harbored a frameshift mutation. We also analyzed intratumoral heterogeneity (ITH) of the frameshift mutation in 16 CRCs and found that the WISP3 mutation exhibited regional ITH in 25% of the CRCs. In immunohistochemistry, loss of WISP3 expression was identified in 24% of GCs and 21% of CRCs. The loss of expression was more common in those with WISP3 mutation than with wild-type WISP3 and those with MSI-H than with microsatellite stable/low MSI. Our data indicate that WISP3 harbored not only frameshift mutation but also mutational ITH and loss of expression, which together might play a role in tumorigenesis of GC and CRC with MSI-H by inhibiting tumor suppressor functions of WISP3. Our data also suggest that mutation analysis in multiregions is needed for a proper evaluation of mutation status in GC and CRC with MSI-H.

  7. Mutation of the PIK3CA gene in ovarian and breast cancer.

    PubMed

    Campbell, Ian G; Russell, Sarah E; Choong, David Y H; Montgomery, Karen G; Ciavarella, Marianne L; Hooi, Christine S F; Cristiano, Briony E; Pearson, Richard B; Phillips, Wayne A

    2004-11-01

    Phosphatidylinositol 3'-kinases are lipid kinases with important roles in neoplasia. Recently, a very high frequency of somatic mutations in PIK3CA has been reported among a large series of colorectal cancers. However, the relevance of PIK3CA mutation in other cancer types remains unclear because of the limited number of tumors investigated. We have screened a total of 284 primary human tumors for mutations in all coding exons of PIK3CA using a combination of single stranded conformational polymorphism and denaturing high-performance liquid chromatography analysis. Among 70 primary breast cancers, 40% (28 of 70) harbored mutations in PIK3CA, making it the most common mutation described to date in this cancer type. Mutations were not associated with histologic subtype, estrogen receptor status, grade or presence of tumor in lymph nodes. Among the primary epithelial ovarian cancers only 11 of 167 (6.6%) contain somatic mutations, but there was a clear histologic subtype bias in their distribution. Only 2 of 88 (2.3%) of serous carcinomas had PIK3CA mutations compared with 8 of 40 (20.0%) endometrioid and clear cell cancers, which was highly significant (P = 0.001). In contrast, PIK3CA gene amplification (>7-fold) was common among all histologic subtypes (24.5%) and was inversely associated with the presence of mutations. Overall, PIK3CA mutation or gene amplification was detected in 30.5% of all ovarian cancers and 45% of the endometrioid and clear cell subtypes. Our study is the first direct evidence that PIK3CA is an oncogene in ovarian cancer and greatly extends recent findings in breast cancer. PMID:15520168

  8. Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes

    PubMed Central

    Oegema, Renske; Cushion, Thomas D.; Phelps, Ian G.; Chung, Seo-Kyung; Dempsey, Jennifer C.; Collins, Sarah; Mullins, Jonathan G.L.; Dudding, Tracy; Gill, Harinder; Green, Andrew J.; Dobyns, William B.; Ishak, Gisele E.; Rees, Mark I.; Doherty, Dan

    2015-01-01

    Mutations in alpha- and beta-tubulins are increasingly recognized as a major cause of malformations of cortical development (MCD), typically lissencephaly, pachygyria and polymicrogyria; however, sequencing tubulin genes in large cohorts of MCD patients has detected tubulin mutations in only 1–13%. We identified patients with a highly characteristic cerebellar dysplasia but without lissencephaly, pachygyria and polymicrogyria typically associated with tubulin mutations. Remarkably, in seven of nine patients (78%), targeted sequencing revealed mutations in three different tubulin genes (TUBA1A, TUBB2B and TUBB3), occurring de novo or inherited from a mosaic parent. Careful re-review of the cortical phenotype on brain imaging revealed only an irregular pattern of gyri and sulci, for which we propose the term tubulinopathy-related dysgyria. Basal ganglia (100%) and brainstem dysplasia (80%) were common features. On the basis of in silico structural predictions, the mutations affect amino acids in diverse regions of the alpha-/beta-tubulin heterodimer, including the nucleotide binding pocket. Cell-based assays of tubulin dynamics reveal various effects of the mutations on incorporation into microtubules: TUBB3 p.Glu288Lys and p.Pro357Leu do not incorporate into microtubules at all, whereas TUBB2B p.Gly13Ala shows reduced incorporation and TUBA1A p.Arg214His incorporates fully, but at a slower rate than wild-type. The broad range of effects on microtubule incorporation is at odds with the highly stereotypical clinical phenotype, supporting differential roles for the three tubulin genes involved. Identifying this highly characteristic phenotype is important due to the low recurrence risk compared with the other (recessive) cerebellar dysplasias and the apparent lack of non-neurological medical issues. PMID:26130693

