Genetic Analysis of X-Chromosome Dosage Compensation in Caenorhabditis elegans
Meneely, Philip M.; Wood, William B.
1987-01-01
We have shown that the phenotypes resulting from hypomorphic mutations (causing reduction but not complete loss of function) in two X-linked genes can be used as a genetic assay for X-chromosome dosage compensation in Caenorhabditis elegans between males ( XO) and hermaphrodites (XX). In addition we show that recessive mutations in two autosomal genes, dpy-21 V and dpy-26 IV, suppress the phenotypes resulting from the X-linked hypomorphic mutations, but not the phenotypes resulting from comparable autosomal hypomorphic mutations. This result strongly suggests that the dpy-21 and dpy-26 mutations cause increased X expression, implying that the normal function of these genes may be to lower the expression of X-linked genes. Recessive mutations in two other dpy genes, dpy-22 X and dpy-23 X, increase the severity of phenotypes resulting from some X-linked hypomorphic mutations, although dpy-23 may affect the phenotypes resulting from the autosomal hypomorphs as well. The mutations in all four of the dpy genes show their effects in both XO and XX animals, although to different degrees. Mutations in 18 other dpy genes do not show these effects. PMID:3666440
Novel XLRS1 gene mutations cause X-linked juvenile retinoschisis in Chinese families.
Ma, Xiang; Li, Xiaoxin; Wang, Lihua
2008-01-01
To investigate various XLRS1 (RS1) gene mutations in Chinese families with X-linked juvenile retinoschisis (XLRS or RS). Genomic DNA was isolated from leukocytes of 29 male patients with X-linked juvenile retinoschisis, 38 female carriers, and 100 normal controls. All 6 exons of the RS1 gene were amplified by polymerase chain reaction, and the RS1 gene mutations were determined by direct sequencing. Eleven different RS1 mutations in 12 families were identified in the 29 male patients. The mutations comprised eight missense, two frameshift, and one splice donor site mutation. Four of these mutations, one frameshift mutation (26 del T) in exon 1, one frameshift mutation (488 del G) in exon 5, Asp145His and Arg156Gly in exon 5, have not been previously described. One novel non-disease-related polymorphism, 576C to T (Pro192Pro) in exon 6, was also found. Six recurrent mutations, Ser73Pro and Arg102Gln mutations in exon 4 and Arg200Cys, Arg209His, Arg213Gln, and Cys223Arg mutations in exon 6, were also identified in this study. RS1 gene mutations caused X-linked juvenile retinoschisis in these Chinese families.
A Novel Mutation in the XLRS1 Gene in a Korean Family with X-linked Retinoschisis
Jwa, Nam Soo; Kim, Sung Soo; Lee, Sung Chul; Kwon, Oh Woong
2006-01-01
Purpose To report a novel missense mutation in the XLRS1 gene in a Korean family with X-linked retinoschisis. Methods Observation case report of a family with a proband with X-linked retinoschisis underwent complete ophthalmologic examination. Genomic DNA was excluded from the family's blood and all exons of the XLRS1 gene were amplified by polymerase chain reaction and analyzed using a direct sequencing method. Results A novel Leu103Phe missense mutation was identified. Conclusions A novel Leu103Phe mutation is an additional missense mutation which is responsible for the pathogenesis of X-linked retinoschisis. PMID:16768192
Faster-X evolution: Theory and evidence from Drosophila.
Charlesworth, Brian; Campos, José L; Jackson, Benjamin C
2018-02-12
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes can be caused by the fixation of recessive or partially recessive advantageous mutations, due to the full expression of X-linked mutations in hemizygous males. Other processes, including recombination rate and mutation rate differences between X chromosomes and autosomes, may also cause faster evolution of X-linked genes. We review population genetics theory concerning the expected relative values of variability and rates of evolution of X-linked and autosomal DNA sequences. The theoretical predictions are compared with data from population genomic studies of several species of Drosophila. We conclude that there is evidence for adaptive faster-X evolution of several classes of functionally significant nucleotides. We also find evidence for potential differences in mutation rates between X-linked and autosomal genes, due to differences in mutational bias towards GC to AT mutations. Many aspects of the data are consistent with the male hemizygosity model, although not all possible confounding factors can be excluded. © 2018 John Wiley & Sons Ltd.
[Gene mutation analysis of X-linked hypophosphatemic rickets].
Song, Ying; Ma, Hong-Wei; Li, Fang; Hu, Man; Ren, Shuang; Yu, Ya-Fen; Zhao, Gui-Jie
2013-11-01
To investigate the frequency and type of PHEX gene mutations in children with X-linked hypophosphatemic rickets (XLH), the possible presence of mutational hot spots, and the relationship between genotype and clinical phenotype. Clinical data of 10 children with XLH was retrospectively reviewed. The relationship between gene mutation type and severity of XLH was evaluated. PHEX gene mutations were detected in all 10 children with XLH, including 6 cases of missense mutation, 2 cases of splice site mutation, 1 case of frameshift mutation, and 1 case of nonsense mutation. Two new mutations, c.2048T>C and IVS14+1delAG, were found. The type of PHEX gene mutation was not associated with the degree of short stature and leg deformity (P=0.571 and 0.467), and the mutation site was also not associated with the degree of short stature and leg deformity (P=0.400 and 1.000). Missense mutation is the most common type of PHEX gene mutation in children with XLH, and c.2048T>C and IVS14+1delAG are two new PHEX gene mutations. The type and site of PHEX gene mutation are not associated with the severity of XLH.
A novel intronic mutation in the DDP1 gene in a family with X-linked dystonia-deafness syndrome.
Ezquerra, Mario; Campdelacreu, Jaume; Muñoz, Esteban; Tolosa, Eduardo; Martí, María J
2005-02-01
X-linked dystonia-deafness syndrome (Mohr-Tranebjaerg syndrome) is a rare neurodegenerative disease characterized by hearing loss and dystonia. So far, 7 mutations in the coding region of the DDP1 gene have been described. They consist of frameshift, nonsense, missense mutations or deletions. To investigate the presence of mutations in the DDP1 gene in a family with dystonia-deafness syndrome. Seven members belonging to 2 generations of a family with 2 affected subjects underwent genetic analysis. Mutational screening in the DDP1 gene was made through DNA direct sequencing. We found an intronic mutation in the DDP1 gene. It consists of an A-to-C substitution in the position -23 in reference to the first nucleotide of exon 2 (IVS1-23A>C). The mutation was present in 2 affected men and their respective unaffected mothers, whereas it was absent in the healthy men from this family and in 90 healthy controls. Intronic mutations in the DDP1 gene can also cause X-linked dystonia-deafness syndrome. In our case, the effect of the mutation could be due to a splicing alteration.
From the lab - Rare Gene Mutation May Have Link to Common Cold | NIH MedlinePlus the Magazine
... Common Cold Follow us Photo: AdobeStock Rare Gene Mutation May Have Link to Common Cold COLDS SEEM ... and Infectious Diseases (NIAID) identified a rare genetic mutation earlier this year. It can result in a ...
Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B
2017-02-01
Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.
Stambolian, D; Favor, J; Silvers, W; Avner, P; Chapman, V; Zhou, E
1994-07-15
The Xcat mutation in the mouse, an X-linked inherited disorder, is characterized by the congenital onset of cataracts. The cataracts have morphologies similar to those of cataracts found in the human Nance Horan (X-linked cataract dental) syndrome, suggesting that Xcat is an animal model for Nance Horan. The Xcat mutation provides an opportunity to investigate, at the molecular level, the pathogenesis of cataract. As a first step to cloning the Xcat gene, we report the localization of the Xcat mutation with respect to known molecular markers on the mouse X chromosome. Back-cross progeny carrying the Xcat mutation were obtained from an interspecific cross. Genomic DNA from each mouse was subjected to Southern and PCR analysis to identify restriction fragment length polymorphisms and simple sequence length polymorphisms, respectively. Our results refine the location of Xcat to a 2-cM region, eliminate several genes from consideration as the Xcat mutation, identify molecular probes tightly linked with Xcat, and suggest candidate genes responsible for the Xcat phenotype.
Genotype-phenotype variations in five Spanish families with Norrie disease or X-linked FEVR.
Riveiro-Alvarez, Rosa; Trujillo-Tiebas, Maria José; Gimenez-Pardo, Ascension; Garcia-Hoyos, Maria; Cantalapiedra, Diego; Lorda-Sanchez, Isabel; Rodriguez de Alba, Marta; Ramos, Carmen; Ayuso, Carmen
2005-09-02
Norrie disease (OMIM 310600) is a rare X-linked disorder characterized by congenital blindness in males. Approximately 40 to 50% of the cases develop deafness and mental retardation. X-linked familial exudative vitreoretinopathy (XL-FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. Both X-linked disorders are due to mutations in the NDP gene, which encodes a 133 amino acid protein called Norrin, but autosomal recessive (AR) and autosomal dominant (AD) forms of FEVR have also been described. In this study, we report the molecular findings and the related phenotype in five Spanish families affected with Norrie disease or XL-FEVR due to mutations of the NDP gene. The study was conducted in 45 subjects from five Spanish families. These families were clinically diagnosed with Norrie disease or similar conditions. The three exons of the NDP gene were analyzed by automatic DNA sequencing. Haplotype analyses were also performed. Two new nonsense mutations, apart from other mutations previously described in the NDP gene, were found in those patients affected with ND or X-linked FEVR. An important genotype-phenotype variation was found in relation to the different mutations of the NDP gene. In fact, the same mutation may be responsible for different phenotypes. We speculate that there might be other molecular factors that interact in the retina with Norrin, which contribute to the resultant phenotypes.
Meloni, Ilaria; Bruttini, Mirella; Longo, Ilaria; Mari, Francesca; Rizzolio, Flavio; D’Adamo, Patrizia; Denvriendt, Koenraad; Fryns, Jean-Pierre; Toniolo, Daniela; Renieri, Alessandra
2000-01-01
Heterozygous mutations in the X-linked MECP2 gene cause Rett syndrome, a severe neurodevelopmental disorder of young females. Only one male presenting an MECP2 mutation has been reported; he survived only to age 1 year, suggesting that mutations in MECP2 are male lethal. Here we report a three-generation family in which two affected males showed severe mental retardation and progressive spasticity, previously mapped in Xq27.2-qter. Two obligate carrier females showed either normal or borderline intelligence, simulating an X-linked recessive trait. The two males and the two obligate carrier females presented a mutation in the MECP2 gene, demonstrating that, in males, MECP2 can be responsible for severe mental retardation associated with neurological disorders. PMID:10986043
Mutational Survey of the PHEX Gene in Patients with X-linked Hypophosphatemic Rickets
Ichikawa, Shoji; Traxler, Elizabeth A.; Estwick, Selina A.; Curry, Leah R.; Johnson, Michelle L.; Sorenson, Andrea H.; Imel, Erik A.; Econs, Michael J.
2008-01-01
X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disorder characterized by renal phosphate wasting, aberrant vitamin D metabolism, and abnormal bone mineralization. XLH is caused by inactivating mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). In this study, we sequenced the PHEX gene in subjects from 26 kindreds who were clinically diagnosed with XLH. Sequencing revealed 18 different mutations, of which thirteen have not been reported previously. In addition to deletions, splice site mutations, and missense and nonsense mutations, a rare point mutation in the 3’-untranslated region (3’-UTR) was identified as a novel cause of XLH. In summary, we identified a wide spectrum of mutations in the PHEX gene. Our data, in accord with those of others, indicate that there is no single predominant PHEX mutation responsible for XLH. PMID:18625346
Mutations in the RS1 gene in a Chinese family with X-linked juvenile retinoschisis.
Hou, Qiaofang; Chu, Yan; Guo, Qiannan; Wu, Dong; Liao, Shixiu
2012-02-01
The purpose of our study was to identify the mutations in the retinoschisis 1 (RS1) gene, which was associated with X-linked retinoschisis (XLRS) in a four-generation Chinese family, and to provide the theoretical basis for gene diagnosis and gene therapy. Genomic DNA was extracted from peripheral leukocytes. All six exons and flanking intronic regions were amplified by polymerase chain reaction (PCR), followed by direct sequencing. Through our genetic analysis, one frameshift 573delG mutation was identified in the patients of this four-generation pedigree; however, this mutation was absent in normal or non-carrier subjects. In conclusion, this 573delG mutation is reported in the Chinese population for the first time. This mutation widens the mutational spectrum of RS1 in Asians. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.
Analysis of X chromosome inactivation in autism spectrum disorders
Gong, Xiaohong; Bacchelli, Elena; Blasi, Francesca; Toma, Claudio; Betancur, Catalina; Chaste, Pauline; Delorme, Richard; Durand, Christelle; Fauchereau, Fabien; Botros, Hany Goubran; Leboyer, Marion; Mouren-Simeoni, Marie-Christine; Nygren, Gudrun; Anckarsäter, Henrik; Rastam, Maria; Gillberg, I Carina; Gillberg, Christopher; Moreno-De-Luca, Daniel; Carone, Simona; Nummela, Ilona; Rossi, Mari; Battaglia, Agatino; Jarvela, Irma; Maestrini, Elena; Bourgeron, Thomas
2008-01-01
Autism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in the susceptibility to ASD by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls. The XCI pattern was also determined in two control groups (144 adult females and 40 young females) with a similar age distribution to the mothers sample and affected girls sample, respectively. We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z-score of 1.75 close to rs719489. In summary, our results suggest that there is no major X-linked gene subject to XCI and expressed in blood cells conferring susceptibility to ASD. However, the possibility that rare mutations in X-linked genes could contribute to ASD cannot be excluded. We propose that the XCI profile could be a useful criteria to prioritize families for mutation screening of X-linked candidate genes. PMID:18361425
Analysis of X chromosome inactivation in autism spectrum disorders.
Gong, Xiaohong; Bacchelli, Elena; Blasi, Francesca; Toma, Claudio; Betancur, Catalina; Chaste, Pauline; Delorme, Richard; Durand, Christelle M; Fauchereau, Fabien; Botros, Hany Goubran; Leboyer, Marion; Mouren-Simeoni, Marie-Christine; Nygren, Gudrun; Anckarsäter, Henrik; Rastam, Maria; Gillberg, I Carina; Gillberg, Christopher; Moreno-De-Luca, Daniel; Carone, Simona; Nummela, Ilona; Rossi, Mari; Battaglia, Agatino; Jarvela, Irma; Maestrini, Elena; Bourgeron, Thomas
2008-09-05
Autism spectrum disorders (ASD) are complex genetic disorders more frequently observed in males. Skewed X chromosome inactivation (XCI) is observed in heterozygous females carrying gene mutations involved in several X-linked syndromes. In this study, we aimed to estimate the role of X-linked genes in ASD susceptibility by ascertaining the XCI pattern in a sample of 543 informative mothers of children with ASD and in a sample of 163 affected girls. The XCI pattern was also determined in two control groups (144 adult females and 40 young females) with a similar age distribution to the mothers sample and affected girls sample, respectively. We observed no significant excess of skewed XCI in families with ASD. Interestingly, two mothers and one girl carrying known mutations in X-linked genes (NLGN3, ATRX, MECP2) showed highly skewed XCI, suggesting that ascertainment of XCI could reveal families with X-linked mutations. Linkage analysis was carried out in the subgroup of multiplex families with skewed XCI (> or = 80:20) and a modest increased allele sharing was obtained in the Xq27-Xq28 region, with a peak Z-score of 1.75 close to rs719489. In summary, our results suggest that there is no major X-linked gene subject to XCI and expressed in blood cells conferring susceptibility to ASD. However, the possibility that rare mutations in X-linked genes could contribute to ASD cannot be excluded. We propose that the XCI profile could be a useful criteria to prioritize families for mutation screening of X-linked candidate genes. 2008 Wiley-Liss, Inc.
Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism
Jamain, Stéphane; Quach, Hélène; Betancur, Catalina; Råstam, Maria; Colineaux, Catherine; Gillberg, I Carina; Söderström, Henrik; Giros, Bruno; Leboyer, Marion; Gillberg, Christopher; Bourgeron, Thomas
2003-01-01
Many studies have supported a genetic aetiology for autism. Here we report mutations in two X-linked genes, neuroligins NLGN3 and NLGN4, in siblings with autism spectrum disorders. These mutations affect cell adhesion molecules localised at the synapse and suggest that a defect of synaptogenesis may predispose to autism. PMID:12669065
Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism.
Jamain, Stéphane; Quach, Hélène; Betancur, Catalina; Råstam, Maria; Colineaux, Catherine; Gillberg, I Carina; Soderstrom, Henrik; Giros, Bruno; Leboyer, Marion; Gillberg, Christopher; Bourgeron, Thomas
2003-05-01
Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.
Shastry, B S; Hejtmancik, J F; Trese, M T
1997-01-01
X-linked Familial Exudative Vitreoretinopathy (XLFEVR) is a hereditary eye disorder that affects both the retina and the vitreous body. It is characterized by an abnormal vascularization of the peripheral retina. It has been previously shown by linkage and candidate gene analysis that XLFEVR and Norrie disease are allelic. In this report we describe four novel mutations (R41K, H42R, K58N, and Y120C) in the Norrie disease gene associated with one X-linked and four sporadic cases of FEVR. One mutation (H42R) was found to be segregating with the disease in three generations (X-linked family), and the others are sporadic. These sequence alterations changed the encoded amino acids in the Norrie disease protein and were not found in 17 unaffected family members or in 36 randomly selected normal individuals. This study provides additional evidence that mutations in the same gene can result in FEVR and Norrie disease. It also demonstrates that it may be beneficial for clinical diagnosis to screen for mutations in the Norrie disease gene in sporadic FEVR cases.
Zhang, Xiao Xia; Wong, Sing Wai; Han, Dong; Feng, Hai Lan
2015-01-01
To describe the simultaneous occurence of an autosomal dominant inherited MSX1 mutation and an X-linked recessive inherited EDA mutation in one Chinese family with nonsyndromic oligodontia. Clinical data of characteristics of tooth agenesis were collected. MSX1 and EDA gene mutations were detected in a Chinese family of non-syndromic oligodontia. Mild hypodontia in the parents and severe oligodontia in the son was recorded. A novel missense heterozygous mutation c.517C>A (p.Arg173Ser) was detected in the MSX1 gene in the boy and the father. A homozygous missense mutation c.1001G>A (p.Arg334His) was detected in the EDA gene in the boy and the same mutant occurred heterozygously in the mother. Simultaneous occurence of two different gene mutations with different inheritence patterns, which both caused oligodontia, which occurred in one subject and in one family, was reported.
Jensen, Lars R; Chen, Wei; Moser, Bettina; Lipkowitz, Bettina; Schroeder, Christopher; Musante, Luciana; Tzschach, Andreas; Kalscheuer, Vera M; Meloni, Ilaria; Raynaud, Martine; van Esch, Hilde; Chelly, Jamel; de Brouwer, Arjan P M; Hackett, Anna; van der Haar, Sigrun; Henn, Wolfram; Gecz, Jozef; Riess, Olaf; Bonin, Michael; Reinhardt, Richard; Ropers, Hans-Hilger; Kuss, Andreas W
2011-01-01
X-linked intellectual disability (XLID), also known as X-linked mental retardation, is a highly genetically heterogeneous condition for which mutations in >90 different genes have been identified. In this study, we used a custom-made sequencing array based on the Affymetrix 50k platform for mutation screening in 17 known XLID genes in patients from 135 families and found eight single-nucleotide changes that were absent in controls. For four mutations affecting ATRX (p.1761M>T), PQBP1 (p.155R>X) and SLC6A8 (p.390P>L and p.477S>L), we provide evidence for a functional involvement of these changes in the aetiology of intellectual disability. PMID:21267006
X-linked Alport syndrome: An SSCP-based mutation survey over all 51 exons of the COL4A5 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renieri, A.; Bruttini, M.; Galli, L.
1996-06-01
The COL4A5 gene encodes the {alpha}5 (type IV) collagen chain and is defective in X-linked Alport syndrome (AS). Here, we report the first systematic analysis of all 51 exons of COL4A5 gene in a series of 201 Italian AS patients. We have previously reported nine major rearrangements, as well as 18 small mutations identified in the same patient series by SSCP analysis of several exons. After systematic analysis of all 51 exons of COL4A5, we have now identified 30 different mutations: 10 glycine substitutions in the triple helical domain of the protein, 9 frameshift mutations, 4 in-frame deletions, 1 startmore » codon, 1 nonsense, and 5 splice-site mutations. These mutations were either unique or found in two unrelated families, thus excluding the presence of a common mutation in the coding part of the gene. Overall, mutations were detected in only 45% of individuals with a certain or likely diagnosis of X-linked AS. This finding suggests that mutations in noncoding segments of COL4A5 account for a high number of X-linked AS cases. An alternative hypothesis is the presence of locus heterogeneity, even within the X-linked form of the disease. A genotype/phenotype comparison enabled us to better substantiate a significant correlation between the degree of predicted disruption of the {alpha}5 chain and the severity of phenotype in affected male individuals. Our study has significant implications in the diagnosis and follow-up of AS patients. 44 refs., 3 figs., 4 tabs.« less
Li, Jie; Xu, Peiwen; Huang, Sexin; Gao, Ming; Zou, Yang; Kang, Ranran; Gao, Yuan
2017-04-10
To identify potential mutation of PHEX gene in two patients from a family affected with X-linked hypophosphatemia (XLH). PCR and Sanger sequencing were performed on blood samples from the patients and 100 healthy controls. Reverse transcription-PCR (RT-PCR) was used to determine the mRNA expression in patient samples. A splicing site mutation, IVS21+2T>G, was found in the PHEX gene in both patients but not among the 100 healthy controls. RT-PCR confirmed that exon 21 of the PHEX gene was deleted. The novel splicing mutation IVS21+2T>G of the PHEX gene probably underlies the XLH in this pedigree. At the mRNA level, the mutation has led to removal of exon 21 and shift of the open reading frame (p.Val691fsx), resulting in premature termination of protein translation.
A Novel Mutation in a Kazakh Family with X-Linked Alport Syndrome
Rakhimova, Saule E.; Nigmatullina, Nazym B.; Momynaliev, Kuvat T.; Ramanculov, Yerlan M.
2015-01-01
Alport syndrome is a genetic condition that results in hematuria, progressive renal impairment, hearing loss, and occasionally lenticonus and retinopathy. Approximately 80% of Alport syndrome cases are caused by X-linked mutations in the COL4A5 gene encoding type IV collagen. The objective of this study was to define the SNP profiles for COL4A5 in patients with hereditary nephritis and hematuria. For this, we examined four subjects from one Kazakh family clinically affected with X-linked Alport syndrome due to COL4A5 gene mutations. All 51 exons of the COL4A5 gene were screened by linkage analysis and direct DNA sequencing, resulting in the identification of a novel mutation (G641E) in exon 25. The mutation was found only in two affected family individuals but was not present in healthy family members or 200 unrelated healthy controls. This result demonstrates that this novel mutation is pathogenic and has meaningful implications for the diagnosis of patients with Alport syndrome. PMID:26168235
A Novel Mutation in a Kazakh Family with X-Linked Alport Syndrome.
Baikara, Barshagul T; Zholdybayeva, Elena V; Rakhimova, Saule E; Nigmatullina, Nazym B; Momynaliev, Kuvat T; Ramanculov, Yerlan M
2015-01-01
Alport syndrome is a genetic condition that results in hematuria, progressive renal impairment, hearing loss, and occasionally lenticonus and retinopathy. Approximately 80% of Alport syndrome cases are caused by X-linked mutations in the COL4A5 gene encoding type IV collagen. The objective of this study was to define the SNP profiles for COL4A5 in patients with hereditary nephritis and hematuria. For this, we examined four subjects from one Kazakh family clinically affected with X-linked Alport syndrome due to COL4A5 gene mutations. All 51 exons of the COL4A5 gene were screened by linkage analysis and direct DNA sequencing, resulting in the identification of a novel mutation (G641E) in exon 25. The mutation was found only in two affected family individuals but was not present in healthy family members or 200 unrelated healthy controls. This result demonstrates that this novel mutation is pathogenic and has meaningful implications for the diagnosis of patients with Alport syndrome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionasescu, V.; Ionasescu, R.; Searby, C.
1996-06-14
We studied the relationship between the genotype and clinical phenotype in 27 families with dominant X-linked Charcot-Marie-Tooth (CMTX1) neuropathy. Twenty-two families showed mutations in the coding region of the connexin32 (cx32) gene. The mutations include four nonsense mutations, eight missense mutations, two medium size deletions, and one insertion. Most missense mutations showed a mild clinical phenotype (five out of eight), whereas all nonsense mutations, the larger of the two deletions, and the insertion that produced frameshifts showed severe phenotypes. Five CMTX1 families with mild clinical phenotype showed no point mutations of the cx32 gene coding region. Three of these familiesmore » showed positive genetic linkage with the markers of the Xq13.1 region. The genetic linkage of the remaining two families could not be evaluated because of their small size. 25 refs., 1 fig., 1 tab.« less
Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP).
Rowe, P S; Oudet, C L; Francis, F; Sinding, C; Pannetier, S; Econs, M J; Strom, T M; Meitinger, T; Garabedian, M; David, A; Macher, M A; Questiaux, E; Popowska, E; Pronicka, E; Read, A P; Mokrzycki, A; Glorieux, F H; Drezner, M K; Hanauer, A; Lehrach, H; Goulding, J N; O'Riordan, J L
1997-04-01
Mutations in the PEX gene at Xp22.1 (phosphate-regulating gene with homologies to endopeptidases, on the X-chromosome), are responsible for X-linked hypophosphataemic rickets (HYP). Homology of PEX to the M13 family of Zn2+ metallopeptidases which include neprilysin (NEP) as prototype, has raised important questions regarding PEX function at the molecular level. The aim of this study was to analyse 99 HYP families for PEX gene mutations, and to correlate predicted changes in the protein structure with Zn2+ metallopeptidase gene function. Primers flanking 22 characterised exons were used to amplify DNA by PCR, and SSCP was then used to screen for mutations. Deletions, insertions, nonsense mutations, stop codons and splice mutations occurred in 83% of families screened for in all 22 exons, and 51% of a separate set of families screened in 17 PEX gene exons. Missense mutations in four regions of the gene were informative regarding function, with one mutation in the Zn2+-binding site predicted to alter substrate enzyme interaction and catalysis. Computer analysis of the remaining mutations predicted changes in secondary structure, N-glycosylation, protein phosphorylation and catalytic site molecular structure. The wide range of mutations that align with regions required for protease activity in NEP suggests that PEX also functions as a protease, and may act by processing factor(s) involved in bone mineral metabolism.
Qiu, Guangrong; Liu, Caixia; Zhou, Jingyi; Liu, Peiyan; Wang, Jun; Jiang, Hongkun; Hou, Zhiyan; Zhao, Yanyan; Sun, Kailai; Li-Ling, Jesse
2010-06-01
X-linked hypophosphatemia (XLH) is the most common form of heritable rickets characterized by X-linked dominant inheritance, renal phosphate wasting, hypophosphatemia, and defective bone mineralization. Inactivating mutations of the PHEX gene located at Xp22.1 have been linked with this disease. Ethnic distribution of such mutations seems widespread but only a few mutations in the Chinese population have been reported to date. We report on a large Han Chinese family affected with XLH rickets, which included 13 patients from four generations. Polymerase chain reaction and direct sequencing were performed for all exons and intron-exon boundaries of the PHEX gene. The effect of nucleotide changes was analyzed using bioinformatic software. Prenatal diagnosis was performed on umbilical cord blood at the 20th gestational week. A novel G-->A splice mutation in intron 7 (c.849+1G>A) was identified in all patients from the family. As confirmed by reverse-transcription (RT)-polymerase chain reaction (PCR), the mutation has rendered loss of a normal splice donor site (c.849+1G) while activating a cryptic one at c.849+519G, which resulted in addition of 518 nucleotides to the mature RNA. Prenatal diagnosis had excluded the fetus for carrying the same mutation. A healthy boy was born later. A novel splice mutation c.849+1G>A in the PHEX gene is responsible for XLH in the studied family. Further studies may enhance our understanding of the role of this mutation in the pathogenesis of XLH.
Fidani, L; Karagianni, P; Tsakalidis, C; Mitsiako, G; Hatziioannidis, I; Biancalana, V; Nikolaidis, N
2011-01-01
X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy, usually characterized by severe hypotonia and respiratory insufficiency at birth, in affected, male infants. The disease is causally associated with mutations in the MTM1 gene, coding for phosphatase myotubularin. We report a severe case of XLMTM with a novel mutation, at a donor splicing site (c.1467+1G) previously associated with severe phenotype. The mutation was also identified in the patient's mother, providing an opportunity for sound genetic counseling. PMID:22435031
Fidani, L; Karagianni, P; Tsakalidis, C; Mitsiako, G; Hatziioannidis, I; Biancalana, V; Nikolaidis, N
2011-07-01
X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy, usually characterized by severe hypotonia and respiratory insufficiency at birth, in affected, male infants. The disease is causally associated with mutations in the MTM1 gene, coding for phosphatase myotubularin. We report a severe case of XLMTM with a novel mutation, at a donor splicing site (c.1467+1G) previously associated with severe phenotype. The mutation was also identified in the patient's mother, providing an opportunity for sound genetic counseling.
Ramprasad, Vedam Lakshmi; Thool, Alka; Murugan, Sakthivel; Nancarrow, Derek; Vyas, Prateep; Rao, Srinivas Kamalakar; Vidhya, Authiappan; Ravishankar, Krishnamoorthy; Kumaramanickavel, Govindasamy
2005-01-01
A four-generation family containing eight affected males who inherited X-linked developmental lens opacity and microcornea was studied. Some members in the family had mild to moderate nonocular clinical features suggestive of Nance-Horan syndrome. The purpose of the study was to map genetically the gene in the large 57-live-member Asian-Indian pedigree. PCR-based genotyping was performed on the X-chromosome, by using fluorescent microsatellite markers (10-cM intervals). Parametric linkage analysis was performed by using two disease models, assuming either recessive or dominant X-linked transmission by the MLINK/ILINK and FASTLINK (version 4.1P) programs (http:www.hgmp.mrc.ac.uk/; provided in the public domain by the Human Genome Mapping Project Resources Centre, Cambridge, UK). The NHS gene at the linked region was screened for mutation. By fine mapping, the disease gene was localized to Xp22.13. Multipoint analysis placed the peak LOD of 4.46 at DSX987. The NHS gene mapped to this region. Mutational screening in all the affected males and carrier females (heterozygous form) revealed a truncating mutation 115C-->T in exon 1, resulting in conversion of glutamine to stop codon (Q39X), but was not observed in unaffected individuals and control subjects. conclusions. A family with X-linked Nance-Horan syndrome had severe ocular, but mild to moderate nonocular, features. The clinical phenotype of the truncating mutation (Q39X) in the NHS gene suggests allelic heterogeneity at the NHS locus or the presence of modifier genes. X-linked families with cataract should be carefully examined for both ocular and nonocular features, to exclude Nance-Horan syndrome. RT-PCR analysis did not suggest nonsense-mediated mRNA decay as the possible mechanism for clinical heterogeneity.
Zeng, Meizhen; Yi, Changxian; Guo, Xiangming; Jia, Xiaoyun; Deng, Yan; Wang, Juan; Shen, Huangxuan
2007-01-01
X-linked juvenile retinoschisis (XLRS) is a major cause of macular degeneration in young men. In this study we analyzed all six exons of the XLRS1 gene in four sporadic XLRS patients and in an affected family in China who were recently diagnosed. We found there are five different mutations with four containing missense point mutations and one having a frame-shift deletion. Among these mutations both c.644A>T and c.520delC are novel and have not been previously reported. Moreover all the second-generation offsprings and most of the third-generation ones in the affected family were found to carry the mutations bearing X chromosome. The discovery of novel mutations in the XLRS1 gene would increase the available information about the spectrum of genetic abnormalities causing XLRS. Although the limited data failed to reveal a correlation between mutations and disease phenotypes our identification of novel mutations in the XLRS1 gene will facilitate early and correct diagnosis and genetic counseling regarding the prognosis of XLRS disease.
X-linked juvenile retinoschisis: mutations at the retinoschisis and Norrie disease gene loci?
Hiraoka, M; Rossi, F; Trese, M T; Shastry, B S
2001-01-01
Juvenile retinoschisis (RS) and Norrie disease (ND) are X-linked recessive retinal disorders. Both disorders, in the majority of cases, are monogenic and are caused by mutations in the RS and ND genes, respectively. Here we report the identification of a family in which mutations in both the RS and ND genes are segregating with RS pathology. Although the mutations identified in this report were not functionally characterized with regard to their pathogenicity, it is likely that both of them are involved in RS pathology in the family analyzed. This suggests the complexity and digenic nature of monogenic human disorders in some cases. If this proves to be a widespread problem, it will complicate the strategies used to identify the genes involved in diseases and to develop methods for intervention.
Chu, Yan; Fang, Dong; Hou, Qiao-fang; Wang, Li-ya; Guo, Xi-rang; Wang, Ying-tai; Liao, Shi-xiu
2013-04-01
To identify potential mutations of retinoschisis 1 (RS1) gene responsible for X-linked retinoschisis (XLRS) in two Chinese families. The 6 exons and flanking intronic regions were analyzed with PCR and direct sequencing. Two RS1 mutations were identified in the two families, which included 1 frameshift mutation (c.573delG, p.Pro192fs) and 1 missense mutation (c.626G>A, p.Arg209His). Two RS1 mutations have been identified, among which Pro192fs mutation is discovered for the first time in Chinese population. Above results may enrich our understanding of the clinical manifestations of XLRS and facilitated early diagnosis and genetic counseling for the disease.
X-Linked Hypohidrotic Ectodermal Dysplasia: New Features and a Novel EDA Gene Mutation.
Savasta, Salvatore; Carlone, Giorgia; Castagnoli, Riccardo; Chiappe, Francesca; Bassanese, Francesco; Piras, Roberta; Salpietro, Vincenzo; Brazzelli, Valeria; Verrotti, Alberto; Marseglia, Gian L
2017-01-01
We described a 5-year-old male with hypodontia, hypohidrosis, and facial dysmorphisms characterized by a depressed nasal bridge, maxillary hypoplasia, and protuberant lips. Chromosomal analysis revealed a normal 46,XY male karyotype. Due to the presence of clinical features of hypohidrotic ectodermal dysplasia (HED), the EDA gene, located at Xq12q13.1, of the patient and his family was sequenced. Analysis of the proband's sequence revealed a missense mutation (T to A transversion) in hemizygosity state at nucleotide position 158 in exon 1 of the EDA gene, which changes codon 53 from leucine to histidine, while heterozygosity at this position was detected in the slightly affected mother; moreover, this mutation was not found in the publically available Human Gene Mutation Database. To date, our findings indicate that a novel mutation in EDA is associated with X-linked HED, adding it to the repertoire of EDA mutations. © 2017 S. Karger AG, Basel.
Acral peeling skin syndrome associated with a novel CSTA gene mutation.
Muttardi, K; Nitoiu, D; Kelsell, D P; O'Toole, E A; Batta, K
2016-06-01
Acral peeling skin syndrome (APSS) is a rare autosomal recessive condition, characterized by asymptomatic peeling of the skin of the hands and feet, often linked to mutations in the gene TGM5. However, more recently recessive loss of function mutations in CSTA, encoding cystatin A, have been linked with APSS and exfoliative ichthyosis. We describe the clinical features in two sisters with APSS, associated with a novel large homozygous deletion encompassing exon 1 of CSTA. © 2015 British Association of Dermatologists.
A novel mutation in FRMD7 causing X-linked idiopathic congenital nystagmus in a large family
He, Xiang; Gu, Feng; Wang, Yujing; Yan, Jinting; Zhang, Meng; Huang, Shangzhi
2008-01-01
Purpose To identify the gene responsible for causing an X-linked idiopathic congenital nystagmus (XLICN) in a six-generation Chinese family. Methods Forty-nine members of an XLICN family were recruited and examined after obtaining informed consent. Affected male individuals were genotyped with microsatellite markers around the FRMD7 locus. Mutations were comprehensively screened by direct sequencing using gene specific primers. An X-inactivation pattern was investigated by X chromosome methylation analysis. Results The patients showed phenotypes consistent with XLICN. Genotype analysis showed that male affected individuals in the family shared a common haplotype with the selected markers. Sequencing FRMD7 revealed a G>T transversion (c.812G>T) in exon 9, which caused a conservative substitution of Cys to Phe at codon 271 (p.C271F). This mutation co-segregated with all affected individuals and was present in the obligate, non-penetrant female carriers. However, the mutation was not observed in unaffected familial males or 400 control males. Females with the mutant gene could be affected or carrier and they shared the same inactivated X chromosome harboring the mutation in blood cells, which showed there is no clear causal link between X-inactivation pattern and phenotype. Conclusions We identified a novel mutation in FRMD7 and confirmed the role of this mutation in the pathogenesis of X-linked congenital nystagmus. PMID:18246032
X-linked cataract and Nance-Horan syndrome are allelic disorders.
Coccia, Margherita; Brooks, Simon P; Webb, Tom R; Christodoulou, Katja; Wozniak, Izabella O; Murday, Victoria; Balicki, Martha; Yee, Harris A; Wangensteen, Teresia; Riise, Ruth; Saggar, Anand K; Park, Soo-Mi; Kanuga, Naheed; Francis, Peter J; Maher, Eamonn R; Moore, Anthony T; Russell-Eggitt, Isabelle M; Hardcastle, Alison J
2009-07-15
Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication-triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved.
X-linked cataract and Nance-Horan syndrome are allelic disorders
Coccia, Margherita; Brooks, Simon P.; Webb, Tom R.; Christodoulou, Katja; Wozniak, Izabella O.; Murday, Victoria; Balicki, Martha; Yee, Harris A.; Wangensteen, Teresia; Riise, Ruth; Saggar, Anand K.; Park, Soo-Mi; Kanuga, Naheed; Francis, Peter J.; Maher, Eamonn R.; Moore, Anthony T.; Russell-Eggitt, Isabelle M.; Hardcastle, Alison J.
2009-01-01
Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication–triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved. PMID:19414485
Blasi, Francesca; Bacchelli, Elena; Pesaresi, Giulia; Carone, Simona; Bailey, Anthony J; Maestrini, Elena
2006-04-05
Neuroligin abnormalities have been recently implicated in the aetiology of autism spectrum disorders (ASD), given the finding of point mutations in the two X-linked genes NLGN3 and NLGN4X and the important role of neuroligins in synaptogenesis. To enquire on the relevance and frequency of neuroligin mutations in ASD, we performed a mutation screening of NLGN3 and NLGN4X in a sample of 124 autism probands from the International Molecular Genetic Study of Autism Consortium (IMGSAC). We identified a new non-synonymous variant in NLGN3 (Thr632Ala), which is likely to be a rare polymorphism. Our data indicate that coding mutations in these genes are very rarely associated to ASD. Copyright 2006 Wiley-Liss, Inc.
[Mutations of amyloid precursor protein in early-onset familial Alzheimer's disease].
Naruse, S; Tsuji, S; Miyatake, T
1992-09-01
Genetic linkage studies of familial Alzheimer's disease (FAD) have suggested that some form of early-onset FAD is linked to proximal long arm of chromosome 21. It has been also suggested that some form of late-onset FAD is linked to long arm of chromosome 19. Goate et al have identified a mis-sense mutation (Val to Ile) in exon 17 of the amyloid precursor protein (APP) gene in 2 of 16 early-onset FAD families, and have shown that the FAD locus in an FAD family is tightly linked to the mis-sense mutation. To determine if the mis-sense mutation is observed in different ethnic origine, we have studied some early-onset FAD families. Two early-onset FAD families showed the existence of the mutation. As the mutation has been identified in different ethnic origine and the mutation has not been observed in normal individuals, it strengthen hypothesis that the mutation is pathogenic. Recently, Val to Phe and Val to Gly mutations have been also identified at the same codon (Codon 717) of the APP gene.
Linkage approach and direct COL4A5 gene mutation screening in Alport syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turco, A.E.; Rossetti, S.; Biasi, O.
1994-09-01
Alport Syndrome (AS) is transmitted as an X-linked dominant trait in the majority of families, the defective gene being COL4A5 at Xq22. In the remaining cases AS appears to be autosomally inherited. Recently, mutations in COL4A3 and COL4A4 genes at 2q35-q37 were identified in families with autosomal recessive AS. Mutation detection screening is being performed by non-radioactive single stand conformation polymorphism (SSCP), heteroduplex analysis, and automated DNA sequencing in over 170 AS patients enrolled in the ongoing Italian Multicenter Study on AS. So far twenty-five different mutations have been found, including missense, splicing, and frameshifts. Moreover, by using six tightlymore » linked COL4A5 informative makers, we have also typed two larger AS families, and have shown compatible sex-linked transmission in one other, suggesting autosomal recessive inheritance. In this latter three-generation COL4A5-unlinked family we are now looking for linkage and for mutations in the candidate COL4A3 and COL4A4 genes on chromosome 2q.« less
Target gene analyses of 39 amelogenesis imperfecta kindreds
Chan, Hui-Chen; Estrella, Ninna M. R. P.; Milkovich, Rachel N.; Kim, Jung-Wook; Simmer, James P.; Hu, Jan C-C.
2012-01-01
Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred. PMID:22243262
SpliceDisease database: linking RNA splicing and disease.
Wang, Juan; Zhang, Jie; Li, Kaibo; Zhao, Wei; Cui, Qinghua
2012-01-01
RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, we manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference Pubmed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. We standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, we give direct links of the entry to the respective position/region in the genome browser. The users can freely browse, search and download the data in SpliceDisease at http://cmbi.bjmu.edu.cn/sdisease.
Simonelli, F; Cennamo, G; Ziviello, C; Testa, F; de Crecchio, G; Nesti, A; Manitto, M P; Ciccodicola, A; Banfi, S; Brancato, R; Rinaldi, E
2003-09-01
To describe the clinical phenotype of X linked juvenile retinoschisis in eight Italian families with six different mutations in the XLRS1 gene. Complete ophthalmic examinations, electroretinography and A and B-scan standardised echography were performed in 18 affected males. The coding sequences of the XLRS1 gene were amplified by polymerase chain reaction and directly sequenced on an automated sequencer. Six different XLRS1 mutations were identified; two of these mutations Ile81Asn and the Trp122Cys, have not been previously described. The affected males showed an electronegative response to the standard white scotopic stimulus and a prolonged implicit time of the 30 Hz flicker. In the families with Trp112Cys and Trp122Cys mutations we observed a more severe retinoschisis (RS) clinical picture compared with the other genotypes. The severe RS phenotypes associated with Trp112Cys and to Trp122Cys mutations suggest that these mutations determine a notable alteration in the function of the retinoschisin protein.
Novel mutations of the RS1 gene in a cohort of Chinese families with X-linked retinoschisis
Chen, Jieqiong; Xu, Ke; Zhang, Xiaohui; Pan, Zhe; Dong, Bing
2014-01-01
Purpose X-linked retinoschisis is a retinal dystrophy caused by mutations in the RS1 gene in Xp22.1. These mutations lead to schisis (splitting) of the neural retina and subsequent reduction in visual acuity in affected men (OMIM # 312700). The aim of this study was to identify the RS1 gene mutations in a cohort of Chinese patients with X-linked retinoschisis, and to describe the associated phenotypes. Methods Patients and unaffected individuals from 16 unrelated families underwent detailed ophthalmic examinations. After informed consent was obtained, genomic DNA was extracted from the venous blood of all participants. All exons including the exon-intron boundaries of the RS1 gene, were amplified by PCR and the products were analyzed by direct sequencing. Long-range PCR followed by DNA sequencing was used to define the breakpoints of the large deletion. Results Sixteen male individuals from 16 families were diagnosed with retinoschisis by clinical examination. The median age at review was 13.2 years (range: 5–34 years); the median best-corrected visual acuity upon review was 0.26 (range 0.02–1.0). Foveal schisis was found in 82.8% of the eyes (24/29) while peripheral schisis was present in 27.5% of the eyes (8/29). Sequencing of the RS1 gene identified 16 mutations, nine of which were novel. The mutations included eight missense mutations, all located in exons 4–6 (50.0%), two nonsense mutations (12.5%), four small deletions or insertions (25.0%), one splice site mutation (6.25%), and one large genomic deletion that included exon1 (6.25%). Conclusions The mutations found in our study broaden the spectrum of RS1 mutations. The identification of the specific mutation in each pedigree will allow future determination of female carrier status for genetic counseling purposes. PMID:24505212
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tassabehji, M.; Strachan, T.; Colley, A.
Type 1 neurofibromatosis (NF1), Watson syndrome (WS), and Noonan syndrome (NS) show some overlap in clinical manifestations. In addition, WS has been shown to be linked to markers flanking the NF1 locus and a deletion at the NF1 locus demonstrated in a WS patient. This suggests either that WS and NF1 are allelic or the phenotypes arise from mutations in very closely linked genes. Here the authors provide evidence for the former by demonstrating a mutation in the NF1 gene in a family with features of both WS and NS. The mutation is an almost perfect in-frame tandem duplication ofmore » 42 bases in exon 28 of the NF1 gene. Unlike the mutations previously described in classical NF1, which show a preponderance of null alleles, the mutation in this family would be expected to result in a mutant neurofibromin product. 31 refs., 2 figs.« less
Meggouh, F; Benomar, A; Rouger, H; Tardieu, S; Birouk, N; Tassin, J; Barhoumi, C; Yahyaoui, M; Chkili, T; Brice, A; LeGuern, E
1998-01-01
X linked Charcot-Marie-Tooth disease (CMTX) is a hereditary motor and sensory neuropathy caused by mutations in the connexin 32 gene (Cx32). Using the SSCP technique and direct sequencing of PCR amplified genomic DNA fragments of the Cx32 gene from a Moroccan patient and her relatives, we identified the first de novo mutation of the Cx32 gene, consisting of a deletion of a G residue at position 499 in the Cx32 open reading frame. This previously unreported mutation produces a frameshift at position 147 in the protein and introduces a premature stop codon (TAG) at nucleotide 643, which results in the production of a truncated Cx32 molecule. This mutation illustrates the risk of an erroneous diagnosis of autosomal recessive CMT, especially in populations where consanguineous unions are frequent, and its consequences for genetic counselling, which can be avoided by molecular analysis. Images PMID:9541114
Unusual phenotypic expression of an XLRS1 mutation in X-linked juvenile retinoschisis.
Dodds, Jodi A; Srivastava, Anand K; Holden, Kenton R
2006-04-01
X-linked juvenile retinoschisis is a rare progressive vitreoretinal degenerative process that appears in early childhood, results in decreased visual acuity and blindness (if severe), and is caused by various mutations within the XLRS1 gene at Xp22.2. We report an affected family of Western European ancestry with X-linked juvenile retinoschisis. The family was found to carry a 304C-->T substitution in exon 4 of the XLRS1 gene, resulting in an Arg102Trp amino acid substitution. Two of the four available clinical cases in this family were found to carry the mutation. All available mothers of affected males were found to be unaffected carriers of the mutation, a typical feature of X-linked diseases. Two new female carriers, sisters of affected males, were identified and counseled accordingly. Questionnaires on visual functioning were given to the affected family members to examine the psychologic and sociologic impact of X-linked juvenile retinoschisis, which documented an associated stigma even when affected with a "mild" phenotype.
New mutations in the NHS gene in Nance-Horan Syndrome families from the Netherlands.
Florijn, Ralph J; Loves, Willem; Maillette de Buy Wenniger-Prick, Liesbeth J J M; Mannens, Marcel M A M; Tijmes, Nel; Brooks, Simon P; Hardcastle, Alison J; Bergen, Arthur A B
2006-09-01
Mutations in the NHS gene cause Nance-Horan Syndrome (NHS), a rare X-chromosomal recessive disorder with variable features, including congenital cataract, microphthalmia, a peculiar form of the ear and dental anomalies. We investigated the NHS gene in four additional families with NHS from the Netherlands, by dHPLC and direct sequencing. We identified an unique mutation in each family. Three out of these four mutations were not reported before. We report here the first splice site sequence alteration mutation and three protein truncating mutations. Our results suggest that X-linked cataract and NHS are allelic disorders.
X-linked hypophosphatemia attributable to pseudoexons of the PHEX gene.
Christie, P T; Harding, B; Nesbit, M A; Whyte, M P; Thakker, R V
2001-08-01
X-linked hypophosphatemia is commonly caused by mutations of the coding region of PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). However, such PHEX mutations are not detected in approximately one third of X-linked hypophosphatemia patients who may harbor defects in the noncoding or intronic regions. We have therefore investigated 11 unrelated X-linked hypophosphatemia patients in whom coding region mutations had been excluded, for intronic mutations that may lead to mRNA splicing abnormalities, by the use of lymphoblastoid RNA and RT-PCRs. One X-linked hypophosphatemia patient was found to have 3 abnormally large transcripts, resulting from 51-bp, 100-bp, and 170-bp insertions, all of which would lead to missense peptides and premature termination codons. The origin of these transcripts was a mutation (g to t) at position +1268 of intron 7, which resulted in the occurrence of a high quality novel donor splice site (ggaagg to gtaagg). Splicing between this novel donor splice site and 3 preexisting, but normally silent, acceptor splice sites within intron 7 resulted in the occurrences of the 3 pseudoexons. This represents the first report of PHEX pseudoexons and reveals further the diversity of genetic abnormalities causing X-linked hypophosphatemia.
Molecular genetic analysis of patients with sporadic and X-linked infantile nystagmus
Zhao, Hui; Huang, Xiu-Feng; Zheng, Zhi-Li; Deng, Wen-Li; Lei, Xin-Lan; Xing, Dong-Jun; Ye, Liang; Xu, Su-Zhong; Chen, Jie; Zhang, Fang; Yu, Xin-Ping; Jin, Zi-Bing
2016-01-01
Objectives Infantile nystagmus (IN) is a genetically heterogeneous condition characterised by involuntary rhythmic oscillations of the eyes accompanied by different degrees of vision impairment. Two genes have been identified as mainly causing IN: FRMD7 and GPR143. The aim of our study was to identify the genetic basis of both sporadic IN and X-linked IN. Design Prospective analysis. Patients Twenty Chinese patients, including 15 sporadic IN cases and 5 from X-linked IN families, were recruited and underwent molecular genetic analysis. We first performed PCR-based DNA sequencing of the entire coding region and the splice junctions of the FRMD7 and GPR143 genes in participants. Mutational analysis and co-segregation confirmation were then performed. Setting All clinical examinations and genetic experiments were performed in the Eye Hospital of Wenzhou Medical University. Results Two mutations in the FRMD7 gene, including one novel nonsense mutation (c.1090C>T, p.Q364X) and one reported missense mutation (c.781C>G, p.R261G), were identified in two of the five (40%) X-linked IN families. However, none of putative mutations were identified in FRMD7 or GPR143 in any of the sporadic cases. Conclusions The results suggest that mutations in FRMD7 appeared to be the major genetic cause of X-linked IN, but not of sporadic IN. Our findings provide further insights into FRMD7 mutations, which could be helpful for future genetic diagnosis and genetic counselling of Chinese patients with nystagmus. PMID:27036142
The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fransen, E.; Vits, L.; Van Camp, G.
1996-07-12
Mutations in the gene encoding the neuronal cell adhesion molecule L1 are responsible for several syndromes with clinical overlap, including X-linked hydrocephalus (XLH, HSAS), MASA (mental retardation, aphasia, shuffling gait, adducted thumbs) syndrome, complicated X-linked spastic paraplegia (SP 1), X-linked mental retardation-clasped thumb (MR-CT) syndrome, and some forms of X-linked agenesis of the corpus callosum (ACC). We review 34 L1 mutations in patients with these phenotypes. 22 refs., 3 figs., 4 tabs.
Guo, Wei-Hong; Li, Qiang; Wei, Hong-Yan; Lu, Hong-Yan; Qu, Hui-Qi
2016-01-01
Polyuria and polydipsia are the characteristics of congenital nephrogenic diabetes insipidus (CNDI). Approximately 90% of all patients with CNDI have X-linked hereditary disease, which is due to a mutation of the arginine vasopressin receptor 2 (AVPR2) gene. This case report describes a 54-year-old male with polyuria and polydipsia and several male members of his pedigree who had the same symptoms. The proband was diagnosed with diabetes insipidus using a water-deprivation and arginine vasopressin stimulation test. Genomic DNA from the patient and his family members was extracted and the AVPR2 gene was sequenced. A novel missense mutation of a cytosine to guanine transition at position 972 (c.972C > G) was found, which resulted in the substitution of isoleucine for methionine at amino acid position 324 (p.I324M) in the seventh transmembrane domain of the protein. The proband’s mother and daughter were heterozygous for this mutation. The novel mutation of the AVPR2 gene further broadens the phenotypic spectrum of the AVPR2 gene. PMID:27565746
Guo, Wei-Hong; Li, Qiang; Wei, Hong-Yan; Lu, Hong-Yan; Qu, Hui-Qi; Zhu, Mei
2016-10-01
Polyuria and polydipsia are the characteristics of congenital nephrogenic diabetes insipidus (CNDI). Approximately 90% of all patients with CNDI have X-linked hereditary disease, which is due to a mutation of the arginine vasopressin receptor 2 ( AVPR2) gene. This case report describes a 54-year-old male with polyuria and polydipsia and several male members of his pedigree who had the same symptoms. The proband was diagnosed with diabetes insipidus using a water-deprivation and arginine vasopressin stimulation test. Genomic DNA from the patient and his family members was extracted and the AVPR2 gene was sequenced. A novel missense mutation of a cytosine to guanine transition at position 972 (c.972C > G) was found, which resulted in the substitution of isoleucine for methionine at amino acid position 324 (p.I324M) in the seventh transmembrane domain of the protein. The proband's mother and daughter were heterozygous for this mutation. The novel mutation of the AVPR2 gene further broadens the phenotypic spectrum of the AVPR2 gene.
Colombo, Carlo; Porzio, Ottavia; Liu, Ming; Massa, Ornella; Vasta, Mario; Salardi, Silvana; Beccaria, Luciano; Monciotti, Carla; Toni, Sonia; Pedersen, Oluf; Hansen, Torben; Federici, Luca; Pesavento, Roberta; Cadario, Francesco; Federici, Giorgio; Ghirri, Paolo; Arvan, Peter; Iafusco, Dario; Barbetti, Fabrizio
2008-01-01
Permanent neonatal diabetes mellitus (PNDM) is a rare disorder usually presenting within 6 months of birth. Although several genes have been linked to this disorder, in almost half the cases documented in Italy, the genetic cause remains unknown. Because the Akita mouse bearing a mutation in the Ins2 gene exhibits PNDM associated with pancreatic β cell apoptosis, we sequenced the human insulin gene in PNDM subjects with unidentified mutations. We discovered 7 heterozygous mutations in 10 unrelated probands. In 8 of these patients, insulin secretion was detectable at diabetes onset, but rapidly declined over time. When these mutant proinsulins were expressed in HEK293 cells, we observed defects in insulin protein folding and secretion. In these experiments, expression of the mutant proinsulins was also associated with increased Grp78 protein expression and XBP1 mRNA splicing, 2 markers of endoplasmic reticulum stress, and with increased apoptosis. Similarly transfected INS-1E insulinoma cells had diminished viability compared with those expressing WT proinsulin. In conclusion, we find that mutations in the insulin gene that promote proinsulin misfolding may cause PNDM. PMID:18451997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerstroem-Fermer, M.; Nilsson, M.; Pettersson, U.
1995-03-01
Formation of tooth enamel is a poorly understood biological process. In this study the authors describe a 9-bp deletion in exon 2 of the amelogenin gene (AMGX) causing X-linked hypoplastic amelogenesis imperfecta, a disease characterized by defective enamel. The mutation results in the loss of 3 amino acids and exchange of 1 in the signal peptide of the amelogenin protein. This deletion in the signal peptide probably interferes with translocation of the amelogenin protein during synthesis, resulting in the thin enamel observed in affected members of the family. The authors compare this mutation to a previously reported mutation in themore » amelogenin gene that causes a different disease phenotype. The study illustrates that molecular analysis can help explain the various manifestations of a tooth disorder and thereby provide insights into the mechanisms of tooth enamel formation. 16 refs., 2 figs., 1 tab.« less
Hermine, Olivier; Dine, Gérard; Genty, Vincent; Marquet, Laurie-Anne; Fumagalli, Gabriela; Tafflet, Muriel; Guillem, Flavia; Van Lierde, Françoise; Rousseaux-Blanchi, Marie-Philippe; Palierne, Christian; Lapostolle, Jean-Claude; Cervetti, Jean-Pierre; Frey, Alain; Jouven, Xavier; Noirez, Philippe; Toussaint, Jean-François
2015-12-01
The HFE gene encodes a protein involved in iron homeostasis; individuals with mutations in both alleles develop hemochromatosis. 27% of the French population is heterozygous for mutations in this gene. We found that 80% of the French athletes who won international competitions in rowing, Nordic skiing and judo display mutations in one allele of HFE, thus demonstrating the existence of a favourable phenotype linked to this heterozygosity. Copyright © 2015. Published by Elsevier B.V.
van Lieburg, A. F.; Verdijk, M. A.; Knoers, V. V.; van Essen, A. J.; Proesmans, W.; Mallmann, R.; Monnens, L. A.; van Oost, B. A.; van Os, C. H.; Deen, P. M.
1994-01-01
Mutations in the X-chromosomal V2 receptor gene are known to cause nephrogenic diabetes insipidus (NDI). Besides the X-linked form, an autosomal mode of inheritance has been described. Recently, mutations in the autosomal gene coding for water-channel aquaporin 2 (AQP2) of the renal collecting duct were reported in an NDI patient. In the present study, missense mutations and a single nucleotide deletion in the aquaporin 2 gene of three NDI patients from consanguineous matings are described. Expression studies in Xenopus oocytes showed that the missense AQP2 proteins are nonfunctional. These results prove that mutations in the AQP2 gene cause autosomal recessive NDI. PMID:7524315
NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population.
Gauthier, Julie; Bonnel, Anna; St-Onge, Judith; Karemera, Liliane; Laurent, Sandra; Mottron, Laurent; Fombonne, Eric; Joober, Ridha; Rouleau, Guy A
2005-01-05
Jamain [2003: Nat Genet 34:27-29] recently reported mutations in two neuroligin genes in sib-pairs affected with autism. In order to confirm these causative mutations in our autistic population and to determine their frequency we screened 96 individuals affected with autism. We found no mutations in these X-linked genes. These results indicate that mutations in NLGN3 and NLGN4 genes are responsible for at most a small fraction of autism cases and additional screenings in other autistic populations are needed to better determine the frequency with which mutations in NLGN3 and NLGN4 occur in autism. Copyright 2004 Wiley-Liss, Inc.
Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.
Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris
2015-09-23
In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Corbani, S.; Chouery, E.; Fayyad, J.; Fawaz, A.; El Tourjuman, O.; Badens, C.; Lacoste, C.; Delague, V.; Megarbane, A.
2012-01-01
Background: Rett syndrome (RTT), an X-linked, dominant, neurodevelopment disorder represents 10% of female subjects with profound intellectual disability. Mutations in the "MECP2" gene are responsible for up to 95% of the classical RTT cases, and nearly 500 different mutations distributed throughout the gene have been reported. Methods:…
The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism
Bianco, Suzy D. C.; Kaiser, Ursula B.
2010-01-01
Idiopathic hypogonadotropic hypogonadism (IHH) has an incidence of 1–10 cases per 100,000 births. About 60% of patients with IHH present with associated anosmia, also known as Kallmann syndrome, characterized by total or partial loss of olfaction. Many of the gene mutations associated with Kallmann syndrome have been mapped to KAL1 or FGFR1. However, together, these mutations account for only about 15% of Kallmann syndrome cases. More recently, mutations in PROK2 and PROKR2 have been linked to the syndrome and may account for an additional 5–10% of cases. The remaining 40% of patients with IHH have a normal sense of smell. Prior to 2003, the only gene linked to normosmic IHH was the gonadotropin-releasing hormone receptor gene. However, mutations in this receptor are believed to account for only 10% of cases. Subsequently, mutations in KISS1R, TAC3 and TACR3 were identified as causes of normosmic IHH. Certain genes, including PROK2 and FGFR1, are associated with both anosmic and normosmic IHH. Despite recent advances in the field, the genetic causes of the majority of cases of IHH remain unknown. This Review discusses genes associated with hypogonadotropic disorders and the molecular mechanisms by which mutations in these genes may result in IHH. PMID:19707180
Li, Xiaoxin; Ma, Xiang; Tao, Yong
2007-06-07
To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.
Ma, Xiang; Tao, Yong
2007-01-01
Purpose To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Methods Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Results Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Conclusions Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS. PMID:17615541
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegoraro, E.; Hoffman, E.P.; Carelli, V.
1996-02-02
Leber`s hereditary optic neuropathy (LHON) accounts for about 3% of the cases of blindness in young adult males. The underlying mitochondrial pathogenesis of LHON has been well studied, with specific mitochondrial DNA (mtDNA) mutations of structural genes described and well characterized. However, enigmatic aspects of the disease are not explained by mutation data, such as the higher proportion of affected males, the later onset of the disease in females, and the presence of unaffected individuals with a high proportion of mutant mtDNA. A hypothesis which has been put forward to explain the unusual disease expression is a dual model ofmore » mtDNA and X-linked nuclear gene inheritance. If a nuclear X-linked modifier gene influences the expression of the mitochondrial-linked mutant gene then the affected females should be either homozygous for the nuclear determinant, or if heterozygous, lyonization should favor the mutant X. In order to determine if an X-linked gene predisposes to LHON phenotype we studied X-inactivation patterns in 35 females with known mtDNA mutations from 10 LHON pedigrees. Our results do not support a strong X-linked determinant in LHON cause: 2 of the 10 (20%) manifesting carriers showed skewing of X-inactivation, as did 3 of the 25 (12%) nonmanifesting carriers. 39 refs., 2 figs., 1 tab.« less
Patterson, Emily J; Wilk, Melissa; Langlo, Christopher S; Kasilian, Melissa; Ring, Michael; Hufnagel, Robert B; Dubis, Adam M; Tee, James J; Kalitzeos, Angelos; Gardner, Jessica C; Ahmed, Zubair M; Sisk, Robert A; Larsen, Michael; Sjoberg, Stacy; Connor, Thomas B; Dubra, Alfredo; Neitz, Jay; Hardcastle, Alison J; Neitz, Maureen; Michaelides, Michel; Carroll, Joseph
2016-07-01
Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations to clarify the link between color vision deficiency and cone dysfunction. We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone mosaic obtained with adaptive optics scanning light ophthalmoscopy. The L/M opsin gene array was characterized in 16 subjects, including at least one subject from each family. There were six subjects with the LVAVA haplotype encoded by exon 3, seven with LIAVA, two with the Cys203Arg mutation encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. Our findings provide a direct link between disruption of the cone mosaic and L/M opsin variants. We hypothesize that, in addition to large phenotypic differences between different L/M opsin variants, the ratio of expression of first versus downstream genes in the L/M array contributes to phenotypic diversity. While the L/M opsin mutations underlie the cone dysfunction in all of the subjects tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus.
Towards linked open gene mutations data
2012-01-01
Background With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. Methods A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. Results We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. Conclusions This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development. The publication of variation information as Linked Data opens new perspectives: the exploitation of SPARQL searches on mutation data and other biological databases may support data retrieval which is presently not possible. Moreover, reasoning on integrated variation data may support discoveries towards personalized medicine. PMID:22536974
Towards linked open gene mutations data.
Zappa, Achille; Splendiani, Andrea; Romano, Paolo
2012-03-28
With the advent of high-throughput technologies, a great wealth of variation data is being produced. Such information may constitute the basis for correlation analyses between genotypes and phenotypes and, in the future, for personalized medicine. Several databases on gene variation exist, but this kind of information is still scarce in the Semantic Web framework. In this paper, we discuss issues related to the integration of mutation data in the Linked Open Data infrastructure, part of the Semantic Web framework. We present the development of a mapping from the IARC TP53 Mutation database to RDF and the implementation of servers publishing this data. A version of the IARC TP53 Mutation database implemented in a relational database was used as first test set. Automatic mappings to RDF were first created by using D2RQ and later manually refined by introducing concepts and properties from domain vocabularies and ontologies, as well as links to Linked Open Data implementations of various systems of biomedical interest. Since D2RQ query performances are lower than those that can be achieved by using an RDF archive, generated data was also loaded into a dedicated system based on tools from the Jena software suite. We have implemented a D2RQ Server for TP53 mutation data, providing data on a subset of the IARC database, including gene variations, somatic mutations, and bibliographic references. The server allows to browse the RDF graph by using links both between classes and to external systems. An alternative interface offers improved performances for SPARQL queries. The resulting data can be explored by using any Semantic Web browser or application. This has been the first case of a mutation database exposed as Linked Data. A revised version of our prototype, including further concepts and IARC TP53 Mutation database data sets, is under development.The publication of variation information as Linked Data opens new perspectives: the exploitation of SPARQL searches on mutation data and other biological databases may support data retrieval which is presently not possible. Moreover, reasoning on integrated variation data may support discoveries towards personalized medicine.
The mouse lymphoma assay is widely used to identify chemicals that are capable of inducing mutational damages. The Tk+/- gene located on an autosome in mouse lymphoma cells may recover a wider range of mutational events than the X-linked Hprt locus. However, chemical-induced muta...
Norrie disease and exudative vitreoretinopathy in families with affected female carriers.
Shastry, B S; Hiraoka, M; Trese, D C; Trese, M T
1999-01-01
Norrie disease (ND) is a rare X-linked recessive disorder characterized by congenital blindness, which is often associated with sensorineural hearing loss and mental retardation. X-linked familial exudative vitreoretinopathy (FEVR) is a hereditary disorder characterized by an abnormality of the peripheral retina and is not associated with systemic diseases. X-linked recessive disorders generally do not affect females. Here we show that female carriers can be associated with manifestation of an X-linked disorder. A four-generation family with an affected female, and a history of congenital blindness and hearing loss, was identified through the pro-band. A second family, with a full-term female infant, was evaluated through ophthalmic examinations and found to exhibit ocular features, such as retinal folds, retinal detachment and peripheral exudates. Peripheral blood specimens were collected from several affected and unaffected family members. DNA was extracted and analyzed by single-strand conformation polymorphism (SSCP) following polymerase chain reaction (PCR) amplification of the exons of the Norrie disease gene. The amplified products were sequenced by the dideoxy chain termination method. In an X-linked four-generation family, a novel missense (A118D) mutation in the third exon of the Norrie disease gene, was identified. The mutation was transmitted through three generations and cosegregated with the disease. The affected maternal grandmother and the unaffected mother carried the same mutation in one of their alleles. In an unrelated sporadic family, a heterozygous missense mutation (C96Y) was identified in the third exon of the Norrie disease gene in an affected individual. Analysis of exon-1 and 2 of the Norrie disease gene did not reveal any additional sequence alterations in these families. The mutations were not detected in the unaffected family members and the 116 normal unrelated controls, suggesting that they are likely to be the pathogenic mutations. The results further strengthen the proposal that X-linked disorders can occur in female carriers, due likely to an unfavorable X-inactivation.
Chan, Wai Man; Choy, Kwong Wai; Wang, Jianghua; Lam, Dennis S C; Yip, Wilson W K; Fu, Weiling; Pang, Chi Pui
2004-08-01
The optical coherence tomography (OCT) findings, clinical features, and mutations in the RS1 gene of two unrelated patients with X-linked retinoschisis (XLRS) are reported herein. Two Chinese patients with early onset XLRS were given a comprehensive ophthalmologic examination and OCT investigation. The RS1 gene was screened for sequence alterations in all exons and splice regions. The two patients presented with different phenotypic features and OCT findings. One patient with more severe clinical presentation had a RS1 exon 1 deletion and a P193S mutation was found in the other patient with mild macular involvement. OCT demonstrates the markedly different features of XLRS patients with different RS1 mutations. This study strengthens the role of OCT in the diagnosis and monitoring of XLRS.
A substitution involving the NLGN4 gene associated with autistic behavior in the Greek population.
Pampanos, Andreas; Volaki, Konstantina; Kanavakis, Emmanuel; Papandreou, Ourania; Youroukos, Sotiris; Thomaidis, Loretta; Karkelis, Savvas; Tzetis, Maria; Kitsiou-Tzeli, Sophia
2009-10-01
Autism is a neurodevelopmental disorder characterized by clinical, etiologic, and genetic heterogeneity. During the last decade, predisposing genes and genetic loci were under investigation. Recently, mutations in two X-linked neuroligin genes, neuroligin 3 (NLGN3) and neuroligin 4 (NLGN4), have been implicated in the pathogenesis of autism. In our ongoing survey, we screened 169 patients with autism for mutations linked with autism. In the preliminary study of specific exons of NLGN3 and NLGN4 genes, we identified the p.K378R substitution (c.1597 A > G) in exon 5 of the NLGN4 gene in a patient who was found to have mild autism and normal IQ at 3 years of age. The same mutation has previously been found in a patient with autism. It is important that, for the first time, a specific mutation in neuroligins is confirmed in a molecular screen in another homogeneous ethnic population. This finding further contributes to consideration of neuroligins as probable candidate genes for future molecular genetic studies, suggesting that a defect of synaptogenesis may predispose to autism.
Simonelli, F; Cennamo, G; Ziviello, C; Testa, F; de Crecchio, G; Nesti, A; Manitto, M P; Ciccodicola, A; Banfi, S; Brancato, R; Rinaldi, E
2003-01-01
Aims: To describe the clinical phenotype of X linked juvenile retinoschisis in eight Italian families with six different mutations in the XLRS1 gene. Methods: Complete ophthalmic examinations, electroretinography and A and B-scan standardised echography were performed in 18 affected males. The coding sequences of the XLRS1 gene were amplified by polymerase chain reaction and directly sequenced on an automated sequencer. Results: Six different XLRS1 mutations were identified; two of these mutations Ile81Asn and the Trp122Cys, have not been previously described. The affected males showed an electronegative response to the standard white scotopic stimulus and a prolonged implicit time of the 30 Hz flicker. In the families with Trp112Cys and Trp122Cys mutations we observed a more severe retinoschisis (RS) clinical picture compared with the other genotypes. Conclusion: The severe RS phenotypes associated with Trp112Cys and to Trp122Cys mutations suggest that these mutations determine a notable alteration in the function of the retinoschisin protein. PMID:12928282
Allelic variation of the FRMD7 gene in congenital idiopathic nystagmus.
Self, James E; Shawkat, Fatima; Malpas, Crispin T; Thomas, N Simon; Harris, Christopher M; Hodgkins, Peter R; Chen, Xiaoli; Trump, Dorothy; Lotery, Andrew J
2007-09-01
To perform a genotype-phenotype correlation study in an X-linked congenital idiopathic nystagmus pedigree (pedigree 1) and to assess the allelic variance of the FRMD7 gene in congenital idiopathic nystagmus. Subjects from pedigree 1 underwent detailed clinical examination including nystagmology. Screening of FRMD7 was undertaken in pedigree 1 and in 37 other congenital idiopathic nystagmus probands and controls. Direct sequencing confirmed sequence changes. X-inactivation studies were performed in pedigree 1. The nystagmus phenotype was extremely variable in pedigree 1. We identified 2 FRMD7 mutations. However, 80% of X-linked families and 96% of simplex cases showed no mutations. X-inactivation studies demonstrated no clear causal link between skewing and variable penetrance. We confirm profound phenotypic variation in X-linked congenital idiopathic nystagmus pedigrees. We demonstrate that other congenital nystagmus genes exist besides FRMD7. We show that the role of X inactivation in variable penetrance is unclear in congenital idiopathic nystagmus. Clinical Relevance We demonstrate that phenotypic variation of nystagmus occurs in families with FRMD7 mutations. While FRMD7 mutations may be found in some cases of X-linked congenital idiopathic nystagmus, the diagnostic yield is low. X-inactivation assays are unhelpful as a test for carrier status for this disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, D.A.; Sheffield, V.C.; Stone, E.M.
1995-10-01
Nonsyndromic deafness accounts for {approximately}70% of all genetically determined deafness. Several types of nonsyndromic deafness, with a variety of inheritance patterns, have been genetically linked, including dominant, recessive and X-linked forms. Two of these forms - DFNA3, a dominant form causing moderate to severe hearing loss, predominantly in the high frequencies, and DFNB1, a recessive form causing profound, prelingual, neurosensory deafness affecting all frequencies - have been linked to the same pericentromeric region of chromosome 13. This finding is equally compatible with (1) the existence two closely linked deafness genes, (2) different mutations within a single deafness gene, and (3)more » a single mutation in a single gene that behaves differently in different genetic backgrounds. 12 refs., 2 figs., 1 tab.« less
Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy.
Shastry, B S; Hejtmancik, J F; Plager, D A; Hartzer, M K; Trese, M T
1995-05-20
Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder characterized by avascularity of the peripheral retina, retinal exudates, tractional detachment, and retinal folds. The disorder is most commonly transmitted as an autosomal dominant trait, but X-linked transmission also occurs. To initiate the process of identifying the gene responsible for the X-linked disorder, linkage analysis has been performed with three previously unreported three- or four-generation families. Two-point analysis showed linkage to MAOA (Zmax = 2.1, theta max = 0) and DXS228 (Zmax = 0.5, theta max = 0.11), and this was further confirmed by multipoint analysis with these same markers (Zmax = 2.81 at MAOA), which both lie near the gene causing Norrie disease. Molecular genetic analysis further reveals a missense mutation (R121W) in the third exon of the Norrie's disease gene that perfectly cosegregates with the disease through three generations in one family. This mutation was not detected in the unaffected family members and six normal unrelated controls, suggesting that it is likely to be the pathogenic mutation. Additionally, a polymorphic missense mutation (H127R) was detected in a severely affected patient.
