Sample records for gene network analyses

  1. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining

    PubMed Central

    2012-01-01

    Background Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Results Over 170,000 fever-related articles from PubMed abstracts and titles were retrieved and analysed at the sentence level using natural language processing techniques to identify genes and vaccines (including 186 Vaccine Ontology terms) as well as their interactions. This resulted in a generic fever network consisting of 403 genes and 577 gene interactions. A vaccine-specific fever sub-network consisting of 29 genes and 28 gene interactions was extracted from articles that are related to both fever and vaccines. In addition, gene-vaccine interactions were identified. Vaccines (including 4 specific vaccine names) were found to directly interact with 26 genes. Gene set enrichment analysis was performed using the genes in the generated interaction networks. Moreover, the genes in these networks were prioritized using network centrality metrics. Making scientific discoveries and generating new hypotheses were possible by using network centrality and gene set enrichment analyses. For example, our study found that the genes in the generic fever network were more enriched in cell death and responses to wounding, and the vaccine sub-network had more gene enrichment in leukocyte activation and phosphorylation regulation. The most central genes in the vaccine-specific fever network are predicted to be highly relevant to vaccine-induced fever, whereas genes that are central only in the generic fever network are likely to be highly relevant to generic fever responses. Interestingly, no Toll-like receptors (TLRs) were found in the gene-vaccine interaction network. Since multiple TLRs were found in the generic fever network, it is reasonable to hypothesize that vaccine-TLR interactions may play an important role in inducing fever response, which deserves a further investigation. Conclusions This study demonstrated that ontology-based literature mining is a powerful method for analyzing gene interaction networks and generating new scientific hypotheses. PMID:23256563

  2. Integrative analyses of leprosy susceptibility genes indicate a common autoimmune profile.

    PubMed

    Zhang, Deng-Feng; Wang, Dong; Li, Yu-Ye; Yao, Yong-Gang

    2016-04-01

    Leprosy is an ancient chronic infection in the skin and peripheral nerves caused by Mycobacterium leprae. The development of leprosy depends on genetic background and the immune status of the host. However, there is no systematic view focusing on the biological pathways, interaction networks and overall expression pattern of leprosy-related immune and genetic factors. To identify the hub genes in the center of leprosy genetic network and to provide an insight into immune and genetic factors contributing to leprosy. We retrieved all reported leprosy-related genes and performed integrative analyses covering gene expression profiling, pathway analysis, protein-protein interaction network, and evolutionary analyses. A list of 123 differentially expressed leprosy related genes, which were enriched in activation and regulation of immune response, was obtained in our analyses. Cross-disorder analysis showed that the list of leprosy susceptibility genes was largely shared by typical autoimmune diseases such as lupus erythematosus and arthritis, suggesting that similar pathways might be affected in leprosy and autoimmune diseases. Protein-protein interaction (PPI) and positive selection analyses revealed a co-evolution network of leprosy risk genes. Our analyses showed that leprosy associated genes constituted a co-evolution network and might undergo positive selection driven by M. leprae. We suggested that leprosy may be a kind of autoimmune disease and the development of leprosy is a matter of defect or over-activation of body immunity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Integrated in silico analyses of regulatory and metabolic networks of Synechococcus sp. PCC 7002 reveal relationships between gene centrality and essentiality

    DOE PAGES

    Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.; ...

    2015-03-27

    Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as ‘topologically important.’ Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termedmore » as ‘functionally important’ genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.« less

  4. Integrated in silico analyses of regulatory and metabolic networks of Synechococcus sp. PCC 7002 reveal relationships between gene centrality and essentiality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; McClure, Ryan S.; Bernstein, Hans C.

    Cyanobacteria dynamically relay environmental inputs to intracellular adaptations through a coordinated adjustment of photosynthetic efficiency and carbon processing rates. The output of such adaptations is reflected through changes in transcriptional patterns and metabolic flux distributions that ultimately define growth strategy. To address interrelationships between metabolism and regulation, we performed integrative analyses of metabolic and gene co-expression networks in a model cyanobacterium, Synechococcus sp. PCC 7002. Centrality analyses using the gene co-expression network identified a set of key genes, which were defined here as ‘topologically important.’ Parallel in silico gene knock-out simulations, using the genome-scale metabolic network, classified what we termedmore » as ‘functionally important’ genes, deletion of which affected growth or metabolism. A strong positive correlation was observed between topologically and functionally important genes. Functionally important genes exhibited variable levels of topological centrality; however, the majority of topologically central genes were found to be functionally essential for growth. Subsequent functional enrichment analysis revealed that both functionally and topologically important genes in Synechococcus sp. PCC 7002 are predominantly associated with translation and energy metabolism, two cellular processes critical for growth. This research demonstrates how synergistic network-level analyses can be used for reconciliation of metabolic and gene expression data to uncover fundamental biological principles.« less

  5. Identifying gene networks underlying the neurobiology of ethanol and alcoholism.

    PubMed

    Wolen, Aaron R; Miles, Michael F

    2012-01-01

    For complex disorders such as alcoholism, identifying the genes linked to these diseases and their specific roles is difficult. Traditional genetic approaches, such as genetic association studies (including genome-wide association studies) and analyses of quantitative trait loci (QTLs) in both humans and laboratory animals already have helped identify some candidate genes. However, because of technical obstacles, such as the small impact of any individual gene, these approaches only have limited effectiveness in identifying specific genes that contribute to complex diseases. The emerging field of systems biology, which allows for analyses of entire gene networks, may help researchers better elucidate the genetic basis of alcoholism, both in humans and in animal models. Such networks can be identified using approaches such as high-throughput molecular profiling (e.g., through microarray-based gene expression analyses) or strategies referred to as genetical genomics, such as the mapping of expression QTLs (eQTLs). Characterization of gene networks can shed light on the biological pathways underlying complex traits and provide the functional context for identifying those genes that contribute to disease development.

  6. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    PubMed

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Genes under weaker stabilizing selection increase network evolvability and rapid regulatory adaptation to an environmental shift.

    PubMed

    Laarits, T; Bordalo, P; Lemos, B

    2016-08-01

    Regulatory networks play a central role in the modulation of gene expression, the control of cellular differentiation, and the emergence of complex phenotypes. Regulatory networks could constrain or facilitate evolutionary adaptation in gene expression levels. Here, we model the adaptation of regulatory networks and gene expression levels to a shift in the environment that alters the optimal expression level of a single gene. Our analyses show signatures of natural selection on regulatory networks that both constrain and facilitate rapid evolution of gene expression level towards new optima. The analyses are interpreted from the standpoint of neutral expectations and illustrate the challenge to making inferences about network adaptation. Furthermore, we examine the consequence of variable stabilizing selection across genes on the strength and direction of interactions in regulatory networks and in their subsequent adaptation. We observe that directional selection on a highly constrained gene previously under strong stabilizing selection was more efficient when the gene was embedded within a network of partners under relaxed stabilizing selection pressure. The observation leads to the expectation that evolutionarily resilient regulatory networks will contain optimal ratios of genes whose expression is under weak and strong stabilizing selection. Altogether, our results suggest that the variable strengths of stabilizing selection across genes within regulatory networks might itself contribute to the long-term adaptation of complex phenotypes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  8. A systematic approach to infer biological relevance and biases of gene network structures.

    PubMed

    Antonov, Alexey V; Tetko, Igor V; Mewes, Hans W

    2006-01-10

    The development of high-throughput technologies has generated the need for bioinformatics approaches to assess the biological relevance of gene networks. Although several tools have been proposed for analysing the enrichment of functional categories in a set of genes, none of them is suitable for evaluating the biological relevance of the gene network. We propose a procedure and develop a web-based resource (BIOREL) to estimate the functional bias (biological relevance) of any given genetic network by integrating different sources of biological information. The weights of the edges in the network may be either binary or continuous. These essential features make our web tool unique among many similar services. BIOREL provides standardized estimations of the network biases extracted from independent data. By the analyses of real data we demonstrate that the potential application of BIOREL ranges from various benchmarking purposes to systematic analysis of the network biology.

  9. Construct and Compare Gene Coexpression Networks with DAPfinder and DAPview.

    PubMed

    Skinner, Jeff; Kotliarov, Yuri; Varma, Sudhir; Mine, Karina L; Yambartsev, Anatoly; Simon, Richard; Huyen, Yentram; Morgun, Andrey

    2011-07-14

    DAPfinder and DAPview are novel BRB-ArrayTools plug-ins to construct gene coexpression networks and identify significant differences in pairwise gene-gene coexpression between two phenotypes. Each significant difference in gene-gene association represents a Differentially Associated Pair (DAP). Our tools include several choices of filtering methods, gene-gene association metrics, statistical testing methods and multiple comparison adjustments. Network results are easily displayed in Cytoscape. Analyses of glioma experiments and microarray simulations demonstrate the utility of these tools. DAPfinder is a new friendly-user tool for reconstruction and comparison of biological networks.

  10. Multi-Dimensional Prioritization of Dental Caries Candidate Genes and Its Enriched Dense Network Modules

    PubMed Central

    Wang, Quan; Jia, Peilin; Cuenco, Karen T.; Feingold, Eleanor; Marazita, Mary L.; Wang, Lily; Zhao, Zhongming

    2013-01-01

    A number of genetic studies have suggested numerous susceptibility genes for dental caries over the past decade with few definite conclusions. The rapid accumulation of relevant information, along with the complex architecture of the disease, provides a challenging but also unique opportunity to review and integrate the heterogeneous data for follow-up validation and exploration. In this study, we collected and curated candidate genes from four major categories: association studies, linkage scans, gene expression analyses, and literature mining. Candidate genes were prioritized according to the magnitude of evidence related to dental caries. We then searched for dense modules enriched with the prioritized candidate genes through their protein-protein interactions (PPIs). We identified 23 modules comprising of 53 genes. Functional analyses of these 53 genes revealed three major clusters: cytokine network relevant genes, matrix metalloproteinases (MMPs) family, and transforming growth factor-beta (TGF-β) family, all of which have been previously implicated to play important roles in tooth development and carious lesions. Through our extensive data collection and an integrative application of gene prioritization and PPI network analyses, we built a dental caries-specific sub-network for the first time. Our study provided insights into the molecular mechanisms underlying dental caries. The framework we proposed in this work can be applied to other complex diseases. PMID:24146904

  11. Differential Network Analyses of Alzheimer’s Disease Identify Early Events in Alzheimer’s Disease Pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Jing; Rocke, David M.; Perry, George

    In late-onset Alzheimer’s disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with lowmore » topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.« less

  12. Differential Network Analyses of Alzheimer’s Disease Identify Early Events in Alzheimer’s Disease Pathology

    DOE PAGES

    Xia, Jing; Rocke, David M.; Perry, George; ...

    2014-01-01

    In late-onset Alzheimer’s disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with lowmore » topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.« less

  13. Modelling and analysis of gene regulatory network using feedback control theory

    NASA Astrophysics Data System (ADS)

    El-Samad, H.; Khammash, M.

    2010-01-01

    Molecular pathways are a part of a remarkable hierarchy of regulatory networks that operate at all levels of organisation. These regulatory networks are responsible for much of the biological complexity within the cell. The dynamic character of these pathways and the prevalence of feedback regulation strategies in their operation make them amenable to systematic mathematical analysis using the same tools that have been used with success in analysing and designing engineering control systems. In this article, we aim at establishing this strong connection through various examples where the behaviour exhibited by gene networks is explained in terms of their underlying control strategies. We complement our analysis by a survey of mathematical techniques commonly used to model gene regulatory networks and analyse their dynamic behaviour.

  14. Building gene co-expression networks using transcriptomics data for systems biology investigations: Comparison of methods using microarray data

    PubMed Central

    Kadarmideen, Haja N; Watson-haigh, Nathan S

    2012-01-01

    Gene co-expression networks (GCN), built using high-throughput gene expression data are fundamental aspects of systems biology. The main aims of this study were to compare two popular approaches to building and analysing GCN. We use real ovine microarray transcriptomics datasets representing four different treatments with Metyrapone, an inhibitor of cortisol biosynthesis. We conducted several microarray quality control checks before applying GCN methods to filtered datasets. Then we compared the outputs of two methods using connectivity as a criterion, as it measures how well a node (gene) is connected within a network. The two GCN construction methods used were, Weighted Gene Co-expression Network Analysis (WGCNA) and Partial Correlation and Information Theory (PCIT) methods. Nodes were ranked based on their connectivity measures in each of the four different networks created by WGCNA and PCIT and node ranks in two methods were compared to identify those nodes which are highly differentially ranked (HDR). A total of 1,017 HDR nodes were identified across one or more of four networks. We investigated HDR nodes by gene enrichment analyses in relation to their biological relevance to phenotypes. We observed that, in contrast to WGCNA method, PCIT algorithm removes many of the edges of the most highly interconnected nodes. Removal of edges of most highly connected nodes or hub genes will have consequences for downstream analyses and biological interpretations. In general, for large GCN construction (with > 20000 genes) access to large computer clusters, particularly those with larger amounts of shared memory is recommended. PMID:23144540

  15. Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants

    PubMed Central

    Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Silva, Filipi Nascimento; da Fontoura Costa, Luciano; Ferreira, Leandro Rodrigues; Furlanetto, Glaucio; Chacur, Paulo; Zerbini, Maria Claudia Nogueira; Carneiro-Sampaio, Magda

    2016-01-01

    Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue - obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT) - and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the “canonical” way of thymus functioning. Conversely, DS networks represent a “non-canonical” way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes. PMID:26848775

  16. Integration of heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis.

    PubMed

    van Dam, Jesse C J; Schaap, Peter J; Martins dos Santos, Vitor A P; Suárez-Diez, María

    2014-09-26

    Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each separate set has an intrinsic value that is diluted and partly lost when building a consensus network. Here we present a methodology to generate co-expression networks and, instead of a consensus network, we propose an integration framework where the different networks are kept and analysed with additional tools to efficiently combine the information extracted from each network. We developed a workflow to efficiently analyse information generated by different inference and prediction methods. Our methodology relies on providing the user the means to simultaneously visualise and analyse the coexisting networks generated by different algorithms, heterogeneous datasets, and a suite of analysis tools. As a show case, we have analysed the gene co-expression networks of Mycobacterium tuberculosis generated using over 600 expression experiments. Regarding DNA damage repair, we identified SigC as a key control element, 12 new targets for LexA, an updated LexA binding motif, and a potential mismatch repair system. We expanded the DevR regulon with 27 genes while identifying 9 targets wrongly assigned to this regulon. We discovered 10 new genes linked to zinc uptake and a new regulatory mechanism for ZuR. The use of co-expression networks to perform system level analysis allows the development of custom made methodologies. As show cases we implemented a pipeline to integrate ChIP-seq data and another method to uncover multiple regulatory layers. Our workflow is based on representing the multiple types of information as network representations and presenting these networks in a synchronous framework that allows their simultaneous visualization while keeping specific associations from the different networks. By simultaneously exploring these networks and metadata, we gained insights into regulatory mechanisms in M. tuberculosis that could not be obtained through the separate analysis of each data type.

  17. “Guilt by Association” Is the Exception Rather Than the Rule in Gene Networks

    PubMed Central

    Gillis, Jesse; Pavlidis, Paul

    2012-01-01

    Gene networks are commonly interpreted as encoding functional information in their connections. An extensively validated principle called guilt by association states that genes which are associated or interacting are more likely to share function. Guilt by association provides the central top-down principle for analyzing gene networks in functional terms or assessing their quality in encoding functional information. In this work, we show that functional information within gene networks is typically concentrated in only a very few interactions whose properties cannot be reliably related to the rest of the network. In effect, the apparent encoding of function within networks has been largely driven by outliers whose behaviour cannot even be generalized to individual genes, let alone to the network at large. While experimentalist-driven analysis of interactions may use prior expert knowledge to focus on the small fraction of critically important data, large-scale computational analyses have typically assumed that high-performance cross-validation in a network is due to a generalizable encoding of function. Because we find that gene function is not systemically encoded in networks, but dependent on specific and critical interactions, we conclude it is necessary to focus on the details of how networks encode function and what information computational analyses use to extract functional meaning. We explore a number of consequences of this and find that network structure itself provides clues as to which connections are critical and that systemic properties, such as scale-free-like behaviour, do not map onto the functional connectivity within networks. PMID:22479173

  18. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.

    PubMed

    Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan

    2015-01-01

    Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.

  19. ICan: An Integrated Co-Alteration Network to Identify Ovarian Cancer-Related Genes

    PubMed Central

    Zhou, Yuanshuai; Liu, Yongjing; Li, Kening; Zhang, Rui; Qiu, Fujun; Zhao, Ning; Xu, Yan

    2015-01-01

    Background Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer. Results We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183). Conclusion In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data. PMID:25803614

  20. Integration of biological networks and gene expression data using Cytoscape

    PubMed Central

    Cline, Melissa S; Smoot, Michael; Cerami, Ethan; Kuchinsky, Allan; Landys, Nerius; Workman, Chris; Christmas, Rowan; Avila-Campilo, Iliana; Creech, Michael; Gross, Benjamin; Hanspers, Kristina; Isserlin, Ruth; Kelley, Ryan; Killcoyne, Sarah; Lotia, Samad; Maere, Steven; Morris, John; Ono, Keiichiro; Pavlovic, Vuk; Pico, Alexander R; Vailaya, Aditya; Wang, Peng-Liang; Adler, Annette; Conklin, Bruce R; Hood, Leroy; Kuiper, Martin; Sander, Chris; Schmulevich, Ilya; Schwikowski, Benno; Warner, Guy J; Ideker, Trey; Bader, Gary D

    2013-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape. PMID:17947979

  1. Integrative Transcriptomic Analysis Uncovers Novel Gene Modules That Underlie the Sulfate Response in Arabidopsis thaliana

    PubMed Central

    Henríquez-Valencia, Carlos; Arenas-M, Anita; Medina, Joaquín; Canales, Javier

    2018-01-01

    Sulfur is an essential nutrient for plant growth and development. Sulfur is a constituent of proteins, the plasma membrane and cell walls, among other important cellular components. To obtain new insights into the gene regulatory networks underlying the sulfate response, we performed an integrative meta-analysis of transcriptomic data from five different sulfate experiments available in public databases. This bioinformatic approach allowed us to identify a robust set of genes whose expression depends only on sulfate availability, indicating that those genes play an important role in the sulfate response. In relation to sulfate metabolism, the biological function of approximately 45% of these genes is currently unknown. Moreover, we found several consistent Gene Ontology terms related to biological processes that have not been extensively studied in the context of the sulfate response; these processes include cell wall organization, carbohydrate metabolism, nitrogen compound transport, and the regulation of proteolysis. Gene co-expression network analyses revealed relationships between the sulfate-responsive genes that were distributed among seven function-specific co-expression modules. The most connected genes in the sulfate co-expression network belong to a module related to the carbon response, suggesting that this biological function plays an important role in the control of the sulfate response. Temporal analyses of the network suggest that sulfate starvation generates a biphasic response, which involves that major changes in gene expression occur during both the early and late responses. Network analyses predicted that the sulfate response is regulated by a limited number of transcription factors, including MYBs, bZIPs, and NF-YAs. In conclusion, our analysis identified new candidate genes and provided new hypotheses to advance our understanding of the transcriptional regulation of sulfate metabolism in plants. PMID:29692794

  2. Integrative Transcriptomic Analysis Uncovers Novel Gene Modules That Underlie the Sulfate Response in Arabidopsis thaliana.

    PubMed

    Henríquez-Valencia, Carlos; Arenas-M, Anita; Medina, Joaquín; Canales, Javier

    2018-01-01

    Sulfur is an essential nutrient for plant growth and development. Sulfur is a constituent of proteins, the plasma membrane and cell walls, among other important cellular components. To obtain new insights into the gene regulatory networks underlying the sulfate response, we performed an integrative meta-analysis of transcriptomic data from five different sulfate experiments available in public databases. This bioinformatic approach allowed us to identify a robust set of genes whose expression depends only on sulfate availability, indicating that those genes play an important role in the sulfate response. In relation to sulfate metabolism, the biological function of approximately 45% of these genes is currently unknown. Moreover, we found several consistent Gene Ontology terms related to biological processes that have not been extensively studied in the context of the sulfate response; these processes include cell wall organization, carbohydrate metabolism, nitrogen compound transport, and the regulation of proteolysis. Gene co-expression network analyses revealed relationships between the sulfate-responsive genes that were distributed among seven function-specific co-expression modules. The most connected genes in the sulfate co-expression network belong to a module related to the carbon response, suggesting that this biological function plays an important role in the control of the sulfate response. Temporal analyses of the network suggest that sulfate starvation generates a biphasic response, which involves that major changes in gene expression occur during both the early and late responses. Network analyses predicted that the sulfate response is regulated by a limited number of transcription factors, including MYBs, bZIPs, and NF-YAs. In conclusion, our analysis identified new candidate genes and provided new hypotheses to advance our understanding of the transcriptional regulation of sulfate metabolism in plants.

  3. Graphite Web: web tool for gene set analysis exploiting pathway topology

    PubMed Central

    Sales, Gabriele; Calura, Enrica; Martini, Paolo; Romualdi, Chiara

    2013-01-01

    Graphite web is a novel web tool for pathway analyses and network visualization for gene expression data of both microarray and RNA-seq experiments. Several pathway analyses have been proposed either in the univariate or in the global and multivariate context to tackle the complexity and the interpretation of expression results. These methods can be further divided into ‘topological’ and ‘non-topological’ methods according to their ability to gain power from pathway topology. Biological pathways are, in fact, not only gene lists but can be represented through a network where genes and connections are, respectively, nodes and edges. To this day, the most used approaches are non-topological and univariate although they miss the relationship among genes. On the contrary, topological and multivariate approaches are more powerful, but difficult to be used by researchers without bioinformatic skills. Here we present Graphite web, the first public web server for pathway analysis on gene expression data that combines topological and multivariate pathway analyses with an efficient system of interactive network visualizations for easy results interpretation. Specifically, Graphite web implements five different gene set analyses on three model organisms and two pathway databases. Graphite Web is freely available at http://graphiteweb.bio.unipd.it/. PMID:23666626

  4. Genome-wide association and network analysis of lung function in the Framingham Heart Study.

    PubMed

    Liao, Shu-Yi; Lin, Xihong; Christiani, David C

    2014-09-01

    Single nucleotide polymorphisms have been found to be associated with pulmonary function using genome-wide association studies. However, lung function is a complex trait that is likely to be influenced by multiple gene-gene interactions besides individual genes. Our goal is to build a cellular network to explore the relationship between pulmonary function and genotypes by combining SNP level and network analyses using longitudinal lung function data from the Framingham Heart Study. We analyzed 2,698 genotyped participants from the Offspring cohort that had an average of 3.35 spirometry measurements per person for a mean length of 13 years. Repeated forced expiratory volume in one second (FEV1 ) and the ratio of FEV1 to forced vital capacity (FVC) were used as outcomes. Data were analyzed using linear-mixed models for the association between lung function and alleles by accounting for the correlation among repeated measures over time within the same subject and within-family correlation. Network analyses were performed using dmGWAS and validated with data from the Third Generation cohort. Analyses identified SMAD3, TGFBR2, CD44, CTGF, VCAN, CTNNB1, SCGB1A1, PDE4D, NRG1, EPHB1, and LYN as contributors to pulmonary function. Most of these genes were novel that were not found previously using solely SNP-level analysis. These novel genes are involving the transforming growth factor beta (TGFB)-SMAD pathway, Wnt/beta-catenin pathway, etc. Therefore, combining SNP-level and network analyses using longitudinal lung function data is a useful alternative strategy to identify risk genes. © 2014 WILEY PERIODICALS, INC.

  5. Multi-Tissue Omics Analyses Reveal Molecular Regulatory Networks for Puberty in Composite Beef Cattle

    PubMed Central

    Cánovas, Angela; Reverter, Antonio; DeAtley, Kasey L.; Ashley, Ryan L.; Colgrave, Michelle L.; Fortes, Marina R. S.; Islas-Trejo, Alma; Lehnert, Sigrid; Porto-Neto, Laercio; Rincón, Gonzalo; Silver, Gail A.; Snelling, Warren M.; Medrano, Juan F.; Thomas, Milton G.

    2014-01-01

    Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium) as well as tissues known to be relevant to growth and metabolism needed to achieve puberty (i.e., longissimus dorsi muscle, adipose, and liver). These tissues were collected from pre- and post-pubertal Brangus heifers (3/8 Brahman; Bos indicus x 5/8 Angus; Bos taurus) derived from a population of cattle used to identify quantitative trait loci associated with fertility traits (i.e., age of first observed corpus luteum (ACL), first service conception (FSC), and heifer pregnancy (HPG)). In order to exploit the power of complementary omics analyses, pre- and post-puberty co-expression gene networks were constructed by combining the results from genome-wide association studies (GWAS), RNA-Seq, and bovine transcription factors. Eight tissues among pre-pubertal and post-pubertal Brangus heifers revealed 1,515 differentially expressed and 943 tissue-specific genes within the 17,832 genes confirmed by RNA-Seq analysis. The hypothalamus experienced the most notable up-regulation of genes via puberty (i.e., 204 out of 275 genes). Combining the results of GWAS and RNA-Seq, we identified 25 loci containing a single nucleotide polymorphism (SNP) associated with ACL, FSC, and (or) HPG. Seventeen of these SNP were within a gene and 13 of the genes were expressed in uterus or endometrium. Multi-tissue omics analyses revealed 2,450 co-expressed genes relative to puberty. The pre-pubertal network had 372,861 connections whereas the post-pubertal network had 328,357 connections. A sub-network from this process revealed key transcriptional regulators (i.e., PITX2, FOXA1, DACH2, PROP1, SIX6, etc.). Results from these multi-tissue omics analyses improve understanding of the number of genes and their complex interactions for puberty in cattle. PMID:25048735

  6. Insights into the Ecology and Evolution of Polyploid Plants through Network Analysis.

    PubMed

    Gallagher, Joseph P; Grover, Corrinne E; Hu, Guanjing; Wendel, Jonathan F

    2016-06-01

    Polyploidy is a widespread phenomenon throughout eukaryotes, with important ecological and evolutionary consequences. Although genes operate as components of complex pathways and networks, polyploid changes in genes and gene expression have typically been evaluated as either individual genes or as a part of broad-scale analyses. Network analysis has been fruitful in associating genomic and other 'omic'-based changes with phenotype for many systems. In polyploid species, network analysis has the potential not only to facilitate a better understanding of the complex 'omic' underpinnings of phenotypic and ecological traits common to polyploidy, but also to provide novel insight into the interaction among duplicated genes and genomes. This adds perspective to the global patterns of expression (and other 'omic') change that accompany polyploidy and to the patterns of recruitment and/or loss of genes following polyploidization. While network analysis in polyploid species faces challenges common to other analyses of duplicated genomes, present technologies combined with thoughtful experimental design provide a powerful system to explore polyploid evolution. Here, we demonstrate the utility and potential of network analysis to questions pertaining to polyploidy with an example involving evolution of the transgressively superior cotton fibres found in polyploid Gossypium hirsutum. By combining network analysis with prior knowledge, we provide further insights into the role of profilins in fibre domestication and exemplify the potential for network analysis in polyploid species. © 2016 John Wiley & Sons Ltd.

  7. Systems level analysis of the Chlamydomonas reinhardtii metabolic network reveals variability in evolutionary co-conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra

    Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolicmore » network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. As a result, the defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.« less

  8. Systems level analysis of the Chlamydomonas reinhardtii metabolic network reveals variability in evolutionary co-conservation.

    PubMed

    Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra; Ng, Patrick; Khraiwesh, Basel; Jaiswal, Ashish; Jijakli, Kenan; Koussa, Joseph; Nelson, David R; Cai, Hong; Yang, Xinping; Chang, Roger L; Papin, Jason; Yu, Haiyuan; Balaji, Santhanam; Salehi-Ashtiani, Kourosh

    2016-07-19

    Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolic network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. The defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.

  9. Systems level analysis of the Chlamydomonas reinhardtii metabolic network reveals variability in evolutionary co-conservation

    DOE PAGES

    Chaiboonchoe, Amphun; Ghamsari, Lila; Dohai, Bushra; ...

    2016-06-14

    Metabolic networks, which are mathematical representations of organismal metabolism, are reconstructed to provide computational platforms to guide metabolic engineering experiments and explore fundamental questions on metabolism. Systems level analyses, such as interrogation of phylogenetic relationships within the network, can provide further guidance on the modification of metabolic circuitries. Chlamydomonas reinhardtii, a biofuel relevant green alga that has retained key genes with plant, animal, and protist affinities, serves as an ideal model organism to investigate the interplay between gene function and phylogenetic affinities at multiple organizational levels. Here, using detailed topological and functional analyses, coupled with transcriptomics studies on a metabolicmore » network that we have reconstructed for C. reinhardtii, we show that network connectivity has a significant concordance with the co-conservation of genes; however, a distinction between topological and functional relationships is observable within the network. Dynamic and static modes of co-conservation were defined and observed in a subset of gene-pairs across the network topologically. In contrast, genes with predicted synthetic interactions, or genes involved in coupled reactions, show significant enrichment for both shorter and longer phylogenetic distances. Based on our results, we propose that the metabolic network of C. reinhardtii is assembled with an architecture to minimize phylogenetic profile distances topologically, while it includes an expansion of such distances for functionally interacting genes. This arrangement may increase the robustness of C. reinhardtii's network in dealing with varied environmental challenges that the species may face. As a result, the defined evolutionary constraints within the network, which identify important pairings of genes in metabolism, may offer guidance on synthetic biology approaches to optimize the production of desirable metabolites.« less

  10. Co-expression networks reveal the tissue-specific regulation of transcription and splicing

    PubMed Central

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D.H.; Jo, Brian; Gao, Chuan; McDowell, Ian C.; Engelhardt, Barbara E.

    2017-01-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. PMID:29021288

  11. CoNekT: an open-source framework for comparative genomic and transcriptomic network analyses.

    PubMed

    Proost, Sebastian; Mutwil, Marek

    2018-05-01

    The recent accumulation of gene expression data in the form of RNA sequencing creates unprecedented opportunities to study gene regulation and function. Furthermore, comparative analysis of the expression data from multiple species can elucidate which functional gene modules are conserved across species, allowing the study of the evolution of these modules. However, performing such comparative analyses on raw data is not feasible for many biologists. Here, we present CoNekT (Co-expression Network Toolkit), an open source web server, that contains user-friendly tools and interactive visualizations for comparative analyses of gene expression data and co-expression networks. These tools allow analysis and cross-species comparison of (i) gene expression profiles; (ii) co-expression networks; (iii) co-expressed clusters involved in specific biological processes; (iv) tissue-specific gene expression; and (v) expression profiles of gene families. To demonstrate these features, we constructed CoNekT-Plants for green alga, seed plants and flowering plants (Picea abies, Chlamydomonas reinhardtii, Vitis vinifera, Arabidopsis thaliana, Oryza sativa, Zea mays and Solanum lycopersicum) and thus provide a web-tool with the broadest available collection of plant phyla. CoNekT-Plants is freely available from http://conekt.plant.tools, while the CoNekT source code and documentation can be found at https://github.molgen.mpg.de/proost/CoNekT/.

  12. Gene network inference and visualization tools for biologists: application to new human transcriptome datasets

    PubMed Central

    Hurley, Daniel; Araki, Hiromitsu; Tamada, Yoshinori; Dunmore, Ben; Sanders, Deborah; Humphreys, Sally; Affara, Muna; Imoto, Seiya; Yasuda, Kaori; Tomiyasu, Yuki; Tashiro, Kosuke; Savoie, Christopher; Cho, Vicky; Smith, Stephen; Kuhara, Satoru; Miyano, Satoru; Charnock-Jones, D. Stephen; Crampin, Edmund J.; Print, Cristin G.