  9. Recognizable cerebellar dysplasia associated with mutations in multiple tubulin genes.

    PubMed

    Oegema, Renske; Cushion, Thomas D; Phelps, Ian G; Chung, Seo-Kyung; Dempsey, Jennifer C; Collins, Sarah; Mullins, Jonathan G L; Dudding, Tracy; Gill, Harinder; Green, Andrew J; Dobyns, William B; Ishak, Gisele E; Rees, Mark I; Doherty, Dan

    2015-09-15

    Mutations in alpha- and beta-tubulins are increasingly recognized as a major cause of malformations of cortical development (MCD), typically lissencephaly, pachygyria and polymicrogyria; however, sequencing tubulin genes in large cohorts of MCD patients has detected tubulin mutations in only 1-13%. We identified patients with a highly characteristic cerebellar dysplasia but without lissencephaly, pachygyria and polymicrogyria typically associated with tubulin mutations. Remarkably, in seven of nine patients (78%), targeted sequencing revealed mutations in three different tubulin genes (TUBA1A, TUBB2B and TUBB3), occurring de novo or inherited from a mosaic parent. Careful re-review of the cortical phenotype on brain imaging revealed only an irregular pattern of gyri and sulci, for which we propose the term tubulinopathy-related dysgyria. Basal ganglia (100%) and brainstem dysplasia (80%) were common features. On the basis of in silico structural predictions, the mutations affect amino acids in diverse regions of the alpha-/beta-tubulin heterodimer, including the nucleotide binding pocket. Cell-based assays of tubulin dynamics reveal various effects of the mutations on incorporation into microtubules: TUBB3 p.Glu288Lys and p.Pro357Leu do not incorporate into microtubules at all, whereas TUBB2B p.Gly13Ala shows reduced incorporation and TUBA1A p.Arg214His incorporates fully, but at a slower rate than wild-type. The broad range of effects on microtubule incorporation is at odds with the highly stereotypical clinical phenotype, supporting differential roles for the three tubulin genes involved. Identifying this highly characteristic phenotype is important due to the low recurrence risk compared with the other (recessive) cerebellar dysplasias and the apparent lack of non-neurological medical issues.

  10. Lysosomal Dysfunctions Associated with Mutations at Mouse Pigment Genes

    PubMed Central

    Novak, Edward K.; Swank, Richard T.

    1979-01-01

    Melanosomes and lysosomes share several structural and biosynthetic properties. Therefore, a large number of mouse pigment mutants were tested to determine whether genes affecting melanosome structure or function might also affect the lysosome. Among 31 mouse pigment mutants, six had 1.5- to 2.5- fold increased concentrations of kidney β-glucuronidase. Three mutants, pale ear, pearl and pallid, had a generalized effect on lysosomal enzymes since there were coordinate increases in kidney β-galactosidase and α-mannosidase. The effects of these three mutations are lysosome specific since rates of kidney protein synthesis and activities of three nonlysosomal kidney enzymes were normal. Also, the mutants are relatively tissue specific in that all had normal liver lysomal enzyme concentrations.—A common dysfunction in all three mutants was a lowered rate of lysosomal enzyme secretion from kidney into urine. While normal C57BL/6J mice daily secreted 27 to 30% of total kidney β-glucuronidase and β-galactosidase, secretion of these two enzymes was coordinately depressed to 1 to 2%, 8 to 9% and 4 to 5% of total kidney enzyme in the pale-ear, pearl and pallid mutants, respectively. Although depressed lysosomal enzyme secretion is the major pigment mutant alteration, the higher lysomal enzyme concentrations in pearl and pallid may be partly due to an increase in lysosomal enzyme synthesis. In these mutants kidney glucuronidase synthetic rate was increased 1.4- to 1.5-fold.—These results suggest that there are several critical genes in mammals that control the biogenesis, processing and/or function of related classes of subcellular organelles. The mechanism of action of these genes is amenable to further analysis since they have been incorporated into congenic inbred strains of mice. PMID:115747