Bibi, Nosheen; Ahmad, Saeed; Ahmad, Wasim; Naeem, Muhammad
2011-02-01
Hypohidrotic ectodermal dysplasia is an inherited disorder characterized by defective development of teeth, hairs and sweat glands. X-linked hypohidrotic ectodermal dysplasia is caused by mutations in the EDA gene, and autosomal forms of hypohidrotic ectodermal dysplasia are caused by mutations in either the EDAR or the EDARADD genes. To study the molecular genetic cause of autosomal recessive hypohidrotic ectodermal dysplasia in three consanguineous Pakistani families (A, B and C), genotyping of 13 individuals was carried out by using polymorphic microsatellite markers that are closely linked to the EDAR gene on chromosome 2q11-q13 and the EDARADD gene on chromosome 1q42.2-q43. The results revealed linkage in the three families to the EDAR locus. Sequence analysis of the coding exons and splice junctions of the EDAR gene revealed two mutations: a novel non-sense mutation (p.E124X) in the probands of families A and B and a missense mutation (p.G382S) in the proband of family C. In addition, two synonymous single-nucleotide polymorphisms were also identified. The finding of mutations in Pakistani families extends the body of evidence that supports the importance of EDAR for the development of hypohidrotic ectodermal dysplasia. © 2010 The Authors. Australasian Journal of Dermatology © 2010 The Australasian College of Dermatologists.
Suganthalakshmi, Balasubbu; Shukla, Dhananjay; Rajendran, Anand; Kim, Ramasamy; Nallathambi, Jeyabalan; Sundaresan, Periasamy
2007-04-19
X-linked juvenile retinoschisis (XLRS) is the leading cause of macular degeneration in males. This condition is caused by mutations in the RS1 gene and is, characterized by schisis within the retina. The purpose of this study was to identify the mutations in the RS1 gene associated with XLRS in an Indian cohort. The coding region of RS1 was analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and restriction fragment length polymorphism (RFLP) analysis in six unrelated subjects clinically diagnosed as having XLRS and in their available family members. Direct sequencing was performed for all samples that displayed an electrophoretic mobility shift in SSCP gel. Mutation analysis of RS1 gene revealed five mutations in exon 6 like c.574C>T, c.583A>G, c.608C>T, c.617G>A, and c.637C>T, respectively, among them four missense mutations, one nonsense mutation, and two novel sequence variations. These mutations were found in individuals who exhibited clinical features of bilateral foveal and peripheral retinoschisis consistent with XLRS. The mutations were absent in the 100 age matched control samples analyzed. This is the first report of mutations in RS1 to be associated with XLRS in the Indian population. The identified genetic variations, phenotype and genotype correlations were consistent with other studies. Identification of the causative mutation in patients with XLRS is helpful in confirming the diagnosis and in counseling of family members.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Qing-lin; Xu, Jia; Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233
2012-07-13
Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related genemore » with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzenberg, A.B.; Pan, Y.; Das, S.
1994-05-01
Mapping studies have indicated that over two dozen genetic diseases lie on Xq28, the distal long arm of the X chromosome. In most cases the responsible gene has not yet been isolated. Most of these diseases occur at low frequency, and together with small family sizes and the lack of associated cytogenetic aberrations, this characteristic has made isolation of the genes difficult. Identification of the genes responsible for inherited disorders should eventually lead to a greater understanding of biochemical and developmental pathways. We and others are attempting to find these genes by examining genes that are candidates by virtue ofmore » their map location. One candidate is the Xq28-linked gene MPP-1, which encodes the p55 protein. In this study, we asked whether mutations in the p55 gene are present in patients affected with the Xq28-linked disorders dyskeratosis congenita and Emergy-Dreifuss muscular dystrophy. The p55 cDNA is [approx]2 kb in length. The strategy for mutation detection in this sequence involved reverse transciption (RT)-PCR amplification of patient and control cDNA, yielding five sets of overlapping fragments, each set consisting of 400 bp, followed by SSCP analysis of each fragment. In no case was a true mutation in the p55 gene discovered. Therefore, it is highly unlikely that mutations in the p55 gene are responsible for any cases of dyskeratosis congenita or Emergy-Dreifuss muscular dystrophy.« less
Tajima, Asako; Miyata, Ichiro; Katayama, Akira; Toyoda, Shigeru; Eto, Yoshikatsu
2005-01-01
We have identified a novel mutation of the arginine vasopressin receptor 2 (AVPR2) gene in a case of congenital X-linked nephrogenic diabetes insipidus (NDI). The patient was a 2-mo-old Japanese boy with persistent fever and failure to thrive. He was diagnosed as having congenital NDI by clinical and laboratory findings. Molecular analysis demonstrated that he was hemizygous for a G to C transversion in exon 2 of the AVPR2 gene which resulted in a glycine to arginine substitution (G107R) at the 107th codon of the first extracellular loop. His mother was heterozygous for the same mutation. We speculated that the G107R mutation would interfere with the binding capacity of the AVPR2, since G107R is located near F105 and R106, both of which are crucial for ligand binding. In cases of X-linked NDI, mutations in the AVPR2 gene are distributed widely. Thus, DNA analysis throughout the gene is of clinical value for the identification of female carriers, and it also gives precise information for genetic counseling. PMID:24790307
Novel mutations in the connexin 32 gene associated with X-linked Charcot-Marie-Tooth disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, C.; Ainsworth, P.
1994-09-01
Charcot-Marie-Tooth disease is a pathologically and genetically hetergenous group of disorders that cause a progressive neuropathy, defined pathologically by degeneration of the myelin (CMT 1) of the axon (CMT 2) of the peripheral nerves. An X-linked type of the demyelinating form of this disorder (CMT X) has recently been linked to mutations in the connexin 32 (Cx32) gene, which codes for a 284 amino acid gap junction protein found in myelinated peripheral nerve. To date some 7 different mutations in this gene have been identified as being responsible for CMT X. The majority of these predict nonconservative amino acid substitutions,more » while one is a frameshift mutation which predicts a premature stop at codon 21. We report the results of molecular studies on three further local CMT X kindreds. The Cx32 gene was amplified by PCR in three overlapping fragments 300-450 bp in length using leukocyte-derived DNA as template. These were either sequenced directly using a deaza dGTP sequencing protocol, or were cloned and sequenced using a TA vector. In two of the kindreds the affected members carried a point mutation which was predicted to effect a non-conservative amino acid change within the first transmembrane domain. Both of these mutations caused a restriction site alteration (the loss of an Nla III and the creation of a Pvu II, respectively), and the former mutation was observed to segregate with the clinicial phenotype in affected family members. Affected members of the third kindred, which was a very large multigenerational family that had been extensively studied previously, were shown to carry a point mutation predicted to cause a premature truncation of the Cx32 gene product in the intracellular carboxy terminus. This mutation obliterated an Rsa I site which allowed a rapid screen of several other family members.« less
Molecular analysis of the XLRS1 gene in 4 females affected with X-linked juvenile retinoschisis.
Saleheen, Danish; Ali, Azam; Khanum, Shaheen; Ozair, Mohammad Z; Zaidi, Moazzam; Sethi, Muhammad J; Khan, Nadir; Frossard, Philippe
2008-10-01
X-linked juvenile retinoschisis (XLRS) is the most common cause of juvenile macular degeneration in males. Because of its X-linked mode of transmission, the disease is rare in females. In this article, we describe a mutation screen conducted on a family in which 4 female patients affected with XLRS presented with an unusually severe phenotype. DNA was extracted from peripheral blood, and the XLRS1 gene was amplified on DNA samples of all the available family members. The mutation screen was conducted by performing direct DNA sequencing using an MJ Research PTC-225 Peltier Thermal Cycler. A novel mutation, 588-593ins.C, was identified in exon 6 of the gene. The affected father was found to be heterozygous for the mutation, whereas all the female patients were homozygous for this mutation. The homozygosity of the mutation in the affected females led to severe phenotypes. The defective allele was expressed in infancy in 1 patient, whereas the disease manifested itself at variable ages in the other patients, reflecting a variation in the phenotype. This report describes a novel mutation in a family in which consanguinity has led to XLRS in 4 females. A variation in the phenotype of the disease is consistent with the published literature and suggests the involvement of genetic modifiers or environmental factors in influencing the clinical severity of the disease.
Carpinelli, Marina R.; Wicks, Ian P.; Sims, Natalie A.; O’Donnell, Kristy; Hanzinikolas, Katherine; Burt, Rachel; Foote, Simon J.; Bahlo, Melanie; Alexander, Warren S.; Hilton, Douglas J.
2002-01-01
We describe the clinical, genetic, biochemical, and molecular characterization of a mouse that arose in the first generation (G1) of a random mutagenesis screen with the chemical mutagen ethyl-nitrosourea. The mouse was observed to have skeletal abnormalities inherited with an X-linked dominant pattern of inheritance. The causative mutation, named Skeletal abnormality 1 (Ska1), was shown to be a single base pair mutation in a splice donor site immediately following exon 8 of the Phex (phosphate-regulating gene with homologies to endopeptidases located on the X-chromosome) gene. This point mutation caused skipping of exon 8 from Phex mRNA, hypophosphatemia, and features of rickets. This experimentally induced phenotype mirrors the human condition X-linked hypophosphatemia; directly confirms the role of Phex in phosphate homeostasis, normal skeletal development, and rickets; and illustrates the power of mutagenesis in exploring animal models of human disease. PMID:12414538
Carpinelli, Marina R; Wicks, Ian P; Sims, Natalie A; O'Donnell, Kristy; Hanzinikolas, Katherine; Burt, Rachel; Foote, Simon J; Bahlo, Melanie; Alexander, Warren S; Hilton, Douglas J
2002-11-01
We describe the clinical, genetic, biochemical, and molecular characterization of a mouse that arose in the first generation (G(1)) of a random mutagenesis screen with the chemical mutagen ethyl-nitrosourea. The mouse was observed to have skeletal abnormalities inherited with an X-linked dominant pattern of inheritance. The causative mutation, named Skeletal abnormality 1 (Ska1), was shown to be a single base pair mutation in a splice donor site immediately following exon 8 of the Phex (phosphate-regulating gene with homologies to endopeptidases located on the X-chromosome) gene. This point mutation caused skipping of exon 8 from Phex mRNA, hypophosphatemia, and features of rickets. This experimentally induced phenotype mirrors the human condition X-linked hypophosphatemia; directly confirms the role of Phex in phosphate homeostasis, normal skeletal development, and rickets; and illustrates the power of mutagenesis in exploring animal models of human disease.
Chen, Z Y; Battinelli, E M; Fielder, A; Bundey, S; Sims, K; Breakefield, X O; Craig, I W
1993-10-01
Familial exudative vitreoretinopathy (FEVR) is a hereditary disorder characterized by an abnormality of the peripheral retina. Both autosomal dominant (adFEVR) and X-linked (XLFEVR) forms have been described, but the biochemical defect(s) underlying the symptoms are unknown. Molecular analysis of the Norrie gene locus (NDP) in a four generation FEVR family (shown previously to exhibit linkage to the X-chromosome markers DXS228 and MAOA (Xp11.4-p11.3)) reveals a missense mutation in the highly conserved region of the NDP gene, which caused a neutral amino acid substitution (Leu124Phe), was detected in all of the affected males, but not in the unaffected family members, nor in normal controls. The observations suggest that phenotypes of both XLFEVR and Norrie disease can result from mutations in the same gene.
Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders.
Novarino, Gaia; Fenstermaker, Ali G; Zaki, Maha S; Hofree, Matan; Silhavy, Jennifer L; Heiberg, Andrew D; Abdellateef, Mostafa; Rosti, Basak; Scott, Eric; Mansour, Lobna; Masri, Amira; Kayserili, Hulya; Al-Aama, Jumana Y; Abdel-Salam, Ghada M H; Karminejad, Ariana; Kara, Majdi; Kara, Bulent; Bozorgmehri, Bita; Ben-Omran, Tawfeg; Mojahedi, Faezeh; El Din Mahmoud, Iman Gamal; Bouslam, Naima; Bouhouche, Ahmed; Benomar, Ali; Hanein, Sylvain; Raymond, Laure; Forlani, Sylvie; Mascaro, Massimo; Selim, Laila; Shehata, Nabil; Al-Allawi, Nasir; Bindu, P S; Azam, Matloob; Gunel, Murat; Caglayan, Ahmet; Bilguvar, Kaya; Tolun, Aslihan; Issa, Mahmoud Y; Schroth, Jana; Spencer, Emily G; Rosti, Rasim O; Akizu, Naiara; Vaux, Keith K; Johansen, Anide; Koh, Alice A; Megahed, Hisham; Durr, Alexandra; Brice, Alexis; Stevanin, Giovanni; Gabriel, Stacy B; Ideker, Trey; Gleeson, Joseph G
2014-01-31
Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.
Revollo, Javier; Pearce, Mason G; Petibone, Dayton M; Mittelstaedt, Roberta A; Dobrovolsky, Vasily N
2015-05-01
The Pig-a assay is used for monitoring somatic cell mutation in laboratory animals and humans. The assay detects haematopoietic cells deficient in glycosylphosphatidylinositol (GPI)-anchored protein surface markers using flow cytometry. However, given that synthesis of the protein markers (and the expression of their genes) is independent of the expression of the X-linked Pig-a gene and the function of its enzyme product, the deficiency of markers at the surface of the cells may be caused by a number of events (e.g. by mutation or epigenetic silencing in the marker gene itself or in any of about two dozen autosomal genes involved in the synthesis of GPI). Here we provide direct evidence that the deficiency of the GPI-anchored surface marker CD48 in rat T-cells is accompanied by mutation in the endogenous X-linked Pig-a gene. We treated male F344 rats with N-ethyl-N-nitrosourea (ENU), and established colonies from flow cytometry-identified and sorted CD48-deficient spleen T-lymphocytes. Molecular analysis confirmed that the expanded sorted cells have mutations in the Pig-a gene. The spectrum of Pig-a mutation in our model was consistent with the spectrum of ENU-induced mutation determined in other in vivo models, mostly base-pair substitutions at A:T with the mutated T on the non-transcribed strand of Pig-a genomic DNA. We also used next generation sequencing to derive a similar mutational spectrum from a pool of 64 clones developed from flow-sorted CD48-deficient lymphocytes. Our findings confirm that Pig-a assays detect what they are designed to detect-gene mutation in the Pig-a gene. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Probst, Frank J.; Corrigan, Rebecca R.; del Gaudio, Daniela; Salinger, Andrew P.; Lorenzo, Isabel; Gao, Simon S.; Chiu, Ilene; Xia, Anping
2013-01-01
The study of mouse hearing impairment mutants has led to the identification of a number of human hearing impairment genes and has greatly furthered our understanding of the physiology of hearing. The novel mouse mutant neurological/sensory 5 (nse5) demonstrates a significantly reduced or absent startle response to sound and is therefore a potential murine model of human hearing impairment. Genetic analysis of 500 intercross progeny localized the mutant locus to a 524 kilobase (kb) interval on mouse chromosome 15. A missense mutation in a highly-conserved amino acid was found in the asparagine-linked glycosylation 10B gene (Alg10b), which is within the critical interval for the nse5 mutation. A 20.4 kb transgene containing a wildtype copy of the Alg10b gene rescued the mutant phenotype in nse5/nse5 homozygous animals, confirming that the mutation in Alg10b is responsible for the nse5/nse5 mutant phenotype. Homozygous nse5/nse5 mutants had abnormal auditory brainstem responses (ABRs), distortion product otoacoustic emissions (DPOAEs), and cochlear microphonics (CMs). Endocochlear potentials (EPs), on the other hand, were normal. ABRs and DPOAEs also confirmed the rescue of the mutant nse5/nse5 phenotype by the wildtype Alg10b transgene. These results suggested a defect in the outer hair cells of mutant animals, which was confirmed by histologic analysis. This is the first report of mutation in a gene involved in the asparagine (N)-linked glycosylation pathway causing nonsyndromic hearing impairment, and it suggests that the hearing apparatus, and the outer hair cells in particular, are exquisitely sensitive to perturbations of the N-linked glycosylation pathway. PMID:24303013
Patterson, Emily J.; Wilk, Melissa; Langlo, Christopher S.; Kasilian, Melissa; Ring, Michael; Hufnagel, Robert B.; Dubis, Adam M.; Tee, James J.; Kalitzeos, Angelos; Gardner, Jessica C.; Ahmed, Zubair M.; Sisk, Robert A.; Larsen, Michael; Sjoberg, Stacy; Connor, Thomas B.; Dubra, Alfredo; Neitz, Jay; Hardcastle, Alison J.; Neitz, Maureen; Michaelides, Michel; Carroll, Joseph
2016-01-01
Purpose Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations to clarify the link between color vision deficiency and cone dysfunction. Methods We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone mosaic obtained with adaptive optics scanning light ophthalmoscopy. The L/M opsin gene array was characterized in 16 subjects, including at least one subject from each family. Results There were six subjects with the LVAVA haplotype encoded by exon 3, seven with LIAVA, two with the Cys203Arg mutation encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. Conclusions Our findings provide a direct link between disruption of the cone mosaic and L/M opsin variants. We hypothesize that, in addition to large phenotypic differences between different L/M opsin variants, the ratio of expression of first versus downstream genes in the L/M array contributes to phenotypic diversity. While the L/M opsin mutations underlie the cone dysfunction in all of the subjects tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus. PMID:27447086
Siemiatkowska, Anna M.; Arimadyo, Kentar; Moruz, Luminita M.; Astuti, Galuh D.N.; de Castro-Miro, Marta; Zonneveld, Marijke N.; Strom, Tim M.; de Wijs, Ilse J.; Hoefsloot, Lies H.; Faradz, Sultana M.H.; Cremers, Frans P.M.; den Hollander, Anneke I.
2011-01-01
Purpose Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous retinal disorder. Despite tremendous knowledge about the genes involved in RP, little is known about the genetic causes of RP in Indonesia. Here, we aim to identify the molecular genetic causes underlying RP in a small cohort of Indonesian patients, using genome-wide homozygosity mapping. Methods DNA samples from affected and healthy individuals from 14 Indonesian families segregating autosomal recessive, X-linked, or isolated RP were collected. Homozygosity mapping was conducted using Illumina 6k or Affymetrix 5.0 single nucleotide polymorphism (SNP) arrays. Known autosomal recessive RP (arRP) genes residing in homozygous regions and X-linked RP genes were sequenced for mutations. Results In ten out of the 14 families, homozygous regions were identified that contained genes known to be involved in the pathogenesis of RP. Sequence analysis of these genes revealed seven novel homozygous mutations in ATP-binding cassette, sub-family A, member 4 (ABCA4), crumbs homolog 1 (CRB1), eyes shut homolog (Drosophila) (EYS), c-mer proto-oncogene tyrosine kinase (MERTK), nuclear receptor subfamily 2, group E, member 3 (NR2E3) and phosphodiesterase 6A, cGMP-specific, rod, alpha (PDE6A), all segregating in the respective families. No mutations were identified in the X-linked genes retinitis pigmentosa GTPase regulator (RPGR) and retinitis pigmentosa 2 (X-linked recessive; RP2). Conclusions Homozygosity mapping is a powerful tool to identify the genetic defects underlying RP in the Indonesian population. Compared to studies involving patients from other populations, the same genes appear to be implicated in the etiology of recessive RP in Indonesia, although all mutations that were discovered are novel and as such may be unique for this population. PMID:22128245
Mutations of the Norrie gene in Korean ROP infants.
Kim, Jeong Hun; Yu, Young Suk; Kim, Jiyeon; Park, Seong Sup
2002-12-01
The present study was conducted to evaluate if there is a Norrie disease gene (ND gene) mutation involved in the retinopathy of prematurity (ROP), and to identify the possibility of a genetic abnormality that may be linked to the presence of ROP. Nineteen premature Korean infants, with a low birth weight (1500 g or less) or low gestational age (32 weeks or less), were included in the study. Eighteen infants had ROP, and the other did not. Genomic DNA was isolated from the peripheral blood leukocytes of these patients, and all three exons and their flanking areas, all known ND gene mutations regions, were evaluated following amplification by a polymerase chain reaction, but no ND gene mutations were detected. Any disagreement between the relationship of ROP to the ND gene mutation will need to be clarified by further investigation.
Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma | Office of Cancer Genomics
In a recent Nature article, Morin et al. uncovered a novel role for chromatin modification in driving the progression of two non-Hodgkin lymphomas (NHLs), follicular lymphoma and diffuse large B-cell lymphoma. Through DNA and RNA sequencing of 117 tumor samples and 10 assorted cell lines, the authors identified and validated 109 genes with multiple mutations in these B-cell NHLs. Of the 109 genes, several genes not previously linked to lymphoma demonstrated positive selection for mutation including two genes involved in histone modification, MLL2 and MEF2B.
Guazzarotti, L; Tadini, G; Mancini, G E; Giglio, S; Willoughby, C E; Callea, M; Sani, I; Nannini, P; Mameli, C; Tenconi, A A; Mauri, S; Bottero, A; Caimi, A; Morelli, M; Zuccotti, G V
2015-04-01
Ectodermal dysplasias (EDs) are a group of genetic disorders characterized by the abnormal development of the ectodermal-derived structures. X-linked hypohidrotic ectodermal dysplasia, resulting from mutations in ED1 gene, is the most common form. The main purpose of this study was to characterize the phenotype spectrum in 45 males harboring ED1 mutations. The study showed that in addition to the involvement of the major ectodermal tissues, the majority of patients also have alterations of several minor ectodermal-derived structures. Characterizing the clinical spectrum resulting from ED1 gene mutations improves diagnosis and can direct clinical care. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Juge, Pierre-Antoine; Borie, Raphaël; Kannengiesser, Caroline; Gazal, Steven; Revy, Patrick; Wemeau-Stervinou, Lidwine; Debray, Marie-Pierre; Ottaviani, Sébastien; Marchand-Adam, Sylvain; Nathan, Nadia; Thabut, Gabriel; Richez, Christophe; Nunes, Hilario; Callebaut, Isabelle; Justet, Aurélien; Leulliot, Nicolas; Bonnefond, Amélie; Salgado, David; Richette, Pascal; Desvignes, Jean-Pierre; Lioté, Huguette; Froguel, Philippe; Allanore, Yannick; Sand, Olivier; Dromer, Claire; Flipo, René-Marc; Clément, Annick; Béroud, Christophe; Sibilia, Jean; Coustet, Baptiste; Cottin, Vincent; Boissier, Marie-Christophe; Wallaert, Benoit; Schaeverbeke, Thierry; Dastot le Moal, Florence; Frazier, Aline; Ménard, Christelle; Soubrier, Martin; Saidenberg, Nathalie; Valeyre, Dominique; Amselem, Serge; Boileau, Catherine; Crestani, Bruno; Dieudé, Philippe
2017-05-01
Despite its high prevalence and mortality, little is known about the pathogenesis of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). Given that familial pulmonary fibrosis (FPF) and RA-ILD frequently share the usual pattern of interstitial pneumonia and common environmental risk factors, we hypothesised that the two diseases might share additional risk factors, including FPF-linked genes. Our aim was to identify coding mutations of FPF-risk genes associated with RA-ILD.We used whole exome sequencing (WES), followed by restricted analysis of a discrete number of FPF-linked genes and performed a burden test to assess the excess number of mutations in RA-ILD patients compared to controls.Among the 101 RA-ILD patients included, 12 (11.9%) had 13 WES-identified heterozygous mutations in the TERT , RTEL1 , PARN or SFTPC coding regions . The burden test, based on 81 RA-ILD patients and 1010 controls of European ancestry, revealed an excess of TERT , RTEL1 , PARN or SFTPC mutations in RA-ILD patients (OR 3.17, 95% CI 1.53-6.12; p=9.45×10 -4 ). Telomeres were shorter in RA-ILD patients with a TERT , RTEL1 or PARN mutation than in controls (p=2.87×10 -2 ).Our results support the contribution of FPF-linked genes to RA-ILD susceptibility. Copyright ©ERS 2017.
Dhekne, Herschel S.; Pylypenko, Olena; Overeem, Arend W.; Ferreira, Rosaria J.; van der Velde, K. Joeri; Rings, Edmond H.H.M.; Posovszky, Carsten; Swertz, Morris A.; Houdusse, Anne
2018-01-01
Abstract Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open‐access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non‐MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno‐/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID‐associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information. PMID:29266534
X-linked juvenile retinoschisis: Clinical diagnosis, genetic analysis, and molecular mechanisms
Molday, Robert S.; Kellner, Ulrich; Weber, Bernhard H.F.
2012-01-01
X-linked juvenile retinoschisis (XLRS, MIM 312700) is a common early onset macular degeneration in males characterized by mild to severe loss in visual acuity, splitting of retinal layers, and a reduction in the b-wave of the electroretinogram (ERG). The RS1 gene (MIM 300839) associated with the disease encodes retinoschisin, a 224 amino acid protein containing a discoidin domain as the major structural unit, an N-terminal cleavable signal sequence, and regions responsible for subunit oligomerization. Retinoschisin is secreted from retinal cells as a disulphide-linked homo-octameric complex which binds to the surface of photoreceptors and bipolar cells to help maintain the integrity of the retina. Over 190 disease-causing mutations in the RS1 gene are known with most mutations occurring as non-synonymous changes in the discoidin domain. Cell expression studies have shown that disease-associated missense mutations in the discoidin domain cause severe protein misfolding and retention in the endoplasmic reticulum, mutations in the signal sequence result in aberrant protein synthesis, and mutations in regions flanking the discoidin domain cause defective disulphide-linked subunit assembly, all of which produce a non-functional protein. Knockout mice deficient in retinoschisin have been generated and shown to display most of the characteristic features found in XLRS patients. Recombinant adeno-associated virus (rAAV) mediated delivery of the normal RS1 gene to the retina of young knockout mice result in long term retinoschisin expression and rescue of retinal structure and function providing a ‘proof of concept’ that gene therapy may be an effective treatment for XLRS. PMID:22245536
X-linked juvenile retinoschisis: clinical diagnosis, genetic analysis, and molecular mechanisms.
Molday, Robert S; Kellner, Ulrich; Weber, Bernhard H F
2012-05-01
X-linked juvenile retinoschisis (XLRS, MIM 312700) is a common early onset macular degeneration in males characterized by mild to severe loss in visual acuity, splitting of retinal layers, and a reduction in the b-wave of the electroretinogram (ERG). The RS1 gene (MIM 300839) associated with the disease encodes retinoschisin, a 224 amino acid protein containing a discoidin domain as the major structural unit, an N-terminal cleavable signal sequence, and regions responsible for subunit oligomerization. Retinoschisin is secreted from retinal cells as a disulphide-linked homo-octameric complex which binds to the surface of photoreceptors and bipolar cells to help maintain the integrity of the retina. Over 190 disease-causing mutations in the RS1 gene are known with most mutations occurring as non-synonymous changes in the discoidin domain. Cell expression studies have shown that disease-associated missense mutations in the discoidin domain cause severe protein misfolding and retention in the endoplasmic reticulum, mutations in the signal sequence result in aberrant protein synthesis, and mutations in regions flanking the discoidin domain cause defective disulphide-linked subunit assembly, all of which produce a non-functional protein. Knockout mice deficient in retinoschisin have been generated and shown to display most of the characteristic features found in XLRS patients. Recombinant adeno-associated virus (rAAV) mediated delivery of the normal RS1 gene to the retina of young knockout mice result in long-term retinoschisin expression and rescue of retinal structure and function providing a 'proof of concept' that gene therapy may be an effective treatment for XLRS. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Novel Loss-of-Sclerostin Function Mutation in a First Egyptian Family with Sclerosteosis
Fayez, Alaaeldin; Aglan, Mona; Esmaiel, Nora; El Zanaty, Taher; Abdel Kader, Mohamed; El Ruby, Mona
2015-01-01
Sclerosteosis is a rare autosomal recessive condition characterized by increased bone density. Mutations in SOST gene coding for sclerostin are linked to sclerosteosis. Two Egyptian brothers with sclerosteosis and their apparently normal consanguineous parents were included in this study. Clinical evaluation and genomic sequencing of the SOST gene were performed followed by in silico analysis of the resulting variation. A novel homozygous frameshift mutation in the SOST gene, characterized as one nucleotide cytosine insertion that led to premature stop codon and loss of functional sclerostin, was identified in the two affected brothers. Their parents were heterozygous for the same mutation. To our knowledge this is the first Egyptian study of sclerosteosis and SOST gene causing mutation. PMID:25984533
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, A.; Ambach, H.; Kammerer, S.
Recently, the gene for the most common peroxisomal disorder, X-linked adrenoleukodystrophy (X-ALD), has been described encoding a peroxisomal membrane transporter protein. We analyzed the entire protein-coding sequence of this gene by reverse-transcription PCR, SSCP, and DNA sequencing in five patients with different clinical expressions were cerebral childhood ALD, adrenomyecloneuropathy (AMN), and {open_quotes}Addison disease only{close_quotes} (AD) phenotype. In the three patients exhibiting the classical picture of severe childhood ALD we identified in the 5{prime} portion of the X-ALD gene a 38-bp deletion that causes a frameshift mutation, a 3-bp deletion leading to a deletion of an amino acid in the ATP-bindingmore » domain of the ALD protein, and a missense mutation. In the patient with the clinical phenotype of AMN, a nonsense mutation in codon 212, along with a second site mutation at codon 178, was observed. Analysis of the patient with the ADO phenotype revealed a further missense mutation at a highly conserved position in the ALDP/PMP70 comparison. The disruptive nature of two mutations (i.e., the frameshift and the nonsense mutation) in patients with biochemically proved childhood ALD and AMN further strongly supports the hypothesis that alterations in this gene play a crucial role in the pathogenesis of X-ALD. Since the current biochemical techniques for X-ALD carrier detection in affected families lack sufficient reliability, our procedure described for systematic mutation scanning is also capable of improving genetic counseling and prenatal diagnosis. 19 refs., 6 figs., 3 tabs.« less
Friedman, E; Bale, A E; Carson, E; Boson, W L; Nordenskjöld, M; Ritzén, M; Ferreira, P C; Jammal, A; De Marco, L
1994-01-01
Nephrogenic diabetes insipidus is a rare hereditary disorder, most commonly transmitted in an X chromosome-linked recessive manner and characterized by the lack of renal response to the action of antidiuretic hormone [Arg8]vasopressin. The vasopressin type 2 receptor (V2R) has been suggested to be the gene that causes the disease, and its role in disease pathogenesis is supported by mutations within this gene in affected individuals. Using the PCR, denaturing gradient gel electrophoresis, and direct DNA sequencing, we examined the V2R gene in four unrelated kindreds. In addition, linkage analysis with chromosome Xq28 markers was done in one large Brazilian kindred with an apparent unusual X chromosome-linked dominant inheritance pattern. In one family, a mutation in codon 280, causing a Tyr-->Cys substitution in the sixth transmembrane domain of the receptor, was found. In the other three additional families with nephrogenic diabetes insipidus, the V2R-coding region was normal in sequence. In one large Brazilian kindred displaying an unusual X chromosome-linked dominant mode of inheritance, the disease-related gene was localized to the same region of the X chromosome as the V2R, but no mutations were found, thus raising the possibility that this disease is caused by a gene other than V2R. Images PMID:8078903
Ala397Asp mutation of myosin VIIA gene segregating in a Spanish family with type-Ib Usher syndrome.
Espinós, C; Millán, J M; Sánchez, F; Beneyto, M; Nájera, C
1998-06-01
In the current study, 12 Spanish families affected by type-I Usher syndrome, that was previously linked to chromosome 11q, were screened for the presence of mutations in the N-terminal coding portion of the motor domain of the myosin VIIA gene by single-strand conformation polymorphism analysis of the first 14 exons. A mutation (Ala397Asp) segregating with the disease was identified, and several polymorphisms were also detected. It is presumed that the other USHIB mutations in these families could be located in the unscreened regions of the gene.
Astuti, Dewi; Ricketts, Christopher J; Chowdhury, Rasheduzzaman; McDonough, Michael A; Gentle, Dean; Kirby, Gail; Schlisio, Susanne; Kenchappa, Rajappa S; Carter, Bruce D; Kaelin, William G; Ratcliffe, Peter J; Schofield, Christopher J; Latif, Farida; Maher, Eamonn R
2011-02-01
Germline mutations in the von Hippel-Lindau disease (VHL) and succinate dehydrogenase subunit B (SDHB) genes can cause inherited phaeochromocytoma and/or renal cell carcinoma (RCC). Dysregulation of the hypoxia-inducible factor (HIF) transcription factors has been linked to VHL and SDHB-related RCC; both HIF dysregulation and disordered function of a prolyl hydroxylase domain isoform 3 (PHD3/EGLN3)-related pathway of neuronal apoptosis have been linked to the development of phaeochromocytoma. The 2-oxoglutarate-dependent prolyl hydroxylase enzymes PHD1 (EGLN2), PHD2 (EGLN1) and PHD3 (EGLN3) have a key role in regulating the stability of HIF-α subunits (and hence expression of the HIF-α transcription factors). A germline PHD2 mutation has been reported in association with congenital erythrocytosis and recurrent extra-adrenal phaeochromocytoma. We undertook mutation analysis of PHD1, PHD2 and PHD3 in two cohorts of patients with features of inherited phaeochromocytoma (n=82) and inherited RCC (n=64) and no evidence of germline mutations in known susceptibility genes. No confirmed pathogenic mutations were detected suggesting that mutations in these genes are not a frequent cause of inherited phaeochromocytoma or RCC.
"PINK1"-Linked Parkinsonism Is Associated with Lewy Body Pathology
ERIC Educational Resources Information Center
Samaranch, Lluis; Lorenzo-Betancor, Oswaldo; Arbelo, Jose M.; Ferrer, Isidre; Lorenzo, Elena; Irigoyen, Jaione; Pastor, Maria A.; Marrero, Carmen; Isla, Concepcion; Herrera-Henriquez, Joanna; Pastor, Pau
2010-01-01
Phosphatase and tensin homolog-induced putative kinase 1 gene mutations have been associated with autosomal recessive early-onset Parkinson's disease. To date, no neuropathological reports have been published from patients with Parkinson's disease with both phosphatase and tensin homolog-induced putative kinase 1 gene copies mutated. We analysed…
Suganthalakshmi, Balasubbu; Shukla, Dhananjay; Rajendran, Anand; Kim, Ramasamy; Nallathambi, Jeyabalan
2007-01-01
Purpose X-linked juvenile retinoschisis (XLRS) is the leading cause of macular degeneration in males. This condition is caused by mutations in the RS1 gene and is, characterized by schisis within the retina. The purpose of this study was to identify the mutations in the RS1 gene associated with XLRS in an Indian cohort. Methods The coding region of RS1 was analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and restriction fragment length polymorphism (RFLP) analysis in six unrelated subjects clinically diagnosed as having XLRS and in their available family members. Direct sequencing was performed for all samples that displayed an electrophoretic mobility shift in SSCP gel. Results Mutation analysis of RS1 gene revealed five mutations in exon 6 like c.574C>T, c.583A>G, c.608C>T, c.617G>A, and c.637C>T, respectively, among them four missense mutations, one nonsense mutation, and two novel sequence variations. These mutations were found in individuals who exhibited clinical features of bilateral foveal and peripheral retinoschisis consistent with XLRS. The mutations were absent in the 100 age matched control samples analyzed. Conclusions This is the first report of mutations in RS1 to be associated with XLRS in the Indian population. The identified genetic variations, phenotype and genotype correlations were consistent with other studies. Identification of the causative mutation in patients with XLRS is helpful in confirming the diagnosis and in counseling of family members. PMID:17515881
Ponti, G; Ponz de Leon, M; Maffei, S; Pedroni, M; Losi, L; Di Gregorio, C; Gismondi, V; Scarselli, A; Benatti, P; Roncari, B; Seidenari, S; Pellacani, G; Varotti, C; Prete, E; Varesco, L; Roncucci, L
2005-11-01
Attenuated familial adenomatous polyposis and Muir-Torre syndrome linked to compound biallelic constitutional MYH gene mutations.Peculiar dermatologic manifestations are present in several heritable gastrointestinal disorders. Muir-Torre syndrome (MTS) is a genodermatosis whose peculiar feature is the presence of sebaceous gland tumors associated with visceral malignancies. We describe one patient in whom multiple sebaceous gland tumors were associated with early onset colon and thyroid cancers and attenuated polyposis coli. Her family history was positive for colonic adenomas. She had a daughter presenting with yellow papules in the forehead region developed in the late infancy. Skin and visceral neoplasms were tested for microsatellite instability and immunohistochemical status of mismatch repair (MMR), APC and MYH proteins. The proband colon and skin tumors were microsatellite stable and showed normal expression of MMR proteins. Cytoplasmic expression of MYH protein was revealed in colonic cancer cells. Compound heterozygosity due to biallelic mutations in MYH, R168H and 379delC, was identified in the proband. The 11-year-old daughter was carrier of the monoallelic constitutional mutation 379delC in the MYH gene; in the sister, the R168H MYH gene mutation was detected. This report presents an interesting case of association between MYH-associated polyposis and sebaceous gland tumors. These findings suggest that patients with MTS phenotype that include colonic polyposis should be screened for MYH gene mutations.
Francisco, Ana Rita G; Santos Gonçalves, Inês; Veiga, Fátima; Mendes Pedro, Mónica; Pinto, Fausto J; Brito, Dulce
2017-09-01
The lamin A/C (LMNA) gene encodes lamins A and C, which have an important role in nuclear cohesion and chromatin organization. Mutations in this gene usually lead to the so-called laminopathies, the primary cardiac manifestations of which are dilated cardiomyopathy and intracardiac conduction defects. Some mutations, associated with lipodystrophy but not cardiomyopathy, have been linked to metabolic abnormalities such as diabetes and severe dyslipidemia. Herein we describe a new phenotype associated with a mutation in exon 11 of the LMNA gene: hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes. A 64-year-old woman with hypertrophic cardiomyopathy and a point mutation in exon 11 of the LMNA gene (c.1718C>T, Ser573Leu) presented with severe symptomatic ventricular hypertrophy and left ventricular outflow tract obstruction. She underwent septal alcohol ablation, followed by Morrow myectomy. The patient was also diagnosed with severe dyslipidemia, diabetes and obesity, and fulfilled diagnostic criteria for metabolic syndrome. No other characteristics of LMNA mutation-related phenotypes were identified. The development of type III atrioventricular block with no apparent cause, and mildly depressed systolic function, prompted referral for cardiac resynchronization therapy. In conclusion, the association between LMNA mutations and different phenotypes is complex and not fully understood, and can present with a broad spectrum of severity. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
Giroux, Michael J.; Morris, Craig F.
1998-01-01
“Soft” and “hard” are the two main market classes of wheat (Triticum aestivum L.) and are distinguished by expression of the Hardness gene. Friabilin, a marker protein for grain softness (Ha), consists of two proteins, puroindoline a and b (pinA and pinB, respectively). We previously demonstrated that a glycine to serine mutation in pinB is linked inseparably to grain hardness. Here, we report that the pinB serine mutation is present in 9 of 13 additional randomly selected hard wheats and in none of 10 soft wheats. The four exceptional hard wheats not containing the serine mutation in pinB express no pinA, the remaining component of the marker protein friabilin. The absence of pinA protein was linked inseparably to grain hardness among 44 near-isogenic lines created between the soft variety Heron and the hard variety Falcon. Both pinA and pinB apparently are required for the expression of grain softness. The absence of pinA protein and transcript and a glycine-to-serine mutation in pinB are two highly conserved mutations associated with grain hardness, and these friabilin genes are the suggested tightly linked components of the Hardness gene. A previously described grain hardness related gene termed “GSP-1” (grain softness protein) is not controlled by chromosome 5D and is apparently not involved in grain hardness. The association of grain hardness with mutations in both pinA or pinB indicates that these two proteins alone may function together to effect grain softness. Elucidation of the molecular basis for grain hardness opens the way to understanding and eventually manipulating this wheat endosperm property. PMID:9600953
G20210A prothrombin gene mutation identified in patients with venous leg ulcers.
Jebeleanu, G; Procopciuc, L
2001-01-01
The G20210A mutation variant of prothrombin gene is the second most frequent mutation identified in patients with deep venous thrombosis, after factor V Leiden. The risk for developing deep venous thrombosis is high in patients identified as heterozygous for G20210A mutation. In order to identify this polymorphism in the gene coding prothrombin, the 345bp fragment in the 3'- untranslated region of the prothrombin gene was amplified using amplification by polymerase chain reaction and enzymatic digestion by HindIII (restriction endonuclease enzyme). The products of amplification and enzymatic's digestion were analized using agarose gel electrophoresis. We investigated 20 patients with venous leg ulcers and we found 2 heterozygous (10%) for G20210A mutation. None of the patients in the control group had G20210A mutation. Our study confirms the presence of G20210A mutation in the Romanian population. Our study also shows the link between venous leg ulcers and this polymorphism in the prothrombin gene.
Pavlidou, Efterpi; Ramachandran, Vijaya; Govender, Veronica; Wilson, Clare; Das, Rini; Vlachou, Victoria; Pavlou, Evangelos; Saggar, Anand; Mankad, Kshitij; Kinali, Maria
2017-03-01
Pelizaeus-Merzbacher disease (PMD) is a rare, X-linked disorder characterized by hypomyelination of the Central Nervous System due to mutations in the PLP1 gene. Certain mutations of the PLP1 gene correlate with specific clinical phenotypes and neuroimaging findings. We herein report a novel mutation of the PLP1 gene in two siblings with PMD associated with a rare and protean neuroimaging finding of optic nerve enlargement. To the best of our knowledge this is the first time that this novel mutation H133P of PLP1 gene is identified and clinically associated with optic nerve enlargement in PMD patients. Copyright © 2016 The Japanese Society of Child Neurology. All rights reserved.
Zhu, Xingwang; Li, Meirong; Pan, Hong; Bao, Xinhua; Zhang, Jingjing; Wu, Xiru
2010-07-01
Rett syndrome is an X-linked neurodevelopmental disorder that predominantly affects females. It is caused by mutations in methyl-CpG-binding protein 2 gene. Due to the sex-limited expression, it has been suggested that de novo X-linked mutations may exclusively occur in male germ cells and thus only females are affected. In this study, the authors have analyzed the parental origin of mutations and the X-chromosome inactivation status in 24 sporadic patients with identified methyl-CpG-binding protein 2 gene mutations. The results showed that 22 of 24 patients have a paternal origin. Only 2 patients have a maternal origin. Except for 2 cases which were homozygotic at the androgen receptor gene locus, of the remaining 22 cases, 16 cases have a random X-chromosome inactivation pattern; the other 6 cases have a skewed X-chromosome inactivation and they favor expression of the wild allele. The relationship between X-chromosome inactivation and phenotype may need more cases to explore.
Gozes, Illana; Yeheskel, Adva; Pasmanik-Chor, Metsada
2015-01-01
The recent finding of activity-dependent neuroprotective protein (ADNP) as a protein decreased in serum of patients with Alzheimer's disease (AD) compared to controls, alongside with the discovery of ADNP mutations in autism and coupled with the original description of cancer mutations, ignited an interest for a comparative analysis of ADNP with other AD/autism/cancer-associated genes. We strive toward a better understanding of the molecular structure of key players in psychiatric/neurodegenerative diseases including autism, schizophrenia, and AD. This article includes data mining and bioinformatics analysis on the ADNP gene and protein, in addition to other related genes, with emphasis on recent literature. ADNP is discovered here as unique to chordata with specific autism mutations different from cancer-associated mutation. Furthermore, ADNP exhibits similarities to other cancer/autism-associated genes. We suggest that key genes, which shape and maintain our brain and are prone to mutations, are by in large unique to chordata. Furthermore, these brain-controlling genes, like ADNP, are linked to cell growth and differentiation, and under different stress conditions may mutate or exhibit expression changes leading to cancer propagation. Better understanding of these genes could lead to better therapeutics.
Gonzalez-Rodriguez, J; Pelcastre, E L; Tovilla-Canales, J L; Garcia-Ortiz, J E; Amato-Almanza, M; Villanueva-Mendoza, C; Espinosa-Mattar, Z; Zenteno, J C
2010-08-01
Microphthalmia-anophthalmia-coloboma (MAC) are congenital eye malformations causing a significant percentage of visually impairments in children. Although these anomalies can arise from prenatal exposure to teratogens, mutations in well-defined genes originate potentially heritable forms of MAC. Mutations in genes such as CHX10, GDF6, RAX, SOX2 and OTX2, among others, have been recognised in dominant or recessive MAC. SOX2 and OTX2 are the two most commonly mutated genes in monogenic MAC. However, as more numerous samples of MAC subjects would be analysed, a better estimation of the actual involvement of specific MAC-genes could be made. Here, a comprehensive mutational analysis of the CHX10, GDF6, RAX, SOX2 and OTX2 genes was performed in 50 MAC subjects. PCR amplification and direct automated DNA sequencing of all five genes in 50 unrelated subjects. Eight mutations (16% prevalence) were recognised, including four GDF6 mutations (one novel), two novel RAX mutations, one novel OTX2 mutation and one SOX2 mutation. Anophthalmia and nanophthalmia, not previously associated with GDF6 mutations, were observed in two subjects carrying defects in this gene, expanding the spectrum of GDF6-linked ocular anomalies. Our study underscores the importance of genotyping large groups of patients from distinct ethnic origins for improving the estimation of the global involvement of particular MAC-causing genes.
Chen, Ding; Xu, Tao; Tu, Mengjun; Xu, Jinlin; Zhou, Chenchen; Cheng, Lulu; Yang, Ruqing; Yang, Tanchu; Zheng, Weiwei; He, Xiubin; Deng, Ruzhi; Ge, Xianglian; Li, Jin; Song, Zongming; Zhao, Junzhao; Gu, Feng
2017-01-01
X-linked juvenile retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding retinoschisin (RS1), which leads to a significant proportion of visual impairment and blindness. To develop personalized genome editing based gene therapy, knock-in animal disease models that have the exact mutation identified in the patients is extremely crucial, and that the way which genome editing in knock-in animals could be easily transferred to the patients. Here we recruited a family diagnosed with XLRS and identified the causative mutation ( RS1 , p.Y65X), then a knock-in mouse model harboring this disease-causative mutation was generated via TALEN (transcription activator-like effector nucleases). We found that the b-wave amplitude of the ERG of the RS1 -KI mice was significantly decreased. Moreover, we observed that the structure of retina in RS1 -KI mice has become disordered, including the disarray of inner nuclear layer and outer nuclear layer, chaos of outer plexiform layer, decreased inner segments of photoreceptor and the loss of outer segments. The novel knock-in mice ( RS1 -KI) harboring patient-specific mutation will be valuable for development of treatment via genome editing mediated gene correction.
Mutations in the XLRS1 gene in Thai families with X-linked juvenile retinoschisis.
Atchaneeyasakul, La-ongsri; Trinavarat, Adisak; Pituksung, Auengporn; Jinda, Worapoj; Thongnoppakhun, Wanna; Limwongse, Chanin
2010-01-01
To identify genetic mutations of the XLRS1 gene and to describe the ocular phenotypes in two unrelated Thai patients with X-linked juvenile retinoschisis. Ophthalmic examination, including best-corrected visual acuity and fundus examination and photography, was performed in all participants. Electroretinography (ERG) and optical coherence tomography were performed when possible. All six exons of the XLRS1 gene were amplified, and mutation screening was determined by denaturing high-performance liquid chromatography and DNA sequencing. Two point mutations were identified, a novel missense mutation c.378A > G (p.D126G) in exon 5 and a reported mutation c.637C > T (p.R213W) in exon 6. The first proband with the p.D126G mutation developed vitreous hemorrhage in both eyes at age 7 months. Foveal and peripheral schisis with several inner layer holes were detected in both eyes. The second proband with the p.R213W mutation developed slightly blurred vision at age 10 years. Fundus examination showed numerous fine white dots at the macula without foveal or peripheral schisis. Electronegative ERG results were documented in both probands. A novel p.D126G mutation appeared to be associated with a severe phenotype with vitreous hemorrhage developing in infancy. Both intra- and interfamilial clinical variabilities were recognized in our patients.
Callea, Michele; Cammarata-Scalisi, Francisco; Willoughby, Colin E; Giglio, Sabrina R; Sani, Ilaria; Bargiacchi, Sara; Traficante, Giovanna; Bellacchio, Emanuele; Tadini, Gianluca; Yavuz, Izzet; Galeotti, Angela; Clarich, Gabriella
2017-02-01
Hypohidrotic ectodermal dysplasia (HED) is a rare disease characterized by deficiency in development of structure derived from the ectoderm and is caused by mutations in the genes EDA, EDAR, or EDARADD. Phenotypes caused by mutations in these three may exhibit similar clinical features, explained by a common signaling pathway. Mutations in EDA gene cause X linked HED, which is the most common form. Mutations in EDAR and EDARADD genes cause autosomal dominant and recessive form of HED. The most striking clinical findings in HED are hypodontia, hypotrichosis and hypohidrosis that can lead to episodes of hyperthermia. We report on clinical findings in a child with HED with autosomal dominant inheritance pattern with a heterozygous mutation c.1072C>T (p.Arg358X) in the EDAR gene. A review of the literature with regard to other cases presenting the same mutation has been carried out and discussed. Sociedad Argentina de Pediatría.
Chini, Vasiliki; Stambouli, Danai; Nedelea, Florina Mihaela; Filipescu, George Alexandru; Mina, Diana; Kambouris, Marios; El-Shantil, Hatem
2014-06-01
Prenatal diagnosis was requested for an undiagnosed eye disease showing X-linked inheritance in a family. No medical records existed for the affected family members. Mapping of the X chromosome and candidate gene mutation screening identified a c.C267A[p.F89L] mutation in NPD previously described as possibly causing Norrie disease. The detection of the c.C267A[p.F89L] variant in another unrelated family confirms the pathogenic nature of the mutation for the Norrie disease phenotype. Gene mapping, haplotype analysis, and candidate gene screening have been previously utilized in research applications but were applied here in a diagnostic setting due to the scarcity of available clinical information. The clinical diagnosis and mutation identification were critical for providing proper genetic counseling and prenatal diagnosis for this family.
Analysis of the genes encoding neuroligins NLGN3 and NLGN4 in Bulgarian patients with autism.
Avdjieva-Tzavella, D M; Todorov, T P; Todorova, A P; Kirov, A V; Hadjidekova, S P; Rukova, B B; Litvinenko, I O; Hristova-Naydenova, D N; Tincheva, R S; Toncheva, D I
2012-01-01
Many studies have supported a genetic aetiology for autism. Neuroligins are postsynaptically located cell-adhesion molecules. Mutations in two X-linked neuroligin genes, NLGN3 and NLGN4, have been implicated in pathogenesis of autism. In order to confirm these causative mutations in our autistic population and to determine their frequency we screened 20 individuals affected with autism. We identified one patient with a point mutation in NLGN4 gene that substituted a Met for Thr 787 - c.2360C > T, p.(Thr787Met) and three patients with identical polymorphisms in the same gene: c.933C > T, p.(Thr311Thr) in combination with c.[1777C > T+1779C > G, p.(Leu593Leu)]. All patients tested for NLGN3 mutations were negative. These results indicate that mutations in these genes are responsible for at most a small fraction of autism cases.
Manzoni, Claudia; Mamais, Adamantios; Dihanich, Sybille; McGoldrick, Phillip; Devine, Michael J; Zerle, Julia; Kara, Eleanna; Taanman, Jan-Willem; Healy, Daniel G; Marti-Masso, Jose-Felix; Schapira, Anthony H; Plun-Favreau, Helene; Tooze, Sharon; Hardy, John; Bandopadhyay, Rina; Lewis, Patrick A
2013-11-29
LRRK2 is one of the most important genetic contributors to Parkinson's disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consistently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data highlight the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
2014-01-01
Background X-linked intellectual disability (XLID) is a group of genetically heterogeneous disorders characterized by substantial impairment in cognitive abilities, social and behavioral adaptive skills. Next generation sequencing technologies have become a powerful approach for identifying molecular gene mutations relevant for diagnosis. Methods & objectives Enrichment of X-chromosome specific exons and massively parallel sequencing was performed for identifying the causative mutations in 14 Finnish families, each of them having several males affected with intellectual disability of unknown cause. Results We found four novel mutations in known XLID genes. Two mutations; one previously reported missense mutation (c.1111C > T), and one novel frameshift mutation (c. 990_991insGCTGC) were identified in SLC16A2, a gene that has been linked to Allan-Herndon-Dudley syndrome (AHDS). One novel missense mutation (c.1888G > C) was found in GRIA3 and two novel splice donor site mutations (c.357 + 1G > C and c.985 + 1G > C) were identified in the DLG3 gene. One missense mutation (c.1321C > T) was identified in the candidate gene ZMYM3 in three affected males with a previously unrecognized syndrome characterized by unique facial features, aortic stenosis and hypospadia was detected. All of the identified mutations segregated in the corresponding families and were absent in > 100 Finnish controls and in the publicly available databases. In addition, a previously reported benign variant (c.877G > A) in SYP was identified in a large family with nine affected males in three generations, who have a syndromic phenotype. Conclusions All of the mutations found in this study are being reported for the first time in Finnish families with several affected male patients whose etiological diagnoses have remained unknown to us, in some families, for more than 30 years. This study illustrates the impact of X-exome sequencing to identify rare gene mutations and the challenges of interpreting the results. Further functional studies are required to confirm the cause of the syndromic phenotypes associated with ZMYM3 and SYP in this study. PMID:24721225
Crosby, J L; Bleackley, R C; Nadeau, J H
1990-02-01
A complex of genes encoding serine proteases that are preferentially expressed in cytotoxic T-cells was shown to be closely linked to the T-cell receptor alpha- and delta-chain genes on mouse chromosome 14. A striking difference in recombination frequencies among linkage crosses was reported. Two genes, Np-1 and Tcra, which fail to recombine in crosses involving conventional strains of mice, were shown to recombine readily in interspecific crosses involving Mus spretus. This difference in recombination frequency suggests chromosomal rearrangements that suppress recombination in conventional crosses, recombination hot spots in interspecific crosses, or selection against recombinant haplotypes during development of recombinant inbred strains. Finally, a mutation called disorganization, which is located near the serine protease complex, is of considerable interest because it causes an extraordinarily wide variety of congenital defects. Because of the involvement of serine protease loci in several homeotic mutations in Drosophila, disorganization must be considered a candidate for a mutation in a serine protease-encoding gene.
Molecular Diagnosis of Infantile Mitochondrial Disease with Targeted Next-Generation Sequencing
Calvo, Sarah E.; Compton, Alison G.; Hershman, Steven G.; Lim, Sze Chern; Lieber, Daniel S.; Tucker, Elena J.; Laskowski, Adrienne; Garone, Caterina; Liu, Shangtao; Jaffe, David B.; Christodoulou, John; Fletcher, Janice M.; Bruno, Damien L; Goldblatt, Jack; DiMauro, Salvatore; Thorburn, David R.; Mootha, Vamsi K.
2012-01-01
Advances in next-generation sequencing (NGS) promise to facilitate diagnosis of inherited disorders. While in research settings NGS has pinpointed causal alleles using segregation in large families, the key challenge for clinical diagnosis is application to single individuals. To explore its diagnostic utility, we performed targeted NGS in 42 unrelated infants with clinical and biochemical evidence of mitochondrial oxidative phosphorylation disease, who were refractory to traditional molecular diagnosis. These devastating mitochondrial disorders are characterized by phenotypic and genetic heterogeneity, with over 100 causal genes identified to date. We performed “MitoExome” sequencing of the mitochondrial DNA (mtDNA) and exons of ~1000 nuclear genes encoding mitochondrial proteins and prioritized rare mutations predicted to disrupt function. Since patients and controls harbored a comparable number of such heterozygous alleles, we could not prioritize dominant acting genes. However, patients showed a five-fold enrichment of genes with two such mutations that could underlie recessive disease. In total, 23/42 (55%) patients harbored such recessive genes or pathogenic mtDNA variants. Firm diagnoses were enabled in 10 patients (24%) who had mutations in genes previously linked to disease. 13 patients (31%) had mutations in nuclear genes never linked to disease. The pathogenicity of two such genes, NDUFB3 and AGK, was supported by cDNA complementation and evidence from multiple patients, respectively. The results underscore the immediate potential and challenges of deploying NGS in clinical settings. PMID:22277967
X-linked nephrogenic diabetes insipidus mutations in North America and the Hopewell hypothesis.
Bichet, D G; Arthus, M F; Lonergan, M; Hendy, G N; Paradis, A J; Fujiwara, T M; Morgan, K; Gregory, M C; Rosenthal, W; Didwania, A
1993-01-01
In X-linked nephrogenic diabetes insipidus (NDI) the urine of male patients is not concentrated after the administration of the antidiuretic hormone arginine-vasopressin. This disease is due to mutations in the V2 receptor gene that maps to chromosome region Xq28. In 1969, Bode and Crawford suggested that most NDI patients in North America shared common ancestors of Ulster Scot immigrants who arrived in Halifax in 1761 on the ship Hopewell. A link between this family and a large Utah kindred was also suggested. DNA was obtained from 17 affected male patients from the "Hopewell" kindred and from four additional families from Nova Scotia and New Brunswick who shared the same Xq28 NDI haplotype. The Utah kindred and two families (Q2, Q3) from Quebec were also studied. The "Hopewell" mutation, W71X, is a single base substitution (G-->A) that changes codon 71 from TGG (tryptophan) to TGA (stop). The W71X mutation was found in affected members of the Hopewell and of the four satellite families. The W71X mutation is the cause of X-linked NDI for the largest number of related male patients living in North America. Other families (Utah, Q2 and Q3) that are historically and ethnically unrelated bear other mutations in the V2 receptor gene. Images PMID:8104196
A novel deletion mutation in RS1 gene caused X-linked juvenile retinoschisis in a Chinese family.
Huang, Y; Mei, L; Gui, B; Su, W; Liang, D; Wu, L; Pan, Q
2014-11-01
X-linked juvenile retinoschisis (XLRS), a leading cause of juvenile macular degeneration, is characterized by a spoke-wheel pattern in the macular region of the retina and splitting of the neurosensory retina. This study aimed to identify the underlying genetic defect in a Chinese family with XLRS. The proband underwent complete ophthalmic examinations, including fundus examination, fundus autofluorescence, and optical coherence tomography. DNA extracted from proband and his younger brother was screened for mutations in RS1 gene. The detected RS1 mutation was tested in all available family members and 200 healthy controls. Reduced visual acuity, spoke-wheel pattern at the fovea, and split retina were observed in the proband. A novel frameshift mutation c.206-207delTG in the RS1 gene, leading to a truncated protein (p.L69fs16X), was identified in the proband and his younger brother. This mutation was not found in any unaffected member or in the healthy controls. The mother of the proband was hemizygous for this mutant allele. We identified a novel causative mutation of RS1 in a Chinese family with XLRS. This finding expands the mutation spectrum of RS1 and provides evidence for a phenotype-genotype study in XLRS.
A novel deletion mutation in RS1 gene caused X-linked juvenile retinoschisis in a Chinese family
Huang, Y; Mei, L; Gui, B; Su, W; Liang, D; Wu, L; Pan, Q
2014-01-01
Purpose X-linked juvenile retinoschisis (XLRS), a leading cause of juvenile macular degeneration, is characterized by a spoke-wheel pattern in the macular region of the retina and splitting of the neurosensory retina. This study aimed to identify the underlying genetic defect in a Chinese family with XLRS. Methods The proband underwent complete ophthalmic examinations, including fundus examination, fundus autofluorescence, and optical coherence tomography. DNA extracted from proband and his younger brother was screened for mutations in RS1 gene. The detected RS1 mutation was tested in all available family members and 200 healthy controls. Results Reduced visual acuity, spoke-wheel pattern at the fovea, and split retina were observed in the proband. A novel frameshift mutation c.206-207delTG in the RS1 gene, leading to a truncated protein (p.L69fs16X), was identified in the proband and his younger brother. This mutation was not found in any unaffected member or in the healthy controls. The mother of the proband was hemizygous for this mutant allele. Conclusions We identified a novel causative mutation of RS1 in a Chinese family with XLRS. This finding expands the mutation spectrum of RS1 and provides evidence for a phenotype–genotype study in XLRS. PMID:25168411
Chen, Yun-Ching; Margolin, Gennady
2017-01-01
Recent evidence shows that mutations in several driver genes can cause aberrant methylation patterns, a hallmark of cancer. In light of these findings, we hypothesized that the landscapes of tumor genomes and epigenomes are tightly interconnected. We measured this relationship using principal component analyses and methylation-mutation associations applied at the nucleotide level and with respect to genome-wide trends. We found that a few mutated driver genes were associated with genome-wide patterns of aberrant hypomethylation or CpG island hypermethylation in specific cancer types. In addition, we identified associations between 737 mutated driver genes and site-specific methylation changes. Moreover, using these mutation-methylation associations, we were able to distinguish between two uterine and two thyroid cancer subtypes. The driver gene mutation–associated methylation differences between the thyroid cancer subtypes were linked to differential gene expression in JAK-STAT signaling, NADPH oxidation, and other cancer-related pathways. These results establish that driver gene mutations are associated with methylation alterations capable of shaping regulatory network functions. In addition, the methodology presented here can be used to subdivide tumors into more homogeneous subsets corresponding to underlying molecular characteristics, which could improve treatment efficacy. PMID:29125844
Pelcastre, Erika L; Villanueva-Mendoza, Cristina; Zenteno, Juan C
2010-05-01
To present the results of molecular analysis of the NDP gene in Mexican families with Norrie disease (ND) and X-linked familial exudative vitreoretinopathy (XL-FEVR). Two unrelated families with ND and two with XL-FEVR were studied. Clinical diagnosis was suspected on the basis of a complete ophthalmologic examination. Molecular methods included DNA isolation from peripheral blood leucocytes, polymerase chain reaction amplification and direct nucleotide sequencing analysis of the complete coding region and exon-intron junctions of NDP. Haplotype analysis using NDP-linked microsatellites markers was performed in both ND families. A novel Norrin missense mutation, p.Arg41Thr, was identified in two apparently unrelated families with ND. Haplotype analysis demonstrated that affected males in these two families shared the same ND-linked haplotype, suggesting a common origin for this novel mutation. The previously reported p.Arg121Trp and p.Arg121Gln Norrin mutations were identified in the two families with XL-FEVR. Our results expand the mutational spectrum in ND. This is the first report of ND resulting from mutation at arginine position 41 of Norrin. Interestingly, mutations at the same residue but resulting in a different missense change were previously described in subjects with XL-FEVR (p.Arg41Lys) or persistent fetal vasculature syndrome (p.Arg41Ser), indicating that the novel p.Arg41Thr change causes a more severe retinal phenotype. Preliminary data suggest a founder effect for the ND p.Arg41Thr mutation in these two Mexican families.
Campos, José Luis; Johnston, Keira; Charlesworth, Brian
2017-12-08
A faster rate of adaptive evolution of X-linked genes compared with autosomal genes (the faster-X effect) can be caused by the fixation of recessive or partially recessive advantageous mutations. This effect should be largest for advantageous mutations that affect only male fitness, and least for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by using coding and functionally significant non-coding sequences of genes with different levels of sex-biased expression. Consistent with theory, nonsynonymous substitutions in most male-biased and unbiased genes show faster adaptive evolution on the X. However, genes with very low recombination rates do not show such an effect, possibly as a consequence of Hill-Robertson interference. Contrary to expectation, there was a substantial faster-X effect for female-biased genes. After correcting for recombination rate differences, however, female-biased genes did not show a faster X-effect. Similar analyses of non-coding UTRs and long introns showed a faster-X effect for all groups of genes, other than introns of female-biased genes. Given the strong evidence that deleterious mutations are mostly recessive or partially recessive, we would expect a slower rate of evolution of X-linked genes for slightly deleterious mutations that become fixed by genetic drift. Surprisingly, we found little evidence for this after correcting for recombination rate, implying that weakly deleterious mutations are mostly close to being semidominant. This is consistent with evidence from polymorphism data, which we use to test how models of selection that assume semidominance with no sex-specific fitness effects may bias estimates of purifying selection. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases.
Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A; Jenkins, Andrew; Traynelis, Stephen F
2015-07-01
The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases
Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A.; Jenkins, Andrew
2015-01-01
The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases. PMID:25904555
Parmeggiani, Francesco; Barbaro, Vanessa; De Nadai, Katia; Lavezzo, Enrico; Toppo, Stefano; Chizzolini, Marzio; Palù, Giorgio; Parolin, Cristina; Di Iorio, Enzo
2016-01-01
The aim of this study was to describe a new pathogenic variant in the mutational hot spot exon ORF15 of retinitis pigmentosa GTPase regulator (RPGR) gene within an Italian family with X-linked retinitis pigmentosa (RP), detailing its distinctive genotype-phenotype correlation with pathologic myopia (PM). All members of this RP-PM family underwent a complete ophthalmic examination. The entire open reading frames of RPGR and retinitis pigmentosa 2 genes were analyzed by Sanger sequencing. A novel frame-shift mutation in exon ORF15 of RPGR gene (c.2091_2092insA; p.A697fs) was identified as hemizygous variant in the male proband with RP, and as heterozygous variant in the females of this pedigree who invariably exhibited symmetrical PM in both eyes. The c.2091_2092insA mutation coherently co-segregated with the observed phenotypes. These findings expand the spectrum of X-linked RP variants. Interestingly, focusing on Caucasian ethnicity, just three RPGR mutations are hitherto reported in RP-PM families: one of these is located in exon ORF15, but none appears to be characterized by a high penetrance of PM trait as observed in the present, relatively small, pedigree. The geno-phenotypic attributes of this heterozygosity suggest that gain-of-function mechanism could give rise to PM via a degenerative cell-cell remodeling of the retinal structures. PMID:27995965
NCI-MATCH Trial Links Targeted Drugs to Mutations
Investigators for the nationwide trial, NCI-MATCH: Molecular Analysis for Therapy Choice, announced that the trial will seek to determine whether targeted therapies for people whose tumors have specific gene mutations will be effective regardless of their cancer type. NCI-MATCH will incorporate more than 20 different study drugs or drug combinations, each targeting a specific gene mutation, in order to match each patient in the trial with a therapy that targets a molecular abnormality in their tumor.
Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009-2013).
Mohon, Abu Naser; Alam, Mohammad Shafiul; Bayih, Abebe Genetu; Folefoc, Asongna; Shahinas, Dea; Haque, Rashidul; Pillai, Dylan R
2014-11-18
Bangladesh is a malaria hypo-endemic country sharing borders with India and Myanmar. Artemisinin combination therapy (ACT) remains successful in Bangladesh. An increase of artemisinin-resistant malaria parasites on the Thai-Cambodia and Thai-Myanmar borders is worrisome. K13 propeller gene (PF3D7_1343700 or PF13_0238) mutations have been linked to both in vitro artemisinin resistance and in vivo slow parasite clearance rates. This group undertook to evaluate if mutations seen in Cambodia have emerged in Bangladesh where ACT use is now standard for a decade. Samples were obtained from Plasmodium falciparum-infected malaria patients from Upazila health complexes (UHC) between 2009 and 2013 in seven endemic districts of Bangladesh. These districts included Khagrachari (Matiranga UHC), Rangamati (Rajasthali UHC), Cox's Bazar (Ramu and Ukhia UHC), Bandarban (Lama UHC), Mymensingh (Haluaghat UHC), Netrokona (Durgapur and Kalmakanda UHC), and Moulvibazar (Sreemangal and Kamalganj UHC). Out of 296 microscopically positive P. falciparum samples, 271 (91.6%) were confirmed as mono-infections by both real-time PCR and nested PCR. The K13 propeller gene from 253 (93.4%) samples was sequenced bi-directionally. One non-synonymous mutation (A578S) was found in Bangladeshi clinical isolates. The A578S mutation was confirmed and lies adjacent to the C580Y mutation, the major mutation causing delayed parasite clearance in Cambodia. Based on computational modeling A578S should have a significant effect on tertiary structure of the protein. The data suggest that P. falciparum in Bangladesh remains free of the C580Y mutation linked to delayed parasite clearance. However, the mutation A578S is present and based on structural analysis could affect K13 gene function. Further in vivo clinical studies are required to validate the effect of this mutation.
Sahakyan, Aleksandr B; Balasubramanian, Shankar
2016-03-12
The role of random mutations and genetic errors in defining the etiology of cancer and other multigenic diseases has recently received much attention. With the view that complex genes should be particularly vulnerable to such events, here we explore the link between the simple properties of the human genes, such as transcript length, number of splice variants, exon/intron composition, and their involvement in the pathways linked to cancer and other multigenic diseases. We reveal a substantial enrichment of cancer pathways with long genes and genes that have multiple splice variants. Although the latter two factors are interdependent, we show that the overall gene length and splicing complexity increase in cancer pathways in a partially decoupled manner. Our systematic survey for the pathways enriched with top lengthy genes and with genes that have multiple splice variants reveal, along with cancer pathways, the pathways involved in various neuronal processes, cardiomyopathies and type II diabetes. We outline a correlation between the gene length and the number of somatic mutations. Our work is a step forward in the assessment of the role of simple gene characteristics in cancer and a wider range of multigenic diseases. We demonstrate a significant accumulation of long genes and genes with multiple splice variants in pathways of multigenic diseases that have already been associated with de novo mutations. Unlike the cancer pathways, we note that the pathways of neuronal processes, cardiomyopathies and type II diabetes contain genes long enough for topoisomerase-dependent gene expression to also be a potential contributing factor in the emergence of pathologies, should topoisomerases become impaired.
[Clinical and molecular study in a child with X-linked hypohidrotic ectodermal dysplasia].
Callea, Michele; Yavuz, Izzet; Clarich, Gabriella; Cammarata-Scalisi, Francisco
2015-12-01
Ectodermal dysplasia encompasses more than 200 clinically distinct entities, which affect at least two structures derived from the ectoderm, including the skin, hair, nails, teeth, sweat glands, and sebaceous glands. X-linked hypohidrotic ectodermal dysplasia is the most common type and is caused by mutation of the EDA gene that encodes Ectodysplasin-A. It occurs in less than 1 in 100 000 individuals and is clinically characterized by hypodontia, hypohidrosis, hypotrichosis, and eye dis orders. We present a child evaluated in a multidisciplinary manner with clinical and molecular diagnosis of X-linked hypohidrotic ectodermal dysplasia with type missense mutation c.1133C> T; p.T378M in EDA gene.
Simmons, Michael J; Peterson, Mark P; Thorp, Michael W; Buschette, Jared T; DiPrima, Stephanie N; Harter, Christine L; Skolnick, Matthew J
2015-03-01
Transposons, especially retrotransposons, are abundant in the genome of Drosophila melanogaster. These mobile elements are regulated by small RNAs that interact with the Piwi family of proteins-the piwi-interacting or piRNAs. The Piwi proteins are encoded by the genes argonaute3 (ago3), aubergine (aub), and piwi. Heterochromatin Protein 1 (HP1), a chromatin-organizing protein encoded by the Suppressor of variegation 205 [Su(var)205] gene, also plays a role in this regulation. To assess the mutational impact of weakening the system for transposon regulation, we measured the frequency of recessive X-linked lethal mutations occurring in the germ lines of males from stocks that were heterozygous for mutant alleles of the ago3, aub, piwi, or Su(var)205 genes. These mutant alleles are expected to deplete the wild-type proteins encoded by these genes by as much as 50%. The mutant alleles of piwi and Su(var)205 significantly increased the X-linked lethal mutation frequency, whereas the mutant alleles of ago3 did not. An increased mutation frequency was also observed in males from one of two mutant aub stocks, but this increase may not have been due to the aub mutant. The increased mutation frequency caused by depleting Piwi or HP1suggests that chromatin-organizing proteins play important roles in minimizing the germ-line mutation rate, possibly by stabilizing the structure of the heterochromatin in which many transposons are situated. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanase, Toshihiko; Takayanagi, Ryoichi; Oba, Koichi
Congenital adrenal hypoplasia, an X-linked disorder, is characterized by primary adrenal insufficiency and frequent association with hypogonadotropic hypogonadism. The X-chromosome gene DAX-1 has been most recently identified and shown to be responsible for this disorder. We analyzed the DAX-1 genes of two unrelated Japanese patients with congenital adrenal hypoplasia and hypogonadotropic hypogonadism by using PCR amplification of genomic DNA and its complete exonic sequencing. In a family containing several affected individuals, the proband male patient had a stop codon (TGA) in place of tryptophan (TGG) at amino acid position 171. As expected, his mother was a heterozygous carrier for themore » mutation, whereas his father and unaffected brother did not carry this mutation. In another male patient with noncontributory family history, sequencing revealed a 1-bp (T) deletion at amino acid position 280, leading to a frame shift and, subsequently a premature stop codon at amino acid position 371. The presence of this mutation in the patients` genome was further confirmed by digestion of genomic PCR product with MspI created by this mutation. Family studies using MspI digestion of genomic PCR products revealed that neither parent of this individual carried the mutation. These results clearly indicate that congenital adrenal hypoplasia and hypogonadotropic hypogonadism result from not only inherited but also de novo mutation in the DAX-1 gene. 31 refs., 4 figs., 2 tabs.« less
Poon, Kok Siong; Sng, Andrew Anjian; Ho, Cindy Weili; Koay, Evelyn Siew-Chuan
2015-01-01
Loss-of-function mutations in the phosphate regulating gene with homologies to endopeptidases on the X-chromosome (PHEX) have been causally associated with X-linked hypophosphatemic rickets (XLHR). The early diagnosis of XLHR in infants is challenging when it is based solely on clinical features and biochemical findings. We report a 7-month-old boy with a family history of hypophosphatemic rickets., who demonstrated early clinical evidence of rickets, although serial biochemical findings could not definitively confirm rickets. A sequencing assay targeting the PHEX gene was first performed on the mother’s DNA to screen for mutations in the 5′UTR, 22 coding exons, and the exon-intron junctions. Targeted mutation analysis and mRNA studies were subsequently performed on the boys’ DNA to investigate the pathogenicity of the identified mutation. Genetic screening of the PHEX gene revealed a novel mutation, c.1080-2A>C, at the splice acceptor site in intron 9. The detection of an aberrant mRNA transcript with skipped (loss of) exon 10 establishes its pathogenicity and confirms the diagnosis of XLHR in this infant. Genetic testing of the PHEX gene resulted in early diagnosis of XLHR, thus enabling initiation of therapy and prevention of progressive rachitic changes in the infant. PMID:26904698
Tavera-Tapia, A; Pérez-Cabornero, L; Macías, J A; Ceballos, M I; Roncador, G; de la Hoya, M; Barroso, A; Felipe-Ponce, V; Serrano-Blanch, R; Hinojo, C; Miramar-Gallart, M D; Urioste, M; Caldés, T; Santillan-Garzón, S; Benitez, J; Osorio, A
2017-02-01
There is still a considerable percentage of hereditary breast and ovarian cancer (HBOC) cases not explained by BRCA1 and BRCA2 genes. In this report, next-generation sequencing (NGS) techniques were applied to identify novel variants and/or genes involved in HBOC susceptibility. Using whole exome sequencing, we identified a novel germline mutation in the moderate-risk gene ATM (c.5441delT; p.Leu1814Trpfs*14) in a family negative for mutations in BRCA1/2 (BRCAX). A case-control association study was performed to establish its prevalence in Spanish population, in a series of 1477 BRCAX families and 589 controls further screened, and NGS panels were used for ATM mutational screening in a cohort of 392 HBOC Spanish BRCAX families and 350 patients affected with diseases not related to breast cancer. Although the interrogated mutation was not prevalent in case-control association study, a comprehensive mutational analysis of the ATM gene revealed 1.78% prevalence of mutations in the ATM gene in HBOC and 1.94% in breast cancer-only BRCAX families in Spanish population, where data about ATM mutations were very limited. ATM mutation prevalence in Spanish population highlights the importance of considering ATM pathogenic variants linked to breast cancer susceptibility.