    2012-01-01

    Gene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data. We welcome contact from researchers interested in using our inference and visualization tools to answer biological questions. PMID:22121215

  13. Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development1[C][W][OA

    PubMed Central

    Mounet, Fabien; Moing, Annick; Garcia, Virginie; Petit, Johann; Maucourt, Michael; Deborde, Catherine; Bernillon, Stéphane; Le Gall, Gwénaëlle; Colquhoun, Ian; Defernez, Marianne; Giraudel, Jean-Luc; Rolin, Dominique; Rothan, Christophe; Lemaire-Chamley, Martine

    2009-01-01

    Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12–35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality. PMID:19144766

  14. Genome-Level Longitudinal Expression of Signaling Pathways and Gene Networks in Pediatric Septic Shock

    PubMed Central

    Shanley, Thomas P; Cvijanovich, Natalie; Lin, Richard; Allen, Geoffrey L; Thomas, Neal J; Doctor, Allan; Kalyanaraman, Meena; Tofil, Nancy M; Penfil, Scott; Monaco, Marie; Odoms, Kelli; Barnes, Michael; Sakthivel, Bhuvaneswari; Aronow, Bruce J; Wong, Hector R

    2007-01-01

    We have conducted longitudinal studies focused on the expression profiles of signaling pathways and gene networks in children with septic shock. Genome-level expression profiles were generated from whole blood-derived RNA of children with septic shock (n = 30) corresponding to day one and day three of septic shock, respectively. Based on sequential statistical and expression filters, day one and day three of septic shock were characterized by differential regulation of 2,142 and 2,504 gene probes, respectively, relative to controls (n = 15). Venn analysis demonstrated 239 unique genes in the day one dataset, 598 unique genes in the day three dataset, and 1,906 genes common to both datasets. Functional analyses demonstrated time-dependent, differential regulation of genes involved in multiple signaling pathways and gene networks primarily related to immunity and inflammation. Notably, multiple and distinct gene networks involving T cell- and MHC antigen-related biology were persistently downregulated on both day one and day three. Further analyses demonstrated large scale, persistent downregulation of genes corresponding to functional annotations related to zinc homeostasis. These data represent the largest reported cohort of patients with septic shock subjected to longitudinal genome-level expression profiling. The data further advance our genome-level understanding of pediatric septic shock and support novel hypotheses. PMID:17932561

  15. STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data

    PubMed Central

    Jupiter, Daniel; Chen, Hailin; VanBuren, Vincent

    2009-01-01

    Background Although expression microarrays have become a standard tool used by biologists, analysis of data produced by microarray experiments may still present challenges. Comparison of data from different platforms, organisms, and labs may involve complicated data processing, and inferring relationships between genes remains difficult. Results STARNET 2 is a new web-based tool that allows post hoc visual analysis of correlations that are derived from expression microarray data. STARNET 2 facilitates user discovery of putative gene regulatory networks in a variety of species (human, rat, mouse, chicken, zebrafish, Drosophila, C. elegans, S. cerevisiae, Arabidopsis and rice) by graphing networks of genes that are closely co-expressed across a large heterogeneous set of preselected microarray experiments. For each of the represented organisms, raw microarray data were retrieved from NCBI's Gene Expression Omnibus for a selected Affymetrix platform. All pairwise Pearson correlation coefficients were computed for expression profiles measured on each platform, respectively. These precompiled results were stored in a MySQL database, and supplemented by additional data retrieved from NCBI. A web-based tool allows user-specified queries of the database, centered at a gene of interest. The result of a query includes graphs of correlation networks, graphs of known interactions involving genes and gene products that are present in the correlation networks, and initial statistical analyses. Two analyses may be performed in parallel to compare networks, which is facilitated by the new HEATSEEKER module. Conclusion STARNET 2 is a useful tool for developing new hypotheses about regulatory relationships between genes and gene products, and has coverage for 10 species. Interpretation of the correlation networks is supported with a database of previously documented interactions, a test for enrichment of Gene Ontology terms, and heat maps of correlation distances that may be used to compare two networks. The list of genes in a STARNET network may be useful in developing a list of candidate genes to use for the inference of causal networks. The tool is freely available at , and does not require user registration. PMID:19828039

  16. Co-expression networks reveal the tissue-specific regulation of transcription and splicing.

    PubMed

    Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H; Jo, Brian; Gao, Chuan; McDowell, Ian C; Engelhardt, Barbara E; Battle, Alexis

    2017-11-01

    Gene co-expression networks capture biologically important patterns in gene expression data, enabling functional analyses of genes, discovery of biomarkers, and interpretation of genetic variants. Most network analyses to date have been limited to assessing correlation between total gene expression levels in a single tissue or small sets of tissues. Here, we built networks that additionally capture the regulation of relative isoform abundance and splicing, along with tissue-specific connections unique to each of a diverse set of tissues. We used the Genotype-Tissue Expression (GTEx) project v6 RNA sequencing data across 50 tissues and 449 individuals. First, we developed a framework called Transcriptome-Wide Networks (TWNs) for combining total expression and relative isoform levels into a single sparse network, capturing the interplay between the regulation of splicing and transcription. We built TWNs for 16 tissues and found that hubs in these networks were strongly enriched for splicing and RNA binding genes, demonstrating their utility in unraveling regulation of splicing in the human transcriptome. Next, we used a Bayesian biclustering model that identifies network edges unique to a single tissue to reconstruct Tissue-Specific Networks (TSNs) for 26 distinct tissues and 10 groups of related tissues. Finally, we found genetic variants associated with pairs of adjacent nodes in our networks, supporting the estimated network structures and identifying 20 genetic variants with distant regulatory impact on transcription and splicing. Our networks provide an improved understanding of the complex relationships of the human transcriptome across tissues. © 2017 Saha et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Dynamic modelling of microRNA regulation during mesenchymal stem cell differentiation.

    PubMed

    Weber, Michael; Sotoca, Ana M; Kupfer, Peter; Guthke, Reinhard; van Zoelen, Everardus J

    2013-11-12

    Network inference from gene expression data is a typical approach to reconstruct gene regulatory networks. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation, microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference aimes at determining interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target predictions. We applied the NetGenerator tool in order to infer an integrated gene regulatory network. Time series experiments were performed to measure mRNA and miRNA abundances of TGF-beta1+BMP2 stimulated hMSCs. Network nodes were identified by analysing temporal expression changes, miRNA target gene predictions, time series correlation and literature knowledge. Network inference was performed using NetGenerator to reconstruct a dynamical regulatory model based on the measured data and prior knowledge. The resulting model is robust against noise and shows an optimal trade-off between fitting precision and inclusion of prior knowledge. It predicts the influence of miRNAs on the expression of chondrogenic marker genes and therefore proposes novel regulatory relations in differentiation control. By analysing the inferred network, we identified a previously unknown regulatory effect of miR-524-5p on the expression of the transcription factor SOX9 and the chondrogenic marker genes COL2A1, ACAN and COL10A1. Genome-wide exploration of miRNA-mRNA regulatory relationships is a reasonable approach to identify miRNAs which have so far not been associated with the investigated differentiation process. The NetGenerator tool is able to identify valid gene regulatory networks on the basis of miRNA and mRNA time series data.

  18. Improvement of experimental testing and network training conditions with genome-wide microarrays for more accurate predictions of drug gene targets

    PubMed Central

    2014-01-01

    Background Genome-wide microarrays have been useful for predicting chemical-genetic interactions at the gene level. However, interpreting genome-wide microarray results can be overwhelming due to the vast output of gene expression data combined with off-target transcriptional responses many times induced by a drug treatment. This study demonstrates how experimental and computational methods can interact with each other, to arrive at more accurate predictions of drug-induced perturbations. We present a two-stage strategy that links microarray experimental testing and network training conditions to predict gene perturbations for a drug with a known mechanism of action in a well-studied organism. Results S. cerevisiae cells were treated with the antifungal, fluconazole, and expression profiling was conducted under different biological conditions using Affymetrix genome-wide microarrays. Transcripts were filtered with a formal network-based method, sparse simultaneous equation models and Lasso regression (SSEM-Lasso), under different network training conditions. Gene expression results were evaluated using both gene set and single gene target analyses, and the drug’s transcriptional effects were narrowed first by pathway and then by individual genes. Variables included: (i) Testing conditions – exposure time and concentration and (ii) Network training conditions – training compendium modifications. Two analyses of SSEM-Lasso output – gene set and single gene – were conducted to gain a better understanding of how SSEM-Lasso predicts perturbation targets. Conclusions This study demonstrates that genome-wide microarrays can be optimized using a two-stage strategy for a more in-depth understanding of how a cell manifests biological reactions to a drug treatment at the transcription level. Additionally, a more detailed understanding of how the statistical model, SSEM-Lasso, propagates perturbations through a network of gene regulatory interactions is achieved. PMID:24444313

  19. SpidermiR: An R/Bioconductor Package for Integrative Analysis with miRNA Data.

    PubMed

    Cava, Claudia; Colaprico, Antonio; Bertoli, Gloria; Graudenzi, Alex; Silva, Tiago C; Olsen, Catharina; Noushmehr, Houtan; Bontempi, Gianluca; Mauri, Giancarlo; Castiglioni, Isabella

    2017-01-27

    Gene Regulatory Networks (GRNs) control many biological systems, but how such network coordination is shaped is still unknown. GRNs can be subdivided into basic connections that describe how the network members interact e.g., co-expression, physical interaction, co-localization, genetic influence, pathways, and shared protein domains. The important regulatory mechanisms of these networks involve miRNAs. We developed an R/Bioconductor package, namely SpidermiR, which offers an easy access to both GRNs and miRNAs to the end user, and integrates this information with differentially expressed genes obtained from The Cancer Genome Atlas. Specifically, SpidermiR allows the users to: (i) query and download GRNs and miRNAs from validated and predicted repositories; (ii) integrate miRNAs with GRNs in order to obtain miRNA-gene-gene and miRNA-protein-protein interactions, and to analyze miRNA GRNs in order to identify miRNA-gene communities; and (iii) graphically visualize the results of the analyses. These analyses can be performed through a single interface and without the need for any downloads. The full data sets are then rapidly integrated and processed locally.

  20. Neo-Darwinism, the Modern Synthesis and selfish genes: are they of use in physiology?

    PubMed Central

    Noble, Denis

    2011-01-01

    This article argues that the gene-centric interpretations of evolution, and more particularly the selfish gene expression of those interpretations, form barriers to the integration of physiological science with evolutionary theory. A gene-centred approach analyses the relationships between genotypes and phenotypes in terms of differences (change the genotype and observe changes in phenotype). We now know that, most frequently, this does not correctly reveal the relationships because of extensive buffering by robust networks of interactions. By contrast, understanding biological function through physiological analysis requires an integrative approach in which the activity of the proteins and RNAs formed from each DNA template is analysed in networks of interactions. These networks also include components that are not specified by nuclear DNA. Inheritance is not through DNA sequences alone. The selfish gene idea is not useful in the physiological sciences, since selfishness cannot be defined as an intrinsic property of nucleotide sequences independently of gene frequency, i.e. the ‘success’ in the gene pool that is supposed to be attributable to the ‘selfish’ property. It is not a physiologically testable hypothesis. PMID:21135048

  1. Neo-Darwinism, the modern synthesis and selfish genes: are they of use in physiology?

    PubMed

    Noble, Denis

    2011-03-01

    This article argues that the gene-centric interpretations of evolution, and more particularly the selfish gene expression of those interpretations, form barriers to the integration of physiological science with evolutionary theory. A gene-centred approach analyses the relationships between genotypes and phenotypes in terms of differences (change the genotype and observe changes in phenotype). We now know that, most frequently, this does not correctly reveal the relationships because of extensive buffering by robust networks of interactions. By contrast, understanding biological function through physiological analysis requires an integrative approach in which the activity of the proteins and RNAs formed from each DNA template is analysed in networks of interactions. These networks also include components that are not specified by nuclear DNA. Inheritance is not through DNA sequences alone. The selfish gene idea is not useful in the physiological sciences, since selfishness cannot be defined as an intrinsic property of nucleotide sequences independently of gene frequency, i.e. the 'success' in the gene pool that is supposed to be attributable to the 'selfish' property. It is not a physiologically testable hypothesis.

  2. A genomic regulatory network for development

    NASA Technical Reports Server (NTRS)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; hide

    2002-01-01

    Development of the body plan is controlled by large networks of regulatory genes. A gene regulatory network that controls the specification of endoderm and mesoderm in the sea urchin embryo is summarized here. The network was derived from large-scale perturbation analyses, in combination with computational methodologies, genomic data, cis-regulatory analysis, and molecular embryology. The network contains over 40 genes at present, and each node can be directly verified at the DNA sequence level by cis-regulatory analysis. Its architecture reveals specific and general aspects of development, such as how given cells generate their ordained fates in the embryo and why the process moves inexorably forward in developmental time.

  3. Integration of multi-omics data for integrative gene regulatory network inference.

    PubMed

    Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun; Kang, Mingon

    2017-01-01

    Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called 'multi-omics data', that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN's capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed.

  4. Integration of multi-omics data for integrative gene regulatory network inference

    PubMed Central

    Zarayeneh, Neda; Ko, Euiseong; Oh, Jung Hun; Suh, Sang; Liu, Chunyu; Gao, Jean; Kim, Donghyun

    2017-01-01

    Gene regulatory networks provide comprehensive insights and indepth understanding of complex biological processes. The molecular interactions of gene regulatory networks are inferred from a single type of genomic data, e.g., gene expression data in most research. However, gene expression is a product of sequential interactions of multiple biological processes, such as DNA sequence variations, copy number variations, histone modifications, transcription factors, and DNA methylations. The recent rapid advances of high-throughput omics technologies enable one to measure multiple types of omics data, called ‘multi-omics data’, that represent the various biological processes. In this paper, we propose an Integrative Gene Regulatory Network inference method (iGRN) that incorporates multi-omics data and their interactions in gene regulatory networks. In addition to gene expressions, copy number variations and DNA methylations were considered for multi-omics data in this paper. The intensive experiments were carried out with simulation data, where iGRN’s capability that infers the integrative gene regulatory network is assessed. Through the experiments, iGRN shows its better performance on model representation and interpretation than other integrative methods in gene regulatory network inference. iGRN was also applied to a human brain dataset of psychiatric disorders, and the biological network of psychiatric disorders was analysed. PMID:29354189

  5. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.

    PubMed

    Cho, Ara; Shim, Jung Eun; Kim, Eiru; Supek, Fran; Lehner, Ben; Lee, Insuk

    2016-06-23

    A major challenge for distinguishing cancer-causing driver mutations from inconsequential passenger mutations is the long-tail of infrequently mutated genes in cancer genomes. Here, we present and evaluate a method for prioritizing cancer genes accounting not only for mutations in individual genes but also in their neighbors in functional networks, MUFFINN (MUtations For Functional Impact on Network Neighbors). This pathway-centric method shows high sensitivity compared with gene-centric analyses of mutation data. Notably, only a marginal decrease in performance is observed when using 10 % of TCGA patient samples, suggesting the method may potentiate cancer genome projects with small patient populations.

  6. Systems biology approach to late-onset Alzheimer's disease genome-wide association study identifies novel candidate genes validated using brain expression data and Caenorhabditis elegans experiments.

    PubMed

    Mukherjee, Shubhabrata; Russell, Joshua C; Carr, Daniel T; Burgess, Jeremy D; Allen, Mariet; Serie, Daniel J; Boehme, Kevin L; Kauwe, John S K; Naj, Adam C; Fardo, David W; Dickson, Dennis W; Montine, Thomas J; Ertekin-Taner, Nilufer; Kaeberlein, Matt R; Crane, Paul K

    2017-10-01

    We sought to determine whether a systems biology approach may identify novel late-onset Alzheimer's disease (LOAD) loci. We performed gene-wide association analyses and integrated results with human protein-protein interaction data using network analyses. We performed functional validation on novel genes using a transgenic Caenorhabditis elegans Aβ proteotoxicity model and evaluated novel genes using brain expression data from people with LOAD and other neurodegenerative conditions. We identified 13 novel candidate LOAD genes outside chromosome 19. Of those, RNA interference knockdowns of the C. elegans orthologs of UBC, NDUFS3, EGR1, and ATP5H were associated with Aβ toxicity, and NDUFS3, SLC25A11, ATP5H, and APP were differentially expressed in the temporal cortex. Network analyses identified novel LOAD candidate genes. We demonstrated a functional role for four of these in a C. elegans model and found enrichment of differentially expressed genes in the temporal cortex. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  7. Time-Series Analyses of Transcriptomes and Proteomes Reveal Molecular Networks Underlying Oil Accumulation in Canola.

    PubMed

    Wan, Huafang; Cui, Yixin; Ding, Yijuan; Mei, Jiaqin; Dong, Hongli; Zhang, Wenxin; Wu, Shiqi; Liang, Ying; Zhang, Chunyu; Li, Jiana; Xiong, Qing; Qian, Wei

    2016-01-01

    Understanding the regulation of lipid metabolism is vital for genetic engineering of canola ( Brassica napus L.) to increase oil yield or modify oil composition. We conducted time-series analyses of transcriptomes and proteomes to uncover the molecular networks associated with oil accumulation and dynamic changes in these networks in canola. The expression levels of genes and proteins were measured at 2, 4, 6, and 8 weeks after pollination (WAP). Our results show that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. We found that genes in almost every node of fatty acid synthesis pathway were significantly up-regulated during oil accumulation. Moreover, significant expression changes of two genes, acetyl-CoA carboxylase and acyl-ACP desaturase, were detected on both transcriptomic and proteomic levels. We confirmed the temporal expression patterns revealed by the transcriptomic analyses using quantitative real-time PCR experiments. The gene set association analysis show that the biosynthesis of fatty acids and unsaturated fatty acids are the most significant biological processes from 2-4 WAP and 4-6 WAP, respectively, which is consistent with the results of time-series analyses. These results not only provide insight into the mechanisms underlying lipid metabolism, but also reveal novel candidate genes that are worth further investigation for their values in the genetic engineering of canola.

  8. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.

    PubMed

    Li, Yongsheng; Sahni, Nidhi; Yi, Song

    2016-11-29

    Comprehensive understanding of human cancer mechanisms requires the identification of a thorough list of cancer-associated genes, which could serve as biomarkers for diagnoses and therapies in various types of cancer. Although substantial progress has been made in functional studies to uncover genes involved in cancer, these efforts are often time-consuming and costly. Therefore, it remains challenging to comprehensively identify cancer candidate genes. Network-based methods have accelerated this process through the analysis of complex molecular interactions in the cell. However, the extent to which various interactome networks can contribute to prediction of candidate genes responsible for cancer is still enigmatic. In this study, we evaluated different human protein-protein interactome networks and compared their application to cancer gene prioritization. Our results indicate that network analyses can increase the power to identify novel cancer genes. In particular, such predictive power can be enhanced with the use of unbiased systematic protein interaction maps for cancer gene prioritization. Functional analysis reveals that the top ranked genes from network predictions co-occur often with cancer-related terms in literature, and further, these candidate genes are indeed frequently mutated across cancers. Finally, our study suggests that integrating interactome networks with other omics datasets could provide novel insights into cancer-associated genes and underlying molecular mechanisms.

  9. Identification of the key regulating genes of diminished ovarian reserve (DOR) by network and gene ontology analysis.

    PubMed

    Pashaiasl, Maryam; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2016-09-01

    Diminished ovarian reserve (DOR) is one of the reasons for infertility that not only affects both older and young women. Ovarian reserve assessment can be used as a new prognostic tool for infertility treatment decision making. Here, up- and down-regulated gene expression profiles of granulosa cells were analysed to generate a putative interaction map of the involved genes. In addition, gene ontology (GO) analysis was used to get insight intol the biological processes and molecular functions of involved proteins in DOR. Eleven up-regulated genes and nine down-regulated genes were identified and assessed by constructing interaction networks based on their biological processes. PTGS2, CTGF, LHCGR, CITED, SOCS2, STAR and FSTL3 were the key nodes in the up-regulated networks, while the IGF2, AMH, GREM, and FOXC1 proteins were key in the down-regulated networks. MIRN101-1, MIRN153-1 and MIRN194-1 inhibited the expression of SOCS2, while CSH1 and BMP2 positively regulated IGF1 and IGF2. Ossification, ovarian follicle development, vasculogenesis, sequence-specific DNA binding transcription factor activity, and golgi apparatus are the major differential groups between up-regulated and down-regulated genes in DOR. Meta-analysis of publicly available transcriptomic data highlighted the high coexpression of CTGF, connective tissue growth factor, with the other key regulators of DOR. CTGF is involved in organ senescence and focal adhesion pathway according to GO analysis. These findings provide a comprehensive system biology based insight into the aetiology of DOR through network and gene ontology analyses.

  10. A Risk Stratification Model for Lung Cancer Based on Gene Coexpression Network and Deep Learning

    PubMed Central

    2018-01-01

    Risk stratification model for lung cancer with gene expression profile is of great interest. Instead of previous models based on individual prognostic genes, we aimed to develop a novel system-level risk stratification model for lung adenocarcinoma based on gene coexpression network. Using multiple microarray, gene coexpression network analysis was performed to identify survival-related networks. A deep learning based risk stratification model was constructed with representative genes of these networks. The model was validated in two test sets. Survival analysis was performed using the output of the model to evaluate whether it could predict patients' survival independent of clinicopathological variables. Five networks were significantly associated with patients' survival. Considering prognostic significance and representativeness, genes of the two survival-related networks were selected for input of the model. The output of the model was significantly associated with patients' survival in two test sets and training set (p < 0.00001, p < 0.0001 and p = 0.02 for training and test sets 1 and 2, resp.). In multivariate analyses, the model was associated with patients' prognosis independent of other clinicopathological features. Our study presents a new perspective on incorporating gene coexpression networks into the gene expression signature and clinical application of deep learning in genomic data science for prognosis prediction. PMID:29581968

  11. The effects of graded levels of calorie restriction: VII. Topological rearrangement of hypothalamic aging networks.

    PubMed

    Derous, Davina; Mitchell, Sharon E; Green, Cara L; Wang, Yingchun; Han, Jing Dong J; Chen, Luonan; Promislow, Daniel E L; Lusseau, David; Speakman, John R; Douglas, Alex

    2016-05-01

    Connectivity in a gene-gene network declines with age, typically within gene clusters. We explored the effect of short-term (3 months) graded calorie restriction (CR) (up to 40 %) on network structure of aging-associated genes in the murine hypothalamus by using conditional mutual information. The networks showed a topological rearrangement when exposed to graded CR with a higher relative within cluster connectivity at 40CR. We observed changes in gene centrality concordant with changes in CR level, with Ppargc1a, and Ppt1 having increased centrality and Etfdh, Traf3 and Abcc1 decreased centrality as CR increased. This change in gene centrality in a graded manner with CR, occurred in the absence of parallel changes in gene expression levels. This study emphasizes the importance of augmenting traditional differential gene expression analyses to better understand structural changes in the transcriptome. Overall our results suggested that CR induced changes in centrality of biological relevant genes that play an important role in preventing the age-associated loss of network integrity irrespective of their gene expression levels.

  12. The effects of graded levels of calorie restriction: VII. Topological rearrangement of hypothalamic aging networks

    PubMed Central

    Derous, Davina; Mitchell, Sharon E.; Green, Cara L.; Wang, Yingchun; Han, Jing Dong J.; Chen, Luonan; Promislow, Daniel E.L.; Lusseau, David; Speakman, John R.; Douglas, Alex

    2016-01-01

    Connectivity in a gene-gene network declines with age, typically within gene clusters. We explored the effect of short-term (3 months) graded calorie restriction (CR) (up to 40 %) on network structure of aging-associated genes in the murine hypothalamus by using conditional mutual information. The networks showed a topological rearrangement when exposed to graded CR with a higher relative within cluster connectivity at 40CR. We observed changes in gene centrality concordant with changes in CR level, with Ppargc1a, and Ppt1 having increased centrality and Etfdh, Traf3 and Abcc1 decreased centrality as CR increased. This change in gene centrality in a graded manner with CR, occurred in the absence of parallel changes in gene expression levels. This study emphasizes the importance of augmenting traditional differential gene expression analyses to better understand structural changes in the transcriptome. Overall our results suggested that CR induced changes in centrality of biological relevant genes that play an important role in preventing the age-associated loss of network integrity irrespective of their gene expression levels. PMID:27115072

  13. Gene expression links functional networks across cortex and striatum.

    PubMed

    Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J

    2018-04-12

    The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.

  14. Coexpression landscape in ATTED-II: usage of gene list and gene network for various types of pathways.

    PubMed

    Obayashi, Takeshi; Kinoshita, Kengo

    2010-05-01

    Gene coexpression analyses are a powerful method to predict the function of genes and/or to identify genes that are functionally related to query genes. The basic idea of gene coexpression analyses is that genes with similar functions should have similar expression patterns under many different conditions. This approach is now widely used by many experimental researchers, especially in the field of plant biology. In this review, we will summarize recent successful examples obtained by using our gene coexpression database, ATTED-II. Specifically, the examples will describe the identification of new genes, such as the subunits of a complex protein, the enzymes in a metabolic pathway and transporters. In addition, we will discuss the discovery of a new intercellular signaling factor and new regulatory relationships between transcription factors and their target genes. In ATTED-II, we provide two basic views of gene coexpression, a gene list view and a gene network view, which can be used as guide gene approach and narrow-down approach, respectively. In addition, we will discuss the coexpression effectiveness for various types of gene sets.

  15. A bioinformatics analysis of Lamin-A regulatory network: a perspective on epigenetic involvement in Hutchinson-Gilford progeria syndrome.

    PubMed

    Arancio, Walter

    2012-04-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare human genetic disease that leads to premature aging. HGPS is caused by mutation in the Lamin-A (LMNA) gene that leads, in affected young individuals, to the accumulation of the progerin protein, usually present only in aging differentiated cells. Bioinformatics analyses of the network of interactions of the LMNA gene and transcripts are presented. The LMNA gene network has been analyzed using the BioGRID database (http://thebiogrid.org/) and related analysis tools such as Osprey (http://biodata.mshri.on.ca/osprey/servlet/Index) and GeneMANIA ( http://genemania.org/). The network of interaction of LMNA transcripts has been further analyzed following the competing endogenous (ceRNA) hypotheses (RNA cross-talk via microRNAs [miRNAs]) and using the miRWalk database and tools (www.ma.uni-heidelberg.de/apps/zmf/mirwalk/). These analyses suggest particular relevance of epigenetic modifiers (via acetylase complexes and specifically HTATIP histone acetylase) and adenosine triphosphate (ATP)-dependent chromatin remodelers (via pBAF, BAF, and SWI/SNF complexes).

  16. The computational core and fixed point organization in Boolean networks

    NASA Astrophysics Data System (ADS)

    Correale, L.; Leone, M.; Pagnani, A.; Weigt, M.; Zecchina, R.

    2006-03-01

    In this paper, we analyse large random Boolean networks in terms of a constraint satisfaction problem. We first develop an algorithmic scheme which allows us to prune simple logical cascades and underdetermined variables, returning thereby the computational core of the network. Second, we apply the cavity method to analyse the number and organization of fixed points. We find in particular a phase transition between an easy and a complex regulatory phase, the latter being characterized by the existence of an exponential number of macroscopically separated fixed point clusters. The different techniques developed are reinterpreted as algorithms for the analysis of single Boolean networks, and they are applied in the analysis of and in silico experiments on the gene regulatory networks of baker's yeast (Saccharomyces cerevisiae) and the segment-polarity genes of the fruitfly Drosophila melanogaster.

  17. Identification of potential crucial genes associated with steroid-induced necrosis of femoral head based on gene expression profile.

    PubMed

    Lin, Zhe; Lin, Yongsheng

    2017-09-05

    The aim of this study was to explore potential crucial genes associated with the steroid-induced necrosis of femoral head (SINFH) and to provide valid biological information for further investigation of SINFH. Gene expression profile of GSE26316, generated from 3 SINFH rat samples and 3 normal rat samples were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using LIMMA package. After functional enrichment analyses of DEGs, protein-protein interaction (PPI) network and sub-PPI network analyses were conducted based on the STRING database and cytoscape. In total, 59 up-regulated DEGs and 156 downregulated DEGs were identified. The up-regulated DEGs were mainly involved in functions about immunity (e.g. Fcer1A and Il7R), and the downregulated DEGs were mainly enriched in muscle system process (e.g. Tnni2, Mylpf and Myl1). The PPI network of DEGs consisted of 123 nodes and 300 interactions. Tnni2, Mylpf, and Myl1 were the top 3 outstanding genes based on both subgraph centrality and degree centrality evaluation. These three genes interacted with each other in the network. Furthermore, the significant network module was composed of 22 downregulated genes (e.g. Tnni2, Mylpf and Myl1). These genes were mainly enriched in functions like muscle system process. The DEGs related to the regulation of immune system process (e.g. Fcer1A and Il7R), and DEGs correlated with muscle system process (e.g. Tnni2, Mylpf and Myl1) may be closely associated with the progress of SINFH, which is still needed to be confirmed by experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. EgoNet: identification of human disease ego-network modules

    PubMed Central

    2014-01-01

    Background Mining novel biomarkers from gene expression profiles for accurate disease classification is challenging due to small sample size and high noise in gene expression measurements. Several studies have proposed integrated analyses of microarray data and protein-protein interaction (PPI) networks to find diagnostic subnetwork markers. However, the neighborhood relationship among network member genes has not been fully considered by those methods, leaving many potential gene markers unidentified. The main idea of this study is to take full advantage of the biological observation that genes associated with the same or similar diseases commonly reside in the same neighborhood of molecular networks. Results We present EgoNet, a novel method based on egocentric network-analysis techniques, to exhaustively search and prioritize disease subnetworks and gene markers from a large-scale biological network. When applied to a triple-negative breast cancer (TNBC) microarray dataset, the top selected modules contain both known gene markers in TNBC and novel candidates, such as RAD51 and DOK1, which play a central role in their respective ego-networks by connecting many differentially expressed genes. Conclusions Our results suggest that EgoNet, which is based on the ego network concept, allows the identification of novel biomarkers and provides a deeper understanding of their roles in complex diseases. PMID:24773628

  19. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.

    PubMed

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim

    2014-10-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. A system biology approach for understanding the miRNA regulatory network in colon rectal cancer.

    PubMed

    Pradhan, Meeta; Nagulapalli, Kshithija; Ledford, Lakenvia; Pandit, Yogesh; Palakal, Mathew

    2015-01-01

    In this paper we present a systems biology approach to the understanding of the miRNA-regulatory network in colon rectal cancer. An initial set of significant genes in Colon Rectal Cancer (CRC) were obtained by mining relevant literature. An initial set of cancer-related miRNAs were obtained from three databases: miRBase, miRWalk, Targetscan and GEO microarray experiment. First principle methods were then used to generate the global miRNA-gene network. Significant miRNAs and associated transcription factors in the global miRNA-gene network were identified using topological and sub-graph analyses. Eleven novel miRNAs were identified and three of the novel miRNAs, hsa-miR-630, hsa-miR-100 and hsa-miR-99a, were further analysed to elucidate their role in CRC. The proposed methodology effectively made use of literature data and was able to show novel, significant miRNA-transcription associations in CRC.

  1. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network

    PubMed Central

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C.; Mohanty, Bidyut K.; Gao, Nan; Tang, Jijun; Lawson, Andrew B.; Hannun, Yusuf A.; Zheng, W. Jim

    2014-01-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes’ Ontology Fingerprints—a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms’ corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. PMID:25063300

  2. Challenges of the information age: the impact of false discovery on pathway identification.

    PubMed

    Rog, Colin J; Chekuri, Srinivasa C; Edgerton, Mary E

    2012-11-21

    Pathways with members that have known relevance to a disease are used to support hypotheses generated from analyses of gene expression and proteomic studies. Using cancer as an example, the pitfalls of searching pathways databases as support for genes and proteins that could represent false discoveries are explored. The frequency with which networks could be generated from 100 instances each of randomly selected five and ten genes sets as input to MetaCore, a commercial pathways database, was measured. A PubMed search enumerated cancer-related literature published for any gene in the networks. Using three, two, and one maximum intervening step between input genes to populate the network, networks were generated with frequencies of 97%, 77%, and 7% using ten gene sets and 73%, 27%, and 1% using five gene sets. PubMed reported an average of 4225 cancer-related articles per network gene. This can be attributed to the richly populated pathways databases and the interest in the molecular basis of cancer. As information sources become enriched, they are more likely to generate plausible mechanisms for false discoveries.

  3. Using SPEEDES to simulate the blue gene interconnect network

    NASA Technical Reports Server (NTRS)

    Springer, P.; Upchurch, E.

    2003-01-01

    JPL and the Center for Advanced Computer Architecture (CACR) is conducting application and simulation analyses of BG/L in order to establish a range of effectiveness for the Blue Gene/L MPP architecture in performing important classes of computations and to determine the design sensitivity of the global interconnect network in support of real world ASCI application execution.

  4. HTS-Net: An integrated regulome-interactome approach for establishing network regulation models in high-throughput screenings

    PubMed Central

    Rioualen, Claire; Da Costa, Quentin; Chetrit, Bernard; Charafe-Jauffret, Emmanuelle; Ginestier, Christophe

    2017-01-01

    High-throughput RNAi screenings (HTS) allow quantifying the impact of the deletion of each gene in any particular function, from virus-host interactions to cell differentiation. However, there has been less development for functional analysis tools dedicated to RNAi analyses. HTS-Net, a network-based analysis program, was developed to identify gene regulatory modules impacted in high-throughput screenings, by integrating transcription factors-target genes interaction data (regulome) and protein-protein interaction networks (interactome) on top of screening z-scores. HTS-Net produces exhaustive HTML reports for results navigation and exploration. HTS-Net is a new pipeline for RNA interference screening analyses that proves better performance than simple gene rankings by z-scores, by re-prioritizing genes and replacing them in their biological context, as shown by the three studies that we reanalyzed. Formatted input data for the three studied datasets, source code and web site for testing the system are available from the companion web site at http://htsnet.marseille.inserm.fr/. We also compared our program with existing algorithms (CARD and hotnet2). PMID:28949986

  5. Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease.

    PubMed

    Johnson, Michael R; Shkura, Kirill; Langley, Sarah R; Delahaye-Duriez, Andree; Srivastava, Prashant; Hill, W David; Rackham, Owen J L; Davies, Gail; Harris, Sarah E; Moreno-Moral, Aida; Rotival, Maxime; Speed, Doug; Petrovski, Slavé; Katz, Anaïs; Hayward, Caroline; Porteous, David J; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Starr, John M; Liewald, David C; Visconti, Alessia; Falchi, Mario; Bottolo, Leonardo; Rossetti, Tiziana; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Grote, Alexander; Helmstaedter, Christoph; Becker, Albert J; Kaminski, Rafal M; Deary, Ian J; Petretto, Enrico

    2016-02-01

    Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease-associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease.

  6. Whole blood genome-wide expression profiling and network analysis suggest MELAS master regulators.

    PubMed

    Mende, Susanne; Royer, Loic; Herr, Alexander; Schmiedel, Janet; Deschauer, Marcus; Klopstock, Thomas; Kostic, Vladimir S; Schroeder, Michael; Reichmann, Heinz; Storch, Alexander

    2011-07-01

    The heteroplasmic mitochondrial DNA (mtDNA) mutation A3243G causes the mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome as one of the most frequent mitochondrial diseases. The process of reconfiguration of nuclear gene expression profile to accommodate cellular processes to the functional status of mitochondria might be a key to MELAS disease manifestation and could contribute to its diverse phenotypic presentation. To determine master regulatory protein networks and disease-modifying genes in MELAS syndrome. Analyses of whole blood transcriptomes from 10 MELAS patients using a novel strategy by combining classic Affymetrix oligonucleotide microarray profiling with regulatory and protein interaction network analyses. Hierarchical cluster analysis elucidated that the relative abundance of mutant mtDNA molecules is decisive for the nuclear gene expression response. Further analyses confirmed not only transcription factors already known to be involved in mitochondrial diseases (such as TFAM), but also detected the hypoxia-inducible factor 1 complex, nuclear factor Y and cAMP responsive element-binding protein-related transcription factors as novel master regulators for reconfiguration of nuclear gene expression in response to the MELAS mutation. Correlation analyses of gene alterations and clinico-genetic data detected significant correlations between A3243G-induced nuclear gene expression changes and mutant mtDNA load as well as disease characteristics. These potential disease-modifying genes influencing the expression of the MELAS phenotype are mainly related to clusters primarily unrelated to cellular energy metabolism, but important for nucleic acid and protein metabolism, and signal transduction. Our data thus provide a framework to search for new pathogenetic concepts and potential therapeutic approaches to treat the MELAS syndrome.