  11. Characterization and mutational analysis of omega-class GST (GSTO1) from Apis cerana cerana, a gene involved in response to oxidative stress.

    PubMed

    Meng, Fei; Zhang, Yuanying; Liu, Feng; Guo, Xingqi; Xu, Baohua

    2014-01-01

    The Omega-class of GSTs (GSTOs) is a class of cytosolic GSTs that have specific structural and functional characteristics that differ from those of other GST groups. In this study, we demonstrated the involvement of the GSTO1 gene from A. cerana cerana in the oxidative stress response and further investigated the effects of three cysteine residues of GSTO1 protein on this response. Real-time quantitative PCR (qPCR) showed that AccGSTO1 was highly expressed in larvae and foragers, primarily in the midgut, epidermis, and flight muscles. The AccGSTO1 mRNA was significantly induced by cold and heat at 1 h and 3 h. The TBA (2-Thiobarbituric acid) method indicated that cold or heat resulted in MDA accumulation, but silencing of AccGSTO1 by RNAi in honeybees increased the concentration of MDA. RNAi also increased the temperature sensitivity of honeybees and markedly reduced their survival. Disc diffusion assay indicated that overexpression of AccGSTO1 in E. coli caused the resistance to long-term oxidative stress. Furthermore, AccGSTO1 was active in an in vitro DNA protection assay. Mutations in Cys-28, Cys-70, and Cys-124 affected the catalytic activity and antioxidant activity of AccGSTO1. The predicted three-dimensional structure of AccGSTO1 was also influenced by the replacement of these cysteine residues. These findings suggest that AccGSTO1 plays a protective role in the response to oxidative stress.

  12. Structural analysis of the 5' flanking region of the beta-globin gene in African sickle cell anemia patients: further evidence for three origins of the sickle cell mutation in Africa.

    PubMed

    Chebloune, Y; Pagnier, J; Trabuchet, G; Faure, C; Verdier, G; Labie, D; Nigon, V

    1988-06-01

    Haplotype analysis of the beta-globin gene cluster shows two regions of DNA characterized by nonrandom association of restriction site polymorphisms. These regions are separated by a variable segment containing the repeated sequences (ATTTT)n and (AT)xTy, which might be involved in recombinational events. Studies of haplotypes linked to the sickle cell gene in Africa provide strong argument for three origins of the mutation: Benin, Senegal, and the Central African Republic. Nevertheless, the haplotype determination does not give any information about the variable segment and does not totally exclude the possibility of recombination leading to different haplotypes linked to the mutation. The structure of the variable segment in the three African populations was studied by S1 nuclease mapping of genomic DNA, which allows a comparison of several samples. A 1080-base-pair DNA segment was sequenced for one sample from each population. S1 nuclease mapping confirmed the homogeneity of each population with regard to both (ATTTT)n and (AT)xTy repeats. We found three additional structures for (AT)xTy correlating with the geographic origin of the patients. Ten other nucleotide positions, 5' and 3' to the (AT)xTy copies, were found to be variable when compared to homologous sequences from human and monkey DNAs. These results allow us to propose an evolutionary scheme for the polymorphisms in the 5' flanking region of the beta-globin gene. The results strongly support the hypothesis of three origins for the sickle mutation in Africa.