Yang, Xiaochen; Wu, Jiong; Lu, Jingsong; Liu, Guangyu; Di, Genhong; Chen, Canming; Hou, Yifeng; Sun, Menghong; Yang, Wentao; Xu, Xiaojing; Zhao, Ying; Hu, Xin; Li, Daqiang; Cao, Zhigang; Zhou, Xiaoyan; Huang, Xiaoyan; Liu, Zhebin; Chen, Huan; Gu, Yanzi; Chi, Yayun; Yan, Xia; Han, Qixia; Shen, Zhenzhou; Shao, Zhimin; Hu, Zhen
2015-01-01
The genetic etiology of hereditary breast cancer has not been fully elucidated. Although germline mutations of high-penetrance genes such as BRCA1/2 are implicated in development of hereditary breast cancers, at least half of all breast cancer families are not linked to these genes. To identify a comprehensive spectrum of genetic factors for hereditary breast cancer in a Chinese population, we performed an analysis of germline mutations in 2,165 coding exons of 152 genes associated with hereditary cancer using next-generation sequencing (NGS) in 99 breast cancer patients from families of cancer patients regardless of cancer types. Forty-two deleterious germline mutations were identified in 21 genes of 34 patients, including 18 (18.2%) BRCA1 or BRCA2 mutations, 3 (3%) TP53 mutations, 5 (5.1%) DNA mismatch repair gene mutations, 1 (1%) CDH1 mutation, 6 (6.1%) Fanconi anemia pathway gene mutations, and 9 (9.1%) mutations in other genes. Of seven patients who carried mutations in more than one gene, 4 were BRCA1/2 mutation carriers, and their average onset age was much younger than patients with only BRCA1/2 mutations. Almost all identified high-penetrance gene mutations in those families fulfill the typical phenotypes of hereditary cancer syndromes listed in the National Comprehensive Cancer Network (NCCN) guidelines, except two TP53 and three mismatch repair gene mutations. Furthermore, functional studies of MSH3 germline mutations confirmed the association between MSH3 mutation and tumorigenesis, and segregation analysis suggested antagonism between BRCA1 and MSH3. We also identified a lot of low-penetrance gene mutations. Although the clinical significance of those newly identified low-penetrance gene mutations has not been fully appreciated yet, these new findings do provide valuable epidemiological information for the future studies. Together, these findings highlight the importance of genetic testing based on NCCN guidelines and a multi-gene analysis using NGS may be a supplement to traditional genetic counseling. PMID:25927356
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mebarki, F.; Forest, M.G.; Josso, N.
The androgen insensivity syndrome (AIS) is a recessive X-linked disorder resulting from a deficient function of the androgen receptor (AR). The human AR gene has 3 functional domains: N-terminal encoded by exon 1, DNA-binding domain encoded by exons 2 and 3, and androgen-binding domain encoded by exons 4 to 8. In order to characterize the molecular defects of the AR gene in AIS, the entire coding regions and the intronic bording sequences of the AR gene were amplified by PCR before automatic direct sequencing in 45 patients. Twenty seven different point mutations were found in 32 unrelated AIS patients: 18more » with a complete form (CAIS), 14 with a partial form (PAIS); 18 of these mutations are novel mutations, not published to date. Only 3 mutations were repeatedly found: R804H in 3 families; M780I in 3 families and R774C in 2 families. For 26 patients out of the 32 found to have a mutation, maternal DNA was collected and sequenced: 6 de novo mutations were detected (i.e. 23% of the cases). Finally, no mutation was detected in 13 patients (29%): 7 with CAIS and 6 familial severe PAIS. The latter all presented with perineal hypospadias, micropenis, 4 out of 6 being raised as girl. Diagnosis of AIS in these 13 families in whom no mutation was detected is supported by the following criteria: clinical data, familial history (2 or 3 index cases in the same family), familial segregation of the polymorphic CAG repeat of the AR gene. Mutations in intronic regions or the promoter of the AR gene could not explain all cases of AIS without mutations in the AR coding regions, because AR binding (performed in 9 out of 13) was normal in 6, suggesting the synthesis of an AR protein. This situation led us to speculate that another X-linked factor associated with the AR could be implicated in some cases of AIS.« less
Yuan, Fei; Shi, Min; Ji, Jun; Shi, Hailong; Zhou, Chenfei; Yu, Yingyan; Liu, Bingya; Zhu, Zhenggang; Zhang, Jun
2014-01-01
Background and Aim: Pancreatic neuroendocrine tumor (pNET) is a clinically rare and heterogeneous group of tumors; its pharmacogenetic characteristics are not fully understood. This study was designed to examine the relationship between key gene variations and disease development and prognosis among Chinese patients with pNET. Methods: Various pNET associated genes such as DAXX/ATRX, KRAS, MEN1, PTEN, TSC2, SMAD4/DPC, TP53 and VHL were analyzed in high-throughput sequencing. The links between the gene mutations and the clinicopathological features and prognosis of the patients were determined. Results: The somatic mutation frequencies of the DAXX/ATRX, KRAS, MEN1, mTOR pathway genes (PTEN and TSC2), SMAD4/DPC, TP53, and VHL in Chinese pNET patients were 54.05%, 10.81%, 35.14%, 54.05%, 2.70%, 13.51%, and 40.54%, respectively, while the same figures in Caucasians pNET patients were 43%, 0%, 44%, 15%, 0%, 3%, and 0%, respectively. The numbers of mutated genes were from 0 to 6; 4 patients with more than 3 mutated genes had higher proliferation (Ki-67) index or nerve vascular invasion or organ involvement, but only 9 of 27 patients with 3 or few mutated genes had such features. Mutations in KRAS and DAXX/ATRX, but not other genes analyzed, were associated with a shortened survival. Conclusion: The mutation rates of these genes in Chinese pNET patients are different from those in Caucasians. A higher number of gene mutations and the DAXX/ATRX and KRAS gene mutations are correlated with a poor prognosis of patients with pNET. PMID:25210493
Sudha, Dhandayuthapani; Patric, Irene Rosita Pia; Ganapathy, Aparna; Agarwal, Smitha; Krishna, Shuba; Neriyanuri, Srividya; Sripriya, Sarangapani; Sen, Parveen; Chidambaram, Subbulakshmi; Arunachalam, Jayamuruga Pandian
2017-01-01
In this study, we present a juvenile retinoschisis patient with developmental delay, sensorineural hearing loss, and reduced axial tone. X-linked juvenile retinoschisis (XLRS) is a retinal dystrophy, most often not associated with systemic anomalies and also not showing any locus heterogeneity. Therefore it was of interest to understand the genetic basis of the condition in this patient. RS1 gene screening for XLRS was performed by Sanger sequencing. Whole genome SNP 6.0 array analysis was carried out to investigate gross chromosomal aberrations that could result in systemic phenotype. In addition, targeted next generation sequencing (NGS) was employed to determine any possible involvement of X-linked syndromic and non-syndromic mental retardation genes. This NGS panel consisted of 550 genes implicated in several other rare inherited diseases. RS1 gene screening revealed a pathogenic hemizygous splice site mutation (c.78+1G>T), inherited from the mother. SNP 6.0 array analysis did not indicate any significant chromosomal aberrations that could be disease-associated. Targeted resequencing did not identify any mutations in the X-linked mental retardation genes. However, variations in three other genes (NSD1, LARGE, and POLG) were detected, which were all inherited from the patient's unaffected father. Taken together, RS1 mutation was found to segregate with retinoschisis phenotype while none of the other identified variations were co-segregating with the systemic defects. Hereby, we infer that the multisystemic defects harbored by the patient are a rare coexistence of XLRS, developmental delay, sensorineural hearing loss, and reduced axial tone reported for the first time in the literature.
ERIC Educational Resources Information Center
Gika, Artemis D.; Siddiqui, Ata; Hulse, Anthony J.; Edward, Selvakumari; Fallon, Penny; McEntagart, Meriel E.; Jan, Wajanat; Josifova, Dragana; Lerman-Sagie, Tally; Drummond, James; Thompson, Edward; Refetoff, Samuel; Bonnemann, Carsten G.; Jungbluth, Heinz
2010-01-01
Aim: Mutations in the "SLC16A2" gene have been implicated in Allan-Herndon-Dudley syndrome (AHDS), an X-linked learning disability syndrome associated with thyroid function test (TFT) abnormalities. Delayed myelination is a non-specific finding in individuals with learning disability whose genetic basis is often uncertain. The aim of this study…
Identification of three novel NHS mutations in families with Nance-Horan syndrome.
Huang, Kristen M; Wu, Junhua; Brooks, Simon P; Hardcastle, Alison J; Lewis, Richard Alan; Stambolian, Dwight
2007-03-27
Nance-Horan Syndrome (NHS) is an infrequent and often overlooked X-linked disorder characterized by dense congenital cataracts, microphthalmia, and dental abnormalities. The syndrome is caused by mutations in the NHS gene, whose function is not known. The purpose of this study was to identify the frequency and distribution of NHS gene mutations and compare genotype with Nance-Horan phenotype in five North American NHS families. Genomic DNA was isolated from white blood cells from NHS patients and family members. The NHS gene coding region and its splice site donor and acceptor regions were amplified from genomic DNA by PCR, and the amplicons were sequenced directly. We identified three unique NHS coding region mutations in these NHS families. This report extends the number of unique identified NHS mutations to 14.
A natural allele of Nxf1/TAP supresses retrovirus insertional mutations
Floyd, Jennifer A.; Gold, David A.; Concepcion, Dorothy; Poon, Tiffany H.; Wang, Xiaobo; Keithley, Elizabeth; Chen, Dan; Ward, Erica J.; Chinn, Steven B.; Friedman, Rick A.; Yu, Hon-Tsen; Moriwaki, Kazuo; Shiroishi, Toshihiko; Hamilton, Bruce A.
2009-01-01
Endogenous retroviruses have shaped the evolution of mammalian genomes. Host genes that control the effects of retrovirus insertions are therefore of great interest. The Modifier-of-vibrator-1 locus controls level of correctly processed mRNA from genes mutated by endogenous retrovirus insertions into introns, including the pitpnvb tremor mutation and the Eya1BOR model of human branchiootorenal syndrome. Positional complementation cloning identifies Mvb1 as the nuclear export factor Nxf1, providing an unexpected link between mRNA export receptor and pre-mRNA processing. Population structure of the suppressing allele in wild M. m. castaneus suggests selective advantage. A congenic Mvb1CAST allele is a useful tool for modifying gene expression from existing mutations and could be used to manipulate engineered mutations containing retroviral elements. PMID:14517553
Podlipnik, Sebastian; Castellanos-Moreira, Raul; Florez-Enrich, Helena; Arostegui, Juan Ignacio; Mascaró, José Manuel
2018-02-01
Acute generalised exanthematous pustulosis (AGEP) is a rare toxicoderma characterised by an acute onset rash, with many sterile pustules on the surface, high fever and increased acute phase reactants. We report the case of a patient who presented to the dermatology department with an AGEP and polyarthritis, in which a novel CARD14 mutation was identified. The pathophysiological mechanism of AGEP remains unclear, although mutations in the IL36RN gene have been identified in a small subset of AGEP patients. Similarly, mutations in the CARD14 gene have been linked to pustular types of psoriasis and familiar cases of pityriasis rubra pilaris; however, there are no reports associating mutations in the CARD14 gene with AGEP. © 2017 The Australasian College of Dermatologists.
Makras, Polyzois; Hamdy, Neveen A T; Kant, Sarina G; Papapoulos, Socrates E
2008-04-01
X-linked hypophosphatemic rickets (XLH) is characterized by hypophosphatemia and growth retardation. Early diagnosis and treatment improve growth. Our objective was to describe long-term observations of a family with XLH due to a novel mutation of the PHEX gene with unusual clinical features, including normal growth. The mother and her two sons were followed in the same institution for nearly 30 yr. The mother had hypophosphatemia and normal height (Z score, -0.6) without ever receiving any treatment. Her two sons achieved final heights of 183.7 cm (Z score, -0.01) and 182.7 cm (Z score, -0.18), respectively, despite late initiation of treatment with phosphate and low serum phosphate levels. In addition, they had reversible proximal myopathy that took about 7 yr to resolve in one of them. Direct sequencing of the PHEX gene revealed a new splice site mutation in intron 4 of the gene (IVS4+6T-->C) resulting in skipping of exon 4. Three members of a family with XLH due to a novel mutation of the PHEX gene had a normal growth pattern despite late diagnosis and treatment of the two boys and no treatment at all of their mother. The pathophysiological basis of this phenotype-genotype association warrants further investigation.
Novel mutations in cyclin-dependent kinase-like 5 (CDKL5) gene in Indian cases of Rett syndrome.
Das, Dhanjit Kumar; Mehta, Bhakti; Menon, Shyla R; Raha, Sarbani; Udani, Vrajesh
2013-03-01
Rett syndrome is a severe neurodevelopmental disorder, almost exclusively affecting females and characterized by a wide spectrum of clinical manifestations. Both the classic and atypical forms of Rett syndrome are primarily due to mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with atypical Rett syndrome, X-linked infantile spasms sharing common features of generally early-onset seizures and mental retardation. CDKL5 is known as serine/threonine protein kinase 9 (STK9) and is mapped to the Xp22 region. It has a conserved serine/threonine kinase domain within its amino terminus and a large C-terminal region. Disease-causing mutations are distributed in both the amino terminal domain and in the large C-terminal domain. We have screened the CDKL5 gene in 44 patients with atypical Rett syndrome who had tested negative for MECP2 gene mutations and have identified 6 sequence variants, out of which three were novel and three known mutations. Two of these novel mutations p.V966I and p.A1011V were missense and p.H589H a silent mutation. Other known mutations identified were p.V999M, p.Q791P and p.T734A. Sequence homology for all the mutations revealed that the two mutations (p.Q791P and p.T734A) were conserved across species. This indicated the importance of these residues in structure and function of the protein. The damaging effects of these mutations were analysed in silico using PolyPhen-2 online software. The PolyPhen-2 scores of p.Q791P and p.T734A were 0.998 and 0.48, revealing that these mutations could be deleterious and might have potential functional effect. All other mutations had a low score suggesting that they might not alter the activity of CDKL5. We have also analysed the position of the mutations in the CDKL5 protein and found that all the mutations were present in the C-terminal domain of the protein. The C-terminal domain is required for cellular localization through protein-protein interaction; any mutations in this domain might alter this function of the protein. This is the first report from India showing the mutation in CDKL5 gene in Indian cases of Rett syndrome. Our study emphasizes the role of CDKL5 mutation screening in cases of atypical Rett syndrome with congenital seizure variant.
Kinsey, Conan; Balakrishnan, Vijaya; O’Dell, Michael R.; Huang, Jing Li; Newman, Laurel; Whitney-Miller, Christa L.; Hezel, Aram F.; Land, Hartmut
2014-01-01
Summary Mutations in p53 and RAS potently cooperate in oncogenic transformation and correspondingly these genetic alterations frequently coexist in pancreatic ductal adenocarcinoma (PDA) and other human cancers. Previously we identified a set of genes synergistically activated by combined RAS and p53 mutations as frequent downstream mediators of tumorigenesis. Here, we show that the synergistically activated gene Plac8 is critical for pancreatic cancer growth. Silencing of Plac8 in cell lines suppresses tumor formation by blocking autophagy, a process essential for maintaining metabolic homeostasis in PDA, and genetic inactivation in an engineered mouse model inhibits PDA progression. We show that Plac8 is a critical regulator of the autophagic machinery, localizing to the lysosomal compartment and facilitating lysosome-autophagosome fusion. Plac8 thus provides a mechanistic link between primary oncogenic mutations and the induction of autophagy, a central mechanism of metabolic reprogramming, during PDA progression. PMID:24794439
Novel OTOF mutations in Brazilian patients with auditory neuropathy.
Romanos, Jihane; Kimura, Lilian; Fávero, Mariana Lopes; Izarra, Fernanda Attanasio R; de Mello Auricchio, Maria Teresa Balester; Batissoco, Ana Carla; Lezirovitz, Karina; Abreu-Silva, Ronaldo Serafim; Mingroni-Netto, Regina Célia
2009-07-01
The OTOF gene encoding otoferlin is associated with auditory neuropathy (AN), a type of non-syndromic deafness. We investigated the contribution of OTOF mutations to AN and to non-syndromic recessive deafness in Brazil. A test for the Q829X mutation was carried out on a sample of 342 unrelated individuals with non-syndromic hearing loss, but none presented this mutation. We selected 48 cases suggestive of autosomal recessive inheritance, plus four familial and seven isolated cases of AN, for genotyping of five microsatellite markers linked to the OTOF gene. The haplotype analysis showed compatibility with linkage in 11 families (including the four families with AN). Samples of the 11 probands from these families and from seven isolated cases of AN were selected for an exon-by-exon screening for mutations in the OTOF gene. Ten different pathogenic variants were detected, among which six are novel. Among the 52 pedigrees with autosomal recessive inheritance (including four familial cases of AN), mutations were identified in 4 (7.7%). Among the 11 probands with AN, seven had at least one pathogenic mutation in the OTOF gene. Mutations in the OTOF gene are frequent causes of AN in Brazil and our results confirm that they are spread worldwide.
A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.
Slavotinek, Anne; Lee, Stephen S; Hamilton, Steven P
2005-10-01
We report on a four-generation family with X-linked anophthalmia in four affected males and show that this family has LOD scores consistent with linkage to Xq27, the third family reported to be linked to the ANOP1 locus. We sequenced the SOX3 gene at Xq27 as a candidate gene for the X-linked anophthalmia based on the high homology of this gene to SOX2, a gene previously mutated in bilateral anophthlamia. However, no amino acid sequence alterations were identified in SOX3. We have improved the definition of the phenotype in males with anophthalmia linked to the ANOP1 locus, as microcephaly, ocular colobomas, and severe renal malformations have not been described in families linked to ANOP1. (c) 2005 Wiley-Liss, Inc.
The effects of mutational processes and selection on driver mutations across cancer types.
Temko, Daniel; Tomlinson, Ian P M; Severini, Simone; Schuster-Böckler, Benjamin; Graham, Trevor A
2018-05-10
Epidemiological evidence has long associated environmental mutagens with increased cancer risk. However, links between specific mutation-causing processes and the acquisition of individual driver mutations have remained obscure. Here we have used public cancer sequencing data from 11,336 cancers of various types to infer the independent effects of mutation and selection on the set of driver mutations in a cancer type. First, we detect associations between a range of mutational processes, including those linked to smoking, ageing, APOBEC and DNA mismatch repair (MMR) and the presence of key driver mutations across cancer types. Second, we quantify differential selection between well-known alternative driver mutations, including differences in selection between distinct mutant residues in the same gene. These results show that while mutational processes have a large role in determining which driver mutations are present in a cancer, the role of selection frequently dominates.
Detecting recurrent gene mutation in interaction network context using multi-scale graph diffusion.
Babaei, Sepideh; Hulsman, Marc; Reinders, Marcel; de Ridder, Jeroen
2013-01-23
Delineating the molecular drivers of cancer, i.e. determining cancer genes and the pathways which they deregulate, is an important challenge in cancer research. In this study, we aim to identify pathways of frequently mutated genes by exploiting their network neighborhood encoded in the protein-protein interaction network. To this end, we introduce a multi-scale diffusion kernel and apply it to a large collection of murine retroviral insertional mutagenesis data. The diffusion strength plays the role of scale parameter, determining the size of the network neighborhood that is taken into account. As a result, in addition to detecting genes with frequent mutations in their genomic vicinity, we find genes that harbor frequent mutations in their interaction network context. We identify densely connected components of known and putatively novel cancer genes and demonstrate that they are strongly enriched for cancer related pathways across the diffusion scales. Moreover, the mutations in the clusters exhibit a significant pattern of mutual exclusion, supporting the conjecture that such genes are functionally linked. Using multi-scale diffusion kernel, various infrequently mutated genes are found to harbor significant numbers of mutations in their interaction network neighborhood. Many of them are well-known cancer genes. The results demonstrate the importance of defining recurrent mutations while taking into account the interaction network context. Importantly, the putative cancer genes and networks detected in this study are found to be significant at different diffusion scales, confirming the necessity of a multi-scale analysis.
Bielas, Stephanie L.; Silhavy, Jennifer L.; Brancati, Francesco; Kisseleva, Marina V.; Al-Gazali, Lihadh; Sztriha, Laszlo; Bayoumi, Riad A.; Zaki, Maha S.; Abdel-Aleem, Alice; Rosti, Ozgur; Kayserili, Hulya; Swistun, Dominika; Scott, Lesley C.; Bertini, Enrico; Boltshauser, Eugen; Fazzi, Elisa; Travaglini, Lorena; Field, Seth J.; Gayral, Stephanie; Jacoby, Monique; Schurmans, Stephane; Dallapiccola, Bruno; Majerus, Philip W.; Valente, Enza Maria; Gleeson, Joseph G.
2009-01-01
Phosphotidylinositol (PtdIns) signaling is tightly regulated, both spatially and temporally, by subcellularly localized PtdIns kinases and phosphatases that dynamically alter downstream signaling events 1. Joubert Syndrome (JS) characterized by a specific midbrain-hindbrain malformation (“molar tooth sign”) and variably associated retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly 2, and is included in the newly emerging group of “ciliopathies”. In patients linking to JBTS1, we identified mutations in the INPP5E gene, encoding inositol polyphosphate-5-phosphatase E, which hydrolyzes the 5-phosphate of PtdIns(3,4,5)P3 and PtdIns(4,5)P2. Mutations clustered in the phosphatase domain and impaired 5-phosphatase activity, resulting in altered cellular PtdIns ratios. INPP5E localized to cilia in major organs affected in JS, and mutations promoted premature destabilization of cilia in response to stimulation. Thus, these data links PtdIns signaling to the primary cilium, a cellular structure that is becoming increasingly appreciated for its role in mediating cell signals and neuronal function. PMID:19668216
X-linked primary immunodeficiency associated with hemizygous mutations in the moesin (MSN) gene.
Lagresle-Peyrou, Chantal; Luce, Sonia; Ouchani, Farid; Soheili, Tayebeh Shabi; Sadek, Hanem; Chouteau, Myriam; Durand, Amandine; Pic, Isabelle; Majewski, Jacek; Brouzes, Chantal; Lambert, Nathalie; Bohineust, Armelle; Verhoeyen, Els; Cosset, François-Loïc; Magerus-Chatinet, Aude; Rieux-Laucat, Frédéric; Gandemer, Virginie; Monnier, Delphine; Heijmans, Catherine; van Gijn, Marielle; Dalm, Virgil A; Mahlaoui, Nizar; Stephan, Jean-Louis; Picard, Capucine; Durandy, Anne; Kracker, Sven; Hivroz, Claire; Jabado, Nada; de Saint Basile, Geneviève; Fischer, Alain; Cavazzana, Marina; André-Schmutz, Isabelle
2016-12-01
We investigated 7 male patients (from 5 different families) presenting with profound lymphopenia, hypogammaglobulinemia, fluctuating monocytopenia and neutropenia, a poor immune response to vaccine antigens, and increased susceptibility to bacterial and varicella zoster virus infections. We sought to characterize the genetic defect involved in a new form of X-linked immunodeficiency. We performed genetic analyses and an exhaustive phenotypic and functional characterization of the lymphocyte compartment. We observed hemizygous mutations in the moesin (MSN) gene (located on the X chromosome and coding for MSN) in all 7 patients. Six of the latter had the same missense mutation, which led to an amino acid substitution (R171W) in the MSN four-point-one, ezrin, radixin, moesin domain. The seventh patient had a nonsense mutation leading to a premature stop codon mutation (R533X). The naive T-cell counts were particularly low for age, and most CD8 + T cells expressed the senescence marker CD57. This phenotype was associated with impaired T-cell proliferation, which was rescued by expression of wild-type MSN. MSN-deficient T cells also displayed poor chemokine receptor expression, increased adhesion molecule expression, and altered migration and adhesion capacities. Our observations establish a causal link between an ezrin-radixin-moesin protein mutation and a primary immunodeficiency that could be referred to as X-linked moesin-associated immunodeficiency. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Naghibalhossaini, Fakhraddin; Hosseini, Hamideh Mahmoodzadeh; Mokarram, Pooneh; Zamani, Mozhdeh
2011-12-01
Gene silencing due to DNA hypermethylation is a major mechanism for loss of tumor suppressor genes function in colorectal cancer. Activating V600E mutation in BRAF gene has been linked with widespread methylation of CpG islands in sporadic colorectal cancers. The aim of the present study was to evaluate the methylation status of three cancer-related genes, APC2, p14ARF, and ECAD in colorectal carcinogenesis and their association with the mutational status of BRAF and KRAS among Iranian colorectal cancer patients. DNA from 110 unselected series of sporadic colorectal cancer patients was examined for BRAF V600E mutation by PCR-RFLP. Promoter methylation of genes in tumors was determined by methylation specific PCR. The frequency of APC2, E-CAD, and p14 methylation was 92.6%, 40.4% and 16.7%, respectively. But, no V600E mutation was identified in the BRAF gene in any sample. No association was found in cases showing epigenetic APC, ECAD, and p14 abnormality with the clinicopathological parameters under study. The association between KRAS mutations and the so called methylator phenotype was previously reported. Therefore, we also analyzed the association between the hot spot KRAS gene mutations in codons of 12 and 13 with genes' promoter hypermethylation in a subset of this group of patients. Out of 86 tumors, KRAS was mutated in 24 (28%) of tumors, the majority occurring in codon 12. KRAS mutations were not associated with genes' methylation in this tumor series. These findings suggest a distinct molecular pathway for methylation of APC2, p14, and ECAD genes from those previously described for colorectal cancers with BRAF or KRAS mutations.
Genetic epidemiology of the beta s gene.
Nagel, R L; Fleming, A F
1992-04-01
The beta s gene arose at least four times in Africa, with three of these mutations expanding through diverse ethnic groups, but limited to definite geographical areas: Atlantic west Africa for the Senegal haplotype linked beta s; central west Africa for the Benin haplotype; and equatorial, eastern and southern Africa for the Bantu haplotype. The fourth mutation (linked to the Cameroon haplotype) is restricted to a single ethnic group, the Eton of central Cameroon. The Benin haplotype linked beta s gene was spread by gene flow to the Mediterranean (north, south and east) and to the western portions of Saudi Arabia. An independent mutation linked to a fifth haplotype, Arab-India, is found among the tribals of India (independent from their geographical origin) and in the eastern oases of Saudi Arabia. It is also suspected of being associated with the beta s gene found in Afghanistan, Iran, Transcaucasia and central Asia. The selective force involved in the expansion of the gene was most likely P. falciparum malaria, and the time of the gene frequency increase was likely to have been during the expansion of agriculture about 4000 or more years ago in India and about 3000 years ago in Africa. The partial protection against severe and life-threatening malaria is through the limitation of P. falciparum parasitaemia. This is a complex process which involves at least two mechanisms: early intraerythrocyte parasite forms are in a suicidal position through increasing the tendency of HbAS cell to sickle and then be destroyed by the spleen; intraerythrocyte growth is inhibited during deep vascular schizogony. Although there is evidence that P. falciparum (and P. malariae) parasitaemias are limited in HbSS red cells, malaria is a major trigger to haemolytic and infarctive crises in sickle-cell disease, and a common cause of morbidity and mortality.
Novel C12orf65 mutations in patients with axonal neuropathy and optic atrophy.
Tucci, Arianna; Liu, Yo-Tsen; Preza, Elisabeth; Pitceathly, Robert D S; Chalasani, Annapurna; Plagnol, Vincent; Land, John M; Trabzuni, Daniah; Ryten, Mina; Jaunmuktane, Zane; Reilly, Mary M; Brandner, Sebastian; Hargreaves, Iain; Hardy, John; Singleton, Andrew B; Abramov, Andrey Y; Houlden, Henry
2014-05-01
Charcot-Marie Tooth disease (CMT) forms a clinically and genetically heterogeneous group of disorders. Although a number of disease genes have been identified for CMT, the gene discovery for some complex form of CMT has lagged behind. The association of neuropathy and optic atrophy (also known as CMT type 6) has been described with autosomaldominant, recessive and X-linked modes of inheritance. Mutations in Mitofusin 2 have been found to cause dominant forms of CMT6. Phosphoribosylpyrophosphate synthetase-I mutations cause X-linked CMT6, but until now, mutations in the recessive forms of disease have never been identified. We here describe a family with three affected individuals who inherited in an autosomal recessive fashion a childhood onset neuropathy and optic atrophy. Using homozygosity mapping in the family and exome sequencing in two affected individuals we identified a novel protein-truncating mutation in the C12orf65 gene, which encodes for a protein involved in mitochondrial translation. Using a variety of methods we investigated the possibility of mitochondrial impairment in the patients cell lines. We described a large consanguineous family with neuropathy and optic atrophy carrying a loss of function mutation in the C12orf65 gene. We report mitochondrial impairment in the patients cell lines, followed by multiple lines of evidence which include decrease of complex V activity and stability (blue native gel assay), decrease in mitochondrial respiration rate and reduction of mitochondrial membrane potential. This work describes a mutation in the C12orf65 gene that causes recessive form of CMT6 and confirms the role of mitochondrial dysfunction in this complex axonal neuropathy.
Blázquez, M A; Gamo, F J; Gancedo, C
1995-12-18
Yeasts with disruptions in the genes PYC1 and PYC2 encoding the isoenzymes of pyruvate carboxylase cannot grow in a glucose-ammonium medium (Stucka et al. (1991) Mol. Gen. Genet. 229, 307-315). We have isolated a dominant mutation, BPC1-1, that allows growth in this medium of yeasts with interrupted PYC1 and PYC2 genes. The BPC1-1 mutation abolishes catabolite repression of a series of genes and allows expression of the enzymes of the glyoxylate cycle during growth in glucose. A functional glyoxylate cycle is necessary for suppression as a disruption of gene ICL1 encoding isocitrate lyase abolished the phenotypic effect of BPC1-1 on growth in glucose-ammonium. Concurrent expression from constitutive promoters of genes ICL1 and MLS1 (encoding malate synthase) also suppressed the growth phenotype of pyc1 pyc2 mutants. The mutation BPC1-1 is either allelic or closely linked to the mutation DGT1-1.
Jiang, Yong-hui; Yuen, Ryan K.C.; Jin, Xin; Wang, Mingbang; Chen, Nong; Wu, Xueli; Ju, Jia; Mei, Junpu; Shi, Yujian; He, Mingze; Wang, Guangbiao; Liang, Jieqin; Wang, Zhe; Cao, Dandan; Carter, Melissa T.; Chrysler, Christina; Drmic, Irene E.; Howe, Jennifer L.; Lau, Lynette; Marshall, Christian R.; Merico, Daniele; Nalpathamkalam, Thomas; Thiruvahindrapuram, Bhooma; Thompson, Ann; Uddin, Mohammed; Walker, Susan; Luo, Jun; Anagnostou, Evdokia; Zwaigenbaum, Lonnie; Ring, Robert H.; Wang, Jian; Lajonchere, Clara; Wang, Jun; Shih, Andy; Szatmari, Peter; Yang, Huanming; Dawson, Geraldine; Li, Yingrui; Scherer, Stephen W.
2013-01-01
Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms. PMID:23849776
Tarpey, Patrick S; Stevens, Claire; Teague, Jon; Edkins, Sarah; O'Meara, Sarah; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Butler, Adam; Cole, Jennifer; Dicks, Ed; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Catford, Rachael; Butler, Julia; Mallya, Uma; Moon, Jenny; Luo, Ying; Dorkins, Huw; Thompson, Deborah; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Carpenter, Nancy; Simensen, Richard J; Schwartz, Charles E; Stevenson, Roger E; Turner, Gillian; Partington, Michael; Gecz, Jozef; Stratton, Michael R; Futreal, P Andrew; Raymond, F Lucy
2006-12-01
In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.
Hilton, Emma; Johnston, Jennifer; Whalen, Sandra; Okamoto, Nobuhiko; Hatsukawa, Yoshikazu; Nishio, Juntaro; Kohara, Hiroshi; Hirano, Yoshiko; Mizuno, Seiji; Torii, Chiharu; Kosaki, Kenjiro; Manouvrier, Sylvie; Boute, Odile; Perveen, Rahat; Law, Caroline; Moore, Anthony; Fitzpatrick, David; Lemke, Johannes; Fellmann, Florence; Debray, François-Guillaume; Dastot-Le-Moal, Florence; Gerard, Marion; Martin, Josiane; Bitoun, Pierre; Goossens, Michel; Verloes, Alain; Schinzel, Albert; Bartholdi, Deborah; Bardakjian, Tanya; Hay, Beverly; Jenny, Kim; Johnston, Kathreen; Lyons, Michael; Belmont, John W; Biesecker, Leslie G; Giurgea, Irina; Black, Graeme
2009-01-01
Oculofaciocardiodental (OFCD) and Lenz microphthalmia syndromes form part of a spectrum of X-linked microphthalmia disorders characterized by ocular, dental, cardiac and skeletal anomalies and mental retardation. The two syndromes are allelic, caused by mutations in the BCL-6 corepressor gene (BCOR). To extend the series of phenotypes associated with pathogenic mutations in BCOR, we sequenced the BCOR gene in patients with (1) OFCD syndrome, (2) putative X-linked (‘Lenz') microphthalmia syndrome, (3) isolated ocular defects and (4) laterality phenotypes. We present a new cohort of females with OFCD syndrome and null mutations in BCOR, supporting the hypothesis that BCOR is the sole molecular cause of this syndrome. We identify for the first time mosaic BCOR mutations in two females with OFCD syndrome and one apparently asymptomatic female. We present a female diagnosed with isolated ocular defects and identify minor features of OFCD syndrome, suggesting that OFCD syndrome may be mild and underdiagnosed. We have sequenced a cohort of males diagnosed with putative X-linked microphthalmia and found a mutation, p.P85L, in a single case, suggesting that BCOR mutations are not a major cause of X-linked microphthalmia in males. The absence of BCOR mutations in a panel of patients with non-specific laterality defects suggests that mutations in BCOR are not a major cause of isolated heart and laterality defects. Phenotypic analysis of OFCD and Lenz microphthalmia syndromes shows that in addition to the standard diagnostic criteria of congenital cataract, microphthalmia and radiculomegaly, patients should be examined for skeletal defects, particularly radioulnar synostosis, and cardiac/laterality defects. PMID:19367324
Molecular biology of hereditary diabetes insipidus.
Fujiwara, T Mary; Bichet, Daniel G
2005-10-01
The identification, characterization, and mutational analysis of three different genes-the arginine vasopressin gene (AVP), the arginine vasopressin receptor 2 gene (AVPR2), and the vasopressin-sensitive water channel gene (aquaporin 2 [AQP2])-provide the basis for understanding of three different hereditary forms of "pure" diabetes insipidus: Neurohypophyseal diabetes insipidus, X-linked nephrogenic diabetes insipidus (NDI), and non-X-linked NDI, respectively. It is clinically useful to distinguish two types of hereditary NDI: A "pure" type characterized by loss of water only and a complex type characterized by loss of water and ions. Patients who have congenital NDI and bear mutations in the AVPR2 or AQP2 genes have a "pure" NDI phenotype with loss of water but normal conservation of sodium, potassium, chloride, and calcium. Patients who bear inactivating mutations in genes (SLC12A1, KCNJ1, CLCNKB, CLCNKA and CLCNKB in combination, or BSND) that encode the membrane proteins of the thick ascending limb of the loop of Henle have a complex polyuro-polydipsic syndrome with loss of water, sodium, chloride, calcium, magnesium, and potassium. These advances provide diagnostic and clinical tools for physicians who care for these patients.
Van de Wouw, Angela P.; Cozijnsen, Anton J.; Hane, James K.; Brunner, Patrick C.; McDonald, Bruce A.; Oliver, Richard P.; Howlett, Barbara J.
2010-01-01
Brassica napus (canola) cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a ‘gene for gene’ manner whereby plant resistance (R) genes are complementary to pathogen avirulence (Avr) genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6) also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP) mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans. PMID:21079787
Stephenson, Jason R; Wang, Xiaohan; Perfitt, Tyler L; Parrish, Walker P; Shonesy, Brian C; Marks, Christian R; Mortlock, Douglas P; Nakagawa, Terunaga; Sutcliffe, James S; Colbran, Roger J
2017-02-22
Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes. SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple CaMKII functions, induces synaptic deficits, and causes ASD-related behavioral alterations, providing novel insights into the synaptic mechanisms contributing to ASD. Copyright © 2017 the authors 0270-6474/17/372217-18$15.00/0.
Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo
2017-11-01
Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND.
Shastry, B S; Pendergast, S D; Hartzer, M K; Liu, X; Trese, M T
1997-05-01
Retinopathy of prematurity (ROP) is a retinal vascular disease occurring in infants with short gestational age and low birth weight and can lead to retinal detachment (ROP stages 4 and 5). X-linked familial exudative vitreoretinopathy is phenotypically similar to ROP and has been associated with mutations in the Norrie disease (ND) gene in some cases. To determine if similar mutations in the ND gene may play a role in the development of advanced ROP. Clinical examination and molecular genetic analysis were performed on 16 children, including 2 dizygotic and 1 monozygotic twin pairs, and their parents from 13 families. Sequencing of the amplified products revealed missense mutations (R121W and L108P) in the third exon of the ND gene in 4 patients. These mutations were not present in an unaffected premature twin, 2 children with regressed stage 3 ROP, the parents, or in 50 unrelated healthy control subjects. These findings suggest that mutations in the ND gene may play a role in the development of severe ROP in premature infants.
Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta.
Kim, Y-J; Seymen, F; Koruyucu, M; Kasimoglu, Y; Gencay, K; Shin, T J; Hyun, H-K; Lee, Z H; Kim, J-W
2016-05-01
To identify the molecular genetic aetiology of a family with autosomal dominant amelogenesis imperfecta (AI). DNA samples were collected from a six-generation family, and the candidate gene approach was used to screen for the enamelin (ENAM) gene. Whole-exome sequencing and linkage analysis with SNP array data identified linked regions, and candidate gene screening was performed. Mutational analysis revealed a mutation (c.561_562delCT and p.Tyr188Glnfs*13) in the DLX3 gene. After finding a recurrent DLX3 mutation, the clinical phenotype of the family members was re-examined. The proband's mother had pulp elongation in the third molars. The proband had not hair phenotype, but her cousin had curly hair at birth. In this study, we identified a recurrent 2-bp deletional DLX3 mutation in a new family. The clinical phenotype was the mildest one associated with the DLX3 mutations. These results will advance the understanding of the functional role of DLX3 in developmental processes. © 2016 The Authors. Oral Diseases Published by John Wiley & Sons Ltd.
Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease
Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo
2017-01-01
Purpose: Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. Methods: To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. Results: We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. Conclusion: c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND. PMID:29133643
Rosado, Consolación; Bueno, Elena; Fraile, Pilar; García-Cosmes, Pedro; González-Sarmiento, Rogelio
2015-01-01
Bilateral sensorineural hearing loss is a characteristic feature of Alport syndrome, which is always linked to renal manifestations so they have a parallel evolution and prognosis, and deafness helps to identify the renal disease. We report a family that suffers an autosomal dominant Alport syndrome caused by a previously undescribed mutation in the COL4A3 gene, in which several members have hearing impairment as the only clinical manifestation, suggesting that in this family deafness can occur independent of renal disease. This mutation is also present in a patient with anterior lenticonus, an observation only found in families with recessive and sex-linked Alport disease. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Mei, Davide; Marini, Carla; Novara, Francesca; Bernardina, Bernardo D; Granata, Tiziana; Fontana, Elena; Parrini, Elena; Ferrari, Anna R; Murgia, Alessandra; Zuffardi, Orsetta; Guerrini, Renzo
2010-04-01
Mutations of the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause an X-linked encephalopathy with early onset intractable epilepsy, including infantile spasms and other seizure types, and a Rett syndrome (RTT)-like phenotype. Very limited information is available on the frequency and phenotypic spectrum associated with CDKL5 deletions/duplications. We investigated the role of CDKL5 deletions/duplications in causing early onset intractable epilepsy of unknown etiology in girls. We studied 49 girls with early onset intractable epilepsy, with or without infantile spasms, and developmental impairment, for whom no etiologic factors were obvious after clinical examination, brain magnetic resonance imaging (MRI) and expanded screening for inborn errors of metabolism. We performed CDKL5 gene mutation analysis in all and multiplex ligation dependent probe amplification assay (MLPA) in those who were mutation negative. Custom Array-comparative genomic hybridization (CGH), breakpoint polymerase chain reaction (PCR) analysis, and X-inactivation studies were performed in patients in whom MLPA uncovered a genomic alteration. We found CDKL5 mutations in 8.2% (4 of 49) of patients and genomic deletions in 8.2% (4 of 49). Overall, abnormalities of the CDKL5 gene accounted for 16.3% (8 of 49) of patients. CDKL5 gene deletions are an under-ascertained cause of early onset intractable epilepsy in girls. Genetic testing of CDKL5, including both mutation and deletion/duplication analysis, should be considered in this clinical subgroup.
Cen, Jing; Nie, Min; Duan, Lian; Gu, Feng
2015-01-01
Recent evidence has linked novel mutations in the arginine vasopressin receptor 2 gene (AVPR2) and aquaporin-2 gene (AQP2) present in Southeast Asian populations to congenital nephrogenic diabetes insipidus (NDI). To investigate mutations in 2 distinct Chinese pedigrees with NDI patients, clinical data, laboratory findings, and genomic DNA sequences from peripheral blood leukocytes were analyzed in two 5.5- and 8-year-old boys (proband 1 and 2, respectively) and their first-degree relatives. Water intake, urinary volume, body weight and medication use were recorded. Mutations in coding regions and intron-exon borders of both AQP2 and AVPR2 gene were sequenced. Three mutations in AQP2 were detected, including previously reported heterozygous frameshift mutation (c.127_128delCA, p.Gln43Aspfs ×63) inherited from the mother, a novel frameshift mutation (c.501_502insC, p.Val168Argfs ×30, inherited from the father) in proband 1 and a novel missense mutation (c. 643G>A, p. G215S), inherited from both parents in proband 2. In family 2 both parents and one sister were heterozygous carriers of the novel missense mutation. Neither pedigree exhibited mutation in the AVPR2 gene. The patient with truncated AQP2 may present with much more severe NDI manifestations. Identification of these novel AQP2 gene mutations expands the AQP2 genotypic spectrum and may contribute to etiological diagnosis and genetic counseling. PMID:26064258
Connexin mutations in X-linked Charcot-Marie-Tooth disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergoffen, J.; Scherer, S.S.; Wang, S.
1993-12-24
X-linked Charcot-Marie-Tooth disease (CMTX) is a form of hereditary neuropathy with demyelination. Recently, this disorder was mapped to chromosome Xq13.1. The gene for the gap junction protein connexin32 is located in the same chromosomal segment, which led to its consideration as a candidate gene for CMTX. With the use of Northern (RNA) blot and immunohistochemistry techniques, it was found that connexin32 is normally expressed in myelinated peripheral nerve. Direct sequencing of the connexin32 gene showed seven different mutations in affected persons from eight CMTX families. These findings, a demonstration of inherited defects in a gap junction protein, suggest that connexin32more » plays an important role in peripheral nerve.« less
Novel HSF4 mutation causes congenital total white cataract in a Chinese family.
Ke, Tie; Wang, Qing K; Ji, Binchu; Wang, Xu; Liu, Ping; Zhang, Xianqin; Tang, Zhaohui; Ren, Xiang; Liu, Mugen
2006-08-01
To identify the disease-causing gene (mutation) in a Chinese family affected with autosomal dominant congenital total white cataract. Observational case series. Genotyping and linkage analyses were used to identify the linkage of the disease-causing gene in the Chinese family to the HSF4 gene encoding a member of the family of heat shock transcription factors (HSFs). Direct DNA sequence analysis was used to identify the disease-causing mutation. Polymerase chain reaction/restriction fragment length polymorphism analysis was used to demonstrate cosegregation of the HSF4 mutation with the cataract and the absence of the mutation in the normal controls. The cataract gene in the Chinese family was linked to marker D16S3043, and further haplotype analysis defined the causative gene between D16S515 and D16S415 within which HSF4 is located. A novel mutation c.221G>A was identified in HSF4, which results in substitution of a highly conserved arginine residue by histidine at codon 74 (p.R74H). The R74H mutation cosegregated with the affected individuals in the family and did not exist in unaffected family members and 150 unrelated normal controls. These results identified a novel missense mutation R74H in the transcription factor gene HSF4 in a Chinese cataract family and expand the spectrum of HSF4 mutations causing cataract.
Nagle, D L; Martin-DeLeon, P; Hough, R B; Bućan, M
1994-01-01
We are studying the chromosomal structure of three developmental mutations, dominant spotting (W), patch (Ph), and rump white (Rw) on mouse chromosome 5. These mutations are clustered in a region containing three genes encoding tyrosine kinase receptors (Kit, Pdgfra, and Flk1). Using probes for these genes and for a closely linked locus, D5Mn125, we established a high-resolution physical map covering approximately 2.8 Mb. The entire chromosomal segment mapped in this study is deleted in the W19H mutation. The map indicates the position of the Ph deletion, which encompasses not more than 400 kb around and including the Pdgfra gene. The map also places the distal breakpoint of the Rw inversion to a limited chromosomal segment between Kit and Pdgfra. In light of the structure of the Ph-W-Rw region, we interpret the previously published complementation analyses as indicating that the pigmentation defect in Rw/+ heterozygotes could be due to the disruption of Kit and/or Pdgfra regulatory sequences, whereas the gene(s) responsible for the recessive lethality of Rw/Rw embryos is not closely linked to the Ph and W loci and maps proximally to the W19H deletion. The structural analysis of chromosomal rearrangements associated with W19H, Ph, and Rw combined with the high-resolution physical mapping points the way toward the definition of these mutations in molecular terms and isolation of homologous genes on human chromosome 4. Images PMID:8041773
Four novel RS1 gene mutations in Polish patients with X-linked juvenile retinoschisis.
Skorczyk, Anna; Krawczyński, Maciej R
2012-01-01
To determine the clinical features and to identify mutations in the retinoschisis gene (RS1) in ten patients with X-linked retinoschisis (XLRS). Ten male patients from nine Polish families were included in this study. Ophthalmologic examinations, including optical coherence tomography (OCT) and full-field electroretinography (ERG), were performed in all affected boys. The entire coding region encompassing six exons of the RS1 gene was amplified with PCR and directly sequenced in all the patients. All affected individuals showed typical retinoschisis signs and symptoms, and all appeared to have a mutation in the RS1 gene. Seven different mutations were identified, including two novel missense substitutions: c.176G>C (p.Cys59Ser), c.451T>A (p.Tyr151Asp); one novel nonsense substitution: c.218C>A (p.Ser73*); and one novel frameshift mutation: c.354_355delCA (p.Asp118Glufs*2). We also found two missense substitutions that had been previously described: c.214G>A (p.Glu72Lys) and c.626G>T (p.Arg209Leu) and one known splice site mutation in intron 5: c.522+1G>T (IVS5+1G>T). This study provides the first molecular genetic characteristics of patients with juvenile retinoschisis from the previously unexplored Polish population. We investigated the molecular background of XLRS in ten boys. The present study reports for the first time four novel mutations, including two missense substitutions, one nonsense substitution, and one frameshift deletion. One of these substitutions and 2-bp deletion created stop codons. Moreover, we described three substitutions that had been previously reported (one is a splicing mutation). Further genetic characterization of Polish patients with XLRS will be helpful in understanding the worldwide spectrum of RS1 mutations. Despite the mutation heterogeneity found in a small group of our patients, they presented a relatively uniform clinical picture. Identifying the causative mutation is helpful in confirming diagnosis and counseling, but cannot provide prognostic data.
Kim, Hee-Jung; Kwon, Min-Jung; Choi, Won-Jun; Oh, Ki-Wook; Oh, Seong-Il; Ki, Chang-Seok; Kim, Seung Hyun
2014-08-01
Mutations in the UBQLN2 and SIGMAR1 genes were recently identified in X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia (ALS and/or FTD) and FTD and/or motor neuron disease, respectively. Subsequent studies, however, found that UBQLN2 mutations were rare, and the pathogenicity of SIGMAR1 mutation in FTD and/or motor neuron disease was controversial. In the present study, we analyzed mutations in the UBQLN2 and SIGMAR1 genes in a Korean cohort of 258 patients with familial ALS (n = 9) or sporadic (sALS; n = 258) ALS. One novel UBQLN2 variant (p.D314E) was observed in 2 patients with sALS and 5 of 727 controls indicating that this variant might be a rare polymorphism rather than a disease-causing mutation. A novel SIGMAR1 gene variant in the 3'-untranslated region (c.*58T>C) was found in 1 sALS and was absent in 727 control samples. Taken together, our data suggest that causative mutations in the UBQLN2 and SIGMAR1 genes are rare in Korean patients with either familial or sporadic ALS. Copyright © 2014 Elsevier Inc. All rights reserved.
Mutations in two large pedigrees highlight the role of ZNF711 in X-linked intellectual disability.
van der Werf, Ilse M; Van Dijck, Anke; Reyniers, Edwin; Helsmoortel, Céline; Kumar, Ajay Anand; Kalscheuer, Vera M; de Brouwer, Arjan Pm; Kleefstra, Tjitske; van Bokhoven, Hans; Mortier, Geert; Janssens, Sandra; Vandeweyer, Geert; Kooy, R Frank
2017-03-20
Intellectual disability (ID) affects approximately 1-2% of the general population and is characterized by impaired cognitive abilities. ID is both clinically as well as genetically heterogeneous, up to 2000 genes are estimated to be involved in the emergence of the disease with various clinical presentations. For many genes, only a few patients have been reported and causality of some genes has been questioned upon the discovery of apparent loss-of-function mutations in healthy controls. Description of additional patients strengthens the evidence for the involvement of a gene in the disease and can clarify the clinical phenotype associated with mutations in a particular gene. Here, we present two large four-generation families with a total of 11 males affected with ID caused by mutations in ZNF711, thereby expanding the total number of families with ID and a ZNF711 mutation to four. Patients with mutations in ZNF711 all present with mild to moderate ID and poor speech accompanied by additional features in some patients, including autistic features and mild facial dysmorphisms, suggesting that ZNF711 mutations cause non-syndromic ID. Copyright © 2016 Elsevier B.V. All rights reserved.
Identification of three novel NHS mutations in families with Nance-Horan syndrome
Wu, Junhua; Brooks, Simon P.; Hardcastle, Alison J.; Lewis, Richard Alan; Stambolian, Dwight
2007-01-01
Purpose Nance-Horan Syndrome (NHS) is an infrequent and often overlooked X-linked disorder characterized by dense congenital cataracts, microphthalmia, and dental abnormalities. The syndrome is caused by mutations in the NHS gene, whose function is not known. The purpose of this study was to identify the frequency and distribution of NHS gene mutations and compare genotype with Nance-Horan phenotype in five North American NHS families. Methods Genomic DNA was isolated from white blood cells from NHS patients and family members. The NHS gene coding region and its splice site donor and acceptor regions were amplified from genomic DNA by PCR, and the amplicons were sequenced directly. Results We identified three unique NHS coding region mutations in these NHS families. Conclusions This report extends the number of unique identified NHS mutations to 14. PMID:17417607
BTKbase, mutation database for X-linked agammaglobulinemia (XLA).
Vihinen, M; Brandau, O; Brandén, L J; Kwan, S P; Lappalainen, I; Lester, T; Noordzij, J G; Ochs, H D; Ollila, J; Pienaar, S M; Riikonen, P; Saha, B K; Smith, C I
1998-01-01
X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the gene coding for Bruton's agammaglobulinemia tyrosine kinase (BTK). A database (BTKbase) of BTK mutations has been compiled and the recent update lists 463 mutation entries from 406 unrelated families showing 303 unique molecular events. In addition to mutations, the database also lists variants or polymorphisms. Each patient is given a unique patient identity number (PIN). Information is included regarding the phenotype including symptoms. Mutations in all the five domains of BTK have been noticed to cause the disease, the most common event being missense mutations. The mutations appear almost uniformly throughout the molecule and frequently affect CpG sites that code for arginine residues. The putative structural implications of all the missense mutations are given in the database. The improved version of the registry having a number of new features is available at http://www. helsinki.fi/science/signal/btkbase.html PMID:9399844
Maciejowski, John; Ahn, James Hyungsoo; Cipriani, Patricia Giselle; Killian, Darrell J.; Chaudhary, Aisha L.; Lee, Ji Inn; Voutev, Roumen; Johnsen, Robert C.; Baillie, David L.; Gunsalus, Kristin C.; Fitch, David H. A.; Hubbard, E. Jane Albert
2005-01-01
We report molecular genetic studies of three genes involved in early germ-line proliferation in Caenorhabditis elegans that lend unexpected insight into a germ-line/soma functional separation of autosomal/X-linked duplicated gene pairs. In a genetic screen for germ-line proliferation-defective mutants, we identified mutations in rpl-11.1 (L11 protein of the large ribosomal subunit), pab-1 [a poly(A)-binding protein], and glp-3/eft-3 (an elongation factor 1-α homolog). All three are members of autosome/X gene pairs. Consistent with a germ-line-restricted function of rpl-11.1 and pab-1, mutations in these genes extend life span and cause gigantism. We further examined the RNAi phenotypes of the three sets of rpl genes (rpl-11, rpl-24, and rpl-25) and found that for the two rpl genes with autosomal/X-linked pairs (rpl-11 and rpl-25), zygotic germ-line function is carried by the autosomal copy. Available RNAi results for highly conserved autosomal/X-linked gene pairs suggest that other duplicated genes may follow a similar trend. The three rpl and the pab-1/2 duplications predate the divergence between C. elegans and C. briggsae, while the eft-3/4 duplication appears to have occurred in the lineage to C. elegans after it diverged from C. briggsae. The duplicated C. briggsae orthologs of the three C. elegans autosomal/X-linked gene pairs also display functional differences between paralogs. We present hypotheses for evolutionary mechanisms that may underlie germ-line/soma subfunctionalization of duplicated genes, taking into account the role of X chromosome silencing in the germ line and analogous mammalian phenomena. PMID:15687263
Huang, Yanru; Mei, Libin; Pan, Qian; Tan, Hu; Quan, Yi; Gui, Baoheng; Chang, Jiazhen; Ma, Ruiyu; Peng, Ying; Yang, Pu; Liang, Desheng; Wu, Lingqian
2015-07-01
X-linked hypophosphatemic rickets (XLHR), the most common form of inherited rickets, is a dominant disorder characterized by hypophosphatemia, abnormal bone mineralization, and short stature. Mutations in the PHEX gene are major causes of XLHR. Herein, we clinically characterized four unrelated families with hypophosphatemia, bone abnormalities, short stature, and dentin malformation. Mutational analysis of the PHEX gene using Sanger sequencing revealed three recurrent mutations (c.2197T>C, c.1646G>C, and c.2198G>A) and a de novo nonsense mutation (c.148A>T). The novel mutation was not found in any of the unaffected family members or in the 100 healthy controls and was predicted to produce a truncated protein (p.K50X), a truncated form of the PHEX protein caused by nonsense mutations has been frequently detected in XLHR individuals. Thus, our work indicated that the c.148A>T (p.K50X) mutation was the likely pathogenic mutation in individual III-2 in family 2, and that PHEX gene mutations were responsible for XLHR in these Chinese families. These findings expand the mutation spectrum of PHEX and may help us to understand the molecular basis of XLHR in order to facilitate genetic counseling. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faraco, J.; Francke, U.; Toledo, S.
Familial idiopathic gonadotropin deficiency (FIGD) is an autosomal recessive disorder which results in failure to develop secondary sexual characteristics. The origin is a hypothalamic defect resulting in insufficient secretion of gonadotropin-releasing hormone GnRH (also called LHRH, luteinizing hormone releasing hormone) and follicle-stimuating hormone (FSH). FIGD has been determined to be a separate entity from Kallmann syndrome which presents with hypogonadism as well as anosmia. The FIGD phenotype appears to be analogous to the phenotype of the hpg (hypogonadal) mouse. Because the hpg phenotype is the result of a structurally abnormal GnRH gene, we have studied the GnRH gene in individualsmore » from a previously reported Brazilian FIGD family. An informative dimorphic marker in the signal peptide sequence of the GnRH gene allowed assessment of linkage between the disease gene and the GnRH locus in this pedigree. We have concluded that the GnRH locus is not linked to the disease-causing mutation in these hypogonadal individuals. Recent evidence suggests that neuropeptide Y (NPY) may play a role in the initiation of puberty. We hypothesize that mutations in NPY may result in failure to secrete GnRH. We have characterized three diallelic frequent-cutter restriction fragment length polymorphisms within the human NPY locus, and are currently using these markers to determine if the NPY gene is linked to, and possibly the site of the disease mutation in this kindred.« less
X-linked juvenile retinoschisis (XLRS): a review of genotype-phenotype relationships.
Kim, David Y; Mukai, Shizuo
2013-01-01
X-linked juvenile retinoschisis (XLRS) is one of the most common genetic causes of juvenile progressive retinal-vitreal degeneration in males. To date, more than 196 different mutations of the RS1 gene have been associated with XLRS. The mutation spectrum is large and the phenotype variable. This review will focus on the clinical features of XLRS and examine the relationship between phenotype and genotype.
Exome Sequencing of 18 Chinese Families with Congenital Cataracts: A New Sight of the NHS Gene
Sun, Wenmin; Xiao, Xueshan; Li, Shiqiang; Guo, Xiangming; Zhang, Qingjiong
2014-01-01
Purpose The aim of this study was to investigate the mutation spectrum and frequency of 34 known genes in 18 Chinese families with congenital cataracts. Methods Genomic DNA and clinical data was collected from 18 families with congenital cataracts. Variations in 34 cataract-associated genes were screened by whole exome sequencing and then validated by Sanger sequencing. Results Eleven candidate variants in seven of the 34 genes were detected by exome sequencing and then confirmed by Sanger sequencing, including two variants predicted to be benign and the other pathogenic mutations. The nine mutations were present in 9 of the 18 (50%) families with congenital cataracts. Of the four families with mutations in the X-linked NHS gene, no other abnormalities were recorded except for cataract, in which a pseudo-dominant inheritance form was suggested, as female carriers also had different forms of cataracts. Conclusion This study expands the mutation spectrum and frequency of genes responsible for congenital cataract. Mutation in NHS is a common cause of nonsyndromic congenital cataract with pseudo-autosomal dominant inheritance. Combined with our previous studies, a genetic basis could be identified in 67.6% of families with congenital cataracts in our case series, in which mutations in genes encoding crystallins, genes encoding connexins, and NHS are responsible for 29.4%, 14.7%, and 11.8% of families, respectively. Our results suggest that mutations in NHS are the common cause of congenital cataract, both syndromic and nonsyndromic. PMID:24968223
Alport Syndrome: De Novo Mutation in the COL4A5 Gene Converting Glycine 1205 to Valine.
Antón-Martín, Pilar; Aparicio López, Cristina; Ramiro-León, Soraya; Santillán Garzón, Sonia; Santos-Simarro, Fernando; Gil-Fournier, Belén
2012-01-01
Alport syndrome is a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family. It is a genetically heterogeneous disease with different mutations and forms of inheritance that presents with renal affection, hearing loss and eye defects. Several new mutations related to X-linked forms have been previously determined. We report the case of a 12 years old male and his family diagnosed with Alport syndrome after genetic analysis was performed. A new mutation determining a nucleotide change c.3614G > T (p.Gly1205Val) in hemizygosis in the COL4A5 gene was found. This molecular defect has not been previously described. Molecular biology has helped us to comprehend the mechanisms of pathophysiology in Alport syndrome. Genetic analysis provides the only conclusive diagnosis of the disorder at the moment. Our contribution with a new mutation further supports the need of more sophisticated molecular methods to increase the mutation detection rates with lower costs and less time.
USDA-ARS?s Scientific Manuscript database
DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are transcription factors that have been linked to endodormancy induction. The evergrowing mutation in peach, which renders it incapable of entering endodormancy, resulted from a deletion in a series of DAM genes (Bielenberg et al. 2008). Likewise, DAM genes ...
USDA-ARS?s Scientific Manuscript database
DORMANCY-ASSOCIATED MADS-BOX (DAM) genes are transcription factors that have been linked to endodormancy induction. The evergrowing mutation in peach, which renders it incapable of entering endodormancy, resulted from a deletion in a series of DAM genes (Bielenberg et al. 2008). Likewise, DAM genes ...
Wieczorek, Aneta; Fornalewicz, Karolina; Mocarski, Łukasz; Łyżeń, Robert; Węgrzyn, Grzegorz
2018-04-15
Genetic evidence for a link between DNA replication and glycolysis has been demonstrated a decade ago in Bacillus subtilis, where temperature-sensitive mutations in genes coding for replication proteins could be suppressed by mutations in genes of glycolytic enzymes. Then, a strong influence of dysfunctions of particular enzymes from the central carbon metabolism (CCM) on DNA replication and repair in Escherichia coli was reported. Therefore, we asked if such a link occurs only in bacteria or it is a more general phenomenon. Here, we demonstrate that effects of silencing (provoked by siRNA) of expression of genes coding for proteins involved in DNA replication and repair (primase, DNA polymerase ι, ligase IV, and topoisomerase IIIβ) on these processes (less efficient entry into the S phase of the cell cycle and decreased level of DNA synthesis) could be suppressed by silencing of specific genes of enzymes from CMM. Silencing of other pairs of replication/repair and CMM genes resulted in enhancement of the negative effects of lower expression levels of replication/repair genes. We suggest that these results may be proposed as a genetic evidence for the link between DNA replication/repair and CMM in human cells, indicating that it is a common biological phenomenon, occurring from bacteria to humans. Copyright © 2018 Elsevier B.V. All rights reserved.
SPG3A-linked hereditary spastic paraplegia associated with cerebral glucose hypometabolism.
Terada, Tatsuhiro; Kono, Satoshi; Ouchi, Yasuomi; Yoshida, Kenichi; Hamaya, Yasushi; Kanaoka, Shigeru; Miyajima, Hiroaki
2013-04-01
SPG3A-linked hereditary spastic paraplegia (HSP) is a rare autosomal dominant motor disorder caused by a mutation in the SPG3A gene, and is characterized by progressive motor weakness and spasticity in the lower limbs, without any other neurological abnormalities. SPG3A-linked HSP caused by a R239C mutation has been reported to present a pure phenotype confined to impairment of the corticospinal tract. However, there is still a debate about the etiology of this motor deficit with regard to whether it is peripheral or central. We herein report two patients who were heterozygous for a R239C mutation in the SPG3A gene. Two middle-aged Japanese sisters had been suffering from a pure phenotype of HSP since their childhood. Both patients had a significant decrease in glucose metabolism in the frontal cortex medially and dorsolaterally in a [(18)F]-fluorodeoxyglucose (FDG) positron emission photography (PET) study and low scores on the Frontal Assessment Battery. A real-time PCR analysis in normal subjects showed the frontal cortex to be the major location where SPG3A mRNA is expressed. The present finding that the frontal glucose hypometabolism was associated with frontal cognitive impairment indicates that widespread neuropathology associated with mutations in the SPG3A gene may be present more centrally than previously assumed.
Zahorakova, Daniela; Rosipal, Robert; Hadac, Jan; Zumrova, Alena; Bzduch, Vladimir; Misovicova, Nadezda; Baxova, Alice; Zeman, Jiri; Martasek, Pavel
2007-01-01
Rett syndrome (RTT), an X-linked dominant neurodevelopmental disorder in females, is caused mainly by de novo mutations in the methyl-CpG-binding protein 2 gene (MECP2). Here we report mutation analysis of the MECP2 gene in 87 patients with RTT from the Czech and Slovak Republics, and Ukraine. The patients, all girls, with classical RTT were investigated for mutations using bi-directional DNA sequencing and conformation sensitive gel electrophoresis analysis of the coding sequence and exon/intron boundaries of the MECP2 gene. Restriction fragment length polymorphism analysis was performed to confirm the mutations that cause the creation or abolition of the restriction site. Mutation-negative cases were subsequently examined by multiple ligation-dependent probe amplification (MLPA) to identify large deletions. Mutation screening revealed 31 different mutations in 68 patients and 12 non-pathogenic polymorphisms. Six mutations have not been previously published: two point mutations (323T>A, 904C>T), three deletions (189_190delGA, 816_832del17, 1069delAGC) and one deletion/inversion (1063_1236del174;1189_1231inv43). MLPA analysis revealed large deletions in two patients. The detection rate was 78.16%. Our results confirm the high frequency of MECP2 mutations in females with RTT and provide data concerning the mutation heterogeneity in the Slavic population.
Garst, Andrew D; Bassalo, Marcelo C; Pines, Gur; Lynch, Sean A; Halweg-Edwards, Andrea L; Liu, Rongming; Liang, Liya; Wang, Zhiwen; Zeitoun, Ramsey; Alexander, William G; Gill, Ryan T
2017-01-01
Improvements in DNA synthesis and sequencing have underpinned comprehensive assessment of gene function in bacteria and eukaryotes. Genome-wide analyses require high-throughput methods to generate mutations and analyze their phenotypes, but approaches to date have been unable to efficiently link the effects of mutations in coding regions or promoter elements in a highly parallel fashion. We report that CRISPR-Cas9 gene editing in combination with massively parallel oligomer synthesis can enable trackable editing on a genome-wide scale. Our method, CRISPR-enabled trackable genome engineering (CREATE), links each guide RNA to homologous repair cassettes that both edit loci and function as barcodes to track genotype-phenotype relationships. We apply CREATE to site saturation mutagenesis for protein engineering, reconstruction of adaptive laboratory evolution experiments, and identification of stress tolerance and antibiotic resistance genes in bacteria. We provide preliminary evidence that CREATE will work in yeast. We also provide a webtool to design multiplex CREATE libraries.
Doran, Mark; du Plessis, Daniel G; Ghadiali, Eric J; Mann, David M A; Pickering-Brown, Stuart; Larner, Andrew J
2007-10-01
Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) owing to the tau intron 10 + 16 mutation usually occurs with a prototypical frontotemporal dementia phenotype with prominent disinhibition and affective disturbances. To report a new FTDP-17 pedigree with the tau intron 10 + 16 mutation demonstrating a clinical phenotype suggestive of Alzheimer disease. Case reports. Regional neuroscience centers in northwest England. Patients We examined 4 members of a kindred in which 8 individuals were affected in 3 generations. All 4 patients reported memory difficulty. Marked anomia was also present, but behavioral disturbances were conspicuously absent in the early stages of disease. All patients had an initial clinical diagnosis of Alzheimer disease. No mutations were found in the presenilin or amyloid precursor protein genes. Pathologic examination of the proband showed features typical of FTDP-17, and tau gene analysis showed the intron 10 + 16 mutation. This pedigree illustrates the phenotypic variability of tau intron 10 + 16 mutations. In pedigrees with a clinical diagnosis of Alzheimer disease but without presenilin or amyloid precursor protein gene mutations, tau gene mutations may be found.
Pede, Valerie; Rombout, Ans; Vermeire, Jolien; Naessens, Evelien; Mestdagh, Pieter; Robberecht, Nore; Vanderstraeten, Hanne; Van Roy, Nadine; Vandesompele, Jo; Speleman, Frank; Philippé, Jan; Verhasselt, Bruno
2013-01-01
Chronic lymphocytic leukemia (CLL) is a disease with variable clinical outcome. Several prognostic factors such as the immunoglobulin heavy chain variable genes (IGHV) mutation status are linked to the B-cell receptor (BCR) complex, supporting a role for triggering the BCR in vivo in the pathogenesis. The miRNA profile upon stimulation and correlation with IGHV mutation status is however unknown. To evaluate the transcriptional response of peripheral blood CLL cells upon BCR stimulation in vitro, miRNA and mRNA expression was measured using hybridization arrays and qPCR. We found both IGHV mutated and unmutated CLL cells to respond with increased expression of MYC and other genes associated with BCR activation, and a phenotype of cell cycle progression. Genome-wide expression studies showed hsa-miR-132-3p/hsa-miR-212 miRNA cluster induction associated with a set of downregulated genes, enriched for genes modulated by BCR activation and amplified by Myc. We conclude that BCR triggering of CLL cells induces a transcriptional response of genes associated with BCR activation, enhanced cell cycle entry and progression and suggest that part of the transcriptional profiles linked to IGHV mutation status observed in isolated peripheral blood are not cell intrinsic but rather secondary to in vivo BCR stimulation. PMID:23560086
Fanconi anemia in Tunisia: high prevalence of group A and identification of new FANCA mutations.
Bouchlaka, Chiraz; Abdelhak, Sonia; Amouri, Ahlem; Ben Abid, Hela; Hadiji, Sondes; Frikha, Mounir; Ben Othman, Tarek; Amri, Fethi; Ayadi, Hammadi; Hachicha, Mongia; Rebaï, Ahmed; Saad, Ali; Dellagi, Koussay
2003-01-01
Fanconi anemia (FA) is a rare autosomal recessive disease characterized by progressive pancytopenia, congenital malformations, and predisposition to acute myeloid leukemia. Fanconi anemia is genetically heterogeneous, with at least eight distinct complementation groups of FA (A, B, C, D1, D2, E, F, and G) having been defined by somatic cell fusion studies. Six genes (FANCA, FANCC, FANCD2, FANCE, FANCG, and FANCF) have been cloned. Mutations of the seventh Fanconi anemia gene, BRCA2, have been shown to lead to FAD1 and probably FAB groups. In order to characterize the molecular defects underlying FA in Tunisia, 39 families were genotyped with microsatellite markers linked to known FA gene. Haplotype analysis and homozygosity mapping assigned 43 patients belonging to 34 families to the FAA group, whereas one family was probably not linked to the FANCA gene or to any known FA genes. For patients belonging to the FAA group, screening for mutations revealed four novel mutations: two small homozygous deletions 1693delT and 1751-1754del, which occurred in exon 17 and exon 19, respectively, and two transitions, viz., 513G-->A in exon 5 and A-->G at position 166 (IVS24+166A-->G) of intron 24. Two new polymorphisms were also identified in intron 24 (IVS24-5G/A and IVS24-6C/G).
Gu, S M; Orth, U; Zankl, M; Schröder, J; Gal, A
1997-08-22
Eight novel mutations were identified in the gene encoding L1CAM, a neural cell adhesion protein, in patients/families with X-linked hydrocephalus (XHC) providing additional evidence for extreme allelic heterogeneity of the trait. The two nonsense mutations (Gln440Ter and Gln1042Ter) result most likely in functional null-alleles and complete absence of L1CAM at the cell surface. The four missense mutations (Leu482Pro, Ser542Pro, Met741Thr, and Val752Met) as well as delSer526 may considerably alter the structure of L1CAM. Interestingly, a missense mutation in an XHC family predicting the Val768Ile change in the second fibronectin type III domain of L1CAM was found not only in the two affected cousins and their obligate carrier mothers but also in two unaffected male relatives of the patients. Several possible explanations of this finding are discussed; the most likely being that Val768Ile is a rare non-pathogenic variant. If this were indeed the case, our data suggest that the XHC in this family is not due to a mutation of the L1CAM gene, i.e., that, in addition to the extreme allelic heterogeneity of XHC, a non-allelic form of genetic heterogeneity may also exist in this trait.
Bögershausen, Nina; Gatinois, Vincent; Riehmer, Vera; Kayserili, Hülya; Becker, Jutta; Thoenes, Michaela; Simsek-Kiper, Pelin Özlem; Barat-Houari, Mouna; Elcioglu, Nursel H; Wieczorek, Dagmar; Tinschert, Sigrid; Sarrabay, Guillaume; Strom, Tim M; Fabre, Aurélie; Baynam, Gareth; Sanchez, Elodie; Nürnberg, Gudrun; Altunoglu, Umut; Capri, Yline; Isidor, Bertrand; Lacombe, Didier; Corsini, Carole; Cormier-Daire, Valérie; Sanlaville, Damien; Giuliano, Fabienne; Le Quan Sang, Kim-Hanh; Kayirangwa, Honorine; Nürnberg, Peter; Meitinger, Thomas; Boduroglu, Koray; Zoll, Barbara; Lyonnet, Stanislas; Tzschach, Andreas; Verloes, Alain; Di Donato, Nataliya; Touitou, Isabelle; Netzer, Christian; Li, Yun; Geneviève, David; Yigit, Gökhan; Wollnik, Bernd
2016-09-01
Kabuki syndrome (KS) is a rare but recognizable condition that consists of a characteristic face, short stature, various organ malformations, and a variable degree of intellectual disability. Mutations in KMT2D have been identified as the main cause for KS, whereas mutations in KDM6A are a much less frequent cause. Here, we report a mutation screening in a case series of 347 unpublished patients, in which we identified 12 novel KDM6A mutations (KS type 2) and 208 mutations in KMT2D (KS type 1), 132 of them novel. Two of the KDM6A mutations were maternally inherited and nine were shown to be de novo. We give an up-to-date overview of all published mutations for the two KS genes and point out possible mutation hot spots and strategies for molecular genetic testing. We also report the clinical details for 11 patients with KS type 2, summarize the published clinical information, specifically with a focus on the less well-defined X-linked KS type 2, and comment on phenotype-genotype correlations as well as sex-specific phenotypic differences. Finally, we also discuss a possible role of KDM6A in Kabuki-like Turner syndrome and report a mutation screening of KDM6C (UTY) in male KS patients. © 2016 WILEY PERIODICALS, INC.