  7. Transcriptional master regulator analysis in breast cancer genetic networks.

    PubMed

    Tovar, Hugo; García-Herrera, Rodrigo; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2015-12-01

    Gene regulatory networks account for the delicate mechanisms that control gene expression. Under certain circumstances, gene regulatory programs may give rise to amplification cascades. Such transcriptional cascades are events in which activation of key-responsive transcription factors called master regulators trigger a series of gene expression events. The action of transcriptional master regulators is then important for the establishment of certain programs like cell development and differentiation. However, such cascades have also been related with the onset and maintenance of cancer phenotypes. Here we present a systematic implementation of a series of algorithms aimed at the inference of a gene regulatory network and analysis of transcriptional master regulators in the context of primary breast cancer cells. Such studies were performed in a highly curated database of 880 microarray gene expression experiments on biopsy-captured tissue corresponding to primary breast cancer and healthy controls. Biological function and biochemical pathway enrichment analyses were also performed to study the role that the processes controlled - at the transcriptional level - by such master regulators may have in relation to primary breast cancer. We found that transcription factors such as AGTR2, ZNF132, TFDP3 and others are master regulators in this gene regulatory network. Sets of genes controlled by these regulators are involved in processes that are well-known hallmarks of cancer. This kind of analyses may help to understand the most upstream events in the development of phenotypes, in particular, those regarding cancer biology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    PubMed Central

    Brorsson, C.; Hansen, N. T.; Lage, K.; Bergholdt, R.; Brunak, S.; Pociot, F.

    2009-01-01

    Aim To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1 genes. Methods We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein–protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein modules were statistically evaluated using permutation. Results A total of 151 genes could be mapped to nodes within the protein interaction network and their interaction partners were identified. Five protein interaction modules reached statistical significance using this approach. The identified proteins are well known in the pathogenesis of T1D, but the modules also contain additional candidates that have been implicated in β-cell development and diabetic complications. Conclusions The extensive LD within the MHC region makes it important to develop new methods for analysing genotyping data for identification of additional risk genes for T1D. Combining genetic data with knowledge about functional pathways provides new insight into mechanisms underlying T1D. PMID:19143816

  9. A novel method to identify pathways associated with renal cell carcinoma based on a gene co-expression network

    PubMed Central

    RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG

    2015-01-01

    The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425

  10. NEAT: an efficient network enrichment analysis test.

    PubMed

    Signorelli, Mirko; Vinciotti, Veronica; Wit, Ernst C

    2016-09-05

    Network enrichment analysis is a powerful method, which allows to integrate gene enrichment analysis with the information on relationships between genes that is provided by gene networks. Existing tests for network enrichment analysis deal only with undirected networks, they can be computationally slow and are based on normality assumptions. We propose NEAT, a test for network enrichment analysis. The test is based on the hypergeometric distribution, which naturally arises as the null distribution in this context. NEAT can be applied not only to undirected, but to directed and partially directed networks as well. Our simulations indicate that NEAT is considerably faster than alternative resampling-based methods, and that its capacity to detect enrichments is at least as good as the one of alternative tests. We discuss applications of NEAT to network analyses in yeast by testing for enrichment of the Environmental Stress Response target gene set with GO Slim and KEGG functional gene sets, and also by inspecting associations between functional sets themselves. NEAT is a flexible and efficient test for network enrichment analysis that aims to overcome some limitations of existing resampling-based tests. The method is implemented in the R package neat, which can be freely downloaded from CRAN ( https://cran.r-project.org/package=neat ).

  11. From SNP co-association to RNA co-expression: novel insights into gene networks for intramuscular fatty acid composition in porcine.

    PubMed

    Ramayo-Caldas, Yuliaxis; Ballester, Maria; Fortes, Marina R S; Esteve-Codina, Anna; Castelló, Anna; Noguera, Jose L; Fernández, Ana I; Pérez-Enciso, Miguel; Reverter, Antonio; Folch, Josep M

    2014-03-26

    Fatty acids (FA) play a critical role in energy homeostasis and metabolic diseases; in the context of livestock species, their profile also impacts on meat quality for healthy human consumption. Molecular pathways controlling lipid metabolism are highly interconnected and are not fully understood. Elucidating these molecular processes will aid technological development towards improvement of pork meat quality and increased knowledge of FA metabolism, underpinning metabolic diseases in humans. The results from genome-wide association studies (GWAS) across 15 phenotypes were subjected to an Association Weight Matrix (AWM) approach to predict a network of 1,096 genes related to intramuscular FA composition in pigs. To identify the key regulators of FA metabolism, we focused on the minimal set of transcription factors (TF) that the explored the majority of the network topology. Pathway and network analyses pointed towards a trio of TF as key regulators of FA metabolism: NCOA2, FHL2 and EP300. Promoter sequence analyses confirmed that these TF have binding sites for some well-know regulators of lipid and carbohydrate metabolism. For the first time in a non-model species, some of the co-associations observed at the genetic level were validated through co-expression at the transcriptomic level based on real-time PCR of 40 genes in adipose tissue, and a further 55 genes in liver. In particular, liver expression of NCOA2 and EP300 differed between pig breeds (Iberian and Landrace) extreme in terms of fat deposition. Highly clustered co-expression networks in both liver and adipose tissues were observed. EP300 and NCOA2 showed centrality parameters above average in the both networks. Over all genes, co-expression analyses confirmed 28.9% of the AWM predicted gene-gene interactions in liver and 33.0% in adipose tissue. The magnitude of this validation varied across genes, with up to 60.8% of the connections of NCOA2 in adipose tissue being validated via co-expression. Our results recapitulate the known transcriptional regulation of FA metabolism, predict gene interactions that can be experimentally validated, and suggest that genetic variants mapped to EP300, FHL2, and NCOA2 modulate lipid metabolism and control energy homeostasis in pigs.

  12. An additional k-means clustering step improves the biological features of WGCNA gene co-expression networks.

    PubMed

    Botía, Juan A; Vandrovcova, Jana; Forabosco, Paola; Guelfi, Sebastian; D'Sa, Karishma; Hardy, John; Lewis, Cathryn M; Ryten, Mina; Weale, Michael E

    2017-04-12

    Weighted Gene Co-expression Network Analysis (WGCNA) is a widely used R software package for the generation of gene co-expression networks (GCN). WGCNA generates both a GCN and a derived partitioning of clusters of genes (modules). We propose k-means clustering as an additional processing step to conventional WGCNA, which we have implemented in the R package km2gcn (k-means to gene co-expression network, https://github.com/juanbot/km2gcn ). We assessed our method on networks created from UKBEC data (10 different human brain tissues), on networks created from GTEx data (42 human tissues, including 13 brain tissues), and on simulated networks derived from GTEx data. We observed substantially improved module properties, including: (1) few or zero misplaced genes; (2) increased counts of replicable clusters in alternate tissues (x3.1 on average); (3) improved enrichment of Gene Ontology terms (seen in 48/52 GCNs) (4) improved cell type enrichment signals (seen in 21/23 brain GCNs); and (5) more accurate partitions in simulated data according to a range of similarity indices. The results obtained from our investigations indicate that our k-means method, applied as an adjunct to standard WGCNA, results in better network partitions. These improved partitions enable more fruitful downstream analyses, as gene modules are more biologically meaningful.

  13. Investigating the Effects of Imputation Methods for Modelling Gene Networks Using a Dynamic Bayesian Network from Gene Expression Data

    PubMed Central

    CHAI, Lian En; LAW, Chow Kuan; MOHAMAD, Mohd Saberi; CHONG, Chuii Khim; CHOON, Yee Wen; DERIS, Safaai; ILLIAS, Rosli Md

    2014-01-01

    Background: Gene expression data often contain missing expression values. Therefore, several imputation methods have been applied to solve the missing values, which include k-nearest neighbour (kNN), local least squares (LLS), and Bayesian principal component analysis (BPCA). However, the effects of these imputation methods on the modelling of gene regulatory networks from gene expression data have rarely been investigated and analysed using a dynamic Bayesian network (DBN). Methods: In the present study, we separately imputed datasets of the Escherichia coli S.O.S. DNA repair pathway and the Saccharomyces cerevisiae cell cycle pathway with kNN, LLS, and BPCA, and subsequently used these to generate gene regulatory networks (GRNs) using a discrete DBN. We made comparisons on the basis of previous studies in order to select the gene network with the least error. Results: We found that BPCA and LLS performed better on larger networks (based on the S. cerevisiae dataset), whereas kNN performed better on smaller networks (based on the E. coli dataset). Conclusion: The results suggest that the performance of each imputation method is dependent on the size of the dataset, and this subsequently affects the modelling of the resultant GRNs using a DBN. In addition, on the basis of these results, a DBN has the capacity to discover potential edges, as well as display interactions, between genes. PMID:24876803

  14. Comprehensive analyses of tissue-specific networks with implications to psychiatric diseases

    PubMed Central

    Lin, Guan Ning; Corominas, Roser; Nam, Hyun-Jun; Urresti, Jorge; Iakoucheva, Lilia M.

    2017-01-01

    Recent advances in genome sequencing and “omics” technologies are opening new opportunities for improving diagnosis and treatment of human diseases. The precision medicine initiative in particular aims at developing individualized treatment options that take into account individual variability in genes and environment of each person. Systems biology approaches that group genes, transcripts and proteins into functionally meaningful networks will play crucial role in the future of personalized medicine. They will allow comparison of healthy and disease-affected tissues and organs from the same individual, as well as between healthy and disease-afflicted individuals. However, the field faces a multitude of challenges ranging from data integration to statistical and combinatorial issues in data analyses. This chapter describes computational approaches developed by us and the others to tackle challenges in tissue-specific network analyses, with the main focus on psychiatric diseases. PMID:28849569

  15. Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma.

    PubMed

    Pan, Yue; Lu, Lingyun; Chen, Junquan; Zhong, Yong; Dai, Zhehao

    2018-01-01

    This study aimed to identify potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma by comprehensive bioinformatics analysis. Data of gene expression profiles (GSE28424) and miRNA expression profiles (GSE28423) were downloaded from GEO database. The differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by R Bioconductor packages. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. The relationships among the DEGs and module in PPI network were analyzed by plug-in NetworkAnalyzer and MCODE seperately. Through the TargetScan and comparing target genes with DEGs, the miRNA-mRNA regulation network was established. Totally 346 DEGs and 90 DEMIs were found to be differentially expressed. These DEGs were enriched in biological processes and KEGG pathway of inflammatory immune response. 25 genes in the PPI network were selected as hub genes. Top 10 hub genes were TYROBP, HLA-DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1, KIF20A, FERMT3, HLA-E. PPI network of DEGs followed a pattern of power law network and met the characteristics of small-world network. MCODE analysis identified 4 clusters and the most significant cluster consisted of 11 nodes and 55 edges. SEPP1, CKS2, TCAP, BPI were identified as the seed genes in their own clusters, respectively. The miRNA-mRNA regulation network which was composed of 89 pairs was established. MiR-210 had the highest connectivity with 12 target genes. Among the predicted target of MiR-96, HLA-DPA1 and TYROBP were the hub genes. Our study indicated possible differentially expressed genes and miRNA, and microRNA-mRNA negative regulatory networks in osteosarcoma by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of osteosarcoma.

  16. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    PubMed

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-02

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Stability and structural properties of gene regulation networks with coregulation rules.

    PubMed

    Warrell, Jonathan; Mhlanga, Musa

    2017-05-07

    Coregulation of the expression of groups of genes has been extensively demonstrated empirically in bacterial and eukaryotic systems. Such coregulation can arise through the use of shared regulatory motifs, which allow the coordinated expression of modules (and module groups) of functionally related genes across the genome. Coregulation can also arise through the physical association of multi-gene complexes through chromosomal looping, which are then transcribed together. We present a general formalism for modeling coregulation rules in the framework of Random Boolean Networks (RBN), and develop specific models for transcription factor networks with modular structure (including module groups, and multi-input modules (MIM) with autoregulation) and multi-gene complexes (including hierarchical differentiation between multi-gene complex members). We develop a mean-field approach to analyse the dynamical stability of large networks incorporating coregulation, and show that autoregulated MIM and hierarchical gene-complex models can achieve greater stability than networks without coregulation whose rules have matching activation frequency. We provide further analysis of the stability of small networks of both kinds through simulations. We also characterize several general properties of the transients and attractors in the hierarchical coregulation model, and show using simulations that the steady-state distribution factorizes hierarchically as a Bayesian network in a Markov Jump Process analogue of the RBN model. Copyright © 2017. Published by Elsevier Ltd.

  18. Identifying osteosarcoma metastasis associated genes by weighted gene co-expression network analysis (WGCNA).

    PubMed

    Tian, Honglai; Guan, Donghui; Li, Jianmin

    2018-06-01

    Osteosarcoma (OS), the most common malignant bone tumor, accounts for the heavy healthy threat in the period of children and adolescents. OS occurrence usually correlates with early metastasis and high death rate. This study aimed to better understand the mechanism of OS metastasis.Based on Gene Expression Omnibus (GEO) database, we downloaded 4 expression profile data sets associated with OS metastasis, and selected differential expressed genes. Weighted gene co-expression network analysis (WGCNA) approach allowed us to investigate the most OS metastasis-correlated module. Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to give annotation of selected OS metastasis-associated genes.We select 897 differential expressed genes from OS metastasis and OS non-metastasis groups. Based on these selected genes, WGCNA further explored 142 genes included in the most OS metastasis-correlated module. Gene Ontology functional and KEGG pathway enrichment analyses showed that significantly OS metastasis-associated genes were involved in pathway correlated with insulin-like growth factor binding.Our research figured out several potential molecules participating in metastasis process and factors acting as biomarker. With this study, we could better explore the mechanism of OS metastasis and further discover more therapy targets.

  19. COMPADRE: an R and web resource for pathway activity analysis by component decompositions.

    PubMed

    Ramos-Rodriguez, Roberto-Rafael; Cuevas-Diaz-Duran, Raquel; Falciani, Francesco; Tamez-Peña, Jose-Gerardo; Trevino, Victor

    2012-10-15

    The analysis of biological networks has become essential to study functional genomic data. Compadre is a tool to estimate pathway/gene sets activity indexes using sub-matrix decompositions for biological networks analyses. The Compadre pipeline also includes one of the direct uses of activity indexes to detect altered gene sets. For this, the gene expression sub-matrix of a gene set is decomposed into components, which are used to test differences between groups of samples. This procedure is performed with and without differentially expressed genes to decrease false calls. During this process, Compadre also performs an over-representation test. Compadre already implements four decomposition methods [principal component analysis (PCA), Isomaps, independent component analysis (ICA) and non-negative matrix factorization (NMF)], six statistical tests (t- and f-test, SAM, Kruskal-Wallis, Welch and Brown-Forsythe), several gene sets (KEGG, BioCarta, Reactome, GO and MsigDB) and can be easily expanded. Our simulation results shown in Supplementary Information suggest that Compadre detects more pathways than over-representation tools like David, Babelomics and Webgestalt and less false positives than PLAGE. The output is composed of results from decomposition and over-representation analyses providing a more complete biological picture. Examples provided in Supplementary Information show the utility, versatility and simplicity of Compadre for analyses of biological networks. Compadre is freely available at http://bioinformatica.mty.itesm.mx:8080/compadre. The R package is also available at https://sourceforge.net/p/compadre.

  20. Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information

    PubMed Central

    Wang, Jianxin; Chen, Bo; Wang, Yaqun; Wang, Ningtao; Garbey, Marc; Tran-Son-Tay, Roger; Berceli, Scott A.; Wu, Rongling

    2013-01-01

    The capacity of an organism to respond to its environment is facilitated by the environmentally induced alteration of gene and protein expression, i.e. expression plasticity. The reconstruction of gene regulatory networks based on expression plasticity can gain not only new insights into the causality of transcriptional and cellular processes but also the complex regulatory mechanisms that underlie biological function and adaptation. We describe an approach for network inference by integrating expression plasticity into Shannon’s mutual information. Beyond Pearson correlation, mutual information can capture non-linear dependencies and topology sparseness. The approach measures the network of dependencies of genes expressed in different environments, allowing the environment-induced plasticity of gene dependencies to be tested in unprecedented details. The approach is also able to characterize the extent to which the same genes trigger different amounts of expression in response to environmental changes. We demonstrated the usefulness of this approach through analysing gene expression data from a rabbit vein graft study that includes two distinct blood flow environments. The proposed approach provides a powerful tool for the modelling and analysis of dynamic regulatory networks using gene expression data from distinct environments. PMID:23470995

  1. Identification and Analyses of AUX-IAA target genes controlling multiple pathways in developing fiber cells of Gossypium hirsutum L

    PubMed Central

    Nigam, Deepti; Sawant, Samir V

    2013-01-01

    Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development. PMID:24497725

  2. Summing up the noise in gene networks

    NASA Astrophysics Data System (ADS)

    Paulsson, Johan

    2004-01-01

    Random fluctuations in genetic networks are inevitable as chemical reactions are probabilistic and many genes, RNAs and proteins are present in low numbers per cell. Such `noise' affects all life processes and has recently been measured using green fluorescent protein (GFP). Two studies show that negative feedback suppresses noise, and three others identify the sources of noise in gene expression. Here I critically analyse these studies and present a simple equation that unifies and extends both the mathematical and biological perspectives.

  3. Network Analysis of Rodent Transcriptomes in Spaceflight

    NASA Technical Reports Server (NTRS)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  4. Transcriptional responses in thyroid tissues from rats treated with a tumorigenic and a non-tumorigenic triazole conazole fungicide.

    PubMed

    Hester, Susan D; Nesnow, Stephen

    2008-03-15

    Conazoles are azole-containing fungicides that are used in agriculture and medicine. Conazoles can induce follicular cell adenomas of the thyroid in rats after chronic bioassay. The goal of this study was to identify pathways and networks of genes that were associated with thyroid tumorigenesis through transcriptional analyses. To this end, we compared transcriptional profiles from tissues of rats treated with a tumorigenic and a non-tumorigenic conazole. Triadimefon, a rat thyroid tumorigen, and myclobutanil, which was not tumorigenic in rats after a 2-year bioassay, were administered in the feed to male Wistar/Han rats for 30 or 90 days similar to the treatment conditions previously used in their chronic bioassays. Thyroid gene expression was determined using high density Affymetrix GeneChips (Rat 230_2). Gene expression was analyzed by the Gene Set Expression Analyses method which clearly separated the tumorigenic treatments (tumorigenic response group (TRG)) from the non-tumorigenic treatments (non-tumorigenic response group (NRG)). Core genes from these gene sets were mapped to canonical, metabolic, and GeneGo processes and these processes compared across group and treatment time. Extensive analyses were performed on the 30-day gene sets as they represented the major perturbations. Gene sets in the 30-day TRG group had over representation of fatty acid metabolism, oxidation, and degradation processes (including PPARgamma and CYP involvement), and of cell proliferation responses. Core genes from these gene sets were combined into networks and found to possess signaling interactions. In addition, the core genes in each gene set were compared with genes known to be associated with human thyroid cancer. Among the genes that appeared in both rat and human data sets were: Acaca, Asns, Cebpg, Crem, Ddit3, Gja1, Grn, Jun, Junb, and Vegf. These genes were major contributors in the previously developed network from triadimefon-treated rat thyroids. It is postulated that triadimefon induces oxidative response genes and activates the nuclear receptor, Ppargamma, initiating transcription of gene products and signaling to a series of genes involved in cell proliferation.

  5. Comprehensive analysis of differentially expressed profiles of lncRNAs and construction of miR-133b mediated ceRNA network in colorectal cancer.

    PubMed

    Wu, Hao; Wu, Runliu; Chen, Miao; Li, Daojiang; Dai, Jing; Zhang, Yi; Gao, Kai; Yu, Jun; Hu, Gui; Guo, Yihang; Lin, Changwei; Li, Xiaorong

    2017-03-28

    Growing evidence suggests that long non-coding RNAs (lncRNAs) play a key role in tumorigenesis. However, the mechanism remains largely unknown. Thousands of significantly dysregulated lncRNAs and mRNAs were identified by microarray. Furthermore, a miR-133b-meditated lncRNA-mRNA ceRNA network was revealed, a subset of which was validated in 14 paired CRC patient tumor/non-tumor samples. Gene set enrichment analysis (GSEA) results demonstrated that lncRNAs ENST00000520055 and ENST00000535511 shared KEGG pathways with miR-133b target genes. We used microarrays to survey the lncRNA and mRNA expression profiles of colorectal cancer and para-cancer tissues. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to explore the functions of the significantly dysregulated genes. An innovate method was employed that combined analyses of two microarray data sets to construct a miR-133b-mediated lncRNA-mRNA competing endogenous RNAs (ceRNA) network. Quantitative RT-PCR analysis was used to validate part of this network. GSEA was used to predict the potential functions of these lncRNAs. This study identifies and validates a new method to investigate the miR-133b-mediated lncRNA-mRNA ceRNA network and lays the foundation for future investigation into the role of lncRNAs in colorectal cancer.

  6. Exploring the Genomic Roadmap and Molecular Phylogenetics Associated with MODY Cascades Using Computational Biology.

    PubMed

    Chakraborty, Chiranjib; Bandyopadhyay, Sanghamitra; Doss, C George Priya; Agoramoorthy, Govindasamy

    2015-04-01

    Maturity onset diabetes of the young (MODY) is a metabolic and genetic disorder. It is different from type 1 and type 2 diabetes with low occurrence level (1-2%) among all diabetes. This disorder is a consequence of β-cell dysfunction. Till date, 11 subtypes of MODY have been identified, and all of them can cause gene mutations. However, very little is known about the gene mapping, molecular phylogenetics, and co-expression among MODY genes and networking between cascades. This study has used latest servers and software such as VarioWatch, ClustalW, MUSCLE, G Blocks, Phylogeny.fr, iTOL, WebLogo, STRING, and KEGG PATHWAY to perform comprehensive analyses of gene mapping, multiple sequences alignment, molecular phylogenetics, protein-protein network design, co-expression analysis of MODY genes, and pathway development. The MODY genes are located in chromosomes-2, 7, 8, 9, 11, 12, 13, 17, and 20. Highly aligned block shows Pro, Gly, Leu, Arg, and Pro residues are highly aligned in the positions of 296, 386, 437, 455, 456 and 598, respectively. Alignment scores inform us that HNF1A and HNF1B proteins have shown high sequence similarity among MODY proteins. Protein-protein network design shows that HNF1A, HNF1B, HNF4A, NEUROD1, PDX1, PAX4, INS, and GCK are strongly connected, and the co-expression analyses between MODY genes also show distinct association between HNF1A and HNF4A genes. This study has used latest tools of bioinformatics to develop a rapid method to assess the evolutionary relationship, the network development, and the associations among eleven MODY genes and cascades. The prediction of sequence conservation, molecular phylogenetics, protein-protein network and the association between the MODY cascades enhances opportunities to get more insights into the less-known MODY disease.

  7. A Continental-Wide Perspective: The Genepool of Nuclear Encoded Ribosomal DNA and Single-Copy Gene Sequences in North American Boechera (Brassicaceae)

    PubMed Central

    Kiefer, Christiane; Koch, Marcus A.

    2012-01-01

    74 of the currently accepted 111 taxa of the North American genus Boechera (Brassicaceae) were subject to pyhlogenetic reconstruction and network analysis. The dataset comprised 911 accessions for which ITS sequences were analyzed. Phylogenetic analyses yielded largely unresolved trees. Together with the network analysis confirming this result this can be interpreted as an indication for multiple, independent, and rapid diversification events. Network analyses were superimposed with datasets describing i) geographical distribution, ii) taxonomy, iii) reproductive mode, and iv) distribution history based on phylogeographic evidence. Our results provide first direct evidence for enormous reticulate evolution in the entire genus and give further insights into the evolutionary history of this complex genus on a continental scale. In addition two novel single-copy gene markers, orthologues of the Arabidopsis thaliana genes At2g25920 and At3g18900, were analyzed for subsets of taxa and confirmed the findings obtained through the ITS data. PMID:22606266

  8. Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF) and blood reveals new candidate genes for multiple sclerosis

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Tabatabaei, Seyyed Mohammad; Namaki, Saeed

    2016-01-01

    Background The involvement of multiple genes and missing heritability, which are dominant in complex diseases such as multiple sclerosis (MS), entail using network biology to better elucidate their molecular basis and genetic factors. We therefore aimed to integrate interactome (protein–protein interaction (PPI)) and transcriptomes data to construct and analyze PPI networks for MS disease. Methods Gene expression profiles in paired cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) samples from MS patients, sampled in relapse or remission and controls, were analyzed. Differentially expressed genes which determined only in CSF (MS vs. control) and PBMCs (relapse vs. remission) separately integrated with PPI data to construct the Query-Query PPI (QQPPI) networks. The networks were further analyzed to investigate more central genes, functional modules and complexes involved in MS progression. Results The networks were analyzed and high centrality genes were identified. Exploration of functional modules and complexes showed that the majority of high centrality genes incorporated in biological pathways driving MS pathogenesis. Proteasome and spliceosome were also noticeable in enriched pathways in PBMCs (relapse vs. remission) which were identified by both modularity and clique analyses. Finally, STK4, RB1, CDKN1A, CDK1, RAC1, EZH2, SDCBP genes in CSF (MS vs. control) and CDC37, MAP3K3, MYC genes in PBMCs (relapse vs. remission) were identified as potential candidate genes for MS, which were the more central genes involved in biological pathways. Discussion This study showed that network-based analysis could explicate the complex interplay between biological processes underlying MS. Furthermore, an experimental validation of candidate genes can lead to identification of potential therapeutic targets. PMID:28028462

  9. Gene Network Rewiring to Study Melanoma Stage Progression and Elements Essential for Driving Melanoma

    PubMed Central

    Kaushik, Abhinav; Bhatia, Yashuma; Ali, Shakir; Gupta, Dinesh

    2015-01-01

    Metastatic melanoma patients have a poor prognosis, mainly attributable to the underlying heterogeneity in melanoma driver genes and altered gene expression profiles. These characteristics of melanoma also make the development of drugs and identification of novel drug targets for metastatic melanoma a daunting task. Systems biology offers an alternative approach to re-explore the genes or gene sets that display dysregulated behaviour without being differentially expressed. In this study, we have performed systems biology studies to enhance our knowledge about the conserved property of disease genes or gene sets among mutually exclusive datasets representing melanoma progression. We meta-analysed 642 microarray samples to generate melanoma reconstructed networks representing four different stages of melanoma progression to extract genes with altered molecular circuitry wiring as compared to a normal cellular state. Intriguingly, a majority of the melanoma network-rewired genes are not differentially expressed and the disease genes involved in melanoma progression consistently modulate its activity by rewiring network connections. We found that the shortlisted disease genes in the study show strong and abnormal network connectivity, which enhances with the disease progression. Moreover, the deviated network properties of the disease gene sets allow ranking/prioritization of different enriched, dysregulated and conserved pathway terms in metastatic melanoma, in agreement with previous findings. Our analysis also reveals presence of distinct network hubs in different stages of metastasizing tumor for the same set of pathways in the statistically conserved gene sets. The study results are also presented as a freely available database at http://bioinfo.icgeb.res.in/m3db/. The web-based database resource consists of results from the analysis presented here, integrated with cytoscape web and user-friendly tools for visualization, retrieval and further analysis. PMID:26558755

  10. Network pharmacology-based prediction of active compounds and molecular targets in Yijin-Tang acting on hyperlipidaemia and atherosclerosis.

    PubMed

    Lee, A Yeong; Park, Won; Kang, Tae-Wook; Cha, Min Ho; Chun, Jin Mi

    2018-07-15

    Yijin-Tang (YJT) is a traditional prescription for the treatment of hyperlipidaemia, atherosclerosis and other ailments related to dampness phlegm, a typical pathological symptom of abnormal body fluid metabolism in Traditional Korean Medicine. However, a holistic network pharmacology approach to understanding the therapeutic mechanisms underlying hyperlipidaemia and atherosclerosis has not been pursued. To examine the network pharmacological potential effects of YJT on hyperlipidaemia and atherosclerosis, we analysed components, performed target prediction and network analysis, and investigated interacting pathways using a network pharmacology approach. Information on compounds in herbal medicines was obtained from public databases, and oral bioavailability and drug-likeness was screened using absorption, distribution, metabolism, and excretion (ADME) criteria. Correlations between compounds and genes were linked using the STITCH database, and genes related to hyperlipidaemia and atherosclerosis were gathered using the GeneCards database. Human genes were identified and subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Network analysis identified 447 compounds in five herbal medicines that were subjected to ADME screening, and 21 compounds and 57 genes formed the main pathways linked to hyperlipidaemia and atherosclerosis. Among them, 10 compounds (naringenin, nobiletin, hesperidin, galangin, glycyrrhizin, homogentisic acid, stigmasterol, 6-gingerol, quercetin and glabridin) were linked to more than four genes, and are bioactive compounds and key chemicals. Core genes in this network were CASP3, CYP1A1, CYP1A2, MMP2 and MMP9. The compound-target gene network revealed close interactions between multiple components and multiple targets, and facilitates a better understanding of the potential therapeutic effects of YJT. Pharmacological network analysis can help to explain the potential effects of YJT for treating dampness phlegm-related diseases such as hyperlipidaemia and atherosclerosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Gene network analysis: from heart development to cardiac therapy.

    PubMed

    Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B

    2015-03-01

    Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.

  12. Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach.

    PubMed

    Steggles, L Jason; Banks, Richard; Shaw, Oliver; Wipat, Anil

    2007-02-01

    New developments in post-genomic technology now provide researchers with the data necessary to study regulatory processes in a holistic fashion at multiple levels of biological organization. One of the major challenges for the biologist is to integrate and interpret these vast data resources to gain a greater understanding of the structure and function of the molecular processes that mediate adaptive and cell cycle driven changes in gene expression. In order to achieve this biologists require new tools and techniques to allow pathway related data to be modelled and analysed as network structures, providing valuable insights which can then be validated and investigated in the laboratory. We propose a new technique for constructing and analysing qualitative models of genetic regulatory networks based on the Petri net formalism. We take as our starting point the Boolean network approach of treating genes as binary switches and develop a new Petri net model which uses logic minimization to automate the construction of compact qualitative models. Our approach addresses the shortcomings of Boolean networks by providing access to the wide range of existing Petri net analysis techniques and by using non-determinism to cope with incomplete and inconsistent data. The ideas we present are illustrated by a case study in which the genetic regulatory network controlling sporulation in the bacterium Bacillus subtilis is modelled and analysed. The Petri net model construction tool and the data files for the B. subtilis sporulation case study are available at http://bioinf.ncl.ac.uk/gnapn.

  13. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes.

    PubMed

    Tiosano, Dov; Audi, Laura; Climer, Sharlee; Zhang, Weixiong; Templeton, Alan R; Fernández-Cancio, Monica; Gershoni-Baruch, Ruth; Sánchez-Muro, José Miguel; El Kholy, Mohamed; Hochberg, Zèev

    2016-05-03

    The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR) vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR), using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes' functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes. Copyright © 2016 Tiosano et al.

  14. Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each other and to Huntington's, Parkinson's, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets

    PubMed Central

    Wang, James K. T.; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J.

    2017-01-01

    Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene (HTT), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases. PMID:28611571

  15. Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each other and to Huntington's, Parkinson's, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets.

    PubMed

    Wang, James K T; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J

    2017-01-01

    Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene ( HTT ), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases.

  16. Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis.

    PubMed

    Ferrari, Raffaele; Forabosco, Paola; Vandrovcova, Jana; Botía, Juan A; Guelfi, Sebastian; Warren, Jason D; Momeni, Parastoo; Weale, Michael E; Ryten, Mina; Hardy, John

    2016-02-24

    In frontotemporal dementia (FTD) there is a critical lack in the understanding of biological and molecular mechanisms involved in disease pathogenesis. The heterogeneous genetic features associated with FTD suggest that multiple disease-mechanisms are likely to contribute to the development of this neurodegenerative condition. We here present a systems biology approach with the scope of i) shedding light on the biological processes potentially implicated in the pathogenesis of FTD and ii) identifying novel potential risk factors for FTD. We performed a gene co-expression network analysis of microarray expression data from 101 individuals without neurodegenerative diseases to explore regional-specific co-expression patterns in the frontal and temporal cortices for 12 genes (MAPT, GRN, CHMP2B, CTSC, HLA-DRA, TMEM106B, C9orf72, VCP, UBQLN2, OPTN, TARDBP and FUS) associated with FTD and we then carried out gene set enrichment and pathway analyses, and investigated known protein-protein interactors (PPIs) of FTD-genes products. Gene co-expression networks revealed that several FTD-genes (such as MAPT and GRN, CTSC and HLA-DRA, TMEM106B, and C9orf72, VCP, UBQLN2 and OPTN) were clustering in modules of relevance in the frontal and temporal cortices. Functional annotation and pathway analyses of such modules indicated enrichment for: i) DNA metabolism, i.e. transcription regulation, DNA protection and chromatin remodelling (MAPT and GRN modules); ii) immune and lysosomal processes (CTSC and HLA-DRA modules), and; iii) protein meta/catabolism (C9orf72, VCP, UBQLN2 and OPTN, and TMEM106B modules). PPI analysis supported the results of the functional annotation and pathway analyses. This work further characterizes known FTD-genes and elaborates on their biological relevance to disease: not only do we indicate likely impacted regional-specific biological processes driven by FTD-genes containing modules, but also do we suggest novel potential risk factors among the FTD-genes interactors as targets for further mechanistic characterization in hypothesis driven cell biology work.