  13. Detecting negative selection on recurrent mutations using gene genealogy

    PubMed Central

    2013-01-01

    Background Whether or not a mutant allele in a population is under selection is an important issue in population genetics, and various neutrality tests have been invented so far to detect selection. However, detection of negative selection has been notoriously difficult, partly because negatively selected alleles are usually rare in the population and have little impact on either population dynamics or the shape of the gene genealogy. Recently, through studies of genetic disorders and genome-wide analyses, many structural variations were shown to occur recurrently in the population. Such “recurrent mutations” might be revealed as deleterious by exploiting the signal of negative selection in the gene genealogy enhanced by their recurrence. Results Motivated by the above idea, we devised two new test statistics. One is the total number of mutants at a recurrently mutating locus among sampled sequences, which is tested conditionally on the number of forward mutations mapped on the sequence genealogy. The other is the size of the most common class of identical-by-descent mutants in the sample, again tested conditionally on the number of forward mutations mapped on the sequence genealogy. To examine the performance of these two tests, we simulated recurrently mutated loci each flanked by sites with neutral single nucleotide polymorphisms (SNPs), with no recombination. Using neutral recurrent mutations as null models, we attempted to detect deleterious recurrent mutations. Our analyses demonstrated high powers of our new tests under constant population size, as well as their moderate power to detect selection in expanding populations. We also devised a new maximum parsimony algorithm that, given the states of the sampled sequences at a recurrently mutating locus and an incompletely resolved genealogy, enumerates mutation histories with a minimum number of mutations while partially resolving genealogical relationships when necessary. Conclusions With their

  14. Fibrochondrogenesis Results from Mutations in the COL11A1 Type XI Collagen Gene

    PubMed Central

    Tompson, Stuart W.; Bacino, Carlos A.; Safina, Nicole P.; Bober, Michael B.; Proud, Virginia K.; Funari, Tara; Wangler, Michael F.; Nevarez, Lisette; Ala-Kokko, Leena; Wilcox, William R.; Eyre, David R.; Krakow, Deborah; Cohn, Daniel H.

    2010-01-01

    Fibrochondrogenesis is a severe, autosomal-recessive, short-limbed skeletal dysplasia. In a single case of fibrochondrogenesis, whole-genome SNP genotyping identified unknown ancestral consanguinity by detecting three autozygous regions. Because of the predominantly skeletal nature of the phenotype, the 389 genes localized to the autozygous intervals were prioritized for mutation analysis by correlation of their expression with known cartilage-selective genes via the UCLA Gene Expression Tool, UGET. The gene encoding the α1 chain of type XI collagen (COL11A1) was the only cartilage-selective gene among the three candidate intervals. Sequence analysis of COL11A1 in two genetically independent fibrochondrogenesis cases demonstrated that each was a compound heterozygote for a loss-of-function mutation on one allele and a mutation predicting substitution for a conserved triple-helical glycine residue on the other. The parents who were carriers of missense mutations had myopia. Early-onset hearing loss was noted in both parents who carried a loss-of-function allele, suggesting COL11A1 as a locus for mild, dominantly inherited hearing loss. These findings identify COL11A1 as a locus for fibrochondrogenesis and indicate that there might be phenotypic manifestations among carriers. PMID:21035103

  15. Fibrochondrogenesis results from mutations in the COL11A1 type XI collagen gene.

    PubMed

    Tompson, Stuart W; Bacino, Carlos A; Safina, Nicole P; Bober, Michael B; Proud, Virginia K; Funari, Tara; Wangler, Michael F; Nevarez, Lisette; Ala-Kokko, Leena; Wilcox, William R; Eyre, David R; Krakow, Deborah; Cohn, Daniel H

    2010-11-12

    Fibrochondrogenesis is a severe, autosomal-recessive, short-limbed skeletal dysplasia. In a single case of fibrochondrogenesis, whole-genome SNP genotyping identified unknown ancestral consanguinity by detecting three autozygous regions. Because of the predominantly skeletal nature of the phenotype, the 389 genes localized to the autozygous intervals were prioritized for mutation analysis by correlation of their expression with known cartilage-selective genes via the UCLA Gene Expression Tool, UGET. The gene encoding the α1 chain of type XI collagen (COL11A1) was the only cartilage-selective gene among the three candidate intervals. Sequence analysis of COL11A1 in two genetically independent fibrochondrogenesis cases demonstrated that each was a compound heterozygote for a loss-of-function mutation on one allele and a mutation predicting substitution for a conserved triple-helical glycine residue on the other. The parents who were carriers of missense mutations had myopia. Early-onset hearing loss was noted in both parents who carried a loss-of-function allele, suggesting COL11A1 as a locus for mild, dominantly inherited hearing loss. These findings identify COL11A1 as a locus for fibrochondrogenesis and indicate that there might be phenotypic manifestations among carriers.