Reis, Linda M.; Tyler, Rebecca C.; Muheisen, Sanaa; Raggio, Victor; Salviati, Leonardo; Han, Dennis P.; Costakos, Deborah; Yonath, Hagith; Hall, Sarah; Power, Patricia; Semina, Elena V.
2013-01-01
Pediatric cataracts are observed in 1–15 per 10,000 births with 10–25% of cases attributed to genetic causes; autosomal dominant inheritance is the most commonly observed pattern. Since the specific cataract phenotype is not sufficient to predict which gene is mutated, whole exome sequencing (WES) was utilized to concurrently screen all known cataract genes and to examine novel candidate factors for a disease-causing mutation in probands from 23 pedigrees affected with familial dominant cataract. Review of WES data for 36 known cataract genes identified causative mutations in nine pedigrees (39%) in CRYAA, CRYBB1, CRYBB3, CRYGC (2), CRYGD, GJA8 (2), and MIP and an additional likely causative mutation in EYA1; the CRYBB3 mutation represents the first dominant allele in this gene and demonstrates incomplete penetrance. Examination of crystallin genes not yet linked to human disease identified a novel cataract gene, CRYBA2, a member of the βγ-crystallin superfamily. The p.(Val50Met) mutation in CRYBA2 cosegregated with disease phenotype in a four-generation pedigree with autosomal dominant congenital cataracts with incomplete penetrance. Expression studies detected cryba2 transcripts during early lens development in zebrafish, supporting its role in congenital disease. Our data highlight the extreme genetic heterogeneity of dominant cataract as the eleven causative/likely causative mutations affected nine different genes and the majority of mutant alleles were novel. Furthermore, these data suggest that less than half of dominant cataract can be explained by mutations in currently known genes. PMID:23508780
de Sousa Dias, Miguel; Hernan, Imma; Delás, Barbara; Pascual, Beatriz; Borràs, Emma; Gamundi, Maria José; Mañé, Begoña; Fernández-San José, Patricia; Ayuso, Carmen
2015-01-01
Purpose This study aimed to test a newly devised cost-effective multiplex PCR assay for the molecular diagnosis of autosomal dominant retinitis pigmentosa (adRP), as well as the use of whole-exome sequencing (WES) to detect disease-causing mutations in adRP. Methods Genomic DNA was extracted from peripheral blood lymphocytes of index patients with adRP and their affected and unaffected family members. We used a newly devised multiplex PCR assay capable of amplifying the genetic loci of RHO, PRPH2, RP1, PRPF3, PRPF8, PRPF31, IMPDH1, NRL, CRX, KLHL7, and NR2E3 to molecularly diagnose 18 index patients with adRP. We also performed WES in affected and unaffected members of four families with adRP in whom a disease-causing mutation was previously not found. Results We identified five previously reported mutations (p.Arg677X in the RP1 gene, p.Asp133Val and p.Arg195Leu in the PRPH2 gene, and p.Pro171Leu and p.Pro215Leu in the RHO gene) and one novel mutation (p.Val345Gly in the RHO gene) representing 33% detection of causative mutations in our adRP cohort. Comparative WES analysis showed a new variant (p.Gly103Arg in the COL6A6 gene) that segregated with the disease in one family with adRP. As this variant was linked with the RHO locus, we sequenced the complete RHO gene, which revealed a deletion in intron 4 that encompassed all of exon 5 and 28 bp of the 3′-untranslated region (UTR). Conclusions The novel multiplex PCR assay with next-generation sequencing (NGS) proved effective for detecting most of the adRP-causing mutations. A WES approach led to identification of a deletion in RHO through detection of a new linked variant in COL6A6. No pathogenic variants were identified in the remaining three families. Moreover, NGS and WES were inefficient for detecting the complete deletion of exon 5 in the RHO gene in one family with adRP. Carriers of this deletion showed variable clinical status, and two of these carriers had not previously been diagnosed with RP. PMID:26321861
Levy-Litan, Varda; Hershkovitz, Eli; Avizov, Luba; Leventhal, Neta; Bercovich, Dani; Chalifa-Caspi, Vered; Manor, Esther; Buriakovsky, Sophia; Hadad, Yair; Goding, James; Parvari, Ruti
2010-01-01
Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1. PMID:20137772
Bichet, Daniel G; Bockenhauer, Detlef
2016-03-01
Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. About 90% of patients with congenital NDI are males with X-linked NDI who have mutations in the vasopressin V2 receptor (AVPR2) gene encoding the vasopressin V2 receptor. In less than 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance with mutations in the aquaporin-2 (AQP2) gene. When studied in vitro, most AVPR2 and AQP2 mutations lead to proteins trapped in the endoplasmic reticulum and are unable to reach the plasma membrane. Prior knowledge of AVPR2 or AQP2 mutations in NDI families and perinatal mutation testing is of direct clinical value and can avert the physical and mental retardation associated with repeated episodes of dehydration. Copyright © 2016 Elsevier Ltd. All rights reserved.
2011-01-01
Background Genetic Hypophosphatemic Rickets (HR) is a group of diseases characterized by renal phosphate wasting with inappropriately low or normal 1,25-dihydroxyvitamin D3 (1,25(OH)2D) serum levels. The most common form of HR is X-linked dominant HR (XLHR) which is caused by inactivating mutations in the PHEX gene. The purpose of this study was to perform genetic diagnosis in a cohort of patients with clinical diagnosis of HR, to perform genotype-phenotype correlations of those patients and to compare our data with other HR cohort studies. Methods Forty three affected individuals from 36 non related families were analyzed. For the genetic analysis, the PHEX gene was sequenced in all of the patients and in 13 cases the study was complemented by mRNA sequencing and Multiple Ligation Probe Assay. For the genotype-phenotype correlation study, the clinical and biochemical phenotype of the patients was compared with the type of mutation, which was grouped into clearly deleterious or likely causative, using the Mann-Whitney and Fisher's exact test. Results Mutations in the PHEX gene were identified in all the patients thus confirming an XLHR. Thirty four different mutations were found distributed throughout the gene with higher density at the 3' end. The majority of the mutations were novel (69.4%), most of them resulted in a truncated PHEX protein (83.3%) and were family specific (88.9%). Tubular reabsorption of phosphate (TRP) and 1,25(OH)2D serum levels were significantly lower in patients carrying clearly deleterious mutations than in patients carrying likely causative ones (61.39 ± 19.76 vs. 80.14 ± 8.80%, p = 0.028 and 40.93 ± 30.73 vs. 78.46 ± 36.27 pg/ml, p = 0.013). Conclusions PHEX gene mutations were found in all the HR cases analyzed, which was in contrast with other cohort studies. Patients with clearly deleterious PHEX mutations had lower TRP and 1,25(OH)2D levels suggesting that the PHEX type of mutation might predict the XLHR phenotype severity. PMID:21902834
Mutations in the human GlyT2 gene define a presynaptic component of human startle disease
Rees, Mark I.; Harvey, Kirsten; Pearce, Brian R.; Chung, Seo-Kyung; Duguid, Ian C.; Thomas, Philip; Beatty, Sarah; Graham, Gail E.; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J.; Zuberi, Sameer M.; Stephenson, John B.P.; Owen, Michael J.; Tijssen, Marina A.J.; van den Maagdenberg, Arn M.J.M.; Smart, Trevor G.; Supplisson, Stéphane; Harvey, Robert J.
2011-01-01
Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1)1-3. Genetic heterogeneity has been confirmed in isolated sporadic cases with mutations in other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB)4, gephyrin (GPHN)5 and RhoGEF collybistin (ARHGEF9)6. However, many sporadic patients diagnosed with hyperekplexia do not carry mutations in these genes2-7. Here we reveal that missense, nonsense and frameshift mutations in the presynaptic glycine transporter 2 (GlyT2) gene (SLC6A5)8 also cause hyperekplexia. Patients harbouring mutations in SLC6A5 presented with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnoea episodes. GlyT2 mutations result in defective subcellular localisation and/or decreased glycine uptake, with selected mutations affecting predicted glycine and Na+ binding sites. Our results demonstrate that SLC6A5 is a major gene for hyperekplexia and define the first neurological disorder linked to mutations in a Na+/Cl−-dependent transporter for a classical fast neurotransmitter. By analogy, we suggest that in other human disorders where defects in postsynaptic receptors have been identified, similar symptoms could result from defects in the cognate presynaptic neurotransmitter transporter. PMID:16751771
Recurrent PTPRB and PLCG1 mutations in angiosarcoma.
Behjati, Sam; Tarpey, Patrick S; Sheldon, Helen; Martincorena, Inigo; Van Loo, Peter; Gundem, Gunes; Wedge, David C; Ramakrishna, Manasa; Cooke, Susanna L; Pillay, Nischalan; Vollan, Hans Kristian M; Papaemmanuil, Elli; Koss, Hans; Bunney, Tom D; Hardy, Claire; Joseph, Olivia R; Martin, Sancha; Mudie, Laura; Butler, Adam; Teague, Jon W; Patil, Meena; Steers, Graham; Cao, Yu; Gumbs, Curtis; Ingram, Davis; Lazar, Alexander J; Little, Latasha; Mahadeshwar, Harshad; Protopopov, Alexei; Al Sannaa, Ghadah A; Seth, Sahil; Song, Xingzhi; Tang, Jiabin; Zhang, Jianhua; Ravi, Vinod; Torres, Keila E; Khatri, Bhavisha; Halai, Dina; Roxanis, Ioannis; Baumhoer, Daniel; Tirabosco, Roberto; Amary, M Fernanda; Boshoff, Chris; McDermott, Ultan; Katan, Matilda; Stratton, Michael R; Futreal, P Andrew; Flanagan, Adrienne M; Harris, Adrian; Campbell, Peter J
2014-04-01
Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionizing radiation or chronic lymphoedema. Previous work has identified aberrant angiogenesis, including occasional somatic mutations in angiogenesis signaling genes, as a key driver of angiosarcoma. Here we employed whole-genome, whole-exome and targeted sequencing to study the somatic changes underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harbored predominantly truncating mutations in 10 of 39 tumors (26%). PLCG1, a signal transducer of tyrosine kinases, encoded a recurrent, likely activating p.Arg707Gln missense variant in 3 of 34 cases (9%). Overall, 15 of 39 tumors (38%) harbored at least one driver mutation in angiogenesis signaling genes. Our findings inform and reinforce current therapeutic efforts to target angiogenesis signaling in angiosarcoma.
Bit-Ivan, Esther N.; Suh, Eunran; Shim, H-S; Weintraub, Sandra; Hyman, Bradley T.; Arnold, Steven E.; McCarty-Wood, Elisabeth; Van Deerlin, Viviana M.; Schneider, Julie A.; Trojanowski, John Q.; Frosch, Matthew P.; Baker, Matt C.; Rademakers, Rosa; Mesulam, Marsel; Bigio, Eileen H.
2014-01-01
Understanding of frontotemporal lobar degeneration (FTLD), the underlying pathology that is most often linked to the clinical diagnosis of frontotemporal dementia (FTD), is rapidly increasing. Mutations in 7 known genes (MAPT, GRN, C9orf72, VCP, CHMP2B, and rarely TARDBP and FUS) are associated with FTD and the pathologic classification of FTLD has recently been modified to reflect these discoveries. Mutations in one of these genes (GRN), which encodes progranulin, have been implicated in up to one quarter of FTLD cases with TAR DNA-binding protein 43-positive inclusions (FTLD-TDP); there currently are more than 60 known pathogenic mutations of the gene. We present the clinical, pathologic, and genetic findings of 6 cases from 4 families, 5 of which were shown to have a novel GRN c.708+6_+9delTGAG mutation. PMID:24709683
Generation of muscular dystrophy model rats with a CRISPR/Cas system.
Nakamura, Katsuyuki; Fujii, Wataru; Tsuboi, Masaya; Tanihata, Jun; Teramoto, Naomi; Takeuchi, Shiho; Naito, Kunihiko; Yamanouchi, Keitaro; Nishihara, Masugi
2014-07-09
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder caused by mutations in the Dmd gene encoding Dystrophin. DMD model animals, such as mdx mice and canine X-linked muscular dystrophy dogs, have been widely utilized in the development of a treatment for DMD. Here, we demonstrate the generation of Dmd-mutated rats using a clustered interspaced short palindromic repeats (CRISPR)/Cas system, an RNA-based genome engineering technique that is also adaptive to rats. We simultaneously targeted two exons in the rat Dmd gene, which resulted in the absence of Dystrophin expression in the F0 generation. Dmd-mutated rats exhibited a decline in muscle strength, and the emergence of degenerative/regenerative phenotypes in the skeletal muscle, heart, and diaphragm. These mutations were heritable by the next generation, and F1 male rats exhibited similar phenotypes in their skeletal muscles. These model rats should prove to be useful for developing therapeutic methods to treat DMD.
Stuart, Bridget D.; Choi, Jungmin; Zaidi, Samir; Xing, Chao; Holohan, Brody; Chen, Rui; Choi, Mihwa; Dharwadkar, Pooja; Torres, Fernando; Girod, Carlos E.; Weissler, Jonathan; Fitzgerald, John; Kershaw, Corey; Klesney-Tait, Julia; Mageto, Yolanda; Shay, Jerry W.; Ji, Weizhen; Bilguvar, Kaya; Mane, Shrikant; Lifton, Richard P.; Garcia, Christine Kim
2015-01-01
Idiopathic pulmonary fibrosis (IPF) is an age-related disease featuring progressive lung scarring. To elucidate the molecular basis of IPF, we performed exome sequencing of familial pulmonary fibrosis kindreds. Gene burden analysis comparing 78 European cases and 2,816 controls implicated PARN, an exoribonuclease with no prior connection to telomere biology or disease, with five novel heterozygous damaging mutations in unrelated cases and none in controls (P-value = 1.3 × 10−8); mutations were shared by all affected relatives (odds in favor of linkage = 4,096:1). RTEL1, an established locus for dyskeratosis congenita, harbored significantly more novel damaging and missense variants at conserved residues in cases than controls (P = 1.6 × 10−6). PARN and RTEL1 mutation carriers had shortened leukocyte telomere lengths and epigenetic inheritance of short telomeres was seen in family members. Together these genes explain ~7% of familial pulmonary fibrosis and strengthen the link between lung fibrosis and telomere dysfunction. PMID:25848748
Stuart, Bridget D; Choi, Jungmin; Zaidi, Samir; Xing, Chao; Holohan, Brody; Chen, Rui; Choi, Mihwa; Dharwadkar, Pooja; Torres, Fernando; Girod, Carlos E; Weissler, Jonathan; Fitzgerald, John; Kershaw, Corey; Klesney-Tait, Julia; Mageto, Yolanda; Shay, Jerry W; Ji, Weizhen; Bilguvar, Kaya; Mane, Shrikant; Lifton, Richard P; Garcia, Christine Kim
2015-05-01
Idiopathic pulmonary fibrosis (IPF) is an age-related disease featuring progressive lung scarring. To elucidate the molecular basis of IPF, we performed exome sequencing of familial kindreds with pulmonary fibrosis. Gene burden analysis comparing 78 European cases and 2,816 controls implicated PARN, an exoribonuclease with no previous connection to telomere biology or disease, with five new heterozygous damaging mutations in unrelated cases and none in controls (P = 1.3 × 10(-8)); mutations were shared by all affected relatives (odds in favor of linkage = 4,096:1). RTEL1, an established locus for dyskeratosis congenita, harbored significantly more new damaging and missense variants at conserved residues in cases than in controls (P = 1.6 × 10(-6)). PARN and RTEL1 mutation carriers had shortened leukocyte telomere lengths, and we observed epigenetic inheritance of short telomeres in family members. Together, these genes explain ~7% of familial pulmonary fibrosis and strengthen the link between lung fibrosis and telomere dysfunction.
Dalal, Ilan; Tasher, Diana; Somech, Raz; Etzioni, Amos; Garti, Ben-Zion; Lev, Dorit; Cohen, Sarit; Somekh, Eli; Leshinsky-Silver, Esther
2011-09-01
The relative frequency of the different forms of SCID may vary in different countries. The most frequent form in Israel is the autosomal-recessive T-B- SCID or Omenn syndrome while X-linked SCID is rare. We report our immunological and genetic analyses in multicentre study of patients presenting with either T-B- SCID or Omenn syndrome. Among 16 patients, we identified 7 novel mutations in 6 patients. In the RAG1 gene we detected two novel mutations: L454Q and 469 fs-4bpdel. In the RAG 2 gene: 3 novel mutations: D65Y, G157V, and E480X. One T-B- SCID patient was found to be a compound heterozygote for new mutations in the ADA gene: W264X and R235W. Prenatal diagnosis was performed in 8 families while others refused due to religious reasons. Identification of the new mutations expands our knowledge regarding the unique features of SCID phenotype in Israel and may help the families seeking for genetic counseling. Copyright © 2011 Elsevier Inc. All rights reserved.
Ghorbel, Rania; Ghorbel, Raouia; Rouissi, Aida; Fendri-Kriaa, Nourhene; Ben Salah, Ghada; Belguith, Neila; Ammar-Keskes, Leila; Gouider-Khouja, Neziha; Fakhfakh, Faiza
2018-02-26
Rett syndrome is an X-linked neurodevelopmental disorder that develops a profound intellectual and motor disability and affects 1 from 10 000 to 15 000 live female births. This disease is characterized by a period of apparently normal development until 6-18 months of age when motor and communication abilities regress which is caused by mutations occurred in the X-linked MECP2 gene, encoding the methyl-CpG binding protein 2. This research study reports a molecular analysis via an exhaustive gene sequencing which reveals an unusual novel double mutation (c.695 G > T; c.880C > T) located in a highly conserved region in MECP2 gene affecting the transcription repression domain (TRD) of MeCP2 protein and leading for the first time to a severe phenotype of Rett syndrome. Moreover, a computational investigation of MECP2 mutations demonstrates that the novel mutation c.695 G > T is highly deleterious which affects the MeCP2 protein showing also an adverse impact on MECP2 gene expression and resulting in an affected folding and decreased stability of MECP2 structures. Thus, the altered TRD domain engenders a disrupted process of MECP2 functions. Therefore, this is the first study which highlights a novel double mutation among the transcription repression domain (TRD) of MeCP2 protein in Rett patient with a severe clinical phenotype in North Africa region. Copyright © 2018 Elsevier Inc. All rights reserved.
Takabayashi, Shuji; Umeki, Kazumi; Yamamoto, Etsuko; Suzuki, Tohru; Okayama, Akihiko; Katoh, Hideki
2006-10-01
Recently, we found a novel dwarf mutation in an ICR closed colony. This mutation was governed by a single autosomal recessive gene. In novel dwarf mice, plasma levels of the thyroid hormones, T3 and T4, were reduced; however, TSH was elevated. Their thyroid glands showed a diffuse goiter exhibiting colloid deficiency and abnormal follicle epithelium. The dwarfism was improved by adding thyroid hormone in the diet. Gene mapping revealed that the dwarf mutation was closely linked to the thyroid peroxidase (Tpo) gene on chromosome 12. Sequencing of the Tpo gene of the dwarf mice demonstrated a C to T substitution at position 1508 causing an amino acid change from arginine (Arg) to cysteine (Cys) at codon 479 (Arg479Cys). Western blotting revealed that TPO protein of the dwarf mice was detected in a microsomal fraction of thyroid tissue, but peroxidase activity was not detected. These findings suggested that the dwarf mutation caused a primary congenital hypothyroidism by TPO deficiency, resulting in a defect of thyroid hormone synthesis.
Key Clinical Features to Identify Girls with "CDKL5" Mutations
ERIC Educational Resources Information Center
Bahi-Buisson, Nadia; Nectoux, Juliette; Rosas-Vargas, Haydee; Milh, Mathieu; Boddaert, Nathalie; Girard, Benoit; Cances, Claude; Ville, Dorothee; Afenjar, Alexandra; Rio, Marlene; Heron, Delphine; Morel, Marie Ange N'Guyen; Arzimanoglou, Alexis; Philippe, Christophe; Jonveaux, Philippe; Chelly, Jamel; Bienvenu, Thierry
2008-01-01
Mutations in the human X-linked cyclin-dependent kinase-like 5 ("CDKL5") gene have been shown to cause infantile spasms as well as Rett syndrome (RTT)-like phenotype. To date, less than 25 different mutations have been reported. So far, there are still little data on the key clinical diagnosis criteria and on the natural history of…
Mutation in an alternative transcript of CDKL5 in a boy with early-onset seizures.
Bodian, Dale L; Schreiber, John M; Vilboux, Thierry; Khromykh, Alina; Hauser, Natalie S
2018-06-01
Infantile-onset epilepsies are a set of severe, heterogeneous disorders for which clinical genetic testing yields causative mutations in ∼20%-50% of affected individuals. We report the case of a boy presenting with intractable seizures at 2 wk of age, for whom gene panel testing was unrevealing. Research-based whole-genome sequencing of the proband and four unaffected family members identified a de novo mutation, NM_001323289.1:c.2828_2829delGA in CDKL5, a gene associated with X-linked early infantile epileptic encephalopathy 2. CDKL5 has multiple alternative transcripts, and the mutation lies in an exon in the brain-expressed forms. The mutation was undetected by gene panel sequencing because of its intronic location in the CDKL5 transcript typically used to define the exons of this gene for clinical exon-based tests (NM_003159). This is the first report of a patient with a mutation in an alternative transcript of CDKL5 This finding suggests that incorporating alternative transcripts into the design and variant interpretation of exon-based tests, including gene panel and exome sequencing, could improve the diagnostic yield. © 2018 Bodian et al.; Published by Cold Spring Harbor Laboratory Press.
Mutation in an alternative transcript of CDKL5 in a boy with early-onset seizures
Bodian, Dale L.; Schreiber, John M.; Vilboux, Thierry; Khromykh, Alina; Hauser, Natalie S.
2018-01-01
Infantile-onset epilepsies are a set of severe, heterogeneous disorders for which clinical genetic testing yields causative mutations in ∼20%–50% of affected individuals. We report the case of a boy presenting with intractable seizures at 2 wk of age, for whom gene panel testing was unrevealing. Research-based whole-genome sequencing of the proband and four unaffected family members identified a de novo mutation, NM_001323289.1:c.2828_2829delGA in CDKL5, a gene associated with X-linked early infantile epileptic encephalopathy 2. CDKL5 has multiple alternative transcripts, and the mutation lies in an exon in the brain-expressed forms. The mutation was undetected by gene panel sequencing because of its intronic location in the CDKL5 transcript typically used to define the exons of this gene for clinical exon-based tests (NM_003159). This is the first report of a patient with a mutation in an alternative transcript of CDKL5. This finding suggests that incorporating alternative transcripts into the design and variant interpretation of exon-based tests, including gene panel and exome sequencing, could improve the diagnostic yield. PMID:29444904
Identification of a fourth locus (EVR4) for familial exudative vitreoretinopathy (FEVR).
Toomes, Carmel; Downey, Louise M; Bottomley, Helen M; Scott, Sheila; Woodruff, Geoffrey; Trembath, Richard C; Inglehearn, Chris F
2004-01-15
Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous inherited blinding disorder of the retinal vascular system. To date three loci have been mapped: EVR1 on chromosome 11q, EVR2 on chromosome Xp, and EVR3 on chromosome 11p. The gene underlying EVR3 remains unidentified whilst the EVR2 gene, which encodes the Norrie disease protein (NDP), was identified over a decade ago. More recently, FZD4, the gene that encodes the Wnt receptor Frizzled-4, was identified as the mutated gene at the EVR1 locus. The purpose of this study was to screen FZD4 in a large family previously proven to be linked to the EVR1 locus. PCR products were generated using genomic DNA from affected family members with primers designed to amplify the coding sequence of FZD4. The PCR products were screened for mutations by direct sequencing. Genotyping was performed in all available family members using fluorescently labeled microsatellite markers from chromosome 11q. Sequencing of the EVR1 gene, FZD4, in this family identified no mutation. To investigate this family further we performed high-resolution genotyping with markers spanning chromosome 11q. Haplotype analysis excluded FZD4 as the mutated gene in this family and identified a candidate region approximately 10 cM centromeric to EVR1. This new FEVR locus is flanked by markers D11S1368 (centromeric) and D11S937 (telomeric) and spans approximately 15 cM. High-resolution genotyping and haplotype analysis excluded FZD4 as the defective gene in a family previously linked to the EVR1 locus. The results indicate that the gene mutated in this family lies centromeric to the EVR1 gene, FZD4, and is also genetically distinct from the EVR3 locus. This new locus has been designated EVR4 and is the fourth FEVR locus to be described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proudfoot, Andrew; Axelrod, Herbert L.; Geralt, Michael
The Dlx5 homeodomain is a transcription factor related to the Drosophila Distal-less gene that is associated with breast and lung cancer, lymphoma, Rett syndrome and osteoporosis in humans. Mutations in the DLX5 gene have been linked to deficiencies in craniofacial and limb development in higher eukaryotes, including Split Hand and Foot Malformation-1 (SHFM-1) in humans. Our characterization of a Dlx5 homeodomain–(CGACTAATTAGTCG) 2 complex by NMR spectroscopy paved the way for determination of its crystal structure at 1.85 Å resolution that enabled rationalization of the effects of disease-related mutations on the protein function. A remarkably subtle mutation, Q186H, is linked tomore » SHFM-1; this change likely affects affinity of DNA binding by disrupting water-mediated interactions with the DNA major groove. A more subtle effect is implicated for the Q178P mutation, which is not in direct contact with the DNA. Our data indicate that these mutations diminish the ability of the Dlx5 homeodomain to recognize and bind target DNAs, and likely destabilize the formation of functional complexes.« less
Proudfoot, Andrew; Axelrod, Herbert L.; Geralt, Michael; ...
2016-01-29
The Dlx5 homeodomain is a transcription factor related to the Drosophila Distal-less gene that is associated with breast and lung cancer, lymphoma, Rett syndrome and osteoporosis in humans. Mutations in the DLX5 gene have been linked to deficiencies in craniofacial and limb development in higher eukaryotes, including Split Hand and Foot Malformation-1 (SHFM-1) in humans. Our characterization of a Dlx5 homeodomain–(CGACTAATTAGTCG) 2 complex by NMR spectroscopy paved the way for determination of its crystal structure at 1.85 Å resolution that enabled rationalization of the effects of disease-related mutations on the protein function. A remarkably subtle mutation, Q186H, is linked tomore » SHFM-1; this change likely affects affinity of DNA binding by disrupting water-mediated interactions with the DNA major groove. A more subtle effect is implicated for the Q178P mutation, which is not in direct contact with the DNA. Our data indicate that these mutations diminish the ability of the Dlx5 homeodomain to recognize and bind target DNAs, and likely destabilize the formation of functional complexes.« less
Adams, Stuart P; Wilson, Melanie; Harb, Elissar; Fairbanks, Lynette; Xu-Bayford, Jinhua; Brown, Lucie; Kearney, Laura; Madkaikar, Manisha; Bobby Gaspar, H
2015-12-01
Severe combined immunodeficiency (SCID) arises from a number of different genetic defects, one of the most common being mutations in the gene encoding adenosine deaminase (ADA). In the UK, ADA deficient SCID compromises approximately 20% of all known cases of SCID. We carried out a retrospective analysis of the ADA gene in 46 known ADA deficient SCID patients on whom DNA had been stored. Here, we report a high frequency of two previously reported mutations and provide a link between the mutations and patient ethnicity within our patient cohort. We also report on 9 novel mutations that have been previously unreported. Copyright © 2015 Elsevier Inc. All rights reserved.
Piton, Amélie; Redin, Claire; Mandel, Jean-Louis
2013-01-01
Because of the unbalanced sex ratio (1.3–1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in XLID diagnostic gene panels. Nonetheless, the boundary between true mutations and rare non-disease-causing variants often remains elusive. The sequencing of a large number of control X chromosomes, required for avoiding false-positive results, was not systematically possible in the past. Such information is now available thanks to large-scale sequencing projects such as the National Heart, Lung, and Blood (NHLBI) Exome Sequencing Project, which provides variation information on 10,563 X chromosomes from the general population. We used this NHLBI cohort to systematically reassess the implication of 106 genes proposed to be involved in monogenic forms of XLID. We particularly question the implication in XLID of ten of them (AGTR2, MAGT1, ZNF674, SRPX2, ATP6AP2, ARHGEF6, NXF5, ZCCHC12, ZNF41, and ZNF81), in which truncating variants or previously published mutations are observed at a relatively high frequency within this cohort. We also highlight 15 other genes (CCDC22, CLIC2, CNKSR2, FRMPD4, HCFC1, IGBP1, KIAA2022, KLF8, MAOA, NAA10, NLGN3, RPL10, SHROOM4, ZDHHC15, and ZNF261) for which replication studies are warranted. We propose that similar reassessment of reported mutations (and genes) with the use of data from large-scale human exome sequencing would be relevant for a wide range of other genetic diseases. PMID:23871722
The molecular genetics of the telomere biology disorders.
Bertuch, Alison A
2016-08-02
The importance of telomere function for human health is exemplified by a collection of Mendelian disorders referred to as the telomere biology disorders (TBDs), telomeropathies, or syndromes of telomere shortening. Collectively, the TBDs cover a spectrum of conditions from multisystem disease presenting in infancy to isolated disease presentations in adulthood, most notably idiopathic pulmonary fibrosis. Eleven genes have been found mutated in the TBDs to date, each of which is linked to some aspect of telomere maintenance. This review summarizes the molecular defects that result from mutations in these genes, highlighting recent advances, including the addition of PARN to the TBD gene family and the discovery of heterozygous mutations in RTEL1 as a cause of familial pulmonary fibrosis.
Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy.
Minetti, C; Sotgia, F; Bruno, C; Scartezzini, P; Broda, P; Bado, M; Masetti, E; Mazzocco, M; Egeo, A; Donati, M A; Volonte, D; Galbiati, F; Cordone, G; Bricarelli, F D; Lisanti, M P; Zara, F
1998-04-01
Limb-girdle muscular dystrophy (LGMD) is a clinically and genetically heterogeneous group of myopathies, including autosomal dominant and recessive forms. To date, two autosomal dominant forms have been recognized: LGMD1A, linked to chromosome 5q, and LGMD1B, associated with cardiac defects and linked to chromosome 1q11-21. Here we describe eight patients from two different families with a new form of autosomal dominant LGMD, which we propose to call LGMD1C, associated with a severe deficiency of caveolin-3 in muscle fibres. Caveolin-3 (or M-caveolin) is the muscle-specific form of the caveolin protein family, which also includes caveolin-1 and -2. Caveolins are the principal protein components of caveolae (50-100 nm invaginations found in most cell types) which represent appendages or sub-compartments of plasma membranes. We localized the human caveolin-3 gene (CAV3) to chromosome 3p25 and identified two mutations in the gene: a missense mutation in the membrane-spanning region and a micro-deletion in the scaffolding domain. These mutations may interfere with caveolin-3 oligomerization and disrupt caveolae formation at the muscle cell plasma membrane.
Huang, Kristen M; Geunes-Boyer, Scarlett; Wu, Sufen; Dutra, Amalia; Favor, Jack; Stambolian, Dwight
2004-05-01
Xcat mice display X-linked congenital cataracts and are a mouse model for the human X-linked cataract disease Nance Horan syndrome (NHS). The genetic defect in Xcat mice and NHS patients is not known. We isolated and sequenced a BAC contig representing a portion of the Xcat critical region. We combined our sequencing data with the most recent mouse sequence assemblies from both Celera and public databases. The sequence of the 2.2-Mb Xcat critical region was then analyzed for potential Xcat candidate genes. The coding regions of the seven known genes within this area (Rai2, Rbbp7, Ctps2, Calb3, Grpr, Reps2, and Syap1) were sequenced in Xcat mice and no mutations were detected. The expression of Rai2 was quantitatively identical in wild-type and Xcat mutant eyes. These results indicate that the Xcat mutation is within a novel, undiscovered gene.
Mutations in PRPF31 Inhibit Pre-mRNA Splicing of Rhodopsin Gene and Cause Apoptosis of Retinal Cells
Yuan, Liya; Kawada, Mariko; Havlioglu, Necat; Tang, Hao; Wu, Jane Y.
2007-01-01
Mutations in human PRPF31 gene have been identified in patients with autosomal dominant retinitis pigmentosa (adRP). To begin to understand mechanisms by which defects in this general splicing factor cause retinal degeneration, we examined the relationship between PRPF31 and pre-mRNA splicing of photoreceptor-specific genes. We used a specific anti-PRPF31 antibody to immunoprecipitate splicing complexes from retinal cells and identified the transcript of rhodopsin gene (RHO) among RNA species associated with PRPF31-containing complexes. Mutant PRPF31 proteins significantly inhibited pre-mRNA splicing of intron 3 in RHO gene. In primary retinal cell cultures, expression of the mutant PRPF31 proteins reduced rhodopsin expression and caused apoptosis of rhodopsin-positive retinal cells. This primary retinal culture assay provides an in vitro model to study photoreceptor cell death caused by PRPF31 mutations. Our results demonstrate that mutations in PRPF31 gene affect RHO pre-mRNA splicing and reveal a link between PRPF31 and RHO, two major adRP genes. PMID:15659613
Study in Mice Links Key Signaling Molecule to Underlying Cause of Osteogenesis Imperfecta
... by mutations in a gene that codes for collagen, an abundant structural component of bone. This type ... linked to defects in enzymes that help process collagen to its mature form. These types of OI ...
Gossage, Lucy; Pires, Douglas E. V.; Olivera-Nappa, Álvaro; Asenjo, Juan; Bycroft, Mark; Blundell, Tom L.; Eisen, Tim
2014-01-01
Mutations in the von Hippel–Lindau (VHL) gene are pathogenic in VHL disease, congenital polycythaemia and clear cell renal carcinoma (ccRCC). pVHL forms a ternary complex with elongin C and elongin B, critical for pVHL stability and function, which interacts with Cullin-2 and RING-box protein 1 to target hypoxia-inducible factor for polyubiquitination and proteasomal degradation. We describe a comprehensive database of missense VHL mutations linked to experimental and clinical data. We use predictions from in silico tools to link the functional effects of missense VHL mutations to phenotype. The risk of ccRCC in VHL disease is linked to the degree of destabilization resulting from missense mutations. An optimized binary classification system (symphony), which integrates predictions from five in silico methods, can predict the risk of ccRCC associated with VHL missense mutations with high sensitivity and specificity. We use symphony to generate predictions for risk of ccRCC for all possible VHL missense mutations and present these predictions, in association with clinical and experimental data, in a publically available, searchable web server. PMID:24969085
Nanda, A; Salvetti, A P; Martinez-Fernandez de la Camara, C; MacLaren, R E
2018-06-01
Inherited retinal diseases are thought to be the leading cause of sight loss in the working age population. Mutations found in the RPGR and CHM genes cause retinitis pigmentosa (RP) and choroideremia, respectively. In the first instance, an X-linked family history of visual field loss commonly raises the suspicion of one of these two genes. In choroideremia, the classic description of a white fundal reflex secondary to the widespread chorioretinal degeneration was made over a hundred years ago in Caucasians. But, it is not so obvious in heavily pigmented fundi. Hence, the clinical diagnosis of CHM in non-Caucasian patients may be challenging in the first stages of the disease. Here we report a case of a Southeast Asian gentleman who has a family history of X-linked retinal degeneration and was found to have a confirmed in-frame deletion of 12 DNA nucleotides in exon 15 of the RPGR gene. Later in life, however, his fundal appearance showed unusual areas of circular pigment hypertrophy and clumping. He was therefore tested for carrying a disease-causing mutation in the CHM gene and a null mutation was found. Since gene therapy trials are ongoing for both of these conditions, it has now become critically important to establish the correct genetic diagnosis in order to recruit suitable candidates. Moreover, this case demonstrates the necessity to remain vigilant in the interpretation of genetic results which are inconsistent with clinical features.
Hereditary breast cancer: from molecular pathology to tailored therapies.
Tan, D S P; Marchiò, C; Reis-Filho, J S
2008-10-01
Hereditary breast cancer accounts for up to 5-10% of all breast carcinomas. Recent studies have demonstrated that mutations in two high-penetrance genes, namely BRCA1 and BRCA2, are responsible for about 16% of the familial risk of breast cancer. Even though subsequent studies have failed to find another high-penetrance breast cancer susceptibility gene, several genes that confer a moderate to low risk of breast cancer development have been identified; moreover, hereditary breast cancer can be part of multiple cancer syndromes. In this review we will focus on the hereditary breast carcinomas caused by mutations in BRCA1, BRCA2, Fanconi anaemia (FANC) genes, CHK2 and ATM tumour suppressor genes. We describe the hallmark histological features of these carcinomas compared with non-hereditary breast cancers and show how an accurate histopathological diagnosis may help improve the identification of patients to be screened for mutations. Finally, novel therapeutic approaches to treat patients with BRCA1 and BRCA2 germ line mutations, including cross-linking agents and PARP inhibitors, are discussed.
Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome.
Laugel, V; Dalloz, C; Durand, M; Sauvanaud, F; Kristensen, U; Vincent, M C; Pasquier, L; Odent, S; Cormier-Daire, V; Gener, B; Tobias, E S; Tolmie, J L; Martin-Coignard, D; Drouin-Garraud, V; Heron, D; Journel, H; Raffo, E; Vigneron, J; Lyonnet, S; Murday, V; Gubser-Mercati, D; Funalot, B; Brueton, L; Sanchez Del Pozo, J; Muñoz, E; Gennery, A R; Salih, M; Noruzinia, M; Prescott, K; Ramos, L; Stark, Z; Fieggen, K; Chabrol, B; Sarda, P; Edery, P; Bloch-Zupan, A; Fawcett, H; Pham, D; Egly, J M; Lehmann, A R; Sarasin, A; Dollfus, H
2010-02-01
Cockayne syndrome is an autosomal recessive multisystem disorder characterized principally by neurological and sensory impairment, cachectic dwarfism, and photosensitivity. This rare disease is linked to mutations in the CSB/ERCC6 and CSA/ERCC8 genes encoding proteins involved in the transcription-coupled DNA repair pathway. The clinical spectrum of Cockayne syndrome encompasses a wide range of severity from severe prenatal forms to mild and late-onset presentations. We have reviewed the 45 published mutations in CSA and CSB to date and we report 43 new mutations in these genes together with the corresponding clinical data. Among the 84 reported kindreds, 52 (62%) have mutations in the CSB gene. Many types of mutations are scattered along the whole coding sequence of both genes, but clusters of missense mutations can be recognized and highlight the role of particular motifs in the proteins. Genotype-phenotype correlation hypotheses are considered with regard to these new molecular and clinical data. Additional cases of molecular prenatal diagnosis are reported and the strategy for prenatal testing is discussed. Two web-based locus-specific databases have been created to list all identified variants and to allow the inclusion of future reports (www.umd.be/CSA/ and www.umd.be/CSB/). (c) 2009 Wiley-Liss, Inc.
Yigit, Serbulent; Inanir, Ahmet
2013-01-01
Purpose Diabetic peripheral neuropathy (DPN) is one of the most common diabetic chronic complications. Methylenetetrahydrofolate reductase (MTHFR) gene variants have been associated with vasculopathy that has been linked to diabetic neuropathy. The aim of the present study was to investigate the possible association between MTHFR gene C677T mutation and DPN and evaluate if there is an association with clinical features in a relatively large cohort of Turkish patients. Methods The study included 230 patients affected by DPN and 282 healthy controls. Genomic DNA was isolated and genotyped using the polymerase chain reaction–based restriction fragment length polymorphism assay for the MTHFR gene C677T mutation. Results The genotype and allele frequencies of the C677T mutation showed statistically significant differences between the patients with DPN and the controls (p=0.003 and p=0.002, respectively). After the patients with DPN were stratified according to clinical and demographic characteristics, a significant association was observed between the C677T mutation and history of retinopathy (p=0.039). Conclusions A high association between the MTHFR gene C677T mutation and DPN was observed in the present study. In addition, history of retinopathy was associated with the MTHFR C677T mutation in patients with DPN. PMID:23901246
Yanagi, Kumiko; Kaname, Tadashi; Wakui, Keiko; Hashimoto, Ohiko; Fukushima, Yoshimitsu; Naritomi, Kenji
2012-01-01
Mutations in the X-linked genes neuroligin 3 (NLGN3) and neuroligin 4X (NLGN4X) were first implicated in the pathogenesis of X-linked autism in Swedish families. However, reports of mutations in these genes in autism spectrum disorder (ASD) patients from various ethnic backgrounds present conflicting results regarding the etiology of ASD, possibly because of genetic heterogeneity and/or differences in their ethnic background. Additional mutation screening study on another ethnic background could help to clarify the relevance of the genes to ASD. We scanned the entire coding regions of NLGN3 and NLGN4X in 62 Japanese patients with ASD by polymerase chain reaction-high-resolution melting curve and direct sequencing analyses. Four synonymous substitutions, one in NLGN3 and three in NLGN4X, were identified in four of the 62 patients. These substitutions were not present in 278 control X-chromosomes from unrelated Japanese individuals and were not registered in the database of Single Nucleotide Polymorphisms build 132 or in the Japanese Single Nucleotide Polymorphisms database, indicating that they were novel and specific to ASD. Though further analysis is necessary to determine the physiological and clinical importance of such substitutions, the possibility of the relevance of both synonymous and nonsynonymous substitutions with the etiology of ASD should be considered.
Yanagi, Kumiko; Kaname, Tadashi; Wakui, Keiko; Hashimoto, Ohiko; Fukushima, Yoshimitsu; Naritomi, Kenji
2012-01-01
Mutations in the X-linked genes neuroligin 3 (NLGN3) and neuroligin 4X (NLGN4X) were first implicated in the pathogenesis of X-linked autism in Swedish families. However, reports of mutations in these genes in autism spectrum disorder (ASD) patients from various ethnic backgrounds present conflicting results regarding the etiology of ASD, possibly because of genetic heterogeneity and/or differences in their ethnic background. Additional mutation screening study on another ethnic background could help to clarify the relevance of the genes to ASD. We scanned the entire coding regions of NLGN3 and NLGN4X in 62 Japanese patients with ASD by polymerase chain reaction-high-resolution melting curve and direct sequencing analyses. Four synonymous substitutions, one in NLGN3 and three in NLGN4X, were identified in four of the 62 patients. These substitutions were not present in 278 control X-chromosomes from unrelated Japanese individuals and were not registered in the database of Single Nucleotide Polymorphisms build 132 or in the Japanese Single Nucleotide Polymorphisms database, indicating that they were novel and specific to ASD. Though further analysis is necessary to determine the physiological and clinical importance of such substitutions, the possibility of the relevance of both synonymous and nonsynonymous substitutions with the etiology of ASD should be considered. PMID:22934180
Abbasi, Ansar A; Blaesius, Kathrin; Hu, Hao; Latif, Zahid; Picker-Minh, Sylvie; Khan, Muhammad N; Farooq, Sundas; Khan, Muzammil A; Kaindl, Angela M
2017-12-01
TRAPPC9 gene mutations have been linked recently to autosomal recessive mental retardation 13 (MRT13; MIM#613192) with only eight families reported world-wide. We assessed patients from two consanguineous pedigrees of Pakistani descent with non-syndromic intellectual disability and postnatal microcephaly through whole exome sequencing (WES) and cosegregation analysis. Here we report six further patients from two pedigrees with homozygous TRAPPC9 gene mutations, the novel nonsense mutation c.2065G>T (p.E689*) and the previously identified nonsense mutation c.1423C>T (p.R475*). We provide an overview of previously reported clinical features and highlight common symptoms and variability of MRT13. Common findings are intellectual disability and absent speech, and frequently microcephaly, motor delay and pathological findings on MRI including diminished cerebral white matter volume are present. Mutations in TRAPPC9 should be considered in non-syndromic autosomal recessive intellectual disability with severe speech disorder. © 2017 Wiley Periodicals, Inc.
Three cases with L1 syndrome and two novel mutations in the L1CAM gene.
Marín, Rosario; Ley-Martos, Miriam; Gutiérrez, Gema; Rodríguez-Sánchez, Felicidad; Arroyo, Diego; Mora-López, Francisco
2015-11-01
Mutations in the L1CAM gene have been identified in the following various X-linked neurological disorders: congenital hydrocephalus; mental retardation, aphasia, shuffling gait, and adducted thumbs (MASA) syndrome; spastic paraplegia; and agenesis of the corpus callosum. These conditions are currently considered different phenotypes of a single entity known as L1 syndrome. We present three families with L1 syndrome. Sequencing of the L1CAM gene allowed the identification of the following mutations involved: a known splicing mutation (c.3531-12G>A) and two novel ones: a missense mutation (c.1754A>C; p.Asp585Ala) and a nonsense mutation (c.3478C>T; p.Gln1160Stop). The number of affected males and carrier females identified in a relatively small population suggests that L1 syndrome may be under-diagnosed. L1 syndrome should be considered in the differential diagnosis of intellectual disability or mental retardation in children, especially when other signs such as hydrocephalus or adducted thumbs are present.
Inagaki, Soichi; Nakamura, Kenzo; Morikami, Atsushi
2009-08-01
Spatio-temporal regulation of gene expression during development depends on many factors. Mutations in Arabidopsis thaliana TEBICHI (TEB) gene encoding putative helicase and DNA polymerase domains-containing protein result in defects in meristem maintenance and correct organ formation, as well as constitutive DNA damage response and a defect in cell cycle progression; but the molecular link between these phenotypes of teb mutants is unknown. Here, we show that mutations in the DNA replication checkpoint pathway gene, ATR, but not in ATM gene, enhance developmental phenotypes of teb mutants, although atr suppresses cell cycle defect of teb mutants. Developmental phenotypes of teb mutants are also enhanced by mutations in RAD51D and XRCC2 gene, which are involved in homologous recombination. teb and teb atr double mutants exhibit defects in adaxial-abaxial polarity of leaves, which is caused in part by the upregulation of ETTIN (ETT)/AUXIN RESPONSIVE FACTOR 3 (ARF3) and ARF4 genes. The Helitron transposon in the upstream of ETT/ARF3 gene is likely to be involved in the upregulation of ETT/ARF3 in teb. Microarray analysis indicated that teb and teb atr causes preferential upregulation of genes nearby the Helitron transposons. Furthermore, interestingly, duplicated genes, especially tandemly arrayed homologous genes, are highly upregulated in teb or teb atr. We conclude that TEB is required for normal progression of DNA replication and for correct expression of genes during development. Interplay between these two functions and possible mechanism leading to altered expression of specific genes will be discussed.
Devoto, Marcella; Specchia, Claudia; Laudenslager, Marci; Longo, Luca; Hakonarson, Hakon; Maris, John; Mossé, Yael
2011-01-01
Background Neuroblastoma (NB) is an important childhood cancer with a strong genetic component related to disease susceptibility. Approximately 1% of NB cases have a positive family history. Following a genome-wide linkage analysis and sequencing of candidate genes in the critical region, we identified ALK as the major familial NB gene. Dominant mutations in ALK are found in more than 50% of familial NB cases. However, in the families used for the linkage study, only about 50% of carriers of ALK mutations are affected by NB. Methods To test whether genetic variation may explain the reduced penetrance of the disease phenotype, we analyzed genome-wide genotype data in ALK mutation-positive families using a model-based linkage approach with different liability classes for carriers and non-carriers of ALK mutations. Results The region with the highest LOD score was located at chromosome 2p23–p24 and included the ALK locus under models of dominant and recessive inheritance. Conclusions This finding suggests that variants in the non-mutated ALK gene or another gene linked to it may affect penetrance of the ALK mutations and risk of developing NB in familial cases. PMID:21734404
Cangul, Hakan; Aydin, Banu K.; Bas, Firdevs
2015-01-01
Congenital hypothyroidism (CH) is the most common neonatal endocrine disease, and germ-line mutations in the TPO gene cause the inherited form of the disease. Our aim in this study was to determine the genetic basis of congenital hypothyroidism in three affected children coming from a consanguineous Turkish family. Because CH is usually inherited in autosomal recessive manner in consanguineous/multicase families, we adopted a two-stage strategy of genetic linkage studies and targeted sequencing of the candidate genes. First, we investigated the potential genetic linkage of the family to any known CH locus, using microsatellite markers, and then screened for mutations in linked-gene by conventional sequencing. The family showed potential linkage to the TPO gene and we detected a homozygous duplication (c.1184_1187dup4) in all cases. The mutation segregated with disease status in the family. This study confirms the pathogenicity of the c.1184_1187dup4 mutation in the TPO gene and helps establish a genotype/phenotype correlation associated with this mutation. It also highlights the importance of molecular genetic studies in the definitive diagnosis and accurate classification of CH. PMID:27617131
Navascués, Miguel; Hardy, Olivier J; Burgarella, Concetta
2009-03-01
This work extends the methods of demographic inference based on the distribution of pairwise genetic differences between individuals (mismatch distribution) to the case of linked microsatellite data. Population genetics theory describes the distribution of mutations among a sample of genes under different demographic scenarios. However, the actual number of mutations can rarely be deduced from DNA polymorphisms. The inclusion of mutation models in theoretical predictions can improve the performance of statistical methods. We have developed a maximum-pseudolikelihood estimator for the parameters that characterize a demographic expansion for a series of linked loci evolving under a stepwise mutation model. Those loci would correspond to DNA polymorphisms of linked microsatellites (such as those found on the Y chromosome or the chloroplast genome). The proposed method was evaluated with simulated data sets and with a data set of chloroplast microsatellites that showed signal for demographic expansion in a previous study. The results show that inclusion of a mutational model in the analysis improves the estimates of the age of expansion in the case of older expansions.
X-Linked Retinoschisis: Phenotypic Variability in a Chinese Family
Xiao, Yangyan; Liu, Xiao; Tang, Luosheng; Wang, Xia; Coursy, Terry; Guo, Xiaojian; Li, Zhuo
2016-01-01
X-linked juvenile retinoschisis (XLRS), a leading cause of juvenile macular degeneration, is characterized by a spoke-wheel pattern in the macular region of the retina and splitting of the neurosensory retina. Our study is to describe the clinical characteristics of a four generations of this family (a total of 18 members)with X-linked retinoschisis (XLRS) and detected a novel mutations of c.3G > A (p.M1?) in the initiation codon of the RS1 gene. by direct sequencing.Identification of this mutation in this family provides evidence about potential genetic or environmental factors on its phenotypic variance, as patients presented with different phenotypes regardless of having the same mutation. Importantly, OCT has proven vital for XLRS diagnosis in children. PMID:26823236
X-Linked Retinoschisis: Phenotypic Variability in a Chinese Family.
Xiao, Yangyan; Liu, Xiao; Tang, Luosheng; Wang, Xia; Coursey, Terry G; Coursy, Terry; Guo, Xiaojian; Li, Zhuo
2016-01-29
X-linked juvenile retinoschisis (XLRS), a leading cause of juvenile macular degeneration, is characterized by a spoke-wheel pattern in the macular region of the retina and splitting of the neurosensory retina. Our study is to describe the clinical characteristics of a four generations of this family (a total of 18 members)with X-linked retinoschisis (XLRS) and detected a novel mutations of c.3G > A (p.M1?) in the initiation codon of the RS1 gene. by direct sequencing.Identification of this mutation in this family provides evidence about potential genetic or environmental factors on its phenotypic variance, as patients presented with different phenotypes regardless of having the same mutation. Importantly, OCT has proven vital for XLRS diagnosis in children.
Livide, Gabriella; Patriarchi, Tommaso; Amenduni, Mariangela; Amabile, Sonia; Yasui, Dag; Calcagno, Eleonora; Lo Rizzo, Caterina; De Falco, Giulia; Ulivieri, Cristina; Ariani, Francesca; Mari, Francesca; Mencarelli, Maria Antonietta; Hell, Johannes Wilhelm; Renieri, Alessandra; Meloni, Ilaria
2015-02-01
Rett syndrome is a monogenic disease due to de novo mutations in either MECP2 or CDKL5 genes. In spite of their involvement in the same disease, a functional interaction between the two genes has not been proven. MeCP2 is a transcriptional regulator; CDKL5 encodes for a kinase protein that might be involved in the regulation of gene expression. Therefore, we hypothesized that mutations affecting the two genes may lead to similar phenotypes by dysregulating the expression of common genes. To test this hypothesis we used induced pluripotent stem (iPS) cells derived from fibroblasts of one Rett patient with a MECP2 mutation (p.Arg306Cys) and two patients with mutations in CDKL5 (p.Gln347Ter and p.Thr288Ile). Expression profiling was performed in CDKL5-mutated cells and genes of interest were confirmed by real-time RT-PCR in both CDKL5- and MECP2-mutated cells. The only major change in gene expression common to MECP2- and CDKL5-mutated cells was for GRID1, encoding for glutamate D1 receptor (GluD1), a member of the δ-family of ionotropic glutamate receptors. GluD1 does not form AMPA or NMDA glutamate receptors. It acts like an adhesion molecule by linking the postsynaptic and presynaptic compartments, preferentially inducing the inhibitory presynaptic differentiation of cortical neurons. Our results demonstrate that GRID1 expression is downregulated in both MECP2- and CDKL5-mutated iPS cells and upregulated in neuronal precursors and mature neurons. These data provide novel insights into disease pathophysiology and identify possible new targets for therapeutic treatment of Rett syndrome.
Livide, Gabriella; Patriarchi, Tommaso; Amenduni, Mariangela; Amabile, Sonia; Yasui, Dag; Calcagno, Eleonora; Lo Rizzo, Caterina; De Falco, Giulia; Ulivieri, Cristina; Ariani, Francesca; Mari, Francesca; Mencarelli, Maria Antonietta; Hell, Johannes Wilhelm; Renieri, Alessandra; Meloni, Ilaria
2015-01-01
Rett syndrome is a monogenic disease due to de novo mutations in either MECP2 or CDKL5 genes. In spite of their involvement in the same disease, a functional interaction between the two genes has not been proven. MeCP2 is a transcriptional regulator; CDKL5 encodes for a kinase protein that might be involved in the regulation of gene expression. Therefore, we hypothesized that mutations affecting the two genes may lead to similar phenotypes by dysregulating the expression of common genes. To test this hypothesis we used induced pluripotent stem (iPS) cells derived from fibroblasts of one Rett patient with a MECP2 mutation (p.Arg306Cys) and two patients with mutations in CDKL5 (p.Gln347Ter and p.Thr288Ile). Expression profiling was performed in CDKL5-mutated cells and genes of interest were confirmed by real-time RT-PCR in both CDKL5- and MECP2-mutated cells. The only major change in gene expression common to MECP2- and CDKL5-mutated cells was for GRID1, encoding for glutamate D1 receptor (GluD1), a member of the δ-family of ionotropic glutamate receptors. GluD1 does not form AMPA or NMDA glutamate receptors. It acts like an adhesion molecule by linking the postsynaptic and presynaptic compartments, preferentially inducing the inhibitory presynaptic differentiation of cortical neurons. Our results demonstrate that GRID1 expression is downregulated in both MECP2- and CDKL5-mutated iPS cells and upregulated in neuronal precursors and mature neurons. These data provide novel insights into disease pathophysiology and identify possible new targets for therapeutic treatment of Rett syndrome. PMID:24916645
Cruts, M; Backhovens, H; Van Gassen, G; Theuns, J; Wang, S Y; Wehnert, A; van Duijn, C M; Karlsson, T; Hofman, A; Adolfsson, R
1995-10-13
Linkage analysis studies have indicated that the chromosome band 14q24.3 harbours a major gene for familial early-onset Alzheimer's disease (AD). Recently we localized the chromosome 14 AD gene (AD3) in the 6.4 cM interval between the markers D14S289 and D14S61. We mapped the gene encoding dihydrolipoyl succinyltransferase (DLST), the E2k component of human alpha-ketoglutarate dehydrogenase complex (KGDHC), in the AD3 candidate region using yeast artificial chromosomes (YACs). The DLST gene is a candidate for the AD3 gene since deficiencies in KGDHC activity have been observed in brain tissue and fibroblasts of AD patients. The 15 exons and the promoter region of the DLST gene were analysed for mutations in chromosome 14 linked AD cases and in two series of unrelated early-onset AD cases (onset age < 55 years). Sequence variations in intronic sequences (introns 3, 5 and 10) or silent mutations in exonic sequences (exons 8 and 14) were identified. However, no AD related mutations were observed, suggesting that the DLST gene is not the chromosome 14 AD3 gene.
Gauthier, Julie; Champagne, Nathalie; Lafrenière, Ronald G.; Xiong, Lan; Spiegelman, Dan; Brustein, Edna; Lapointe, Mathieu; Peng, Huashan; Côté, Mélanie; Noreau, Anne; Hamdan, Fadi F.; Addington, Anjené M.; Rapoport, Judith L.; DeLisi, Lynn E.; Krebs, Marie-Odile; Joober, Ridha; Fathalli, Ferid; Mouaffak, Fayçal; Haghighi, Ali P.; Néri, Christian; Dubé, Marie-Pierre; Samuels, Mark E.; Marineau, Claude; Stone, Eric A.; Awadalla, Philip; Barker, Philip A.; Carbonetto, Salvatore; Drapeau, Pierre; Rouleau, Guy A.
2010-01-01
Schizophrenia likely results from poorly understood genetic and environmental factors. We studied the gene encoding the synaptic protein SHANK3 in 285 controls and 185 schizophrenia patients with unaffected parents. Two de novo mutations (R1117X and R536W) were identified in two families, one being found in three affected brothers, suggesting germline mosaicism. Zebrafish and rat hippocampal neuron assays revealed behavior and differentiation defects resulting from the R1117X mutant. As mutations in SHANK3 were previously reported in autism, the occurrence of SHANK3 mutations in subjects with a schizophrenia phenotype suggests a molecular genetic link between these two neurodevelopmental disorders. PMID:20385823
X-linked Alport syndrome caused by splicing mutations in COL4A5.
Nozu, Kandai; Vorechovsky, Igor; Kaito, Hiroshi; Fu, Xue Jun; Nakanishi, Koichi; Hashimura, Yuya; Hashimoto, Fusako; Kamei, Koichi; Ito, Shuichi; Kaku, Yoshitsugu; Imasawa, Toshiyuki; Ushijima, Katsumi; Shimizu, Junya; Makita, Yoshio; Konomoto, Takao; Yoshikawa, Norishige; Iijima, Kazumoto
2014-11-07
X-linked Alport syndrome is caused by mutations in the COL4A5 gene. Although many COL4A5 mutations have been detected, the mutation detection rate has been unsatisfactory. Some men with X-linked Alport syndrome show a relatively mild phenotype, but molecular basis investigations have rarely been conducted to clarify the underlying mechanism. In total, 152 patients with X-linked Alport syndrome who were suspected of having Alport syndrome through clinical and pathologic investigations and referred to the hospital for mutational analysis between January of 2006 and January of 2013 were genetically diagnosed. Among those patients, 22 patients had suspected splice site mutations. Transcripts are routinely examined when suspected splice site mutations for abnormal transcripts are detected; 11 of them showed expected exon skipping, but others showed aberrant splicing patterns. The mutation detection strategy had two steps: (1) genomic DNA analysis using PCR and direct sequencing and (2) mRNA analysis using RT-PCR to detect RNA processing abnormalities. Six splicing consensus site mutations resulting in aberrant splicing patterns, one exonic mutation leading to exon skipping, and four deep intronic mutations producing cryptic splice site activation were identified. Interestingly, one case produced a cryptic splice site with a single nucleotide substitution in the deep intron that led to intronic exonization containing a stop codon; however, the patient showed a clearly milder phenotype for X-linked Alport syndrome in men with a truncating mutation. mRNA extracted from the kidney showed both normal and abnormal transcripts, with the normal transcript resulting in the milder phenotype. This novel mechanism leads to mild clinical characteristics. This report highlights the importance of analyzing transcripts to enhance the mutation detection rate and provides insight into genotype-phenotype correlations. This approach can clarify the cause of atypically mild phenotypes in X-linked Alport syndrome. Copyright © 2014 by the American Society of Nephrology.
Morin, Denis
2014-12-01
Congenital nephrogenic diabetes insipidus is a rare hereditary disease with mainly an X-linked inheritance (90% of the cases) but there are also autosomal recessive and dominant forms. Congenital nephrogenic diabetes insipidus is characterized by a resistance of the renal collecting duct to the action of the arginine vasopressin hormone responsible for the inability of the kidney to concentrate urine. The X-linked form is due to inactivating mutations of the vasopressin 2 receptor gene leading to a loss of function of the mutated receptors. Affected males are often symptomatic in the neonatal period with a lack of weight gain, dehydration and hypernatremia but mild phenotypes may also occur. Females carrying the mutation may be asymptomatic but, sometimes, severe polyuria is found due to the random X chromosome inactivation. The autosomal recessive and dominant forms, occurring in both genders, are linked to mutations in the aquaporin-2 gene. The treatment remains difficult, especially in infants, and is based on a low osmotic diet with increased water intake and the use of thiazides and indomethacin. The main goal is to avoid hypernatremic episodes and maintain a good hydration state. Potentially, specific treatment, in some cases of X-linked congenital nephrogenic diabetes insipidus, with pharmacological chaperones such as non-peptide vasopressin-2 receptor antagonists will be available in the future. Conversely, the nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is linked to a constitutive activation of the V(2)-receptor due to activating mutations with clinical and biological features of inappropriate antidiuresis but with low or undetectable plasma arginine vasopressin hormone levels. Copyright © 2014 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
Teimourian, Shahram; Sazgara, Faezeh; de Boer, Martin; van Leeuwen, Karin; Roos, Dirk; Lashkary, Sharzad; Chavoshzadeh, Zahra; Nabavi, Mohammad; Bemanian, Mohammad Hassan; Isaian, Anna
2018-04-26
Chronic granulomatous disease (CGD) is an inherited disease of the innate immune system that results from defects in 1 of the 5 subunits of nicotinamide adenine dinucleotide phosphate oxidase complex and leads to life-threatening infections with granuloma formation. During 3 years of study, we recognized 10 male patients with X-linked CGD from a tertiary referral center for immune deficiencies in Iran. The CGD patients were diagnosed according to clinical features and biochemical tests, including nitroblue tetrazolium and dihydrorhodamine-1, 2, 3 tests, performed on patients and their mothers. In all patients, Western blot analysis showed a gp91 phenotype. Mutation screening by single strand conformation polymorphism and multiplex ligation-dependent probe amplification analysis of the CYBB gene encoding gp91, followed by sequencing, showed 9 different mutations, 4 of them novel as far as we know.
NHS Gene Mutations in Ashkenazi Jewish Families with Nance-Horan Syndrome.
Shoshany, Nadav; Avni, Isaac; Morad, Yair; Weiner, Chen; Einan-Lifshitz, Adi; Pras, Eran
2017-09-01
To describe ocular and extraocular abnormalities in two Ashkenazi Jewish families with infantile cataract and X-linked inheritance, and to identify their underlying mutations. Seven affected members were recruited. Medical history, clinical findings, and biometric measurements were recorded. Mutation analysis of the Nance-Horan syndrome (NHS) gene was performed by direct sequencing of polymerase chain reaction-amplified exons. An unusual anterior Y-sutural cataract was documented in the affected male proband. Other clinical features among examined patients included microcorneas, long and narrow faces, and current or previous dental anomalies. A nonsense mutation was identified in each family, including a previously described 742 C>T, p.(Arg248*) mutation in Family A, and a novel mutation 2915 C>A, p.(Ser972*) in Family B. Our study expands the repertoire of NHS mutations and the related phenotype, including newly described anterior Y-sutural cataract and dental findings.
Norrie disease: first mutation report and prenatal diagnosis in an Indian family.
Ghosh, Manju; Sharma, Shipra; Shastri, Shivaram; Arora, Sadhna; Shukla, Rashmi; Gupta, Neerja; Deka, Deepika; Kabra, Madhulika
2012-11-01
Norrie Disease (ND) is a rare X-linked recessive disorder characterised by congenital blindness due to severe retinal dysgenesis. Hearing loss and intellectual disability is present in 30-50 % cases. ND is caused by mutations in the NDP gene, located at Xp11.3. The authors describe mutation analysis of a proband with ND and subsequently prenatal diagnosis. Sequence analysis of the NDP gene revealed a hemizygous missense mutation arginine to serine in codon 41 (p.Arg41Ser) in the affected child. Mother was carrier for the mutation. In a subsequent di-chorionic di-amniotic pregnancy, the authors performed prenatal diagnosis by mutation analysis on chorionic villi sample at 11 wk of gestation. The fetuses were unaffected. This is a first mutation report and prenatal diagnosis of a familial case of Norrie disease from India. The importance of genetic testing of Norrie disease for confirmation, carrier testing, prenatal diagnosis and genetic counseling is emphasized.
Familial acute necrotizing encephalopathy without RANBP2 mutation: Poor outcome.
Nishimura, Naoko; Higuchi, Yoshihisa; Kimura, Nobusuke; Nozaki, Fumihito; Kumada, Tomohiro; Hoshino, Ai; Saitoh, Makiko; Mizuguchi, Masashi
2016-11-01
Most childhood cases of acute necrotizing encephalopathy (ANE) involve neither family history nor recurrence. ANE occasionally occurs, however, as a familial disorder or recurs in Caucasian patients. A mutation of RAN-binding protein 2 (RANBP2) has been discovered in more than one half of familial or recurrent ANE patients. In contrast, there has been no report of this mutation in East Asia. Here, we report the first sibling cases of typical ANE in Japan, with poor outcome. DNA analysis of genes associated with ANE or other encephalopathies, including RANBP2 and carnitine palmitoyl transferase II (CPT2), indicated neither mutations nor disease-related polymorphisms. On literature review, recurrent or familial ANE without the RANBP2 mutation has a more severe outcome and greater predilection for male sex than that with the RANBP2 mutation. This suggests that there are unknown gene mutations linked to ANE. © 2016 Japan Pediatric Society.
Herrera, Laura; Valverde, Azucena; Saiz, Pilar; Sáez-Nieto, Juan A; Portero, José L; Jiménez, M Soledad
2004-06-01
The prevalence of mutations in the katG, inhA and oxyR-ahpC genes of isoniazid (INH)-resistant Mycobacterium tuberculosis isolates in the Philippines were determined. Of 306 M. tuberculosis isolates studied, 81 (26.5%) exhibited INH-resistance. Forty-four strains (54.3%) had mutations in the katG gene, eighteen strains (22.2%) had mutations in the putative inhA locus region, seven had mutations in both regions and five strains had mutations in the oxyR-ahpC operon. Only seven strains had no mutations. A total of 71 of the 81 (87.6%) resistant strains and 65 of the 72 (90.3%) INH sensitive randomly selected strains showed amino acid substitution in codon 463 (Arg to Leu) (88.9%). This fact supports the hypothesis that mutations at codon 463 are independent of INH-resistance and are linked to the geographical origins of the strains. Copyright 2004 Elsevier B.V.
DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy.
Guo, Ruolan; Zhu, Guosheng; Zhu, Huimin; Ma, Ruiyu; Peng, Ying; Liang, Desheng; Wu, Lingqian
2015-08-01
Dystrophinopathy is a group of inherited diseases caused by mutations in the DMD gene. Within the dystrophinopathy spectrum, Duchenne and Becker muscular dystrophies are common X-linked recessive disorders that mainly feature striated muscle necrosis. We combined multiplex ligation-dependent probe amplification with Sanger sequencing to detect large deletions/duplications and point mutations in the DMD gene in 613 Chinese patients. A total of 571 (93.1%) patients were diagnosed, including 428 (69.8%) with large deletions/duplications and 143 (23.3%) with point mutations. Deletion/duplication breakpoints gathered mostly in introns 44-55. Reading frame rules could explain 88.6% of deletion mutations. We identified seventy novel point mutations that had not been previously reported. Spectrum expansion and genotype-phenotype analysis of DMD mutations on such a large sample size in Han Chinese population would provide new insights into the pathogenic mechanism underlying dystrophinopathies.
Two Novel Mutations in the Aquaporin 2 Gene in a Girl with Congenital Nephrogenic Diabetes Insipidus
Cho, Su Jin; Zheng, Shou Huan; Cho, Hee Yeon; Ha, Il Soo; Choi, Yong
2005-01-01
Congenital nephrogenic diabetes insipidus (CNDI) is a rare inherited disorder characterized by insensitivity of the kidney to the antidiuretic effect of vasopressin. There are three inheritance patterns of CNDI: the X-linked recessive form associated with vasopressin V2 receptor gene mutations, and the autosomal recessive and dominant forms associated with aquaporin-2 gene (AQP2) mutations. The evaluation for polyuria and polydipsia in a one-month-old Korean girl revealed no response to vasopressin and confirmed the diagnosis of CNDI. Because the child was female without family history of CNDI, her disease was thought to be an autosomal recessive form. We analyzed the AQP2 gene and detected a compound heterozygous missense point mutation: 70Ala (GCC) to Asp (GAC) in exon 1 inherited from her father and 187Arg (CGC) to His (CAC) in exon 3 inherited from her mother. The first mutation is located within the first NPA motif of the AQP2 molecule and the second one right after the second NPA motif. This is the first report to characterize AQP2 mutations in Korean patients with autosomal recessive CNDI, and expands the spectrum of AQP2 mutations by reporting two novel mutation, 70Ala (GCC) to Asp (GAC) and 187Arg (CGC) to His (CAC). PMID:16361827
Genomic analysis of primordial dwarfism reveals novel disease genes.
Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S
2014-02-01
Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.
Genomic analysis of primordial dwarfism reveals novel disease genes
Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N.; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S.
2014-01-01
Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis. PMID:24389050
Zhao, Xintao; Wu, Yajie; Chen, Yi; Feng, Xinxing; Song, Ying; Wang, Yilu; Zou, Yubao; Wang, Jizheng; Shao, Yibing; Hui, Rutai; Song, Lei; Wang, Xu
2014-07-01
To identify the casual mutation of a Chinese pedigree with hypertrophic cardiomyopathy (HCM), and to analyze the genotype-phenotype relationship. The coding exons of 26 reported disease genes were sequenced by targeted resequencing in the proband and the identified mutation were detected with bi-directional Sanger sequencing in all family members and 307 healthy controls. The genotype-phenotype correlation was analyzed in the family. A missense mutation (c.2191C > T, p. Pro731Ser) in the 20th exon of MYH7 gene was identified. This mutation was absent in 307 healthy controls and predicted to be pathogenic by PolyPhen-HCM. Totally 13 family members carried this mutation, including 10 patients with HCM and 3 asymptomatic mutation carriers. The proband manifested severe congestive heart failure and 8 patients expressed various clinical manifestations of heart failure, including dyspnea, palpitations, chest pain, amaurosis or syncope. Five patients were diagnosed as HCM at the age of 16 or younger. One family member suffered sudden cardiac death. The Pro731Ser of MYH7 gene mutation is a causal and malignant mutation linked with familiar HCM.
Four novel RS1 gene mutations in Polish patients with X-linked juvenile retinoschisis
Skorczyk, Anna
2012-01-01
Purpose To determine the clinical features and to identify mutations in the retinoschisis gene (RS1) in ten patients with X-linked retinoschisis (XLRS). Methods Ten male patients from nine Polish families were included in this study. Ophthalmologic examinations, including optical coherence tomography (OCT) and full-field electroretinography (ERG), were performed in all affected boys. The entire coding region encompassing six exons of the RS1 gene was amplified with PCR and directly sequenced in all the patients. Results All affected individuals showed typical retinoschisis signs and symptoms, and all appeared to have a mutation in the RS1 gene. Seven different mutations were identified, including two novel missense substitutions: c.176G>C (p.Cys59Ser), c.451T>A (p.Tyr151Asp); one novel nonsense substitution: c.218C>A (p.Ser73*); and one novel frameshift mutation: c.354_355delCA (p.Asp118Glufs*2). We also found two missense substitutions that had been previously described: c.214G>A (p.Glu72Lys) and c.626G>T (p.Arg209Leu) and one known splice site mutation in intron 5: c.522+1G>T (IVS5+1G>T). Conclusions This study provides the first molecular genetic characteristics of patients with juvenile retinoschisis from the previously unexplored Polish population. We investigated the molecular background of XLRS in ten boys. The present study reports for the first time four novel mutations, including two missense substitutions, one nonsense substitution, and one frameshift deletion. One of these substitutions and 2-bp deletion created stop codons. Moreover, we described three substitutions that had been previously reported (one is a splicing mutation). Further genetic characterization of Polish patients with XLRS will be helpful in understanding the worldwide spectrum of RS1 mutations. Despite the mutation heterogeneity found in a small group of our patients, they presented a relatively uniform clinical picture. Identifying the causative mutation is helpful in confirming diagnosis and counseling, but cannot provide prognostic data. PMID:23288992
Hershkovitz, Eli; Loewenthal, Neta; Peretz, Asaf; Parvari, Ruti
2008-01-01
X-linked Kallmann syndrome (KS) is caused mainly by point mutations, in the KAL1 gene. Large deletions >1 Mb are rare events in the human population and commonly result in contiguous gene syndromes. A search for the mutation causing KS carried out on two pairs of first-degree cousins of 2 sisters. Two different apparently independent deletions were found. The deleted sequences encompass the KAL1 gene and four known additional genes exclusively expressed in testis. Two of these genes belong to the FAM9 gene family, which shares some homology with the SCYP3 gene, previously implicated in azoospermia. One of the events causing the deletion may have been mediated by an L1 transposition, the other by a non-homologous end joining. Such non-homologous recombinations have not yet been reported in the KAL genomic region and thus this area may be more prone to deletions than previously expected. This is the first report on genetic characterization of KS with a deletion of solely testis-expressed genes. The absence of these genes may have unfavorable implications for the patients regarding future fertility. (c) 2008 S. Karger AG, Basel
Erdõs, Melinda; Uzvölgyi, Eva; Nemes, Zoltán; Török, Olga; Rákóczi, Eva; Went-Sümegi, Nils; Sümegi, János; Maródi, László
2005-05-01
Males with an expressed mutation in the SH2D1A gene that encodes an SH2 domain protein named SH2D1A or SAP (NP_002342; signaling lymphocyte activating molecule [SLAM]-associated protein), have an X-linked syndrome characterized by an increased vulnerability to infection with Epstein-Barr virus (EBV). We evaluated two related male patients with fatal infectious mononucleosis (FIM) and mutation in the SH2D1A gene. Sequence analysis revealed a hemizygous c.47G>A mutation in one of the patients, and heterozygosity for this mutation in the genomic DNA from his mother and maternal grandmother. This mutation resulted in p.G16D amino acid change in the sequence of the SAP protein. To analyze the effect of this missense mutation on protein function cDNA was generated by site-directed mutagenesis and expressed in COS cells. We found that half-life of the p.G16D protein was comparable to that of wild type SAP. However, the mutant protein was defective in binding to its physiological ligands SLAM and 2B4. These results suggest that a defect in ligand binding contributes to the loss of function of the SAP protein in patients carrying p.G16D mutation.