  17. Global isoform-specific transcript alterations and deregulated networks in clear cell renal cell carcinoma

    PubMed Central

    Hamilton, Michael J.; Girke, Thomas; Martinez, Ernest

    2018-01-01

    Extensive genome-wide analyses of deregulated gene expression have now been performed for many types of cancer. However, most studies have focused on deregulation at the gene-level, which may overlook the alterations of specific transcripts for a given gene. Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers, and ccRCCs are well-documented to have aberrant RNA processing. In the present study, we examine the extent of aberrant isoform-specific RNA expression by reporting a comprehensive transcript-level analysis, using the new kallisto-sleuth-RATs pipeline, investigating coding and non-coding differential transcript expression in ccRCC. We analyzed 50 ccRCC tumors and their matched normal samples from The Cancer Genome Altas datasets. We identified 7,339 differentially expressed transcripts and 94 genes exhibiting differential transcript isoform usage in ccRCC. Additionally, transcript-level coexpression network analyses identified vasculature development and the tricarboxylic acid cycle as the most significantly deregulated networks correlating with ccRCC progression. These analyses uncovered several uncharacterized transcripts, including lncRNAs FGD5-AS1 and AL035661.1, as potential regulators of the tricarboxylic acid cycle associated with ccRCC progression. As ccRCC still presents treatment challenges, our results provide a new resource of potential therapeutics targets and highlight the importance of exploring alternative methodologies in transcriptome-wide studies.

  18. Integrative functional analyses using rainbow trout selected for tolerance to plant diets reveal nutrigenomic signatures for soy utilization without the concurrence of enteritis.

    PubMed

    Abernathy, Jason; Brezas, Andreas; Snekvik, Kevin R; Hardy, Ronald W; Overturf, Ken

    2017-01-01

    Finding suitable alternative protein sources for diets of carnivorous fish species remains a major concern for sustainable aquaculture. Through genetic selection, we created a strain of rainbow trout that outperforms parental lines in utilizing an all-plant protein diet and does not develop enteritis in the distal intestine, as is typical with salmonids on long-term plant protein-based feeds. By incorporating this strain into functional analyses, we set out to determine which genes are critical to plant protein utilization in the absence of gut inflammation. After a 12-week feeding trial with our selected strain and a control trout strain fed either a fishmeal-based diet or an all-plant protein diet, high-throughput RNA sequencing was completed on both liver and muscle tissues. Differential gene expression analyses, weighted correlation network analyses and further functional characterization were performed. A strain-by-diet design revealed differential expression ranging from a few dozen to over one thousand genes among the various comparisons and tissues. Major gene ontology groups identified between comparisons included those encompassing central, intermediary and foreign molecule metabolism, associated biosynthetic pathways as well as immunity. A systems approach indicated that genes involved in purine metabolism were highly perturbed. Systems analysis among the tissues tested further suggests the interplay between selection for growth, dietary utilization and protein tolerance may also have implications for nonspecific immunity. By combining data from differential gene expression and co-expression networks using selected trout, along with ontology and pathway analyses, a set of 63 candidate genes for plant diet tolerance was found. Risk loci in human inflammatory bowel diseases were also found in our datasets, indicating rainbow trout selected for plant-diet tolerance may have added utility as a potential biomedical model.

  19. Correlated mRNAs and miRNAs from co-expression and regulatory networks affect porcine muscle and finally meat properties.

    PubMed

    Ponsuksili, Siriluck; Du, Yang; Hadlich, Frieder; Siengdee, Puntita; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus

    2013-08-05

    Physiological processes aiding the conversion of muscle to meat involve many genes associated with muscle structure and metabolic processes. MicroRNAs regulate networks of genes to orchestrate cellular functions, in turn regulating phenotypes. We applied weighted gene co-expression network analysis to identify co-expression modules that correlated to meat quality phenotypes and were highly enriched for genes involved in glucose metabolism, response to wounding, mitochondrial ribosome, mitochondrion, and extracellular matrix. Negative correlation of miRNA with mRNA and target prediction were used to select transcripts out of the modules of trait-associated mRNAs to further identify those genes that are correlated with post mortem traits. Porcine muscle co-expression transcript networks that correlated to post mortem traits were identified. The integration of miRNA and mRNA expression analyses, as well as network analysis, enabled us to interpret the differentially-regulated genes from a systems perspective. Linking co-expression networks of transcripts and hierarchically organized pairs of miRNAs and mRNAs to meat properties yields new insight into several biological pathways underlying phenotype differences. These pathways may also be diagnostic for many myopathies, which are accompanied by deficient nutrient and oxygen supply of muscle fibers.

  20. The vertebrate Hox gene regulatory network for hindbrain segmentation: Evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates.

    PubMed

    Parker, Hugo J; Bronner, Marianne E; Krumlauf, Robb

    2016-06-01

    Hindbrain development is orchestrated by a vertebrate gene regulatory network that generates segmental patterning along the anterior-posterior axis via Hox genes. Here, we review analyses of vertebrate and invertebrate chordate models that inform upon the evolutionary origin and diversification of this network. Evidence from the sea lamprey reveals that the hindbrain regulatory network generates rhombomeric compartments with segmental Hox expression and an underlying Hox code. We infer that this basal feature was present in ancestral vertebrates and, as an evolutionarily constrained developmental state, is fundamentally important for patterning of the vertebrate hindbrain across diverse lineages. Despite the common ground plan, vertebrates exhibit neuroanatomical diversity in lineage-specific patterns, with different vertebrates revealing variations of Hox expression in the hindbrain that could underlie this diversification. Invertebrate chordates lack hindbrain segmentation but exhibit some conserved aspects of this network, with retinoic acid signaling playing a role in establishing nested domains of Hox expression. © 2016 WILEY Periodicals, Inc.

  1. Systems Level Analysis of Systemic Sclerosis Shows a Network of Immune and Profibrotic Pathways Connected with Genetic Polymorphisms

    PubMed Central

    Mahoney, J. Matthew; Taroni, Jaclyn; Martyanov, Viktor; Wood, Tammara A.; Greene, Casey S.; Pioli, Patricia A.; Hinchcliff, Monique E.; Whitfield, Michael L.

    2015-01-01

    Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited) are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient's subset assignment is stable over 6–12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes using a gene-gene interaction network, and place the genetic risk loci in the context of the intrinsic subsets. To identify gene expression modules common to three independent datasets from three different clinical centers, we developed a consensus clustering procedure based on mutual information of partitions, an information theory concept, and performed a meta-analysis of these genome-wide gene expression datasets. We created a gene-gene interaction network of the conserved molecular features across the intrinsic subsets and analyzed their connections with SSc-associated genetic polymorphisms. The network is composed of distinct, but interconnected, components related to interferon activation, M2 macrophages, adaptive immunity, extracellular matrix remodeling, and cell proliferation. The network shows extensive connections between the inflammatory- and fibroproliferative-specific genes. The network also shows connections between these subset-specific genes and 30 SSc-associated polymorphic genes including STAT4, BLK, IRF7, NOTCH4, PLAUR, CSK, IRAK1, and several human leukocyte antigen (HLA) genes. Our analyses suggest that the gene expression changes underlying the SSc subsets may be long-lived, but mechanistically interconnected and related to a patients underlying genetic risk. PMID:25569146

  2. Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.

    PubMed

    Rutter, William B; Salcedo, Andres; Akhunova, Alina; He, Fei; Wang, Shichen; Liang, Hanquan; Bowden, Robert L; Akhunov, Eduard

    2017-04-12

    Two opposing evolutionary constraints exert pressure on plant pathogens: one to diversify virulence factors in order to evade plant defenses, and the other to retain virulence factors critical for maintaining a compatible interaction with the plant host. To better understand how the diversified arsenals of fungal genes promote interaction with the same compatible wheat line, we performed a comparative genomic analysis of two North American isolates of Puccinia graminis f. sp. tritici (Pgt). The patterns of inter-isolate divergence in the secreted candidate effector genes were compared with the levels of conservation and divergence of plant-pathogen gene co-expression networks (GCN) developed for each isolate. Comprative genomic analyses revealed substantial level of interisolate divergence in effector gene complement and sequence divergence. Gene Ontology (GO) analyses of the conserved and unique parts of the isolate-specific GCNs identified a number of conserved host pathways targeted by both isolates. Interestingly, the degree of inter-isolate sub-network conservation varied widely for the different host pathways and was positively associated with the proportion of conserved effector candidates associated with each sub-network. While different Pgt isolates tended to exploit similar wheat pathways for infection, the mode of plant-pathogen interaction varied for different pathways with some pathways being associated with the conserved set of effectors and others being linked with the diverged or isolate-specific effectors. Our data suggest that at the intra-species level pathogen populations likely maintain divergent sets of effectors capable of targeting the same plant host pathways. This functional redundancy may play an important role in the dynamic of the "arms-race" between host and pathogen serving as the basis for diverse virulence strategies and creating conditions where mutations in certain effector groups will not have a major effect on the pathogen's ability to infect the host.

  3. Signal Correlations in Ecological Niches Can Shape the Organization and Evolution of Bacterial Gene Regulatory Networks

    PubMed Central

    Dufour, Yann S.; Donohue, Timothy J.

    2015-01-01

    Transcriptional regulation plays a significant role in the biological response of bacteria to changing environmental conditions. Therefore, mapping transcriptional regulatory networks is an important step not only in understanding how bacteria sense and interpret their environment but also to identify the functions involved in biological responses to specific conditions. Recent experimental and computational developments have facilitated the characterization of regulatory networks on a genome-wide scale in model organisms. In addition, the multiplication of complete genome sequences has encouraged comparative analyses to detect conserved regulatory elements and infer regulatory networks in other less well-studied organisms. However, transcription regulation appears to evolve rapidly, thus, creating challenges for the transfer of knowledge to nonmodel organisms. Nevertheless, the mechanisms and constraints driving the evolution of regulatory networks have been the subjects of numerous analyses, and several models have been proposed. Overall, the contributions of mutations, recombination, and horizontal gene transfer are complex. Finally, the rapid evolution of regulatory networks plays a significant role in the remarkable capacity of bacteria to adapt to new or changing environments. Conversely, the characteristics of environmental niches determine the selective pressures and can shape the structure of regulatory network accordingly. PMID:23046950

  4. Phylogenetically informed logic relationships improve detection of biological network organization

    PubMed Central

    2011-01-01

    Background A "phylogenetic profile" refers to the presence or absence of a gene across a set of organisms, and it has been proven valuable for understanding gene functional relationships and network organization. Despite this success, few studies have attempted to search beyond just pairwise relationships among genes. Here we search for logic relationships involving three genes, and explore its potential application in gene network analyses. Results Taking advantage of a phylogenetic matrix constructed from the large orthologs database Roundup, we invented a method to create balanced profiles for individual triplets of genes that guarantee equal weight on the different phylogenetic scenarios of coevolution between genes. When we applied this idea to LAPP, the method to search for logic triplets of genes, the balanced profiles resulted in significant performance improvement and the discovery of hundreds of thousands more putative triplets than unadjusted profiles. We found that logic triplets detected biological network organization and identified key proteins and their functions, ranging from neighbouring proteins in local pathways, to well separated proteins in the whole pathway, and to the interactions among different pathways at the system level. Finally, our case study suggested that the directionality in a logic relationship and the profile of a triplet could disclose the connectivity between the triplet and surrounding networks. Conclusion Balanced profiles are superior to the raw profiles employed by traditional methods of phylogenetic profiling in searching for high order gene sets. Gene triplets can provide valuable information in detection of biological network organization and identification of key genes at different levels of cellular interaction. PMID:22172058

  5. Reverse engineering biological networks :applications in immune responses to bio-toxins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Anthony A.; Sinclair, Michael B.; Davidson, George S.

    Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineermore » regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.« less

  6. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes

    PubMed Central

    Tiosano, Dov; Audi, Laura; Climer, Sharlee; Zhang, Weixiong; Templeton, Alan R.; Fernández-Cancio, Monica; Gershoni-Baruch, Ruth; Sánchez-Muro, José Miguel; El Kholy, Mohamed; Hochberg, Zèev

    2016-01-01

    The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR) vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR), using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes’ functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes. PMID:26921301

  7. LENS: web-based lens for enrichment and network studies of human proteins

    PubMed Central

    2015-01-01

    Background Network analysis is a common approach for the study of genetic view of diseases and biological pathways. Typically, when a set of genes are identified to be of interest in relation to a disease, say through a genome wide association study (GWAS) or a different gene expression study, these genes are typically analyzed in the context of their protein-protein interaction (PPI) networks. Further analysis is carried out to compute the enrichment of known pathways and disease-associations in the network. Having tools for such analysis at the fingertips of biologists without the requirement for computer programming or curation of data would accelerate the characterization of genes of interest. Currently available tools do not integrate network and enrichment analysis and their visualizations, and most of them present results in formats not most conducive to human cognition. Results We developed the tool Lens for Enrichment and Network Studies of human proteins (LENS) that performs network and pathway and diseases enrichment analyses on genes of interest to users. The tool creates a visualization of the network, provides easy to read statistics on network connectivity, and displays Venn diagrams with statistical significance values of the network's association with drugs, diseases, pathways, and GWASs. We used the tool to analyze gene sets related to craniofacial development, autism, and schizophrenia. Conclusion LENS is a web-based tool that does not require and download or plugins to use. The tool is free and does not require login for use, and is available at http://severus.dbmi.pitt.edu/LENS. PMID:26680011

  8. The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress.

    PubMed

    Hu, Wei; Yan, Yan; Shi, Haitao; Liu, Juhua; Miao, Hongxia; Tie, Weiwei; Ding, Zehong; Ding, XuPo; Wu, Chunlai; Liu, Yang; Wang, Jiashui; Xu, Biyu; Jin, Zhiqiang

    2017-08-29

    Abscisic acid (ABA) signaling plays a crucial role in developmental and environmental adaptation processes of plants. However, the PYL-PP2C-SnRK2 families that function as the core components of ABA signaling are not well understood in banana. In the present study, 24 PYL, 87 PP2C, and 11 SnRK2 genes were identified from banana, which was further supported by evolutionary relationships, conserved motif and gene structure analyses. The comprehensive transcriptomic analyses showed that banana PYL-PP2C-SnRK2 genes are involved in tissue development, fruit development and ripening, and response to abiotic stress in two cultivated varieties. Moreover, comparative expression analyses of PYL-PP2C-SnRK2 genes between BaXi Jiao (BX) and Fen Jiao (FJ) revealed that PYL-PP2C-SnRK2-mediated ABA signaling might positively regulate banana fruit ripening and tolerance to cold, salt, and osmotic stresses. Finally, interaction networks and co-expression assays demonstrated that the core components of ABA signaling were more active in FJ than in BX in response to abiotic stress, further supporting the crucial role of the genes in tolerance to abiotic stress in banana. This study provides new insights into the complicated transcriptional control of PYL-PP2C-SnRK2 genes, improves the understanding of PYL-PP2C-SnRK2-mediated ABA signaling in the regulation of fruit development, ripening, and response to abiotic stress, and identifies some candidate genes for genetic improvement of banana.

  9. Integration of Genome-Wide Computation DRE Search, AhR ChIP-chip and Gene Expression Analyses of TCDD-Elicited Responses in the Mouse Liver

    PubMed Central

    2011-01-01

    Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor (TF) that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE) analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate) at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS). AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR), extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'). Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t) > 0.999). Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation. PMID:21762485

  10. Detection of the inferred interaction network in hepatocellular carcinoma from EHCO (Encyclopedia of Hepatocellular Carcinoma genes Online)

    PubMed Central

    Hsu, Chun-Nan; Lai, Jin-Mei; Liu, Chia-Hung; Tseng, Huei-Hun; Lin, Chih-Yun; Lin, Kuan-Ting; Yeh, Hsu-Hua; Sung, Ting-Yi; Hsu, Wen-Lian; Su, Li-Jen; Lee, Sheng-An; Chen, Chang-Han; Lee, Gen-Cher; Lee, DT; Shiue, Yow-Ling; Yeh, Chang-Wei; Chang, Chao-Hui; Kao, Cheng-Yan; Huang, Chi-Ying F

    2007-01-01

    Background The significant advances in microarray and proteomics analyses have resulted in an exponential increase in potential new targets and have promised to shed light on the identification of disease markers and cellular pathways. We aim to collect and decipher the HCC-related genes at the systems level. Results Here, we build an integrative platform, the Encyclopedia of Hepatocellular Carcinoma genes Online, dubbed EHCO , to systematically collect, organize and compare the pileup of unsorted HCC-related studies by using natural language processing and softbots. Among the eight gene set collections, ranging across PubMed, SAGE, microarray, and proteomics data, there are 2,906 genes in total; however, more than 77% genes are only included once, suggesting that tremendous efforts need to be exerted to characterize the relationship between HCC and these genes. Of these HCC inventories, protein binding represents the largest proportion (~25%) from Gene Ontology analysis. In fact, many differentially expressed gene sets in EHCO could form interaction networks (e.g. HBV-associated HCC network) by using available human protein-protein interaction datasets. To further highlight the potential new targets in the inferred network from EHCO, we combine comparative genomics and interactomics approaches to analyze 120 evolutionary conserved and overexpressed genes in HCC. 47 out of 120 queries can form a highly interactive network with 18 queries serving as hubs. Conclusion This architectural map may represent the first step toward the attempt to decipher the hepatocarcinogenesis at the systems level. Targeting hubs and/or disruption of the network formation might reveal novel strategy for HCC treatment. PMID:17326819

  11. On the role of sparseness in the evolution of modularity in gene regulatory networks

    PubMed Central

    2018-01-01

    Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases. PMID:29775459

  12. On the role of sparseness in the evolution of modularity in gene regulatory networks.

    PubMed

    Espinosa-Soto, Carlos

    2018-05-01

    Modularity is a widespread property in biological systems. It implies that interactions occur mainly within groups of system elements. A modular arrangement facilitates adjustment of one module without perturbing the rest of the system. Therefore, modularity of developmental mechanisms is a major factor for evolvability, the potential to produce beneficial variation from random genetic change. Understanding how modularity evolves in gene regulatory networks, that create the distinct gene activity patterns that characterize different parts of an organism, is key to developmental and evolutionary biology. One hypothesis for the evolution of modules suggests that interactions between some sets of genes become maladaptive when selection favours additional gene activity patterns. The removal of such interactions by selection would result in the formation of modules. A second hypothesis suggests that modularity evolves in response to sparseness, the scarcity of interactions within a system. Here I simulate the evolution of gene regulatory networks and analyse diverse experimentally sustained networks to study the relationship between sparseness and modularity. My results suggest that sparseness alone is neither sufficient nor necessary to explain modularity in gene regulatory networks. However, sparseness amplifies the effects of forms of selection that, like selection for additional gene activity patterns, already produce an increase in modularity. That evolution of new gene activity patterns is frequent across evolution also supports that it is a major factor in the evolution of modularity. That sparseness is widespread across gene regulatory networks indicates that it may have facilitated the evolution of modules in a wide variety of cases.

  13. Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.

    PubMed

    Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A

    2018-04-11

    The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs. Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible for its regulation.

  14. Bioinformatics analysis on molecular mechanism of rheum officinale in treatment of jaundice

    NASA Astrophysics Data System (ADS)

    Shan, Si; Tu, Jun; Nie, Peng; Yan, Xiaojun

    2017-01-01

    Objective: To study the molecular mechanism of Rheum officinale in the treatment of Jaundice by building molecular networks and comparing canonical pathways. Methods: Target proteins of Rheum officinale and related genes of Jaundice were searched from Pubchem and Gene databases online respectively. Molecular networks and canonical pathways comparison analyses were performed by Ingenuity Pathway Analysis (IPA). Results: The molecular networks of Rheum officinale and Jaundice were complex and multifunctional. The 40 target proteins of Rheum officinale and 33 Homo sapiens genes of Jaundice were found in databases. There were 19 common pathways both related networks. Rheum officinale could regulate endothelial differentiation, Interleukin-1B (IL-1B) and Tumor Necrosis Factor (TNF) in these pathways. Conclusions: Rheum officinale treat Jaundice by regulating many effective nodes of Apoptotic pathway and cellular immunity related pathways.

  15. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max).

    PubMed

    Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang

    2014-01-01

    Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN.

  16. System-Level Insights into the Cellular Interactome of a Non-Model Organism: Inferring, Modelling and Analysing Functional Gene Network of Soybean (Glycine max)

    PubMed Central

    Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang

    2014-01-01

    Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN. PMID:25423109

  17. A Functional and Regulatory Network Associated with PIP Expression in Human Breast Cancer

    PubMed Central

    Debily, Marie-Anne; Marhomy, Sandrine El; Boulanger, Virginie; Eveno, Eric; Mariage-Samson, Régine; Camarca, Alessandra; Auffray, Charles; Piatier-Tonneau, Dominique; Imbeaud, Sandrine

    2009-01-01

    Background The PIP (prolactin-inducible protein) gene has been shown to be expressed in breast cancers, with contradictory results concerning its implication. As both the physiological role and the molecular pathways in which PIP is involved are poorly understood, we conducted combined gene expression profiling and network analysis studies on selected breast cancer cell lines presenting distinct PIP expression levels and hormonal receptor status, to explore the functional and regulatory network of PIP co-modulated genes. Principal Findings Microarray analysis allowed identification of genes co-modulated with PIP independently of modulations resulting from hormonal treatment or cell line heterogeneity. Relevant clusters of genes that can discriminate between [PIP+] and [PIP−] cells were identified. Functional and regulatory network analyses based on a knowledge database revealed a master network of PIP co-modulated genes, including many interconnecting oncogenes and tumor suppressor genes, half of which were detected as differentially expressed through high-precision measurements. The network identified appears associated with an inhibition of proliferation coupled with an increase of apoptosis and an enhancement of cell adhesion in breast cancer cell lines, and contains many genes with a STAT5 regulatory motif in their promoters. Conclusions Our global exploratory approach identified biological pathways modulated along with PIP expression, providing further support for its good prognostic value of disease-free survival in breast cancer. Moreover, our data pointed to the importance of a regulatory subnetwork associated with PIP expression in which STAT5 appears as a potential transcriptional regulator. PMID:19262752

  18. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence

    PubMed Central

    Blevins, Tana; Aliev, Fazil; Adkins, Amy; Hack, Laura; Bigdeli, Tim; D. van der Vaart, Andrew; Web, Bradley Todd; Bacanu, Silviu-Alin; Kalsi, Gursharan; Kendler, Kenneth S.; Miles, Michael F.; Dick, Danielle; Riley, Brien P.; Dumur, Catherine; Vladimirov, Vladimir I.

    2015-01-01

    Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05). Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05). In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001). Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively) in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA). In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD. PMID:26381263

  19. Of woods and webs: possible alternatives to the tree of life for studying genomic fluidity in E. coli.

    PubMed

    Beauregard-Racine, Julie; Bicep, Cédric; Schliep, Klaus; Lopez, Philippe; Lapointe, François-Joseph; Bapteste, Eric

    2011-07-20

    We introduce several forest-based and network-based methods for exploring microbial evolution, and apply them to the study of thousands of genes from 30 strains of E. coli. This case study illustrates how additional analyses could offer fast heuristic alternatives to standard tree of life (TOL) approaches. We use gene networks to identify genes with atypical modes of evolution, and genome networks to characterize the evolution of genetic partnerships between E. coli and mobile genetic elements. We develop a novel polychromatic quartet method to capture patterns of recombination within E. coli, to update the clanistic toolkit, and to search for the impact of lateral gene transfer and of pathogenicity on gene evolution in two large forests of trees bearing E. coli. We unravel high rates of lateral gene transfer involving E. coli (about 40% of the trees under study), and show that both core genes and shell genes of E. coli are affected by non-tree-like evolutionary processes. We show that pathogenic lifestyle impacted the structure of 30% of the gene trees, and that pathogenic strains are more likely to transfer genes with one another than with non-pathogenic strains. In addition, we propose five groups of genes as candidate mobile modules of pathogenicity. We also present strong evidence for recent lateral gene transfer between E. coli and mobile genetic elements. Depending on which evolutionary questions biologists want to address (i.e. the identification of modules, genetic partnerships, recombination, lateral gene transfer, or genes with atypical evolutionary modes, etc.), forest-based and network-based methods are preferable to the reconstruction of a single tree, because they provide insights and produce hypotheses about the dynamics of genome evolution, rather than the relative branching order of species and lineages. Such a methodological pluralism - the use of woods and webs - is to be encouraged to analyse the evolutionary processes at play in microbial evolution.This manuscript was reviewed by: Ford Doolittle, Tal Pupko, Richard Burian, James McInerney, Didier Raoult, and Yan Boucher.

  20. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis.

    PubMed

    Brown, William M

    2015-12-01

    Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). Gene ontology (ie, gene product elucidation)/meta-analysis. 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. CRD42014009800. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Application of Weighted Gene Co-expression Network Analysis for Data from Paired Design.

    PubMed

    Li, Jianqiang; Zhou, Doudou; Qiu, Weiliang; Shi, Yuliang; Yang, Ji-Jiang; Chen, Shi; Wang, Qing; Pan, Hui

    2018-01-12

    Investigating how genes jointly affect complex human diseases is important, yet challenging. The network approach (e.g., weighted gene co-expression network analysis (WGCNA)) is a powerful tool. However, genomic data usually contain substantial batch effects, which could mask true genomic signals. Paired design is a powerful tool that can reduce batch effects. However, it is currently unclear how to appropriately apply WGCNA to genomic data from paired design. In this paper, we modified the current WGCNA pipeline to analyse high-throughput genomic data from paired design. We illustrated the modified WGCNA pipeline by analysing the miRNA dataset provided by Shiah et al. (2014), which contains forty oral squamous cell carcinoma (OSCC) specimens and their matched non-tumourous epithelial counterparts. OSCC is the sixth most common cancer worldwide. The modified WGCNA pipeline identified two sets of novel miRNAs associated with OSCC, in addition to the existing miRNAs reported by Shiah et al. (2014). Thus, this work will be of great interest to readers of various scientific disciplines, in particular, genetic and genomic scientists as well as medical scientists working on cancer.

  2. Identification of a gene module associated with BMD through the integration of network analysis and genome-wide association data.

    PubMed

    Farber, Charles R

    2010-11-01

    Bone mineral density (BMD) is influenced by a complex network of gene interactions; therefore, elucidating the relationships between genes and how those genes, in turn, influence BMD is critical for developing a comprehensive understanding of osteoporosis. To investigate the role of transcriptional networks in the regulation of BMD, we performed a weighted gene coexpression network analysis (WGCNA) using microarray expression data on monocytes from young individuals with low or high BMD. WGCNA groups genes into modules based on patterns of gene coexpression. and our analysis identified 11 gene modules. We observed that the overall expression of one module (referred to as module 9) was significantly higher in the low-BMD group (p = .03). Module 9 was highly enriched for genes belonging to the immune system-related gene ontology (GO) category "response to virus" (p = 7.6 × 10(-11)). Using publically available genome-wide association study data, we independently validated the importance of module 9 by demonstrating that highly connected module 9 hubs were more likely, relative to less highly connected genes, to be genetically associated with BMD. This study highlights the advantages of systems-level analyses to uncover coexpression modules associated with bone mass and suggests that particular monocyte expression patterns may mediate differences in BMD. © 2010 American Society for Bone and Mineral Research.

  3. GIANT 2.0: genome-scale integrated analysis of gene networks in tissues.

    PubMed

    Wong, Aaron K; Krishnan, Arjun; Troyanskaya, Olga G

    2018-05-25

    GIANT2 (Genome-wide Integrated Analysis of gene Networks in Tissues) is an interactive web server that enables biomedical researchers to analyze their proteins and pathways of interest and generate hypotheses in the context of genome-scale functional maps of human tissues. The precise actions of genes are frequently dependent on their tissue context, yet direct assay of tissue-specific protein function and interactions remains infeasible in many normal human tissues and cell-types. With GIANT2, researchers can explore predicted tissue-specific functional roles of genes and reveal changes in those roles across tissues, all through interactive multi-network visualizations and analyses. Additionally, the NetWAS approach available through the server uses tissue-specific/cell-type networks predicted by GIANT2 to re-prioritize statistical associations from GWAS studies and identify disease-associated genes. GIANT2 predicts tissue-specific interactions by integrating diverse functional genomics data from now over 61 400 experiments for 283 diverse tissues and cell-types. GIANT2 does not require any registration or installation and is freely available for use at http://giant-v2.princeton.edu.

  4. Role of miR-452-5p in the tumorigenesis of prostate cancer: A study based on the Cancer Genome Atl(TCGA), Gene Expression Omnibus (GEO), and bioinformatics analysis.

    PubMed

    Gao, Li; Zhang, Li-Jie; Li, Sheng-Hua; Wei, Li-Li; Luo, Bin; He, Rong-Quan; Xia, Shuang

    2018-03-06

    MiR-452-5p has been reported to be down-regulated in prostate cancer, affecting the development of this type of cancer. However, the molecular mechanism of miR-452-5p in prostate cancer remains unclear. Therefore, we investigated the network of target genes of miR-452-5p in prostate cancer using bioinformatics analyses. We first analyzed the expression profiles and prognostic value of miR-452-5p in prostate cancer tissues from a public database. Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), PANTHER pathway analyses, and a disease ontology (DG) analysis were performed to find the molecular functions of the target genes from GSE datasets and miRWalk. Finally, we validated hub genes from the protein-protein interaction (PPI) networks of the target genes in the Human Protein Atlas (HPA) database and Gene Expression Profiling Interactive Analysis (GEPIA). Narrowing down the optimal target genes was conducted by seeking the common parts of up-regulated genes from GEPIA, down-regulated genes from GSE datasets, and predicted genes in miRWalk. Based on mining of GEO and ArrayExpress microarray chips and miRNA-Seq data in the TCGA database, which includes 1007 prostate cancer samples and 387 non-cancer samples, miR-452-5p is shown to be down-regulated in prostate cancer. GO, KEGG, and PANTHER pathway analyses suggested that the target genes might participate in important biological processes, such as transforming growth factor beta signaling and the positive regulation of brown fat cell differentiation and mesenchymal cell differentiation, as well as the Ras signaling pathway and pathways regulating the pluripotency of stem cells and arrhythmogenic right ventricular cardiomyopathy (ARVC). Nine genes-GABBR, PNISR, NTSR1, DOCK1, EREG, SFRP1, PTGS2, LEF1, and BMP2-were defined as hub genes in the PPI network. Three genes-FAM174B, SLC30A4, and SLIT1-were jointly shared by GEPIA, the GSE datasets, and miRWalk. Down-regulated miR-452-5p might play an essential role in the tumorigenesis of prostate cancer. Copyright © 2018. Published by Elsevier GmbH.

  5. Competing endogenous RNA regulatory network in papillary thyroid carcinoma.

    PubMed

    Chen, Shouhua; Fan, Xiaobin; Gu, He; Zhang, Lili; Zhao, Wenhua

    2018-05-11

    The present study aimed to screen all types of RNAs involved in the development of papillary thyroid carcinoma (PTC). RNA‑sequencing data of PTC and normal samples were used for screening differentially expressed (DE) microRNAs (DE‑miRNAs), long non‑coding RNAs (DE‑lncRNAs) and genes (DEGs). Subsequently, lncRNA‑miRNA, miRNA‑gene (that is, miRNA‑mRNA) and gene‑gene interaction pairs were extracted and used to construct regulatory networks. Feature genes in the miRNA‑mRNA network were identified by topological analysis and recursive feature elimination analysis. A support vector machine (SVM) classifier was built using 15 feature genes, and its classification effect was validated using two microarray data sets that were downloaded from the Gene Expression Omnibus (GEO) database. In addition, Gene Ontology function and Kyoto Encyclopedia Genes and Genomes pathway enrichment analyses were conducted for genes identified in the ceRNA network. A total of 506 samples, including 447 tumor samples and 59 normal samples, were obtained from The Cancer Genome Atlas (TCGA); 16 DE‑lncRNAs, 917 DEGs and 30 DE‑miRNAs were screened. The miRNA‑mRNA regulatory network comprised 353 nodes and 577 interactions. From these data, 15 feature genes with high predictive precision (>95%) were extracted from the network and were used to form an SVM classifier with an accuracy of 96.05% (486/506) for PTC samples downloaded from TCGA, and accuracies of 96.81 and 98.46% for GEO downloaded data sets. The ceRNA regulatory network comprised 596 lines (or interactions) and 365 nodes. Genes in the ceRNA network were significantly enriched in 'neuron development', 'differentiation', 'neuroactive ligand‑receptor interaction', 'metabolism of xenobiotics by cytochrome P450', 'drug metabolism' and 'cytokine‑cytokine receptor interaction' pathways. Hox transcript antisense RNA, miRNA‑206 and kallikrein‑related peptidase 10 were nodes in the ceRNA regulatory network of the selected feature gene, and they may serve import roles in the development of PTC.

  6. Construction and Analysis of Functional Networks in the Gut Microbiome of Type 2 Diabetes Patients.

    PubMed

    Li, Lianshuo; Wang, Zicheng; He, Peng; Ma, Shining; Du, Jie; Jiang, Rui

    2016-10-01

    Although networks of microbial species have been widely used in the analysis of 16S rRNA sequencing data of a microbiome, the construction and analysis of a complete microbial gene network are in general problematic because of the large number of microbial genes in metagenomics studies. To overcome this limitation, we propose to map microbial genes to functional units, including KEGG orthologous groups and the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) orthologous groups, to enable the construction and analysis of a microbial functional network. We devised two statistical methods to infer pairwise relationships between microbial functional units based on a deep sequencing dataset of gut microbiome from type 2 diabetes (T2D) patients as well as healthy controls. Networks containing such functional units and their significant interactions were constructed subsequently. We conducted a variety of analyses of global properties, local properties, and functional modules in the resulting functional networks. Our data indicate that besides the observations consistent with the current knowledge, this study provides novel biological insights into the gut microbiome associated with T2D. Copyright © 2016. Production and hosting by Elsevier Ltd.

  7. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle

    USDA-ARS?s Scientific Manuscript database

    Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e., hypothal...

  8. Differentially co-expressed interacting protein pairs discriminate samples under distinct stages of HIV type 1 infection.