  16. Characterization of p53 gene mutations in a Brazilian population with oral squamous cell carcinomas.

    PubMed

    Chaves, Anna C M; Cherubini, Karen; Herter, Nilton; Furian, Roque; Santos, Diogenes S; Squier, Christopher; Domann, Frederick E

    2004-02-01

    Mutations in the p53 tumor suppressor gene are present in approximately 50% of all human cancers. We sought to determine the frequency and type of p53 mutations in squamous cell carcinomas (SCC) of the oral cavity in a Brazilian population. To identify p53 mutations we used PCR-SSCP in tumor tissue microdissected from paraffin- embedded and from fresh-frozen sections followed by direct sequencing of SSCP bands with altered electrophoretic mobility. We identified p53 mutations in 40% of the human SCC analyzed. The mutations were of a broad spectrum, with a preponderance of G --> A and A --> G transitions with an apparent hotspot at the CpG dinucleotide at codon 290. Patient samples were stratified according to tobacco and alcohol consumption as well as by anatomic location of the tumor, and although trends did emerge, no statistically significant associations were obtained between the occurance of TP53 mutations and these lifestyle habits. We conclude that p53 mutations are common among oral cavity cancers in this population, and stress the significance of this study since it is the first analysis of p53 mutation in oral cancer in a southern Brazilian population.

  17. Unique and recurrent mutations in the filaggrin gene in Singaporean Chinese patients with ichthyosis vulgaris.

    PubMed

    Chen, Huijia; Ho, Jean C C; Sandilands, Aileen; Chan, Yuin Chew; Giam, Yoke Chin; Evans, Alan T; Lane, E Birgitte; McLean, W H Irwin

    2008-07-01

    Filaggrin is an abundant protein of the outer epidermis that is essential for terminal differentiation of keratinocytes and formation of an effective barrier against water loss and pathogen/allergen/irritant invasion. Recent investigations in Europe and Japan have revealed null mutations in the filaggrin gene (FLG) as the underlying cause of ichthyosis vulgaris (IV), a common skin disorder characterised by dry skin, palmar hyperlinearity and keratosis pilaris. Following the development of a strategy for the comprehensive analysis of FLG, we have identified five unique mutations and one recurrent mutation in Singaporean Chinese IV patients. Mutation 441delA is located in the profilaggrin S100 domain, whereas two additional frameshift mutations, 1249insG and 7945delA, occur in the first partial filaggrin repeat ("repeat 0") and in filaggrin repeat 7, respectively. Both nonsense mutations Q2147X and E2422X are found in filaggrin repeat 6, whereas R4307X was found on one of the longer size variant alleles of FLG, within duplicated repeat 10.2. Mutation E2422X, previously found in a single Dutch patient, was found in one Singaporean IV patient and at a low frequency in Asian population controls. Our study confirms the presence of population-specific as well as recurrent FLG mutations in Singapore.

  18. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    SciTech Connect

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  19. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis.

    PubMed

    Pandey, Bharati; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Kaur, Jagdeep; Grover, Abhinav