Bustamante, Jacinta; Arias, Andres A; Vogt, Guillaume; Picard, Capucine; Galicia, Lizbeth Blancas; Prando, Carolina; Grant, Audrey V; Marchal, Christophe C; Hubeau, Marjorie; Chapgier, Ariane; de Beaucoudrey, Ludovic; Puel, Anne; Feinberg, Jacqueline; Valinetz, Ethan; Jannière, Lucile; Besse, Céline; Boland, Anne; Brisseau, Jean-Marie; Blanche, Stéphane; Lortholary, Olivier; Fieschi, Claire; Emile, Jean-François; Boisson-Dupuis, Stéphanie; Al-Muhsen, Saleh; Woda, Bruce; Newburger, Peter E; Condino-Neto, Antonio; Dinauer, Mary C; Abel, Laurent; Casanova, Jean-Laurent
2011-01-01
Germline mutations in CYBB, the human gene encoding the gp91phox subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This ‘experiment of nature’ indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria. PMID:21278736
Deletion of the "OPHN1" Gene Detected by aCGH
ERIC Educational Resources Information Center
Madrigal, I.; Rodriguez-Revenga, L.; Badenas, C.; Sanchez, A.; Mila, M.
2008-01-01
Background: The oligophrenin 1 gene ("OPHN1") is an Rho-GTPase-activating protein involved in the regulation of the G-protein cycle required for dendritic spine morphogenesis. Mutations in this gene are implicated in X-linked mental retardation (XLMR). Methods: We report a deletion spanning exons 21 and 22 of the "OPHN1" gene identified by a…
MASA syndrome is caused by mutations in the neural cell adhesion gene, L1CAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, C.E.; Wang, Y.; Schroer, R.J.
1994-09-01
The MASA syndrome is a recessive X-linked disorder characterized by Mental retardation, Adducted thumbs, Shuffling gait and Aphasia. Recently we found that MASA in one family was likely caused by a point mutation in exon 6 of the L1CAM gene. This gene has also been shown to be involved in X-linked hydrocephalus (HSAS). We have screened 60 patients with either sporadic HSAS or MASA as well as two additional families with MASA. For the screening, we initially utilized 3 cDNA probes for the L1CAM gene. In one of the MASA families, K8310, two affected males were found to have anmore » altered BglII band. The band was present in their carrier mother but not in their normal brothers. This band was detected by the entire cDNA probe as well as the cDNA probe for 3{prime} end of the gene. Analysis of the L1CAM sequence indicated the altered BglII site is distal to the exon 28 but proximal to the punative poly A signal site. It is hypothesized that this point mutation alters the stability of the L1CAM mRNA. This is being tested using cell lines established from the two affected males.« less
Neuhaus, Christine; Eisenberger, Tobias; Decker, Christian; Nagl, Sandra; Blank, Cornelia; Pfister, Markus; Kennerknecht, Ingo; Müller-Hofstede, Cornelie; Charbel Issa, Peter; Heller, Raoul; Beck, Bodo; Rüther, Klaus; Mitter, Diana; Rohrschneider, Klaus; Steinhauer, Ute; Korbmacher, Heike M; Huhle, Dagmar; Elsayed, Solaf M; Taha, Hesham M; Baig, Shahid M; Stöhr, Heidi; Preising, Markus; Markus, Susanne; Moeller, Fabian; Lorenz, Birgit; Nagel-Wolfrum, Kerstin; Khan, Arif O; Bolz, Hanno J
2017-09-01
Combined retinal degeneration and sensorineural hearing impairment is mostly due to autosomal recessive Usher syndrome (USH1: congenital deafness, early retinitis pigmentosa (RP); USH2: progressive hearing impairment, RP). Sanger sequencing and NGS of 112 genes (Usher syndrome, nonsyndromic deafness, overlapping conditions), MLPA, and array-CGH were conducted in 138 patients clinically diagnosed with Usher syndrome. A molecular diagnosis was achieved in 97% of both USH1 and USH2 patients, with biallelic mutations in 97% (USH1) and 90% (USH2), respectively. Quantitative readout reliably detected CNVs (confirmed by MLPA or array-CGH), qualifying targeted NGS as one tool for detecting point mutations and CNVs. CNVs accounted for 10% of identified USH2A alleles, often in trans to seemingly monoallelic point mutations. We demonstrate PTC124-induced read-through of the common p.Trp3955* nonsense mutation (13% of detected USH2A alleles), a potential therapy target. Usher gene mutations were found in most patients with atypical Usher syndrome, but the diagnosis was adjusted in case of double homozygosity for mutations in OTOA and NR2E3 , genes implicated in isolated deafness and RP. Two patients with additional enamel dysplasia had biallelic PEX26 mutations, for the first time linking this gene to Heimler syndrome. Targeted NGS not restricted to Usher genes proved beneficial in uncovering conditions mimicking Usher syndrome.
De Rocco, Daniela; Bottega, Roberta; Cappelli, Enrico; Cavani, Simona; Criscuolo, Maria; Nicchia, Elena; Corsolini, Fabio; Greco, Chiara; Borriello, Adriana; Svahn, Johanna; Pillon, Marta; Mecucci, Cristina; Casazza, Gabriella; Verzegnassi, Federico; Cugno, Chiara; Locasciulli, Anna; Farruggia, Piero; Longoni, Daniela; Ramenghi, Ugo; Barberi, Walter; Tucci, Fabio; Perrotta, Silverio; Grammatico, Paola; Hanenberg, Helmut; Della Ragione, Fulvio; Dufour, Carlo; Savoia, Anna
2014-01-01
Fanconi anemia is an inherited disease characterized by congenital malformations, pancytopenia, cancer predisposition, and sensitivity to cross-linking agents. The molecular diagnosis of Fanconi anemia is relatively complex for several aspects including genetic heterogeneity with mutations in at least 16 different genes. In this paper, we report the mutations identified in 100 unrelated probands enrolled into the National Network of the Italian Association of Pediatric Hematoly and Oncology. In approximately half of these cases, mutational screening was carried out after retroviral complementation analyses or protein analysis. In the other half, the analysis was performed on the most frequently mutated genes or using a next generation sequencing approach. We identified 108 distinct variants of the FANCA, FANCG, FANCC, FANCD2, and FANCB genes in 85, 9, 3, 2, and 1 families, respectively. Despite the relatively high number of private mutations, 45 of which are novel Fanconi anemia alleles, 26% of the FANCA alleles are due to 5 distinct mutations. Most of the mutations are large genomic deletions and nonsense or frameshift mutations, although we identified a series of missense mutations, whose pathogenetic role was not always certain. The molecular diagnosis of Fanconi anemia is still a tiered procedure that requires identifying candidate genes to avoid useless sequencing. Introduction of next generation sequencing strategies will greatly improve the diagnostic process, allowing a rapid analysis of all the genes. PMID:24584348
Prajapati, Chandra; Pölönen, Risto-Pekka; Rajala, Kristiina; Pekkanen-Mattila, Mari; Rasku, Jyrki; Larsson, Kim; Aalto-Setälä, Katriina
2016-01-01
Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease, which affects the structure of heart muscle tissue. The clinical symptoms include arrhythmias, progressive heart failure, and even sudden cardiac death but the mutation carrier can also be totally asymptomatic. To date, over 1400 mutations have been linked to HCM, mostly in genes encoding for sarcomeric proteins. However, the pathophysiological mechanisms of the disease are still largely unknown. Two founder mutations for HCM in Finland are located in myosin-binding protein C (MYBPC3-Gln1061X) and α-tropomyosin (TPM1-Asp175Asn) genes. We studied the properties of HCM cardiomyocytes (CMs) derived from patient-specific human induced pluripotent stem cells (hiPSCs) carrying either MYBPC3-Gln1061X or TPM1-Asp175Asn mutation. Both types of HCM-CMs displayed pathological phenotype of HCM but, more importantly, we found differences between CMs carrying either MYBPC3-Gln1061X or TPM1-Asp175Asn gene mutation in their cellular size, Ca2+ handling, and electrophysiological properties, as well as their gene expression profiles. These findings suggest that even though the clinical phenotypes of the patients carrying either MYBPC3-Gln1061X or TPM1-Asp175Asn gene mutation are similar, the genetic background as well as the functional properties on the cellular level might be different, indicating that the pathophysiological mechanisms behind the two mutations would be divergent as well. PMID:27057166
Lah, Melissa; Niranjan, Tejasvi; Srikanth, Sujata; Holloway, Lynda; Schwartz, Charles E; Wang, Tao; Weaver, David D
2016-04-01
We further evaluated a previously reported family with an apparently undescribed X-linked syndrome involving joint contractures, keloids, an increased optic cup-to-disc ratio, and renal stones to elucidate the genetic cause. To do this, we obtained medical histories and performed physical examination on 14 individuals in the family, five of whom are affected males and three are obligate carrier females. Linkage analysis was performed on all but one individual and chromosome X-exome sequencing was done on two affected males. The analysis localized the putative gene to Xq27-qter and chromosome X-exome sequencing revealed a mutation in exon 28 (c.4726G>A) of the filamin A (FLNA) gene, predicting that a conserved glycine had been replaced by arginine at amino acid 1576 (p.G1576R). Segregation analysis demonstrated that all known carrier females tested were heterozygous (G/A), all affected males were hemizygous for the mutation (A allele) and all normal males were hemizygous for the normal G allele. The data and the bioinformatic analysis indicate that the G1576R mutation in the FLNA gene is very likely pathogenic in this family. The syndrome affecting the family shares phenotypic overlap with other syndromes caused by FLNA mutations, but appears to be a distinct phenotype, likely representing a unique genetic syndrome. © 2016 Wiley Periodicals, Inc.
Lysosomal impairment in Parkinson's disease.
Dehay, Benjamin; Martinez-Vicente, Marta; Caldwell, Guy A; Caldwell, Kim A; Yue, Zhenyue; Cookson, Mark R; Klein, Christine; Vila, Miquel; Bezard, Erwan
2013-06-01
Impairment of autophagy-lysosomal pathways (ALPs) is increasingly regarded as a major pathogenic event in neurodegenerative diseases, including Parkinson's disease (PD). ALP alterations are observed in sporadic PD brains and in toxic and genetic rodent models of PD-related neurodegeneration. In addition, PD-linked mutations and post-translational modifications of α-synuclein impair its own lysosomal-mediated degradation, thereby contributing to its accumulation and aggregation. Furthermore, other PD-related genes, such as leucine-rich repeat kinase-2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), have been mechanistically linked to alterations in ALPs. Conversely, mutations in lysosomal-related genes, such as glucocerebrosidase (GBA) and lysosomal type 5 P-type ATPase (ATP13A2), have been linked to PD. New data offer mechanistic molecular evidence for such a connection, unraveling a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. First, PD-related GBA deficiency/mutations initiate a positive feedback loop in which reduced lysosomal function leads to α-synuclein accumulation, which, in turn, further decreases lysosomal GBA activity by impairing the trafficking of GBA from the endoplasmic reticulum-Golgi to lysosomes, leading to neurodegeneration. Second, PD-related mutations/deficiency in the ATP13A2 gene lead to a general lysosomal impairment characterized by lysosomal membrane instability, impaired lysosomal acidification, decreased processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished clearance of autophagosomes, collectively contributing to α-synuclein accumulation and cell death. According to these new findings, primary lysosomal defects could potentially account for Lewy body formation and neurodegeneration in PD, laying the groundwork for the prospective development of new neuroprotective/disease-modifying therapeutic strategies aimed at restoring lysosomal levels and function. Copyright © 2013 Movement Disorder Society.
[The PIG-A gene as a new biomarker of mutagenesis: proof of concept and technical specifications].
Castel, Pierre; Carcopino, Xavier; Robert, Stéphane; Bonetto, Rémi; Cowen, Didier; Orsiere, Thierry
2017-04-01
Gene mutations are not directly detected by current genotoxicity assays and most of them need a cell culture step. The whole blood PIG-A assay consists in the detection of the mutation frequency within the PIG-A sentinel gene by identification of glycosyl-phosphatidyl-inositol (GPI-) deficient cells. PIG-A mutated/GPI-deficient cells can be detected by flow cytometry as they no longer express surface fluorescence for GPI-linked markers. The last researches have focused on cell enrichment techniques leading to increased throughput and sensitivity. The results of this new and promising biomarker of mutagenesis, performed in humans or rodents, are now available within 2 hours after blood collection. © 2017 médecine/sciences – Inserm.
A case of a Tunisian Rett patient with a novel double-mutation of the MECP2 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fendri-Kriaa, Nourhene, E-mail: nourhene.fendri@gmail.com; Hsairi, Ines; Kifagi, Chamseddine
2011-06-03
Highlights: {yields} Sequencing of the MECP2 gene, modeling and comparison of the two variants were performed in a Tunisian classical Rett patient. {yields} A double-mutation: a new and de novo mutation c.535C > T and the common one c.763C > T of the MECP2 gene was identified. {yields} The P179S transition may change local electrostatic properties which may affect the function and stability of the protein MeCP2. -- Abstract: Rett syndrome is an X-linked dominant disorder caused frequently by mutations in the methyl-CpG-binding protein 2 gene (MECP2). Rett patients present an apparently normal psychomotor development during the first 6-18 monthsmore » of life. Thereafter, they show a short period of developmental stagnation followed by a rapid regression in language and motor development. The aim of this study was to perform a mutational analysis of the MECP2 gene in a classical Rett patient by sequencing the corresponding gene and modeling the found variants. The results showed the presence of a double-mutation: a new and de novo mutation c.535C > T (p.P179S) and the common c.763C > T (p.R255X) transition of the MECP2 gene. The p.P179S mutation was located in a conserved amino acid in CRIR domain (corepressor interacting region). Modeling results showed that the P179S transition could change local electrostatic properties by adding a negative charge due to serine hydroxyl group of this region of MeCP2 which may affect the function and stability of the protein. The p.R255X mutation is located in TRD-NLS domain (transcription repression domain-nuclear localization signal) of MeCP2 protein.« less
Li, Sisi; Xi, Quansheng; Zhang, Xiaoyu; Yu, Dong; Li, Lin; Jiang, Zhenyang; Chen, Qiuyun; Wang, Qing K; Traboulsi, Elias I
2018-06-01
We investigated an Amish family in which three siblings presented with an early-onset childhood retinal dystrophy inherited in an autosomal recessive fashion. Genome-wide linkage analysis identified significant linkage to marker D2S2216 on 2q11 with a two-point LOD score of 1.95 and a multi-point LOD score of 3.76. Whole exome sequencing was then performed for the three affected individuals and identified a homozygous nonsense mutation (c.C1813T, p.R605X) in the cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene located within the 2p14-2q14 Jalili syndrome locus. The initial assessment and collection of the family were performed before the clinical delineation of Jalili syndrome. Another assessment was made after the discovery of the responsible gene and the dental abnormalities characteristic of Jalili syndrome were retrospectively identified. The p.R605X mutation represents the first probable founder mutation of Jalili syndrome identified in the Amish community. The molecular mechanism underlying Jalili syndrome is unknown. Here we show that CNNM4 interacts with IQCB1, which causes Leber congenital amaurosis (LCA) when mutated. A truncated CNNM4 protein starting at R605 significantly increased the rate of apoptosis, and significantly increased the interaction between CNNM4 and IQCB1. Mutation p.R605X may cause Jalili syndrome by a nonsense-mediated decay mechanism, affecting the function of IQCB1 and apoptosis, or both. Our data, for the first time, functionally link Jalili syndrome gene CNNM4 to LCA gene IQCB1, providing important insights into the molecular pathogenic mechanism of retinal dystrophy in Jalili syndrome.
Lorenz-Depiereux, Bettina; Guido, Victoria E.; Johnson, Kenneth R.; Zheng, Qing Yin; Gagnon, Leona H.; Bauschatz, Joiel D.; Davisson, Muriel T.; Washburn, Linda L.; Donahue, Leah Rae; Strom, Tim M.; Eicher, Eva M.
2010-01-01
X-linked hypophosphatemic rickets (XLH) in humans is caused by mutations in the PHEX gene. Previously, three mutations in the mouse Phex gene have been reported: PhexHyp, Gy, and PhexSka1. Here we report analysis of two new spontaneous mutations in the mouse Phex gene, PhexHyp-2J and PhexHyp-Duk. PhexHyp-2J and PhexHyp-Duk involve intragenic deletions of at least 7.3 kb containing exon 15, and 30 kb containing exons 13 and 14, respectively. Both mutations cause similar phenotypes in males, including shortened hind legs and tail, a shortened square trunk, hypophosphatemia, hypocalcemia, and rachitic bone disease. In addition, mice carrying the PhexHyp-Duk mutation exhibit background-dependent variable expression of deafness, circling behavior, and cranial dysmorphology, demonstrating the influence of modifying genes on Phex-related phenotypes. Cochlear cross-sections from PhexHyp-2J/Y and PhexHyp-Duk/Y males reveal a thickening of the temporal bone surrounding the cochlea with the presence of a precipitate in the scala tympani. Evidence of the degeneration of the organ of Corti and spiral ganglion also are present in the hearing-impaired PhexHyp-Duk/Y mice, but not in the normal-hearing PhexHyp-2J/Y mice. Analysis of the phenotypes noted in PhexHyp-Duk/Y an PhexHyp-2J/Y males, together with those noted in PhexSka1/Y and PhexHyp/Y males, now allow XLH-related phenotypes to be separated from non-XLH-related phenotypes, such as those noted in Gy/Y males. Also, identification of the genetic modifiers of hearing and craniofacial dysmorphology in PhexHyp-Duk/Y mice could provide insight into the phenotypic variation of XLH in humans. PMID:15029877
Lorenz-Depiereux, Bettina; Guido, Victoria E; Johnson, Kenneth R; Zheng, Qing Yin; Gagnon, Leona H; Bauschatz, Joiel D; Davisson, Muriel T; Washburn, Linda L; Donahue, Leah Rae; Strom, Tim M; Eicher, Eva M
2004-03-01
X-linked hypophosphatemic rickets (XLH) in humans is caused by mutation in the PHEX gene. Previously, three mutations in the mouse Phex gene have been reported: Phex(Hyp), Gy, and Phex(Ska1). Here we report analysis of two new spontaneous mutation in the mouse Phex gene, Phex(Hyp-2J) and Phex(Hyp-Duk). Phex(Hyp-2J) and Phex(Hyp-Duk) involve intragenic deletions of at least 7.3 kb containing exon 15, and 30 kb containing exons 13 and 14, respectively. Both mutations cause similar phenotypes in males, including shortened hind legs and tail, a shortened square trunk, hypophosphatemia, hypocalcemia, and rachitic bone disease. In addition, mice carrying the Phex(Hyp-Duk) mutation exhibit background-dependent variable expression of deafness, circling behavior, and cranial dysmorphology, demonstrating the influence of modifying genes on Phex-related phenotypes. Cochlear cross-sections from Phex(Hyp-2J)/Y and Phex(Hyp-Duk)/Y males reveal a thickening of the temporal bones surrounding the cochlea with the presence of a precipitate in the scala tympani. Evidence of the degeneration of the organ of Corti and spiral ganglion also are present in the hearing-impaired Phex(Hyp-Duk)/Y mice, but not in the normal-hearing Phex(Hyp-2J)/Y mice. Analysis of the phenotypes noted in Phex(Hyp-Duk)/Y and Phex(Hyp-2J)/Y males, together with those noted in Phex(Ska1)/Y and Phex(Hyp)/Y males, now allow XLH-related phenotypes to be separated from non-XLH-related phenotypes, such as those noted in Gy/Y males. Also, identification of the genetic modifiers of hearing and craniofacial dysmorphology in Phex(Hyp-Duk)/Y mice could provide insight into the phenotypic variation of XLH in humans.
X-linked agammaglobulinemia - first case with Bruton tyrosine kinase mutation from Pakistan.
Zaidi, Samreen Kulsom; Qureshi, Sonia; Qamar, Farah Naz
2017-03-01
X-linked agammaglobulinemia (XLA) is a primary immunodeficiency with more than 600 mutations in Bruton tyrosine kinase (Bkt) gene which are responsible for early-onset agammaglobulinemia and repeated infections. Herein we present a case of a 3-year-old boy with history of repeated diarrhoea and an episode of meningoencephalitis with hemiplegia. The workup showed extremely low levels of immunoglobulin with low CD+19 cells. Genetic analysis showed Btk mutation 18 c.1883delCp.T628fs. To the best of our knowledge this is the first report of a case of XLA confirmed by molecular technique from Pakistan.
MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer
Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L.
2016-01-01
The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. PMID:26590264
Yue, Hua; Yu, Jin-bo; He, Jin-wei; Zhang, Zeng; Fu, Wen-zhen; Zhang, Hao; Wang, Chun; Hu, Wei-wei; Gu, Jie-mei; Hu, Yun-qiu; Li, Miao; Liu, Yu-juan; Zhang, Zhen-Lin
2014-01-01
X-linked dominant hypophosphatemia (XLH) is the most prevalent form of inherited rickets/osteomalacia in humans. The aim of this study was to identify PHEX gene mutations and describe the clinical features observed in 6 unrelated Chinese families and 3 sporadic patients with hypophosphatemic rickets/osteomalacia. For this study, 45 individuals from 9 unrelated families of Chinese Han ethnicity (including 16 patients and 29 normal phenotype subjects), and 250 healthy donors were recruited. All 22 exons and exon-intron boundaries of the PHEX gene were amplified by polymerase chain reaction (PCR) and directly sequenced. The PHEX mutations were detected in 6 familial and 3 sporadic hypophosphatemic rickets/osteomalacia. Altogether, 2 novel mutations were detected: 1 missense mutation c.1183G>C in exon 11, resulting in p.Gly395Arg and 1 missense mutation c.1751A>C in exon 17, resulting in p.His584Pro. No mutations were found in the 250 healthy controls. Our study increases knowledge of the PHEX gene mutation types and clinical phenotypes found in Chinese patients with XLH, which is important for understanding the genetic basis of XLH. The molecular diagnosis of a PHEX genetic mutation is of great importance for confirming the clinical diagnosis of XLH, conducting genetic counseling, and facilitating prenatal intervention, especially in the case of sporadic patients.
Isolated and combined dystonia syndromes - an update on new genes and their phenotypes.
Balint, B; Bhatia, K P
2015-04-01
Recent consensus on the definition, phenomenology and classification of dystonia centres around phenomenology and guides our diagnostic approach for the heterogeneous group of dystonias. Current terminology classifies conditions where dystonia is the sole motor feature (apart from tremor) as 'isolated dystonia', while 'combined dystonia' refers to dystonias with other accompanying movement disorders. This review highlights recent advances in the genetics of some isolated and combined dystonic syndromes. Some genes, such as ANO3, GNAL and CIZ1, have been discovered for isolated dystonia, but they are probably not a common cause of classic cervical dystonia. Conversely, the phenotype associated with TUBB4A mutations expanded from that of isolated dystonia to a syndrome of hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC syndrome). Similarly, ATP1A3 mutations cause a wide phenotypic spectrum ranging from rapid-onset dystonia-parkinsonism to alternating hemiplegia of childhood. Other entities entailing dystonia-parkinsonism include dopamine transporter deficiency syndrome (SLC63 mutations); dopa-responsive dystonias; young-onset parkinsonism (PARKIN, PINK1 and DJ-1 mutations); PRKRA mutations; and X-linked TAF1 mutations, which rarely can also manifest in women. Clinical and genetic heterogeneity also characterizes myoclonus-dystonia, which includes not only the classical phenotype associated with epsilon-sarcoglycan mutations but rarely also presentation of ANO3 gene mutations, TITF1 gene mutations typically underlying benign hereditary chorea, and some dopamine synthesis pathway conditions due to GCH1 and TH mutations. Thus, new genes are being recognized for isolated dystonia, and the phenotype of known genes is broadening and now involves different combined dystonia syndromes. © 2015 EAN.
Lin, Phoebe; Shankar, Suma P; Duncan, Jacque; Slavotinek, Anne; Stone, Edwin M; Rutar, Tina
2010-02-01
Norrie disease (ND) is caused by mutations in the ND pseudoglioma (NDP) gene (MIM 300658) located at chromosome Xp11.4-p11.3. ND is characterized by abnormal retinal vascular development and vitreoretinal disorganization presenting at birth. Systemic manifestations include sensorineural deafness, progressive mental disorder, behavioral and psychological problems, growth failure, and seizures. Other vitreoretinopathies that are associated with NDP gene mutations include X-linked familial exudative vitreoretinopathy, Coats disease, persistent fetal vasculature, and retinopathy of prematurity. Phenotypic variability associated with NDP gene mutations has been well documented in affected male patients. However, there are limited data on signs in female carriers, with mild peripheral retinal abnormalities reported in both carrier and noncarrier females of families with NDP gene mutations. Here, we report a family harboring a single base-pair deletion, c.268delC, in the NDP gene causing a severe ND phenotype in the male proband and peripheral retinal vascular abnormalities with dragged maculae similar to those observed in familial exudative vitreoretinopathy in his carrier mother. Copyright (c) 2010 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
The role of mutations in the SCN5A gene in cardiomyopathies.
Zaklyazminskaya, Elena; Dzemeshkevich, Sergei
2016-07-01
The SCN5A gene encodes the alpha-subunit of the Nav1.5 ion channel protein, which is responsible for the sodium inward current (INa). Since 1995 several hundred mutations in this gene have been found to be causative for inherited arrhythmias including Long QT syndrome, Brugada syndrome, cardiac conduction disease, sudden infant death syndrome, etc. As expected these syndromes are primarily electrical heart diseases leading to life-threatening arrhythmias with an "apparently normal heart". In 2003 a new form of dilated cardiomyopathy was identified associated with mutations in the SCN5A gene. Recently mutations have been also found in patients with arrhythmogenic right ventricular cardiomyopathy and atrial standstill. The purpose of this review is to outline and analyze the following four topics: 1) SCN5A genetic variants linked to different cardiomyopathies; 2) clinical manifestations of the known mutations; 3) possible molecular mechanisms of myocardial remodeling; and 4) the potential implications of gene-specific treatment for those disorders. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016 Elsevier B.V. All rights reserved.
Manga, Prashiela; Kromberg, Jennifer G. R.; Turner, Angela; Jenkins, Trefor; Ramsay, Michele
2001-01-01
In southern Africa, brown oculocutaneous albinism (BOCA) is a distinct pigmentation phenotype. In at least two cases, it has occurred in the same families as tyrosinase-positive oculocutaneous albinism (OCA2), suggesting that it may be allelic, despite the fact that this phenotype was attributed to mutations in the TYRP1 gene in an American individual of mixed ancestry. Linkage analysis in five families mapped the BOCA locus to the same region as the OCA2 locus (maximum LOD 3.07; θ=0 using a six-marker haplotype). Mutation analysis of the human homologue of the mouse pink-eyed dilution gene (P), in 10 unrelated individuals with BOCA revealed that 9 had one copy of the 2.7-kb deletion. No other mutations were identified. Additional haplotype studies, based on closely linked markers (telomere to centromere: D15S1048, D15S1019, D15S1533, P-gene 2.7-kb deletion, D15S219, and D15S156) revealed several BOCA-associated P haplotypes. These could be divided into two core haplotypes, suggesting that a limited number of P-gene mutations give rise to this phenotype. PMID:11179026
Welker, Noah C; Habig, Jeffrey W; Bass, Brenda L
2007-07-01
We describe the first microarray analysis of a whole animal containing a mutation in the Dicer gene. We used adult Caenorhabditis elegans and, to distinguish among different roles of Dicer, we also performed microarray analyses of animals with mutations in rde-4 and rde-1, which are involved in silencing by siRNA, but not miRNA. Surprisingly, we find that the X chromosome is greatly enriched for genes regulated by Dicer. Comparison of all three microarray data sets indicates the majority of Dicer-regulated genes are not dependent on RDE-4 or RDE-1, including the X-linked genes. However, all three data sets are enriched in genes important for innate immunity and, specifically, show increased expression of innate immunity genes.
Welker, Noah C.; Habig, Jeffrey W.; Bass, Brenda L.
2007-01-01
We describe the first microarray analysis of a whole animal containing a mutation in the Dicer gene. We used adult Caenorhabditis elegans and, to distinguish among different roles of Dicer, we also performed microarray analyses of animals with mutations in rde-4 and rde-1, which are involved in silencing by siRNA, but not miRNA. Surprisingly, we find that the X chromosome is greatly enriched for genes regulated by Dicer. Comparison of all three microarray data sets indicates the majority of Dicer-regulated genes are not dependent on RDE-4 or RDE-1, including the X-linked genes. However, all three data sets are enriched in genes important for innate immunity and, specifically, show increased expression of innate immunity genes. PMID:17526642
Gene targeting in embryonic stem cells, II: conditional technologies
USDA-ARS?s Scientific Manuscript database
Genome modification via transgenesis has allowed researchers to link genotype and phenotype as an alternative approach to the characterization of random mutations through evolution. The synergy of technologies from the fields of embryonic stem (ES) cells, gene knockouts, and protein-mediated recombi...
Preimplantation diagnosis for neurofibromatosis.
Verlinsky, Yury; Rechitsky, Svetlana; Verlinsky, Oleg; Chistokhina, Anna; Sharapova, Tatyana; Masciangelo, Christina; Levy, Michael; Kaplan, Brian; Lederer, Kevin; Kuliev, Anver
2002-01-01
Preimplantation genetic diagnosis (PGD) has recently been performed for inherited cancer predisposition determined by p53 tumour suppressor gene mutations, suggesting the usefulness of PGD for late onset disorders with genetic predisposition, including those caused by the germline mutations of other tumour suppressor genes. Here PGD was performed for two couples, one at risk for producing a child with maternally derived neurofibromatosis type I (NF1), and the other with paternally derived neurofibromatosis type II (NF2). The procedure involved a standard IVF protocol, combined with testing of oocytes or embryos prior to their transfer back to the patients. Maternal mutation Trp-->Ter (TGG-->TGA) in exon 29 of the NF1 gene was tested by sequential PCR analysis of the first and second polar bodies, and paternal L141P mutation in exon 4 of the NF2 gene by embryo biopsy at the cleavage stage. In both cases, multiplex nested PCR was applied, involving NF1 and NF2 mutation analysis simultaneously with the 3 and 2 linked markers, respectively. Of 57 oocytes tested in four PGD cycles for NF1 mutation, 26 mutation-free oocytes were detected, from which eight were preselected for transfer, two in each cycle. These produced two clinical pregnancies, one confirmed to be mutation free by chorionic villus sampling but ending in a stillbirth, and the other still ongoing. Of 18 embryos analysed in a cycle performed for NF2 mutation, eight mutation-free embryos were detected, three of which were transferred back to the patient, resulting in a singleton pregnancy and the birth of a mutation-free child. This suggests that PGD is a useful approach for avoiding the birth of children with inherited cancer predisposition, determined by NF1 and NF2 gene mutations.
2004-01-01
Abstract The purpose of this study was to evaluate the cationic trypsinogen gene in miniature schnauzers for possible mutations. Genetic mutations have been linked with hereditary pancreatitis in humans. Four miniature schnauzers were selected on the basis of a clinical history of pancreatitis. One healthy miniature schnauzer and 1 healthy mixed breed canine were enrolled as controls. DNA was extracted from these canines using a commercial kit. Primers were designed to amplify the entire canine cationic trypsinogen cDNA sequence. A polymerase chain reaction (PCR) was performed and products were purified and sequenced. All sequences were then compared. The healthy control canine, a healthy miniature schnauzer, and the 4 miniature schnauzers with pancreatitis showed identical sequences of the cationic trypsinogen gene to the published sequence. We conclude that, in contrast to humans with hereditary pancreatitis, mutations of the cationic trypsinogen gene do not play a major role in the genesis of pancreatitis in the miniature schnauzer. PMID:15581228
Bishop, Micah A; Steiner, Jörg M; Moore, Lisa E; Williams, David A
2004-10-01
The purpose of this study was to evaluate the cationic trypsinogen gene in miniature schnauzers for possible mutations. Genetic mutations have been linked with hereditary pancreatitis in humans. Four miniature schnauzers were selected on the basis of a clinical history of pancreatitis. One healthy miniature schnauzer and 1 healthy mixed breed canine were enrolled as controls. DNA was extracted from these canines using a commercial kit. Primers were designed to amplify the entire canine cationic trypsinogen cDNA sequence. A polymerase chain reaction (PCR) was performed and products were purified and sequenced. All sequences were then compared. The healthy control canine, a healthy miniature schnauzer, and the 4 miniature schnauzers with pancreatitis showed identical sequences of the cationic trypsinogen gene to the published sequence. We conclude that, in contrast to humans with hereditary pancreatitis, mutations of the cationic trypsinogen gene do not play a major role in the genesis of pancreatitis in the miniature schnauzer.
Paterson, Andrew D; Rommens, Johanna M; Bharaj, Bhupinder; Blavignac, Jessica; Wong, Isidro; Diamandis, Maria; Waye, John S; Rivard, Georges E; Hayward, Catherine P M
2010-02-11
Quebec platelet disorder (QPD) is an autosomal dominant bleeding disorder linked to a region on chromosome 10 that includes PLAU, the urokinase plasminogen activator gene. QPD increases urokinase plasminogen activator mRNA levels, particularly during megakaryocyte differentiation, without altering expression of flanking genes. Because PLAU sequence changes were excluded as the cause of this bleeding disorder, we investigated whether the QPD mutation involved PLAU copy number variation. All 38 subjects with QPD had a direct tandem duplication of a 78-kb genomic segment that includes PLAU. This mutation was specific to QPD as it was not present in any unaffected family members (n = 114), unrelated French Canadians (n = 221), or other persons tested (n = 90). This new information on the genetic mutation will facilitate diagnostic testing for QPD and studies of its pathogenesis and prevalence. QPD is the first bleeding disorder to be associated with a gene duplication event and a PLAU mutation.
Kondo, Yukiko; Saitsu, Hirotomo; Miyamoto, Toshinobu; Nishiyama, Kiyomi; Tsurusaki, Yoshinori; Doi, Hiroshi; Miyake, Noriko; Ryoo, Na-Kyung; Kim, Jeong Hun; Yu, Young Suk; Matsumoto, Naomichi
2012-03-01
Oculofaciocardiodental syndrome (OFCD) is an X-linked dominant disorder associated with male lethality, presenting with congenital cataract, dysmorphic face, dental abnormalities and septal heart defects. Mutations in BCOR (encoding BCL-6-interacting corepressor) cause OFCD. Here, we report on a Korean family with common features of OFCD including bilateral 2nd-3rd toe syndactyly and septal heart defects in three affected females (mother and two daughters). Through the mutation screening and copy number analysis using genomic microarray, we identified a novel heterozygous mutation, c.888delG, in the BCOR gene and two interstitial microduplications at Xp22.2-22.13 and Xp21.3 in all the three affected females. The BCOR mutation may lead to a premature stop codon (p.N297IfsX80). The duplication at Xp22.2-22.13 involved the NHS gene causative for Nance-Horan syndrome, which is an X-linked disorder showing similar clinical features with OFCD in affected males, and in carrier females with milder presentation. Considering the presence of bilateral 2nd-3rd toe syndactyly and septal heart defects, which is unique to OFCD, the mutation in BCOR is likely to be the major determinant for the phenotypes in this family.
Luzzi, Simona; Colleoni, Lara; Corbetta, Paola; Baldinelli, Sara; Fiori, Chiara; Girelli, Francesca; Silvestrini, Mauro; Caroppo, Paola; Giaccone, Giorgio; Tagliavini, Fabrizio; Rossi, Giacomina
2017-06-01
Gene coding for progranulin, GRN, is a major gene linked to frontotemporal lobar degeneration. While most of pathogenic GRN mutations are null mutations leading to haploinsufficiency, GRN missense mutations do not have an obvious pathogenicity, and only a few have been revealed to act through different pathogenetic mechanisms, such as cytoplasmic missorting, protein degradation, and abnormal cleavage by elastase. The aim of this study was to disclose the pathogenetic mechanisms of the GRN A199V missense mutation, which was previously reported not to alter physiological progranulin features but was associated with a reduced plasma progranulin level. After investigating the family pedigree, we performed genetic and biochemical analysis on its members and performed RNA expression studies. We found that the mutation segregates with the disease and discovered that its pathogenic feature is the alteration of GRN mRNA splicing, actually leading to haploinsufficiency. Thus, when facing with a missense GRN mutation, its pathogenetic effects should be investigated, especially if associated with low plasma progranulin levels, to determine its nature of either benign polymorphism or pathogenic mutation. Copyright © 2017 Elsevier Inc. All rights reserved.
Predicting the Pathogenicity of Aminoacyl-tRNA Synthetase Mutations
Oprescu, Stephanie N.; Griffin, Laurie B.; Beg, Asim A.; Antonellis, Anthony
2016-01-01
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes responsible for charging tRNA with cognate amino acids—the first step in protein synthesis. ARSs are required for protein translation in the cytoplasm and mitochondria of all cells. Surprisingly, mutations in 28 of the 37 nuclear-encoded human ARS genes have been linked to a variety of recessive and dominant tissue-specific disorders. Current data sustains that impaired enzyme function is a robust predictor of the pathogenicity of ARS mutations. However, experimental model systems that distinguish between pathogenic and non-pathogenic ARS variants are required for implicating newly identified ARS mutations in disease. Here, we outline strategies to assist in predicting the pathogenicity of ARS variants and urge cautious evaluation of genetic and functional data prior to linking an ARS mutation to a human disease phenotype. PMID:27876679
A novel c.240_241insGG mutation in NDP gene in a family with Norrie disease.
Andarva, Monavvar; Jamshidi, Javad; Ghaedi, Hamid; Daftarian, Narsis; Emamalizadeh, Babak; Alehabib, Elham; Taghavi, Shaghyegh; Pouriran, Ramin; Darvish, Hossein
2018-03-01
Norrie disease (ND) is a rare, X-linked recessive disorder with the main characteristic of early childhood blindness. The aim of the present study was to identify the genetic cause of the disease and the phenotypic characteristics of the patients in an Iranian family with four affected males with ND. Norrie disease pseudoglioma (NDP) gene was sequenced and clinical examination was performed on patients. A GG dinucleotide insertion in exon 3 (c.240_241insGG) of NDP was detected in all patients. The mutation caused a frameshift and an early stop codon (p.Phe81Glyfs*23). A novel mutation was found in the NDP gene in the affected males of the family. As the mutation was absent in the normal male members of the family, it should be the genetic cause of the disease. © 2017 Optometry Australia.
Levy-Litan, Varda; Hershkovitz, Eli; Avizov, Luba; Leventhal, Neta; Bercovich, Dani; Chalifa-Caspi, Vered; Manor, Esther; Buriakovsky, Sophia; Hadad, Yair; Goding, James; Parvari, Ruti
2010-02-12
Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Myasthenic syndromes due to defects in COL13A1 and in the N-linked glycosylation pathway.
Beeson, David; Cossins, Judith; Rodriguez-Cruz, Pedro; Maxwell, Susan; Liu, Wei-Wei; Palace, Jacqueline
2018-02-01
The congenital myasthenic syndromes (CMS) are hereditary disorders of neuromuscular transmission. The number of cases recognized, at around 1:100,000 in the United Kingdom, is increasing with improved diagnosis. The advent of next-generation sequencing has facilitated the discovery of many genes that harbor CMS-associated mutations. An emerging group of CMS, characterized by a limb-girdle pattern of muscle weakness, is caused by mutations in genes that encode proteins involved in the initial steps of the N-linked glycosylation pathway, which is surprising, since this pathway is found in all mammalian cells. However, mutations in these genes may also give rise to multisystem disorders (congenital disorders of glycosylation) or muscle disorders where the myasthenic symptoms constitute only one component within a wider phenotypic spectrum. We also report a CMS due to mutations in COL13A1, which encodes an extracellular matrix protein that is concentrated at the neuromuscular junction and highlights a role for these extracellular matrix proteins in maintaining synaptic stability that is independent of the AGRN/MuSK clustering pathway. Knowledge about the neuromuscular synapse and the different proteins involved in maintaining its structure as well as function enables us to tailor treatments to the underlying pathogenic mechanisms. © 2018 New York Academy of Sciences.
Semenza, J C; Weasel, L H
1997-01-01
One of the challenges in environmental health is to attribute a certain health effect to a specific environmental exposure and to establish a cause-effect relationship. Molecular epidemiology offers a new approach to addressing these challenges. Mutations in the tumor suppressor gene p53 can shed light on past environmental exposure, and carcinogenic agents and doses can be distinguished on the basis of mutational spectra and frequency. Mutations in p53 have successfully been used to establish links between dietary aflatoxin exposure and liver cancer, exposure to ultraviolet light and skin cancer, smoking and cancers of the lung and bladder, and vinyl chloride exposure and liver cancer. In lung cancer, carcinogens from tobacco smoke have been shown to form adducts with DNA. The location of these adducts correlates with those positions in the p53 gene that are mutated in lung cancer, confirming a direct etiologic link between exposure and disease. Recent investigations have also explored the use of p53 as a susceptibility marker for cancer. Furthermore, studies in genetic toxicology have taken advantage of animals transgenic for p53 to screen for carcinogens in vivo. In this review, we summarize recent developments in p53 biomarker research and illustrate applications to environmental health. PMID:9114284
A new variant of a known mutation in two siblings with permanent neonatal diabetes mellitus.
Aycan, Zehra; Cetinkaya, Semra; Oğuz, Serife Suna; Ceylaner, Serdar
2011-01-01
Permanent neonatal diabetes mellitus is a rare disorder usually presenting within the first few weeks or months of life. This disorder is genetically heterogeneous and has been associated with mutations in various genes. The genetic cause remains mostly unknown although several genes have been linked to this disorder. Mutations in KCNJ11, ABCC8, or INS are the cause of permanent neonatal diabetes mellitus in about 50%-60% of the patients. With genetic studies, we hope to increase our knowledge of neonatal diabetes, whereby new treatment models can become possible. Here, we defined a new variant of a known mutation, INS Exon 1-3 homozygous deletion, in two siblings diagnosed with permanent neonatal diabetes mellitus.
Satre, V; Monnier, N; Berthoin, F; Ayuso, C; Joannard, A; Jouk, P S; Lopez-Pajares, I; Megabarne, A; Philippe, H J; Plauchu, H; Torres, M L; Lunardi, J
1999-01-01
The oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked disorder characterized by major abnormalities of eyes, nervous system, and kidneys. Mutations in the OCRL1 gene have been associated with the disease. OCRL1 encodes a phosphatidylinositol 4, 5-biphosphate (PtdIns[4,5]P2) 5-phosphatase. We have examined the OCRL1 gene in eight unrelated patients with OCRL and have found seven new mutations and one recurrent in-frame deletion. Among the new mutations, two nonsense mutations (R317X and E558X) and three other frameshift mutations caused premature termination of the protein. A missense mutation, R483G, was located in the highly conserved PtdIns(4,5)P2 5-phosphatase domain. Finally, one frameshift mutation, 2799delC, modifies the C-terminal part of OCRL1, with an extension of six amino acids. Altogether, 70% of missense mutations are located in exon 15, and 52% of all mutations cluster in exons 11-15. We also identified two new microsatellite markers for the OCRL1 locus, and we detected a germline mosaicism in one family. This observation has direct implications for genetic counseling of Lowe syndrome families. PMID:10364518
Two novel mutations in the Norrie disease gene associated with the classical ocular phenotype.
Caballero, M; Veske, A; Rodriguez, J J; Lugo, N; Schroeder, B; Hesse, L; Gal, A
1996-12-01
Norrie disease (ND) is a rare X-linked recessive disorder characterized by congenital blindness due to a degenerative and proliferative dysplasia of the neuroretina and, occasionally, by deafness and mental handicap. Here, we report two novel mutations detected in patients with the classical eye features of ND. Both the one-base pair insertion in exon II (544/545 insA) and the two-base pair deletion in the start codon (418delTG) of the ND gene predict a functional 'null allele', i.e. the complete absence of the corresponding gene product.
A novel PTCH1 mutation in a patient with Gorlin syndrome
Okamoto, Nana; Naruto, Takuya; Kohmoto, Tomohiro; Komori, Takahide; Imoto, Issei
2014-01-01
Gorlin syndrome is an autosomal dominant disorder characterized by a wide range of developmental abnormalities and a predisposition to various tumors, and it is linked to the alteration of several causative genes, including PTCH1. We performed targeted resequencing using a next-generation sequencer to analyze genes associated with known clinical phenotypes in an 11-year-old male with sporadic jaw keratocysts. A novel duplication mutation (c.426dup) in PTCH1, resulting in a truncated protein, was identified. PMID:27081512
A novel PTCH1 mutation in a patient with Gorlin syndrome.
Okamoto, Nana; Naruto, Takuya; Kohmoto, Tomohiro; Komori, Takahide; Imoto, Issei
2014-01-01
Gorlin syndrome is an autosomal dominant disorder characterized by a wide range of developmental abnormalities and a predisposition to various tumors, and it is linked to the alteration of several causative genes, including PTCH1. We performed targeted resequencing using a next-generation sequencer to analyze genes associated with known clinical phenotypes in an 11-year-old male with sporadic jaw keratocysts. A novel duplication mutation (c.426dup) in PTCH1, resulting in a truncated protein, was identified.
Mojbafan, Marzieh; Tonekaboni, Seyed Hassan; Abiri, Maryam; Kianfar, Soudeh; Sarhadi, Ameneh; Nilipour, Yalda; Tavakkoly-Bazzaz, Javad; Zeinali, Sirous
2016-07-01
Calpainopathy is an autosomal recessive form of limb girdle muscular dystrophies which is caused by mutation in CAPN3 gene. In the present study, co-segregation of this disorder was analyzed with four short tandem repeat markers linked to the CAPN3 gene. Three apparently unrelated Iranian families with same ethnicity were investigated. Haplotype analysis and sequencing of the CAPN3 gene were performed. DNA sample from one of the patients was simultaneously sent for next-generation sequencing. DNA sequencing identified two mutations. It was seen as a homozygous c.2105C>T in exon 19 in one family, a homozygous novel mutation c.380G>A in exon 3 in another family, and a compound heterozygote form of these two mutations in the third family. Next-generation sequencing also confirmed our results. It was expected that, due to the rare nature of limb girdle muscular dystrophies, affected individuals from the same ethnic group share similar mutations. Haplotype analysis showed two different homozygote patterns in two families, yet a compound heterozygote pattern in the third family as seen in the mutation analysis. This study shows that haplotype analysis would help in determining presence of different founders.
Ma, Alan S.; Grigg, John R.; Ho, Gladys; Prokudin, Ivan; Farnsworth, Elizabeth; Holman, Katherine; Cheng, Anson; Billson, Frank A.; Martin, Frank; Fraser, Clare; Mowat, David; Smith, James; Christodoulou, John; Flaherty, Maree; Bennetts, Bruce
2016-01-01
ABSTRACT Congenital cataracts are a significant cause of lifelong visual loss. They may be isolated or associated with microcornea, microphthalmia, anterior segment dysgenesis (ASD) and glaucoma, and there can be syndromic associations. Genetic diagnosis is challenging due to marked genetic heterogeneity. In this study, next‐generation sequencing (NGS) of 32 cataract‐associated genes was undertaken in 46 apparently nonsyndromic congenital cataract probands, around half sporadic and half familial cases. We identified pathogenic variants in 70% of cases, and over 68% of these were novel. In almost two‐thirds (20/33) of these cases, this resulted in new information about the diagnosis and/or inheritance pattern. This included identification of: new syndromic diagnoses due to NHS or BCOR mutations; complex ocular phenotypes due to PAX6 mutations; de novo autosomal‐dominant or X‐linked mutations in sporadic cases; and mutations in two separate cataract genes in one family. Variants were found in the crystallin and gap junction genes, including the first report of severe microphthalmia and sclerocornea associated with a novel GJA8 mutation. Mutations were also found in rarely reported genes including MAF, VIM, MIP, and BFSP1. Targeted NGS in presumed nonsyndromic congenital cataract patients provided significant diagnostic information in both familial and sporadic cases. PMID:26694549
Jamroz, E; Paprocka, J; Sokół, M; Popowska, E; Ciara, E
2013-01-01
Ornithine transcarbamylase (OTC) deficiency, an X-linked, semidominant disorder, is the most common inherited de-fect in ureagenesis, resulting in hyperammonaemia type II. The OTC gene, localised on chromosome X, has been mapp-ed to band Xp21.1, proximate to the Duchenne muscular dystrophy (DMD) gene. More than 350 different mutations, including missense, nonsense, splice-site changes, small de-letions or insertions and gross deletions, have been describ-ed so far. Almost all mutations in consensus splicing sites confer a neonatal phenotype. Most mutations in the OTC gene are 'private' and are distributed throughout the gene with a paucity of mutation in the sequence encoding the leader peptide (exon 1 and beginning of exon 2) and in exon 7. They have familial origin or occur de novo. Even with sequencing of the entire reading frame and exon/intron boundaries, only about 80% of the mutations are detected in patients with proven OTC deficiency. The remainder probably occur within the introns or in regulatory domains. The authors present a 4-year-old boy with the unreported missense mutation c.802A>G. The nucleotide transition leads to amino acid substitution Met to Val at codon 268 of the OTC protein.
Clinical phenotype of 5 females with a CDKL5 mutation.
Stalpers, Xenia L; Spruijt, Liesbeth; Yntema, Helger G; Verrips, Aad
2012-01-01
Mutations in the X-linked cyclin dependent kinase like 5 (CDKL5) gene have been reported in approximately 80 patients since the first description in 2003. The clinical presentation partly corresponds with Rett syndrome, considering clinical features as intellectual disability, hypotonia, and poor visual, language, and motor development. However, these patients do not meet the consensus criteria for Rett syndrome since they lack the clear period of regression. Furthermore, in contrast to Rett syndrome, patients with CDKL5 mutations, have seizures or infantile spasms starting in the first weeks of life. We present clinical phenotype of 5 girls having a mutation in the CDKL5 gene. All mutations are novel and are pathogenic since they either lead to a frameshift in the reading frame or affect a consensus splice site. Four of the mutations are detected de novo in the affected girl.
Haghshenas, Maryam; Akbari, Mohammad Taghi; Karizi, Shohreh Zare; Deilamani, Faravareh Khordadpoor; Nafissi, Shahriar; Salehi, Zivar
2016-06-01
Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50-79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.
Mintz-Hittner, H A; Ferrell, R E; Sims, K B; Fernandez, K M; Gemmell, B S; Satriano, D R; Caster, J; Kretzer, F L
1996-12-01
The Norrie disease (ND) gene (Xp11.3) (McKusick 310600) consists of one untranslated exon and two exons partially translated as the Norrie disease protein (Norrin). Norrin has sequence homology and computer-predicted tertiary structure of a growth factor containing a cystine knot motif, which affects endothelial cell migration and proliferation. Norrie disease (congenital retinal detachment), X-linked primary retinal dysplasia (congenital retinal fold), and X-linked exudative vitreoretinopathy (congenital macular ectopia) are allelic disorders. Blood was drawn for genetic studies from members of two families to test for ND gene mutations. Sixteen unaffected family members were examined ophthalmologically. If any retinal abnormality were identified, fundus photography and fluorescein angiography was performed. Family A had ND (R109stp), and family B had X-linked exudative vitreoretinopathy (R121L). The retinas of 11 offspring of carrier females were examined: three of seven carrier females, three of three otherwise healthy females, and one of one otherwise healthy male had peripheral inner retinal vascular abnormalities. The retinas of five offspring of affected males were examined: none of three carrier females and none of two otherwise healthy males had this peripheral retinal finding. Peripheral inner retinal vascular abnormalities similar to regressed retinopathy of prematurity were identified in seven offspring of carriers of ND gene mutations in two families. These ophthalmologic findings, especially in four genetically healthy offspring, strongly support the hypothesis that abnormal Norrin may have an adverse transplacental (environmental) effect on normal inner retinal vasculogenesis.
A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes.
Krasovec, Marc; Nevado, Bruno; Filatov, Dmitry A
2018-05-03
Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (π x = 0.016; π aut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex.
Piton, Amélie; Poquet, Hélène; Redin, Claire; Masurel, Alice; Lauer, Julia; Muller, Jean; Thevenon, Julien; Herenger, Yvan; Chancenotte, Sophie; Bonnet, Marlène; Pinoit, Jean-Michel; Huet, Frédéric; Thauvin-Robinet, Christel; Jaeger, Anne-Sophie; Le Gras, Stéphanie; Jost, Bernard; Gérard, Bénédicte; Peoc'h, Katell; Launay, Jean-Marie; Faivre, Laurence; Mandel, Jean-Louis
2014-06-01
Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene-environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients.
Accili, D; Frapier, C; Mosthaf, L; McKeon, C; Elbein, S C; Permutt, M A; Ramos, E; Lander, E; Ullrich, A; Taylor, S I
1989-01-01
Insulin binds to a receptor on the cell surface, thereby triggering a biological response within the target cell. Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. We have studied a family in which two sisters have a genetic form of insulin-resistant diabetes mellitus. The technique of homozygosity mapping has been used to demonstrate that the mutation causing diabetes in this consanguineous family is genetically linked to the insulin receptor gene. The two insulin-resistant sisters are homozygous for a mutation encoding substitution of valine for phenylalanine at position 382 in the alpha-subunit of the insulin receptor. Transfection of mutant insulin receptor cDNA into NIH3T3 cells demonstrated that the Val382 mutation impaired post-translational processing and retarded transport of the insulin receptor to the plasma membrane. Thus, the mutation causes insulin resistance by decreasing the number of insulin receptors on the surface of the patients' cells. Images PMID:2573522
Identification of FBN1 gene mutations in patients with ectopia lentis and marfanoid habitus
Comeglio, P; Evans, A L; Brice, G; Cooling, R J; Child, A H
2002-01-01
Background: Marfan syndrome (MFS), inherited as an autosomal dominant trait, typically affects the cardiovascular, skeletal, and ocular systems. Ectopia lentis (EL) is a clinical manifestation of MFS, with stretching or disruption of the lenticular zonular filaments, leading to displacement of the lenses. EL, with or without minor skeletal changes, exists as an independent autosomal dominant phenotype linked to the same FBN1 locus. Methods: A consecutive series of 11 patients, affected predominantly by EL, was analysed for FBN1 mutations using PCR, SSCA, and sequencing. Results: Six mutations were identified, of which three are novel and one is recurrent in two patients, thus establishing a mutation incidence in this group of 7/11 (63%). Conclusion: The FBN1 variants reported are clustered in the first 15 exons of the gene, while FBN1 mutations reported in the literature are distributed throughout the entire length of the gene. A different type of FBN1 mutation presents in this group of patients, compared with MFS, with arginine to cysteine substitutions appearing frequently. PMID:12446365
Goji, Katsumi; Ozaki, Kayo; Sadewa, Ahmad H; Nishio, Hisahide; Matsuo, Masafumi
2006-02-01
Familial hypophosphatemic rickets is usually transmitted as an X-linked dominant disorder (XLH), although autosomal dominant forms have also been observed. Genetic studies of these disorders have identified mutations in PHEX and FGF23 as the causes of X-linked dominant disorder and autosomal dominant forms, respectively. The objective of the study was to describe the molecular genetic findings in a family affected by hypophosphatemic rickets with presumed autosomal dominant inheritance. We studied a family in which the father and the elder of his two daughters, but not the second daughter, were affected by hypophosphatemic rickets. The pedigree interpretation of the family suggested that genetic transmission of the disorder occurred as an autosomal dominant trait. Direct nucleotide sequencing of FGF23 and PHEX revealed that the elder daughter was heterozygous for an R567X mutation in PHEX, rather than FGF23, suggesting that the genetic transmission occurred as an X-linked dominant trait. Unexpectedly, the father was heterozygous for this mutation. Single-nucleotide primer extension and denaturing HPLC analysis of the father using DNA from single hair roots revealed that he was a somatic mosaic for the mutation. Haplotype analysis confirmed that the father transmitted the genotypes for 18 markers on the X chromosome equally to his two daughters. The fact that the father transmitted the mutation to only one of his two daughters indicated that he was a germline mosaic for the mutation. Somatic and germline mosaicism for an X-linked dominant mutation in PHEX may mimic autosomal dominant inheritance.
Liao, Hsiao-Mei; Niu, Dau-Ming; Chen, Yan-Jang; Fang, Jye-Siung; Chen, Shih-Jen; Chen, Chia-Hsiang
2011-01-01
Nance-Horan syndrome (NHS) is a rare X-linked disorder characterized by congenital cataracts, dental anomalies and mental retardation. The disease has been linked to a novel gene termed NHS located at Xp22.13. The majority of pathogenic mutations of the disease include nonsense mutations and small deletions and insertions that lead to truncation of the NHS protein. In this study, we identified a microdeletion of ∼ 0.92 Mb at Xp22.13 detected by array-based comparative genomic hybridization in two brothers presenting congenital cataract, dental anomalies, facial dysmorphisms and mental retardation. The deleted region encompasses the REPS2, NHS, SCML1 and RAI2 genes, and was transmitted from their carrier mother who presented only mild cataract. Our findings are in line with several recent case reports to indicate that genomic rearrangement involving the NHS gene is an important genetic etiology underlying NHS.
X‐linked retinoschisis: an update
Sikkink, Stephen K; Biswas, Susmito; Parry, Neil R A; Stanga, Paulo E; Trump, Dorothy
2007-01-01
X‐linked retinoschisis is the leading cause of macular degeneration in males and leads to splitting within the inner retinal layers leading to visual deterioration. Many missense and protein truncating mutations have now been identified in the causative retinoschisis gene (RS1) which encodes a 224 amino acid secreting retinal protein, retinoschisin. Retinoschisin octamerises is implicated in cell–cell interactions and cell adhesion perhaps by interacting with β2 laminin. Mutations cause loss of retinoschisin function by one of the three mechanisms: by interfering with protein secretion, by preventing its octamerisation or by reducing function in the secreted octamerised protein. The development of retinoschisis mouse models have provided a model system that closely resembles the human disease. Recent reports of RS1 gene transfer to these models and the sustained restoration of some retinal function and morphology suggest gene replacement may be a possible future therapy for patients. PMID:17172462
Llaurens, Violaine; Gonthier, Lucy; Billiard, Sylvain
2009-11-01
Inbreeding depression and mating systems evolution are closely linked, because the purging of deleterious mutations and the fitness of individuals may depend on outcrossing vs. selfing rates. Further, the accumulation of deleterious mutations may vary among genomic regions, especially for genes closely linked to loci under balancing selection. Sporophytic self-incompatibility (SSI) is a common genetic mechanism in angiosperm that enables hermaphrodite plants to avoid selfing and promote outcrossing. The SSI phenotype is determined by the S locus and may depend on dominance relationships among alleles. Since most individuals are heterozygous at the S locus and recombination is suppressed in the S-locus region, it has been suggested that deleterious mutations could accumulate at genes linked to the S locus, generating a "sheltered load." In this article, we first theoretically investigate the conditions generating sheltered load in SSI. We show that deleterious mutations can accumulate in linkage with specific S alleles, and particularly if those S alleles are dominant. Second, we looked for the presence of sheltered load in Arabidopsis halleri using CO(2) gas treatment to overcome self-incompatibility. By examining the segregation of S alleles and measuring the relative fitness of progeny, we found significant sheltered load associated with the most dominant S allele (S15) of three S alleles tested. This sheltered load seems to be expressed at several stages of the life cycle and to have a larger effect than genomic inbreeding depression.
X linked mental retardation: a clinical guide.
Raymond, F L
2006-03-01
Mental retardation is more common in males than females in the population, assumed to be due to mutations on the X chromosome. The prevalence of the 24 genes identified to date is low and less common than expansions in FMR1, which cause Fragile X syndrome. Systematic screening of all other X linked genes in X linked families with mental retardation is currently not feasible in a clinical setting. The phenotypes of genes causing syndromic and non-syndromic mental retardation (NLGN3, NLGN4, RPS6KA3(RSK2), OPHN1, ATRX, SLC6A8, ARX, SYN1, AGTR2, MECP2, PQBP1, SMCX, and SLC16A2) are first discussed, as these may be the focus of more targeted mutation analysis. Secondly, the relative prevalence of genes causing only non-syndromic mental retardation (IL1RAPL1, TM4SF2, ZNF41, FTSJ1, DLG3, FACL4, PAK3, ARHGEF6, FMR2, and GDI) is summarised. Thirdly, the problem of recurrence risk where a molecular genetics diagnosis has not been made and what proportion of the male excess of mental retardation is due to monogenic disorders of the X chromosome are discussed.
Charcot–Marie–Tooth disease and intracellular traffic
Bucci, Cecilia; Bakke, Oddmund; Progida, Cinzia
2012-01-01
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot–Marie–Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects. PMID:22465036
Nagy, Ádám; Pongor, Lőrinc Sándor; Szabó, András; Santarpia, Mariacarmela; Győrffy, Balázs
2017-02-15
KRAS is the most frequently mutated oncogene in non-small cell lung cancer (NSCLC). However, the prognostic role of KRAS mutation status in NSCLC still remains controversial. We hypothesize that the expression changes of genes affected by KRAS mutation status will have the most prominent effect and could be used as a prognostic signature in lung cancer. We divided NSCLC patients with mutation and RNA-seq data into KRAS mutated and wild type groups. Mann-Whitney test was used to identify genes showing altered expression between these cohorts. Mean expression of the top five genes was designated as a "transcriptomic fingerprint" of the mutation. We evaluated the effect of this signature on clinical outcome in 2,437 NSCLC patients using univariate and multivariate Cox regression analysis. Mutation of KRAS was most common in adenocarcinoma. Mutation status and KRAS expression were not correlated to prognosis. The transcriptomic fingerprint of KRAS include FOXRED2, KRAS, TOP1, PEX3 and ABL2. The KRAS signature had a high prognostic power. Similar results were achieved when using the second and third set of strongest genes. Moreover, all cutoff values delivered significant prognostic power (p < 0.01). The KRAS signature also remained significant (p < 0.01) in a multivariate analysis including age, gender, smoking history and tumor stage. We generated a "surrogate signature" of KRAS mutation status in NSCLC patients by computationally linking genotype and gene expression. We show that secondary effects of a mutation can have a higher prognostic relevance than the primary genetic alteration itself. © 2016 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.
A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes
Krasovec, Marc; Filatov, Dmitry A.
2018-01-01
Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (πx = 0.016; πaut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex. PMID:29751495
Clonal status of actionable driver events and the timing of mutational processes in cancer evolution
McGranahan, Nicholas; Favero, Francesco; de Bruin, Elza C.; Birkbak, Nicolai Juul; Szallasi, Zoltan; Swanton, Charles
2015-01-01
Deciphering whether actionable driver mutations are found in all or a subset of tumor cells will likely be required to improve drug development and precision medicine strategies. We analyzed nine cancer types to determine the subclonal frequencies of driver events, to time mutational processes during cancer evolution, and to identify drivers of subclonal expansions. Although mutations in known driver genes typically occurred early in cancer evolution, we also identified later subclonal “actionable” mutations, including BRAF(V600E), IDH1(R132H), PIK3CA(E545K), EGFR(L858R), and KRAS(G12D), which may compromise the efficacy of targeted therapy approaches. More than 20% of IDH1 mutations in glioblastomas, and 15% of mutations in genes in the PI3K(phosphatidylinositol 3-kinase)–AKT–mTOR (mammalian target of rapamycin) signaling axis across all tumor types were subclonal. Mutations in the RAS–MEK (mitogen-activated protein kinase kinase) signaling axis were less likely to be subclonal than mutations in genes associated with PI3K-AKT-mTORsignaling. Analysis of late mutations revealed a link between APOBEC-mediated mutagenesis and the acquisition of subclonal driver mutations and uncovered putative cancer genes involved in subclonal expansions, including CTNNA2 and ATXN1. Our results provide a pan-cancer census of driver events within the context of intratumor heterogeneity and reveal patterns of tumor evolution across cancers. The frequent presence of subclonal driver mutations suggests the need to stratify targeted therapy response according to the proportion of tumor cells in which the driver is identified. PMID:25877892
Eight previously unidentified mutations found in the OA1 ocular albinism gene
Mayeur, Hélène; Roche, Olivier; Vêtu, Christelle; Jaliffa, Carolina; Marchant, Dominique; Dollfus, Hélène; Bonneau, Dominique; Munier, Francis L; Schorderet, Daniel F; Levin, Alex V; Héon, Elise; Sutherland, Joanne; Lacombe, Didier; Said, Edith; Mezer, Eedy; Kaplan, Josseline; Dufier, Jean-Louis; Marsac, Cécile; Menasche, Maurice; Abitbol, Marc
2006-01-01
Background Ocular albinism type 1 (OA1) is an X-linked ocular disorder characterized by a severe reduction in visual acuity, nystagmus, hypopigmentation of the retinal pigmented epithelium, foveal hypoplasia, macromelanosomes in pigmented skin and eye cells, and misrouting of the optical tracts. This disease is primarily caused by mutations in the OA1 gene. Methods The ophthalmologic phenotype of the patients and their family members was characterized. We screened for mutations in the OA1 gene by direct sequencing of the nine PCR-amplified exons, and for genomic deletions by PCR-amplification of large DNA fragments. Results We sequenced the nine exons of the OA1 gene in 72 individuals and found ten different mutations in seven unrelated families and three sporadic cases. The ten mutations include an amino acid substitution and a premature stop codon previously reported by our team, and eight previously unidentified mutations: three amino acid substitutions, a duplication, a deletion, an insertion and two splice-site mutations. The use of a novel Taq polymerase enabled us to amplify large genomic fragments covering the OA1 gene. and to detect very likely six distinct large deletions. Furthermore, we were able to confirm that there was no deletion in twenty one patients where no mutation had been found. Conclusion The identified mutations affect highly conserved amino acids, cause frameshifts or alternative splicing, thus affecting folding of the OA1 G protein coupled receptor, interactions of OA1 with its G protein and/or binding with its ligand. PMID:16646960
2012-01-01
A population of patients with unexplained neurological symptoms from six major French university hospitals was screened over a 28-month period for primary creatine disorder (PCD). Urine guanidinoacetate (GAA) and creatine:creatinine ratios were measured in a cohort of 6,353 subjects to identify PCD patients and compile their clinical, 1H-MRS, biochemical and molecular data. Six GAMT [N-guanidinoacetatemethyltransferase (EC 2.1.1.2)] and 10 X-linked creatine transporter (SLC6A8) but no AGAT (GATM) [L-arginine/glycine amidinotransferase (EC 2.1.4.1)] deficient patients were identified in this manner. Three additional affected sibs were further identified after familial inquiry (1 brother with GAMT deficiency and 2 brothers with SLC6A8 deficiency in two different families). The prevalence of PCD in this population was 0.25% (0.09% and 0.16% for GAMT and SLC6A8 deficiencies, respectively). Seven new PCD-causing mutations were discovered (2 nonsense [c.577C > T and c.289C > T] and 1 splicing [c.391 + 15G > T] mutations for the GAMT gene and, 2 missense [c.1208C > A and c.926C > A], 1 frameshift [c.930delG] and 1 splicing [c.1393-1G > A] mutations for the SLC6A8 gene). No hot spot mutations were observed in these genes, as all the mutations were distributed throughout the entire gene sequences and were essentially patient/family specific. Approximately one fifth of the mutations of SLC6A8, but not GAMT, were attributed to neo-mutation, germinal or somatic mosaicism events. The only SLC6A8-deficient female patient in our series presented with the severe phenotype usually characterizing affected male patients, an observation in agreement with recent evidence that is in support of the fact that this X-linked disorder might be more frequent than expected in the female population with intellectual disability. PMID:23234264
Cheillan, David; Joncquel-Chevalier Curt, Marie; Briand, Gilbert; Salomons, Gajja S; Mention-Mulliez, Karine; Dobbelaere, Dries; Cuisset, Jean-Marie; Lion-François, Laurence; Portes, Vincent Des; Chabli, Allel; Valayannopoulos, Vassili; Benoist, Jean-François; Pinard, Jean-Marc; Simard, Gilles; Douay, Olivier; Deiva, Kumaran; Afenjar, Alexandra; Héron, Delphine; Rivier, François; Chabrol, Brigitte; Prieur, Fabienne; Cartault, François; Pitelet, Gaëlle; Goldenberg, Alice; Bekri, Soumeya; Gerard, Marion; Delorme, Richard; Tardieu, Marc; Porchet, Nicole; Vianey-Saban, Christine; Vamecq, Joseph
2012-12-13
A population of patients with unexplained neurological symptoms from six major French university hospitals was screened over a 28-month period for primary creatine disorder (PCD). Urine guanidinoacetate (GAA) and creatine:creatinine ratios were measured in a cohort of 6,353 subjects to identify PCD patients and compile their clinical, 1H-MRS, biochemical and molecular data. Six GAMT [N-guanidinoacetatemethyltransferase (EC 2.1.1.2)] and 10 X-linked creatine transporter (SLC6A8) but no AGAT (GATM) [L-arginine/glycine amidinotransferase (EC 2.1.4.1)] deficient patients were identified in this manner. Three additional affected sibs were further identified after familial inquiry (1 brother with GAMT deficiency and 2 brothers with SLC6A8 deficiency in two different families). The prevalence of PCD in this population was 0.25% (0.09% and 0.16% for GAMT and SLC6A8 deficiencies, respectively). Seven new PCD-causing mutations were discovered (2 nonsense [c.577C > T and c.289C > T] and 1 splicing [c.391 + 15G > T] mutations for the GAMT gene and, 2 missense [c.1208C > A and c.926C > A], 1 frameshift [c.930delG] and 1 splicing [c.1393-1G > A] mutations for the SLC6A8 gene). No hot spot mutations were observed in these genes, as all the mutations were distributed throughout the entire gene sequences and were essentially patient/family specific. Approximately one fifth of the mutations of SLC6A8, but not GAMT, were attributed to neo-mutation, germinal or somatic mosaicism events. The only SLC6A8-deficient female patient in our series presented with the severe phenotype usually characterizing affected male patients, an observation in agreement with recent evidence that is in support of the fact that this X-linked disorder might be more frequent than expected in the female population with intellectual disability.
Pauws, E; Peskett, E; Boissin, C; Hoshino, A; Mengrelis, K; Carta, E; Abruzzo, M A; Lees, M; Moore, G E; Erickson, R P; Stanier, P
2013-04-01
X-linked cleft palate (CPX) is caused by mutations in the gene encoding the TBX22 transcription factor and is known to exhibit phenotypic variability, usually involving either a complete, partial or submucous cleft palate, with or without ankyloglossia. This study hypothesized a possible involvement of TBX22 in a family with X-linked, CHARGE-like Abruzzo-Erickson syndrome, of unknown etiology. The phenotype extends to additional features including sensorineural deafness and coloboma, which are suggested by the Tbx22 developmental expression pattern but not previously associated in CPX patients. A novel TBX22 splice acceptor mutation (c.593-5T>A) was identified that tracked with the phenotype in this family. A novel splice donor variant (c.767+5G>A) and a known canonical splice donor mutation (c.767+1G>A) affecting the same exon were identified in patients with classic CPX phenotypes and were comparatively analyzed using both in silico and in vitro splicing studies. All three variants were predicted to abolish normal mRNA splicing and an in vitro assay indicated that use of alternative splice sites was a likely outcome. Collectively, the data showed the functional effect of several novel intronic splice site variants but most importantly confirms that TBX22 is the gene underlying Abruzzo-Erickson syndrome, expanding the phenotypic spectrum of TBX22 mutations. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis.
Johnson, Janel O; Pioro, Erik P; Boehringer, Ashley; Chia, Ruth; Feit, Howard; Renton, Alan E; Pliner, Hannah A; Abramzon, Yevgeniya; Marangi, Giuseppe; Winborn, Brett J; Gibbs, J Raphael; Nalls, Michael A; Morgan, Sarah; Shoai, Maryam; Hardy, John; Pittman, Alan; Orrell, Richard W; Malaspina, Andrea; Sidle, Katie C; Fratta, Pietro; Harms, Matthew B; Baloh, Robert H; Pestronk, Alan; Weihl, Conrad C; Rogaeva, Ekaterina; Zinman, Lorne; Drory, Vivian E; Borghero, Giuseppe; Mora, Gabriele; Calvo, Andrea; Rothstein, Jeffrey D; Drepper, Carsten; Sendtner, Michael; Singleton, Andrew B; Taylor, J Paul; Cookson, Mark R; Restagno, Gabriella; Sabatelli, Mario; Bowser, Robert; Chiò, Adriano; Traynor, Bryan J
2014-05-01
MATR3 is an RNA- and DNA-binding protein that interacts with TDP-43, a disease protein linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in ALS-affected spinal cords with and without MATR3 mutations. Our data provide more evidence supporting the role of aberrant RNA processing in motor neuron degeneration.