    PubMed

    Yoon, Dukyong; Kim, Hyosil; Suh-Kim, Haeyoung; Park, Rae Woong; Lee, KiYoung

    2011-01-01

    Microarray analyses based on differentially expressed genes (DEGs) have been widely used to distinguish samples across different cellular conditions. However, studies based on DEGs have not been able to clearly determine significant differences between samples of pathophysiologically similar HIV-1 stages, e.g., between acute and chronic progressive (or AIDS) or between uninfected and clinically latent stages. We here suggest a novel approach to allow such discrimination based on stage-specific genetic features of HIV-1 infection. Our approach is based on co-expression changes of genes known to interact. The method can identify a genetic signature for a single sample as contrasted with existing protein-protein-based analyses with correlational designs. Our approach distinguishes each sample using differentially co-expressed interacting protein pairs (DEPs) based on co-expression scores of individual interacting pairs within a sample. The co-expression score has positive value if two genes in a sample are simultaneously up-regulated or down-regulated. And the score has higher absolute value if expression-changing ratios are similar between the two genes. We compared characteristics of DEPs with that of DEGs by evaluating their usefulness in separation of HIV-1 stage. And we identified DEP-based network-modules and their gene-ontology enrichment to find out the HIV-1 stage-specific gene signature. Based on the DEP approach, we observed clear separation among samples from distinct HIV-1 stages using clustering and principal component analyses. Moreover, the discrimination power of DEPs on the samples (70-100% accuracy) was much higher than that of DEGs (35-45%) using several well-known classifiers. DEP-based network analysis also revealed the HIV-1 stage-specific network modules; the main biological processes were related to "translation," "RNA splicing," "mRNA, RNA, and nucleic acid transport," and "DNA metabolism." Through the HIV-1 stage-related modules, changing stage-specific patterns of protein interactions could be observed. DEP-based method discriminated the HIV-1 infection stages clearly, and revealed a HIV-1 stage-specific gene signature. The proposed DEP-based method might complement existing DEG-based approaches in various microarray expression analyses.

  9. Differential gene expression analysis in glioblastoma cells and normal human brain cells based on GEO database.

    PubMed

    Wang, Anping; Zhang, Guibin

    2017-11-01

    The differentially expressed genes between glioblastoma (GBM) cells and normal human brain cells were investigated to performed pathway analysis and protein interaction network analysis for the differentially expressed genes. GSE12657 and GSE42656 gene chips, which contain gene expression profile of GBM were obtained from Gene Expression Omniub (GEO) database of National Center for Biotechnology Information (NCBI). The 'limma' data packet in 'R' software was used to analyze the differentially expressed genes in the two gene chips, and gene integration was performed using 'RobustRankAggreg' package. Finally, pheatmap software was used for heatmap analysis and Cytoscape, DAVID, STRING and KOBAS were used for protein-protein interaction, Gene Ontology (GO) and KEGG analyses. As results: i) 702 differentially expressed genes were identified in GSE12657, among those genes, 548 were significantly upregulated and 154 were significantly downregulated (p<0.01, fold-change >1), and 1,854 differentially expressed genes were identified in GSE42656, among the genes, 1,068 were significantly upregulated and 786 were significantly downregulated (p<0.01, fold-change >1). A total of 167 differentially expressed genes including 100 upregulated genes and 67 downregulated genes were identified after gene integration, and the genes showed significantly different expression levels in GBM compared with normal human brain cells (p<0.05). ii) Interactions between the protein products of 101 differentially expressed genes were identified using STRING and expression network was established. A key gene, called CALM3, was identified by Cytoscape software. iii) GO enrichment analysis showed that differentially expressed genes were mainly enriched in 'neurotransmitter:sodium symporter activity' and 'neurotransmitter transporter activity', which can affect the activity of neurotransmitter transportation. KEGG pathway analysis showed that the differentially expressed genes were mainly enriched in 'protein processing in endoplasmic reticulum', which can affect protein processing in endoplasmic reticulum. The results showed that: i) 167 differentially expressed genes were identified from two gene chips after integration; and ii) protein interaction network was established, and GO and KEGG pathway analyses were successfully performed to identify and annotate the key gene, which provide new insights for the studies on GBN at gene level.

  10. Shadows of complexity: what biological networks reveal about epistasis and pleiotropy

    PubMed Central

    Tyler, Anna L.; Asselbergs, Folkert W.; Williams, Scott M.; Moore, Jason H.

    2011-01-01

    Pleiotropy, in which one mutation causes multiple phenotypes, has traditionally been seen as a deviation from the conventional observation in which one gene affects one phenotype. Epistasis, or gene-gene interaction, has also been treated as an exception to the Mendelian one gene-one phenotype paradigm. This simplified perspective belies the pervasive complexity of biology and hinders progress toward a deeper understanding of biological systems. We assert that epistasis and pleiotropy are not isolated occurrences, but ubiquitous and inherent properties of biomolecular networks. These phenomena should not be treated as exceptions, but rather as fundamental components of genetic analyses. A systems level understanding of epistasis and pleiotropy is, therefore, critical to furthering our understanding of human genetics and its contribution to common human disease. Finally, graph theory offers an intuitive and powerful set of tools with which to study the network bases of these important genetic phenomena. PMID:19204994

  11. MalaCards: an integrated compendium for diseases and their annotation

    PubMed Central

    Rappaport, Noa; Nativ, Noam; Stelzer, Gil; Twik, Michal; Guan-Golan, Yaron; Iny Stein, Tsippi; Bahir, Iris; Belinky, Frida; Morrey, C. Paul; Safran, Marilyn; Lancet, Doron

    2013-01-01

    Comprehensive disease classification, integration and annotation are crucial for biomedical discovery. At present, disease compilation is incomplete, heterogeneous and often lacking systematic inquiry mechanisms. We introduce MalaCards, an integrated database of human maladies and their annotations, modeled on the architecture and strategy of the GeneCards database of human genes. MalaCards mines and merges 44 data sources to generate a computerized card for each of 16 919 human diseases. Each MalaCard contains disease-specific prioritized annotations, as well as inter-disease connections, empowered by the GeneCards relational database, its searches and GeneDecks set analyses. First, we generate a disease list from 15 ranked sources, using disease-name unification heuristics. Next, we use four schemes to populate MalaCards sections: (i) directly interrogating disease resources, to establish integrated disease names, synonyms, summaries, drugs/therapeutics, clinical features, genetic tests and anatomical context; (ii) searching GeneCards for related publications, and for associated genes with corresponding relevance scores; (iii) analyzing disease-associated gene sets in GeneDecks to yield affiliated pathways, phenotypes, compounds and GO terms, sorted by a composite relevance score and presented with GeneCards links; and (iv) searching within MalaCards itself, e.g. for additional related diseases and anatomical context. The latter forms the basis for the construction of a disease network, based on shared MalaCards annotations, embodying associations based on etiology, clinical features and clinical conditions. This broadly disposed network has a power-law degree distribution, suggesting that this might be an inherent property of such networks. Work in progress includes hierarchical malady classification, ontological mapping and disease set analyses, striving to make MalaCards an even more effective tool for biomedical research. Database URL: http://www.malacards.org/ PMID:23584832

  12. Reconstruction of a Functional Human Gene Network, with an Application for Prioritizing Positional Candidate Genes

    PubMed Central

    Franke, Lude; Bakel, Harm van; Fokkens, Like; de Jong, Edwin D.; Egmont-Petersen, Michael; Wijmenga, Cisca

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain hundreds of genes. However, in any disorder, most of the disease genes will be involved in only a few different molecular pathways. If we know something about the relationships between the genes, we can assess whether some genes (which may reside in different loci) functionally interact with each other, indicating a joint basis for the disease etiology. There are various repositories of information on pathway relationships. To consolidate this information, we developed a functional human gene network that integrates information on genes and the functional relationships between genes, based on data from the Kyoto Encyclopedia of Genes and Genomes, the Biomolecular Interaction Network Database, Reactome, the Human Protein Reference Database, the Gene Ontology database, predicted protein-protein interactions, human yeast two-hybrid interactions, and microarray coexpressions. We applied this network to interrelate positional candidate genes from different disease loci and then tested 96 heritable disorders for which the Online Mendelian Inheritance in Man database reported at least three disease genes. Artificial susceptibility loci, each containing 100 genes, were constructed around each disease gene, and we used the network to rank these genes on the basis of their functional interactions. By following up the top five genes per artificial locus, we were able to detect at least one known disease gene in 54% of the loci studied, representing a 2.8-fold increase over random selection. This suggests that our method can significantly reduce the cost and effort of pinpointing true disease genes in analyses of disorders for which numerous loci have been reported but for which most of the genes are unknown. PMID:16685651

  13. A framework for analyzing the relationship between gene expression and morphological, topological, and dynamical patterns in neuronal networks.

    PubMed

    de Arruda, Henrique Ferraz; Comin, Cesar Henrique; Miazaki, Mauro; Viana, Matheus Palhares; Costa, Luciano da Fontoura

    2015-04-30

    A key point in developmental biology is to understand how gene expression influences the morphological and dynamical patterns that are observed in living beings. In this work we propose a methodology capable of addressing this problem that is based on estimating the mutual information and Pearson correlation between the intensity of gene expression and measurements of several morphological properties of the cells. A similar approach is applied in order to identify effects of gene expression over the system dynamics. Neuronal networks were artificially grown over a lattice by considering a reference model used to generate artificial neurons. The input parameters of the artificial neurons were determined according to two distinct patterns of gene expression and the dynamical response was assessed by considering the integrate-and-fire model. As far as single gene dependence is concerned, we found that the interaction between the gene expression and the network topology, as well as between the former and the dynamics response, is strongly affected by the gene expression pattern. In addition, we observed a high correlation between the gene expression and some topological measurements of the neuronal network for particular patterns of gene expression. To our best understanding, there are no similar analyses to compare with. A proper understanding of gene expression influence requires jointly studying the morphology, topology, and dynamics of neurons. The proposed framework represents a first step towards predicting gene expression patterns from morphology and connectivity. Copyright © 2015. Published by Elsevier B.V.

  14. Analyzing the interactions of mRNAs, miRNAs, lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma.

    PubMed

    Yuan, Yang; Jiaoming, Li; Xiang, Wang; Yanhui, Liu; Shu, Jiang; Maling, Gou; Qing, Mao

    2018-05-01

    Cross-talk between competitive endogenous RNAs (ceRNAs) may play a critical role in revealing potential mechanisms of tumor development and physiology. Glioblastoma is the most common type of malignant primary brain tumor, and the mechanisms of tumor genesis and development in glioblastoma are unclear. Here, to investigate the role of non-coding RNAs and the ceRNA network in glioblastoma, we performed paired-end RNA sequencing and microarray analyses to obtain the expression profiles of mRNAs, lncRNAs, circRNAs and miRNAs. We identified that the expression of 501 lncRNAs, 1999 mRNAs, 2038 circRNAs and 143 miRNAs were often altered between glioblastoma and matched normal brain tissue. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed on these differentially expressed mRNAs and miRNA-mediated target genes of lncRNAs and circRNAs. Furthermore, we used a multi-step computational framework and several bioinformatics methods to construct a ceRNA network combining mRNAs, miRNAs, lncRNAs and circRNA, based on co-expression analysis between the differentially expressed RNAs. We identified that plenty of lncRNAs, CircRNAs and their downstream target genes in the ceRNA network are related to glutamatergic synapse, suggesting that glutamate metabolism is involved in glioma biological functions. Our results will accelerate the understanding of tumorigenesis, cancer progression and even therapeutic targeting in glioblastoma.

  15. Integrative functional analyses using rainbow trout selected for tolerance to plant diets reveal nutrigenomic signatures for soy utilization without the concurrence of enteritis

    PubMed Central

    Brezas, Andreas; Snekvik, Kevin R.; Hardy, Ronald W.; Overturf, Ken

    2017-01-01

    Finding suitable alternative protein sources for diets of carnivorous fish species remains a major concern for sustainable aquaculture. Through genetic selection, we created a strain of rainbow trout that outperforms parental lines in utilizing an all-plant protein diet and does not develop enteritis in the distal intestine, as is typical with salmonids on long-term plant protein-based feeds. By incorporating this strain into functional analyses, we set out to determine which genes are critical to plant protein utilization in the absence of gut inflammation. After a 12-week feeding trial with our selected strain and a control trout strain fed either a fishmeal-based diet or an all-plant protein diet, high-throughput RNA sequencing was completed on both liver and muscle tissues. Differential gene expression analyses, weighted correlation network analyses and further functional characterization were performed. A strain-by-diet design revealed differential expression ranging from a few dozen to over one thousand genes among the various comparisons and tissues. Major gene ontology groups identified between comparisons included those encompassing central, intermediary and foreign molecule metabolism, associated biosynthetic pathways as well as immunity. A systems approach indicated that genes involved in purine metabolism were highly perturbed. Systems analysis among the tissues tested further suggests the interplay between selection for growth, dietary utilization and protein tolerance may also have implications for nonspecific immunity. By combining data from differential gene expression and co-expression networks using selected trout, along with ontology and pathway analyses, a set of 63 candidate genes for plant diet tolerance was found. Risk loci in human inflammatory bowel diseases were also found in our datasets, indicating rainbow trout selected for plant-diet tolerance may have added utility as a potential biomedical model. PMID:28723948

  16. IL-32 is a molecular marker of a host defense network in human tuberculosis

    PubMed Central

    Montoya, Dennis; Inkeles, Megan S.; Liu, Phillip T.; Realegeno, Susan; Teles, Rosane M. B.; Vaidya, Poorva; Munoz, Marcos A.; Schenk, Mirjam; Swindell, William R.; Chun, Rene; Zavala, Kathryn; Hewison, Martin; Adams, John S.; Horvath, Steve; Pellegrini, Matteo; Bloom, Barry R.; Modlin, Robert L.

    2014-01-01

    Tuberculosis is a leading cause of infectious disease–related death worldwide; however, only 10% of people infected with Mycobacterium tuberculosis develop disease. Factors that contribute to protection could prove to be promising targets for M. tuberculosis therapies. Analysis of peripheral blood gene expression profiles of active tuberculosis patients has identified correlates of risk for disease or pathogenesis. We sought to identify potential human candidate markers of host defense by studying gene expression profiles of macrophages, cells that, upon infection by M. tuberculosis, can mount an antimicrobial response. Weighted gene coexpression network analysis revealed an association between the cytokine interleukin-32 (IL-32) and the vitamin D antimicrobial pathway in a network of interferon-γ– and IL-15–induced “defense response” genes. IL-32 induced the vitamin D–dependent antimicrobial peptides cathelicidin and DEFB4 and to generate antimicrobial activity in vitro, dependent on the presence of adequate 25-hydroxyvitamin D. In addition, the IL-15–induced defense response macrophage gene network was integrated with ranked pairwise comparisons of gene expression from five different clinical data sets of latent compared with active tuberculosis or healthy controls and a coexpression network derived from gene expression in patients with tuberculosis undergoing chemotherapy. Together, these analyses identified eight common genes, including IL-32, as molecular markers of latent tuberculosis and the IL-15–induced gene network. As maintaining M. tuberculosis in a latent state and preventing transition to active disease may represent a form of host resistance, these results identify IL-32 as one functional marker and potential correlate of protection against active tuberculosis. PMID:25143364

  17. IL-32 is a molecular marker of a host defense network in human tuberculosis.

    PubMed

    Montoya, Dennis; Inkeles, Megan S; Liu, Phillip T; Realegeno, Susan; Teles, Rosane M B; Vaidya, Poorva; Munoz, Marcos A; Schenk, Mirjam; Swindell, William R; Chun, Rene; Zavala, Kathryn; Hewison, Martin; Adams, John S; Horvath, Steve; Pellegrini, Matteo; Bloom, Barry R; Modlin, Robert L

    2014-08-20

    Tuberculosis is a leading cause of infectious disease-related death worldwide; however, only 10% of people infected with Mycobacterium tuberculosis develop disease. Factors that contribute to protection could prove to be promising targets for M. tuberculosis therapies. Analysis of peripheral blood gene expression profiles of active tuberculosis patients has identified correlates of risk for disease or pathogenesis. We sought to identify potential human candidate markers of host defense by studying gene expression profiles of macrophages, cells that, upon infection by M. tuberculosis, can mount an antimicrobial response. Weighted gene coexpression network analysis revealed an association between the cytokine interleukin-32 (IL-32) and the vitamin D antimicrobial pathway in a network of interferon-γ- and IL-15-induced "defense response" genes. IL-32 induced the vitamin D-dependent antimicrobial peptides cathelicidin and DEFB4 and to generate antimicrobial activity in vitro, dependent on the presence of adequate 25-hydroxyvitamin D. In addition, the IL-15-induced defense response macrophage gene network was integrated with ranked pairwise comparisons of gene expression from five different clinical data sets of latent compared with active tuberculosis or healthy controls and a coexpression network derived from gene expression in patients with tuberculosis undergoing chemotherapy. Together, these analyses identified eight common genes, including IL-32, as molecular markers of latent tuberculosis and the IL-15-induced gene network. As maintaining M. tuberculosis in a latent state and preventing transition to active disease may represent a form of host resistance, these results identify IL-32 as one functional marker and potential correlate of protection against active tuberculosis. Copyright © 2014, American Association for the Advancement of Science.

  18. From Coexpression to Coregulation: An Approach to Inferring Transcriptional Regulation Among Gene Classes from Large-Scale Expression Data

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric; Castano, Rebecca; Mann, Tobias; Wold, Barbara

    2000-01-01

    We provide preliminary evidence that existing algorithms for inferring small-scale gene regulation networks from gene expression data can be adapted to large-scale gene expression data coming from hybridization microarrays. The essential steps are (I) clustering many genes by their expression time-course data into a minimal set of clusters of co-expressed genes, (2) theoretically modeling the various conditions under which the time-courses are measured using a continuous-time analog recurrent neural network for the cluster mean time-courses, (3) fitting such a regulatory model to the cluster mean time courses by simulated annealing with weight decay, and (4) analysing several such fits for commonalities in the circuit parameter sets including the connection matrices. This procedure can be used to assess the adequacy of existing and future gene expression time-course data sets for determining transcriptional regulatory relationships such as coregulation.

  19. Network regularised Cox regression and multiplex network models to predict disease comorbidities and survival of cancer.

    PubMed

    Xu, Haoming; Moni, Mohammad Ali; Liò, Pietro

    2015-12-01

    In cancer genomics, gene expression levels provide important molecular signatures for all types of cancer, and this could be very useful for predicting the survival of cancer patients. However, the main challenge of gene expression data analysis is high dimensionality, and microarray is characterised by few number of samples with large number of genes. To overcome this problem, a variety of penalised Cox proportional hazard models have been proposed. We introduce a novel network regularised Cox proportional hazard model and a novel multiplex network model to measure the disease comorbidities and to predict survival of the cancer patient. Our methods are applied to analyse seven microarray cancer gene expression datasets: breast cancer, ovarian cancer, lung cancer, liver cancer, renal cancer and osteosarcoma. Firstly, we applied a principal component analysis to reduce the dimensionality of original gene expression data. Secondly, we applied a network regularised Cox regression model on the reduced gene expression datasets. By using normalised mutual information method and multiplex network model, we predict the comorbidities for the liver cancer based on the integration of diverse set of omics and clinical data, and we find the diseasome associations (disease-gene association) among different cancers based on the identified common significant genes. Finally, we evaluated the precision of the approach with respect to the accuracy of survival prediction using ROC curves. We report that colon cancer, liver cancer and renal cancer share the CXCL5 gene, and breast cancer, ovarian cancer and renal cancer share the CCND2 gene. Our methods are useful to predict survival of the patient and disease comorbidities more accurately and helpful for improvement of the care of patients with comorbidity. Software in Matlab and R is available on our GitHub page: https://github.com/ssnhcom/NetworkRegularisedCox.git. Copyright © 2015. Published by Elsevier Ltd.

  20. Functional genomics annotation of a statistical epistasis network associated with bladder cancer susceptibility.

    PubMed

    Hu, Ting; Pan, Qinxin; Andrew, Angeline S; Langer, Jillian M; Cole, Michael D; Tomlinson, Craig R; Karagas, Margaret R; Moore, Jason H

    2014-04-11

    Several different genetic and environmental factors have been identified as independent risk factors for bladder cancer in population-based studies. Recent studies have turned to understanding the role of gene-gene and gene-environment interactions in determining risk. We previously developed the bioinformatics framework of statistical epistasis networks (SEN) to characterize the global structure of interacting genetic factors associated with a particular disease or clinical outcome. By applying SEN to a population-based study of bladder cancer among Caucasians in New Hampshire, we were able to identify a set of connected genetic factors with strong and significant interaction effects on bladder cancer susceptibility. To support our statistical findings using networks, in the present study, we performed pathway enrichment analyses on the set of genes identified using SEN, and found that they are associated with the carcinogen benzo[a]pyrene, a component of tobacco smoke. We further carried out an mRNA expression microarray experiment to validate statistical genetic interactions, and to determine if the set of genes identified in the SEN were differentially expressed in a normal bladder cell line and a bladder cancer cell line in the presence or absence of benzo[a]pyrene. Significant nonrandom sets of genes from the SEN were found to be differentially expressed in response to benzo[a]pyrene in both the normal bladder cells and the bladder cancer cells. In addition, the patterns of gene expression were significantly different between these two cell types. The enrichment analyses and the gene expression microarray results support the idea that SEN analysis of bladder in population-based studies is able to identify biologically meaningful statistical patterns. These results bring us a step closer to a systems genetic approach to understanding cancer susceptibility that integrates population and laboratory-based studies.

  1. The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing

    PubMed Central

    Iranzo, Jaime

    2016-01-01

    ABSTRACT Virus genomes are prone to extensive gene loss, gain, and exchange and share no universal genes. Therefore, in a broad-scale study of virus evolution, gene and genome network analyses can complement traditional phylogenetics. We performed an exhaustive comparative analysis of the genomes of double-stranded DNA (dsDNA) viruses by using the bipartite network approach and found a robust hierarchical modularity in the dsDNA virosphere. Bipartite networks consist of two classes of nodes, with nodes in one class, in this case genomes, being connected via nodes of the second class, in this case genes. Such a network can be partitioned into modules that combine nodes from both classes. The bipartite network of dsDNA viruses includes 19 modules that form 5 major and 3 minor supermodules. Of these modules, 11 include tailed bacteriophages, reflecting the diversity of this largest group of viruses. The module analysis quantitatively validates and refines previously proposed nontrivial evolutionary relationships. An expansive supermodule combines the large and giant viruses of the putative order “Megavirales” with diverse moderate-sized viruses and related mobile elements. All viruses in this supermodule share a distinct morphogenetic tool kit with a double jelly roll major capsid protein. Herpesviruses and tailed bacteriophages comprise another supermodule, held together by a distinct set of morphogenetic proteins centered on the HK97-like major capsid protein. Together, these two supermodules cover the great majority of currently known dsDNA viruses. We formally identify a set of 14 viral hallmark genes that comprise the hubs of the network and account for most of the intermodule connections. PMID:27486193

  2. Abnormally high expression of POLD1, MCM2, and PLK4 promotes relapse of acute lymphoblastic leukemia.

    PubMed

    Li, Sheng; Wang, Chengzhong; Wang, Weikai; Liu, Weidong; Zhang, Guiqin

    2018-05-01

    This study aimed to explore the underlying mechanism of relapsed acute lymphoblastic leukemia (ALL).Datasets of GSE28460 and GSE18497 were downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between diagnostic and relapsed ALL samples were identified using Limma package in R, and a Venn diagram was drawn. Next, functional enrichment analyses of co-regulated DEGs were performed. Based on the String database, protein-protein interaction network and module analyses were also conducted. Moreover, transcription factors and miRNAs targeting co-regulated DEGs were predicted using the WebGestalt online tool.A total of 71 co-regulated DEGs were identified, including 56 co-upregulated genes and 15 co-downregulated genes. Functional enrichment analyses showed that upregulated DEGs were significantly enriched in the cell cycle, and DNA replication, and repair related pathways. POLD1, MCM2, and PLK4 were hub proteins in both protein-protein interaction network and module, and might be potential targets of E2F. Additionally, POLD1 and MCM2 were found to be regulated by miR-520H via E2F1.High expression of POLD1, MCM2, and PLK4 might play positive roles in the recurrence of ALL, and could serve as potential therapeutic targets for the treatment of relapsed ALL.

  3. Identification of crucial genes related to postmenopausal osteoporosis using gene expression profiling.

    PubMed

    Ma, Min; Chen, Xiaofei; Lu, Liangyu; Yuan, Feng; Zeng, Wen; Luo, Shulin; Yin, Feng; Cai, Junfeng

    2016-12-01

    Postmenopausal osteoporosis is a common bone disease and characterized by low bone mineral density. This study aimed to reveal key genes associated with postmenopausal osteoporosis (PMO), and provide a theoretical basis for subsequent experiments. The dataset GSE7429 was obtained from Gene Expression Omnibus. A total of 20 B cell samples (ten ones, respectively from postmenopausal women with low or high bone mineral density (BMD) were included in this dataset. Following screening of differentially expressed genes (DEGs), coexpression analysis of all genes was performed, and key genes in the coexpression network were screened using the random walk algorithm. Afterwards, functional and pathway analyses were conducted. Additionally, protein-protein interactions (PPIs) between DEGs and key genes were analyzed. A set of 308 DEGs (170 up-regulated ones and 138 down-regulated ones) between low BMD and high BMD samples were identified, and 101 key genes in the coexpression network were screened out. In the coexpression network, some genes had a higher score and degree, such as CSTA. The key genes in the coexpression network were mainly enriched in GO terms of the defense response (e.g., SERPINA1 and CST3), immune response (e.g., IL32 and CLEC7A); while, the DEGs were mainly enriched in structural constituent of cytoskeleton (e.g., CYLC2 and TUBA1B) and membrane-enclosed lumen (e.g., CCNE1 and INTS5). In the PPI network, CCNE1 interacted with REL; and TUBA1B interacted with ESR1. A series of interactions, such as CSTA/TYROBP, CCNE1/REL and TUBA1B/ESR1 might play pivotal roles in the occurrence and development of PMO.

  4. TRACING CO-REGULATORY NETWORK DYNAMICS IN NOISY, SINGLE-CELL TRANSCRIPTOME TRAJECTORIES.

    PubMed

    Cordero, Pablo; Stuart, Joshua M

    2017-01-01

    The availability of gene expression data at the single cell level makes it possible to probe the molecular underpinnings of complex biological processes such as differentiation and oncogenesis. Promising new methods have emerged for reconstructing a progression 'trajectory' from static single-cell transcriptome measurements. However, it remains unclear how to adequately model the appreciable level of noise in these data to elucidate gene regulatory network rewiring. Here, we present a framework called Single Cell Inference of MorphIng Trajectories and their Associated Regulation (SCIMITAR) that infers progressions from static single-cell transcriptomes by employing a continuous parametrization of Gaussian mixtures in high-dimensional curves. SCIMITAR yields rich models from the data that highlight genes with expression and co-expression patterns that are associated with the inferred progression. Further, SCIMITAR extracts regulatory states from the implicated trajectory-evolvingco-expression networks. We benchmark the method on simulated data to show that it yields accurate cell ordering and gene network inferences. Applied to the interpretation of a single-cell human fetal neuron dataset, SCIMITAR finds progression-associated genes in cornerstone neural differentiation pathways missed by standard differential expression tests. Finally, by leveraging the rewiring of gene-gene co-expression relations across the progression, the method reveals the rise and fall of co-regulatory states and trajectory-dependent gene modules. These analyses implicate new transcription factors in neural differentiation including putative co-factors for the multi-functional NFAT pathway.

  5. TP53 mutations, expression and interaction networks in human cancers

    PubMed Central

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-01

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers. PMID:27880943

  6. TP53 mutations, expression and interaction networks in human cancers.

    PubMed

    Wang, Xiaosheng; Sun, Qingrong

    2017-01-03

    Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers.

  7. Introduction to focus issue: quantitative approaches to genetic networks.

    PubMed

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.

  8. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.

  9. Identification of a neuronal transcription factor network involved in medulloblastoma development.

    PubMed

    Lastowska, Maria; Al-Afghani, Hani; Al-Balool, Haya H; Sheth, Harsh; Mercer, Emma; Coxhead, Jonathan M; Redfern, Chris P F; Peters, Heiko; Burt, Alastair D; Santibanez-Koref, Mauro; Bacon, Chris M; Chesler, Louis; Rust, Alistair G; Adams, David J; Williamson, Daniel; Clifford, Steven C; Jackson, Michael S

    2013-07-11

    Medulloblastomas, the most frequent malignant brain tumours affecting children, comprise at least 4 distinct clinicogenetic subgroups. Aberrant sonic hedgehog (SHH) signalling is observed in approximately 25% of tumours and defines one subgroup. Although alterations in SHH pathway genes (e.g. PTCH1, SUFU) are observed in many of these tumours, high throughput genomic analyses have identified few other recurring mutations. Here, we have mutagenised the Ptch+/- murine tumour model using the Sleeping Beauty transposon system to identify additional genes and pathways involved in SHH subgroup medulloblastoma development. Mutagenesis significantly increased medulloblastoma frequency and identified 17 candidate cancer genes, including orthologs of genes somatically mutated (PTEN, CREBBP) or associated with poor outcome (PTEN, MYT1L) in the human disease. Strikingly, these candidate genes were enriched for transcription factors (p=2x10-5), the majority of which (6/7; Crebbp, Myt1L, Nfia, Nfib, Tead1 and Tgif2) were linked within a single regulatory network enriched for genes associated with a differentiated neuronal phenotype. Furthermore, activity of this network varied significantly between the human subgroups, was associated with metastatic disease, and predicted poor survival specifically within the SHH subgroup of tumours. Igf2, previously implicated in medulloblastoma, was the most differentially expressed gene in murine tumours with network perturbation, and network activity in both mouse and human tumours was characterised by enrichment for multiple gene-sets indicating increased cell proliferation, IGF signalling, MYC target upregulation, and decreased neuronal differentiation. Collectively, our data support a model of medulloblastoma development in SB-mutagenised Ptch+/- mice which involves disruption of a novel transcription factor network leading to Igf2 upregulation, proliferation of GNPs, and tumour formation. Moreover, our results identify rational therapeutic targets for SHH subgroup tumours, alongside prognostic biomarkers for the identification of poor-risk SHH patients.

  10. Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish

    PubMed Central

    Zardoya, Rafael; Abouheif, Ehab; Meyer, Axel

    1996-01-01

    The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established. PMID:8917540

  11. Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish.

    PubMed

    Zardoya, R; Abouheif, E; Meyer, A

    1996-11-12

    The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established.

  12. Networking of differentially expressed genes in human cancer cells resistant to methotrexate

    PubMed Central

    2009-01-01

    Background The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). Methods Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. Results Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. Conclusions Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX. PMID:19732436

  13. Sybil--efficient constraint-based modelling in R.

    PubMed

    Gelius-Dietrich, Gabriel; Desouki, Abdelmoneim Amer; Fritzemeier, Claus Jonathan; Lercher, Martin J

    2013-11-13

    Constraint-based analyses of metabolic networks are widely used to simulate the properties of genome-scale metabolic networks. Publicly available implementations tend to be slow, impeding large scale analyses such as the genome-wide computation of pairwise gene knock-outs, or the automated search for model improvements. Furthermore, available implementations cannot easily be extended or adapted by users. Here, we present sybil, an open source software library for constraint-based analyses in R; R is a free, platform-independent environment for statistical computing and graphics that is widely used in bioinformatics. Among other functions, sybil currently provides efficient methods for flux-balance analysis (FBA), MOMA, and ROOM that are about ten times faster than previous implementations when calculating the effect of whole-genome single gene deletions in silico on a complete E. coli metabolic model. Due to the object-oriented architecture of sybil, users can easily build analysis pipelines in R or even implement their own constraint-based algorithms. Based on its highly efficient communication with different mathematical optimisation programs, sybil facilitates the exploration of high-dimensional optimisation problems on small time scales. Sybil and all its dependencies are open source. Sybil and its documentation are available for download from the comprehensive R archive network (CRAN).

  14. Modular organization of the white spruce (Picea glauca) transcriptome reveals functional organization and evolutionary signatures.

    PubMed

    Raherison, Elie S M; Giguère, Isabelle; Caron, Sébastien; Lamara, Mebarek; MacKay, John J

    2015-07-01

    Transcript profiling has shown the molecular bases of several biological processes in plants but few studies have developed an understanding of overall transcriptome variation. We investigated transcriptome structure in white spruce (Picea glauca), aiming to delineate its modular organization and associated functional and evolutionary attributes. Microarray analyses were used to: identify and functionally characterize groups of co-expressed genes; investigate expressional and functional diversity of vascular tissue preferential genes which were conserved among Picea species, and identify expression networks underlying wood formation. We classified 22 857 genes as variable (79%; 22 coexpression groups) or invariant (21%) by profiling across several vegetative tissues. Modular organization and complex transcriptome restructuring among vascular tissue preferential genes was revealed by their assignment to coexpression groups with partially overlapping profiles and partially distinct functions. Integrated analyses of tissue-based and temporally variable profiles identified secondary xylem gene networks, showed their remodelling over a growing season and identified PgNAC-7 (no apical meristerm (NAM), Arabidopsis transcription activation factor (ATAF) and cup-shaped cotyledon (CUC) transcription factor 007 in Picea glauca) as a major hub gene specific to earlywood formation. Reference profiling identified comprehensive, statistically robust coexpressed groups, revealing that modular organization underpins the evolutionary conservation of the transcriptome structure. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Identification of a 5‑lncRNA signature‑based risk scoring system for survival prediction in colorectal cancer.