    2016-04-25

    The latest resurrection of drug resistance poses serious threat to the treatment and control of the disease. Mutations have been detected in panD gene in the Mycobacterium tuberculosis (Mtb) strains. Mutation of histidine to arginine at residue 21 (H21R) and isoleucine to valine at residue 29 (I49V) in the non-active site of panD gene has led to PZA resistance. This study will help in reconnoitering the mechanism of pyrazinamide (PZA) resistance caused due to double mutation identified in the panD gene of M. tuberculosis clinical isolates. It is known that panD gene encodes aspartate decarboxylase essential for β-alanine synthesis that makes it a potential therapeutic drug target for tuberculosis treatment. The knowledge about the molecular mechanism conferring drug resistance in M. tuberculosis is scarce, which is a significant challenge in designing successful therapeutic drug. In this study, structural and dynamic repercussions of H21R-I49V double mutation in panD complexed with PZA have been corroborated through docking and molecular dynamics based simulation. The double mutant (DM) shows low docking score and thus, low binding affinity for PZA as compared to the native protein. It was observed that the mutant protein exhibits more structural fluctuation at the ligand binding site in comparison to the native type. Furthermore, the flexibility and compactness analyses indicate that the double mutation influence interaction of PZA with the protein. The hydrogen-bond interaction patterns further supported our results. The covariance and PCA analysis elucidated that the double mutation affects the collective motion of residues in phase space. The results have been presented with an explanation for the induced drug resistance conferred by the H21R-I49V double mutation in panD gene and gain valuable insight to facilitate the advent of efficient therapeutics for combating resistance against PZA. PMID:26784657

  20. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis.

    PubMed

    Pandey, Bharati; Grover, Sonam; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Singh, Aditi; Kaur, Jagdeep; Grover, Abhinav

    2016-04-25

    The latest resurrection of drug resistance poses serious threat to the treatment and control of the disease. Mutations have been detected in panD gene in the Mycobacterium tuberculosis (Mtb) strains. Mutation of histidine to arginine at residue 21 (H21R) and isoleucine to valine at residue 29 (I49V) in the non-active site of panD gene has led to PZA resistance. This study will help in reconnoitering the mechanism of pyrazinamide (PZA) resistance caused due to double mutation identified in the panD gene of M. tuberculosis clinical isolates. It is known that panD gene encodes aspartate decarboxylase essential for β-alanine synthesis that makes it a potential therapeutic drug target for tuberculosis treatment. The knowledge about the molecular mechanism conferring drug resistance in M. tuberculosis is scarce, which is a significant challenge in designing successful therapeutic drug. In this study, structural and dynamic repercussions of H21R-I49V double mutation in panD complexed with PZA have been corroborated through docking and molecular dynamics based simulation. The double mutant (DM) shows low docking score and thus, low binding affinity for PZA as compared to the native protein. It was observed that the mutant protein exhibits more structural fluctuation at the ligand binding site in comparison to the native type. Furthermore, the flexibility and compactness analyses indicate that the double mutation influence interaction of PZA with the protein. The hydrogen-bond interaction patterns further supported our results. The covariance and PCA analysis elucidated that the double mutation affects the collective motion of residues in phase space. The results have been presented with an explanation for the induced drug resistance conferred by the H21R-I49V double mutation in panD gene and gain valuable insight to facilitate the advent of efficient therapeutics for combating resistance against PZA.

  1. Transposon-induced nuclear mutations that alter chloroplast gene expression

    SciTech Connect

    Barkan, A.

    1992-01-01

    The goal of this project is to use mutant phenotypes as a guide to nuclear genes that determine the timing and localization of chloroplast development The immediate goals are to identify nuclear mutants with defects in chloroplast gene expression from maize lines harboring active Mu transposons; characterize their phenotypes to determine the precise defect in gene expression; clone several of the most interesting mutations by exploiting the transposon tag; and use the clones to further define the roles of these genes in modulating chloroplast gene expression. Three mutants were described earlier that had global defects in chloroplast gene expression. We have found that two of these mutations are allelic. Both alleles have global defects in chloroplast translation initiation, as revealed by the failure to assemble chloroplast mRNAs into polysomes. We have isolated and characterized three new mutants from Mu lines that have novel defects in chloroplast RNA metabolism. We are now ready to begin the task of cloning several of these genes, by using the Mu transposon tag.

  2. Mutations in human lymphocytes commonly involve gene duplication and resemble those seen in cancer cells

    SciTech Connect

    Turner, D.R.; Grist, S.A.; Janatipour, M.; Morley, A.A.