Razipour, Masoumeh; Alavinejad, Elaheh; Sajedi, Seyede Zahra; Talebi, Saeed; Entezam, Mona; Mohajer, Neda; Kazemi-Sefat, Golnaz-Ensieh; Gharesouran, Jalal; Setoodeh, Aria; Mohaddes Ardebili, Seyyed Mojtaba; Keramatipour, Mohammad
2017-10-01
Phenylketonuria (PKU), one of the most common inborn errors of amino acid metabolism, is caused by mutations in the phenylalanine hydroxylase (PAH) gene (PAH). PKU has wide allelic heterogeneity, and over 600 different disease-causing mutations in PAH have been detected to date. Up to now, there have been no reports on the minihaplotype (VNTR/STR) analysis of PAH locus in the Iranian population. The aims of the present study were to determine PAH mutations and minihaplotypes in Iranian families with PAH deficiency and to investigate the correlation between them. A total of 81 Iranian families with PAH deficiency were examined using PCR-sequencing of all 13 PAH exons and their flanking intron regions to identify sequence variations. Fragment analysis of the PAH minihaplotypes was performed by capillary electrophoresis for 59 families. In our study, 33 different mutations were found accounting for 95% of the total mutant alleles. The majority of these mutations (72%) were distributed across exons 7, 11, 2 and their flanking intronic regions. Mutation c.1066-11G > A was the most common with a frequency of 20.37%. The less frequent mutations, p.Arg261Gln (8%), p.Arg243Ter (7.4%), p.Leu48Ser (7.4%), p.Lys363Asnfs*37 (6.79%), c.969 + 5G > A (6.17%), p.Pro281Leu (5.56), c.168 + 5G > C (5.56), and p.Arg261Ter (4.94) together comprised about 52% of all mutant alleles. In this study, a total of seventeen PAH gene minihaplotypes were detected, six of which associated exclusively with particular mutations. Our findings indicate a broad PAH mutation spectrum in the Iranian population, which is consistent with previous studies reporting a wide range of PAH mutations, most likely due to ethnic heterogeneity. High prevalence of c.1066-11G > A mutation linked to minihaplotype 7/250 among both Iranian and Mediterranean populations is indicative of historical and geographical links between them. Also, strong association between particular mutations and minihaplotypes could be useful for prenatal diagnosis (PND) and preimplantation genetic diagnosis (PGD) in affected families.
Shah, V C; Smart, V
1996-01-01
The precise location of the SRY gene on the human Y chromosome has been revealed through studies of sex reversal cases involving deletion, cross-linking and mutations of the SRY gene. Its DNA sequence and mechanism of action are being understood. Similarity of SRY with Sry of mice and its interaction with other genes in male sex determination are discussed.
Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.
Liu, Xiaowen; Tang, Zhaohui; Li, Chang; Yang, Kangjuan; Gan, Guanqi; Zhang, Zibo; Liu, Jingyu; Jiang, Fagang; Wang, Qing; Liu, Mugen
2010-03-17
To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.
Piton, Amélie; Redin, Claire; Mandel, Jean-Louis
2013-08-08
Because of the unbalanced sex ratio (1.3-1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in XLID diagnostic gene panels. Nonetheless, the boundary between true mutations and rare non-disease-causing variants often remains elusive. The sequencing of a large number of control X chromosomes, required for avoiding false-positive results, was not systematically possible in the past. Such information is now available thanks to large-scale sequencing projects such as the National Heart, Lung, and Blood (NHLBI) Exome Sequencing Project, which provides variation information on 10,563 X chromosomes from the general population. We used this NHLBI cohort to systematically reassess the implication of 106 genes proposed to be involved in monogenic forms of XLID. We particularly question the implication in XLID of ten of them (AGTR2, MAGT1, ZNF674, SRPX2, ATP6AP2, ARHGEF6, NXF5, ZCCHC12, ZNF41, and ZNF81), in which truncating variants or previously published mutations are observed at a relatively high frequency within this cohort. We also highlight 15 other genes (CCDC22, CLIC2, CNKSR2, FRMPD4, HCFC1, IGBP1, KIAA2022, KLF8, MAOA, NAA10, NLGN3, RPL10, SHROOM4, ZDHHC15, and ZNF261) for which replication studies are warranted. We propose that similar reassessment of reported mutations (and genes) with the use of data from large-scale human exome sequencing would be relevant for a wide range of other genetic diseases. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Monoallelic expression of the human FOXP2 speech gene
Adegbola, Abidemi A.; Cox, Gerald F.; Bradshaw, Elizabeth M.; Hafler, David A.; Gimelbrant, Alexander; Chess, Andrew
2015-01-01
The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations. PMID:25422445
Monoallelic expression of the human FOXP2 speech gene.
Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew
2015-06-02
The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.
Molecular basis and consequences of a deletion in the amelogenin gene, analyzed by capture PCR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerstroem-Fermer, M.; Pettersson, U.; Landegren, U.
1993-07-01
A mutation that disrupts the gene for one of the major proteins in tooth enamel has been investigated. The mutation is located in the amelogenin gene and causes X-linked amelogenesis imperfecta, characterized by defective mineralization of tooth enamel. The authors have isolated the breakpoints of a 5-kb deletion in the amelogenin gene on the basis of nucleotide sequence information located upstream of the lesion, using a technique termed capture PCR. The deletion removes five of the seven exons, spanning from the second intron to the last exon. Only the first two codons for the mature protein remain, consistent with themore » relatively severe phenotype of affected individuals in the present family. The mutation appears to have arisen as an illegitimate recombination event since of 11 nucleotide positions immediately surrounding the two breakpoints, 9 are identical. 17 refs., 3 figs., 1 tab.« less
Haddad, N M; Ente, D; Chouery, E; Jalkh, N; Mehawej, C; Khoueir, Z; Pingault, V; Mégarbané, A
2011-01-01
Waardenburg syndrome (WS) is a genetic disorder characterized primarily by depigmentation of the skin and hair, heterochromia of the irides, sensorineural deafness, and sometimes by dystopia canthorum, and Hirschsprung disease. WS presents a large clinical and genetic heterogeneity. Four different types have been individualized and linked to 5 different genes. We report 2 cases of WS type II and 1 case of WS type IV from Lebanon and Syria. The genetic studies revealed 2 novel mutations in the MITF gene of the WS type II cases and 1 novel homozygous mutation in the EDNRB gene of the WS type IV case. This is the first molecular study of patients from the Arab world. Additional cases will enable a more detailed description of the clinical spectrum of Waardenburg syndrome in this region.
Haddad, N.M.; Ente, D.; Chouery, E.; Jalkh, N.; Mehawej, C.; Khoueir, Z.; Pingault, V.; Mégarbané, A.
2011-01-01
Waardenburg syndrome (WS) is a genetic disorder characterized primarily by depigmentation of the skin and hair, heterochromia of the irides, sensorineural deafness, and sometimes by dystopia canthorum, and Hirschsprung disease. WS presents a large clinical and genetic heterogeneity. Four different types have been individualized and linked to 5 different genes. We report 2 cases of WS type II and 1 case of WS type IV from Lebanon and Syria. The genetic studies revealed 2 novel mutations in the MITF gene of the WS type II cases and 1 novel homozygous mutation in the EDNRB gene of the WS type IV case. This is the first molecular study of patients from the Arab world. Additional cases will enable a more detailed description of the clinical spectrum of Waardenburg syndrome in this region. PMID:21373256
Caro-Llopis, Alfonso; Rosello, Monica; Orellana, Carmen; Oltra, Silvestre; Monfort, Sandra; Mayo, Sonia; Martinez, Francisco
2016-12-01
Mutations in the X-linked gene MED12 cause at least three different, but closely related, entities of syndromic intellectual disability. Recently, a new syndrome caused by MED13L deleterious variants has been described, which shows similar clinical manifestations including intellectual disability, hypotonia, and other congenital anomalies. Genotyping of 1,256 genes related with neurodevelopment was performed by next-generation sequencing in three unrelated patients and their healthy parents. Clinically relevant findings were confirmed by conventional sequencing. Each patient showed one de novo variant not previously reported in the literature or databases. Two different missense variants were found in the MED12 or MED13L genes and one nonsense mutation was found in the MED13L gene. The phenotypic consequences of these mutations are closely related and/or have been previously reported in one or other gene. Additionally, MED12 and MED13L code for two closely related partners of the mediator kinase module. Consequently, we propose the concept of a common MED12/MED13L clinical spectrum, encompassing Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, MED13L haploinsufficiency syndrome, and others.
Congenital myasthenic syndromes due to mutations in ALG2 and ALG14.
Cossins, Judith; Belaya, Katsiaryna; Hicks, Debbie; Salih, Mustafa A; Finlayson, Sarah; Carboni, Nicola; Liu, Wei Wei; Maxwell, Susan; Zoltowska, Katarzyna; Farsani, Golara Torabi; Laval, Steven; Seidhamed, Mohammed Zain; Donnelly, Peter; Bentley, David; McGowan, Simon J; Müller, Juliane; Palace, Jacqueline; Lochmüller, Hanns; Beeson, David
2013-03-01
Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed linkage analysis, whole-exome and whole-genome sequencing to determine the underlying defect in patients with an inherited limb-girdle pattern of myasthenic weakness. We identify ALG14 and ALG2 as novel genes in which mutations cause a congenital myasthenic syndrome. Through analogy with yeast, ALG14 is thought to form a multiglycosyltransferase complex with ALG13 and DPAGT1 that catalyses the first two committed steps of asparagine-linked protein glycosylation. We show that ALG14 is concentrated at the muscle motor endplates and small interfering RNA silencing of ALG14 results in reduced cell-surface expression of muscle acetylcholine receptor expressed in human embryonic kidney 293 cells. ALG2 is an alpha-1,3-mannosyltransferase that also catalyses early steps in the asparagine-linked glycosylation pathway. Mutations were identified in two kinships, with mutation ALG2p.Val68Gly found to severely reduce ALG2 expression both in patient muscle, and in cell cultures. Identification of DPAGT1, ALG14 and ALG2 mutations as a cause of congenital myasthenic syndrome underscores the importance of asparagine-linked protein glycosylation for proper functioning of the neuromuscular junction. These syndromes form part of the wider spectrum of congenital disorders of glycosylation caused by impaired asparagine-linked glycosylation. It is likely that further genes encoding components of this pathway will be associated with congenital myasthenic syndromes or impaired neuromuscular transmission as part of a more severe multisystem disorder. Our findings suggest that treatment with cholinesterase inhibitors may improve muscle function in many of the congenital disorders of glycosylation.
Kashofer, Karl; Regauer, Sigrid
2017-08-01
This study evaluates the frequency and type of TP53 gene mutations and HPV status in 72 consecutively diagnosed primary invasive vulvar squamous cell carcinomas (SCC) during the past 5years. DNA of formalin-fixed and paraffin embedded tumour tissue was analysed for 32 HPV subtypes and the full coding sequence of the TP53 gene, and correlated with results of p53 immunohistochemistry. 13/72 (18%) cancers were HPV-induced squamous cell carcinomas, of which 1/13 (8%) carcinoma harboured a somatic TP53 mutation. Among the 59/72 (82%) HPV-negative cancers, 59/72 (82%) SCC were HPV-negative with wild-type gene in 14/59 (24%) SCC and somatic TP53 mutations in 45/59 (76%) SCC. 28/45 (62%) SCC carried one (n=20) or two (n=8) missense mutations. 11/45 (24%) carcinomas showed a single disruptive mutation (3× frame shift, 7× stop codon, 1× deletion), 3/45 SCC a splice site mutation. 3/45 (7%) carcinomas had 2 or 3 different mutations. 18 different "hot spot" mutations were observed in 22/45 cancers (49%; 5× R273, 3× R282; 2× each Y220, R278, R248). Immunohistochemical p53 over expression was identified in most SCC with missense mutations, but not in SCC with disruptive TP53 mutations or TP53 wild-type. 14/45 (31%) patients with TP53 mutated SCC died of disease within 12months (range 2-24months) versus 0/13 patients with HPV-induced carcinomas and 0/14 patients with HPV-negative, TP53 wild-type carcinomas. 80% of primary invasive vulvar SCC were HPV-negative carcinomas with a high frequency of disruptive mutations and "hot spot" TP53 gene mutations, which have been linked to chemo- and radioresistance. The death rate of patients with p53 mutated vulvar cancers was 31%. Immunohistochemical p53 over expression could not reliably identify SCC with TP53 gene mutation. Pharmacological therapies targeting mutant p53 will be promising strategies for personalized therapy in patients with TP53 mutated vulvar cancers. Copyright © 2017. Published by Elsevier Inc.
Blumenthal, Edward M
2008-01-01
Mutations in the Drosophila gene drop-dead (drd) result in early adult lethality and neurodegeneration, but the molecular identity of the drd gene and its mechanism of action are not known. This paper describes the characterization of a new X-linked recessive adult-lethal mutation, originally called lot's wife (lwf(1)) but subsequently identified as an allele of drd (drd(lwf)); drd(lwf) mutants die within two weeks of eclosion. Through mapping and complementation, the drd gene has been identified as CG33968, which encodes a putative integral membrane protein of unknown function. The drd(lwf) allele is associated with a nonsense mutation that eliminates nearly 80% of the CG33968 gene product; mutations in the same gene were also found in two previously described drd alleles. Characterization of drd (lwf) flies revealed additional phenotypes of drd, most notably, defects in food processing by the digestive system and in oogenesis. Mutant flies store significantly more food in their crops and defecate less than wild-type flies, suggesting that normal transfer of ingested food from the crop into the midgut is dependent upon the DRD gene product. The defect in oogenesis results in the sterility of homozygous mutant females and is associated with a reduction in the number of vitellogenic egg chambers. The disruption in vitellogenesis is far more severe than that seen in starved flies and so is unlikely to be a secondary consequence of the digestive phenotype. This study demonstrates that mutation of the drd gene CG33968 results in a complex phenotype affecting multiple physiological systems within the fly.
Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma-Tailored Gene Panel.
Zacher, Angela; Kaulich, Kerstin; Stepanow, Stefanie; Wolter, Marietta; Köhrer, Karl; Felsberg, Jörg; Malzkorn, Bastian; Reifenberger, Guido
2017-03-01
Current classification of gliomas is based on histological criteria according to the World Health Organization (WHO) classification of tumors of the central nervous system. Over the past years, characteristic genetic profiles have been identified in various glioma types. These can refine tumor diagnostics and provide important prognostic and predictive information. We report on the establishment and validation of gene panel next generation sequencing (NGS) for the molecular diagnostics of gliomas. We designed a glioma-tailored gene panel covering 660 amplicons derived from 20 genes frequently aberrant in different glioma types. Sensitivity and specificity of glioma gene panel NGS for detection of DNA sequence variants and copy number changes were validated by single gene analyses. NGS-based mutation detection was optimized for application on formalin-fixed paraffin-embedded tissue specimens including small stereotactic biopsy samples. NGS data obtained in a retrospective analysis of 121 gliomas allowed for their molecular classification into distinct biological groups, including (i) isocitrate dehydrogenase gene (IDH) 1 or 2 mutant astrocytic gliomas with frequent α-thalassemia/mental retardation syndrome X-linked (ATRX) and tumor protein p53 (TP53) gene mutations, (ii) IDH mutant oligodendroglial tumors with 1p/19q codeletion, telomerase reverse transcriptase (TERT) promoter mutation and frequent Drosophila homolog of capicua (CIC) gene mutation, as well as (iii) IDH wildtype glioblastomas with frequent TERT promoter mutation, phosphatase and tensin homolog (PTEN) mutation and/or epidermal growth factor receptor (EGFR) amplification. Oligoastrocytic gliomas were genetically assigned to either of these groups. Our findings implicate gene panel NGS as a promising diagnostic technique that may facilitate integrated histological and molecular glioma classification. © 2016 International Society of Neuropathology.
Genetic investigation of 93 families with microphthalmia or posterior microphthalmos.
Patel, N; Khan, A O; Alsahli, S; Abdel-Salam, G; Nowilaty, S R; Mansour, A M; Nabil, A; Al-Owain, M; Sogati, S; Salih, M A; Kamal, A M; Alsharif, H; Alsaif, H S; Alzahrani, S S; Abdulwahab, F; Ibrahim, N; Hashem, M; Faquih, T; Shah, Z A; Abouelhoda, M; Monies, D; Dasouki, M; Shaheen, R; Wakil, S M; Aldahmesh, M A; Alkuraya, F S
2018-06-01
Microphthalmia is a developmental eye defect that is highly variable in severity and in its potential for systemic association. Despite the discovery of many disease genes in microphthalmia, at least 50% of patients remain undiagnosed genetically. Here, we describe a cohort of 147 patients (93 families) from our highly consanguineous population with various forms of microphthalmia (including the distinct entity of posterior microphthalmos) that were investigated using a next-generation sequencing multi-gene panel (i-panel) as well as whole exome sequencing and molecular karyotyping. A potentially causal mutation was identified in the majority of the cohort with microphthalmia (61%) and posterior microphthalmos (82%). The identified mutations (55 point mutations, 15 of which are novel) spanned 24 known disease genes, some of which have not or only very rarely been linked to microphthalmia (PAX6, SLC18A2, DSC3 and CNKSR1). Our study has also identified interesting candidate variants in 2 genes that have not been linked to human diseases (MYO10 and ZNF219), which we present here as novel candidates for microphthalmia. In addition to revealing novel phenotypic aspects of microphthalmia, this study expands its allelic and locus heterogeneity and highlights the need for expanded testing of patients with this condition. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Identification of a Novel GJA8 (Cx50) Point Mutation Causes Human Dominant Congenital Cataracts
NASA Astrophysics Data System (ADS)
Ge, Xiang-Lian; Zhang, Yilan; Wu, Yaming; Lv, Jineng; Zhang, Wei; Jin, Zi-Bing; Qu, Jia; Gu, Feng
2014-02-01
Hereditary cataracts are clinically and genetically heterogeneous lens diseases that cause a significant proportion of visual impairment and blindness in children. Human cataracts have been linked with mutations in two genes, GJA3 and GJA8, respectively. To identify the causative mutation in a family with hereditary cataracts, family members were screened for mutations by PCR for both genes. Sequencing the coding regions of GJA8, coding for connexin 50, revealed a C > A transversion at nucleotide 264, which caused p.P88T mutation. To dissect the molecular consequences of this mutation, plasmids carrying wild-type and mutant mouse ORFs of Gja8 were generated and ectopically expressed in HEK293 cells and human lens epithelial cells, respectively. The recombinant proteins were assessed by confocal microscopy and Western blotting. The results demonstrate that the molecular consequences of the p.P88T mutation in GJA8 include changes in connexin 50 protein localization patterns, accumulation of mutant protein, and increased cell growth.
Jöst, Moritz; Esfeld, Korinna; Burian, Agata; Cannarozzi, Gina; Chanyalew, Solomon; Kuhlemeier, Cris; Assefa, Kebebew; Tadele, Zerihun
2015-01-01
Genetic improvement of native crops is a new and promising strategy to combat hunger in the developing world. Tef is the major staple food crop for approximately 50 million people in Ethiopia. As an indigenous cereal, it is well adapted to diverse climatic and soil conditions; however, its productivity is extremely low mainly due to susceptibility to lodging. Tef has a tall and weak stem, liable to lodge (or fall over), which is aggravated by wind, rain, or application of nitrogen fertilizer. To circumvent this problem, the first semi-dwarf lodging-tolerant tef line, called kegne, was developed from an ethyl methanesulphonate (EMS)-mutagenized population. The response of kegne to microtubule-depolymerizing and -stabilizing drugs, as well as subsequent gene sequencing and segregation analysis, suggests that a defect in the α-Tubulin gene is functionally and genetically tightly linked to the kegne phenotype. In diploid species such as rice, homozygous mutations in α-Tubulin genes result in extreme dwarfism and weak stems. In the allotetraploid tef, only one homeologue is mutated, and the presence of the second intact α-Tubulin gene copy confers the agriculturally beneficial semi-dwarf and lodging-tolerant phenotype. Introgression of kegne into locally adapted and popular tef cultivars in Ethiopia will increase the lodging tolerance in the tef germplasm and, as a result, will improve the productivity of this valuable crop. PMID:25399019
Phenotypical Characteristics of Idiopathic Infantile Nystagmus with and without Mutations in "FRMD7"
ERIC Educational Resources Information Center
Thomas, Shery; Proudlock, Frank A.; Sarvananthan, Nagini; Roberts, Eryl O.; Awan, Musarat; McLean, Rebecca; Surendran, Mylvaganam; Kumar, A. S. Anil; Farooq, Shegufta J.; Degg, Chris; Gale, Richard P.; Reinecke, Robert D.; Woodruff, Geoffrey; Langmann, Andrea; Lindner, Susanne; Jain, Sunila; Tarpey, Patrick; Raymond, F. Lucy; Gottlob, Irene
2008-01-01
Idiopathic infantile nystagmus (IIN) consists of involuntary oscillations of the eyes. The familial form is most commonly X-linked. We recently found mutations in a novel gene "FRMD7" (Xq26.2), which provided an opportunity to investigate a genetically defined and homogeneous group of patients with nystagmus. We compared clinical features and eye…
Beltran, William A; Cideciyan, Artur V; Lewin, Alfred S; Iwabe, Simone; Khanna, Hemant; Sumaroka, Alexander; Chiodo, Vince A; Fajardo, Diego S; Román, Alejandro J; Deng, Wen-Tao; Swider, Malgorzata; Alemán, Tomas S; Boye, Sanford L; Genini, Sem; Swaroop, Anand; Hauswirth, William W; Jacobson, Samuel G; Aguirre, Gustavo D
2012-02-07
Hereditary retinal blindness is caused by mutations in genes expressed in photoreceptors or retinal pigment epithelium. Gene therapy in mouse and dog models of a primary retinal pigment epithelium disease has already been translated to human clinical trials with encouraging results. Treatment for common primary photoreceptor blindness, however, has not yet moved from proof of concept to the clinic. We evaluated gene augmentation therapy in two blinding canine photoreceptor diseases that model the common X-linked form of retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, which encodes a photoreceptor ciliary protein, and provide evidence that the therapy is effective. After subretinal injections of adeno-associated virus-2/5-vectored human RPGR with human IRBP or GRK1 promoters, in vivo imaging showed preserved photoreceptor nuclei and inner/outer segments that were limited to treated areas. Both rod and cone photoreceptor function were greater in treated (three of four) than in control eyes. Histopathology indicated normal photoreceptor structure and reversal of opsin mislocalization in treated areas expressing human RPGR protein in rods and cones. Postreceptoral remodeling was also corrected: there was reversal of bipolar cell dendrite retraction evident with bipolar cell markers and preservation of outer plexiform layer thickness. Efficacy of gene therapy in these large animal models of X-linked retinitis pigmentosa provides a path for translation to human treatment.
Miguel, Laetitia; Avequin, Tracey; Pons, Marine; Frébourg, Thierry; Campion, Dominique; Lecourtois, Magalie
2018-05-17
TDP-43 is a major disease-causing protein in amyotrophic lateral sclerosis (ALS) and Frontotemporal Lobar Degeneration (FTLD). Today, more than 50 missense mutations in the TARDBP/TDP-43 gene have been described in patients with FTLD/ALS. However, the functional consequences of FTLD/ALS-linked TDP-43 mutations are not fully elucidated. In the physiological state, TDP-43 expression is tightly regulated through an autoregulatory negative feedback loop. Maintaining normal TDP-43 protein levels is critical for proper physiological functions of the cells. In the present study, we investigated whether the FTLD/ALS-associated mutations could interfere with TDP-43 protein's capacity to modulate its own protein levels using Drosophila as an experimental model. Our data show that FTLD/ALS-associated mutant proteins regulate TDP-43 production with the same efficiency as the wild-type form of the protein. Thus, FTLD/ALS-linked TDP-43 mutations do not alter TDP-43's ability to self-regulate its expression and consequently of the homeostasis of TDP-43 protein levels. Copyright © 2018. Published by Elsevier B.V.
Congenital glaucoma and CYP1B1: an old story revisited.
Alsaif, Hessa S; Khan, Arif O; Patel, Nisha; Alkuraya, Hisham; Hashem, Mais; Abdulwahab, Firdous; Ibrahim, Niema; Aldahmesh, Mohammed A; Alkuraya, Fowzan S
2018-03-19
Primary congenital glaucoma is a trabecular meshwork dysgenesis with resultant increased intraocular pressure and ocular damage. CYP1B1 mutations remain the most common identifiable genetic cause. However, important questions about the penetrance of CYP1B1-related congenital glaucoma remain unanswered. Furthermore, mutations in other genes have been described although their exact contribution and potential genetic interaction, if any, with CYP1B1 mutations are not fully explored. In this study, we employed modern genomic approaches to re-examine CYP1B1-related congenital glaucoma. A cohort of 193 patients (136 families) diagnosed with congenital glaucoma. We identified biallelic CYP1B1 mutations in 80.8% (87.5 and 66.1% in familial and sporadic cases, respectively, p < 0.0086). The large family size of the study population allowed us to systematically examine penetrance of all identified alleles. With the exception of c.1103G>A (p.R368H), previously reported pathogenic mutations were highly penetrant (91.2%). We conclude from the very low penetrance and genetic epidemiological analyses that c.1103G>A (p.R368H) is unlikely to be a disease-causing recessive mutation in congenital glaucoma as previously reported. All cases that lacked biallelic CYP1B1 mutations underwent whole exome sequencing. No mutations in LTBP2, MYOC or TEK were encountered. On the other hand, mutations were identified in genes linked to other ophthalmic phenotypes, some inclusive of glaucoma, highlighting conditions that might phenotypically overlap with primary congenital glaucoma (SLC4A4, SLC4A11, CPAMD8, and KERA). We also encountered candidate causal variants in genes not previously linked to human diseases: BCO2, TULP2, and DGKQ. Our results both expand and refine the genetic spectrum of congenital glaucoma with important clinical implications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jouet, M.; Kenwick, S.; Moncla, A.
1995-06-01
The neural cell-adhesion molecule L1 is involved in intercellular recognition and neuronal migration in the CNS. Recently, we have shown that mutations in the gene encoding L1 are responsible for three related disorders; X-linked hydrocephalus, MASA (mental retardation, aphasia, shuffling gait, and adducted thumbs) syndrome, and spastic paraplegia type I (SPG1). These three disorders represent a clinical spectrum that varies not only between families but sometimes also within families. To date, 14 independent L1 mutations have been reported and shown to be disease causing. Here we report nine novel L1 mutations in X-linked hydrocephalus and MASA-syndrome families, including the firstmore » examples of mutations affecting the fibronectin type III domains of the molecule. They are discussed in relation both to phenotypes and to the insights that they provide into L1 function. 39 refs., 5 figs., 3 tabs.« less
Mapping Flagellar Genes in Chlamydomonas Using Restriction Fragment Length Polymorphisms
Ranum, LPW.; Thompson, M. D.; Schloss, J. A.; Lefebvre, P. A.; Silflow, C. D.
1988-01-01
To correlate cloned nuclear DNA sequences with previously characterized mutations in Chlamydomonas and, to gain insight into the organization of its nuclear genome, we have begun to map molecular markers using restriction fragment length polymorphisms (RFLPs). A Chlamydomonas reinhardtii strain (CC-29) containing phenotypic markers on nine of the 19 linkage groups was crossed to the interfertile species Chlamydomonas smithii. DNA from each member of 22 randomly selected tetrads was analyzed for the segregation of RFLPs associated with cloned genes detected by hybridization with radioactive DNA probes. The current set of markers allows the detection of linkage to new molecular markers over approximately 54% of the existing genetic map. This study focused on mapping cloned flagellar genes and genes whose transcripts accumulate after deflagellation. Twelve different molecular clones have been assigned to seven linkage groups. The α-1 tubulin gene maps to linkage group III and is linked to the genomic sequence homologous to pcf6-100, a cDNA clone whose corresponding transcript accumulates after deflagellation. The α-2 tubulin gene maps to linkage group IV. The two β-tubulin genes are linked, with the β-1 gene being approximately 12 cM more distal from the centromere than the β-2 gene. A clone corresponding to a 73-kD dynein protein maps to the opposite arm of the same linkage group. The gene corresponding to the cDNA clone pcf6-187, whose mRNA accumulates after deflagellation, maps very close to the tightly linked pf-26 and pf-1 mutations on linkage group V. PMID:2906025
Hegan, Denise Campisi; Narayanan, Latha; Jirik, Frank R; Edelmann, Winfried; Liskay, R Michael; Glazer, Peter M
2006-12-01
Defects in genes associated with DNA mismatch repair (MMR) have been linked to hereditary colon cancer. Because the MMR pathway includes multiple factors with both overlapping and divergent functions, we sought to compare the impact of deficiencies in each of several MMR genes on genetic instability using a collection of knock-out mouse models. We investigated mutation frequencies and patterns in MMR-deficient mice using two transgenic reporter genes, supFG1 and cII, in the context of mice deficient for Pms2, Mlh1, Msh2, Msh3 or Msh6 or both Msh2 and Msh3 or both Msh3 and Msh6. We found that the mean mutation frequencies of all of the MMR-deficient mice were significantly higher than the mean mutation frequencies of wild-type mice. Mlh1-deficient mice and Msh2-deficient mice had the highest mutation frequencies in a comparison of the single nullizygous mice. Of all the mice studied, mice nullizygous for both Msh2 and Msh3 and those nullizygous for both Msh3 and Msh6 displayed the greatest overall increases in mutation frequencies compared with wild-type mice. Sequence analysis of the mutated reporter genes revealed significant differences between the individual groups of MMR-deficient mice. Taken together, our results further characterize the functions of the MMR factors in mutation avoidance and provide in vivo correlation to biochemical models of the MMR pathway.
Characterizations of 9p21 candidate genes in familial melanoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, G.J.; Flores, J.F.; Glendening, J.M.
We have previously collected and characterized 16 melanoma families for the inheritance of a familial melanoma predisposition gene on 9p21. Clear evidence for genetic linkage has been detected in 8 of these families with the 9p21 markers D9S126 and 1FNA, while linkage of the remaining families to this region is less certain. A candidate for the 9p21 familial melanoma gene, the cyclin kinase inhibitor gene p16 (also known as the multiple tumor suppressor 1 (MTS1) gene), has been recently indentified. Notably, a nonsense mutation within the p16 gene has been detected in the lymphoblastoid cell line DNA from a dysplasticmore » nevus syndrome (DNS), or familial melanoma, patient. The p16 gene is also known to be frequently deleted or mutated in a variety of tumor cell lines (including melanoma) and resides within a region that has been defined as harboring the 9p21 melanoma predisposition locus. This region is delineated on the distal side by the marker D9S736 (which resides just distal to the p16 gene) and extends in a proximal direction to the marker D9S171. Overall, the entire distance between these two loci is estimated at 3-5Mb. Preliminary analysis of our two largest 9p21-linked melanoma kindreds (by direct sequencing of PCR products) has not yet revealed mutations within the coding region of the p16 gene. Others have reported that 8/11 unrelated 9p21-linked melanoma families do not appear to carry p16 mutations; thus the possibility exists that p16 is not a melanoma susceptibility gene per se, although it appears to play some role in melanoma tumor progression. Our melanoma kindred DNAs are currently being analyzed by SSCP using primers that amplify exons of other candidate genes from the 9p21 region implicated in familial melanoma. These novel genes reside within a distinct critical region of homozygous loss in melanoma which is located >2 Mb from the p16 gene on 9p21.« less
Hogan, Alison L; Don, Emily K; Rayner, Stephanie L; Lee, Albert; Laird, Angela S; Watchon, Maxinne; Winnick, Claire; Tarr, Ingrid S; Morsch, Marco; Fifita, Jennifer A; Gwee, Serene S L; Formella, Isabel; Hortle, Elinor; Yuan, Kristy C; Molloy, Mark P; Williams, Kelly L; Nicholson, Garth A; Chung, Roger S; Blair, Ian P; Cole, Nicholas J
2017-07-15
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, fatal neurodegenerative disease characterised by the death of upper and lower motor neurons. Approximately 10% of cases have a known family history of ALS and disease-linked mutations in multiple genes have been identified. ALS-linked mutations in CCNF were recently reported, however the pathogenic mechanisms associated with these mutations are yet to be established. To investigate possible disease mechanisms, we developed in vitro and in vivo models based on an ALS-linked missense mutation in CCNF. Proteomic analysis of the in vitro models identified the disruption of several cellular pathways in the mutant model, including caspase-3 mediated cell death. Transient overexpression of human CCNF in zebrafish embryos supported this finding, with fish expressing the mutant protein found to have increased levels of cleaved (activated) caspase-3 and increased cell death in the spinal cord. The mutant CCNF fish also developed a motor neuron axonopathy consisting of shortened primary motor axons and increased frequency of aberrant axonal branching. Importantly, we demonstrated a significant correlation between the severity of the CCNF-induced axonopathy and a reduced motor response to a light stimulus (photomotor response). This is the first report of an ALS-linked CCNF mutation in vivo and taken together with the in vitro model identifies the disruption of cell death pathways as a significant consequence of this mutation. Additionally, this study presents a valuable new tool for use in ongoing studies investigating the pathobiology of ALS-linked CCNF mutations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer.
Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L
2016-01-04
The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
A novel nonsense mutation in the NDP gene in a Chinese family with Norrie disease.
Liu, Deyuan; Hu, Zhengmao; Peng, Yu; Yu, Changhong; Liu, Yalan; Mo, Xiaoyun; Li, Xiaoping; Lu, Lina; Xu, Xiaojuan; Su, Wei; Pan, Qian; Xia, Kun
2010-12-08
Norrie disease (ND), a rare X-linked recessive disorder, is characterized by congenital blindness and, occasionally, mental retardation and hearing loss. ND is caused by the Norrie Disease Protein gene (NDP), which codes for norrin, a cysteine-rich protein involved in ocular vascular development. Here, we report a novel mutation of NDP that was identified in a Chinese family in which three members displayed typical ND symptoms and other complex phenotypes, such as cerebellar atrophy, motor disorders, and mental disorders. We conducted an extensive clinical examination of the proband and performed a computed tomography (CT) scan of his brain. Additionally, we performed ophthalmic examinations, haplotype analyses, and NDP DNA sequencing for 26 individuals from the proband's extended family. The proband's computed tomography scan, in which the fifth ventricle could be observed, indicated cerebellar atrophy. Genome scans and haplotype analyses traced the disease to chromosome Xp21.1-p11.22. Mutation screening of the NDP gene identified a novel nonsense mutation, c.343C>T, in this region. Although recent research has shown that multiple different mutations can be responsible for the ND phenotype, additional research is needed to understand the mechanism responsible for the diverse phenotypes caused by mutations in the NDP gene.
A novel nonsense mutation in the NDP gene in a Chinese family with Norrie disease
Liu, Deyuan; Hu, Zhengmao; Peng, Yu; Yu, Changhong; Liu, Yalan; Mo, Xiaoyun; Li, Xiaoping; Lu, Lina; Xu, Xiaojuan; Su, Wei; Pan, Qian
2010-01-01
Purpose Norrie disease (ND), a rare X-linked recessive disorder, is characterized by congenital blindness and, occasionally, mental retardation and hearing loss. ND is caused by the Norrie Disease Protein gene (NDP), which codes for norrin, a cysteine-rich protein involved in ocular vascular development. Here, we report a novel mutation of NDP that was identified in a Chinese family in which three members displayed typical ND symptoms and other complex phenotypes, such as cerebellar atrophy, motor disorders, and mental disorders. Methods We conducted an extensive clinical examination of the proband and performed a computed tomography (CT) scan of his brain. Additionally, we performed ophthalmic examinations, haplotype analyses, and NDP DNA sequencing for 26 individuals from the proband’s extended family. Results The proband’s computed tomography scan, in which the fifth ventricle could be observed, indicated cerebellar atrophy. Genome scans and haplotype analyses traced the disease to chromosome Xp21.1-p11.22. Mutation screening of the NDP gene identified a novel nonsense mutation, c.343C>T, in this region. Conclusions Although recent research has shown that multiple different mutations can be responsible for the ND phenotype, additional research is needed to understand the mechanism responsible for the diverse phenotypes caused by mutations in the NDP gene. PMID:21179243
Lee, Jong-Soo
2007-09-01
Mutations in the ATM (ataxia-telangiectasia mutated) gene, which encodes a 370 kd protein with a kinase catalytic domain, predisposes people to cancers, and these mutations are also linked to ataxia-telangiectasia (A-T). The histone acetylaion/deacetylation- dependent chromatin remodeling can activate the ATM kinase-mediated DNA damage signal pathway (in an accompanying work, Lee, 2007). This has led us to study whether this modification can impinge on the ATM-mediated DNA damage response via transcriptional modulation in order to understand the function of ATM in the regulation of gene transcription. To identify the genes whose expression is regulated by ATM in response to histone deaceylase (HDAC) inhibition, we performed an analysis of oligonucleotide microarrays with using the appropriate cell lines, isogenic A-T (ATM(-)) and control (ATM(+)) cells, following treatment with a HDAC inhibitor TSA. Treatment with TSA reprograms the differential gene expression profile in response to HDAC inhibition in ATM(-) cells and ATM(+) cells. We analyzed the genes that are regulated by TSA in the ATM-dependent manner, and we classified these genes into different functional categories, including those involved in cell cycle/DNA replication, DNA repair, apoptosis, growth/differentiation, cell- cell adhesion, signal transduction, metabolism and transcription. We found that while some genes are regulated by TSA without regard to ATM, the patterns of gene regulation are differentially regulated in an ATM-dependent manner. Taken together, these finding indicate that ATM can regulate the transcription of genes that play critical roles in the molecular response to DNA damage, and this response is modulated through an altered HDAC inhibition-mediated gene expression.
Ziada-Bouchaar, H; Sifi, K; Filali, T; Hammada, T; Satta, D; Abadi, N
2017-01-01
Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant disorder characterized by the early onset of colorectal cancer (CRC) linked to germline defects in Mismatch Repair (MMR) genes. We present here, the first molecular study of the correlation between CRC and mutations occurring in these genes performed in twenty-one unrelated Algerian families. The presence of germline mutations in MMR genes, MLH1, MSH2 and MSH6 genes was tested by sequencing all exons plus adjacent intronic sequences and Multiplex ligand-dependent probe amplification (MLPA) for testing large genomic rearrangements. Pathogenic mutations were identified in 20 % of families with clinical suspicion on HNPCC. Two novel variants described for the first time in Algerian families were identified in MLH1, c.881_884delTCAGinsCATTCCT and a large deletion in MSH6 gene from a young onset of CRC. Moreover, the variants of MSH2 gene: c.942+3A>T, c.1030C>T, the most described ones, were also detected in Algerian families. Furthermore, the families HNPCC caused by MSH6 germline mutation may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations. In this study, we confirmed that MSH2, MLH1, and MSH6 contribute to CRC susceptibility. This work represents the implementation of a diagnostic algorithm for the identification of Lynch syndrome patients in Algerian families.
Lesch Nyhan syndrome: a novel complex mutation in a Tunisian child.
Rebai, Ibtihel; Kraoua, Ichraf; Benrhouma, Hanene; Rouissi, Aida; Turki, Ilhem; Ceballos-Picot, Irène; Gouider-Khouja, Neziha
2014-11-01
Lesch Nyhan syndrome (LNS) is an X-linked recessive disorder due to complete deficiency of the hypoxanthine-guanine phosphoribosyltransferase (HPRT) enzyme. Defect of the enzymatic activity is related to mutations of the HPRT1 gene. The disorder severity is due to neurological features and renal complications. Up to now, more than 300 mutations have been reported. We report on a Tunisian child with a severe phenotype due to a novel identified complex mutation. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Les Liaisons Dangereuses: Cancer-Related Genes and Neurodegenerative Diseases
NASA Astrophysics Data System (ADS)
Ghetti, Bernardino; Buonaguro, Franco M.
2014-07-01
The following sections are included: * INTRODUCTION * MUTATIONS IN THE CSF1R GENE ASSOCIATED WITH DIFFUSE LEUKOENCEPHALOPATHY WITH SPHEROIDS AND HUMAN CANCERS. * A SPECIAL LINK HAS BEEN SHOWN BETWEEN PTEN AND AD. * ACETYLCHOLINE DEFICIENCY AND PATHOGENESIS OF AD. * MIRNAS AND COMMON PATHWAYS IN CANCER AND NEURODEGENERATIVE DISEASE. * SUMMARY * REFERENCES
Epigenetic modulators, modifiers and mediators in cancer aetiology and progression
Feinberg, Andrew P.; Koldobskiy, Michael A.; Göndör, Anita
2016-01-01
This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of ‘tumour progenitor genes’. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: ‘epigenetic mediators’, corresponding to the tumour progenitor genes suggested earlier; ‘epigenetic modifiers’ of the mediators, which are frequently mutated in cancer; and ‘epigenetic modulators’ upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer. PMID:26972587
Aarskog-Scott syndrome: clinical update and report of nine novel mutations of the FGD1 gene.
Orrico, A; Galli, L; Faivre, L; Clayton-Smith, J; Azzarello-Burri, S M; Hertz, J M; Jacquemont, S; Taurisano, R; Arroyo Carrera, I; Tarantino, E; Devriendt, K; Melis, D; Thelle, T; Meinhardt, U; Sorrentino, V
2010-02-01
Mutations in the FGD1 gene have been shown to cause Aarskog-Scott syndrome (AAS), or facio-digito-genital dysplasia (OMIM#305400), an X-linked disorder characterized by distinctive genital and skeletal developmental abnormalities with a broad spectrum of clinical phenotypes. To date, 20 distinct mutations have been reported, but little phenotypic data are available on patients with molecularly confirmed AAS. In the present study, we report on our experience of screening for mutations in the FGD1 gene in a cohort of 60 European patients with a clinically suspected diagnosis of AAS. We identified nine novel mutations in 11 patients (detection rate of 18.33%), including three missense mutations (p.R402Q; p.S558W; p.K748E), four truncating mutations (p.Y530X; p.R656X; c.806delC; c.1620delC), one in-frame deletion (c.2020_2022delGAG) and the first reported splice site mutation (c.1935+3A>C). A recurrent mutation (p.R656X) was detected in three independent families. We did not find any evidence for phenotype-genotype correlations between type and position of mutations and clinical features. In addition to the well-established phenotypic features of AAS, other clinical features are also reported and discussed. Copyright 2010 Wiley-Liss, Inc.
Genetic Characterization of the SufJ Frameshift Suppressor in SALMONELLA TYPHIMURIUM
Bossi, Lionello; Kohno, Tadahiko; Roth, John R.
1983-01-01
A new suppressor of +1 frameshift mutations has been isolated in Salmonella typhimurium. This suppressor, sufJ, maps at minute 89 on the Salmonella genetic map between the argH and rpo(rif) loci, closely linked to the gene for the ochre suppressor tyrU(supM). The suppressor mutation is dominant to its wild-type allele, consistent with the suppressor phenotype being caused by an altered tRNA species. The sufJ map position coincides with that of a threonine tRNA(ACC/U) gene; the suppressor has been shown to read the related fourbase codons ACCU, ACCC, ACCA.—The ability of sufJ to correct one particular mutation depends on the presence of a hisT mutation which causes a defect in tRNA modification. This requirement is allele specific, since other frameshift mutations can be corrected by sufJ regardless of the state of the hisT locus.—Strains carrying both a sufJ and a hisT mutation are acutely sensitive to growth inhibition by uracil; the inhibition is reversed by arginine. This behavior is characteristic of strains with mutations affecting the arginine-uracil biosynthetic enzyme carbamyl phosphate synthetase. The combination of two mutations affecting tRNA structure may reduce expression of the structural gene for this enzyme (pyrA). PMID:6188650
Nakagawa, Naoki; Maruyama, Hiroki; Ishihara, Takayuki; Seino, Utako; Kawabe, Jun-ichi; Takahashi, Fumihiko; Kobayashi, Motoi; Yamauchi, Atsushi; Sasaki, Yukie; Sakamoto, Naka; Ota, Hisanobu; Tanabe, Yasuko; Takeuchi, Toshiharu; Takenaka, Toshihiro; Kikuchi, Kenjiro; Hasebe, Naoyuki
2011-01-01
Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A gene (GLA), and the disease is a relatively prevalent cause of left ventricular hypertrophy mimicking idiopathic hypertrophic cardiomyopathy. We assessed clinically 5 patients of a three-generation family and also searched for GLA mutations in 10 family members. The proband had left ventricular hypertrophy with localized thinning in the basal posterior wall and late gadolinium enhancement (LGE) in the near-circumferential wall in cardiovascular magnetic resonance images and her sister had vasospastic angina pectoris without organic stenosis of the coronary arteries. LGE notably appeared in parallel with decreased α-galactosidase A activity and increased NT-pro BNP in our patients. We detected a new GLA missense mutation (G195V) in exon 4, resulting in a glycine-to-valine substitution. Of the 10 family members, 5 family members each were positive and negative for this mutation. These new data extend our clinical and molecular knowledge of GLA gene mutations and confirm that a novel missense mutation in the GLA gene is important not only for a precise diagnosis of heterozygous status, but also for confirming relatives who are negative for this mutation.
NIPA1 Gene Mutations Cause Autosomal Dominant Hereditary Spastic Paraplegia (SPG6)
Rainier, Shirley; Chai, Jing-Hua; Tokarz, Debra; Nicholls, Robert D.; Fink, John K.
2003-01-01
The hereditary spastic paraplegias (HSPs) are genetically heterogeneous disorders characterized by progressive lower-extremity weakness and spasticity. The molecular pathogenesis is poorly understood. We report discovery of a dominant negative mutation in the NIPA1 gene in a kindred with autosomal dominant HSP (ADHSP), linked to chromosome 15q11-q13 (SPG6 locus); and precisely the same mutation in an unrelated kindred with ADHSP that was too small for meaningful linkage analysis. NIPA1 is highly expressed in neuronal tissues and encodes a putative membrane transporter or receptor. Identification of the NIPA1 function and ligand will aid an understanding of axonal neurodegeneration in HSP and may have important therapeutic implications. PMID:14508710
Tarpey, Patrick S; Raymond, F Lucy; O'Meara, Sarah; Edkins, Sarah; Teague, Jon; Butler, Adam; Dicks, Ed; Stevens, Claire; Tofts, Calli; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Cole, Jennifer; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Jenkinson, Andrew; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Varian, Jennifer; West, Sofie; Widaa, Sara; Mallya, Uma; Moon, Jenny; Luo, Ying; Holder, Susan; Smithson, Sarah F; Hurst, Jane A; Clayton-Smith, Jill; Kerr, Bronwyn; Boyle, Jackie; Shaw, Marie; Vandeleur, Lucianne; Rodriguez, Jayson; Slaugh, Rachel; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Srivastava, Anand K; Stevenson, Roger E; Schwartz, Charles E; Turner, Gillian; Gecz, Jozef; Futreal, P Andrew; Stratton, Michael R; Partington, Michael
2007-02-01
We have identified three truncating, two splice-site, and three missense variants at conserved amino acids in the CUL4B gene on Xq24 in 8 of 250 families with X-linked mental retardation (XLMR). During affected subjects' adolescence, a syndrome emerged with delayed puberty, hypogonadism, relative macrocephaly, moderate short stature, central obesity, unprovoked aggressive outbursts, fine intention tremor, pes cavus, and abnormalities of the toes. This syndrome was first described by Cazebas et al., in a family that was included in our study and that carried a CUL4B missense variant. CUL4B is a ubiquitin E3 ligase subunit implicated in the regulation of several biological processes, and CUL4B is the first XLMR gene that encodes an E3 ubiquitin ligase. The relatively high frequency of CUL4B mutations in this series indicates that it is one of the most commonly mutated genes underlying XLMR and suggests that its introduction into clinical diagnostics should be a high priority.
Piton, Amélie; Poquet, Hélène; Redin, Claire; Masurel, Alice; Lauer, Julia; Muller, Jean; Thevenon, Julien; Herenger, Yvan; Chancenotte, Sophie; Bonnet, Marlène; Pinoit, Jean-Michel; Huet, Frédéric; Thauvin-Robinet, Christel; Jaeger, Anne-Sophie; Le Gras, Stéphanie; Jost, Bernard; Gérard, Bénédicte; Peoc'h, Katell; Launay, Jean-Marie; Faivre, Laurence; Mandel, Jean-Louis
2014-01-01
Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene–environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients. PMID:24169519
Ge, Wei; Wei, Bin; Zhu, Hao; Miao, Zhigang; Zhang, Weimin; Leng, Cuihua; Li, Jizhen; Zhang, Dan; Sun, Miao; Xu, Xingshun
2017-05-01
Fabry disease is an X-linked genetic disorder caused by the mutations of α-galactosidase A (GLA, MIM 300644) gene presenting with various clinical symptoms including small-fiber peripheral neuropathy and limb burning pain. Here, we reported a Chinese pedigree with the initial diagnosis of primary erythromelalgia in an autosomal dominant (AD)-inherited pattern. Mutation analysis of SCN9A and GLA genes by direct sequencing and functional analysis of a novel mutation of GLA in cells were performed. Our data did not show any pathological mutations in SCN9A gene; however, a novel missense mutation c.139T>C (p.W47R) of GLA was identified in a male proband as well as two female carriers in this family. Enzyme assay of α-galactosidase A activity showed deficient enzyme activity in male patients and female carriers, further confirming the diagnosis of Fabry disease. Finally, a functional analysis indicated that the replacement of the 47th amino acid tryptophan (W47) with arginine (W47R) or glycine (W47G) led to reduced activity of α-galactosidase A in 293T cells. Therefore, these findings demonstrated that the novel mutation p.W47R of GLA is the cause of Fabry disease. Because Fabry disease and primary erythromelalgia share similar symptoms, it is a good strategy for clinical physicians to perform genetic mutation screenings on both SCN9A and GLA genes in those patients with limb burning pain but without a clear inheritant pattern.
Small molecule kinase inhibitors for LRRK2 and their application to Parkinson's disease models.
Kramer, Thomas; Lo Monte, Fabio; Göring, Stefan; Okala Amombo, Ghislaine Marlyse; Schmidt, Boris
2012-03-21
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Several single gene mutations have been linked to this disease. Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) indicate LRRK2 as promising therapeutic target for the treatment of PD. LRRK2 mutations were observed in sporadic as well as familial PD patients and have been investigated intensively. LRRK2 is a large and complex protein, with multiple enzymatic and protein-interaction domains, each of which is effected by mutations. The most common mutation in PD patients is G2019S. Several LRRK2 inhibitors have been reported already, although the crystal structure of LRRK2 has not yet been determined. This review provides a summary of known LRRK2 inhibitors and will discuss recent in vitro and in vivo results of these inhibitors.
Lang, J. D.; Ray, S.; Ray, A.
1994-01-01
In Arabidopsis thaliana, a mutation in the SIN1 gene causes aberrant ovule development and female-specific sterility. The effect of the sin1 mutation is polymorphic and pleiotropic in different genetic backgrounds. The polymorphism concerns morphology of the mutant ovules. The pleiotropism involves internodal distance and inflorescence initiation time. The particular ovule phenotype and the length of internodes are dependent on an interaction of sin1 with a second recessive gene, which we term mod1. The recessive mod1 allele in a homozygous sin1 mutant plant reduces internode length and ovule integument size. The mutation sin1, but not mod1, has a demonstrable effect on ovule morphology when acting idependently. In our crosses mod1 was inseparably linked to the well known mutation erecta that is known to cause a reduction in internode and pedicel lengths. PMID:7982564
Historic, clinical, and prognostic features of epileptic encephalopathies caused by CDKL5 mutations.
Moseley, Brian D; Dhamija, Radhika; Wirrell, Elaine C; Nickels, Katherine C
2012-02-01
Mutations within the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene are important causes of early-onset epileptic encephalopathies. We sought to determine the historic, clinical, and prognostic features of epilepsy secondary to CDKL5 mutations. We performed retrospective chart reviews of children at our institution with epilepsy and CDKL5 mutations. Six children were identified. One manifested a deletion in exons 10-15 of the CDKL5 gene, another manifested a single base-pair duplication in exon 3, and the rest manifested base-pair exchanges. The mean age of seizure onset was 1.8 months (range, 1-3 months). Although the majority (4/6, 67%) presented with partial-onset seizures, all children developed infantile spasms. All children demonstrated developmental delay and visual impairment. Although such mutations are X-linked, two children were boys. They did not present with more severe phenotypes than their female counterparts. Despite trials of antiepileptic drugs (mean, 5; range, 3-7), steroids/adrenocorticotropic hormone (4/6; 67%), and the ketogenic diet (6/6; 100%), all children manifested refractory seizures at last follow-up. Although no treatment eliminated seizures, topiramate, vigabatrin, and the ketogenic diet were most helpful at reducing seizure frequency. Copyright © 2012 Elsevier Inc. All rights reserved.
Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.
Chiabrando, Deborah; Castori, Marco; di Rocco, Maja; Ungelenk, Martin; Gießelmann, Sebastian; Di Capua, Matteo; Madeo, Annalisa; Grammatico, Paola; Bartsch, Sophie; Hübner, Christian A; Altruda, Fiorella; Silengo, Lorenzo; Tolosano, Emanuela; Kurth, Ingo
2016-12-01
Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs). Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1) gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.
Iron-related gene variants and brain iron in multiple sclerosis and healthy individuals.
Hagemeier, Jesper; Ramanathan, Murali; Schweser, Ferdinand; Dwyer, Michael G; Lin, Fuchun; Bergsland, Niels; Weinstock-Guttman, Bianca; Zivadinov, Robert
2018-01-01
Brain iron homeostasis is known to be disturbed in multiple sclerosis (MS), yet little is known about the association of common gene variants linked to iron regulation and pathological tissue changes in the brain. In this study, we investigated the association of genetic determinants linked to iron regulation with deep gray matter (GM) magnetic susceptibility in both healthy controls (HC) and MS patients. Four hundred (400) patients with MS and 150 age- and sex-matched HCs were enrolled and obtained 3 T MRI examination. Three (3) single nucleotide polymorphisms (SNPs) associated with iron regulation were genotyped: two SNPs in the human hereditary hemochromatosis protein gene HFE : rs1800562 (C282Y mutation) and rs1799945 (H63D mutation), as well as the rs1049296 SNP in the transferrin gene (C2 mutation). The effects of disease and genetic status were studied using quantitative susceptibility mapping (QSM) voxel-based analysis (VBA) and region-of-interest (ROI) analysis of the deep GM. The general linear model framework was used to compare groups. Analyses were corrected for age and sex, and adjusted for false discovery rate. We found moderate increases in susceptibility in the right putamen of participants with the C282Y (+ 6.1 ppb) and H63D (+ 6.9 ppb) gene variants vs. non-carriers, as well as a decrease in thalamic susceptibility of progressive MS patients with the C282Y mutation (left: - 5.3 ppb, right: - 6.7 ppb, p < 0.05). Female MS patients had lower susceptibility in the caudate (- 6.0 ppb) and putamen (left: - 3.9 ppb, right: - 4.6 ppb) than men, but only when they had a wild-type allele (p < 0.05). Iron-gene linked increases in putamen susceptibility (in HC and relapsing remitting MS) and decreases in thalamus susceptibility (in progressive MS), coupled with apparent sex interactions, indicate that brain iron in healthy and disease states may be influenced by genetic factors.
Mutations in the KIAA0196 Gene at the SPG8 Locus Cause Hereditary Spastic Paraplegia
Valdmanis, Paul N.; Meijer, Inge A.; Reynolds, Annie; Lei, Adrienne; MacLeod, Patrick; Schlesinger, David; Zatz, Mayana; Reid, Evan; Dion, Patrick A.; Drapeau, Pierre; Rouleau, Guy A.
2007-01-01
Hereditary spastic paraplegia (HSP) is a progressive upper-motor neurodegenerative disease. The eighth HSP locus, SPG8, is on chromosome 8p24.13. The three families previously linked to the SPG8 locus present with relatively severe, pure spastic paraplegia. We have identified three mutations in the KIAA0196 gene in six families that map to the SPG8 locus. One mutation, V626F, segregated in three large North American families with European ancestry and in one British family. An L619F mutation was found in a Brazilian family. The third mutation, N471D, was identified in a smaller family of European origin and lies in a spectrin domain. None of these mutations were identified in 500 control individuals. Both the L619 and V626 residues are strictly conserved across species and likely have a notable effect on the structure of the protein product strumpellin. Rescue studies with human mRNA injected in zebrafish treated with morpholino oligonucleotides to knock down the endogenous protein showed that mutations at these two residues impaired the normal function of the KIAA0196 gene. However, the function of the 1,159-aa strumpellin protein is relatively unknown. The identification and characterization of the KIAA0196 gene will enable further insight into the pathogenesis of HSP. PMID:17160902
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yutao; Das, Suchita; Olszewski, Robert Edward
Near naked hairless (HrN) is a semi-dominant mutation that arose spontaneously and was suggested by allelism testing to be an allele of mouse Hairless (Hr). HrN mice differ from other Hr mutants in that hair loss appears as the postnatal coat begins to emerge, as opposed to failure to initiate the first postnatal hair cycle, and that the mutation displays semi-dominant inheritance. We sequenced the Hr cDNA in HrN/HrN mice and characterized the pathological and molecular phenotypes to identify the basis for hair loss in this model. HrN/HrN mice exhibit dystrophic hairs that are unable to consistently emerge from themore » hair follicle, while HrN/+ mice display a sparse coat of hair and a milder degree of follicular dystrophy than their homozygous littermates. DNA microarray analysis of cutaneous gene expression demonstrates that numerous genes are downregulated in HrN/HrN mice, primarily genes important for hair structure. By contrast, Hr expression is significantly increased. Sequencing the Hr coding region, intron-exon boundaries, 5'- and 3'- UTR and immediate upstream region did not reveal the underlying mutation. Therefore HrN does not appear to be an allele of Hr but may result from a mutation in a closely linked gene or from a regulatory mutation in Hr.« less
Clark, R M; Marker, P C; Kingsley, D M
2000-07-01
Polydactyly is a common malformation of vertebrate limbs. In humans a major locus for nonsyndromic pre-axial polydactyly (PPD) has been mapped previously to 7q36. The mouse Hemimelic extra-toes (Hx) mutation maps to a homologous chromosome segment and has been proposed to affect a homologous gene. To understand the molecular changes underlying PPD, we used a positional cloning approach to identify the gene or genes disrupted by the Hx mutation and a closely linked limb mutation, Hammertoe (Hm). High resolution genetic mapping identified a small candidate interval for the mouse mutations located 1.2 cM distal to the Shh locus. The nonrecombinant interval was completely cloned in bacterial artificial chromosomes and searched for genes using a combination of exon trapping, sample sequencing, and mapping of known genes. Two novel genes, Lmbr1 and Lmbr2, are entirely within the candidate interval we defined genetically. The open reading frame of both genes is intact in mutant mice, but the expression of the Lmbr1 gene is dramatically altered in developing limbs of Hx mutant mice. The correspondence between the spatial and temporal changes in Lmbr1 expression and the embryonic onset of the Hx mutant phenotype suggests that the mouse Hx mutation may be a regulatory allele of Lmbr1. The human ortholog of Lmbr1 maps within the recently described interval for human PPD, strengthening the possibility that both mouse and human limb abnormalities are due to defects in the same highly conserved gene.
Liu, Hong Yan; Huang, Jia; Wang, Rui Li; Wang, Yue; Guo, Liang Jie; Li, Tao; Wu, Dong; Wang, Hong Dan; Guo, Qian Nan; Dong, Dao Quan
2016-11-01
Familial exudative vitreoretinopathy (FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. In this report, we describe a novel missense mutation of the Norrie disease gene (NDP) in a Chinese family with X-linked FEVR. Ophthalmologic evaluation was performed on four male patients and seven unaffected individuals after informed consent was obtained. Venous blood was collected from the 11 members of this family, and genomic DNA was extracted using standard methods. The coding exons 2 and 3 and their corresponding exon-intron junctions of NDP were amplified by polymerase chain reaction and then subjected to direct DNA sequencing. A novel missense mutation (c.310A>C) in exon 3, leading to a lysine-to-glutamine substitution at position 104 (p.Lys104Gln), was identified in all four patients with X-linked FEVR. Three unaffected female individuals (III2, IV3, and IV11) were found to be carriers of the mutation. This mutation was not detected in other unaffected individuals. The mutation c.310A>C (p.Lys104Gln) in exon 3 of NDP is associated with FEVR in the studied family. This result further enriches the mutation spectrum of FEVR. Copyright © 2016. Published by Elsevier Taiwan LLC.
McGranahan, Nicholas; Favero, Francesco; de Bruin, Elza C; Birkbak, Nicolai Juul; Szallasi, Zoltan; Swanton, Charles
2015-04-15
Deciphering whether actionable driver mutations are found in all or a subset of tumor cells will likely be required to improve drug development and precision medicine strategies. We analyzed nine cancer types to determine the subclonal frequencies of driver events, to time mutational processes during cancer evolution, and to identify drivers of subclonal expansions. Although mutations in known driver genes typically occurred early in cancer evolution, we also identified later subclonal "actionable" mutations, including BRAF (V600E), IDH1 (R132H), PIK3CA (E545K), EGFR (L858R), and KRAS (G12D), which may compromise the efficacy of targeted therapy approaches. More than 20% of IDH1 mutations in glioblastomas, and 15% of mutations in genes in the PI3K (phosphatidylinositol 3-kinase)-AKT-mTOR (mammalian target of rapamycin) signaling axis across all tumor types were subclonal. Mutations in the RAS-MEK (mitogen-activated protein kinase kinase) signaling axis were less likely to be subclonal than mutations in genes associated with PI3K-AKT-mTOR signaling. Analysis of late mutations revealed a link between APOBEC-mediated mutagenesis and the acquisition of subclonal driver mutations and uncovered putative cancer genes involved in subclonal expansions, including CTNNA2 and ATXN1. Our results provide a pan-cancer census of driver events within the context of intratumor heterogeneity and reveal patterns of tumor evolution across cancers. The frequent presence of subclonal driver mutations suggests the need to stratify targeted therapy response according to the proportion of tumor cells in which the driver is identified. Copyright © 2015, American Association for the Advancement of Science.
A bacterial model for expression of mutations in the human ornithine transcarbamylase (OTC) gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuchman, M.; McCann, M.T.; Qureshi, A.A.
1994-09-01
OTC is a mitochondrial enzyme catalyzing the formation of citrulline from carbamyl phosphate and ornithine. X-linked deficiency of OTC is the most prevalent genetic defect of ureagenesis. Mutations and polymorphisms in the OTC gene identified in deficient patients have indicated the occurrence of many family-specific, unique alleles. Due to the low frequency of recurrent mutations, distinguishing between deleterious mutations and polymorphisms is difficult. Using a human OTC gene containing plasmid driven by a tac promoter, we have devised a simple and efficient method for expressing mutations in the mature human OTC enzyme. To demonstrate this method, PCR engineered site-directed mutagenesismore » was employed to generated cDNA fragments which contained either the R151Q or R277W known mutations found in patients with neonatal and late-onset OTC deficiency, respectively. The normal allele for each mutation was also generated by an identical PCR procedure. Digestion with Bgl II- and Sty I-generated mutant and normal replacement cassettes containing the respective mutant and wild type sequences. Upon transformation of JM109 E.coli cells, OTC enzymatic activity was measured at log and stationary phases of growth using a radiochromatographic method. The R141Q mutation abolished enzymatic activity (<0.02% of normal), whereas the R277W mutation expressed partial activity (2.3% of normal). In addition, a PCR-generated mutation, A280V, resulted in 73% loss of catalytic activity. This OTC expression system is clinically applicable for distinguishing between mutations and polymorphisms, and it can be used to investigate the effects of mutations on various domains of the OTC gene.« less
Abaci, Ayhan; Wood, Kent; Demir, Korcan; Büyükgebiz, Atilla; Böber, Ece; Kopp, Peter
2010-01-01
To study the case of a 2 10/12-year-old boy who had growth failure and delayed bone maturation. We reviewed the history, which revealed that he had had polyuria, polydipsia, lack of weight gain, and frequent vomiting since the age of 5 months. On physical examination, his height was 86 cm (-1.93 standard deviation [SD]), his weight 10.5 kg (-2.67 SD), and he had motor and mental retardation. His maternal great-grandfather also had polyuria and polydipsia (but not diabetes mellitus), suggesting X-linked nephrogenic diabetes insipidus as the underlying cause. The patient underwent a water deprivation-desmopressin test. The coding region of the AVPR2 gene was amplified by polymerase chain reaction and submitted to direct sequence analysis. The water deprivation test confirmed the diagnosis of diabetes insipidus, and administration of desmopressin did not diminish his water secretion. Direct sequencing of the AVPR2 gene revealed a novel deletion of adenine at position 222 (222delA) in exon 2. This mutation is predicted to lead to a frameshift beginning at amino acid 75 and a premature stop codon at position 115 (FS75>115X). His height and weight, as well as his motor skills, improved after initiation of therapy with hydrochlorothiazide and amiloride. Growth delay can be associated with diabetes insipidus. The X-linked nephrogenic diabetes insipidus in this boy is caused by a novel mutation in the AVPR2 gene that is predicted to truncate the receptor protein.
Duan, Yongheng; Lin, Sheng; Xie, Lichun; Zheng, Kaifeng; Chen, Shiguo; Song, Hui; Zeng, Xuchun; Gu, Xueying; Wang, Heyun; Zhang, Linghua; Shao, Hao; Hong, Wenxu; Zhang, Lijie; Duan, Shan
2017-01-01
Abstract X-linked intellectual disability (XLID) has been associated with various genes. Diagnosis of XLID, especially for non-syndromic ones (NS-XLID), is often hampered by the heterogeneity of this disease. Here we report the case of a Chinese family in which three males suffer from intellectual disability (ID). The three patients shared the same phenotype: no typical clinical manifestation other than IQ score ≤ 70. For a genetic diagnosis for this family we carried out whole exome sequencing on the proband, and validated 16 variants of interest in the genomic DNA of all the family members. A missense mutation (c.710G > T), which mapped to exon 6 of the Rab GDP-Dissociation Inhibitor 1 (GDI1) gene, was found segregating with the ID phenotype, and this mutation changes the 237th position in the guanosine diphosphate dissociation inhibitor (GDI) protein from glycine to valine (p. Gly237Val). Through molecular dynamics simulations we found that this substitution results in a conformational change of GDI, possibly affecting the Rab-binding capacity of this protein. In conclusion, our study identified a novel GDI1 mutation that is possibly NS-XLID causative, and showed that whole exome sequencing provides advantages for detecting novel ID-associated variants and can greatly facilitate the genetic diagnosis of the disease. PMID:28863211
Bertani, Ilaria; Rusconi, Laura; Bolognese, Fabrizio; Forlani, Greta; Conca, Barbara; De Monte, Lucia; Badaracco, Gianfranco; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte
2006-10-20
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with Rett syndrome, West syndrome, and X-linked infantile spasms sharing the common features of generally intractable early seizures and mental retardation. Disease-causing mutations are distributed in both the catalytic domain and in the large COOH terminus. In this report, we examine the functional consequences of some Rett mutations of CDKL5 together with some synthetically designed derivatives useful to underline the functional domains of the protein. The mutated CDKL5 derivatives have been subjected to in vitro kinase assays and analyzed for phosphorylation of the TEY (Thr-Glu-Tyr) motif within the activation loop, their subcellular localization, and the capacity of CDKL5 to interact with itself. Whereas wild-type CDKL5 autophosphorylates and mediates the phosphorylation of the methyl-CpG-binding protein 2 (MeCP2) in vitro, Rett-mutated proteins show both impaired and increased catalytic activity suggesting that a tight regulation of CDKL5 is required for correct brain functions. Furthermore, we show that CDKL5 can self-associate and mediate the phosphorylation of its own TEY (Thr-Glu-Tyr) motif. Eventually, we show that the COOH terminus regulates CDKL5 properties; in particular, it negatively influences the catalytic activity and is required for its proper sub-nuclear localization. We propose a model in which CDKL5 phosphorylation is required for its entrance into the nucleus whereas a portion of the COOH-terminal domain is responsible for a stable residency in this cellular compartment probably through protein-protein interactions.
Mutations in PYCR1 cause cutis laxa with progeroid features.
Reversade, Bruno; Escande-Beillard, Nathalie; Dimopoulou, Aikaterini; Fischer, Björn; Chng, Serene C; Li, Yun; Shboul, Mohammad; Tham, Puay-Yoke; Kayserili, Hülya; Al-Gazali, Lihadh; Shahwan, Monzer; Brancati, Francesco; Lee, Hane; O'Connor, Brian D; Schmidt-von Kegler, Mareen; Merriman, Barry; Nelson, Stanley F; Masri, Amira; Alkazaleh, Fawaz; Guerra, Deanna; Ferrari, Paola; Nanda, Arti; Rajab, Anna; Markie, David; Gray, Mary; Nelson, John; Grix, Arthur; Sommer, Annemarie; Savarirayan, Ravi; Janecke, Andreas R; Steichen, Elisabeth; Sillence, David; Hausser, Ingrid; Budde, Birgit; Nürnberg, Gudrun; Nürnberg, Peter; Seemann, Petra; Kunkel, Désirée; Zambruno, Giovanna; Dallapiccola, Bruno; Schuelke, Markus; Robertson, Stephen; Hamamy, Hanan; Wollnik, Bernd; Van Maldergem, Lionel; Mundlos, Stefan; Kornak, Uwe
2009-09-01
Autosomal recessive cutis laxa (ARCL) describes a group of syndromal disorders that are often associated with a progeroid appearance, lax and wrinkled skin, osteopenia and mental retardation. Homozygosity mapping in several kindreds with ARCL identified a candidate region on chromosome 17q25. By high-throughput sequencing of the entire candidate region, we detected disease-causing mutations in the gene PYCR1. We found that the gene product, an enzyme involved in proline metabolism, localizes to mitochondria. Altered mitochondrial morphology, membrane potential and increased apoptosis rate upon oxidative stress were evident in fibroblasts from affected individuals. Knockdown of the orthologous genes in Xenopus and zebrafish led to epidermal hypoplasia and blistering that was accompanied by a massive increase of apoptosis. Our findings link mutations in PYCR1 to altered mitochondrial function and progeroid changes in connective tissues.
Briand, Nolwenn; Guénantin, Anne-Claire; Jeziorowska, Dorota; Shah, Akshay; Mantecon, Matthieu; Capel, Emilie; Garcia, Marie; Oldenburg, Anja; Paulsen, Jonas; Hulot, Jean-Sebastien; Vigouroux, Corinne; Collas, Philippe
2018-04-15
The p.R482W hotspot mutation in A-type nuclear lamins causes familial partial lipodystrophy of Dunnigan-type (FPLD2), a lipodystrophic syndrome complicated by early onset atherosclerosis. Molecular mechanisms underlying endothelial cell dysfunction conferred by the lamin A mutation remain elusive. However, lamin A regulates epigenetic developmental pathways and mutations could perturb these functions. Here, we demonstrate that lamin A R482W elicits endothelial differentiation defects in a developmental model of FPLD2. Genome modeling in fibroblasts from patients with FPLD2 caused by the lamin A R482W mutation reveals repositioning of the mesodermal regulator T/Brachyury locus towards the nuclear center relative to normal fibroblasts, suggesting enhanced activation propensity of the locus in a developmental model of FPLD2. Addressing this issue, we report phenotypic and transcriptional alterations in mesodermal and endothelial differentiation of induced pluripotent stem cells we generated from a patient with R482W-associated FPLD2. Correction of the LMNA mutation ameliorates R482W-associated phenotypes and gene expression. Transcriptomics links endothelial differentiation defects to decreased Polycomb-mediated repression of the T/Brachyury locus and over-activation of T target genes. Binding of the Polycomb repressor complex 2 to T/Brachyury is impaired by the mutated lamin A network, which is unable to properly associate with the locus. This leads to a deregulation of vascular gene expression over time. By connecting a lipodystrophic hotspot lamin A mutation to a disruption of early mesodermal gene expression and defective endothelial differentiation, we propose that the mutation rewires the fate of several lineages, resulting in multi-tissue pathogenic phenotypes.
Clonal hematopoiesis in acquired aplastic anemia.
Ogawa, Seishi
2016-07-21
Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1 Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. © 2016 by The American Society of Hematology.
Clonal hematopoiesis in acquired aplastic anemia
2016-01-01
Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1. Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. PMID:27121470
Osaka, Mayuko; Ito, Daisuke; Suzuki, Norihiro
2016-04-01
Ubiquilin (UBQLN), a member of the ubiquitin-like (UBL)-ubiquitin-associated (UBA) family, is a dual regulator of both the proteasomal and autophagic branches of the cellular protein degradation system. Mutations in the UBQLN2 gene encoding ubiquilin 2 cause X-linked amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD), and UBQLN2-positive inclusions have been identified in ALS patients with UBQLN2 mutations as well as in cases of both familial and sporadic ALS without UBQLN2 mutations. Compelling evidence links UBQLN2 to disturbance of the protein quality control network in neurons, but the pathomechanisms remain obscure. This study aimed to clarify how ALS-linked mutations in UBQLN2 affect the protein degradation system. Overexpression of a UBQLN2 with ALS-associated mutations resulted in the accumulation of polyubiquitinated proteins in neuronal cells, including the ALS-associated protein TDP-43. This effect was dependent on the UBA domain but not on inclusion formation. Immunocytochemistry and protein fractionation analysis of IVm-UBQLN2 cellular distribution indicated that it sequesters ubiquitinated substrates from both the proteasomal and autophagic branches of the protein degradation system, resulting in accumulation of polyubiquitinated substrates. These findings provide a molecular basis for the development of ALS/FTD-associated proteinopathy and establish novel therapeutic targets for ALS. Copyright © 2016. Published by Elsevier Inc.
Novel alpha-galactosidase A mutation in a female with recurrent strokes.
Tuttolomondo, Antonino; Duro, Giovanni; Miceli, Salvatore; Di Raimondo, Domenico; Pecoraro, Rosaria; Serio, Antonia; Albeggiani, Giuseppe; Nuzzo, Domenico; Iemolo, Francesco; Pizzo, Federica; Sciarrino, Serafina; Licata, Giuseppe; Pinto, Antonio
2012-11-01
Anderson-Fabry disease (AFD) is an X-linked inborn error of glycosphingolipid catabolism resulting from the deficient activity of the lysosomal exoglycohydrolase, a-galactosidase A. The complete genomic and cDNA sequences of the human alpha-galactosidase A gene have been determined and to date, several disease-causing alpha-galactosidase A mutations have been identified, including missense mutations, small deletions/insertions, splice mutations, and large gene rearrangements We report a case of a 56-year-old woman with recurrent cryptogenic strokes. Ophthalmological examination revealed whorled opacities of the cornea (cornea verticillata) and dilated tortuous conjunctival vessels. She did not show other typical signs of Fabry disease such as acroparesthesias and angiokeratoma. The patient's alpha-galactosidase A activity was 4.13 nmol/mL/h in whole blood. Alpha-galactosidase A gene sequence analysis revealed a heterozygous single nucleotide point mutation at nucleotide c.550T>A in exon 4 in this woman, leading to the p.Tyr184Asn amino acid substitution. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Muscular dystrophy in the Japanese Spitz: an inversion disrupts the DMD and RPGR genes.