    PubMed

    Gu, Liqiang; Yu, Jun; Wang, Qing; Xu, Bin; Ji, Liechen; Yu, Lin; Zhang, Xipeng; Cai, Hui

    2018-05-03

    The present study aimed to investigate potential prognostic long noncoding RNAs (lncRNAs) associated with colorectal cancer (CRC). An mRNA‑seq dataset obtained from The Cancer Genome Atlas was employed to identify the differentially expressed lncRNAs (DELs) between CRC patients with good and poor prognoses. Subsequently, univariate and multivariate Cox regression analyses were conducted to analyze the prognosis‑associated lncRNAs among all DELs. In addition, a risk scoring system was developed according to the expression levels of the prognostic lncRNAs, which was then applied to a training set and an independent testing set. Furthermore, the co‑expressed genes of prognostic lncRNAs were screened using a Multi‑Experiment Matrix online tool for construction of lncRNA‑gene networks. Finally, Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology (GO) function enrichment analyses were performed on genes in the lncRNA‑gene networks using KOBAS, GOATOOLS and ClusterProfiler. The present study identified 82 DELs, of which long intergenic nonprotein coding RNA 2159, RP11‑452L6.6, RP11‑894P9.1 and RP11‑69M1.6, and whey acidic protein four‑disulfide core domain 21 (WFDC21P) were reported to be independently associated with the prognosis of patients with CRC. A 5‑lncRNA signature‑based risk scoring system was developed, which may be used to classify patients into low‑ and high‑risk groups with significantly different recurrence‑free survival times in the training and testing sets (P<0.05). Co‑expressed genes of WFDC21P or RP11‑69M1.6 were utilized to construct the lncRNA‑gene networks. Genes in the networks were significantly enriched in 'tight junction', 'focal adhesion' and 'regulation of actin cytoskeleton' pathways, and numerous GO terms associated with 'reactive oxygen species metabolism' and 'nitric oxide metabolism'. The present study proposed a 5‑lncRNA signature‑based risk scoring system for predicting the prognosis of patients with CRC, and revealed the associated signaling pathways and biological processes. The results of the present study may help improve prognostic evaluation in clinical practice.

  16. Molecular Evolution of the Neural Crest Regulatory Network in Ray-Finned Fish

    PubMed Central

    Kratochwil, Claudius F.; Geissler, Laura; Irisarri, Iker; Meyer, Axel

    2015-01-01

    Abstract Gene regulatory networks (GRN) are central to developmental processes. They are composed of transcription factors and signaling molecules orchestrating gene expression modules that tightly regulate the development of organisms. The neural crest (NC) is a multipotent cell population that is considered a key innovation of vertebrates. Its derivatives contribute to shaping the astounding morphological diversity of jaws, teeth, head skeleton, or pigmentation. Here, we study the molecular evolution of the NC GRN by analyzing patterns of molecular divergence for a total of 36 genes in 16 species of bony fishes. Analyses of nonsynonymous to synonymous substitution rate ratios (dN/dS) support patterns of variable selective pressures among genes deployed at different stages of NC development, consistent with the developmental hourglass model. Model-based clustering techniques of sequence features support the notion of extreme conservation of NC-genes across the entire network. Our data show that most genes are under strong purifying selection that is maintained throughout ray-finned fish evolution. Late NC development genes reveal a pattern of increased constraints in more recent lineages. Additionally, seven of the NC-genes showed signs of relaxation of purifying selection in the famously species-rich lineage of cichlid fishes. This suggests that NC genes might have played a role in the adaptive radiation of cichlids by granting flexibility in the development of NC-derived traits—suggesting an important role for NC network architecture during the diversification in vertebrates. PMID:26475317

  17. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia

    2014-08-28

    The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigatedmore » preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results.« less

  18. Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice

    PubMed Central

    2012-01-01

    Background WD40 proteins represent a large family in eukaryotes, which have been involved in a broad spectrum of crucial functions. Systematic characterization and co-expression analysis of OsWD40 genes enable us to understand the networks of the WD40 proteins and their biological processes and gene functions in rice. Results In this study, we identify and analyze 200 potential OsWD40 genes in rice, describing their gene structures, genome localizations, and evolutionary relationship of each member. Expression profiles covering the whole life cycle in rice has revealed that transcripts of OsWD40 were accumulated differentially during vegetative and reproductive development and preferentially up or down-regulated in different tissues. Under phytohormone treatments, 25 OsWD40 genes were differentially expressed with treatments of one or more of the phytohormone NAA, KT, or GA3 in rice seedlings. We also used a combined analysis of expression correlation and Gene Ontology annotation to infer the biological role of the OsWD40 genes in rice. The results suggested that OsWD40 genes may perform their diverse functions by complex network, thus were predictive for understanding their biological pathways. The analysis also revealed that OsWD40 genes might interact with each other to take part in metabolic pathways, suggesting a more complex feedback network. Conclusions All of these analyses suggest that the functions of OsWD40 genes are diversified, which provide useful references for selecting candidate genes for further functional studies. PMID:22429805

  19. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.

    PubMed

    Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2005-02-01

    cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.

  20. The regulatory network analysis of long noncoding RNAs in human colorectal cancer.

    PubMed

    Zhang, Yuwei; Tao, Yang; Li, Yang; Zhao, Jinshun; Zhang, Lina; Zhang, Xiaohong; Dong, Changzheng; Xie, Yangyang; Dai, Xiaoyu; Zhang, Xinjun; Liao, Qi

    2018-05-01

    Colorectal cancer (CRC) is among one of the most prevalent and lethiferous diseases worldwide. Long noncoding RNAs (lncRNAs) are commonly accepted to function as a key regulatory factor in human cancer, but the potential regulatory mechanisms of CRC-associated lncRNA are largely obscure. Here, we integrated several expression profiles to obtain 55 differentially expressed (DE) lncRNAs. We first detected lncRNA interactions with transcription factors, microRNAs, mRNAs, and RNA-binding proteins to construct a regulatory network and then create functional enrichment analyses for them using bioinformatics approaches. We found the upregulated genes in the regulatory network are enriched in cell cycle and DNA damage response, while the downregulated genes are enriched in cell differentiation, cellular response, and cell signaling. We then employed module-based methods to mine several intriguing modules from the overall network, which helps to classify the functions of genes more specifically. Next, we confirmed the validity of our network by comparisons with a randomized network using computational method. Finally, we attempted to annotate lncRNA functions based on the regulatory network, which indicated its potential application. Our study of the lncRNA regulatory network provided significant clues to unveil lncRNAs potential regulatory mechanisms in CRC and laid a foundation for further experimental investigation.

  1. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    PubMed

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.

  2. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease.

    PubMed

    Mostafavi, Sara; Gaiteri, Chris; Sullivan, Sarah E; White, Charles C; Tasaki, Shinya; Xu, Jishu; Taga, Mariko; Klein, Hans-Ulrich; Patrick, Ellis; Komashko, Vitalina; McCabe, Cristin; Smith, Robert; Bradshaw, Elizabeth M; Root, David E; Regev, Aviv; Yu, Lei; Chibnik, Lori B; Schneider, Julie A; Young-Pearse, Tracy L; Bennett, David A; De Jager, Philip L

    2018-06-01

    There is a need for new therapeutic targets with which to prevent Alzheimer's disease (AD), a major contributor to aging-related cognitive decline. Here we report the construction and validation of a molecular network of the aging human frontal cortex. Using RNA sequence data from 478 individuals, we first build a molecular network using modules of coexpressed genes and then relate these modules to AD and its neuropathologic and cognitive endophenotypes. We confirm these associations in two independent AD datasets. We also illustrate the use of the network in prioritizing amyloid- and cognition-associated genes for in vitro validation in human neurons and astrocytes. These analyses based on unique cohorts enable us to resolve the role of distinct cortical modules that have a direct effect on the accumulation of AD pathology from those that have a direct effect on cognitive decline, exemplifying a network approach to complex diseases.

  3. The PluriNetWork: An Electronic Representation of the Network Underlying Pluripotency in Mouse, and Its Applications

    PubMed Central

    Greber, Boris; Siatkowski, Marcin; Paudel, Yogesh; Warsow, Gregor; Cap, Clemens; Schöler, Hans; Fuellen, Georg

    2010-01-01

    Background Analysis of the mechanisms underlying pluripotency and reprogramming would benefit substantially from easy access to an electronic network of genes, proteins and mechanisms. Moreover, interpreting gene expression data needs to move beyond just the identification of the up-/downregulation of key genes and of overrepresented processes and pathways, towards clarifying the essential effects of the experiment in molecular terms. Methodology/Principal Findings We have assembled a network of 574 molecular interactions, stimulations and inhibitions, based on a collection of research data from 177 publications until June 2010, involving 274 mouse genes/proteins, all in a standard electronic format, enabling analyses by readily available software such as Cytoscape and its plugins. The network includes the core circuit of Oct4 (Pou5f1), Sox2 and Nanog, its periphery (such as Stat3, Klf4, Esrrb, and c-Myc), connections to upstream signaling pathways (such as Activin, WNT, FGF, BMP, Insulin, Notch and LIF), and epigenetic regulators as well as some other relevant genes/proteins, such as proteins involved in nuclear import/export. We describe the general properties of the network, as well as a Gene Ontology analysis of the genes included. We use several expression data sets to condense the network to a set of network links that are affected in the course of an experiment, yielding hypotheses about the underlying mechanisms. Conclusions/Significance We have initiated an electronic data repository that will be useful to understand pluripotency and to facilitate the interpretation of high-throughput data. To keep up with the growth of knowledge on the fundamental processes of pluripotency and reprogramming, we suggest to combine Wiki and social networking software towards a community curation system that is easy to use and flexible, and tailored to provide a benefit for the scientist, and to improve communication and exchange of research results. A PluriNetWork tutorial is available at http://www.ibima.med.uni-rostock.de/IBIMA/PluriNetWork/. PMID:21179244

  4. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.

    PubMed

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice. Thus, the co-regulatory network analysis facilitated the identification of complex OsMYB regulatory networks, and candidate target regulon genes of selected guide MYB genes. The results contribute to the candidate gene screening, and experimentally testable hypotheses for potential regulatory MYB TFs, and their targets under stress conditions.

  5. Extracting Fitness Relationships and Oncogenic Patterns among Driver Genes in Cancer.

    PubMed

    Zhang, Xindong; Gao, Lin; Jia, Songwei

    2017-12-25

    Driver mutation provides fitness advantage to cancer cells, the accumulation of which increases the fitness of cancer cells and accelerates cancer progression. This work seeks to extract patterns accumulated by driver genes ("fitness relationships") in tumorigenesis. We introduce a network-based method for extracting the fitness relationships of driver genes by modeling the network properties of the "fitness" of cancer cells. Colon adenocarcinoma (COAD) and skin cutaneous malignant melanoma (SKCM) are employed as case studies. Consistent results derived from different background networks suggest the reliability of the identified fitness relationships. Additionally co-occurrence analysis and pathway analysis reveal the functional significance of the fitness relationships with signaling transduction. In addition, a subset of driver genes called the "fitness core" is recognized for each case. Further analyses indicate the functional importance of the fitness core in carcinogenesis, and provide potential therapeutic opportunities in medicinal intervention. Fitness relationships characterize the functional continuity among driver genes in carcinogenesis, and suggest new insights in understanding the oncogenic mechanisms of cancers, as well as providing guiding information for medicinal intervention.

  6. A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function.

    PubMed

    Rubel, Cory A; Wu, San-Pin; Lin, Lin; Wang, Tianyuan; Lanz, Rainer B; Li, Xilong; Kommagani, Ramakrishna; Franco, Heather L; Camper, Sally A; Tong, Qiang; Jeong, Jae-Wook; Lydon, John P; DeMayo, Francesco J

    2016-10-25

    Altered progesterone responsiveness leads to female infertility and cancer, but underlying mechanisms remain unclear. Mice with uterine-specific ablation of GATA binding protein 2 (Gata2) are infertile, showing failures in embryo implantation, endometrial decidualization, and uninhibited estrogen signaling. Gata2 deficiency results in reduced progesterone receptor (PGR) expression and attenuated progesterone signaling, as evidenced by genome-wide expression profiling and chromatin immunoprecipitation. GATA2 not only occupies at and promotes expression of the Pgr gene but also regulates downstream progesterone responsive genes in conjunction with the PGR. Additionally, Gata2 knockout uteri exhibit abnormal luminal epithelia with ectopic TRP63 expressing squamous cells and a cancer-related molecular profile in a progesterone-independent manner. Lastly, we found a conserved GATA2-PGR regulatory network in both human and mice based on gene signature and path analyses using gene expression profiles of human endometrial tissues. In conclusion, uterine Gata2 regulates a key regulatory network of gene expression for progesterone signaling at the early pregnancy stage. Published by Elsevier Inc.

  7. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage

    PubMed Central

    2013-01-01

    Background We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing. Results Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented. Conclusions Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle's extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders. PMID:23537068

  8. A Network of HMG-box Transcription Factors Regulates Sexual Cycle in the Fungus Podospora anserina

    PubMed Central

    Ait Benkhali, Jinane; Coppin, Evelyne; Brun, Sylvain; Peraza-Reyes, Leonardo; Martin, Tom; Dixelius, Christina; Lazar, Noureddine; van Tilbeurgh, Herman; Debuchy, Robert

    2013-01-01

    High-mobility group (HMG) B proteins are eukaryotic DNA-binding proteins characterized by the HMG-box functional motif. These transcription factors play a pivotal role in global genomic functions and in the control of genes involved in specific developmental or metabolic pathways. The filamentous ascomycete Podospora anserina contains 12 HMG-box genes. Of these, four have been previously characterized; three are mating-type genes that control fertilization and development of the fruit-body, whereas the last one encodes a factor involved in mitochondrial DNA stability. Systematic deletion analysis of the eight remaining uncharacterized HMG-box genes indicated that none were essential for viability, but that seven were involved in the sexual cycle. Two HMG-box genes display striking features. PaHMG5, an ortholog of SpSte11 from Schizosaccharomyces pombe, is a pivotal activator of mating-type genes in P. anserina, whereas PaHMG9 is a repressor of several phenomena specific to the stationary phase, most notably hyphal anastomoses. Transcriptional analyses of HMG-box genes in HMG-box deletion strains indicated that PaHMG5 is at the hub of a network of several HMG-box factors that regulate mating-type genes and mating-type target genes. Genetic analyses revealed that this network also controls fertility genes that are not regulated by mating-type transcription factors. This study points to the critical role of HMG-box members in sexual reproduction in fungi, as 11 out of 12 members were involved in the sexual cycle in P. anserina. PaHMG5 and SpSte11 are conserved transcriptional regulators of mating-type genes, although P. anserina and S. pombe diverged 550 million years ago. Two HMG-box genes, SOX9 and its upstream regulator SRY, also play an important role in sex determination in mammals. The P. anserina and S. pombe mating-type genes and their upstream regulatory factor form a module of HMG-box genes analogous to the SRY/SOX9 module, revealing a commonality of sex regulation in animals and fungi. PMID:23935511

  9. Identifying novel genes and chemicals related to nasopharyngeal cancer in a heterogeneous network.

    PubMed

    Li, Zhandong; An, Lifeng; Li, Hao; Wang, ShaoPeng; Zhou, You; Yuan, Fei; Li, Lin

    2016-05-05

    Nasopharyngeal cancer or nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. The factors that induce nasopharyngeal cancer are still not clear. Additional information about the chemicals or genes related to nasopharyngeal cancer will promote a better understanding of the pathogenesis of this cancer and the factors that induce it. Thus, a computational method NPC-RGCP was proposed in this study to identify the possible relevant chemicals and genes based on the presently known chemicals and genes related to nasopharyngeal cancer. To extensively utilize the functional associations between proteins and chemicals, a heterogeneous network was constructed based on interactions of proteins and chemicals. The NPC-RGCP included two stages: the searching stage and the screening stage. The former stage is for finding new possible genes and chemicals in the heterogeneous network, while the latter stage is for screening and removing false discoveries and selecting the core genes and chemicals. As a result, five putative genes, CXCR3, IRF1, CDK1, GSTP1, and CDH2, and seven putative chemicals, iron, propionic acid, dimethyl sulfoxide, isopropanol, erythrose 4-phosphate, β-D-Fructose 6-phosphate, and flavin adenine dinucleotide, were identified by NPC-RGCP. Extensive analyses provided confirmation that the putative genes and chemicals have significant associations with nasopharyngeal cancer.

  10. Identifying novel genes and chemicals related to nasopharyngeal cancer in a heterogeneous network

    PubMed Central

    Li, Zhandong; An, Lifeng; Li, Hao; Wang, ShaoPeng; Zhou, You; Yuan, Fei; Li, Lin

    2016-01-01

    Nasopharyngeal cancer or nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. The factors that induce nasopharyngeal cancer are still not clear. Additional information about the chemicals or genes related to nasopharyngeal cancer will promote a better understanding of the pathogenesis of this cancer and the factors that induce it. Thus, a computational method NPC-RGCP was proposed in this study to identify the possible relevant chemicals and genes based on the presently known chemicals and genes related to nasopharyngeal cancer. To extensively utilize the functional associations between proteins and chemicals, a heterogeneous network was constructed based on interactions of proteins and chemicals. The NPC-RGCP included two stages: the searching stage and the screening stage. The former stage is for finding new possible genes and chemicals in the heterogeneous network, while the latter stage is for screening and removing false discoveries and selecting the core genes and chemicals. As a result, five putative genes, CXCR3, IRF1, CDK1, GSTP1, and CDH2, and seven putative chemicals, iron, propionic acid, dimethyl sulfoxide, isopropanol, erythrose 4-phosphate, β-D-Fructose 6-phosphate, and flavin adenine dinucleotide, were identified by NPC-RGCP. Extensive analyses provided confirmation that the putative genes and chemicals have significant associations with nasopharyngeal cancer. PMID:27149165

  11. Detecting gene subnetworks under selection in biological pathways.

    PubMed

    Gouy, Alexandre; Daub, Joséphine T; Excoffier, Laurent

    2017-09-19

    Advances in high throughput sequencing technologies have created a gap between data production and functional data analysis. Indeed, phenotypes result from interactions between numerous genes, but traditional methods treat loci independently, missing important knowledge brought by network-level emerging properties. Therefore, detecting selection acting on multiple genes affecting the evolution of complex traits remains challenging. In this context, gene network analysis provides a powerful framework to study the evolution of adaptive traits and facilitates the interpretation of genome-wide data. We developed a method to analyse gene networks that is suitable to evidence polygenic selection. The general idea is to search biological pathways for subnetworks of genes that directly interact with each other and that present unusual evolutionary features. Subnetwork search is a typical combinatorial optimization problem that we solve using a simulated annealing approach. We have applied our methodology to find signals of adaptation to high-altitude in human populations. We show that this adaptation has a clear polygenic basis and is influenced by many genetic components. Our approach, implemented in the R package signet, improves on gene-level classical tests for selection by identifying both new candidate genes and new biological processes involved in adaptation to altitude. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. A gene regulatory network armature for T-lymphocyte specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fung, Elizabeth-sharon

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through whichmore » T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.« less

  13. Deciphering Signaling Pathway Networks to Understand the Molecular Mechanisms of Metformin Action

    PubMed Central

    Sun, Jingchun; Zhao, Min; Jia, Peilin; Wang, Lily; Wu, Yonghui; Iverson, Carissa; Zhou, Yubo; Bowton, Erica; Roden, Dan M.; Denny, Joshua C.; Aldrich, Melinda C.; Xu, Hua; Zhao, Zhongming

    2015-01-01

    A drug exerts its effects typically through a signal transduction cascade, which is non-linear and involves intertwined networks of multiple signaling pathways. Construction of such a signaling pathway network (SPNetwork) can enable identification of novel drug targets and deep understanding of drug action. However, it is challenging to synopsize critical components of these interwoven pathways into one network. To tackle this issue, we developed a novel computational framework, the Drug-specific Signaling Pathway Network (DSPathNet). The DSPathNet amalgamates the prior drug knowledge and drug-induced gene expression via random walk algorithms. Using the drug metformin, we illustrated this framework and obtained one metformin-specific SPNetwork containing 477 nodes and 1,366 edges. To evaluate this network, we performed the gene set enrichment analysis using the disease genes of type 2 diabetes (T2D) and cancer, one T2D genome-wide association study (GWAS) dataset, three cancer GWAS datasets, and one GWAS dataset of cancer patients with T2D on metformin. The results showed that the metformin network was significantly enriched with disease genes for both T2D and cancer, and that the network also included genes that may be associated with metformin-associated cancer survival. Furthermore, from the metformin SPNetwork and common genes to T2D and cancer, we generated a subnetwork to highlight the molecule crosstalk between T2D and cancer. The follow-up network analyses and literature mining revealed that seven genes (CDKN1A, ESR1, MAX, MYC, PPARGC1A, SP1, and STK11) and one novel MYC-centered pathway with CDKN1A, SP1, and STK11 might play important roles in metformin’s antidiabetic and anticancer effects. Some results are supported by previous studies. In summary, our study 1) develops a novel framework to construct drug-specific signal transduction networks; 2) provides insights into the molecular mode of metformin; 3) serves a model for exploring signaling pathways to facilitate understanding of drug action, disease pathogenesis, and identification of drug targets. PMID:26083494

  14. Differential transcriptome expression in human nucleus accumbens as a function of loneliness

    PubMed Central

    Canli, Turhan; Wen, Ruofeng; Wang, Xuefeng; Mikhailik, Anatoly; Yu, Lei; Fleischman, Debra; Wilson, Robert S.; Bennett, David A.

    2017-01-01

    Loneliness is associated with impaired mental and physical health. Studies of lonely individuals reported differential expression of inflammatory genes in peripheral leukocytes and diminished activation in brain reward regions such as nucleus accumbens, but could not address gene expression in the human brain. Here, we examined genome-wide RNA expression in postmortem nucleus accumbens from donors (N = 26) with known loneliness measures. Loneliness was associated with 1 710 differentially expressed transcripts from 1 599 genes (DEGs; FDR p < 0.05, fold-change ≥ |2|, controlling for confounds) previously associated with behavioral processes, neurological disease, psychological disorders, cancer, organismal injury, and skeletal and muscular disorders, as well as networks of upstream RNA regulators. Furthermore, a number of DEGs were associated with Alzheimer’s disease genes (which was correlated with loneliness in this sample, although gene expression analyses controlled for AD diagnosis). These results identify novel targets for future mechanistic studies of gene networks in nucleus accumbens and gene regulatory mechanisms across a variety of diseases exacerbated by loneliness. PMID:27801889

  15. Elucidating the genotype-phenotype relationships and network perturbations of human shared and specific disease genes from an evolutionary perspective.

    PubMed

    Begum, Tina; Ghosh, Tapash Chandra

    2014-10-05

    To date, numerous studies have been attempted to determine the extent of variation in evolutionary rates between human disease and nondisease (ND) genes. In our present study, we have considered human autosomal monogenic (Mendelian) disease genes, which were classified into two groups according to the number of phenotypic defects, that is, specific disease (SPD) gene (one gene: one defect) and shared disease (SHD) gene (one gene: multiple defects). Here, we have compared the evolutionary rates of these two groups of genes, that is, SPD genes and SHD genes with respect to ND genes. We observed that the average evolutionary rates are slow in SHD group, intermediate in SPD group, and fast in ND group. Group-to-group evolutionary rate differences remain statistically significant regardless of their gene expression levels and number of defects. We demonstrated that disease genes are under strong selective constraint if they emerge through edgetic perturbation or drug-induced perturbation of the interactome network, show tissue-restricted expression, and are involved in transmembrane transport. Among all the factors, our regression analyses interestingly suggest the independent effects of 1) drug-induced perturbation and 2) the interaction term of expression breadth and transmembrane transport on protein evolutionary rates. We reasoned that the drug-induced network disruption is a combination of several edgetic perturbations and, thus, has more severe effect on gene phenotypes. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Mouse Social Network Dynamics and Community Structure are Associated with Plasticity-Related Brain Gene Expression

    PubMed Central

    Williamson, Cait M.; Franks, Becca; Curley, James P.

    2016-01-01

    Laboratory studies of social behavior have typically focused on dyadic interactions occurring within a limited spatiotemporal context. However, this strategy prevents analyses of the dynamics of group social behavior and constrains identification of the biological pathways mediating individual differences in behavior. In the current study, we aimed to identify the spatiotemporal dynamics and hierarchical organization of a large social network of male mice. We also sought to determine if standard assays of social and exploratory behavior are predictive of social behavior in this social network and whether individual network position was associated with the mRNA expression of two plasticity-related genes, DNA methyltransferase 1 and 3a. Mice were observed to form a hierarchically organized social network and self-organized into two separate social network communities. Members of both communities exhibited distinct patterns of socio-spatial organization within the vivaria that was not limited to only agonistic interactions. We further established that exploratory and social behaviors in standard behavioral assays conducted prior to placing the mice into the large group was predictive of initial network position and behavior but were not associated with final social network position. Finally, we determined that social network position is associated with variation in mRNA levels of two neural plasticity genes, DNMT1 and DNMT3a, in the hippocampus but not the mPOA. This work demonstrates the importance of understanding the role of social context and complex social dynamics in determining the relationship between individual differences in social behavior and brain gene expression. PMID:27540359

  17. Forkhead-box series expression network is associated with outcome of clear-cell renal cell carcinoma.

    PubMed

    Jia, Zhongwei; Wan, Fangning; Zhu, Yao; Shi, Guohai; Zhang, Hailiang; Dai, Bo; Ye, Dingwei

    2018-06-01

    Previous studies have demonstrated that several members of the Forkhead-box (FOX) family of genes are associated with tumor progression and metastasis. The objective of the current study was to screen candidate FOX family genes identified from analysis of molecular networks in clear cell renal cell carcinoma (ccRCC). The expression of FOX family genes as well as FOX family-associated genes was examined, and Kaplan-Meier survival analysis was performed in The Cancer Genome Atlas (TCGA) cohort (n=525). Patient characteristics, including sex, age, tumor diameter, laterality, tumor-node-metastasis, tumor grade, stage, white blood cell count, platelet count, the levels of hemoglobin, overall survival (OS) and disease-free survival (DFS), were collected for univariate and multivariate Cox proportional hazards ratio analyses. A total of seven candidate FOX family genes were selected from the TCGA database subsequent to univariate and multivariate Cox proportional hazards ratio analyses. FOXA1, FOXA2, FOXD1, FOXD4L2, FOXK2 and FOXL1 were associated with poor OS time, while FOXA1, FOXA2, FOXD1 and FOXK2 were associated with poor DFS time (P<0.05). FOXN2 was associated with favorable outcomes for overall and disease-free survival (P<0.05). In the gene cluster network analysis, the expression of FOX family-associated genes, including nuclear receptor coactivator ( NCOA ) 1 , NADH-ubiquinone oxidoreductase flavoprotein 3 ( NDUFV3 ), phosphatidylserine decarboxylase ( PISD ) and pyruvate kinase liver and red blood cell ( PKLR ), were independent prognostic factors for OS in patients with ccRCC. Results of the present study revealed that the expression of FOX family genes, including FOXA1, FOXA2, FOXD1, FOXD4L2, FOXK2 and FOXL1 , and FOX family-associated genes, including NCOA1, NDUFV3, PISD and PKLR , are independent prognostic factors for patients with ccRCC.

  18. Integrating Structure to Protein-Protein Interaction Networks That Drive Metastasis to Brain and Lung in Breast Cancer

    PubMed Central

    Engin, H. Billur; Guney, Emre; Keskin, Ozlem; Oliva, Baldo; Gursoy, Attila

    2013-01-01

    Blocking specific protein interactions can lead to human diseases. Accordingly, protein interactions and the structural knowledge on interacting surfaces of proteins (interfaces) have an important role in predicting the genotype-phenotype relationship. We have built the phenotype specific sub-networks of protein-protein interactions (PPIs) involving the relevant genes responsible for lung and brain metastasis from primary tumor in breast cancer. First, we selected the PPIs most relevant to metastasis causing genes (seed genes), by using the “guilt-by-association” principle. Then, we modeled structures of the interactions whose complex forms are not available in Protein Databank (PDB). Finally, we mapped mutations to interface structures (real and modeled), in order to spot the interactions that might be manipulated by these mutations. Functional analyses performed on these sub-networks revealed the potential relationship between immune system-infectious diseases and lung metastasis progression, but this connection was not observed significantly in the brain metastasis. Besides, structural analyses showed that some PPI interfaces in both metastasis sub-networks are originating from microbial proteins, which in turn were mostly related with cell adhesion. Cell adhesion is a key mechanism in metastasis, therefore these PPIs may be involved in similar molecular pathways that are shared by infectious disease and metastasis. Finally, by mapping the mutations and amino acid variations on the interface regions of the proteins in the metastasis sub-networks we found evidence for some mutations to be involved in the mechanisms differentiating the type of the metastasis. PMID:24278371

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Ma, Zihao; Carr, Steven A.

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC).more » Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. Molecular & Cellular Proteomics 16: 10.1074/mcp.M116.060301, 121–134, 2017.« less

  20. The Spring of Systems Biology-Driven Breeding.

    PubMed

    Lavarenne, Jérémy; Guyomarc'h, Soazig; Sallaud, Christophe; Gantet, Pascal; Lucas, Mikaël

    2018-05-12

    Genetics and molecular biology have contributed to the development of rationalized plant breeding programs. Recent developments in both high-throughput experimental analyses of biological systems and in silico data processing offer the possibility to address the whole gene regulatory network (GRN) controlling a given trait. GRN models can be applied to identify topological features helping to shortlist potential candidate genes for breeding purposes. Time-series data sets can be used to support dynamic modelling of the network. This will enable a deeper comprehension of network behaviour and the identification of the few elements to be genetically rewired to push the system towards a modified phenotype of interest. This paves the way to design more efficient, systems biology-based breeding strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Functional networks inference from rule-based machine learning models.

    PubMed

    Lazzarini, Nicola; Widera, Paweł; Williamson, Stuart; Heer, Rakesh; Krasnogor, Natalio; Bacardit, Jaume

    2016-01-01

    Functional networks play an important role in the analysis of biological processes and systems. The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the similarity-based inference paradigm (e.g. gene co-expression) has been the most popular approach. It assumes a functional relationship between genes which are expressed at similar levels across different samples. An alternative to this paradigm is the inference of relationships from the structure of machine learning models. These models are able to capture complex relationships between variables, that often are different/complementary to the similarity-based methods. We propose a protocol to infer functional networks from machine learning models, called FuNeL. It assumes, that genes used together within a rule-based machine learning model to classify the samples, might also be functionally related at a biological level. The protocol is first tested on synthetic datasets and then evaluated on a test suite of 8 real-world datasets related to human cancer. The networks inferred from the real-world data are compared against gene co-expression networks of equal size, generated with 3 different methods. The comparison is performed from two different points of view. We analyse the enriched biological terms in the set of network nodes and the relationships between known disease-associated genes in a context of the network topology. The comparison confirms both the biological relevance and the complementary character of the knowledge captured by the FuNeL networks in relation to similarity-based methods and demonstrates its potential to identify known disease associations as core elements of the network. Finally, using a prostate cancer dataset as a case study, we confirm that the biological knowledge captured by our method is relevant to the disease and consistent with the specialised literature and with an independent dataset not used in the inference process. The implementation of our network inference protocol is available at: http://ico2s.org/software/funel.html.

  2. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line

    PubMed Central

    2011-01-01

    Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699

  3. Cytoscape: a software environment for integrated models of biomolecular interaction networks.

    PubMed

    Shannon, Paul; Markiel, Andrew; Ozier, Owen; Baliga, Nitin S; Wang, Jonathan T; Ramage, Daniel; Amin, Nada; Schwikowski, Benno; Ideker, Trey

    2003-11-01

    Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.

  4. Position Matters: Network Centrality Considerably Impacts Rates of Protein Evolution in the Human Protein-Protein Interaction Network.

    PubMed

    Alvarez-Ponce, David; Feyertag, Felix; Chakraborty, Sandip

    2017-06-01

    The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein-protein interaction data set and the human signal transduction network-a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. MicroRNA Gene Regulatory Networks in Peripheral Nerve Sheath Tumors

    DTIC Science & Technology

    2012-09-01

    chondrosarcoma are identified based on the unique histology, cell of origin, clinical features and site distribution. The following are the major... Chondrosarcoma Chondrosarcoma is a cancer composed of cells derived from transformed cells that produce cartilage. Peripheral chondrosarcoma is a malignant...biosynthesis. This is in line with gene expression analyses previously performed in osteochondroma and chondrosarcoma samples showing modulation of

  6. SOX9 Duplication Linked to Intersex in Deer

    PubMed Central

    Kropatsch, Regina; Dekomien, Gabriele; Akkad, Denis A.; Gerding, Wanda M.; Petrasch-Parwez, Elisabeth; Young, Neil D.; Altmüller, Janine; Nürnberg, Peter; Gasser, Robin B.; Epplen, Jörg T.

    2013-01-01

    A complex network of genes determines sex in mammals. Here, we studied a European roe deer with an intersex phenotype that was consistent with a XY genotype with incomplete male-determination. Whole genome sequencing and quantitative real-time PCR analyses revealed a triple dose of the SOX9 gene, allowing insights into a new genetic defect in a wild animal. PMID:24040047

  7. Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses

    USDA-ARS?s Scientific Manuscript database

    Two opposing evolutionary constraints exert pressure on pathogens: one to diversify virulence factors in order to evade host defenses, and the other to retain virulence factors critical for maintaining a compatible interaction. To better understand how the diversified arsenals of fungal genes promot...

  8. Inference of developmental gene regulatory networks beyond classical model systems: new approaches in the post-genomic era.

    PubMed

    Fernandez-Valverde, Selene L; Aguilera, Felipe; Ramos-Díaz, René Alexander

    2018-06-18

    The advent of high-throughput sequencing technologies has revolutionized the way we understand the transformation of genetic information into morphological traits. Elucidating the network of interactions between genes that govern cell differentiation through development is one of the core challenges in genome research. These networks are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between developmental control genes, cis-regulatory modules and differentiation genes, which generate spatially and temporally refined patterns of gene expression. Over the last 20 years, great advances have been made in determining these gene interactions mainly in classical model systems, including human, mouse, sea urchin, fruit fly, and worm. This has brought about a radical transformation in the fields of developmental biology and evolutionary biology, allowing the generation of high-resolution gene regulatory maps to analyse cell differentiation during animal development. Such maps have enabled the identification of gene regulatory circuits and have led to the development of network inference methods that can recapitulate the differentiation of specific cell-types or developmental stages. In contrast, dGRN research in non-classical model systems has been limited to the identification of developmental control genes via the candidate gene approach and the characterization of their spatiotemporal expression patterns, as well as to the discovery of cis-regulatory modules via patterns of sequence conservation and/or predicted transcription-factor binding sites. However, thanks to the continuous advances in high-throughput sequencing technologies, this scenario is rapidly changing. Here, we give a historical overview on the architecture and elucidation of the dGRNs. Subsequently, we summarize the approaches available to unravel these regulatory networks, highlighting the vast range of possibilities of integrating multiple technical advances and theoretical approaches to expand our understanding on the global of gene regulation during animal development in non-classical model systems. Such new knowledge will not only lead to greater insights into the evolution of molecular mechanisms underlying cell identity and animal body plans, but also into the evolution of morphological key innovations in animals.