    1988-05-01

    Mutations in human lymphocytes are commonly due to gene deletion. To investigate the mechanism of deletion for autosomal genes, the authors immunoselected lymphocytes mutated at the HLA-A locus and clones them for molecular analysis. Of 36 mutant clones that showed deletion of the selected HLA-A allele, 8 had resulted from a simple gene deletion, whereas 28 had resulted from a more complex mutational event involving reduplication of the nonselected HLA-A allele as indicated by hybridization intensity on Southern blots. In 3 of the 28 clones, retention of heterozygosity at the HLA-B locus indicated that the reduplication was due to recombination between the two chromosomes 6; but in the remaining 25 clones, distinction could not be made between recombination and chromosome reduplication. The results indicate that mutations in normal somatic cells frequently result in hemizygosity or homozygosity at gene loci and, thereby, resemble the mutations thought to be important in the etiology of various forms of cancer.

  3. Mutational hotspots in the TP53 gene and, possibly, other tumor suppressors evolve by positive selection

    PubMed Central

    Glazko, Galina V; Babenko, Vladimir N; Koonin, Eugene V; Rogozin, Igor B

    2006-01-01

    Background The mutation spectra of the TP53 gene and other tumor suppressors contain multiple hotspots, i.e., sites of non-random, frequent mutation in tumors and/or the germline. The origin of the hotspots remains unclear, the general view being that they represent highly mutable nucleotide contexts which likely reflect effects of different endogenous and exogenous factors shaping the mutation process in specific tissues. The origin of hotspots is of major importance because it has been suggested that mutable contexts could be used to infer mechanisms of mutagenesis contributing to tumorigenesis. Results Here we apply three independent tests, accounting for non-uniform base compositions in synonymous and non-synonymous sites, to test whether the hotspots emerge via selection or due to mutational bias. All three tests consistently indicate that the hotspots in the TP53 gene evolve, primarily, via positive selection. The results were robust to the elimination of the highly mutable CpG dinucleotides. By contrast, only one, the least conservative test reveals the signature of positive selection in BRCA1, BRCA2, and p16. Elucidation of the origin of the hotspots in these genes requires more data on somatic mutations in tumors. Conclusion The results of this analysis seem to indicate that positive selection for gain-of-function in tumor suppressor genes is an important aspect of tumorigenesis, blurring the distinction between tumor suppressors and oncogenes. Reviewers This article was reviewed by Sandor Pongor, Christopher Lee and Mikhail Blagosklonny. PMID:16542006

  4. Lipoprotein lipase gene mutations and the genetic susceptibility of preeclampsia.

    PubMed

    Kim, Y J; Williamson, R A; Chen, K; Smith, J L; Murray, J C; Merrill, D C

    2001-11-01

    In the pathogenesis of preeclampsia, endothelial cell activation or dysfunction is a central theme, and marked dyslipidemia may contribute to endothelial cell dysfunction. The objective of this study was to evaluate the association between preeclampsia and mutations within the lipoprotein lipase (LPL) gene. DNA was extracted from whole blood or cheek swabs of 250 preeclamptic patients, 265 control subjects, and 106 offspring of preeclamptic patients (all white). Control subjects were women who had undergone >/=2 term pregnancies unaffected by preeclampsia. All samples were genotyped for 3 LPL polymorphisms with the use of polymerase chain reaction of known allelic variants. The 3 mutations studied were the following: (1) Asp9Asn substitution in exon 2, (2) T-to-G substitution at position -93 of the proximal promotor region (-93T/G), and (3) Asn291Ser substitution in exon 6. Results were analyzed with an chi(2) contingency table. The prevalences of the Asp9Asn mutation, -93T/G promotor mutation, and Asn291Ser mutation were not significantly different among the preeclamptic patients and control subjects (Asp9Asn: patients, 2.8%; control subjects, 4.0%; -93T/G: patients, 4.5%; control subjects, 5.5%; Asn291Ser: patients, 4.0%; control subject, 3.0%). In addition, there was no difference in the frequency of any of the mutations in the offspring of preeclamptic women compared with that observed in the control population. Between a small group of patients with nulliparous HELLP syndrome (a variant of severe preeclampsia: hemolysis, elevated liver enzyme, low platelets) patients (n=12) and control subjects, there was a significant difference in the prevalence of the Asn291Ser mutation (16.7% versus 3.0%, P=0.01). In this large white population, the Asp9Asn mutation, -93T/G promotor mutation, and Asn291Ser mutation were not associated with an increased risk for preeclampsia. In a small subgroup of patients, the Asn291Ser mutation was associated with an increased risk for

  5. Identification of novel mutations in HEXA gene in children affected with Tay Sachs disease from India.

    PubMed

    Mistri, Mehul; Tamhankar, Parag M; Sheth, Frenny; Sanghavi, Daksha; Kondurkar, Pratima; Patil, Swapnil; Idicula-Thomas, Susan; Gupta, Sarita; Sheth, Jayesh

    2012-01-01

    Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V.