Atencia-Fernandez, Sabela; Shiel, Robert E; Mooney, Carmel T; Nolan, Catherine M
2015-04-01
An X-linked muscular dystrophy, with deficiency of full-length dystrophin and expression of a low molecular weight dystrophin-related protein, has been described in Japanese Spitz dogs. The aim of this study was to identify the causative mutation and develop a specific test to identify affected cases and carrier animals. Gene expression studies in skeletal muscle of an affected animal indicated aberrant expression of the Duchenne muscular dystrophy (dystrophin) gene and an anomaly in intron 19 of the gene. Genome-walking experiments revealed an inversion that interrupts two genes on the X chromosome, the Duchenne muscular dystrophy gene and the retinitis pigmentosa GTPase regulator gene. All clinically affected dogs and obligate carriers that were tested had the mutant chromosome, and it is concluded that the inversion is the causative mutation for X-linked muscular dystrophy in the Japanese Spitz breed. A PCR assay that amplifies mutant and wild-type alleles was developed and proved capable of identifying affected and carrier individuals. Unexpectedly, a 7-year-old male animal, which had not previously come to clinical attention, was shown to possess the mutant allele and to have a relatively mild form of the disease. This observation indicates phenotypic heterogeneity in Japanese Spitz muscular dystrophy, a feature described previously in humans and Golden Retrievers. With the availability of a simple, fast and accurate test for Japanese Spitz muscular dystrophy, detection of carrier animals and selected breeding should help eliminate the mutation from the breed. © 2015 Stichting International Foundation for Animal Genetics.
Miraoui, Hichem; Dwyer, Andrew A.; Sykiotis, Gerasimos P.; Plummer, Lacey; Chung, Wilson; Feng, Bihua; Beenken, Andrew; Clarke, Jeff; Pers, Tune H.; Dworzynski, Piotr; Keefe, Kimberley; Niedziela, Marek; Raivio, Taneli; Crowley, William F.; Seminara, Stephanie B.; Quinton, Richard; Hughes, Virginia A.; Kumanov, Philip; Young, Jacques; Yialamas, Maria A.; Hall, Janet E.; Van Vliet, Guy; Chanoine, Jean-Pierre; Rubenstein, John; Mohammadi, Moosa; Tsai, Pei-San; Sidis, Yisrael; Lage, Kasper; Pitteloud, Nelly
2013-01-01
Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ∼12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called “FGF8 synexpression” group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH. PMID:23643382
Low-grade prostate tumors can harbor signs of aggressive cancer | Center for Cancer Research
In a new study, Center for Cancer Research investigators found that low-grade and high-grade regions of prostate tumor tissue shared mutations typically linked to aggressive cancer. Testing for mutations to specific genes could help clinicians decide whether a patient with an initial low-grade result should undergo a follow-up biopsy. Learn more...
Genetics Home Reference: pilomatricoma
... F, Palacios J. beta-catenin expression in pilomatrixomas. Relationship with beta-catenin gene mutations and comparison with ... for Links Data Files & API Site Map Subscribe Customer Support USA.gov Copyright Privacy Accessibility FOIA Viewers & ...
Mutations in X-linked PORCN, a putative regulator of Wnt signaling, cause focal dermal hypoplasia
USDA-ARS?s Scientific Manuscript database
Focal dermal hypoplasia is an X-linked dominant disorder characterized by patchy hypoplastic skin and digital, ocular, and dental malformations. We used array comparative genomic hybridization to identify a 219-kb deletion in Xp11.23 in two affected females. We sequenced genes in this region and fou...
Schuurs-Hoeijmakers, Janneke H M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; van de Vondervoort, Ilse I G M; van Bon, Bregje W M; de Ligt, Joep; Gilissen, Christian; Hehir-Kwa, Jayne Y; Neveling, Kornelia; del Rosario, Marisol; Hira, Gausiya; Reitano, Santina; Vitello, Aurelio; Failla, Pinella; Greco, Donatella; Fichera, Marco; Galesi, Ornella; Kleefstra, Tjitske; Greally, Marie T; Ockeloen, Charlotte W; Willemsen, Marjolein H; Bongers, Ernie M H F; Janssen, Irene M; Pfundt, Rolph; Veltman, Joris A; Romano, Corrado; Willemsen, Michèl A; van Bokhoven, Hans; Brunner, Han G; de Vries, Bert B A; de Brouwer, Arjan P M
2013-12-01
Intellectual disability (ID) is a common neurodevelopmental disorder affecting 1-3% of the general population. Mutations in more than 10% of all human genes are considered to be involved in this disorder, although the majority of these genes are still unknown. We investigated 19 small non-consanguineous families with two to five affected siblings in order to identify pathogenic gene variants in known, novel and potential ID candidate genes. Non-consanguineous families have been largely ignored in gene identification studies as small family size precludes prior mapping of the genetic defect. Using exome sequencing, we identified pathogenic mutations in three genes, DDHD2, SLC6A8, and SLC9A6, of which the latter two have previously been implicated in X-linked ID phenotypes. In addition, we identified potentially pathogenic mutations in BCORL1 on the X-chromosome and in MCM3AP, PTPRT, SYNE1, and ZNF528 on autosomes. We show that potentially pathogenic gene variants can be identified in small, non-consanguineous families with as few as two affected siblings, thus emphasising their value in the identification of syndromic and non-syndromic ID genes.
Identification of the gene for Nance-Horan syndrome (NHS).
Brooks, S P; Ebenezer, N D; Poopalasundaram, S; Lehmann, O J; Moore, A T; Hardcastle, A J
2004-10-01
The disease intervals for Nance-Horan syndrome (NHS [MIM 302350]) and X linked congenital cataract (CXN) overlap on Xp22. To identify the gene or genes responsible for these diseases. Families with NHS were ascertained. The refined locus for CXN was used to focus the search for candidate genes, which were screened by polymerase chain reaction and direct sequencing of potential exons and intron-exon splice sites. Genomic structures and homologies were determined using bioinformatics. Expression studies were undertaken using specific exonic primers to amplify human fetal cDNA and mouse RNA. A novel gene NHS, with no known function, was identified as causative for NHS. Protein truncating mutations were detected in all three NHS pedigrees, but no mutation was identified in a CXN family, raising the possibility that NHS and CXN may not be allelic. The NHS gene forms a new gene family with a closely related novel gene NHS-Like1 (NHSL1). NHS and NHSL1 lie in paralogous duplicated chromosomal intervals on Xp22 and 6q24, and NHSL1 is more broadly expressed than NHS in human fetal tissues. This study reports the independent identification of the gene causative for Nance-Horan syndrome and extends the number of mutations identified.
Lev, Dorit; Weigl, Yuval; Hasan, Mariana; Gak, Eva; Davidovich, Michael; Vinkler, Chana; Leshinsky-Silver, Esther; Lerman-Sagie, Tally; Watemberg, Nathan
2007-05-01
Norrie disease (ND) is a rare X-linked recessive disorder characterized by congenital blindness and in some cases, mental retardation and deafness. Other neurological complications, particularly epilepsy, are rare. We report on a novel mutation identified in a patient with ND and profound mental retardation. The patient was diagnosed at the age of 6 months due to congenital blindness. At the age of 8 months he developed infantile spasms, which were diagnosed at 11 months as his EEG demonstrated hypsarrhythmia. Mutation analysis of the ND gene (NDP) of the affected child and his mother revealed a novel missense mutation at position c.134T > A resulting in amino acid change at codon V45E. To the best of our knowledge, such severe neurological involvement has not been previously reported in ND patients. The severity of the phenotype may suggest the functional importance of this site of the NDP gene.
Identification of de novo mutations of Duchénnè/Becker muscular dystrophies in southern Spain.
Garcia, Susana; de Haro, Tomás; Zafra-Ceres, Mercedes; Poyatos, Antonio; Gomez-Capilla, Jose A; Gomez-Llorente, Carolina
2014-01-01
Duchénnè/Becker muscular dystrophies (DMD/BMD) are X-linked diseases, which are caused by a de novo gene mutation in one-third of affected males. The study objectives were to determine the incidence of DMD/BMD in Andalusia (Spain) and to establish the percentage of affected males in whom a de novo gene mutation was responsible. Multiplex ligation-dependent probe amplification (MLPA) technology was applied to determine the incidence of DMD/BMD in 84 males with suspicion of the disease and 106 female relatives. Dystrophin gene exon deletion (89.5%) or duplication (10.5%) was detected in 38 of the 84 males by MLPA technology; de novo mutations account for 4 (16.7%) of the 24 mother-son pairs studied. MLPA technology is adequate for the molecular diagnosis of DMD/BMD and establishes whether the mother carries the molecular alteration responsible for the disease, a highly relevant issue for genetic counseling.
The first mutation in CNGA2 in two brothers with anosmia.
Karstensen, H G; Mang, Y; Fark, T; Hummel, T; Tommerup, N
2015-09-01
Isolated congenital anosmia (ICA) is a rare disorder, where otherwise healthy individuals present with an inability to smell since birth. A list of studies have described the genes involved in syndromic anosmia; however, the genetics of ICA is still in its infancy. Studies in mice show that the cyclic nucleotide-gated channel subunit CNGA2, expressed in the olfactory epithelium has a crucial role in olfactory signal transduction. We have identified a novel X-linked stop mutation in CNGA2 (c.634C>T, p.R212*) in two brothers with ICA using exome sequencing. No additional mutations in CNGA2 were identified in a cohort of 31 non-related ICA individuals. Magnetic resonance brain imaging revealed diminished olfactory bulbs and flattened olfactory sulci. This is the first report of a mutation in the cyclic nucleotide-gated gene CNGA2 and supports the critical role of this gene in human olfaction. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Helsmoortel, Céline; Swagemakers, Sigrid M A; Vandeweyer, Geert; Stubbs, Andrew P; Palli, Ivo; Mortier, Geert; Kooy, R Frank; van der Spek, Peter J
2016-12-01
Whole genome sequencing of a severely affected dizygotic twin with an autism spectrum disorder and intellectual disability revealed a compound heterozygous mutation in the HTR7 gene as the only variation not detected in control databases. Each parent carries one allele of the mutation, which is not present in an unaffected stepsister. The HTR7 gene encodes the 5-HT 7 serotonin receptor that is involved in brain development, synaptic transmission, and plasticity. The paternally inherited p.W60C variant is situated at an evolutionary conserved nucleotide and predicted damaging by Polyphen2. A mutation akin to the maternally inherited pV286I mutation has been reported to significantly affect the binding characteristics of the receptor. Therefore, the observed sequence alterations provide a first suggestive link between a genetic abnormality in the HTR7 gene and a neurodevelopmental disorder. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Jang, Mi-Ae; Kim, Ji-Yoon; Lee, Ki-O; Kim, Sun-Hee; Koo, Hong Hoe; Kim, Hee-Jin
2015-01-01
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive hemolytic anemia caused by a mutation in the G6PD gene on Xq28. Herein, we describe a Korean boy with G6PD deficiency resulting from a novel mutation in G6PD. A 20-month-old boy with hemolytic anemia was referred for molecular diagnosis. He had no relevant family history. The G6PD activity was severely decreased at 0.2 U/g Hb (severe deficiency). Direct sequencing analyses on the G6PD gene revealed that he was hemizygous for a novel missense variant, c.1187C>G (p.Pro396Arg), in exon 10 of G6PD. Family study involving his parents revealed the de novo occurrence of the mutation. This is the first report of genetically confirmed G6PD deficiency in Korea. © 2015 by the Association of Clinical Scientists, Inc.
A novel NHS mutation causes Nance-Horan Syndrome in a Chinese family.
Tian, Qi; Li, Yunping; Kousar, Rizwana; Guo, Hui; Peng, Fenglan; Zheng, Yu; Yang, Xiaohua; Long, Zhigao; Tian, Runyi; Xia, Kun; Lin, Haiying; Pan, Qian
2017-01-07
Nance-Horan Syndrome (NHS) (OMIM: 302350) is a rare X-linked developmental disorder characterized by bilateral congenital cataracts, with occasional dental anomalies, characteristic dysmorphic features, brachymetacarpia and mental retardation. Carrier females exhibit similar manifestations that are less severe than in affected males. Here, we report a four-generation Chinese family with multiple affected individuals presenting Nance-Horan Syndrome. Whole-exome sequencing combined with RT-PCR and Sanger sequencing was used to search for a genetic cause underlying the disease phenotype. Whole-exome sequencing identified in all affected individuals of the family a novel donor splicing site mutation (NM_198270: c.1045 + 2T > A) in intron 4 of the gene NHS, which maps to chromosome Xp22.13. The identified mutation results in an RNA processing defect causing a 416-nucleotide addition to exon 4 of the mRNA transcript, likely producing a truncated NHS protein. The donor splicing site mutation NM_198270: c.1045 + 2T > A of the NHS gene is the causative mutation in this Nance-Horan Syndrome family. This research broadens the spectrum of NHS gene mutations, contributing to our understanding of the molecular genetics of NHS.
Giannandrea, Maila; Bianchi, Veronica; Mignogna, Maria Lidia; Sirri, Alessandra; Carrabino, Salvatore; D'Elia, Errico; Vecellio, Matteo; Russo, Silvia; Cogliati, Francesca; Larizza, Lidia; Ropers, Hans-Hilger; Tzschach, Andreas; Kalscheuer, Vera; Oehl-Jaschkowitz, Barbara; Skinner, Cindy; Schwartz, Charles E.; Gecz, Jozef; Van Esch, Hilde; Raynaud, Martine; Chelly, Jamel; de Brouwer, Arjan P.M.; Toniolo, Daniela; D'Adamo, Patrizia
2010-01-01
Human Mental Retardation (MR) is a common and highly heterogeneous pediatric disorder affecting around 3% of the general population; at least 215 X-linked MR (XLMR) conditions have been described, and mutations have been identified in 83 different genes, encoding proteins with a variety of function, such as chromatin remodeling, synaptic function, and intracellular trafficking. The small GTPases of the RAB family, which play an essential role in intracellular vesicular trafficking, have been shown to be involved in MR. We report here the identification of mutations in the small GTPase RAB39B gene in two male patients. One mutation in family X (D-23) introduced a stop codon seven amino acids after the start codon (c.21C > A; p.Y7X). A second mutation, in the MRX72 family, altered the 5′ splice site (c.215+1G > A) and normal splicing. Neither instance produced a protein. Mutations segregate with the disease in the families, and in some family members intellectual disabilities were associated with autism spectrum disorder, epileptic seizures, and macrocephaly. We show that RAB39B, a novel RAB GTPase of unknown function, is a neuronal-specific protein that is localized to the Golgi compartment. Its downregulation leads to an alteration in the number and morphology of neurite growth cones and a significant reduction in presynaptic buttons, suggesting that RAB39B is required for synapse formation and maintenance. Our results demonstrate developmental and functional neuronal alteration as a consequence of downregulation of RAB39B and emphasize the critical role of vesicular trafficking in the development of neurons and human intellectual abilities. PMID:20159109
Saglar, Emel; Deniz, Ferhat; Erdem, Beril; Karaduman, Tugce; Yönem, Arif; Cagiltay, Eylem; Mergen, Hatice
2014-05-01
X-linked nephrogenic diabetes insipidus (NDI) is a rare hereditary disease caused by mutations in arginine vasopressin type 2 receptor (AVPR2) and characterized by the production of large amounts of urine and an inability to concentrate urine in response to the antidiuretic hormone vasopressin. We have identified a novel 388 bp deletion starting in intron 1 and ending in exon 2 in the AVPR2 gene in a patient with NDI and in his family. We have revealed that this mutation is a de novo mutation for the mother of the proband patient. Prospective clinical data were collected for all family members. The water deprivation test confirmed the diagnosis of diabetes insipidus. The patient has severe symptoms like deep polyuria nocturia, polydipsia, and fatigue. He was given arginine vasopressin treatment while he was a child. However, he could not get well due to his nephrogenic type of illness. Both of his nephews have the same complains in addition to failure to grow. We have sequenced all exons and intron-exon boundaries of the AVPR2 gene of all family members. The analyses of bioinformatics and comparative genomics of the deletion were done via considering the DNA level damage. AVPR2 gene mutation results in the absence of the three transmembrane domains, two extracellular domains, and one cytoplasmic domain. Three-dimensional protein structure prediction was shown. We concluded that X-linked NDI and severity of illness in this family is caused by a novel 388 bp deletion in the AVPR2 gene that is predicted to truncate the receptor protein, and also this deletion may lead to dysfunctioning in protein activity and inefficient or inadequate binding abilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinchik, E.M.; Carpenter, D.A.; Handel, M.A.
1995-07-03
Variability and complexity of phenotypes observed in microdeletion syndromes can be due to deletion of a single gene whose product participates in several aspects of development or can be due to the deletion of a number of tightly linked genes, each adding its own effect to the syndrome. The p{sup 6H} deletion in mouse chromosome 7 presents a good model with which to address this question of multigene vs. single-gene pleiotropy. Mice homozygous for the p{sup 6H} deletion are diluted in pigmentation, are smaller than their littermates, and manifest a nervous jerky-gait phenotype. Male homozygotes are sterile and exhibit profoundmore » abnormalities in spermiogenesis. By using N-ethyl-N-nitrosourea (EtNU) mutagenesis and a breeding protocol designed to recover recessive mutations expressed hemizygously opposite a large p-locus deletion, we have generated three noncomplementing mutations that map to the p{sup 6H} deletion. Each of these EtNU-induced mutations has adverse effects on the size, nervous behavior, and progression of spermiogenesis that characterize p{sup 6H} deletion homozygotes. Because etNU is thought to induce primarily intragenic (point) mutations in mouse stem-cell spermatogonia, we propose that the trio of phenotypes (runtiness, nervous jerky gait, and male sterility) expressed in p{sup 6H} deletion homozygotes is the result of deletion of a single highly pleiotropic gene. We also predict that a homologous single locus, quite possibly tightly linked and distal to the D15S12 (P) locus in human chromosome 15q11-q13, may be associated with similar developmental abnormalities in humans. 29 refs., 3 figs., 1 tab.« less
Novel AVPR2 mutation causing partial nephrogenic diabetes insipidus in a Japanese family.
Yamashita, Sumie; Hata, Astuko; Usui, Takeshi; Oda, Hirotsugu; Hijikata, Atsushi; Shirai, Tsuyoshi; Kaneko, Naoto; Hata, Daisuke
2016-05-01
X-linked recessive congenital nephrogenic diabetes insipidus (NDI) is caused by mutations of the arginine vasopressin type 2 receptor gene (AVPR2). More than 200 mutations of the AVPR2 gene with complete NDI have been reported although only 15 mutations with partial NDI has been reported to date. We herein report a Japanese kindred with partial NDI. The proband is an 8-year-old boy who was referred to our hospital for nocturnal enuresis. Water deprivation test and hypertonic saline test suggested partial renal antidiuretic hormone arginine vasopressin (AVP) resistance. Analysis of genomic DNA revealed a novel missense mutation (p.L161P) in the patient. The patient's mother was heterozygous for the mutation. Three-dimensional (3-D) modeling study showed that L161P possibly destabilizes the transmembrane domain of the V2 receptor, resulting in its misfolding or mislocalization. Distinguishing partial NDI from nocturnal enuresis is important. A clinical clue for diagnosis of partial NDI is an incompatibly high level of AVP despite normal serum osmolality.
Spectrum of Pig-a mutations in T lymphocytes of rats treated with procarbazine.
Revollo, Javier; Bhalli, Javed A; Tebbe, Cameron; Noteboom, Jessica; Thomas, Demetria; McKinzie, Page; Felton, Nicholas; Pearce, Mason G; Dobrovolsky, Vasily N
2017-12-31
Procarbazine is a primary component of antineoplastic combination chemotherapy often used for the treatment of Hodgkin's lymphoma. It is believed that cytostatic and cytotoxic properties of procarbazine are mediated via its interaction with genomic DNA. Procarbazine is a carcinogen in animal models; it is classified as Group 2A compound by IARC. Also it is known as an in vitro and in vivo mutagen and genotoxicant. However, the molecular mechanism by which procarbazine induces mutations is not thoroughly understood and the spectrum of procarbazine-induced in vivo mutations is described insufficiently. We employed flow cytometry-based erythrocyte and T lymphocyte assays in order to quantify the frequencies of cells deficient in glycosylphosphatidyl inositol-anchored surface markers CD59 and CD48 (presumed mutants in the endogenous X-linked Pig-a gene) in rats. The rats were treated once daily with 100 mg/kg procarbazine HCl for 3 days. In addition, we sorted mutant-phenotype spleen T cells and immediately analysed their Pig-a gene using next generation sequencing of dual-indexed multiplex libraries and error-correcting data filtering. More than 100-fold increase in the frequencies of CD59-deficient RBCs was observed at Day 29 after the last administration, and a 10-fold increase in the frequency of CD48-deficient T cells was observed at Days 45 to 50. Sequencing revealed that, in T cells from procarbazine-treated rats, mutations in the Pig-a gene occurred predominantly at A:T basepairs when A was located on the non-transcribed DNA strand. A→T transversion was the most common mutation. Our results suggest that, at least for the transcribed X-linked Pig-a gene, in vivo methyl guanine adducts are not the major contributors to mutations induced by procarbazine. © The Author(s) 2017. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yurgelun, Matthew B; Allen, Brian; Kaldate, Rajesh R; Bowles, Karla R; Judkins, Thaddeus; Kaushik, Praveen; Roa, Benjamin B; Wenstrup, Richard J; Hartman, Anne-Renee; Syngal, Sapna
2015-09-01
Multigene panels are commercially available tools for hereditary cancer risk assessment that allow for next-generation sequencing of numerous genes in parallel. However, it is not clear if these panels offer advantages over traditional genetic testing. We investigated the number of cancer predisposition gene mutations identified by parallel sequencing in individuals with suspected Lynch syndrome. We performed germline analysis with a 25-gene, next-generation sequencing panel using DNA from 1260 individuals who underwent clinical genetic testing for Lynch syndrome from 2012 through 2013. All patients had a history of Lynch syndrome-associated cancer and/or polyps. We classified all identified germline alterations for pathogenicity and calculated the frequencies of pathogenic mutations and variants of uncertain clinical significance (VUS). We also analyzed data on patients' personal and family history of cancer, including fulfillment of clinical guidelines for genetic testing. Of the 1260 patients, 1112 met National Comprehensive Cancer Network (NCCN) criteria for Lynch syndrome testing (88%; 95% confidence interval [CI], 86%-90%). Multigene panel testing identified 114 probands with Lynch syndrome mutations (9.0%; 95% CI, 7.6%-10.8%) and 71 with mutations in other cancer predisposition genes (5.6%; 95% CI, 4.4%-7.1%). Fifteen individuals had mutations in BRCA1 or BRCA2; 93% of these met the NCCN criteria for Lynch syndrome testing and 33% met NCCN criteria for BRCA1 and BRCA2 analysis (P = .0017). An additional 9 individuals carried mutations in other genes linked to high lifetime risks of cancer (5 had mutations in APC, 3 had bi-allelic mutations in MUTYH, and 1 had a mutation in STK11); all of these patients met NCCN criteria for Lynch syndrome testing. A total of 479 individuals had 1 or more VUS (38%; 95% CI, 35%-41%). In individuals with suspected Lynch syndrome, multigene panel testing identified high-penetrance mutations in cancer predisposition genes, many of which were unexpected based on patients' histories. Parallel sequencing also detected a high number of potentially uninformative germline findings, including VUS. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Eaton, T E; Weiner Miller, P; Garrett, J E; Cutting, G R
2002-05-01
Previous work suggests that cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations may be implicated in the aetiology of allergic bronchopulmonary aspergilosis (ABPA). To compare the frequency of CF gene mutations in asthmatics with ABPA of varying severity with asthmatics who were skin prick test (SPT)-positive to Aspergillus fumigatus (Af) without evidence of ABPA and asthmatics SPT-negative to Af. Thirty-one Caucasian patients with ABPA were identified, together with asthmatics SPT positive to Af without evidence of ABPA (n = 23) and SPT negative to Af (n = 28). Genomic DNA was tested for 16 CF mutations accounting for approximately 85% of CF alleles in Caucasian New Zealanders. Four (12.9%) ABPA patients were found to be carriers of a CF mutation (DeltaF508 n = 3, R117H n = 1), one (4.3%) asthmatic SPT positive to Af without ABPA (DeltaF508), and one (3.6%) asthmatic SPT negative to Af (R117H). All patients with a CF mutation had normal sweat chloride (< 40 mM). There was no significant difference between the frequency of CF mutations in the ABPA patients and asthmatics without ABPA. However, the frequency of CF mutations in the ABPA patients was significantly different (P = 0.0125) to the expected carrier rate in the general population. These results lend further support to a possible link between CF mutations and ABPA.
Phenotype and genotype in 101 males with X-linked creatine transporter deficiency.
van de Kamp, J M; Betsalel, O T; Mercimek-Mahmutoglu, S; Abulhoul, L; Grünewald, S; Anselm, I; Azzouz, H; Bratkovic, D; de Brouwer, A; Hamel, B; Kleefstra, T; Yntema, H; Campistol, J; Vilaseca, M A; Cheillan, D; D'Hooghe, M; Diogo, L; Garcia, P; Valongo, C; Fonseca, M; Frints, S; Wilcken, B; von der Haar, S; Meijers-Heijboer, H E; Hofstede, F; Johnson, D; Kant, S G; Lion-Francois, L; Pitelet, G; Longo, N; Maat-Kievit, J A; Monteiro, J P; Munnich, A; Muntau, A C; Nassogne, M C; Osaka, H; Ounap, K; Pinard, J M; Quijano-Roy, S; Poggenburg, I; Poplawski, N; Abdul-Rahman, O; Ribes, A; Arias, A; Yaplito-Lee, J; Schulze, A; Schwartz, C E; Schwenger, S; Soares, G; Sznajer, Y; Valayannopoulos, V; Van Esch, H; Waltz, S; Wamelink, M M C; Pouwels, P J W; Errami, A; van der Knaap, M S; Jakobs, C; Mancini, G M; Salomons, G S
2013-07-01
Creatine transporter deficiency is a monogenic cause of X-linked intellectual disability. Since its first description in 2001 several case reports have been published but an overview of phenotype, genotype and phenotype--genotype correlation has been lacking. We performed a retrospective study of clinical, biochemical and molecular genetic data of 101 males with X-linked creatine transporter deficiency from 85 families with a pathogenic mutation in the creatine transporter gene (SLC6A8). Most patients developed moderate to severe intellectual disability; mild intellectual disability was rare in adult patients. Speech language development was especially delayed but almost a third of the patients were able to speak in sentences. Besides behavioural problems and seizures, mild to moderate motor dysfunction, including extrapyramidal movement abnormalities, and gastrointestinal problems were frequent clinical features. Urinary creatine to creatinine ratio proved to be a reliable screening method besides MR spectroscopy, molecular genetic testing and creatine uptake studies, allowing definition of diagnostic guidelines. A third of patients had a de novo mutation in the SLC6A8 gene. Mothers with an affected son with a de novo mutation should be counselled about a recurrence risk in further pregnancies due to the possibility of low level somatic or germline mosaicism. Missense mutations with residual activity might be associated with a milder phenotype and large deletions extending beyond the 3' end of the SLC6A8 gene with a more severe phenotype. Evaluation of the biochemical phenotype revealed unexpected high creatine levels in cerebrospinal fluid suggesting that the brain is able to synthesise creatine and that the cerebral creatine deficiency is caused by a defect in the reuptake of creatine within the neurones.
Kalscheuer, Vera M.; James, Victoria M.; Himelright, Miranda L.; Long, Philip; Oegema, Renske; Jensen, Corinna; Bienek, Melanie; Hu, Hao; Haas, Stefan A.; Topf, Maya; Hoogeboom, A. Jeannette M.; Harvey, Kirsten; Walikonis, Randall; Harvey, Robert J.
2016-01-01
Disease gene discovery in neurodevelopmental disorders, including X-linked intellectual disability (XLID) has recently been accelerated by next-generation DNA sequencing approaches. To date, more than 100 human X chromosome genes involved in neuronal signaling pathways and networks implicated in cognitive function have been identified. Despite these advances, the mutations underlying disease in a large number of XLID families remained unresolved. We report the resolution of MRX78, a large family with six affected males and seven affected females, showing X-linked inheritance. Although a previous linkage study had mapped the locus to the short arm of chromosome X (Xp11.4-p11.23), this region contained too many candidate genes to be analyzed using conventional approaches. However, our X-chromosome exome resequencing, bioinformatics analysis and inheritance testing revealed a missense mutation (c.C2366T, p.A789V) in IQSEC2, encoding a neuronal GDP-GTP exchange factor for Arf family GTPases (ArfGEF) previously implicated in XLID. Molecular modeling of IQSEC2 revealed that the A789V substitution results in the insertion of a larger side-chain into a hydrophobic pocket in the catalytic Sec7 domain of IQSEC2. The A789V change is predicted to result in numerous clashes with adjacent amino acids and disruption of local folding of the Sec7 domain. Consistent with this finding, functional assays revealed that recombinant IQSEC2A789V was not able to catalyze GDP-GTP exchange on Arf6 as efficiently as wild-type IQSEC2. Taken together, these results strongly suggest that the A789V mutation in IQSEC2 is the underlying cause of XLID in the MRX78 family. PMID:26793055
Hou, Lihua; Jiao, Bin; Xiao, Tingting; Zhou, Lu; Zhou, Zhifan; Du, Juan; Yan, Xinxiang; Wang, Junling; Tang, Beisha; Shen, Lu
2016-09-08
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons of the brain, brainstem and spinal cord. To date, mutations in more than 30 genes have been linked to the pathogenesis of ALS. Among them, SOD1, FUS and TARDBP are ranked as the three most common genes associated with ALS. However, no mutation analysis has been reported in central-southern China. In this study, we sequenced SOD1, FUS and TARDBP in a central-southern Chinese cohort of 173 patients with ALS (15 familial ALS and 158 sporadic ALS) to detect mutations. As a result, five missense mutations in SOD1, namely, p.D101N, p.D101G, p.C111Y, p.N86S and p.V87A, were identified in three unrelated familial probands and three sporadic cases; two mutations in FUS were found in two unrelated familial probands, including an insertion mutation (p.P525_Y526insY) and a missense mutation (p.R521H); no variants of TARDBP were observed in patients. Therefore, SOD1 mutations were present in 20.0% of familial ALS patients and 1.9% of sporadic ALS patients, while FUS mutations were responsible for 13.3% of familial ALS cases, and TARDBP mutations were rare in either familial or sporadic ALS cases. This study broadens the known mutational spectrum in patients with ALS and further demonstrates the necessity for genetic screening in ALS patients from central-southern China.
Smith, Bradley N; Ancliff, Phil J; Pizzey, Arnold; Khwaja, Asim; Linch, David C; Gale, Rosemary E
2009-03-01
Patients with autosomal dominant (AD), sporadic and X-linked severe congenital neutropenia (SCN) may have mutations in the elastase 2 (ELA2) or Wiskott-Aldrich syndrome (WAS) genes. Homozygous mutations in the HAX1 gene have recently been reported in autosomal recessive (AR) cases of primarily Middle-Eastern descent and the original Kostmann family. We screened 109 predominantly Caucasian SCN kindreds for mutations in these genes; 33 (30%) had 24 different ELA2 mutations, five of them novel, two kindreds (2%) had WAS mutations and four kindreds (4%) had three different HAX1 mutations, two of them novel. One HAX1 mutation (p.Ser43LeufsX11) was found in an AR Ashkenazi Jewish kindred, the other (p.Glu31LysfsX54) in two unrelated British patients with sporadic disease. Microsatellite analysis of the HAX1 locus revealed a common haplotype (maximum distance 4.1 Megabases) for the p.Glu31LysfsX54 patients, suggesting a possible ancestral founder. In functional assays, the level of spontaneous and staurosporine-induced apoptosis was increased in neutrophils from both p.Ser43LeufsX11 patients but not a p.Glu31LysfsX54 patient, suggesting the possible presence of modifying factors. The low incidence of HAX1 mutations in our study suggests that the frequency may vary between racial groups but suggests that irrespective of inheritance or racial origin, SCN patients should be screened for HAX1 mutations.
NDP gene mutations in 14 French families with Norrie disease.
Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul
2003-12-01
Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype. Copyright 2003 Wiley-Liss, Inc.
A diffusion approach to approximating preservation probabilities for gene duplicates.
O'Hely, Martin
2006-08-01
Consider a haploid population and, within its genome, a gene whose presence is vital for the survival of any individual. Each copy of this gene is subject to mutations which destroy its function. Suppose one member of the population somehow acquires a duplicate copy of the gene, where the duplicate is fully linked to the original gene's locus. Preservation is said to occur if eventually the entire population consists of individuals descended from this one which initially carried the duplicate. The system is modelled by a finite state-space Markov process which in turn is approximated by a diffusion process, whence an explicit expression for the probability of preservation is derived. The event of preservation can be compared to the fixation of a selectively neutral gene variant initially present in a single individual, the probability of which is the reciprocal of the population size. For very weak mutation, this and the probability of preservation are equal, while as mutation becomes stronger, the preservation probability tends to double this reciprocal. This is in excellent agreement with simulation studies.
Genetic and epigenetic mutations of tumor suppressive genes in sporadic pituitary adenoma
Zhou, Yunli; Zhang, Xun; Klibanski, Anne
2013-01-01
Human pituitary adenomas are the most common intracranial neoplasms. Approximately 5% of them are familial adenomas. Patients with familial tumors carry germline mutations in predisposition genes, including AIP, MEN1 and PRKAR1A. These mutations are extremely rare in sporadic pituitary adenomas, which therefore are caused by different mechanisms. Multiple tumor suppressive genes linked to sporadic tumors have been identified. Their inactivation is caused by epigenetic mechanisms, mainly promoter hypermethylation, and can be placed into two groups based on their functional interaction with tumor suppressors RB or p53. The RB group includes CDKN2A, CDKN2B, CDKN2C, RB1, BMP4, CDH1, CDH13, GADD45B and GADD45G; AIP and MEN1 genes also belong to this group. The p53 group includes MEG3, MGMT, PLAGL1, RASSF1, RASSF3 and SOCS1. We propose that the tumor suppression function of these genes is mainly mediated by the RB and p53 pathways. We also discuss possible tumor suppression mechanisms for individual genes. PMID:24035864
Rashid, Ban Mousa; Rashid, Nawshirwan Gafoor; Schulz, Ansgar; Lahr, Georgia; Nore, Beston Faiek
2013-01-09
Osteopetrosis is a rare inherited genetic disease characterized by sclerosis of the skeleton. The absence or malfunction of osteoclasts is found to be strongly associated with the disease evolution. Currently, four clinically distinct forms of the disease have been recognized: the infantile autosomal recessive osteopetrosis, the malignant and the intermediate forms, and autosomal dominant osteopetrosis, type I and type II forms. The autosomal recessive types are the most severe forms with symptoms in very early childhood, whereas the autosomal dominant classes exhibit a heterogeneous trait with milder symptoms, often at later childhood or adulthood. Case 1 is the 12-year-old daughter (index patient) of an Iraqi-Kurdish family who, at the age of eight years, was diagnosed clinically to have mild autosomal dominant osteopetrosis. Presently, at 12-years old, she has severe complications due to the disease progression. In addition, the same family previously experienced the death of a female child in her late childhood. The deceased child had been misdiagnosed, at that time, with thalassemia major. In this report, we extended our investigation to identify the type of the inheritance patterns of osteopetrosis using molecular techniques, because consanguineous marriages exist within the family history. We have detected one heterozygous mutation in exon 15 of the Chloride Channel 7 gene in the index patient (Case 1), whereas other mutations were not detected in the associated genes TCIRG1, OSTM1, RANK, and RANKL. The missense mutation (CGG>TGG) located in exon 15 (c.1225C>T) of the Chloride Channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T).Case 2 is the 16-year-old son (brother of the index patient) of the same family who was diagnosed clinically with mild autosomal dominant osteopetrosis. We have identified the same heterozygous mutation in exon 15 of the Chloride channel 7 gene in this patient (Case 2). The missense mutation (CGG>TGG) located in exon 15 (c.1225C>T) of the Chloride channel 7 gene changed the amino acid position 409 from arginine to tryptophan (p.R409W, c.1225C>T).In addition to the clinical diagnosis of both cases, the missense mutation we identified in one allele of the Chloride channel 7 gene could be linked to autosomal dominant osteopetrosis-II because the symptoms appear in late childhood or adolescence. In this family, the molecular diagnosis was confirmed after identification of the same mutation in the older son (sibling). Furthermore, we detected that the father and his brother (the uncle) are carriers of the same mutation, whereas the mother and her sister (the aunt) do not carry any mutation of the Chloride channel 7 gene. Thus, the disease penetrance is at least 60% in the family. The mother and father are cousins and a further consanguineous marriage between the aunt and the uncle is not recommended because the dominant allele of the Chloride channel 7 gene will be transferred to the progeny. However, a similar risk is also expected following a marriage between the uncle and an unrelated woman. The p.R409W mutation in the Chloride channel 7 gene has not yet been described in the literature and it possibly has a dominant-negative impact on the protein.
The clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfecta.
Chen, Linjun; Diao, Zhenyu; Xu, Zhipeng; Zhou, Jianjun; Yan, Guijun; Sun, Haixiang
2018-05-15
Osteogenesis imperfecta (OI) is a genetically heterogeneous disorder, presenting either autosomal dominant, autosomal recessive or X-linked inheritance patterns. The majority of OI cases are autosomal dominant and are caused by heterozygous mutations in either the COL1A1 or COL1A2 gene. In these dominant disorders, allele dropout (ADO) can lead to misdiagnosis in preimplantation genetic diagnosis (PGD). Polymorphic markers linked to the mutated genes have been used to establish haplotypes for identifying ADO and ensuring the accuracy of PGD. However, the haplotype of male patients cannot be determined without data from affected relatives. Here, we developed a method for single-sperm-based single-nucleotide polymorphism (SNP) haplotyping via next-generation sequencing (NGS) for the PGD of OI. After NGS, 10 informative polymorphic SNP markers located upstream and downstream of the COL1A1 gene and its pathogenic mutation site were linked to individual alleles in a single sperm from an affected male. After haplotyping, a normal blastocyst was transferred to the uterus for a subsequent frozen embryo transfer cycle. The accuracy of PGD was confirmed by amniocentesis at 19 weeks of gestation. A healthy infant weighing 4,250 g was born via vaginal delivery at the 40th week of gestation. Single-sperm-based SNP haplotyping can be applied for PGD of any monogenic disorders or de novo mutations in males in whom the haplotype of paternal mutations cannot be determined due to a lack of affected relatives. ADO: allele dropout; DI: dentinogenesis imperfect; ESHRE: European Society of Human Reproduction and Embryology; FET: frozen embryo transfer; gDNA: genomic DNA; ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; MDA: multiple displacement amplification; NGS: next-generation sequencing; OI: osteogenesis imperfect; PBS: phosphate buffer saline; PCR: polymerase chain reaction; PGD: preimplantation genetic diagnosis; SNP: single-nucleotide polymorphism; STR: short tandem repeat; TE: trophectoderm; WGA: whole-genome amplification.
Brehm, Anja; Liu, Yin; Sheikh, Afzal; Marrero, Bernadette; Omoyinmi, Ebun; Zhou, Qing; Montealegre, Gina; Biancotto, Angelique; Reinhardt, Adam; Almeida de Jesus, Adriana; Pelletier, Martin; Tsai, Wanxia L.; Remmers, Elaine F.; Kardava, Lela; Hill, Suvimol; Kim, Hanna; Lachmann, Helen J.; Megarbane, Andre; Chae, Jae Jin; Brady, Jilian; Castillo, Rhina D.; Brown, Diane; Casano, Angel Vera; Gao, Ling; Chapelle, Dawn; Huang, Yan; Stone, Deborah; Chen, Yongqing; Sotzny, Franziska; Lee, Chyi-Chia Richard; Kastner, Daniel L.; Torrelo, Antonio; Zlotogorski, Abraham; Moir, Susan; Gadina, Massimo; McCoy, Phil; Wesley, Robert; Rother, Kristina; Hildebrand, Peter W.; Brogan, Paul; Krüger, Elke; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela
2015-01-01
Autosomal recessive mutations in proteasome subunit β 8 (PSMB8), which encodes the inducible proteasome subunit β5i, cause the immune-dysregulatory disease chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), which is classified as a proteasome-associated autoinflammatory syndrome (PRAAS). Here, we identified 8 mutations in 4 proteasome genes, PSMA3 (encodes α7), PSMB4 (encodes β7), PSMB9 (encodes β1i), and proteasome maturation protein (POMP), that have not been previously associated with disease and 1 mutation in PSMB8 that has not been previously reported. One patient was compound heterozygous for PSMB4 mutations, 6 patients from 4 families were heterozygous for a missense mutation in 1 inducible proteasome subunit and a mutation in a constitutive proteasome subunit, and 1 patient was heterozygous for a POMP mutation, thus establishing a digenic and autosomal dominant inheritance pattern of PRAAS. Function evaluation revealed that these mutations variably affect transcription, protein expression, protein folding, proteasome assembly, and, ultimately, proteasome activity. Moreover, defects in proteasome formation and function were recapitulated by siRNA-mediated knockdown of the respective subunits in primary fibroblasts from healthy individuals. Patient-isolated hematopoietic and nonhematopoietic cells exhibited a strong IFN gene-expression signature, irrespective of genotype. Additionally, chemical proteasome inhibition or progressive depletion of proteasome subunit gene transcription with siRNA induced transcription of type I IFN genes in healthy control cells. Our results provide further insight into CANDLE genetics and link global proteasome dysfunction to increased type I IFN production. PMID:26524591
Hamel, C P; Griffoin, J M; Bazalgette, C; Lasquellec, L; Duval, P A; Bareil, C; Beaufrère, L; Bonnet, S; Eliaou, C; Marlhens, F; Schmitt-Bernard, C F; Tuffery, S; Claustres, M; Arnaud, B
2000-12-01
To evaluate the occurrence and inheritance of various types of pigmentary retinopathy in patients followed at the outpatient clinic in the university hospital, Montpellier, France. To characterize genes and mutations causing these conditions. Ophthalmic examination and various visual tests were performed. Mutations were sought from genomic DNA by PCR amplification of exons associated with single-strand conformation analysis and/or direct sequencing. Among 315 patients over an 8-year period, cases of retinitis pigmentosa (63.2%), Usher's syndrome (10.2%), Stargardt's disease (5.4%), choroideremia (3.2%), Leber's congenital amaurosis (3.2%), congenital stationary night blindness (2.9%), cone dystrophy (2.5%), dominant optic atrophy (1.9%), X-linked juvenile retinoschisis (1.6%), Best's disease (1.6%), and others (4.3%) were diagnosed. In retinitis pigmentosa, inheritance could be determined in 54.2% of the cases including dominant autosomic (26.6%), recessive autosomic (22.6%), and X-linked cases (5%) while it could not be confirmed in 45.7% of the cases (simplex cases in the majority). For the 6 examined genes, mutations were found in 22 out of 182 propositus (12.1%). Analysis of phenotype-genotype correlations indicates that in retinitis pigmentosa, RDS is more frequently associated with macular involvement and retinal flecks, RHO with regional disease, and RPE65 with the great severity of the disease with some cases of Leber's congenital amaurosis. Identification of genes may help in diagnosis and in genetic counseling, especially in simplex cases with retinitis pigmentosa. In this latter condition, molecular diagnosis will be necessary to rationalize future treatments.
Eksandh, Louise; Andréasson, Sten; Abrahamson, Magnus
2005-09-01
To report four cases of genetically verified juvenile X-linked retinoschisis (XLRS) with normal scotopic b-waves in full-field ERG, including one patient with a novel mutation (W50X) in the RS1 gene. Four XLRS patients from different families were examined with regard to visual acuity, kinetic perimetry, fundus photography, full-field ERG, and OCT. Two of these patients were also examined with multifocal-ERG (mfERG). Mutations in the RS1 gene were identified by sequence analysis. The full-field ERG presented normal b-wave amplitudes on scotopic white-light stimulation. OCT and mfERG presented macular schisis and macular dysfunction. Genetic analysis revealed a deletion of exon 1 and the promotor region in one patient and mutations giving rise to the amino acid substitutions R209C and W96R in two others. The fourth patient carried a novel mutation in exon 3 of the RS1 gene (nt 149 G-->A), causing the introduction of a stop codon after amino acid 49 in the RS protein. Four young males with XLRS did not present with reduction in the scotopic b-wave amplitude on full-field ERG, which is otherwise often considered to be characteristic of the disease. Full-field ERG and molecular genetic analysis of the RS1 gene still remain the most important diagnostic tools for this retinal disorder, although the OCT can be a valuable complement in order to make the diagnosis at an early stage.
Tóth, Beáta; Volokha, Alla; Mihas, Alexander; Pac, Malgorzata; Bernatowska, Ewa; Kondratenko, Irina; Polyakov, Alexander; Erdos, Melinda; Pasic, Srdjan; Bataneant, Michaela; Szaflarska, Anna; Mironska, Kristina; Richter, Darko; Stavrik, Katarina; Avcin, Tadej; Márton, Gabriella; Nagy, Kálmán; Dérfalvi, Beáta; Szolnoky, Miklós; Kalmár, Agnes; Belevtsev, Michael; Guseva, Marina; Rugina, Aurica; Kriván, Gergely; Timár, László; Nyul, Zoltán; Mosdósi, Bernadett; Kareva, Lidija; Peova, Sonja; Chernyshova, Liudmyla; Gherghina, Ioan; Serban, Margit; Conley, Mary Ellen; Notarangelo, Luigi D; Smith, C I Edvard; van Dongen, Jacques; van der Burg, Mirjam; Maródi, László
2009-06-01
Primary immunodeficiency disorders are a recognized public health problem worldwide. The prototype of these conditions is X-linked agammaglobulinemia (XLA) or Bruton's disease. XLA is caused by mutations in Bruton's tyrosine kinase gene (BTK), preventing B cell development and resulting in the almost total absence of serum immunoglobulins. The genetic profile and prevalence of XLA have not previously been studied in Eastern and Central European (ECE) countries. We studied the genetic and demographic features of XLA in Belarus, Croatia Hungary, Poland, Republic of Macedonia, Romania, Russia, Serbia, Slovenia, and Ukraine. We collected clinical, immunological, and genetic information for 122 patients from 109 families. The BTK gene was sequenced from the genomic DNA of patients with a high susceptibility to infection, almost no CD19(+) peripheral blood B cells, and low or undetectable levels of serum immunoglobulins M, G, and A, compatible with a clinical and immunological diagnosis of XLA. BTK sequence analysis revealed 98 different mutations, 46 of which are reported for the first time here. The mutations included single nucleotide changes in the coding exons (35 missense and 17 nonsense), 23 splicing defects, 13 small deletions, 7 large deletions, and 3 insertions. The mutations were scattered throughout the BTK gene and most frequently concerned the SH1 domain; no missense mutation was detected in the SH3 domain. The prevalence of XLA in ECE countries (total population 145,530,870) was found to be 1 per 1,399,000 individuals. This report provides the first comprehensive overview of the molecular genetic and demographic features of XLA in Eastern and Central Europe.
Horvath, Anelia; Giatzakis, Christoforos; Tsang, Kitman; Greene, Elizabeth; Osorio, Paulo; Boikos, Sosipatros; Libè, Rossella; Patronas, Yianna; Robinson-White, Audrey; Remmers, Elaine; Bertherat, Jerôme; Nesterova, Maria; Stratakis, Constantine A.
2009-01-01
Bilateral adrenocortical hyperplasia (BAH) is the second most common cause of corticotropin-independent Cushing syndrome (CS). Genetic forms of BAH have been associated with complex syndromes such as Carney Complex and McCune Albright syndrome or may present as isolated micronodular adrenocortical disease (iMAD) usually in children and young adults with CS. A genome-wide association study identified inactivating phosphodiesterase (PDE) 11A (PDE11A) sequencing defects as low-penetrance predisposing factors for iMAD and related abnormalities; we also described a mutation (c.914A>C/H305P) in cAMP-specific PDE8B, in a patient with iMAD. In this study we further characterize this mutation; we also found a novel PDE8B isoform, highly expressed in the adrenal gland. This mutation is shown to significantly affect the ability of the protein to degrade cAMP in vitro. Tumor tissues from patients with iMAD and no mutations in the coding PDE8B sequence or any other related genes (PRKAR1A, PDE11A) showed down-regulated PDE8B expression (compared to normal adrenal cortex). Pde8b is detectable in the adrenal gland of newborn mice and is widely expressed in other mouse tissues. We conclude that PDE8B is another PDE gene linked to iMAD; it is a candidate causative gene for other adrenocortical lesions linked to the cAMP-signaling pathway, and possibly for tumors in other tissues. PMID:18431404
Bauer, Thomas R; Adler, Rima L; Hickstein, Dennis D
2009-01-01
Genetic mutations involving the cellular components of the hematopoietic system--red blood cells, white blood cells, and platelets--manifest clinically as anemia, infection, and bleeding. Although gene targeting has recapitulated many of these diseases in mice, these murine homologues are limited as translational models by their small size and brief life span as well as the fact that mutations induced by gene targeting do not always faithfully reflect the clinical manifestations of such mutations in humans. Many of these limitations can be overcome by identifying large animals with genetic diseases of the hematopoietic system corresponding to their human disease counterparts. In this article, we describe human diseases of the cellular components of the hematopoietic system that have counterparts in large animal species, in most cases carrying mutations in the same gene (CD18 in leukocyte adhesion deficiency) or genes in interacting proteins (DNA cross-link repair 1C protein and protein kinase, DNA-activated catalytic polypeptide in radiation-sensitive severe combined immunodeficiency). Furthermore, we describe the potential of these animal models to serve as disease-specific preclinical models for testing the efficacy and safety of clinical interventions such as hematopoietic stem cell transplantation or gene therapy before their use in humans with the corresponding disease.
Pellagatti, Andrea; Armstrong, Richard N; Steeples, Violetta; Sharma, Eshita; Repapi, Emmanouela; Singh, Shalini; Sanchi, Andrea; Radujkovic, Aleksandar; Horn, Patrick; Dolatshad, Hamid; Roy, Swagata; Broxholme, John; Lockstone, Helen; Taylor, Stephen; Giagounidis, Aristoteles; Vyas, Paresh; Schuh, Anna; Hamblin, Angela; Papaemmanuil, Elli; Killick, Sally; Malcovati, Luca; Hennrich, Marco L; Gavin, Anne-Claude; Ho, Anthony D; Luft, Thomas; Hellström-Lindberg, Eva; Cazzola, Mario; Smith, Christopher W J; Smith, Stephen; Boultwood, Jacqueline
2018-06-21
SF3B1, SRSF2 and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the impact of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34 + cells of 84 MDS patients. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whilst several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms which independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the impact of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology. Copyright © 2018 American Society of Hematology.
Paternal inheritance of classic X-linked bilateral periventricular nodular heterotopia.
Kasper, Burkhard S; Kurzbuch, Katrin; Chang, Bernard S; Pauli, Elisabeth; Hamer, Hajo M; Winkler, Jürgen; Hehr, Ute
2013-06-01
Periventricular nodular heterotopia (PNH) is a developmental disorder of the central nervous system, characterized by heterotopic nodules of gray matter resulting from disturbed neuronal migration. The most common form of bilateral PNH is X-linked dominant inherited, caused by mutations in the Filamin A gene (FLNA) and associated with a wide variety of other clinical findings including congenital heart disease. The typical patient with FLNA-associated PNH is female and presents with difficult to treat seizures. In contrast, hemizygous FLNA loss of function mutations in males are reported to be perinatally lethal. In X-linked dominant traits like FLNA-associated PNH the causal mutation is commonly inherited from the mother. Here, we present an exceptional family with paternal transmission of classic bilateral FLNA-associated PNH from a mildly affected father with somatic and germline mosaicism for a c.5686G>A FLNA splice mutation to both daughters with strikingly variable clinical manifestation and PNH extent in cerebral MR imaging. Our observations emphasize the importance to consider in genetic counseling and risk assessment the rare genetic constellation of paternal transmission for families with X-linked dominant inherited FLNA-associated PNH. Copyright © 2013 Wiley Periodicals, Inc.
Fedyna, Alison; Drayna, Dennis; Kang, Changsoo
2010-01-01
Stuttering is a disorder which affects the fluency of speech. It has been shown to have high heritability, and has recently been linked to mutations in the GNPTAB gene. One such mutation, Glu1200Lys, has been repeatedly observed in unrelated families and individual cases. Eight unrelated individuals carrying this mutation were analyzed in an effort to distinguish whether these arise from repeated mutation at the same site, or whether they represent a founder mutation with a single origin. Results show that all 12 chromosomes carrying this mutation share a common haplotype in this region, indicating it is a founder mutation. Further analysis estimated the age of this allele to be ~572 generations. Construction of a cladogram tracing the mutation through our study sample also supports the founder mutation hypothesis. PMID:20944643
Severe manifestations in carrier females in X linked retinitis pigmentosa.
Souied, E; Segues, B; Ghazi, I; Rozet, J M; Chatelin, S; Gerber, S; Perrault, I; Michel-Awad, A; Briard, M L; Plessis, G; Dufier, J L; Munnich, A; Kaplan, J
1997-01-01
Retinitis pigmentosa (RP) is a group of progressive hereditary disorders of the retina in which various modes of inheritance have been described. Here, we report on X linked RP in nine families with constant and severe expression in carrier females. In our series, however, the phenotype was milder and delayed in carrier females compared to hemizygous males. This form of X linked RP could be regarded therefore as partially dominant. The disease gene maps to chromosome Xp2.1 in the genetic interval encompassing the RP3 locus (Zmax=13.71 at the DXS1100 locus). Single strand conformation polymorphism and direct sequence analysis of the retinitis pigmentosa GTPase regulator (RPGR) gene, which accounts for RP3, failed to detect any mutation in our families. Future advances in the identification of X linked RP genes will hopefully help to elucidate the molecular basis of this X linked dominant RP. Images PMID:9350809
Genetics Home Reference: mitochondrial complex I deficiency
... in mitochondrial complex I deficiency are found in nuclear DNA, which is packaged in chromosomes within the ... by a mutation in a gene found in nuclear DNA, it has autosomal recessive or X-linked ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogervorst, F.B.L.; Tuijn, A.C. van der; Ommen, G.J.B. van
Hunter syndrome is an X-linked recessive disorder constituting phenotypes ranging from mild to severe. The gene affected in Hunter syndrome is iduronate-2-sulfatase (IDS). The identification of mutations leading to a defective enzyme could be of benefit for the diagnosis and prognosis of patients. At this moment a variety of mutations have been found, including large deletions and base substitutions. We have previously described a method, designated the protein truncation test (PTT), for the detection of mutations leading to premature translation termination. The method combines reverse transcription and PCR (RT-PCR) with in vitro transcript/translation of the products generated. To facilitate amore » PTT analysis, the forward primer is modified by addition of a T7 promoter sequence and an in-frame protein translation initiation sequence. In our department the method has been successfully applied for DMD and FAP. Here we report on the PTT analysis of 8 Hunter patients, all of them without major gene alterations as determined by Southern analysis. Total RNA was isolated from cultured skin fibroblasts or peripheral blood lymphocytes. PTT analysis revealed 4 novel mutations in the IDS gene: two missense mutations and two frameshift mutations (splice donor site alteration in intron 6 and a 13 bp deletion in exon 9). Furthermore, PTT proved to be a simple method to identify carriers. Currently, we use the generated RT-PCR products of the remaining patients for automated sequence analysis. PTT may be of great value in screening disorders in which affected genes give rise to truncated protein products.« less
Ekşioğlu, Yaman Z; Pong, Amanda W; Takeoka, Masanori
2011-05-01
ARX, the aristaless-related homeobox gene, is implicated in cerebral, testicular, and pancreatic development. ARX mutations are associated with various forms of epilepsy, developmental delay, and ambiguous genitalia in humans. A mouse model that recapitulates X-linked lissencephaly with ambiguous genitalia (XLAG) is far from elucidating the substrate for phenotypes that different ARX mutations cause. Moreover, despite phenotypic pleomorphism associated with X-linked dominant ARX mutations, heterozygous female carriers have not been thoroughly studied. Reviewing records of patients with ARX mutations, infantile epilepsies, and psychomotor retardation, we analyzed a family harboring a novel ARX mutation with different phenotypes in males and females, including Ohtahara syndrome. Children's Hospital Boston patient records were retrospectively screened for patients with infantile epileptic encephalopathies who underwent ARX sequencing based on clinical suspicion. Identified families were analyzed for genetic and neuropsychiatric phenomena. The proband was a male with Ohtahara syndrome, ambiguous genitalia, psychomotor delay, and central nervous system dysgenesis due to a novel ARX mutation in exon 5, causing a frameshift in the aristaless domain. Heterozygous females demonstrated neurocognitive/psychiatric phenomena including learning difficulties, anxiety, depression, and schizophrenia. This is the first reported case of Ohtahara syndrome with abnormal genital and psychomotor development in the setting of this novel ARX mutation in exon 5. Based on the unique phenotype of the proband and on the presence of heterozygous females with neurocognitive/psychiatric ailments, this study describes the potential roles for ARX mutations in epilepsy and neuropsychiatric disease, underscoring the importance of ARX in interneuron development, cerebral electrical activity, cognition, and behavior. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.
Transfer RNA and human disease.
Abbott, Jamie A; Francklyn, Christopher S; Robey-Bond, Susan M
2014-01-01
Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are "hotspots" for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.
Csányi, Beáta; Hategan, Lidia; Nagy, Viktória; Obál, Izabella; Varga, Edina T; Borbás, János; Tringer, Annamária; Eichler, Sabrina; Forster, Tamás; Rolfs, Arndt; Sepp, Róbert
2017-05-31
Fabry disease (FD) is an X-linked inherited lysosomal storage disorder caused by mutations in the GLA gene, encoding for the enzyme α-galactosidase A. Although hundreds of mutations in the GLA gene have been described, many of them are variants of unknown significance. Here we report a novel GLA mutation, p.Ile239Met, identified in a large Hungarian three-generation family with FD. A 69 year-old female index patient with a clinical history of renal failure, hypertrophic cardiomyopathy, and 2nd degree AV block was screened for mutation in the GLA gene. Genetic screening identified a previously unreported heterozygous mutation in exon 5 of the GLA gene (c.717A>G; p.Ile239Met). Family screening indicated that altogether 6 family members carried the mutation (5 females, 1 male, average age: 55 ± 16 years). Three family members, including the index patient, manifested the cardiac phenotype of hypertrophic cardiomyopathy, while two other family members were diagnosed with left ventricular hypertrophy. Taking affection status as the presence of hypertrophic cardiomyopathy, left ventricular hypertrophy or elevated lyso-Gb3 levels, all affected family members carried the mutation. Linkage analysis of the family gave a two-point LOD score of 2.01 between the affection status and the p.Ile239Met GLA mutation. Lyso-Gb3 levels were elevated in all carrier family members (range: 2.4-13.8 ng/mL; upper limit of normal +2STD: ≤ 1.8 ng/mL). The GLA enzyme level was markedly reduced in the affected male family member (< 0.2 µmol/L/hour; upper limit of normal ± 2STD: ≥ 2.6 µmol/L/hour). We conclude that the p. Ile239Met GLA mutation is a pathogenic mutation for FD associated with predominant cardiac phenotype.
Yang, Yang; Wu, Dan; Liu, Dewu; Shi, Junsong; Zhou, Rong; He, Xiaoyan; Quan, Jianping; Cai, Gengyuan; Zheng, Enqin; Wu, Zhenfang; Li, Zicong
2017-06-01
XIST is an X-linked, non-coding gene responsible for the cis induction of X-chromosome inactivation (XCI). Knockout of the XIST allele on an active X chromosome abolishes erroneous XCI and enhances the in vivo development of cloned mouse embryos by more than 10-fold. This study aimed to investigate whether a similar manipulation would improve cloning efficiency in pigs. A male, porcine kidney cell line containing an EGFP insert in exon 1 of the XIST gene, resulting in a knockout allele (XIST-KO), was generated by homologous recombination using transcription activator-like effector nucleases (TALENs). The expression of X-linked genes in embryos cloned from the XIST-KO kidney cells was significantly higher than in male embryos cloned from wild-type (WT) kidney cells, but remained lower than that of in vivo fertilization-produced counterparts. The XIST-KO cloned embryos also had a significantly lower blastocyst rate and a reduced full-term development rate compared to cloned WT embryos. These data suggested that while mutation of a XIST gene can partially rescue abnormal XCI, it cannot improve the developmental efficiency of cloned male porcine embryos-a deficiency that may be caused by incomplete rescue of abnormal XCI and/or by long-term drug selection of the XIST-KO nuclear donor cells, which might adversely affect the developmental efficiency of embryos created from them. © 2017 Wiley Periodicals, Inc.
Mutation of FAS, XIAP, and UNC13D genes in a patient with a complex lymphoproliferative phenotype.
Boggio, Elena; Aricò, Maurizio; Melensi, Matteo; Dianzani, Irma; Ramenghi, Ugo; Dianzani, Umberto; Chiocchetti, Annalisa
2013-10-01
This article presents a case report for a child presenting with mixed clinical features of autoimmune lymphoproliferative syndrome (ALPS), familial hemophagocytic lymphohistiocytosis (FHL), and X-linked lymphoproliferative (XLP) disease. From 6 months, he exhibited splenomegaly and lymphoadenopathy and from 4 years, he showed recurrent severe autoimmune hemocytopenia and sepsislike bouts of fever, from which he eventually died at the age of 12. Intriguingly, the patient carried mutations in FAS, XIAP, and UNC13D genes, which are involved in ALPS, XLP disease, and FHL, respectively. These mutations were inherited from the mother, who had rheumatoid arthritis but no signs of ALPS. A role for other modifying genes was suggested by the finding that the healthy father exhibited defective Fas function, without mutation of the FAS gene, and had transmitted to the patient an osteopontin (OPN) gene variant previously associated with ALPS. Therefore, several genes might influence the disease outcome in this family. In vitro analyses revealed that the FAS and the XIAP mutations decreased expression of the corresponding proteins, and the UNC13D mutation decreased granule secretion and Munc interaction with Rab-27a. These findings suggest that overlap may exist between ALPS, FHL, and XLP disease, in accordance with the notion that FHL and XLP disease are due to defective natural killer (NK)/NK T-cell function, which involves Fas. Therefore, we propose that NK cell defects should be evaluated in patients with ALPS-like characteristics, and hematopoietic stem cell transplantation should be considered in individuals with severe refractory cytopenia and FHL-like manifestations.
Adaptive Evolution Is Substantially Impeded by Hill–Robertson Interference in Drosophila
Castellano, David; Coronado-Zamora, Marta; Campos, Jose L.; Barbadilla, Antonio; Eyre-Walker, Adam
2016-01-01
Hill–Robertson interference (HRi) is expected to reduce the efficiency of natural selection when two or more linked selected sites do not segregate freely, but no attempt has been done so far to quantify the overall impact of HRi on the rate of adaptive evolution for any given genome. In this work, we estimate how much HRi impedes the rate of adaptive evolution in the coding genome of Drosophila melanogaster. We compiled a data set of 6,141 autosomal protein-coding genes from Drosophila, from which polymorphism levels in D. melanogaster and divergence out to D. yakuba were estimated. The rate of adaptive evolution was calculated using a derivative of the McDonald–Kreitman test that controls for slightly deleterious mutations. We find that the rate of adaptive amino acid substitution at a given position of the genome is positively correlated to both the rate of recombination and the mutation rate, and negatively correlated to the gene density of the region. These correlations are robust to controlling for each other, for synonymous codon bias and for gene functions related to immune response and testes. We show that HRi diminishes the rate of adaptive evolution by approximately 27%. Interestingly, genes with low mutation rates embedded in gene poor regions lose approximately 17% of their adaptive substitutions whereas genes with high mutation rates embedded in gene rich regions lose approximately 60%. We conclude that HRi hampers the rate of adaptive evolution in Drosophila and that the variation in recombination, mutation, and gene density along the genome affects the HRi effect. PMID:26494843
Cervera-Acedo, C; Coloma, A; Huarte-Loza, E; Sierra-Carpio, M; Domínguez-Garrido, E
2017-10-31
Alport syndrome is an inherited renal disorder characterized by glomerular basement membrane lesions with hematuria, proteinuria and frequent hearing defects and ocular abnormalities. The disease is associated with mutations in genes encoding α3, α4, or α5 chains of type IV collagen, namely COL4A3 and COL4A4 in chromosome 2 and COL4A5 in chromosome X. In contrast to the well-known X-linked and autosomal recessive phenotypes, there is very little information about the autosomal dominant. In view of the wide spectrum of phenotypes, an exact diagnosis is sometimes difficult to achieve. We investigated a Spanish family with variable phenotype of autosomal dominant Alport syndrome using clinical, histological, and genetic analysis. Mutational analysis of COL4A3 and COL4A4 genes showed a novel heterozygous mutation (c. 998G > A; p.G333E) in exon 18 of the COL4A3 gene. Among relatives carrying the novel mutation, the clinical phenotype was variable. Two additional COL4A3 mutations were found, a Pro-Leu substitution in exon 48 (p.P1461L) and a Ser-Cys substitution in exon 49 (p.S1492C), non-pathogenics alone. Carriers of p.G333E and p.P1461L or p.S1492C mutations in COL4A3 gene appear to be more severely affected than carriers of only p.G333E mutation, and the clinical findings has an earlier onset. In this way, we could speculate on a synergistic effect of compound heterozygosity that could explain the different phenotype observed in this family.
Extent of field change in colorectal cancers with BRAF mutation
Poh, Aaron; Chang, Heidi Sian Ying; Tan, Kok Yang; Sam, Xin Xiu; Khoo, Avery; Choo, Shoa Nian; Nga, Min En; Wan, Wei Keat
2018-01-01
INTRODUCTION Sporadic colorectal cancers with BRAF mutations constitute two distinct subgroups of colorectal cancers. Recent studies have linked the presence of the BRAF mutation to a familial inheritance pattern. This was a proof-of-concept study that aimed to examine: (a) the extent of field change in sporadic colorectal cancers with BRAF mutation; and (b) the extent of resection margins required and the pattern of DNA mismatch repair protein loss in these tumours. METHODS Eight microsatellite instability-high tumours with positive BRAF mutation from an existing histopathological database were selected for BRAF mutation and mismatch repair protein analysis. RESULTS All the resection margins were negative for BRAF mutation. Three tumours had loss of MLH1 and PMS2 expressions, and five tumours had no protein loss. Six peritumoral tissues were negative and one was positive for BRAF mutation. CONCLUSION The results suggest that any early field change effect is restricted to the immediate vicinity of the tumour and is not a pan-colonic phenomenon. Current guidelines on resection margins are adequate for BRAF mutation-positive colorectal cancers. Any suggestion of a hereditary link to these tumours is likely not related to germline BRAF gene mutations. The pattern of protein loss reinforces previous findings for the two subgroups of BRAF mutation-positive colorectal cancers. PMID:28210747
Microdeletion syndromes, balanced translocations, and gene mapping.
Schinzel, A
1988-01-01
High resolution prometaphase chromosome banding has allowed the detection of discrete chromosome aberrations which escaped earlier metaphase examinations. Consistent tiny deletions have been detected in some well established malformation syndromes: an interstitial deletion in 15q11/12 in the majority of patients with the Prader-Willi syndrome and in a minority of patients with the Angelman (happy puppet) syndrome; a terminal deletion of 17p13.3 in most patients examined with the Miller-Dieker syndrome; an interstitial deletion of 8q23.3/24.1 in a large majority of patients with the Giedion-Langer syndrome; an interstitial deletion of 11p13 in virtually all patients with the WAGR (Wilms' tumour-aniridia-gonadoblastoma-retardation) syndrome; and an interstitial deletion in 22q11 in about one third of patients with the DiGeorge sequence. In addition, a combination of chromosome prometaphase banding and DNA marker studies has allowed the localisation of the genes for retinoblastoma and for Wilms' tumour and the clarification of both the autosomal recessive nature of the mutation and the possible somatic mutations by which the normal allele can be lost in retina and kidney cells. After a number of X linked genes had been mapped, discrete deletions in the X chromosome were detected by prometaphase banding with specific attention paid to the sites of the gene(s) in males who had from one to up to four different X linked disorders plus mental retardation. Furthermore, the detection of balanced translocations in probands with disorders caused by autosomal dominant or X linked genes has allowed a better insight into the localisation of these genes. In some females with X linked disorders, balanced X; autosomal translocations have allowed the localisation of X linked genes at the breakpoint on the X chromosome. Balanced autosome; autosome translocations segregating with autosomal dominant conditions have provided some clues to the gene location of these conditions. In two conditions, Greig cephalopolysyndactyly and dominant aniridia, two translocation families with one common breakpoint have allowed quite a confident location of the genes at the common breakpoint at 7p13 and 11p13, respectively. PMID:3050093
Bademci, Guney; Lasisi, Akeem; Yariz, Kemal O; Montenegro, Paola; Menendez, Ibis; Vinueza, Rodrigo; Paredes, Rosario; Moreta, Germania; Subasioglu, Asli; Blanton, Susan; Fitoz, Suat; Incesulu, Armagan; Sennaroglu, Levent; Tekin, Mustafa
2015-02-25
Mutations in the POU3F4 gene cause X-linked deafness type 3 (DFN3), which is characterized by inner ear anomalies. Three Turkish, one Ecuadorian, and one Nigerian families were included based on either inner ear anomalies detected in probands or X-linked family histories. Exome sequencing and/or Sanger sequencing were performed in order to identify the causative DNA variants in these families. Four novel, c.707A>C (p.(Glu236Ala)), c.772delG (p.(Glu258ArgfsX30)), c.902C>T (p.(Pro301Leu)), c.987T>C (p.(Ile308Thr)), and one previously reported mutation c.346delG (p.(Ala116ProfsX26)) in POU3F4, were identified. All mutations identified are predicted to affect the POU-specific or POU homeo domains of the protein and co-segregated with deafness in all families. Expanding the spectrum of POU3F4 mutations in different populations along with their associated phenotypes provides better understanding of their clinical importance and will be helpful in clinical evaluation and counseling of the affected individuals.
Site-Specific Gene Editing of Human Hematopoietic Stem Cells for X-Linked Hyper-IgM Syndrome.
Kuo, Caroline Y; Long, Joseph D; Campo-Fernandez, Beatriz; de Oliveira, Satiro; Cooper, Aaron R; Romero, Zulema; Hoban, Megan D; Joglekar, Alok V; Lill, Georgia R; Kaufman, Michael L; Fitz-Gibbon, Sorel; Wang, Xiaoyan; Hollis, Roger P; Kohn, Donald B
2018-05-29
X-linked hyper-immunoglobulin M (hyper-IgM) syndrome (XHIM) is a primary immunodeficiency due to mutations in CD40 ligand that affect immunoglobulin class-switch recombination and somatic hypermutation. The disease is amenable to gene therapy using retroviral vectors, but dysregulated gene expression results in abnormal lymphoproliferation in mouse models, highlighting the need for alternative strategies. Here, we demonstrate the ability of both the transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) platforms to efficiently drive integration of a normal copy of the CD40L cDNA delivered by Adeno-Associated Virus. Site-specific insertion of the donor sequence downstream of the endogenous CD40L promoter maintained physiologic expression of CD40L while overriding all reported downstream mutations. High levels of gene modification were achieved in primary human hematopoietic stem cells (HSCs), as well as in cell lines and XHIM-patient-derived T cells. Notably, gene-corrected HSCs engrafted in immunodeficient mice at clinically relevant frequencies. These studies provide the foundation for a permanent curative therapy in XHIM. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Bramhall, Naomi F; Kallman, Jeremy C; Verrall, Aimee M; Street, Valerie A
2008-01-01
Background Low frequency sensorineural hearing loss (LFSNHL) is an uncommon clinical finding. Mutations within three different identified genes (DIAPH1, MYO7A, and WFS1) are known to cause LFSNHL. The majority of hereditary LFSNHL is associated with heterozygous mutations in the WFS1 gene (wolframin protein). The goal of this study was to use genetic analysis to determine if a small American family's hereditary LFSNHL is linked to a mutation in the WFS1 gene and to use VEMP and EcochG testing to further characterize the family's audiovestibular phenotype. Methods The clinical phenotype of the American family was characterized by audiologic testing, vestibular evoked myogenic potentials (VEMP), and electrocochleography (EcochG) evaluation. Genetic characterization was performed by microsatellite analysis and direct sequencing of WFS1 for mutation detection. Results Sequence analysis of the WFS1 gene revealed a novel heterozygous mutation at c.2054G>C predicting a p.R685P amino acid substitution in wolframin. The c.2054G>C mutation segregates faithfully with hearing loss in the family and is absent in 230 control chromosomes. The p.R685 residue is located within the hydrophilic C-terminus of wolframin and is conserved across species. The VEMP and EcochG findings were normal in individuals segregating the WFS1 c.2054G>C mutation. Conclusion We discovered a novel heterozygous missense mutation in exon 8 of WFS1 predicting a p.R685P amino acid substitution that is likely to underlie the LFSNHL phenotype in the American family. For the first time, we describe VEMP and EcochG findings for individuals segregating a heterozygous WFS1 mutation. PMID:18518985
Bramhall, Naomi F; Kallman, Jeremy C; Verrall, Aimee M; Street, Valerie A
2008-06-02
Low frequency sensorineural hearing loss (LFSNHL) is an uncommon clinical finding. Mutations within three different identified genes (DIAPH1, MYO7A, and WFS1) are known to cause LFSNHL. The majority of hereditary LFSNHL is associated with heterozygous mutations in the WFS1 gene (wolframin protein). The goal of this study was to use genetic analysis to determine if a small American family's hereditary LFSNHL is linked to a mutation in the WFS1 gene and to use VEMP and EcochG testing to further characterize the family's audiovestibular phenotype. The clinical phenotype of the American family was characterized by audiologic testing, vestibular evoked myogenic potentials (VEMP), and electrocochleography (EcochG) evaluation. Genetic characterization was performed by microsatellite analysis and direct sequencing of WFS1 for mutation detection. Sequence analysis of the WFS1 gene revealed a novel heterozygous mutation at c.2054G>C predicting a p.R685P amino acid substitution in wolframin. The c.2054G>C mutation segregates faithfully with hearing loss in the family and is absent in 230 control chromosomes. The p.R685 residue is located within the hydrophilic C-terminus of wolframin and is conserved across species. The VEMP and EcochG findings were normal in individuals segregating the WFS1 c.2054G>C mutation. We discovered a novel heterozygous missense mutation in exon 8 of WFS1 predicting a p.R685P amino acid substitution that is likely to underlie the LFSNHL phenotype in the American family. For the first time, we describe VEMP and EcochG findings for individuals segregating a heterozygous WFS1 mutation.