  9. Identification of potential therapeutic target genes, key miRNAs and mechanisms in oral lichen planus by bioinformatics analysis.

    PubMed

    Gong, Cuihua; Sun, Shangtong; Liu, Bing; Wang, Jing; Chen, Xiaodong

    2017-06-01

    The study aimed to identify the potential target genes and key miRNAs as well as to explore the underlying mechanisms in the pathogenesis of oral lichen planus (OLP) by bioinformatics analysis. The microarray data of GSE38617 were downloaded from Gene Expression Omnibus (GEO) database. A total of 7 OLP and 7 normal samples were used to identify the differentially expressed genes (DEGs) and miRNAs. The DEGs were then performed functional enrichment analyses. Furthermore, DEG-miRNA network and miRNA-function network were constructed by Cytoscape software. Total 1758 DEGs (598 up- and 1160 down-regulated genes) and 40 miRNAs (17 up- and 23 down-regulated miRNAs) were selected. The up-regulated genes were related to nuclear factor-Kappa B (NF-κB) signaling pathway, while down-regulated genes were mainly enriched in the function of ribosome. Tumor necrosis factor (TNF), caspase recruitment domain family, member 11 (CARD11) and mitochondrial ribosomal protein (MRP) genes were identified in these functions. In addition, miR-302 was a hub node in DEG-miRNA network and regulated cyclin D1 (CCND1). MiR-548a-2 was the key miRNA in miRNA-function network by regulating multiple functions including ribosomal function. The NF-κB signaling pathway and ribosome function may be the pathogenic mechanisms of OLP. The genes such as TNF, CARD11, MRP genes and CCND1 may be potential therapeutic target genes in OLP. MiR-548a-2 and miR-302 may play important roles in OLP development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Genetic dissection of the Gpnmb network in the eye.

    PubMed

    Lu, Hong; Wang, Xusheng; Pullen, Matthew; Guan, Huaijin; Chen, Hui; Sahu, Shwetapadma; Zhang, Bing; Chen, Hao; Williams, Robert W; Geisert, Eldon E; Lu, Lu; Jablonski, Monica M

    2011-06-13

    To use a systematic genetics approach to investigate the regulation of Gpnmb, a gene that contributes to pigmentary dispersion syndrome (PDS) and pigmentary glaucoma (PG) in the DBA/2J (D2) mouse. Global patterns of gene expression were studied in whole eyes of a large family of BXD mouse strains (n = 67) generated by crossing the PDS- and PG-prone parent (DBA/2J) with a resistant strain (C57BL/6J). Quantitative trait locus (eQTL) mapping methods and gene set analysis were used to evaluate Gpnmb coexpression networks in wild-type and mutant cohorts. The level of Gpnmb expression was associated with a highly significant cis-eQTL at the location of the gene itself. This autocontrol of Gpnmb is likely to be a direct consequence of the known premature stop codon in exon 4. Both gene ontology and coexpression network analyses demonstrated that the mutation in Gpnmb radically modified the set of genes with which Gpnmb expression is correlated. The covariates of wild-type Gpnmb are involved in biological processes including melanin synthesis and cell migration, whereas the covariates of mutant Gpnmb are involved in the biological processes of posttranslational modification, stress activation, and sensory processing. These results demonstrated that a systematic genetics approach provides a powerful tool for constructing coexpression networks that define the biological process categories within which similarly regulated genes function. The authors showed that the R150X mutation in Gpnmb dramatically modified its list of genetic covariates, which may explain the associated ocular pathology.

  11. SorghumFDB: sorghum functional genomics database with multidimensional network analysis.

    PubMed

    Tian, Tian; You, Qi; Zhang, Liwei; Yi, Xin; Yan, Hengyu; Xu, Wenying; Su, Zhen

    2016-01-01

    Sorghum (Sorghum bicolor [L.] Moench) has excellent agronomic traits and biological properties, such as heat and drought-tolerance. It is a C4 grass and potential bioenergy-producing plant, which makes it an important crop worldwide. With the sorghum genome sequence released, it is essential to establish a sorghum functional genomics data mining platform. We collected genomic data and some functional annotations to construct a sorghum functional genomics database (SorghumFDB). SorghumFDB integrated knowledge of sorghum gene family classifications (transcription regulators/factors, carbohydrate-active enzymes, protein kinases, ubiquitins, cytochrome P450, monolignol biosynthesis related enzymes, R-genes and organelle-genes), detailed gene annotations, miRNA and target gene information, orthologous pairs in the model plants Arabidopsis, rice and maize, gene loci conversions and a genome browser. We further constructed a dynamic network of multidimensional biological relationships, comprised of the co-expression data, protein-protein interactions and miRNA-target pairs. We took effective measures to combine the network, gene set enrichment and motif analyses to determine the key regulators that participate in related metabolic pathways, such as the lignin pathway, which is a major biological process in bioenergy-producing plants.Database URL: http://structuralbiology.cau.edu.cn/sorghum/index.html. © The Author(s) 2016. Published by Oxford University Press.

  12. Dynamic Network-Based Epistasis Analysis: Boolean Examples

    PubMed Central

    Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.

    2011-01-01

    In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and single-path assumption, but also by demonstrating the importance of considering temporal dynamics, and specifically introducing the usefulness of Boolean network models and also reviewing some key properties of network approaches. PMID:22645556

  13. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks.

    PubMed

    Saik, Olga V; Demenkov, Pavel S; Ivanisenko, Timofey V; Bragina, Elena Yu; Freidin, Maxim B; Goncharova, Irina A; Dosenko, Victor E; Zolotareva, Olga I; Hofestaedt, Ralf; Lavrik, Inna N; Rogaev, Evgeny I; Ivanisenko, Vladimir A

    2018-02-13

    Hypertension and bronchial asthma are a major issue for people's health. As of 2014, approximately one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235-330 million people globally have been affected by asthma and approximately 250,000-345,000 people have died each year from the disease. The development of the effective treatment therapies against these diseases is complicated by their comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be useful for genotyping and identifying new drug targets. Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638 interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria that take into account the characteristics of an associative gene network and the presence of known polymorphisms in the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes is enriched with apoptotic genes and genes involved in biological processes related to the functioning of central nervous system. The application of methods of reconstruction and analysis of gene networks is a productive tool for studying the molecular mechanisms of comorbid conditions. The method put forth to rank genes by their importance to the comorbid condition of asthma and hypertension was employed that resulted in prediction of 10 genes, playing the key role in the development of the comorbid condition. The results can be utilised to plan experiments for identification of novel candidate genes along with searching for novel pharmacological targets.

  14. Circadian gene methylation profiles are associated with obesity, metabolic disturbances and carbohydrate intake.

    PubMed

    Ramos-Lopez, Omar; Samblas, Mirian; Milagro, Fermin I; Riezu-Boj, Jose I; Crujeiras, A B; Martinez, J Alfredo; Project, Mena

    2018-03-26

    The circadian clock regulates the daily rhythms of several physiological and behavioral processes. Disruptions in clock genes have been associated with obesity and related comorbidities. This study aimed to analyze the association of DNA methylation signatures at circadian rhythm pathway genes with body mass index (BMI), metabolic profiles and dietary intakes. DNA methylation profiling was determined by microarray in white blood cells from 474 adults from the Methyl Epigenome Network Association (MENA) project. Kyoto Encyclopedia of Genes and Genomes database was used to identify the genes integrating the circadian rhythm pathway. Network enrichment analyses were performed with the PathDIP platform. Associations between circadian methylation patterns with anthropometric measurements, the metabolic profile, clinical data and dietary intakes were analyzed. DNA methylation patterns of nine CpG sites at six circadian rhythm pathway genes were strongly correlated with BMI (false discovery rates <0.0001). These CpGs encompassed cg09578018 (RORA), cg20406576 (PRKAG2), cg10059324 (PER3), cg01180628 (BHLHE40), cg23871860 (FBXL3), cg16964728 (RORA), cg14129040 (CREB1), cg07012178 (PRKAG2) and cg24061580 (PRKAG2). Interestingly, network enrichment analyses revealed that the six BMI-associated genes statistically contributed to the regulation of the circadian rhythm pathway (p = 1.9E-10). In addition, methylation signatures at cg09578018 (RORA), cg24061580 (PRKAG2), cg01180628 (BHLHE40) and cg10059324 (PER3) also correlated with insulin resistance (p < 0.0001) and mean arterial blood pressure (p < 0.0001). Furthermore, relevant correlations (p < 0.05) between methylation at cg09578018 (RORA) and cg01180628 (BHLHE40) with total energy and carbohydrate intakes were found. This investigation revealed potential associations of DNA methylation profiles at circadian genes with obesity, metabolic disturbances and carbohydrate intake, with potential impact on weight homeostasis.

  15. Identification of a neuronal transcription factor network involved in medulloblastoma development

    PubMed Central

    2013-01-01

    Background Medulloblastomas, the most frequent malignant brain tumours affecting children, comprise at least 4 distinct clinicogenetic subgroups. Aberrant sonic hedgehog (SHH) signalling is observed in approximately 25% of tumours and defines one subgroup. Although alterations in SHH pathway genes (e.g. PTCH1, SUFU) are observed in many of these tumours, high throughput genomic analyses have identified few other recurring mutations. Here, we have mutagenised the Ptch+/- murine tumour model using the Sleeping Beauty transposon system to identify additional genes and pathways involved in SHH subgroup medulloblastoma development. Results Mutagenesis significantly increased medulloblastoma frequency and identified 17 candidate cancer genes, including orthologs of genes somatically mutated (PTEN, CREBBP) or associated with poor outcome (PTEN, MYT1L) in the human disease. Strikingly, these candidate genes were enriched for transcription factors (p=2x10-5), the majority of which (6/7; Crebbp, Myt1L, Nfia, Nfib, Tead1 and Tgif2) were linked within a single regulatory network enriched for genes associated with a differentiated neuronal phenotype. Furthermore, activity of this network varied significantly between the human subgroups, was associated with metastatic disease, and predicted poor survival specifically within the SHH subgroup of tumours. Igf2, previously implicated in medulloblastoma, was the most differentially expressed gene in murine tumours with network perturbation, and network activity in both mouse and human tumours was characterised by enrichment for multiple gene-sets indicating increased cell proliferation, IGF signalling, MYC target upregulation, and decreased neuronal differentiation. Conclusions Collectively, our data support a model of medulloblastoma development in SB-mutagenised Ptch+/- mice which involves disruption of a novel transcription factor network leading to Igf2 upregulation, proliferation of GNPs, and tumour formation. Moreover, our results identify rational therapeutic targets for SHH subgroup tumours, alongside prognostic biomarkers for the identification of poor-risk SHH patients. PMID:24252690

  16. Genomics of sex determination.

    PubMed

    Zhang, Jisen; Boualem, Adnane; Bendahmane, Abdelhafid; Ming, Ray

    2014-04-01

    Sex determination is a major switch in the evolutionary history of angiosperm, resulting 11% monoecious and dioecious species. The genomic sequences of papaya sex chromosomes unveiled the molecular basis of recombination suppression in the sex determination region, and candidate genes for sex determination. Identification and analyses of sex determination genes in cucurbits and maize demonstrated conservation of sex determination mechanism in one lineage and divergence between the two systems. Epigenetic control and hormonal influence of sex determination were elucidated in both plants and animals. Intensive investigation of potential sex determination genes in model species will improve our understanding of sex determination gene network. Such network will in turn accelerate the identification of sex determination genes in dioecious species with sex chromosomes, which are burdensome due to no recombination in sex determining regions. The sex determination genes in dioecious species are crucial for understanding the origin of dioecy and sex chromosomes, particularly in their early stage of evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Tumor Necrosis Factor-α Regulates Distinct Molecular Pathways and Gene Networks in Cultured Skeletal Muscle Cells

    PubMed Central

    Gupta, Sanjay K.; Dahiya, Saurabh; Lundy, Robert F.; Kumar, Ashok

    2010-01-01

    Background Skeletal muscle wasting is a debilitating consequence of large number of disease states and conditions. Tumor necrosis factor-α (TNF-α) is one of the most important muscle-wasting cytokine, elevated levels of which cause significant muscular abnormalities. However, the underpinning molecular mechanisms by which TNF-α causes skeletal muscle wasting are less well-understood. Methodology/Principal Findings We have used microarray, quantitative real-time PCR (QRT-PCR), Western blot, and bioinformatics tools to study the effects of TNF-α on various molecular pathways and gene networks in C2C12 cells (a mouse myoblastic cell line). Microarray analyses of C2C12 myotubes treated with TNF-α (10 ng/ml) for 18h showed differential expression of a number of genes involved in distinct molecular pathways. The genes involved in nuclear factor-kappa B (NF-kappaB) signaling, 26s proteasome pathway, Notch1 signaling, and chemokine networks are the most important ones affected by TNF-α. The expression of some of the genes in microarray dataset showed good correlation in independent QRT-PCR and Western blot assays. Analysis of TNF-treated myotubes showed that TNF-α augments the activity of both canonical and alternative NF-κB signaling pathways in myotubes. Bioinformatics analyses of microarray dataset revealed that TNF-α affects the activity of several important pathways including those involved in oxidative stress, hepatic fibrosis, mitochondrial dysfunction, cholesterol biosynthesis, and TGF-β signaling. Furthermore, TNF-α was found to affect the gene networks related to drug metabolism, cell cycle, cancer, neurological disease, organismal injury, and abnormalities in myotubes. Conclusions TNF-α regulates the expression of multiple genes involved in various toxic pathways which may be responsible for TNF-induced muscle loss in catabolic conditions. Our study suggests that TNF-α activates both canonical and alternative NF-κB signaling pathways in a time-dependent manner in skeletal muscle cells. The study provides novel insight into the mechanisms of action of TNF-α in skeletal muscle cells. PMID:20967264

  18. Competing endogenous RNA and interactome bioinformatic analyses on human telomerase.

    PubMed

    Arancio, Walter; Pizzolanti, Giuseppe; Genovese, Swonild Ilenia; Baiamonte, Concetta; Giordano, Carla

    2014-04-01

    We present a classic interactome bioinformatic analysis and a study on competing endogenous (ce) RNAs for hTERT. The hTERT gene codes for the catalytic subunit and limiting component of the human telomerase complex. Human telomerase reverse transcriptase (hTERT) is essential for the integrity of telomeres. Telomere dysfunctions have been widely reported to be involved in aging, cancer, and cellular senescence. The hTERT gene network has been analyzed using the BioGRID interaction database (http://thebiogrid.org/) and related analysis tools such as Osprey (http://biodata.mshri.on.ca/osprey/servlet/Index) and GeneMANIA (http://genemania.org/). The network of interaction of hTERT transcripts has been further analyzed following the competing endogenous (ce) RNA hypotheses (messenger [m] RNAs cross-talk via micro [mi] RNAs) using the miRWalk database and tools (www.ma.uni-heidelberg.de/apps/zmf/mirwalk/). These analyses suggest a role for Akt, nuclear factor-κB (NF-κB), heat shock protein 90 (HSP90), p70/p80 autoantigen, 14-3-3 proteins, and dynein in telomere functions. Roles for histone acetylation/deacetylation and proteoglycan metabolism are also proposed.

  19. Identification of Biological Targets of Therapeutic Intervention for Hepatocellular Carcinoma by Integrated Bioinformatical Analysis.

    PubMed

    Hu, Wei Qi; Wang, Wei; Fang, Di Long; Yin, Xue Feng

    2018-05-24

    BACKGROUND We screened the potential molecular targets and investigated the molecular mechanisms of hepatocellular carcinoma (HCC). MATERIAL AND METHODS Microarray data of GSE47786, including the 40 μM berberine-treated HepG2 human hepatoma cell line and 0.08% DMSO-treated as control cells samples, was downloaded from the GEO database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed; the protein-protein interaction (PPI) networks were constructed using STRING database and Cytoscape; the genetic alteration, neighboring genes networks, and survival analysis of hub genes were explored by cBio portal; and the expression of mRNA level of hub genes was obtained from the Oncomine databases. RESULTS A total of 56 upregulated and 8 downregulated DEGs were identified. The GO analysis results were significantly enriched in cell-cycle arrest, regulation of transcription, DNA-dependent, protein amino acid phosphorylation, cell cycle, and apoptosis. The KEGG pathway analysis showed that DEGs were enriched in MAPK signaling pathway, ErbB signaling pathway, and p53 signaling pathway. JUN, EGR1, MYC, and CDKN1A were identified as hub genes in PPI networks. The genetic alteration of hub genes was mainly concentrated in amplification. TP53, NDRG1, and MAPK15 were found in neighboring genes networks. Altered genes had worse overall survival and disease-free survival than unaltered genes. The expressions of EGR1, MYC, and CDKN1A were significantly increased, but expression of JUN was not, in the Roessler Liver datasets. CONCLUSIONS We found that JUN, EGR1, MYC, and CDKN1A might be used as diagnostic and therapeutic molecular biomarkers and broaden our understanding of the molecular mechanisms of HCC.

  20. Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics

    PubMed Central

    Simionato, Elena; Ledent, Valérie; Richards, Gemma; Thomas-Chollier, Morgane; Kerner, Pierre; Coornaert, David; Degnan, Bernard M; Vervoort, Michel

    2007-01-01

    Background Molecular and genetic analyses conducted in model organisms such as Drosophila and vertebrates, have provided a wealth of information about how networks of transcription factors control the proper development of these species. Much less is known, however, about the evolutionary origin of these elaborated networks and their large-scale evolution. Here we report the first evolutionary analysis of a whole superfamily of transcription factors, the basic helix-loop-helix (bHLH) proteins, at the scale of the whole metazoan kingdom. Results We identified in silico the putative full complement of bHLH genes in the sequenced genomes of 12 different species representative of the main metazoan lineages, including three non-bilaterian metazoans, the cnidarians Nematostella vectensis and Hydra magnipapillata and the demosponge Amphimedon queenslandica. We have performed extensive phylogenetic analyses of the 695 identified bHLHs, which has allowed us to allocate most of these bHLHs to defined evolutionary conserved groups of orthology. Conclusion Three main features in the history of the bHLH gene superfamily can be inferred from these analyses: (i) an initial diversification of the bHLHs has occurred in the pre-Cambrian, prior to metazoan cladogenesis; (ii) a second expansion of the bHLH superfamily occurred early in metazoan evolution before bilaterians and cnidarians diverged; and (iii) the bHLH complement during the evolution of the bilaterians has been remarkably stable. We suggest that these features may be extended to other developmental gene families and reflect a general trend in the evolution of the developmental gene repertoires of metazoans. PMID:17335570

  1. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    PubMed

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel functional annotation.

  2. Serial analysis of gene expression in a rat lung model of asthma.

    PubMed

    Yin, Lei-Miao; Jiang, Gong-Hao; Wang, Yu; Wang, Yan; Liu, Yan-Yan; Jin, Wei-Rong; Zhang, Zen; Xu, Yu-Dong; Yang, Yong-Qing

    2008-11-01

    The pathogenesis and molecular mechanism underlying asthma remain undetermined. The purpose of this study was to identify genes and pathways involved in the early airway response (EAR) phase of asthma by using serial analysis of gene expression (SAGE). Two SAGE tag libraries of lung tissues derived from a rat model of asthma and controls were generated. Bioinformatic analyses were carried out using the Database for Annotation, Visualization and IntegratedDiscovery Functional Annotation Tool, Gene Ontology (GO) TreeMachine and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A total of 26 552 SAGE tags of asthmatic rat lung were obtained, of which 12 221 were unique tags. Of the unique tags, 55.5% were matched with known genes. By comparison of the two libraries, 186 differentially expressed tags (P < 0.05) were identified, of which 103 were upregulated and 83 were downregulated. Using the bioinformatic tools these genes were classified into 23 functional groups, 15 KEGG pathways and 37 enriched GO categories. The bioinformatic analyses of gene distribution, enriched categories and the involvement of specific pathways in the SAGE libraries have provided information on regulatory networks of the EAR phase of asthma. Analyses of the regulated genes of interest may inform new hypotheses, increase our understanding of the disease and provide a foundation for future research.

  3. Differential protein-coding gene and long noncoding RNA expression in smoking-related lung squamous cell carcinoma.

    PubMed

    Li, Shicheng; Sun, Xiao; Miao, Shuncheng; Liu, Jia; Jiao, Wenjie

    2017-11-01

    Cigarette smoking is one of the greatest preventable risk factors for developing cancer, and most cases of lung squamous cell carcinoma (lung SCC) are associated with smoking. The pathogenesis mechanism of tumor progress is unclear. This study aimed to identify biomarkers in smoking-related lung cancer, including protein-coding gene, long noncoding RNA, and transcription factors. We selected and obtained messenger RNA microarray datasets and clinical data from the Gene Expression Omnibus database to identify gene expression altered by cigarette smoking. Integrated bioinformatic analysis was used to clarify biological functions of the identified genes, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the construction of a protein-protein interaction network, transcription factor, and statistical analyses. Subsequent quantitative real-time PCR was utilized to verify these bioinformatic analyses. Five hundred and ninety-eight differentially expressed genes and 21 long noncoding RNA were identified in smoking-related lung SCC. GO and KEGG pathway analysis showed that identified genes were enriched in the cancer-related functions and pathways. The protein-protein interaction network revealed seven hub genes identified in lung SCC. Several transcription factors and their binding sites were predicted. The results of real-time quantitative PCR revealed that AURKA and BIRC5 were significantly upregulated and LINC00094 was downregulated in the tumor tissues of smoking patients. Further statistical analysis indicated that dysregulation of AURKA, BIRC5, and LINC00094 indicated poor prognosis in lung SCC. Protein-coding genes AURKA, BIRC5, and LINC00094 could be biomarkers or therapeutic targets for smoking-related lung SCC. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  4. Genetic differentiation of the mitochondrial cytochrome oxidase C subunit I gene in genus Paramecium (Protista, Ciliophora).

    PubMed

    Zhao, Yan; Gentekaki, Eleni; Yi, Zhenzhen; Lin, Xiaofeng

    2013-01-01

    The mitochondrial cytochrome c oxidase subunit I (COI) gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses. We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure. Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp.

  5. Genetic Differentiation of the Mitochondrial Cytochrome Oxidase c Subunit I Gene in Genus Paramecium (Protista, Ciliophora)

    PubMed Central

    Zhao, Yan; Gentekaki, Eleni; Yi, Zhenzhen; Lin, Xiaofeng

    2013-01-01

    Background The mitochondrial cytochrome c oxidase subunit I (COI) gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses. Methodology/Principal findings We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure. Conclusions Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp. PMID:24204730

  6. A systematic study on drug-response associated genes using baseline gene expressions of the Cancer Cell Line Encyclopedia

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Yang, Jiasheng; Zhang, Yi; Fang, Yun; Wang, Fayou; Wang, Jun; Zheng, Xiaoqi; Yang, Jialiang

    2016-03-01

    We have studied drug-response associated (DRA) gene expressions by applying a systems biology framework to the Cancer Cell Line Encyclopedia data. More than 4,000 genes are inferred to be DRA for at least one drug, while the number of DRA genes for each drug varies dramatically from almost 0 to 1,226. Functional enrichment analysis shows that the DRA genes are significantly enriched in genes associated with cell cycle and plasma membrane. Moreover, there might be two patterns of DRA genes between genders. There are significantly shared DRA genes between male and female for most drugs, while very little DRA genes tend to be shared between the two genders for a few drugs targeting sex-specific cancers (e.g., PD-0332991 for breast cancer and ovarian cancer). Our analyses also show substantial difference for DRA genes between young and old samples, suggesting the necessity of considering the age effects for personalized medicine in cancers. Lastly, differential module and key driver analyses confirm cell cycle related modules as top differential ones for drug sensitivity. The analyses also reveal the role of TSPO, TP53, and many other immune or cell cycle related genes as important key drivers for DRA network modules. These key drivers provide new drug targets to improve the sensitivity of cancer therapy.

  7. Evidence for Transcript Networks Composed of Chimeric RNAs in Human Cells

    PubMed Central

    Borel, Christelle; Mudge, Jonathan M.; Howald, Cédric; Foissac, Sylvain; Ucla, Catherine; Chrast, Jacqueline; Ribeca, Paolo; Martin, David; Murray, Ryan R.; Yang, Xinping; Ghamsari, Lila; Lin, Chenwei; Bell, Ian; Dumais, Erica; Drenkow, Jorg; Tress, Michael L.; Gelpí, Josep Lluís; Orozco, Modesto; Valencia, Alfonso; van Berkum, Nynke L.; Lajoie, Bryan R.; Vidal, Marc; Stamatoyannopoulos, John; Batut, Philippe; Dobin, Alex; Harrow, Jennifer; Hubbard, Tim; Dekker, Job; Frankish, Adam; Salehi-Ashtiani, Kourosh; Reymond, Alexandre; Antonarakis, Stylianos E.; Guigó, Roderic; Gingeras, Thomas R.

    2012-01-01

    The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than 50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 5′ and 3′ transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network. PMID:22238572

  8. IDPT: Insights into potential intrinsically disordered proteins through transcriptomic analysis of genes for prostate carcinoma epigenetic data.

    PubMed

    Mallik, Saurav; Sen, Sagnik; Maulik, Ujjwal

    2016-07-15

    Involvement of intrinsically disordered proteins (IDPs) with various dreadful diseases like cancer is an interesting research topic. In order to gain novel insights into the regulation of IDPs, in this article, we perform a transcriptomic analysis of mRNAs (genes) for transcripts encoding IDPs on a human multi-omics prostate carcinoma dataset having both gene expression and methylation data. In this regard, firstly the genes that consist of both the expression and methylation data, and that are corresponding to the cancer-related prostate-tissue-specific disordered proteins of MobiDb database, are selected. We apply standard t-test for determining differentially expressed genes as well as differentially methylated genes. A network having these genes and their targeter miRNAs from Diana Tarbase v7.0 database and corresponding Transcription Factors from TRANSFAC and ITFP databases, is then built. Thereafter, we perform literature search, and KEGG pathway and Gene Ontology analyses using DAVID database. Finally, we report several significant potential gene-markers (with the corresponding IDPs) that have inverse relationship between differential expression and methylation patterns, and that are hub genes of the TF-miRNA-gene network. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Genomic analyses identify molecular subtypes of pancreatic cancer.

    PubMed

    Bailey, Peter; Chang, David K; Nones, Katia; Johns, Amber L; Patch, Ann-Marie; Gingras, Marie-Claude; Miller, David K; Christ, Angelika N; Bruxner, Tim J C; Quinn, Michael C; Nourse, Craig; Murtaugh, L Charles; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourbakhsh, Ehsan; Wani, Shivangi; Fink, Lynn; Holmes, Oliver; Chin, Venessa; Anderson, Matthew J; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Xu, Qinying; Wilson, Peter J; Cloonan, Nicole; Kassahn, Karin S; Taylor, Darrin; Quek, Kelly; Robertson, Alan; Pantano, Lorena; Mincarelli, Laura; Sanchez, Luis N; Evers, Lisa; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chantrill, Lorraine A; Mawson, Amanda; Humphris, Jeremy; Chou, Angela; Pajic, Marina; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Moran-Jones, Kim; Jamieson, Nigel B; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Grützmann, Robert; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Rusev, Borislav; Capelli, Paola; Salvia, Roberto; Tortora, Giampaolo; Mukhopadhyay, Debabrata; Petersen, Gloria M; Munzy, Donna M; Fisher, William E; Karim, Saadia A; Eshleman, James R; Hruban, Ralph H; Pilarsky, Christian; Morton, Jennifer P; Sansom, Owen J; Scarpa, Aldo; Musgrove, Elizabeth A; Bailey, Ulla-Maja Hagbo; Hofmann, Oliver; Sutherland, Robert L; Wheeler, David A; Gill, Anthony J; Gibbs, Richard A; Pearson, John V; Waddell, Nicola; Biankin, Andrew V; Grimmond, Sean M

    2016-03-03

    Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

  10. Systems Genetic Analyses Highlight a TGFβ-FOXO3 Dependent Striatal Astrocyte Network Conserved across Species and Associated with Stress, Sleep, and Huntington's Disease.

    PubMed

    Scarpa, Joseph R; Jiang, Peng; Losic, Bojan; Readhead, Ben; Gao, Vance D; Dudley, Joel T; Vitaterna, Martha H; Turek, Fred W; Kasarskis, Andrew

    2016-07-01

    Recent systems-based analyses have demonstrated that sleep and stress traits emerge from shared genetic and transcriptional networks, and clinical work has elucidated the emergence of sleep dysfunction and stress susceptibility as early symptoms of Huntington's disease. Understanding the biological bases of these early non-motor symptoms may reveal therapeutic targets that prevent disease onset or slow disease progression, but the molecular mechanisms underlying this complex clinical presentation remain largely unknown. In the present work, we specifically examine the relationship between these psychiatric traits and Huntington's disease (HD) by identifying striatal transcriptional networks shared by HD, stress, and sleep phenotypes. First, we utilize a systems-based approach to examine a large publicly available human transcriptomic dataset for HD (GSE3790 from GEO) in a novel way. We use weighted gene coexpression network analysis and differential connectivity analyses to identify transcriptional networks dysregulated in HD, and we use an unbiased ranking scheme that leverages both gene- and network-level information to identify a novel astrocyte-specific network as most relevant to HD caudate. We validate this result in an independent HD cohort. Next, we computationally predict FOXO3 as a regulator of this network, and use multiple publicly available in vitro and in vivo experimental datasets to validate that this astrocyte HD network is downstream of a signaling pathway important in adult neurogenesis (TGFβ-FOXO3). We also map this HD-relevant caudate subnetwork to striatal transcriptional networks in a large (n = 100) chronically stressed (B6xA/J)F2 mouse population that has been extensively phenotyped (328 stress- and sleep-related measurements), and we show that this striatal astrocyte network is correlated to sleep and stress traits, many of which are known to be altered in HD cohorts. We identify causal regulators of this network through Bayesian network analysis, and we highlight their relevance to motor, mood, and sleep traits through multiple in silico approaches, including an examination of their protein binding partners. Finally, we show that these causal regulators may be therapeutically viable for HD because their downstream network was partially modulated by deep brain stimulation of the subthalamic nucleus, a medical intervention thought to confer some therapeutic benefit to HD patients. In conclusion, we show that an astrocyte transcriptional network is primarily associated to HD in the caudate and provide evidence for its relationship to molecular mechanisms of neural stem cell homeostasis. Furthermore, we present a unified systems-based framework for identifying gene networks that are associated with complex non-motor traits that manifest in the earliest phases of HD. By analyzing and integrating multiple independent datasets, we identify a point of molecular convergence between sleep, stress, and HD that reflects their phenotypic comorbidity and reveals a molecular pathway involved in HD progression.

  11. A systems biology approach toward understanding seed composition in soybean.

    PubMed

    Li, Ling; Hur, Manhoi; Lee, Joon-Yong; Zhou, Wenxu; Song, Zhihong; Ransom, Nick; Demirkale, Cumhur Yusuf; Nettleton, Dan; Westgate, Mark; Arendsee, Zebulun; Iyer, Vidya; Shanks, Jackie; Nikolau, Basil; Wurtele, Eve Syrkin

    2015-01-01

    The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks. With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and metabolic flux technologies to reveal the global developmental and metabolic networks that determine the structure and composition of the mature soybean seed. We have coupled this global approach with interactive bioinformatics and statistical analyses to gain insights into the biochemical programs that determine soybean seed composition. For this purpose, we used Plant/Eukaryotic and Microbial Metabolomics Systems Resource (PMR, http://www.metnetdb.org/pmr, a platform that incorporates metabolomics data to develop hypotheses concerning the organization and regulation of metabolic networks, and MetNet systems biology tools http://www.metnetdb.org for plant omics data, a framework to enable interactive visualization of metabolic and regulatory networks. This combination of high-throughput experimental data and bioinformatics analyses has revealed sets of specific genes, genetic perturbations and mechanisms, and metabolic changes that are associated with the developmental variation in soybean seed composition. Researchers can explore these metabolomics and transcriptomics data interactively at PMR.

  12. A genotype network reveals homoplastic cycles of convergent evolution in influenza A (H3N2) haemagglutinin.

    PubMed

    Wagner, Andreas

    2014-07-07

    Networks of evolving genotypes can be constructed from the worldwide time-resolved genotyping of pathogens like influenza viruses. Such genotype networks are graphs where neighbouring vertices (viral strains) differ in a single nucleotide or amino acid. A rich trove of network analysis methods can help understand the evolutionary dynamics reflected in the structure of these networks. Here, I analyse a genotype network comprising hundreds of influenza A (H3N2) haemagglutinin genes. The network is rife with cycles that reflect non-random parallel or convergent (homoplastic) evolution. These cycles also show patterns of sequence change characteristic for strong and local evolutionary constraints, positive selection and mutation-limited evolution. Such cycles would not be visible on a phylogenetic tree, illustrating that genotype network analysis can complement phylogenetic analyses. The network also shows a distinct modular or community structure that reflects temporal more than spatial proximity of viral strains, where lowly connected bridge strains connect different modules. These and other organizational patterns illustrate that genotype networks can help us study evolution in action at an unprecedented level of resolution. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Evolution of the Max and Mlx networks in animals.