  6. Identification of novel mutations in HEXA gene in children affected with Tay Sachs disease from India.

    PubMed

    Mistri, Mehul; Tamhankar, Parag M; Sheth, Frenny; Sanghavi, Daksha; Kondurkar, Pratima; Patil, Swapnil; Idicula-Thomas, Susan; Gupta, Sarita; Sheth, Jayesh

    2012-01-01

    Tay Sachs disease (TSD) is a neurodegenerative disorder due to β-hexosaminidase A deficiency caused by mutations in the HEXA gene. The mutations leading to Tay Sachs disease in India are yet unknown. We aimed to determine mutations leading to TSD in India by complete sequencing of the HEXA gene. The clinical inclusion criteria included neuroregression, seizures, exaggerated startle reflex, macrocephaly, cherry red spot on fundus examination and spasticity. Neuroimaging criteria included thalamic hyperdensities on CT scan/T1W images of MRI of the brain. Biochemical criteria included deficiency of hexosaminidase A (less than 2% of total hexosaminidase activity for infantile patients). Total leukocyte hexosaminidase activity was assayed by 4-methylumbelliferyl-N-acetyl-β-D-glucosamine lysis and hexosaminidase A activity was assayed by heat inactivation method and 4-methylumbelliferyl-N-acetyl-β-D-glucosamine-6-sulphate lysis method. The exons and exon-intron boundaries of the HEXA gene were bidirectionally sequenced using an automated sequencer. Mutations were confirmed in parents and looked up in public databases. In silico analysis for mutations was carried out using SIFT, Polyphen2, MutationT@ster and Accelrys Discovery Studio softwares. Fifteen families were included in the study. We identified six novel missense mutations, c.340 G>A (p.E114K), c.964 G>A (p.D322N), c.964 G>T (p.D322Y), c.1178C>G (p.R393P) and c.1385A>T (p.E462V), c.1432 G>A (p.G478R) and two previously reported mutations. c.1277_1278insTATC and c.508C>T (p.R170W). The mutation p.E462V was found in six unrelated families from Gujarat indicating a founder effect. A previously known splice site mutation c.805+1 G>C and another intronic mutation c.672+30 T>G of unknown significance were also identified. Mutations could not be identified in one family. We conclude that TSD patients from Gujarat should be screened for the common mutation p.E462V. PMID:22723944

  7. A novel donor splice-site mutation of major intrinsic protein gene associated with congenital cataract in a Chinese family

    PubMed Central

    Zeng, Lu; Liu, Wenqiang; Feng, Wenguo; Wang, Xing; Dang, Hui; Gao, Luna; Yao, Jing

    2013-01-01

    Purpose To identify the disease-causing gene in a Chinese family with autosomal dominant congenital cataract. Methods Clinical and ophthalmologic examinations were performed on all members of a Chinese family with congenital cataract. Nine genes associated with congenital cataract were screened using direct DNA sequencing. Mutations were confirmed using restriction fragment length polymorphism (RFLP) analysis. The mutated major intrinsic protein (MIP) minigene, which carries the disease-causing splice-site mutation, and the wild-type (WT) MIP minigene were constructed using the pcDNA3.1 expression vector. Wild-type and mutant MIP minigene constructs were transiently transfected into HeLa cells. After 48 h of incubation at 37 °C, total RNA isolation and reverse transcription (RT)–PCR analysis were performed, and PCR products were separated and confirmed with sequencing. Results Direct DNA sequence analysis identified a novel splice-site mutation in intron 3 (c.606+1 G>A) of the MIP gene. To investigate the manner in which the splice donor mutation could affect mRNA splicing, WT and mutant MIP minigenes we