Anand, Deepti; Agrawal, Smriti A; Slavotinek, Anne; Lachke, Salil A
2018-04-01
Mutations in the transcription factor genes FOXE3, HSF4, MAF, and PITX3 cause congenital lens defects including cataracts that may be accompanied by defects in other components of the eye or in nonocular tissues. We comprehensively describe here all the variants in FOXE3, HSF4, MAF, and PITX3 genes linked to human developmental defects. A total of 52 variants for FOXE3, 18 variants for HSF4, 20 variants for MAF, and 19 variants for PITX3 identified so far in isolated cases or within families are documented. This effort reveals FOXE3, HSF4, MAF, and PITX3 to have 33, 16, 18, and 7 unique causal mutations, respectively. Loss-of-function mutant animals for these genes have served to model the pathobiology of the associated human defects, and we discuss the currently known molecular function of these genes, particularly with emphasis on their role in ocular development. Finally, we make the detailed FOXE3, HSF4, MAF, and PITX3 variant information available in the Leiden Online Variation Database (LOVD) platform at https://www.LOVD.nl/FOXE3, https://www.LOVD.nl/HSF4, https://www.LOVD.nl/MAF, and https://www.LOVD.nl/PITX3. Thus, this article informs on key variants in transcription factor genes linked to cataract, aphakia, corneal opacity, glaucoma, microcornea, microphthalmia, anterior segment mesenchymal dysgenesis, and Ayme-Gripp syndrome, and facilitates their access through Web-based databases. © 2018 Wiley Periodicals, Inc.
Huang, Sui
2012-02-01
The Neo-Darwinian concept of natural selection is plausible when one assumes a straightforward causation of phenotype by genotype. However, such simple 1:1 mapping must now give place to the modern concepts of gene regulatory networks and gene expression noise. Both can, in the absence of genetic mutations, jointly generate a diversity of inheritable randomly occupied phenotypic states that could also serve as a substrate for natural selection. This form of epigenetic dynamics challenges Neo-Darwinism. It needs to incorporate the non-linear, stochastic dynamics of gene networks. A first step is to consider the mathematical correspondence between gene regulatory networks and Waddington's metaphoric 'epigenetic landscape', which actually represents the quasi-potential function of global network dynamics. It explains the coexistence of multiple stable phenotypes within one genotype. The landscape's topography with its attractors is shaped by evolution through mutational re-wiring of regulatory interactions - offering a link between genetic mutation and sudden, broad evolutionary changes. Copyright © 2012 WILEY Periodicals, Inc.
2014-01-01
Background A rare neuro-ichthyotic disorder characterized by ichthyosis, spastic quadriplegia and intellectual disability and caused by recessive mutations in ELOVL4, encoding elongase-4 protein has recently been described. The objective of the study was to search for sequence variants in the gene ELOVL4 in three affected individuals of a consanguineous Pakistani family exhibiting features of neuro-ichthyotic disorder. Methods Linkage in the family was searched by genotyping microsatellite markers linked to the gene ELOVL4, mapped at chromosome 6p14.1. Exons and splice junction sites of the gene ELOVL4 were polymerase chain reaction amplified and sequenced in an automated DNA sequencer. Results DNA sequence analysis revealed a novel homozygous nonsense mutation (c.78C > G; p.Tyr26*). Conclusions Our report further confirms the recently described ELOVL4-related neuro-ichthyosis and shows that the neurological phenotype can be absent in some individuals. PMID:24571530
Cho, Anna; Seong, Moon-Woo; Lim, Byung Chan; Lee, Hwa Jeen; Byeon, Jung Hye; Kim, Seung Soo; Kim, Soo Yeon; Choi, Sun Ah; Wong, Ai-Lynn; Lee, Jeongho; Kim, Jon Soo; Ryu, Hye Won; Lee, Jin Sook; Kim, Hunmin; Hwang, Hee; Choi, Ji Eun; Kim, Ki Joong; Hwang, Young Seung; Hong, Ki Ho; Park, Seungman; Cho, Sung Im; Lee, Seung Jun; Park, Hyunwoong; Seo, Soo Hyun; Park, Sung Sup; Chae, Jong Hee
2017-05-01
Duchenne and Becker muscular dystrophies (DMD and BMD) are allelic X-linked recessive muscle diseases caused by mutations in the large and complex dystrophin gene. We analyzed the dystrophin gene in 507 Korean DMD/BMD patients by multiple ligation-dependent probe amplification and direct sequencing. Overall, 117 different deletions, 48 duplications, and 90 pathogenic sequence variations, including 30 novel variations, were identified. Deletions and duplications accounted for 65.4% and 13.3% of Korean dystrophinopathy, respectively, suggesting that the incidence of large rearrangements in dystrophin is similar among different ethnic groups. We also detected sequence variations in >100 probands. The small variations were dispersed across the whole gene, and 12.3% were nonsense mutations. Precise genetic characterization in patients with DMD/BMD is timely and important for implementing nationwide registration systems and future molecular therapeutic trials in Korea and globally. Muscle Nerve 55: 727-734, 2017. © 2016 Wiley Periodicals, Inc.
The Androgen Receptor Gene Mutations Database.
Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M
1998-01-01
The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).
The Androgen Receptor Gene Mutations Database.
Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M
1998-01-01
The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). PMID:9399843
Miao, Jing; Feng, Jia-Chun; Zhu, Dan; Yu, Xue-Fan
2016-12-12
Becker muscular dystrophy (BMD), a genetic disorder of X-linked recessive inheritance, typically presents with gradually progressive muscle weakness. The condition is caused by mutations of Dystrophin gene located at Xp21.2. Epilepsy is an infrequent manifestation of BMD, while cases of BMD with dysgnosia are extremely rare. We describe a 9-year-old boy with BMD, who presented with epilepsy and dysgnosia. Serum creatine kinase level was markedly elevated (3665 U/L). Wechsler intelligence tests showed a low intelligence quotient (IQ = 65). Electromyogram showed slight myogenic changes and skeletal muscle biopsy revealed muscular dystrophy. Immunohistochemical staining showed partial positivity of sarcolemma for dystrophin-N. Multiplex ligation-dependent probe amplification revealed a duplication mutation in exons 37-44 in the Dystrophin gene. The present case report helps to better understand the clinical and genetic features of BMD.
Stress-induced loss of heterozygosity in Candida: a possible missing link in the ability to evolve.
Rosenberg, Susan M
2011-01-01
Diploid organisms are buffered against the effects of mutations by carrying two sets of each gene, which allows compensation if one is mutated. But recombination between "mom" and "dad" chromosomes causes loss of heterozygosity (LOH), stretches of "mom-only" or "dad-only" DNA sequence, suddenly revealing effects of mutations accumulated in entire chromosome arms. LOH creates new phenotypes from old mutations, drives cancer development and evolution, and, in a new study by Forche et al., is shown to be induced by stress in Candida albicans [Forche A, et al, mBio 2(4):e00129-11, 2011]. Stress-induced LOH could speed evolution of Candida specifically when it is poorly adapted to its environment. Moreover, the findings may provide a missing link between recombination-dependent mutagenesis in bacteria and yeast, suggesting that both might be stress induced, both maximizing genetic variation when populations could benefit most from diversity.
Karadima, Georgia; Koutsis, Georgios; Raftopoulou, Maria; Floroskufi, Paraskewi; Karletidi, Karolina-Maria; Panas, Marios
2014-06-15
Charcot-Marie-Tooth (CMT) disease, the most common hereditary neuropathy, is clinically and genetically heterogeneous. X-linked CMT (CMTX) is usually caused by mutations in the gap junction protein b 1 gene (GJB1) coding for connexin 32 (Cx32). The clinical manifestations of CMTX are characterized by significant variability, with some patients exhibiting central nervous system (CNS) involvement. We report four novel mutations in GJB1, c.191G>A (p.Cys64Tyr), c.508G>T (p.Val170Phe), c.778A>G (p.Lys260Glu) and c.300C>G (p.His100Gln) identified in four unrelated Greek families. These mutations were characterized by variable phenotypic expression, including a family with the Roussy-Lévy syndrome, and three of them were associated with mild clinical CNS manifestations. Copyright © 2014. Published by Elsevier B.V.
Germline MC1R status influences somatic mutation burden in melanoma.
Robles-Espinoza, Carla Daniela; Roberts, Nicola D; Chen, Shuyang; Leacy, Finbarr P; Alexandrov, Ludmil B; Pornputtapong, Natapol; Halaban, Ruth; Krauthammer, Michael; Cui, Rutao; Timothy Bishop, D; Adams, David J
2016-07-12
The major genetic determinants of cutaneous melanoma risk in the general population are disruptive variants (R alleles) in the melanocortin 1 receptor (MC1R) gene. These alleles are also linked to red hair, freckling, and sun sensitivity, all of which are known melanoma phenotypic risk factors. Here we report that in melanomas and for somatic C>T mutations, a signature linked to sun exposure, the expected single-nucleotide variant count associated with the presence of an R allele is estimated to be 42% (95% CI, 15-76%) higher than that among persons without an R allele. This figure is comparable to the expected mutational burden associated with an additional 21 years of age. We also find significant and similar enrichment of non-C>T mutation classes supporting a role for additional mutagenic processes in melanoma development in individuals carrying R alleles.
Sun, Yu; Bak, Beata; Schoenmakers, Nadia; van Trotsenburg, A.S. Paul; Oostdijk, Wilma; Voshol, Peter; Cambridge, Emma; White, Jacqueline K.; le Tissier, Paul; Gharavy, S. Neda Mousavy; Martinez-Barbera, Juan P.; Stokvis-Brantsma, Wilhelmina H.; Vulsma, Thomas; Kempers, Marlies J.; Persani, Luca; Campi, Irene; Bonomi, Marco; Beck-Peccoz, Paolo; Zhu, Hongdong; Davis, Timothy M.E.; Hokken-Koelega, Anita C.S.; Del Blanco, Daria Gorbenko; Rangasami, Jayanti J.; Ruivenkamp, Claudia A.L.; Laros, Jeroen F.J.; Kriek, Marjolein; Kant, Sarina G.; Bosch, Cathy A.J.; Biermasz, Nienke R.; Appelman-Dijkstra, Natasha M.; Corssmit, Eleonora P.; Hovens, Guido C.J.; Pereira, Alberto M.; den Dunnen, Johan T.; Wade, Michael G.; Breuning, Martijn H.; Hennekam, Raoul C.; Chatterjee, Krishna; Dattani, Mehul T.; Wit, Jan M.; Bernard, Daniel J.
2012-01-01
Congenital central hypothyroidism occurs either in isolation or in conjunction with other pituitary hormone deficits. Using exome and candidate gene sequencing, we identified eight distinct mutations and two deletions in IGSF1 in males from eleven unrelated families with central hypothyroidism, testicular enlargement, and variably low prolactin concentrations. IGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary gland and the identified mutations impair its trafficking to the cell surface in heterologous cells. Igsf1-deficient male mice show diminished pituitary and serum thyroid-stimulating hormone (TSH) concentrations, reduced pituitary thyrotropin-releasing hormone (TRH) receptor expression, decreased triiodothyronine concentrations, and increased body mass. Collectively, our observations delineate a novel X-linked disorder in which loss-of-function mutations in IGSF1 cause central hypothyroidism, likely secondary to an associated impairment in pituitary TRH signaling. PMID:23143598
Parallel evolution of early and late feathering in turkey and chicken, same gene, different mutation
USDA-ARS?s Scientific Manuscript database
The sex-linked slow (SF) and fast (FF) feathering rate at hatch has been widely used in poultry breeding for autosexing at hatching. In chicken, the sex-linked K (SF), and k+ (FF) alleles are responsible for the feathering rate phenotype in chicken. The K allele is dominant and a partial duplication...
Solving Mendelian Mysteries: The Non-coding Genome May Hold the Key.
Valente, Enza Maria; Bhatia, Kailash P
2018-02-22
Despite revolutionary advances in sequencing approaches, many mendelian disorders have remained unexplained. In this issue of Cell, Aneichyk et al. combine genomic and cell-type-specific transcriptomic data to causally link a non-coding mutation in the ubiquitous TAF1 gene to X-linked dystonia-parkinsonism. Copyright © 2018 Elsevier Inc. All rights reserved.
Abruzzo, Lynne V; Barron, Lynn L; Anderson, Keith; Newman, Rachel J; Wierda, William G; O'brien, Susan; Ferrajoli, Alessandra; Luthra, Madan; Talwalkar, Sameer; Luthra, Rajyalakshmi; Jones, Dan; Keating, Michael J; Coombes, Kevin R
2007-09-01
To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.
Tyrosinase is the modifier of retinoschisis in mice.
Johnson, Britt A; Cole, Brian S; Geisert, Eldon E; Ikeda, Sakae; Ikeda, Akihiro
2010-12-01
X-linked retinoschisis (XLRS) is a form of macular degeneration with a juvenile onset. This disease is caused by mutations in the retinoschisin (RS1) gene. The major clinical pathologies of this disease include splitting of the retina (schisis) and a loss in synaptic transmission. Human XLRS patients display a broad range in phenotypic severity, even among family members with the same mutation. This variation suggests the existence of genetic modifiers that may contribute to disease severity. Previously, we reported the identification of a modifier locus, named Mor1, which affects severity of schisis in a mouse model of XLRS (the Rs1tmgc1 mouse). Homozygosity for the protective AKR allele of Mor1 restores cell adhesion in Rs1tmgc1 mice. Here, we report our study to identify the Mor1 gene. Through collecting recombinant mice followed by progeny testing, we have localized Mor1 to a 4.4-Mb region on chromosome 7. In this genetic region, the AKR strain is known to carry a mutation in the tyrosinase (Tyr) gene. We observed that the schisis phenotype caused by the Rs1 mutation is rescued by a Tyr mutation in the C57BL/6J genetic background, strongly suggesting that Tyr is the Mor1 gene.
In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor.
van der Heijden, Michiel S; Brody, Jonathan R; Dezentje, David A; Gallmeier, Eike; Cunningham, Steven C; Swartz, Michael J; DeMarzo, Angelo M; Offerhaus, G Johan A; Isacoff, William H; Hruban, Ralph H; Kern, Scott E
2005-10-15
BRCA2, FANCC, and FANCG gene mutations are present in a subset of pancreatic cancer. Defects in these genes could lead to hypersensitivity to interstrand cross-linkers in vivo and a more optimal treatment of pancreatic cancer patients based on the genetic profile of the tumor. Two retrovirally complemented pancreatic cancer cell lines having defects in the Fanconi anemia pathway, PL11 (FANCC-mutated) and Hs766T (FANCG-mutated), as well as several parental pancreatic cancer cell lines with or without mutations in the Fanconi anemia/BRCA2 pathway, were assayed for in vitro and in vivo sensitivities to various chemotherapeutic agents. A distinct dichotomy of drug responses was observed. Fanconi anemia-defective cancer cells were hypersensitive to the cross-linking agents mitomycin C (MMC), cisplatin, chlorambucil, and melphalan but not to 5-fluorouracil, gemcitabine, doxorubicin, etoposide, vinblastine, or paclitaxel. Hypersensitivity to cross-linking agents was confirmed in vivo; FANCC-deficient xenografts of PL11 and BRCA2-deficient xenografts of CAPAN1 regressed on treatment with two different regimens of MMC whereas Fanconi anemia-proficient xenografts did not. The MMC response comprised cell cycle arrest, apoptosis, and necrosis. Xenografts of PL11 also regressed after a single dose of cyclophosphamide whereas xenografts of genetically complemented PL11(FANCC) did not. MMC or other cross-linking agents as a clinical therapy for pancreatic cancer patients with tumors harboring defects in the Fanconi anemia/BRCA2 pathway should be specifically investigated.
Xu, Jun; Gu, Hong; Ma, Kai; Liu, Xipu; Snellingen, Torkel; Sun, Erdan; Wang, Ningli; Liu, Ningpu
2010-08-12
We identified a large Chinese family with X-linked juvenile retinoschisis. The purpose of this study was to report the clinical findings of the family and to identify the genetic mutation by screening the retinoschisis 1 (RS1) gene. Family history was collected and all family members underwent routine ophthalmic examination. Venous blood was collected from family members and genomic DNA was extracted. The exons of RS1 were screened by PCR followed by direct sequencing and/or restriction enzyme digestion. The pedigree of interest was a four-generation family with 52 family members, including seven affected individuals. The proband was a 5-year-old boy showing highly elevated bullous retinoschisis with moderate vitreous hemorrhage in both eyes. Vitrectomy was performed in the left eye of the proband. Five affected males showed large peripheral retinoschisis in both eyes, either involving the macula or combined with foveal stellate cystic change. One of the affected family members showed only a foveal stellate cystic change in both eyes without periphery retinoschisis. Visual acuity of affected individuals ranged from hand motion to 0.4. The R213W mutation in exon 6 of RS1 was identified in all affected individuals, predicting an amino acid substitution of arginine to tryptophan at codon 213. Our data show that the R213W mutation in RS1 causes various severities of retinoschisis in a large Chinese family, providing further evidence for X-linked juvenile retinoschisis phenotypic variability.
AID Mediates Hypermutation by Deaminating Single Stranded DNA
Dickerson, Sarah K.; Market, Eleonora; Besmer, Eva; Papavasiliou, F. Nina
2003-01-01
Activation-induced deaminase (AID) is a protein indispensable for the diversification of immunoglobulin (Ig) genes by somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion. To date, the precise role of AID in these processes has not been determined. Here we demonstrate that purified, tetrameric AID can deaminate cytidine residues in DNA, but not in RNA. Furthermore, we show that AID will bind and deaminate only single-stranded DNA, which implies a direct, functional link between hypermutation and transcription. Finally, AID does not target mutational hotspots, thus mutational targeting to specific residues must be attributed to different factors. PMID:12756266
Olaparib in Treating Patients With Metastatic or Advanced Urothelial Cancer With DNA-Repair Defects
2018-06-14
Abnormal DNA Repair; ATM Gene Mutation; ATR Gene Mutation; BAP1 Gene Mutation; BARD1 Gene Mutation; BLM Gene Mutation; BRCA1 Gene Mutation; BRCA2 Gene Mutation; BRIP1 Gene Mutation; CHEK1 Gene Mutation; CHEK2 Gene Mutation; FANCC Gene Mutation; FANCD2 Gene Mutation; FANCE Gene Mutation; FANCF Gene Mutation; MEN1 Gene Mutation; Metastatic Urothelial Carcinoma; MLH1 Gene Mutation; MSH2 Gene Mutation; MSH6 Gene Mutation; MUTYH Gene Mutation; NPM1 Gene Mutation; PALB2 Gene Mutation; PMS2 Gene Mutation; POLD1 Gene Mutation; POLE Gene Mutation; PRKDC Gene Mutation; RAD50 Gene Mutation; RAD51 Gene Mutation; SMARCB1 Gene Mutation; Stage III Bladder Urothelial Carcinoma AJCC v6 and v7; Stage IV Bladder Urothelial Carcinoma AJCC v7; STK11 Gene Mutation; Urothelial Carcinoma
Genetics Home Reference: CDKL5 deficiency disorder
... Recurrent mutations in the CDKL5 gene: genotype-phenotype relationships. Am J Med Genet A. 2012 Jul;158A( ... for Links Data Files & API Site Map Subscribe Customer Support USA.gov Copyright Privacy Accessibility FOIA Viewers & ...
Genetics Home Reference: L1 syndrome
... X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol. 2013 Sep; ... F. Three cases with L1 syndrome and two novel mutations in the L1CAM gene. Eur J Pediatr. ...
Suo, Chen; Hrydziuszko, Olga; Lee, Donghwan; Pramana, Setia; Saputra, Dhany; Joshi, Himanshu; Calza, Stefano; Pawitan, Yudi
2015-08-15
Genome and transcriptome analyses can be used to explore cancers comprehensively, and it is increasingly common to have multiple omics data measured from each individual. Furthermore, there are rich functional data such as predicted impact of mutations on protein coding and gene/protein networks. However, integration of the complex information across the different omics and functional data is still challenging. Clinical validation, particularly based on patient outcomes such as survival, is important for assessing the relevance of the integrated information and for comparing different procedures. An analysis pipeline is built for integrating genomic and transcriptomic alterations from whole-exome and RNA sequence data and functional data from protein function prediction and gene interaction networks. The method accumulates evidence for the functional implications of mutated potential driver genes found within and across patients. A driver-gene score (DGscore) is developed to capture the cumulative effect of such genes. To contribute to the score, a gene has to be frequently mutated, with high or moderate mutational impact at protein level, exhibiting an extreme expression and functionally linked to many differentially expressed neighbors in the functional gene network. The pipeline is applied to 60 matched tumor and normal samples of the same patient from The Cancer Genome Atlas breast-cancer project. In clinical validation, patients with high DGscores have worse survival than those with low scores (P = 0.001). Furthermore, the DGscore outperforms the established expression-based signatures MammaPrint and PAM50 in predicting patient survival. In conclusion, integration of mutation, expression and functional data allows identification of clinically relevant potential driver genes in cancer. The documented pipeline including annotated sample scripts can be found in http://fafner.meb.ki.se/biostatwiki/driver-genes/. yudi.pawitan@ki.se Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bartlett, Heather L.; Sutherland, Lillian; Kolker, Sandra J.; Welp, Chelsea; Tajchman, Urszula; Desmarais, Vera; Weeks, Daniel L.
2007-01-01
Nkx2-5 is a homeobox containing transcription factor that is conserved and expressed in organisms that form hearts. Fruit flies lacking the gene (tinman) fail to form a dorsal vessel, mice that are homozygous null for Nkx2-5 form small, deformed hearts, and several human cardiac defects have been linked to dominant mutations in the Nkx2-5 gene. The Xenopus homologs (XNkx2-5) of two truncated forms of Nkx2-5 that have been identified in humans with congenital heart defects were used in the studies reported here. mRNAs encoding these mutations were injected into single cell Xenopus embryos, and heart development was monitored. Our results indicate that the introduction of truncated XNkx2-5 variants leads to three principle developmental defects. The atrial septum and the valve of the atrioventricular canal were both abnormal. In addition, video microscopic timing of heart contraction indicated that embryos injected with either mutant form of XNkx2-5 have conduction defects. PMID:17685485
Clinical and molecular characterization of females affected by X-linked retinoschisis.
Staffieri, Sandra E; Rose, Loreto; Chang, Andrew; De Roach, John N; McLaren, Terri L; Mackey, David A; Hewitt, Alex W; Lamey, Tina M
2015-01-01
X-linked retinoschisis (XLRS) is a leading cause of juvenile macular degeneration associated with mutations in the RS1 gene. XLRS has a variable expressivity in males and shows no clinical phenotype in carrier females. Clinical and molecular characterization of male and female individuals affected with XLRS in a consanguineous family. Consanguineous Eastern European-Australian family Four clinically affected and nine unaffected family members were genetically and clinically characterized. Deoxyribonucleic acid (DNA) analysis was conducted by the Australian Inherited Retinal Disease Register and DNA Bank. Clinical and molecular characterization of the causative mutation in a consanguineous family with XLRS. By direct sequencing of the RS1 gene, one pathogenic variant, NM_000330.3: c.304C > T, p. R102W, was identified in all clinically diagnosed individuals analysed. The two females were homozygous for the variant, and the males were hemizygous. Clinical and genetic characterization of affected homozygous females in XLRS affords the rare opportunity to explore the molecular mechanisms of XLRS and the manifestation of these mutations as disease in humans. © 2015 Royal Australian and New Zealand College of Ophthalmologists.
Zobor, Ditta; Balousha, Ghassan; Baumann, Britta; Wissinger, Bernd
2014-01-01
Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 45 genes. Recently, the FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. We performed a clinical and molecular genetic study of a consanguineous Palestinian family with two three siblings affected with retinitis pigmentosa. DNA samples were collected from the index patient, his father, his affected sister, and two non-affected brothers. DNA sample from the index was subjected to high resolution genome-wide SNP array. Assuming identity-by-descent in this consanguineous family we applied homozygosity mapping to identify disease causing genes. The index patient reported night blindness since the age of 20 years, followed by moderate disease progression with decrease of peripheral vision, the development of photophobia and later on reduced central vision. At the age of 40 his visual acuity was counting fingers (CF) for both eyes, color discrimination was not possible and his visual fields were severely constricted. Funduscopic examination revealed a typical appearance of advanced RP with optic disc pallor, narrowed retinal vessels, bone-spicule like pigmentary changes in the mid-periphery and atrophic changes in the macula. His younger affected brother (37 years) was reported with overall milder symptoms, while the youngest sister (21 years) reported problems only with night vision. Applying high-density SNP arrays we identified several homozygous genomic regions one of which included the recently identified FAM161A gene mutated in RP28-linked autosomal recessive RP. Sequencing analysis revealed the presence of a novel homozygous nonsense mutation, c.1003C>T/p.R335X in the index patient and the affected sister. We identified an RP28-linked RP family in the Palestinian population caused by a novel nonsense mutation in FAM161A. RP in this family shows a typical disease onset with moderate to rapid progression into severe visual impairment including central vision in the index and overall milder symptoms in the younger brother and sister.
Zobor, Ditta; Balousha, Ghassan; Baumann, Britta
2014-01-01
Purpose: Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 45 genes. Recently, the FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. Methods: We performed a clinical and molecular genetic study of a consanguineous Palestinian family with two three siblings affected with retinitis pigmentosa. DNA samples were collected from the index patient, his father, his affected sister, and two non-affected brothers. DNA sample from the index was subjected to high resolution genome-wide SNP array. Assuming identity-by-descent in this consanguineous family we applied homozygosity mapping to identify disease causing genes. Results: The index patient reported night blindness since the age of 20 years, followed by moderate disease progression with decrease of peripheral vision, the development of photophobia and later on reduced central vision. At the age of 40 his visual acuity was counting fingers (CF) for both eyes, color discrimination was not possible and his visual fields were severely constricted. Funduscopic examination revealed a typical appearance of advanced RP with optic disc pallor, narrowed retinal vessels, bone-spicule like pigmentary changes in the mid-periphery and atrophic changes in the macula. His younger affected brother (37 years) was reported with overall milder symptoms, while the youngest sister (21 years) reported problems only with night vision. Applying high-density SNP arrays we identified several homozygous genomic regions one of which included the recently identified FAM161A gene mutated in RP28-linked autosomal recessive RP. Sequencing analysis revealed the presence of a novel homozygous nonsense mutation, c.1003C>T/p.R335X in the index patient and the affected sister. Conclusion: We identified an RP28-linked RP family in the Palestinian population caused by a novel nonsense mutation in FAM161A. RP in this family shows a typical disease onset with moderate to rapid progression into severe visual impairment including central vision in the index and overall milder symptoms in the younger brother and sister. PMID:24520187
Yoshimitsu, Makoto; Higuchi, Koji; Miyata, Masaaki; Devine, Sean; Mattman, Andre; Sirrs, Sandra; Medin, Jeffrey A; Tei, Chuwa; Takenaka, Toshihiro
2011-05-01
Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A (GLA) gene, and the disease is a relatively prevalent cause of left ventricular hypertrophy followed by conduction abnormalities and arrhythmias. Mutation analysis of the GLA gene is a valuable tool for accurate diagnosis of affected families. In this study, we carried out molecular studies of 10 unrelated families diagnosed with Fabry disease. Genetic analysis of the GLA gene using conventional genomic sequencing was performed in 9 hemizygous males and 6 heterozygous females. In patients with no mutations in coding DNA sequence, multiplex ligation-dependent probe amplification (MLPA) and/or cDNA sequencing were performed. We identified a novel exon 2 deletion (IVS1_IVS2) in a heterozygous female by MLPA, which was undetectable by conventional sequencing methods. In addition, the g.9331G>A mutation that has previously been found only in patients with cardiac Fabry disease was found in 3 unrelated, newly-diagnosed, cardiac Fabry patients by sequencing GLA genomic DNA and cDNA. Two other novel mutations, g.8319A>G and 832delA were also found in addition to 4 previously reported mutations (R112C, C142Y, M296I, and G373D) in 6 other families. We could identify GLA gene mutations in all hemizygotes and heterozygotes from 10 families with Fabry disease. Mutations in 4 out of 10 families could not be identified by classical genomic analysis, which focuses on exons and the flanking region. Instead, these data suggest that MLPA analysis and cDNA sequence should be considered in genetic testing surveys of patients with Fabry disease. Copyright © 2011 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
X-Linked Syndrome of Polyendocrinopathy, Immune Dysfunction, and Diarrhea Maps to Xp11.23-Xq13.3
Bennett, Craig L.; Yoshioka, Ritsuko; Kiyosawa, Hidenori; Barker, David F.; Fain, Pamela R.; Shigeoka, Ann O.; Chance, Phillip F.
2000-01-01
Summary We describe genetic analysis of a large pedigree with an X-linked syndrome of polyendocrinopathy, immune dysfunction, and diarrhea (XPID), which frequently results in death during infancy or childhood. Linkage analysis mapped the XPID gene to a 17-cM interval defined by markers DXS8083 and DXS8107 on the X chromosome, at Xp11.23-Xq13.3. The maximum LOD score was 3.99 (recombination fraction0) at DXS1235. Because this interval also harbors the gene for Wiskott-Aldrich syndrome (WAS), we investigated mutations in the WASP gene, as the molecular basis of XPID. Northern blot analysis detected the same relative amount and the same-sized WASP message in patients with XPID and in a control. Analysis of the WASP coding sequence, an alternate promoter, and an untranslated upstream first exon was carried out, and no mutations were found in patients with XPID. A C→T transition within the alternate translation start site cosegregated with the XPID phenotype in this family; however, the same transition site was detected in a normal control male. We conclude that XPID maps to Xp11.23-Xq13.3 and that mutations of WASP are not associated with XPID. PMID:10677306
Sprovieri, T; Conforti, F L; Fiumara, A; Mazzei, R; Ungaro, C; Citrigno, L; Muglia, M; Arena, A; Quattrone, A
2009-02-15
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have recently been reported in patients with severe neurodevelopmental disorder characterized by early-onset seizures, infantile spasms, severe psychomotor impairment and very recently, in patients with Rett syndrome (RTT)-like phenotype. Although the involvement of CDKL5 in specific biological pathways and its neurodevelopmental role have not been completely elucidated, the CDKL5 appears to be physiologically related to the MECP2 gene. Here we report on the clinical and CDKL5 molecular investigation in a very unusual RTT case, with severe, early-neurological involvement in which we have shown in a previous report, a novel P388S MECP2 mutation [Conforti et al. (2003); Am J Med Genet A 117A: 184-187]. The patient has had severe psychomotor delay since the first month of life and infantile spasms since age 5 months. Moreover, at age 5 years the patient suddenly presented with renal failure. The severe pattern of symptoms in our patient, similar to a CDKL5 phenotype, prompted us to perform an analysis of the CDKL5, which revealed a novel missense mutation never previously described. The X-inactivation assay was non-informative. In conclusion, this report reinforces the observation that the CDKL5 phenotype overlaps with RTT and that CDKL5 analysis is recommended in patients with a seizure disorder commencing during the first months of life.
Fine genetic mapping of a gene for autosomal recessive retinitis pigmentosa on chromosome 6p21
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shugart, Yin Y.; Banerjee, P.; Knowles, J.A.
1995-08-01
The inherited retinal degenerations known as retinitis pigmentosa (RP) can be caused by mutations at many different loci and can be inherited as an autosomal recessive, autosomal dominant, or X-linked recessive trait. Two forms of autosomal recessive (arRP) have been reported to cosegregate with mutations in the rhodopsin gene and the beta-subunit of rod phosphodiesterase on chromosome 4p. Genetic linkage has been reported on chromosomes 6p and 1q. In a large Dominican family, we reported an arRp gene near the region of the peripherin/RDS gene. Four recombinations were detected between the disease locus and an intragenic marker derived from peripherin/RDS.more » 26 refs., 2 figs., 1 tab.« less
Fraenkel, D. G.; Banerjee, Santimoy
1972-01-01
Genes for three enzymes of intermediary sugar metabolism in E. coli, zwf (glucose 6-phosphate dehydrogenase, constitutive), edd (gluconate 6-phosphate dehydrase, inducible), and eda (2-keto-3-deoxygluconate 6-phosphate aldolase, differently inducible) are closely linked on the E. coli genetic map, the overall gene order being man... old... eda. edd. zwf... cheB... uvrC... his. One class of apparent revertants of an eda mutant strain contains a secondary mutation in edd, and some of these mutations are deletions extending into zwf. We have used a series of spontaneous edd-zwf deletions to map a series of point mutants in zwf and thus report the first fine structure map of a gene for a constitutive enzyme (zwf). PMID:4560065
Li, Chun-Xiao; Jiang, Mei-Shan; Chen, Shi-Yi; Lai, Song-Jia
2008-07-01
Single nucleotide polymorphism (SNP) in exon 1 and 3 of fibroblast growth factor (FGF5) gene was studied by DNA sequencing in Yingjing angora rabbit, Tianfu black rabbit and California rabbit. A frameshift mutation (TCT insert) at base position 217 (site A) of exon 1 and a T/C missense mutation at base position 59 (site B) of exon 3 were found in Yingjing angora rabbit with a high frequency; a T/C same-sense mutation at base position 3 (site C) of exon 3 was found with similar frequency in three rabbit breeds. Least square analysis showed that different genotypes had no significant association with wool yield in site A, and had high significant association with wool yield in site B (P<0.01) and significant association with wool yield in site C (P<0.05). It was concluded from the results that FGF5 gene could be the potential major gene affecting wool yield or link with the major gene, and polymorphic loci B and C may be used as molecular markers for im-proving wool yield in angora rabbits.
He, T Y; Xia, Y; Li, C G; Li, C R; Qi, Z X; Yang, J
2018-01-02
Objective: To investigate the clinical features and genetic characteristics of cases with X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection, and neoplasia (XMEN). Methods: Characteristics of clinical material, immunological data and gene mutation of two cases with XMEN in the same family in China were retrospectively analyzed. The related reports literature were searched by using search terms'MAGT1 gene'or'XMEN'. Results: The proband, a 2-year-eight-month old boy, was admitted due to 'Urine with deepened color for two days and yellow stained skin for one day'. He had suffered from recurrent upper respiratory tract infection and sinusitis previously. Hemoglobin level was 38 g/L. The absolute count of reticulocytes was 223.2×10(9)/L. Urobilinogen level was 38 μmol/L (3-16 μmol/L). Coomb's test was positive. Both total (77.2 μmol/L) and indirect bilirubin (66 μmol/L) levels were elevated. There was an inverted CD4(+)/CD8(+)T cell ratio (0.89). The gene sequencing results showed MAGT1 gene c.472delG, p.D158Mfs*6 mutation. His 1-year-6-month old brother, was also identified to have MAGT1 gene c.472delG, p.D158Mfs*6 mutation.The younger brother mainly suffered from recurrent upper respiratory tract infection, accompanied by an inverted CD4(+)/CD8(+)T cell ratio (0.45), an elevated ratio and number of total B cells (45.7%). A total of 7 reports were retrieved including 11 male cases caused by MAGT1 gene mutation. These 11 cases were characterized by EBV viremia (11 cases), recurrent upper respiratory tract infection, otitis media or sinusitis (10 cases), secondary neoplasia diseases (8 cases), reduction of CD4(+)/CD8(+) T cell ratio (7 cases),and autoimmune thrombocytopenia or hemolytic anemia (2 cases). Conclusion: XMEN often manifests as male onset, recurrent upper respiratory tract infection, otitis media or sinusitis, EBV viremia, lymphoproliferative disease or lymphoma, autoimmune diseases and reduction of CD4(+)/CD8 (+)T cell ratio. NKG2D expression in NK cells is significantly reduced, and gene sequencing analysis shows a pathogenic mutation in MAGT1 gene.
D'Avila, Francesca; Meregalli, Mirella; Lupoli, Sara; Barcella, Matteo; Orro, Alessandro; De Santis, Francesca; Sitzia, Clementina; Farini, Andrea; D'Ursi, Pasqualina; Erratico, Silvia; Cristofani, Riccardo; Milanesi, Luciano; Braga, Daniele; Cusi, Daniele; Poletti, Angelo; Barlassina, Cristina; Torrente, Yvan
2016-06-01
Myofibrillar myopathies (MFMs) are genetically heterogeneous dystrophies characterized by the disintegration of Z-disks and myofibrils and are associated with mutations in genes encoding Z-disk or Z-disk-related proteins. The c.626 C > T (p.P209L) mutation in the BAG3 gene has been described as causative of a subtype of MFM. We report a sporadic case of a 26-year-old Italian woman, affected by MFM with axonal neuropathy, cardiomyopathy, rigid spine, who carries the c.626 C > T mutation in the BAG3 gene. The patient and her non-consanguineous healthy parents and brother were studied with whole exome sequencing (WES) to further investigate the genetic basis of this complex phenotype. In the patient, we found that the BAG3 mutation is associated with variants in the NRAP and FHL1 genes that encode muscle-specific, LIM domain containing proteins. Quantitative real time PCR, immunohistochemistry and Western blot analysis of the patient's muscular biopsy showed the absence of NRAP expression and FHL1 accumulation in aggregates in the affected skeletal muscle tissue. Molecular dynamic analysis of the mutated FHL1 domain showed a modification in its surface charge, which could affect its capability to bind its target proteins. To our knowledge this is the first study reporting, in a BAG3 MFM, the simultaneous presence of genetic variants in the BAG3 and FHL1 genes (previously described as independently associated with MFMs) and linking the NRAP gene to MFM for the first time.
Nature and Recurrence of AVPR2 Mutations in X-linked Nephrogenic Diabetes Insipidus
Bichet, Daniel G.; Birnbaumer, Mariel; Lonergan, Michèle; Arthus, Marie-Françoise; Rosenthal, Walter; Goodyer, Paul; Nivet, Hubert; Benoit, Stéphane; Giampietro, Philip; Simonetti, Simonetta; Fish, Alfred; Whitley, Chester B.; Jaeger, Philippe; Gertner, Joseph; New, Maria; DiBona, Francis J.; Kaplan, Bernard S.; Robertson, Gary L.; Hendy, Geoffrey N.; Fujiwara, T. Mary; Morgan, Kenneth
1994-01-01
X-linked nephrogenic diabetes insipidus (NDI) is a rare disease with defective renal and extrarenal arginine-vasopressin V2 receptor responses due to mutations in the AVPR2 gene in Xq28. We analyzed 31 independent NDI families to determine the nature and recurrence of AVPR2 mutations. Twenty-one new putative disease-causing mutations were identified: 113delCT, 253del35, 255del9, 274insG, V88M, R106C, 402delCT, C112R, Y124X, S126F, W164S, S167L, 684delTA, 804insG, W284X, A285P, W293X, R337X, and three large deletions or gene rearrangements. Five other mutations—R113W, Y128S, R137H, R181C, and R202C—that previously had been reported in other families were detected. There was evidence for recurrent mutation for four mutations (R113W, R137H, S167L, and R337X). Eight de novo mutation events were detected (274insG, R106C, Y128S, 167L [twice], R202C, 684delTA, and R337X). The origins were maternal (one), grandmaternal (one), and grandpaternal (six). In the 31 NDI families and 6 families previously reported by us, there is evidence both for mutation hot spots for nucleotide substitutions and for small deletions and insertions. More than half (58%) of the nucleotide substitutions in 26 families could be a consequence of 5-methylcytosine deamination at a CpG dinucleotide. Most of the small deletions and insertions could be attributed to slipped mispairing during DNA replication. PMID:8037205
Role of prostaglandins in the pathogenesis of X-linked hypophosphatemia.
Baum, Michel; Syal, Ashu; Quigley, Raymond; Seikaly, Mouin
2006-08-01
X-linked hypophosphatemia is an X-linked dominant disorder resulting from a mutation in the PHEX gene. PHEX stands for phosphate-regulating gene with endopeptidase activity, which is located on the X chromosome. Patients with X-linked hypophosphatemia have hypophosphatemia due to renal phosphate wasting and low or inappropriately normal levels of 1,25-dihydroxyvitamin D. The renal phosphate wasting is not intrinsic to the kidney but likely due to an increase in serum levels of fibroblast growth factor-23 (FGF-23), and perhaps other phosphate-wasting peptides previously known as phosphatonins. Patients with X-linked hypophosphatemia have short stature, rickets, bone pain and dental abscesses. Current therapy is oral phosphate and vitamin D which effectively treats the rickets and bone pain but does not adequately improve short stature. In this review, we describe recent observations using Hyp mice; mice with the same mutation as patients with X-linked hypophosphatemia. We have recently found that Hyp mice have abnormal renal prostaglandin production, which may be an important factor in the pathogenesis of this disorder. Administration of FGF-23 in vivo results in phosphaturia and an increase in prostaglandin excretion, and FGF-23 increases proximal tubule prostaglandin production in vitro. In Hyp mice, indomethacin improves the phosphate transport defect in vitro and in vivo. Whether indomethacin has the same effect in patients with X-linked hypophosphatemia is unknown.
Vicente-Dólera, Nelly; Troadec, Christelle; Moya, Manuel; del Río-Celestino, Mercedes; Pomares-Viciana, Teresa; Bendahmane, Abdelhafid; Picó, Belén; Román, Belén; Gómez, Pedro
2014-01-01
Although the availability of genetic and genomic resources for Cucurbita pepo has increased significantly, functional genomic resources are still limited for this crop. In this direction, we have developed a high throughput reverse genetic tool: the first TILLING (Targeting Induced Local Lesions IN Genomes) resource for this species. Additionally, we have used this resource to demonstrate that the previous EMS mutant population we developed has the highest mutation density compared with other cucurbits mutant populations. The overall mutation density in this first C. pepo TILLING platform was estimated to be 1/133 Kb by screening five additional genes. In total, 58 mutations confirmed by sequencing were identified in the five targeted genes, thirteen of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was studied in a peroxidase gene, revealing that the phenotype of seedling homozygous for one of the isolated mutant alleles was albino. These results indicate that the TILLING approach in this species was successful at providing new mutations and can address the major challenge of linking sequence information to biological function and also the identification of novel variation for crop breeding. PMID:25386735
Dick, Emily; Kalra, Spandan; Anderson, David; George, Vinoj; Ritso, Morten; Laval, Steven H; Barresi, Rita; Aartsma-Rus, Annemieke; Lochmüller, Hanns; Denning, Chris
2013-10-15
With an incidence of ∼1:3,500 to 5,000 in male children, Duchenne muscular dystrophy (DMD) is an X-linked disorder in which progressive muscle degeneration occurs and affected boys usually die in their twenties or thirties. Cardiac involvement occurs in 90% of patients and heart failure accounts for up to 40% of deaths. To enable new therapeutics such as gene therapy and exon skipping to be tested in human cardiomyocytes, we produced human induced pluripotent stem cells (hiPSC) from seven patients harboring mutations across the DMD gene. Mutations were retained during differentiation and analysis indicated the cardiomyocytes showed a dystrophic gene expression profile. Antisense oligonucleotide-mediated skipping of exon 51 restored dystrophin expression to ∼30% of normal levels in hiPSC-cardiomyocytes carrying exon 47-50 or 48-50 deletions. Alternatively, delivery of a dystrophin minigene to cardiomyocytes with a deletion in exon 35 or a point mutation in exon 70 allowed expression levels similar to those seen in healthy cells. This demonstrates that DMD hiPSC-cardiomyocytes provide a novel tool to evaluate whether new therapeutics can restore dystrophin expression in the heart.
Shatzky, S; Moses, S; Levy, J; Pinsk, V; Hershkovitz, E; Herzog, L; Shorer, Z; Luder, A; Parvari, R
2000-06-19
Congenital insensitivity to pain with anhidrosis (CIPA), a rare and severe disorder, comprises absence of sensation to noxious stimuli, inability to sweat, and recurrent episodes of hyperthermia. It has a relatively high prevalence in the consanguineous Israeli-Bedouins. Clinical studies of 28 patients are reported here. Using the linkage analysis approach, we linked the disease in 9 of 10 unrelated Israeli-Bedouin families with CIPA to the TrkA gene, which encodes the receptor for nerve growth factor. In one family, linkage was excluded, implying that another gene, yet unidentified, is involved. Two new mutations in the tyrosine kinase domain of the TrkA gene were identified in our CIPA patients: a 1926-ins-T in most of the southern Israeli-Negev CIPA patients, and a Pro- 689-Leu mutation in a different isolate of Bedouins in northern Israel. Eight prenatal diagnoses were made in the southern Israeli-Negev Bedouins, two by linkage analysis and six by checking directly for the 1926-ins-T mutation. Three polymorphisms in the TrkA protein kinase encoding domain were also observed. Copyright 2000 Wiley-Liss, Inc.
Dick, Emily; Kalra, Spandan; Anderson, David; George, Vinoj; Ritso, Morten; Laval, Steven H.; Barresi, Rita; Aartsma-Rus, Annemieke; Lochmüller, Hanns
2013-01-01
With an incidence of ∼1:3,500 to 5,000 in male children, Duchenne muscular dystrophy (DMD) is an X-linked disorder in which progressive muscle degeneration occurs and affected boys usually die in their twenties or thirties. Cardiac involvement occurs in 90% of patients and heart failure accounts for up to 40% of deaths. To enable new therapeutics such as gene therapy and exon skipping to be tested in human cardiomyocytes, we produced human induced pluripotent stem cells (hiPSC) from seven patients harboring mutations across the DMD gene. Mutations were retained during differentiation and analysis indicated the cardiomyocytes showed a dystrophic gene expression profile. Antisense oligonucleotide-mediated skipping of exon 51 restored dystrophin expression to ∼30% of normal levels in hiPSC-cardiomyocytes carrying exon 47–50 or 48–50 deletions. Alternatively, delivery of a dystrophin minigene to cardiomyocytes with a deletion in exon 35 or a point mutation in exon 70 allowed expression levels similar to those seen in healthy cells. This demonstrates that DMD hiPSC-cardiomyocytes provide a novel tool to evaluate whether new therapeutics can restore dystrophin expression in the heart. PMID:23829870
Szperl, Agata M.; Golachowska, Magdalena R.; Bruinenberg, Marcel; Prekeris, Rytis; Thunnissen, Andy-Mark W. H.; Karrenbeld, Arend; Dijkstra, Gerard; Hoekstra, Dick; Mercer, David; Ksiazyk, Janusz; Wijmenga, Cisca; Wapenaar, Martin C.; Rings, Edmond H. H. M.; van IJzendoorn, Sven C. D.
2010-01-01
Objectives Microvillus inclusion disease (MVID) is a rare autosomal recessive enteropathy characterized by intractable diarrhea and malabsorption. Recently, various MYO5B gene mutations have been identified in MVID patients. Interestingly, several MVID patients showed only a MYO5B mutation in one allele (heterozygous) or no mutations in the MYO5B gene, illustrating the need to further functionally characterize the cell biological effects of the MYO5B mutations. Methods The genomic DNA of nine patients diagnosed with microvillus inclusion disease was screened for MYO5B mutations, and qPCR and immunohistochemistry on the material of two patients was performed to investigate resultant cellular consequences. Results We demonstrate for the first time that MYO5B mutations can be correlated with altered myosin Vb mRNA expression and with an aberrant subcellular distribution of the myosin Vb protein. Moreover, we demonstrate that the typical and myosin Vb–controlled accumulation of rab11a-and FIP5-positive recycling endosomes in the apical cytoplasm of the cells is abolished in MVID enterocytes, which is indicative for altered myosin Vb function. Also, we report 8 novel MYO5B mutations in 9 MVID patients of various etnic backgrounds, including compound heterozygous mutations. Conclusions Our functional analysis indicate that MYO5B mutations can be correlated with an aberrant subcellular distribution of the myosin Vb protein and apical recycling endosomes which, together with the additional compound heterozygous mutations, significantly strengthen the link between MYO5B and MVID. PMID:21206382
'Laminopathies': A wide spectrum of human diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worman, Howard J.; Bonne, Gisele; Universite Pierre et Marie Curie-Paris 6, Faculte de medecine, Paris F-75013
2007-06-10
Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called 'laminopathies.' Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasiamore » and Pelger-Huet anomaly. While mutations and clinical phenotypes of 'laminopathies' have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new 'laminopathies' and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.« less
Huang, S X; Liang, J L; Sui, W G; Lin, H; Xue, W; Chen, J J; Zhang, Y; Gong, W W; Dai, Y; Ou, M L
2015-08-28
Ectodermal dysplasia (ED) represents a collection of rare disorders that result from a failure of development of the tissues derived from the embryonic ectoderm. ED is often associated with hair, teeth, and skin abnormalities, which are serious conditions affecting the quality of life of the patient. To date, a large number of genes have been found to be associated with this syndrome. Here, we report a patient with hypohidrotic ED (HED) without family history. We identified that this patient's disorder arises from an X-linked HED with a mutation in the EDA gene (G299D) found by whole-exome sequencing. In addition, in this paper we summarize the disease-causing mutations based on current literature. Overall, recent clinical and genetic research involving patients with HED have uncovered a large number of pathogenic mutations in EDA, which might contribute to a full understanding of the function of EDA and the underlying mechanisms of HED caused by EDA mutations.
Schwarze, Ulrike; Cundy, Tim; Pyott, Shawna M.; Christiansen, Helena E.; Hegde, Madhuri R.; Bank, Ruud A.; Pals, Gerard; Ankala, Arunkanth; Conneely, Karen; Seaver, Laurie; Yandow, Suzanne M.; Raney, Ellen; Babovic-Vuksanovic, Dusica; Stoler, Joan; Ben-Neriah, Ziva; Segel, Reeval; Lieberman, Sari; Siderius, Liesbeth; Al-Aqeel, Aida; Hannibal, Mark; Hudgins, Louanne; McPherson, Elizabeth; Clemens, Michele; Sussman, Michael D.; Steiner, Robert D.; Mahan, John; Smith, Rosemarie; Anyane-Yeboa, Kwame; Wynn, Julia; Chong, Karen; Uster, Tami; Aftimos, Salim; Sutton, V. Reid; Davis, Elaine C.; Kim, Lammy S.; Weis, Mary Ann; Eyre, David; Byers, Peter H.
2013-01-01
Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis–trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10, PLOD2 and SERPINH1, that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result. PMID:22949511
PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome.
Ebermann, Inga; Phillips, Jennifer B; Liebau, Max C; Koenekoop, Robert K; Schermer, Bernhard; Lopez, Irma; Schäfer, Ellen; Roux, Anne-Francoise; Dafinger, Claudia; Bernd, Antje; Zrenner, Eberhart; Claustres, Mireille; Blanco, Bernardo; Nürnberg, Gudrun; Nürnberg, Peter; Ruland, Rebecca; Westerfield, Monte; Benzing, Thomas; Bolz, Hanno J
2010-06-01
Usher syndrome is a genetically heterogeneous recessive disease characterized by hearing loss and retinitis pigmentosa (RP). It frequently presents with unexplained, often intrafamilial, variability of the visual phenotype. Although 9 genes have been linked with Usher syndrome, many patients do not have mutations in any of these genes, suggesting that there are still unidentified genes involved in the syndrome. Here, we have determined that mutations in PDZ domain-containing 7 (PDZD7), which encodes a homolog of proteins mutated in Usher syndrome subtype 1C (USH1C) and USH2D, contribute to Usher syndrome. Mutations in PDZD7 were identified only in patients with mutations in other known Usher genes. In a set of sisters, each with a homozygous mutation in USH2A, a frame-shift mutation in PDZD7 was present in the sister with more severe RP and earlier disease onset. Further, heterozygous PDZD7 mutations were present in patients with truncating mutations in USH2A, G protein-coupled receptor 98 (GPR98; also known as USH2C), and an unidentified locus. We validated the human genotypes using zebrafish, and our findings were consistent with digenic inheritance of PDZD7 and GPR98, and with PDZD7 as a retinal disease modifier in patients with USH2A. Pdzd7 knockdown produced an Usher-like phenotype in zebrafish, exacerbated retinal cell death in combination with ush2a or gpr98, and reduced Gpr98 localization in the region of the photoreceptor connecting cilium. Our data challenge the view of Usher syndrome as a traditional Mendelian disorder and support the reclassification of Usher syndrome as an oligogenic disease.
PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome
Ebermann, Inga; Phillips, Jennifer B.; Liebau, Max C.; Koenekoop, Robert K.; Schermer, Bernhard; Lopez, Irma; Schäfer, Ellen; Roux, Anne-Francoise; Dafinger, Claudia; Bernd, Antje; Zrenner, Eberhart; Claustres, Mireille; Blanco, Bernardo; Nürnberg, Gudrun; Nürnberg, Peter; Ruland, Rebecca; Westerfield, Monte; Benzing, Thomas; Bolz, Hanno J.
2010-01-01
Usher syndrome is a genetically heterogeneous recessive disease characterized by hearing loss and retinitis pigmentosa (RP). It frequently presents with unexplained, often intrafamilial, variability of the visual phenotype. Although 9 genes have been linked with Usher syndrome, many patients do not have mutations in any of these genes, suggesting that there are still unidentified genes involved in the syndrome. Here, we have determined that mutations in PDZ domain–containing 7 (PDZD7), which encodes a homolog of proteins mutated in Usher syndrome subtype 1C (USH1C) and USH2D, contribute to Usher syndrome. Mutations in PDZD7 were identified only in patients with mutations in other known Usher genes. In a set of sisters, each with a homozygous mutation in USH2A, a frame-shift mutation in PDZD7 was present in the sister with more severe RP and earlier disease onset. Further, heterozygous PDZD7 mutations were present in patients with truncating mutations in USH2A, G protein–coupled receptor 98 (GPR98; also known as USH2C), and an unidentified locus. We validated the human genotypes using zebrafish, and our findings were consistent with digenic inheritance of PDZD7 and GPR98, and with PDZD7 as a retinal disease modifier in patients with USH2A. Pdzd7 knockdown produced an Usher-like phenotype in zebrafish, exacerbated retinal cell death in combination with ush2a or gpr98, and reduced Gpr98 localization in the region of the photoreceptor connecting cilium. Our data challenge the view of Usher syndrome as a traditional Mendelian disorder and support the reclassification of Usher syndrome as an oligogenic disease. PMID:20440071
Familial Ehlers-Danlos syndrome with lethal arterial events caused by a mutation in COL5A1.
Monroe, Glen R; Harakalova, Magdalena; van der Crabben, Saskia N; Majoor-Krakauer, Danielle; Bertoli-Avella, Aida M; Moll, Frans L; Oranen, Björn I; Dooijes, Dennis; Vink, Aryan; Knoers, Nine V; Maugeri, Alessandra; Pals, Gerard; Nijman, Isaac J; van Haaften, Gijs; Baas, Annette F
2015-06-01
Different forms of Ehlers-Danlos syndrome (EDS) exist, with specific phenotypes and associated genes. Vascular EDS, caused by heterozygous mutations in the COL3A1 gene, is characterized by fragile vasculature with a high risk of catastrophic vascular events at a young age. Classic EDS, caused by heterozygous mutations in the COL5A1 or COL5A2 genes, is characterized by fragile, hyperextensible skin and joint laxity. To date, vessel rupture in four unrelated classic EDS patients with a confirmed COL5A1 mutation has been reported. We describe familial occurrence of a phenotype resembling vascular EDS in a mother and her two sons, who all died at an early age from arterial ruptures. Diagnostic Sanger sequencing in the proband failed to detect aberrations in COL3A1, COL1A1, COL1A2, TGFBR1, TGFBR2, SMAD3, and ACTA2. Next, the proband's DNA was analyzed using a next-generation sequencing approach targeting 554 genes linked to vascular disease (VASCULOME project). A novel heterozygous mutation in COL5A1 was detected, resulting in an essential glycine substitution at the C-terminal end of the triple helix domain (NM_000093.4:c.4610G>T; p.Gly1537Val). This mutation was also present in DNA isolated from autopsy material of the index's brother. No material was available from the mother, but the mutation was excluded in her parents, siblings and in the father of her sons, suggesting that the COL5A1 mutation occurred in the mother's genome de novo. In conclusion, we report familial occurrence of lethal arterial events caused by a COL5A1 mutation. © 2015 Wiley Periodicals, Inc.
Identification of the gene for Nance-Horan syndrome (NHS)
Brooks, S; Ebenezer, N; Poopalasundaram, S; Lehmann, O; Moore, A; Hardcastle, A
2004-01-01
Background: The disease intervals for Nance-Horan syndrome (NHS [MIM 302350]) and X linked congenital cataract (CXN) overlap on Xp22. Objective: To identify the gene or genes responsible for these diseases. Methods: Families with NHS were ascertained. The refined locus for CXN was used to focus the search for candidate genes, which were screened by polymerase chain reaction and direct sequencing of potential exons and intron-exon splice sites. Genomic structures and homologies were determined using bioinformatics. Expression studies were undertaken using specific exonic primers to amplify human fetal cDNA and mouse RNA. Results: A novel gene NHS, with no known function, was identified as causative for NHS. Protein truncating mutations were detected in all three NHS pedigrees, but no mutation was identified in a CXN family, raising the possibility that NHS and CXN may not be allelic. The NHS gene forms a new gene family with a closely related novel gene NHS-Like1 (NHSL1). NHS and NHSL1 lie in paralogous duplicated chromosomal intervals on Xp22 and 6q24, and NHSL1 is more broadly expressed than NHS in human fetal tissues. Conclusions: This study reports the independent identification of the gene causative for Nance-Horan syndrome and extends the number of mutations identified. PMID:15466011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, R.K.; Otte, C.A.
Eight independently isolated mutants which are supersensitive (Sst/sup -/) to the G1 arrest induced by the tridecapeptide pheromone ..cap alpha.. factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by ..cap alpha.. factor. These mutants carries lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to ..cap alpha.. factor, but MAT..cap alpha.. sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on bothmore » MATa and MAT..cap alpha.. cells. Even in the absence of added ..cap alpha.. pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology (''shmoo'' shape) that normally develops only after MATa cells are exposed to ..cap alpha.. factor. This ''self-shmooing'' phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT..cap alpha.. diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT..cap alpha.. sst2-1/sst2-1) were still insensitive to ..cap alpha.. factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked nor centromere distal to MAT on the right arm of chromosome III.« less
Cassidy, Andrew J.; van Steensel, Maurice A. M.; Steijlen, Peter M.; van Geel, Michel; Velden, Jaap van der; Morley, Susan M.; Terrinoni, Alessandro; Melino, Gerry; Candi, Eleonora; McLean, W. H. Irwin
2005-01-01
Peeling skin syndrome is an autosomal recessive genodermatosis characterized by the shedding of the outer epidermis. In the acral form, the dorsa of the hands and feet are predominantly affected. Ultrastructural analysis has revealed tissue separation at the junction between the granular cells and the stratum corneum in the outer epidermis. Genomewide linkage analysis in a consanguineous Dutch kindred mapped the gene to 15q15.2 in the interval between markers D15S1040 and D15S1016. Two homozygous missense mutations, T109M and G113C, were found in TGM5, which encodes transglutaminase 5 (TG5), in all affected persons in two unrelated families. The mutation was present on the same haplotype in both kindreds, indicating a probable ancestral mutation. TG5 is strongly expressed in the epidermal granular cells, where it cross-links a variety of structural proteins in the terminal differentiation of the epidermis to form the cornified cell envelope. An established, in vitro, biochemical cross-linking assay revealed that, although T109M is not pathogenic, G113C completely abolishes TG5 activity. Three-dimensional modeling of TG5 showed that G113C lies close to the catalytic domain, and, furthermore, that this glycine residue is conserved in all known transglutaminases, which is consistent with pathogenicity. Other families with more-widespread peeling skin phenotypes lacked TGM5 mutations. This study identifies the first causative gene in this heterogeneous group of skin disorders and demonstrates that the protein cross-linking function performed by TG5 is vital for maintaining cell-cell adhesion between the outermost layers of the epidermis. PMID:16380904
Wilms tumor gene 1 (WT1), TP53, RAS/BRAF and KIT aberrations in testicular germ cell tumors.
Boublikova, L; Bakardjieva-Mihaylova, V; Skvarova Kramarzova, K; Kuzilkova, D; Dobiasova, A; Fiser, K; Stuchly, J; Kotrova, M; Buchler, T; Dusek, P; Grega, M; Rosova, B; Vernerova, Z; Klezl, P; Pesl, M; Zachoval, R; Krolupper, M; Kubecova, M; Stahalova, V; Abrahamova, J; Babjuk, M; Kodet, R; Trka, J
2016-07-01
Wilms tumor gene 1 (WT1), a zinc-finger transcription factor essential for testis development and function, along with other genes, was investigated for their role in the pathogenesis of testicular germ cell tumors (TGCT). In total, 284 TGCT and 100 control samples were investigated, including qPCR for WT1 expression and BRAF mutation, p53 immunohistochemistry detection, and massively parallel amplicon sequencing. WT1 was significantly (p < 0.0001) under-expressed in TGCT, with an increased ratio of exon 5-lacking isoforms, reaching low levels in chemo-naïve relapsed TGCT patients vs. high levels in chemotherapy-pretreated relapsed patients. BRAF V600E mutation was identified in 1% of patients only. p53 protein was lowly expressed in TGCT metastases compared to the matched primary tumors. Of 9 selected TGCT-linked genes, RAS/BRAF and WT1 mutations were frequent while significant TP53 and KIT variants were not detected (p = 0.0003). WT1 has been identified as a novel factor involved in TGCT pathogenesis, with a potential prognostic impact. Distinct biologic nature of the two types of relapses occurring in TGCT has been demonstrated. Differential mutation rate of the key TGCT-related genes has been documented. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zhou, Qi; Cheng, Jingliang; Yang, Weichan; Tania, Mousumi; Wang, Hui; Khan, Md Asaduzzaman; Duan, Chengxia; Zhu, Li; Chen, Rui; Lv, Hongbin; Fu, Junjiang
2015-01-01
Retinitis pigmentosa (RP) is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP) in a Chinese family. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS). The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W) was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W) in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family.
Fujita-Jimbo, Eriko; Tanabe, Yuko; Yu, Zhiling; Kojima, Karin; Mori, Masato; Li, Hong; Iwamoto, Sadahiko; Yamagata, Takanori; Momoi, Mariko Y; Momoi, Takashi
2015-01-01
Autism spectrum disorder (ASD) has a complex genetic etiology. Some symptoms and mutated genes, including neuroligin (NLGN), neurexin (NRXN), and SH3 and multiple ankyrin repeat domains protein (SHANK), are shared by schizophrenia and ASD. Little is known about the molecular pathogenesis of ASD. One of the possible molecular pathogenesis is an imbalance of excitatory and inhibitory receptors linked with the NLGN-PSD-95-SHANK complex via postsynaptic density protein/Drosophila disc large tumor suppressor/zonula occludens-1 protein (PDZ) binding. In the present study, we focused on GPR85 as a candidate gene for ASD because the C-terminal amino acid sequence of GPR85 [Thr-Cys-Val-Ile (YCVI)] is classified as a type II PDZ-binding motif, and GPR85 is a risk factor for schizophrenia. GPR85 is an orphan receptor that regulates neural and synaptic plasticity and modulates diverse behaviors, including learning and memory. While searching for molecules that associate with GPR85, we found that GPR85 was associated with postsynaptic density protein (PSD)-95 linked with NLGN in the brain. We examined the proteins that associate with the C-terminal sequence of GPR85 by pull-down assay and immunoblot analysis and searched for a mutation of the GPR85 gene in patients with ASD. We used immunostaining to examine the intracellular localization of mutated GPR85 and its influence on the morphology of cells and neurons. The C-terminal sequence of GPR85 interacted with PSD-95 at PDZ1, while NLGN interacted with PSD-95 at PDZ3. Two male patients with ASD from independent Japanese families possessed inherited missense mutations at conserved sites in GPR85: one had T1033C (M152T) and the other had G1239T (V221L). These mutations were located in a domain related to G protein interaction and signal transduction. In contrast to wild-type GPR85, mutated GPR85 was more preferentially accumulated, causing endoplasmic reticulum stress, and disturbed the dendrite formation of hippocampal neurons. GPR85 associated with the PSD-95 linked with NLGN, which is related to ASD. GPR85 carrying the mutations detected in ASD patients disturbed dendrite formation that could be the candidate for molecular pathogenesis of ASD through the associated NLGN-PSD-95 receptor complex.
2018-05-31
ATM Gene Mutation; ATR Gene Mutation; BARD1 Gene Mutation; BRCA1 Gene Mutation; BRCA2 Gene Mutation; BRIP1 Gene Mutation; CHEK1 Gene Mutation; CHEK2 Gene Mutation; FANCA Gene Mutation; FANCC Gene Mutation; FANCD2 Gene Mutation; FANCF Gene Mutation; FANCM Gene Mutation; NBN Gene Mutation; PALB2 Gene Mutation; RAD51 Gene Mutation; RAD51B Gene Mutation; RAD54L Gene Mutation; Recurrent Squamous Cell Lung Carcinoma; RPA1 Gene Mutation; Stage IV Squamous Cell Lung Carcinoma AJCC v7
Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells.
Bassuk, Alexander G; Zheng, Andrew; Li, Yao; Tsang, Stephen H; Mahajan, Vinit B
2016-01-27
Induced pluripotent stem cells (iPSCs) generated from patient fibroblasts could potentially be used as a source of autologous cells for transplantation in retinal disease. Patient-derived iPSCs, however, would still harbor disease-causing mutations. To generate healthy patient-derived cells, mutations might be repaired with new gene-editing technology based on the bacterial system of clustered regularly interspersed short palindromic repeats (CRISPR)/Cas9, thereby yielding grafts that require no patient immunosuppression. We tested whether CRISPR/Cas9 could be used in patient-specific iPSCs to precisely repair an RPGR point mutation that causes X-linked retinitis pigmentosa (XLRP). Fibroblasts cultured from a skin-punch biopsy of an XLRP patient were transduced to produce iPSCs carrying the patient's c.3070G > T mutation. The iPSCs were transduced with CRISPR guide RNAs, Cas9 endonuclease, and a donor homology template. Despite the gene's repetitive and GC-rich sequences, 13% of RPGR gene copies showed mutation correction and conversion to the wild-type allele. This is the first report using CRISPR to correct a pathogenic mutation in iPSCs derived from a patient with photoreceptor degeneration. This important proof-of-concept finding supports the development of personalized iPSC-based transplantation therapies for retinal disease.
American Association for the Advancement of Science
... KavliAwards_teaser(21).jpg 2017 AAAS Kavli Science Journalism Award Winners Named Full Story ... to Reject Tax Changes That Hit Graduate Students News_111517_AmishGenes_teaser.jpg Study of Amish Suggests Mutation Linked to Longer Life ...
Genetics Home Reference: X-linked chondrodysplasia punctata 2
... Moser A, Glossmann H, Wilcox WR, Rimoin DL, Smith M, Kratz L, Kelley RI, Valle D. Mutations ... Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, P.L.; Chetty, V.; Kasch, L.
Arylsulfatase-A deficiency causes the neurodegenerative lysosomal storage disease metachromatic leukodystrophy. In the late-onset variant, schizophrenia-like psychosis is a frequent finding and sometimes given as the initial diagnosis. A mutant allele, pseudo-deficiency, causes deficient enzyme activity but no apparent clinical effect. It occurs at a high frequency and consists of two tightly-linked A{r_arrow}G transitions: one causing the loss of a glycosylation site (PDg); and one causing the loss of a polyadenylation signal (PDa). Since this gene was mapped to chromosome 22q13-qter, a region implicated in a potential linkage with schizophrenia, we hypothesized that this common mutation may be a predisposing geneticmore » factor for schizophrenia. We studied a random sample of schizophrenic patients for possible increase in frequency of the pseudo-deficiency mutations and in multiplex families to verify if the mutations are linked to schizophrenia. Among 50 Caucasian patients identified through out-patient and in-patient clinics, the frequencies for the three alleles PDg + PDa together, PDg or PDa alone were 11%, 5% and 0%, respectively. The corresponding frequencies among 100 Caucasian controls were 7.5%, 6% and 0%, respectively, the differences between the patients and controls being insignificant ({chi}{sup 2}tests: 0.10« less
Mutations Leading to Expression of the Cryptic HMR a Locus in the Yeast SACCHAROMYCES CEREVISIAE
Kassir, Yona; Simchen, Giora
1985-01-01
Mutations leading to expression of the silent HMR a information in Saccharomyces cerevisiae result in sporulation proficiency in mata1/MATα diploids. An example of such a mutation is sir5-2, a recessive mutation in the gene SIR5. As expected, haploids carrying the sir5-2 mutation are nonmaters due to the simultaneous expression of HMRa and HMLα, resulting in the nonmating phenotype of an a/α diploid. However, sir5-2/sir5-2 mata1/MATα diploids mate as α yet are capable of sporulation. The sir5-2 mutation is unlinked to sir1-1, yet the two mutations do not complement each other: mata1/MATα sir5-2/SIR5 SIR1/sir1-1 diploids are capable of sporulation. In this case, recessive mutations in two unlinked genes form a mutant phenotype, in spite of the presence of the normal wild-type alleles.—The PAS1-1 mutation, Provider of a Sporulation function, is a dominant mutation tightly linked to HMRa. PAS1-1 does not affect the mating ability of a strain, yet it allows diploids lacking a functional MATa locus to sporulate. It is proposed that PAS1-1 leads to partial expression of the otherwise cryptic a1 information at HMRa. PMID:3884439
Andley, Usha P; Tycksen, Eric; McGlasson-Naumann, Brittney N; Hamilton, Paul D
2018-01-01
The mammalian eye lens expresses a high concentration of crystallins (α, β and γ-crystallins) to maintain the refractive index essential for lens transparency. Crystallins are long-lived proteins that do not turnover throughout life. The structural destabilization of crystallins by UV exposure, glycation, oxidative stress and mutations in crystallin genes leads to protein aggregation and development of cataracts. Several destabilizing mutations in crystallin genes are linked with human autosomal dominant hereditary cataracts. To investigate the mechanism by which the α-crystallin mutations Cryaa-R49C and Cryab-R120G lead to cataract formation, we determined whether these mutations cause an altered expression of specific transcripts in the lens at an early postnatal age by RNA-seq analysis. Using knock-in mouse models previously generated in our laboratory, in the present work, we identified genes that exhibited altered abundance in the mutant lenses, including decreased transcripts for Clic5, an intracellular water channel in Cryaa-R49C heterozygous mutant lenses, and increased transcripts for Eno1b in Cryab-R120G heterozygous mutant lenses. In addition, RNA-seq analysis revealed increased histones H2B, H2A, and H4 gene expression in Cryaa-R49C mutant lenses, suggesting that the αA-crystallin mutation regulates histone expression via a transcriptional mechanism. Additionally, these studies confirmed the increased expression of histones H2B, H2A, and H4 by proteomic analysis of Cryaa-R49C knock-in and Cryaa;Cryab gene knockout lenses reported previously. Taken together, these findings offer additional insight into the early transcriptional changes caused by Cryaa and Cryab mutations associated with autosomal dominant human cataracts, and indicate that the transcript levels of certain genes are affected by the expression of mutant α-crystallin in vivo.
Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection.
Okamoto, Nobuhiko; Watanabe, Miki; Naruto, Takuya; Matsuda, Keiko; Kohmoto, Tomohiro; Saito, Masako; Masuda, Kiyoshi; Imoto, Issei
2017-01-01
Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B , thus diagnosing this patient with Cabezas syndrome.
Genome-first approach diagnosed Cabezas syndrome via novel CUL4B mutation detection
Okamoto, Nobuhiko; Watanabe, Miki; Naruto, Takuya; Matsuda, Keiko; Kohmoto, Tomohiro; Saito, Masako; Masuda, Kiyoshi; Imoto, Issei
2017-01-01
Cabezas syndrome is a syndromic form of X-linked intellectual disability primarily characterized by a short stature, hypogonadism and abnormal gait, with other variable features resulting from mutations in the CUL4B gene. Here, we report a clinically undiagnosed 5-year-old male with severe intellectual disability. A genome-first approach using targeted exome sequencing identified a novel nonsense mutation [NM_003588.3:c.2698G>T, p.(Glu900*)] in the last coding exon of CUL4B, thus diagnosing this patient with Cabezas syndrome. PMID:28144446
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornstein, P.; Shingu, T.; LaMarca, M.E.
1994-09-01
We have identified a new murine gene, termed gene X, that spans the 6 kb interval separating GC from TSP3. Mutations in GC result in Gaucher disease, the most common lysosomal storage disorder. Gene X and GC are transcribed convergently; their major polyadenylation sites are separated by only 431 bp. On the other hand, gene X and TSP3 are transcribed divergently and share a bidirectional promoter. The cDNA for gene X encodes a 317 amino acid protein, without either a signal sequence or N-linked glycosylation. Gene X is expressed ubiquitously in tissues of the young adult mouse, but no closemore » homologues have been found in the DNA or protein data bases. A targeted point mutation was introduced into the GC gene (Asn to Ser in exon 9) by homologous recombination in embryonic stem cells to establish a mouse model for a mild form of Gaucher disease. In the process, a PGK-neomycin gene cassette was inserted in the 3{prime} flanking region of GC as a selectable marker, in a sequence that was subsequently identified as exon 8 of gene X. Mice homozygous for the combined mutation die early in gestation. Since the amino acid mutation in humans is associated with milder type 1 Gaucher disease, we conclude that gene X is essential for embryonic development in mice. The locations of human and murine GC, gene X and TSP3 are similar, but the human genome includes a duplication that has produced GC and gene X pseudogenes. We are currently studying the possible functional interactions of GC, gene X and TSP3 in both mice and humans.« less