    PubMed

    McFerrin, Lisa G; Atchley, William R

    2011-01-01

    Transcription factors (TFs) are essential for the regulation of gene expression and often form emergent complexes to perform vital roles in cellular processes. In this paper, we focus on the parallel Max and Mlx networks of TFs because of their critical involvement in cell cycle regulation, proliferation, growth, metabolism, and apoptosis. A basic-helix-loop-helix-zipper (bHLHZ) domain mediates the competitive protein dimerization and DNA binding among Max and Mlx network members to form a complex system of cell regulation. To understand the importance of these network interactions, we identified the bHLHZ domain of Max and Mlx network proteins across the animal kingdom and carried out several multivariate statistical analyses. The presence and conservation of Max and Mlx network proteins in animal lineages stemming from the divergence of Metazoa indicate that these networks have ancient and essential functions. Phylogenetic analysis of the bHLHZ domain identified clear relationships among protein families with distinct points of radiation and divergence. Multivariate discriminant analysis further isolated specific amino acid changes within the bHLHZ domain that classify proteins, families, and network configurations. These analyses on Max and Mlx network members provide a model for characterizing the evolution of TFs involved in essential networks.

  14. Network analysis reveals stage-specific changes in zebrafish embryo development using time course whole transcriptome profiling and prior biological knowledge.

    PubMed

    Zhang, Yuji

    2015-01-01

    Molecular networks act as the backbone of molecular activities within cells, offering a unique opportunity to better understand the mechanism of diseases. While network data usually constitute only static network maps, integrating them with time course gene expression information can provide clues to the dynamic features of these networks and unravel the mechanistic driver genes characterizing cellular responses. Time course gene expression data allow us to broadly "watch" the dynamics of the system. However, one challenge in the analysis of such data is to establish and characterize the interplay among genes that are altered at different time points in the context of a biological process or functional category. Integrative analysis of these data sources will lead us a more complete understanding of how biological entities (e.g., genes and proteins) coordinately perform their biological functions in biological systems. In this paper, we introduced a novel network-based approach to extract functional knowledge from time-dependent biological processes at a system level using time course mRNA sequencing data in zebrafish embryo development. The proposed method was applied to investigate 1α, 25(OH)2D3-altered mechanisms in zebrafish embryo development. We applied the proposed method to a public zebrafish time course mRNA-Seq dataset, containing two different treatments along four time points. We constructed networks between gene ontology biological process categories, which were enriched in differential expressed genes between consecutive time points and different conditions. The temporal propagation of 1α, 25-Dihydroxyvitamin D3-altered transcriptional changes started from a few genes that were altered initially at earlier stage, to large groups of biological coherent genes at later stages. The most notable biological processes included neuronal and retinal development and generalized stress response. In addition, we also investigated the relationship among biological processes enriched in co-expressed genes under different conditions. The enriched biological processes include translation elongation, nucleosome assembly, and retina development. These network dynamics provide new insights into the impact of 1α, 25-Dihydroxyvitamin D3 treatment in bone and cartilage development. We developed a network-based approach to analyzing the DEGs at different time points by integrating molecular interactions and gene ontology information. These results demonstrate that the proposed approach can provide insight on the molecular mechanisms taking place in vertebrate embryo development upon treatment with 1α, 25(OH)2D3. Our approach enables the monitoring of biological processes that can serve as a basis for generating new testable hypotheses. Such network-based integration approach can be easily extended to any temporal- or condition-dependent genomic data analyses.

  15. Three-Dimensional Gene Map of Cancer Cell Types: Structural Entropy Minimisation Principle for Defining Tumour Subtypes

    PubMed Central

    Li, Angsheng; Yin, Xianchen; Pan, Yicheng

    2016-01-01

    In this study, we propose a method for constructing cell sample networks from gene expression profiles, and a structural entropy minimisation principle for detecting natural structure of networks and for identifying cancer cell subtypes. Our method establishes a three-dimensional gene map of cancer cell types and subtypes. The identified subtypes are defined by a unique gene expression pattern, and a three-dimensional gene map is established by defining the unique gene expression pattern for each identified subtype for cancers, including acute leukaemia, lymphoma, multi-tissue, lung cancer and healthy tissue. Our three-dimensional gene map demonstrates that a true tumour type may be divided into subtypes, each defined by a unique gene expression pattern. Clinical data analyses demonstrate that most cell samples of an identified subtype share similar survival times, survival indicators and International Prognostic Index (IPI) scores and indicate that distinct subtypes identified by our algorithms exhibit different overall survival times, survival ratios and IPI scores. Our three-dimensional gene map establishes a high-definition, one-to-one map between the biologically and medically meaningful tumour subtypes and the gene expression patterns, and identifies remarkable cells that form singleton submodules. PMID:26842724

  16. The Genetic Basis for Variation in Sensitivity to Lead Toxicity in Drosophila melanogaster.

    PubMed

    Zhou, Shanshan; Morozova, Tatiana V; Hussain, Yasmeen N; Luoma, Sarah E; McCoy, Lenovia; Yamamoto, Akihiko; Mackay, Trudy F C; Anholt, Robert R H

    2016-07-01

    Lead toxicity presents a worldwide health problem, especially due to its adverse effects on cognitive development in children. However, identifying genes that give rise to individual variation in susceptibility to lead toxicity is challenging in human populations. Our goal was to use Drosophila melanogaster to identify evolutionarily conserved candidate genes associated with individual variation in susceptibility to lead exposure. To identify candidate genes associated with variation in susceptibility to lead toxicity, we measured effects of lead exposure on development time, viability and adult activity in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association analyses to identify candidate genes. We used mutants to assess functional causality of candidate genes and constructed a genetic network associated with variation in sensitivity to lead exposure, on which we could superimpose human orthologs. We found substantial heritabilities for all three traits and identified candidate genes associated with variation in susceptibility to lead exposure for each phenotype. The genetic architectures that determine variation in sensitivity to lead exposure are highly polygenic. Gene ontology and network analyses showed enrichment of genes associated with early development and function of the nervous system. Drosophila melanogaster presents an advantageous model to study the genetic underpinnings of variation in susceptibility to lead toxicity. Evolutionary conservation of cellular pathways that respond to toxic exposure allows predictions regarding orthologous genes and pathways across phyla. Thus, studies in the D. melanogaster model system can identify candidate susceptibility genes to guide subsequent studies in human populations. Zhou S, Morozova TV, Hussain YN, Luoma SE, McCoy L, Yamamoto A, Mackay TF, Anholt RR. 2016. The genetic basis for variation in sensitivity to lead toxicity in Drosophila melanogaster. Environ Health Perspect 124:1062-1070; http://dx.doi.org/10.1289/ehp.1510513.

  17. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.).

    PubMed

    Yıldırım, Kubilay; Kaya, Zeki

    2017-06-01

    Drought is the major environmental problem limiting the productivity and survival of plant species. Here, previously identified three black poplar genotypes having contrasting response to drought were subjected to gradual soil water depletion in a pot trial to identify their physiological, morphological and antioxidation related adaptations. We also performed a microarray based transcriptome analyses on the leaves of genotypes by using Affymetrix poplar Genome Array containing 56,000 transcripts. Phenotypic analyses of each genotype confirmed their differential adaptations to drought that could be classified as drought escape, avoidance and tolerance. Comparative transcriptomic analysis indicated highly divergent gene expression patterns among the genotypes in response to drought and post drought re-watering (PDR). We identified 10641, 3824 and 9411 transcripts exclusively regulated in drought escape, avoidance and tolerant genotypes, respectively. The key genes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein folding, redox homeostasis, secondary metabolic process and cell wall component biogenesis, were affected by drought stresses in the leaves of these genotypes. Transcript isoforms showed increased expression specificity in the genes coding for bark storage proteins and small heat shock proteins in drought tolerant genotype. On the other hand, drought-avoiding genotype specifically induced the transcripts annotated to the genes functional in secondary metabolite production that linked to enhanced leaf water content and growth performance under drought stress. Transcriptome profiling of drought escape genotype indicated specific regulation of the genes functional in programmed cell death and leaf senescence. Specific upregulation of GTP cyclohydrolase II and transcription factors (WRKY and ERFs) in only this genotype were associated to ROS dependent signalling pathways and gene regulation network responsible in induction of many degrading enzymes acting on cell wall carbohydrates, fatty acids and proteins under drought stress. Our findings provide new insights into the transcriptome dynamics and components of regulatory network associated with drought adaptation strategies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Conditioned taste aversion dependent regulation of amygdala gene expression.

    PubMed

    Panguluri, Siva K; Kuwabara, Nobuyuki; Kang, Yi; Cooper, Nigel; Lundy, Robert F

    2012-02-28

    The present experiments investigated gene expression in the amygdala following contingent taste/LiCl treatment that supports development of conditioned taste aversion (CTA). The use of whole genome chips and stringent data set filtering led to the identification of 168 genes regulated by CTA compared to non-contingent LiCl treatment that does not support CTA learning. Seventy-six of these genes were eligible for network analysis. Such analysis identified "behavior" as the top biological function, which was represented by 15 of the 76 genes. These genes included several neuropeptides, G protein-coupled receptors, ion channels, kinases, and phosphatases. Subsequent qRT-PCR analyses confirmed changes in mRNA expression for 5 of 7 selected genes. We were able to demonstrate directionally consistent changes in protein level for 3 of these genes; insulin 1, oxytocin, and major histocompatibility complex class I-C. Behavioral analyses demonstrated that blockade of central insulin receptors produced a weaker CTA that was less resistant to extinction. Together, these results support the notion that we have identified downstream genes in the amygdala that contribute to CTA learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Microarray Analysis of Differential Gene Expression Profile Between Human Fetal and Adult Heart.

    PubMed

    Geng, Zhimin; Wang, Jue; Pan, Lulu; Li, Ming; Zhang, Jitai; Cai, Xueli; Chu, Maoping

    2017-04-01

    Although many changes have been discovered during heart maturation, the genetic mechanisms involved in the changes between immature and mature myocardium have only been partially elucidated. Here, gene expression profile changed between the human fetal and adult heart was characterized. A human microarray was applied to define the gene expression signatures of the fetal (13-17 weeks of gestation, n = 4) and adult hearts (30-40 years old, n = 4). Gene ontology analyses, pathway analyses, gene set enrichment analyses, and signal transduction network were performed to predict the function of the differentially expressed genes. Ten mRNAs were confirmed by quantificational real-time polymerase chain reaction. 5547 mRNAs were found to be significantly differentially expressed. "Cell cycle" was the most enriched pathway in the down-regulated genes. EFGR, IGF1R, and ITGB1 play a central role in the regulation of heart development. EGFR, IGF1R, and FGFR2 were the core genes regulating cardiac cell proliferation. The quantificational real-time polymerase chain reaction results were concordant with the microarray data. Our data identified the transcriptional regulation of heart development in the second trimester and the potential regulators that play a prominent role in the regulation of heart development and cardiac cells proliferation.

  20. Position Matters: Network Centrality Considerably Impacts Rates of Protein Evolution in the Human Protein–Protein Interaction Network

    PubMed Central

    Feyertag, Felix; Chakraborty, Sandip

    2017-01-01

    Abstract The proteins of any organism evolve at disparate rates. A long list of factors affecting rates of protein evolution have been identified. However, the relative importance of each factor in determining rates of protein evolution remains unresolved. The prevailing view is that evolutionary rates are dominantly determined by gene expression, and that other factors such as network centrality have only a marginal effect, if any. However, this view is largely based on analyses in yeasts, and accurately measuring the importance of the determinants of rates of protein evolution is complicated by the fact that the different factors are often correlated with each other, and by the relatively poor quality of available functional genomics data sets. Here, we use correlation, partial correlation and principal component regression analyses to measure the contributions of several factors to the variability of the rates of evolution of human proteins. For this purpose, we analyzed the entire human protein–protein interaction data set and the human signal transduction network—a network data set of exceptionally high quality, obtained by manual curation, which is expected to be virtually free from false positives. In contrast with the prevailing view, we observe that network centrality (measured as the number of physical and nonphysical interactions, betweenness, and closeness) has a considerable impact on rates of protein evolution. Surprisingly, the impact of centrality on rates of protein evolution seems to be comparable, or even superior according to some analyses, to that of gene expression. Our observations seem to be independent of potentially confounding factors and from the limitations (biases and errors) of interactomic data sets. PMID:28854629

  1. Stage-specific differential gene expression profiling and functional network analysis during morphogenesis of diphyodont dentition in miniature pigs, Sus Scrofa

    PubMed Central

    2014-01-01

    Background Our current knowledge of tooth development derives mainly from studies in mice, which have only one set of non-replaced teeth, compared with the diphyodont dentition in humans. The miniature pig is also diphyodont, making it a valuable alternative model for understanding human tooth development and replacement. However, little is known about gene expression and function during swine odontogenesis. The goal of this study is to undertake the survey of differential gene expression profiling and functional network analysis during morphogenesis of diphyodont dentition in miniature pigs. The identification of genes related to diphyodont development should lead to a better understanding of morphogenetic patterns and the mechanisms of diphyodont replacement in large animal models and humans. Results The temporal gene expression profiles during early diphyodont development in miniature pigs were detected with the Affymetrix Porcine GeneChip. The gene expression data were further evaluated by ANOVA as well as pathway and STC analyses. A total of 2,053 genes were detected with differential expression. Several signal pathways and 151 genes were then identified through the construction of pathway and signal networks. Conclusions The gene expression profiles indicated that spatio-temporal down-regulation patterns of gene expression were predominant; while, both dynamic activation and inhibition of pathways occurred during the morphogenesis of diphyodont dentition. Our study offers a mechanistic framework for understanding dynamic gene regulation of early diphyodont development and provides a molecular basis for studying teeth development, replacement, and regeneration in miniature pigs. PMID:24498892

  2. Step-by-Step Construction of Gene Co-expression Networks from High-Throughput Arabidopsis RNA Sequencing Data.

    PubMed

    Contreras-López, Orlando; Moyano, Tomás C; Soto, Daniela C; Gutiérrez, Rodrigo A

    2018-01-01

    The rapid increase in the availability of transcriptomics data generated by RNA sequencing represents both a challenge and an opportunity for biologists without bioinformatics training. The challenge is handling, integrating, and interpreting these data sets. The opportunity is to use this information to generate testable hypothesis to understand molecular mechanisms controlling gene expression and biological processes (Fig. 1). A successful strategy to generate tractable hypotheses from transcriptomics data has been to build undirected network graphs based on patterns of gene co-expression. Many examples of new hypothesis derived from network analyses can be found in the literature, spanning different organisms including plants and specific fields such as root developmental biology.In order to make the process of constructing a gene co-expression network more accessible to biologists, here we provide step-by-step instructions using published RNA-seq experimental data obtained from a public database. Similar strategies have been used in previous studies to advance root developmental biology. This guide includes basic instructions for the operation of widely used open source platforms such as Bio-Linux, R, and Cytoscape. Even though the data we used in this example was obtained from Arabidopsis thaliana, the workflow developed in this guide can be easily adapted to work with RNA-seq data from any organism.

  3. The Bos taurus–Bos indicus balance in fertility and milk related genes

    PubMed Central

    Lehnert, Sigrid A.; Mudadu, Mauricio A.; Coutinho, Luiz; Regitano, Luciana; George, Andrew; Reverter, Antonio

    2017-01-01

    Numerical approaches to high-density single nucleotide polymorphism (SNP) data are often employed independently to address individual questions. We linked independent approaches in a bioinformatics pipeline for further insight. The pipeline driven by heterozygosity and Hardy-Weinberg equilibrium (HWE) analyses was applied to characterize Bos taurus and Bos indicus ancestry. We infer a gene co-heterozygosity network that regulates bovine fertility, from data on 18,363 cattle with genotypes for 729,068 SNP. Hierarchical clustering separated populations according to Bos taurus and Bos indicus ancestry. The weights of the first principal component were subjected to Normal mixture modelling allowing the estimation of a gene’s contribution to the Bos taurus-Bos indicus axis. We used deviation from HWE, contribution to Bos indicus content and association to fertility traits to select 1,284 genes. With this set, we developed a co-heterozygosity network where the group of genes annotated as fertility-related had significantly higher Bos indicus content compared to other functional classes of genes, while the group of genes associated with milk production had significantly higher Bos taurus content. The network analysis resulted in capturing novel gene associations of relevance to bovine domestication events. We report transcription factors that are likely to regulate genes associated with cattle domestication and tropical adaptation. Our pipeline can be generalized to any scenarios where population structure requires scrutiny at the molecular level, particularly in the presence of a priori set of genes known to impact a phenotype of evolutionary interest such as fertility. PMID:28763475

  4. Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer.

    PubMed

    Shao, Yaping; Ye, Guozhu; Ren, Shancheng; Piao, Hai-Long; Zhao, Xinjie; Lu, Xin; Wang, Fubo; Ma, Wang; Li, Jia; Yin, Peiyuan; Xia, Tian; Xu, Chuanliang; Yu, Jane J; Sun, Yinghao; Xu, Guowang

    2018-07-15

    Genetic alterations drive metabolic reprograming to meet increased biosynthetic precursor and energy demands for cancer cell proliferation and survival in unfavorable environments. A systematic study of gene-metabolite regulatory networks and metabolic dysregulation should reveal the molecular mechanisms underlying prostate cancer (PCa) pathogenesis. Herein, we performed gas chromatography-mass spectrometry (GC-MS)-based metabolomics and RNA-seq analyses in prostate tumors and matched adjacent normal tissues (ANTs) to elucidate the molecular alterations and potential underlying regulatory mechanisms in PCa. Significant accumulation of metabolic intermediates and enrichment of genes in the tricarboxylic acid (TCA) cycle were observed in tumor tissues, indicating TCA cycle hyperactivation in PCa tissues. In addition, the levels of fumarate and malate were highly correlated with the Gleason score, tumor stage and expression of genes encoding related enzymes and were significantly related to the expression of genes involved in branched chain amino acid degradation. Using an integrated omics approach, we further revealed the potential anaplerotic routes from pyruvate, glutamine catabolism and branched chain amino acid (BCAA) degradation contributing to replenishing metabolites for TCA cycle. Integrated omics techniques enable the performance of network-based analyses to gain a comprehensive and in-depth understanding of PCa pathophysiology and may facilitate the development of new and effective therapeutic strategies. © 2018 UICC.

  5. The WRKY transcription factor family and senescence in switchgrass.

    PubMed

    Rinerson, Charles I; Scully, Erin D; Palmer, Nathan A; Donze-Reiner, Teresa; Rabara, Roel C; Tripathi, Prateek; Shen, Qingxi J; Sattler, Scott E; Rohila, Jai S; Sarath, Gautam; Rushton, Paul J

    2015-11-09

    Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. All potential WRKY genes present in the version 1.0 of the switchgrass genome were identified and curated using manual and bioinformatic methods. Expression profiles of WRKY genes in switchgrass flag leaf RNA-Seq datasets were analyzed using clustering and network analyses tools to identify both WRKY and WRKY-associated gene co-expression networks during leaf development and senescence onset. We identified 240 switchgrass WRKY genes including members of the RW5 and RW6 families of resistance proteins. Weighted gene co-expression network analysis of the flag leaf transcriptomes across development readily separated clusters of co-expressed genes into thirteen modules. A visualization highlighted separation of modules associated with the early and senescence-onset phases of flag leaf growth. The senescence-associated module contained 3000 genes including 23 WRKYs. Putative promoter regions of senescence-associated WRKY genes contained several cis-element-like sequences suggestive of responsiveness to both senescence and stress signaling pathways. A phylogenetic comparison of senescence-associated WRKY genes from switchgrass flag leaf with senescence-associated WRKY genes from other plants revealed notable hotspots in Group I, IIb, and IIe of the phylogenetic tree. We have identified and named 240 WRKY genes in the switchgrass genome. Twenty three of these genes show elevated mRNA levels during the onset of flag leaf senescence. Eleven of the WRKY genes were found in hotspots of related senescence-associated genes from multiple species and thus represent promising targets for future switchgrass genetic improvement. Overall, individual WRKY gene expression profiles could be readily linked to developmental stages of flag leaves.

  6. The Use of RNA Sequencing and Correlation Network Analysis to Study Potential Regulators of Crabapple Leaf Color Transformation.

    PubMed

    Yang, Tuo; Li, Keting; Hao, Suxiao; Zhang, Jie; Song, Tingting; Tian, Ji; Yao, Yuncong

    2018-05-01

    Anthocyanins are plant pigments that contribute to the color of leaves, flowers and fruits, and that are beneficial to human health in the form of dietary antioxidants. The study of a transformable crabapple cultivar, 'India magic', which has red buds and green mature leaves, using mRNA profiling of four leaf developmental stages, allowed us to characterize molecular mechanisms regulating red color formation in early leaf development and the subsequent rapid down-regulation of anthocyanin biosynthesis. This analysis of differential gene expression during leaf development revealed that ethylene signaling-responsive genes are up-regulated during leaf pigmentation. Genes in the ethylene response factor (ERF), SPL, NAC, WRKY and MADS-box transcription factor (TF) families were identified in two weighted gene co-expression network analysis (WGCNA) modules as having a close relationship to anthocyanin accumulation. Analyses of network hub genes indicated that SPL TFs are located in central positions within anthocyanin-related modules. Furthermore, cis-motif and yeast one-hybrid assays suggested that several anthocyanin biosynthetic or regulatory genes are potential targets of SPL8 and SPL13B. Transient silencing of these two genes confirmed that they play a role in co-ordinating anthocyanin biosynthesis and crabapple leaf development. We present a high-resolution method for identifying regulatory modules associated with leaf pigmentation, which provides a platform for functional genomic studies of anthocyanin biosynthesis.

  7. Large-scale screening of transcription factor–promoter interactions in spruce reveals a transcriptional network involved in vascular development

    PubMed Central

    Lachance, Denis; Giguère, Isabelle; Séguin, Armand

    2014-01-01

    This research aimed to investigate the role of diverse transcription factors (TFs) and to delineate gene regulatory networks directly in conifers at a relatively high-throughput level. The approach integrated sequence analyses, transcript profiling, and development of a conifer-specific activation assay. Transcript accumulation profiles of 102 TFs and potential target genes were clustered to identify groups of coordinately expressed genes. Several different patterns of transcript accumulation were observed by profiling in nine different organs and tissues: 27 genes were preferential to secondary xylem both in stems and roots, and other genes were preferential to phelloderm and periderm or were more ubiquitous. A robust system has been established as a screening approach to define which TFs have the ability to regulate a given promoter in planta. Trans-activation or repression effects were observed in 30% of TF–candidate gene promoter combinations. As a proof of concept, phylogenetic analysis and expression and trans-activation data were used to demonstrate that two spruce NAC-domain proteins most likely play key roles in secondary vascular growth as observed in other plant species. This study tested many TFs from diverse families in a conifer tree species, which broadens the knowledge of promoter–TF interactions in wood development and enables comparisons of gene regulatory networks found in angiosperms and gymnosperms. PMID:24713992

  8. Time-Series Transcriptomics Reveals That AGAMOUS-LIKE22 Affects Primary Metabolism and Developmental Processes in Drought-Stressed Arabidopsis[OPEN

    PubMed Central

    Penfold, Christopher A.; Jenkins, Dafyd J.; Legaie, Roxane; Lawson, Tracy; Vialet-Chabrand, Silvere R.M.; Subramaniam, Sunitha; Hickman, Richard; Feil, Regina; Bowden, Laura; Hill, Claire; Lunn, John E.; Finkenstädt, Bärbel; Buchanan-Wollaston, Vicky; Beynon, Jim; Wild, David L.; Ott, Sascha

    2016-01-01

    In Arabidopsis thaliana, changes in metabolism and gene expression drive increased drought tolerance and initiate diverse drought avoidance and escape responses. To address regulatory processes that link these responses, we set out to identify genes that govern early responses to drought. To do this, a high-resolution time series transcriptomics data set was produced, coupled with detailed physiological and metabolic analyses of plants subjected to a slow transition from well-watered to drought conditions. A total of 1815 drought-responsive differentially expressed genes were identified. The early changes in gene expression coincided with a drop in carbon assimilation, and only in the late stages with an increase in foliar abscisic acid content. To identify gene regulatory networks (GRNs) mediating the transition between the early and late stages of drought, we used Bayesian network modeling of differentially expressed transcription factor (TF) genes. This approach identified AGAMOUS-LIKE22 (AGL22), as key hub gene in a TF GRN. It has previously been shown that AGL22 is involved in the transition from vegetative state to flowering but here we show that AGL22 expression influences steady state photosynthetic rates and lifetime water use. This suggests that AGL22 uniquely regulates a transcriptional network during drought stress, linking changes in primary metabolism and the initiation of stress responses. PMID:26842464

  9. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis.

    PubMed

    He, Fei; Fromion, Vincent; Westerhoff, Hans V

    2013-11-21

    Metabolic control analysis (MCA) and supply-demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply-demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. This study integrates control engineering and classical MCA augmented with supply-demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the 'integral control' (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of 'integral control' should rarely be expected to lead to the 'perfect adaptation': although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems biology, correspond to the 'perfect' regulatory structures designed by control engineering vis-à-vis optimal functions such as robustness. To the extent that they are not, the analyses suggest how they may become so and this in turn should facilitate synthetic biology and metabolic engineering.

  10. (Im)Perfect robustness and adaptation of metabolic networks subject to metabolic and gene-expression regulation: marrying control engineering with metabolic control analysis

    PubMed Central

    2013-01-01

    Background Metabolic control analysis (MCA) and supply–demand theory have led to appreciable understanding of the systems properties of metabolic networks that are subject exclusively to metabolic regulation. Supply–demand theory has not yet considered gene-expression regulation explicitly whilst a variant of MCA, i.e. Hierarchical Control Analysis (HCA), has done so. Existing analyses based on control engineering approaches have not been very explicit about whether metabolic or gene-expression regulation would be involved, but designed different ways in which regulation could be organized, with the potential of causing adaptation to be perfect. Results This study integrates control engineering and classical MCA augmented with supply–demand theory and HCA. Because gene-expression regulation involves time integration, it is identified as a natural instantiation of the ‘integral control’ (or near integral control) known in control engineering. This study then focuses on robustness against and adaptation to perturbations of process activities in the network, which could result from environmental perturbations, mutations or slow noise. It is shown however that this type of ‘integral control’ should rarely be expected to lead to the ‘perfect adaptation’: although the gene-expression regulation increases the robustness of important metabolite concentrations, it rarely makes them infinitely robust. For perfect adaptation to occur, the protein degradation reactions should be zero order in the concentration of the protein, which may be rare biologically for cells growing steadily. Conclusions A proposed new framework integrating the methodologies of control engineering and metabolic and hierarchical control analysis, improves the understanding of biological systems that are regulated both metabolically and by gene expression. In particular, the new approach enables one to address the issue whether the intracellular biochemical networks that have been and are being identified by genomics and systems biology, correspond to the ‘perfect’ regulatory structures designed by control engineering vis-à-vis optimal functions such as robustness. To the extent that they are not, the analyses suggest how they may become so and this in turn should facilitate synthetic biology and metabolic engineering. PMID:24261908

  11. Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification.

    PubMed

    Yockteng, Roxana; Almeida, Ana M R; Morioka, Kelsie; Alvarez-Buylla, Elena R; Specht, Chelsea D

    2013-11-01

    The diversity of floral forms in the plant order Zingiberales has evolved through alterations in floral organ morphology. One striking alteration is the shift from fertile, filamentous stamens to sterile, laminar (petaloid) organs in the stamen whorls, attributed to specific pollination syndromes. Here, we examine the role of the SEPALLATA (SEP) genes, known to be important in regulatory networks underlying floral development and organ identity, in the evolution of development of the diverse floral organs phenotypes in the Zingiberales. Phylogenetic analyses show that the SEP-like genes have undergone several duplication events giving rise to multiple copies. Selection tests on the SEP-like genes indicate that the two copies of SEP3 have mostly evolved under balancing selection, probably due to strong functional restrictions as a result of their critical role in floral organ specification. In contrast, the two LOFSEP copies have undergone differential positive selection, indicating neofunctionalization. Reverse transcriptase-polymerase chain reaction, gene expression from RNA-seq data, and in situ hybridization analyses show that the recovered genes have differential expression patterns across the various whorls and organ types found in the Zingiberales. Our data also suggest that AGL6, sister to the SEP-like genes, may play an important role in stamen morphology in the Zingiberales. Thus, the SEP-like genes are likely to be involved in some of the unique morphogenetic patterns of floral organ development found among this diverse order of tropical monocots. This work contributes to a growing body of knowledge focused on understanding the role of gene duplications and the evolution of entire gene networks in the evolution of flower development.

  12. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks, functional enrichment analysis and gene expression information provide opportunities to infer gene function in citrus. We present a publicly accessible tool, Network Inference for Citrus Co-Expression (NICCE, http://citrus.adelaide.edu.au/nicce/home.aspx), for the gene co-expression analysis in citrus. PMID:25023870

  13. Molecular classification of benign prostatic hyperplasia: A gene expression profiling study in a rat model.

    PubMed

    Hata, Junya; Satoh, Yuichi; Akaihata, Hidenori; Hiraki, Hiroyuki; Ogawa, Soichiro; Haga, Nobuhiro; Ishibashi, Kei; Aikawa, Ken; Kojima, Yoshiyuki

    2016-07-01

    To characterize the molecular features of benign prostatic hyperplasia by carrying out a gene expression profiling analysis in a rat model. Fetal urogenital sinus isolated from 20-day-old male rat embryo was implanted into a pubertal male rat ventral prostate. The implanted urogenital sinus grew time-dependently, and the pathological findings at 3 weeks after implantation showed epithelial hyperplasia as well as stromal hyperplasia. Whole-genome oligonucleotide microarray analysis utilizing approximately 30 000 oligonucleotide probes was carried out using prostate specimens during the prostate growth process (3 weeks after implantation). Microarray analyses showed 926 upregulated (>2-fold change, P < 0.01) and 3217 downregulated genes (<0.5-fold change, P < 0.01) in benign prostatic hyperplasia specimens compared with normal prostate. Gene ontology analyses of upregulated genes showed predominant genetic themes of involvement in development (162 genes, P = 2.01 × 10(-4) ), response to stimulus (163 genes, P = 7.37 × 10(-13) ) and growth (32 genes, P = 1.93 × 10(-5) ). When we used both normal prostate and non-transplanted urogenital sinuses as controls to identify benign prostatic hyperplasia-specific genes, 507 and 406 genes were upregulated and downregulated, respectively. Functional network and pathway analyses showed that genes associated with apoptosis modulation by heat shock protein 70, interleukin-1, interleukin-2 and interleukin-5 signaling pathways, KIT signaling pathway, and secretin-like G-protein-coupled receptors, class B, were relatively activated during the growth process in the benign prostatic hyperplasia specimens. In contrast, genes associated with cholesterol biosynthesis were relatively inactivated. Our microarray analyses of the benign prostatic hyperplasia model rat might aid in clarifying the molecular mechanism of benign prostatic hyperplasia progression, and identifying molecular targets for benign prostatic hyperplasia treatment. © 2016 The Japanese Urological Association.

  14. Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders.

    PubMed

    Forero, Diego A; Prada, Carlos F; Perry, George

    2016-01-01

    In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD.

  15. Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders

    PubMed Central

    Forero, Diego A.; Prada, Carlos F.; Perry, George

    2016-01-01

    Background: In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. Objective: To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. Methods: A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. Results: We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. Conclusion: These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD. PMID:27990183

  16. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    PubMed

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network, and pathway analyses

    PubMed Central

    Kogelman, Lisette J. A.; Pant, Sameer D.; Fredholm, Merete; Kadarmideen, Haja N.

    2014-01-01

    Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie it. PMID:25071839

  18. Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection.

    PubMed

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway.

  19. Innate responses to gene knockouts impact overlapping gene networks and vary with respect to resistance to viral infection.

    PubMed

    Liu, Yonghong; Liu, Yuanyuan; Wu, Jiaming; Roizman, Bernard; Zhou, Grace Guoying

    2018-04-03

    Analyses of the levels of mRNAs encoding IFIT1, IFI16, RIG-1, MDA5, CXCL10, LGP2, PUM1, LSD1, STING, and IFNβ in cell lines from which the gene encoding LGP2, LSD1, PML, HDAC4, IFI16, PUM1, STING, MDA5, IRF3, or HDAC 1 had been knocked out, as well as the ability of these cell lines to support the replication of HSV-1, revealed the following: ( i ) Cell lines lacking the gene encoding LGP2, PML, or HDAC4 (cluster 1) exhibited increased levels of expression of partially overlapping gene networks. Concurrently, these cell lines produced from 5 fold to 12 fold lower yields of HSV-1 than the parental cells. ( ii ) Cell lines lacking the genes encoding STING, LSD1, MDA5, IRF3, or HDAC 1 (cluster 2) exhibited decreased levels of mRNAs of partially overlapping gene networks. Concurrently, these cell lines produced virus yields that did not differ from those produced by the parental cell line. The genes up-regulated in cell lines forming cluster 1, overlapped in part with genes down-regulated in cluster 2. The key conclusions are that gene knockouts and subsequent selection for growth causes changes in expression of multiple genes, and hence the phenotype of the cell lines cannot be ascribed to a single gene; the patterns of gene expression may be shared by multiple knockouts; and the enhanced immunity to viral replication by cluster 1 knockout cell lines but not by cluster 2 cell lines suggests that in parental cells, the expression of innate resistance to infection is specifically repressed.

  20. The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1-3 516R44

    PubMed Central

    Massa, Alicia N.; Childs, Kevin L.; Lin, Haining; Bryan, Glenn J.; Giuliano, Giovanni; Buell, C. Robin

    2011-01-01

    Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family. PMID:22046362

  1. Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in Brachypodium distachyon.

    PubMed

    Sibout, Richard; Proost, Sebastian; Hansen, Bjoern Oest; Vaid, Neha; Giorgi, Federico M; Ho-Yue-Kuang, Severine; Legée, Frédéric; Cézart, Laurent; Bouchabké-Coussa, Oumaya; Soulhat, Camille; Provart, Nicholas; Pasha, Asher; Le Bris, Philippe; Roujol, David; Hofte, Herman; Jamet, Elisabeth; Lapierre, Catherine; Persson, Staffan; Mutwil, Marek

    2017-08-01

    While Brachypodium distachyon (Brachypodium) is an emerging model for grasses, no expression atlas or gene coexpression network is available. Such tools are of high importance to provide insights into the function of Brachypodium genes. We present a detailed Brachypodium expression atlas, capturing gene expression in its major organs at different developmental stages. The data were integrated into a large-scale coexpression database ( www.gene2function.de), enabling identification of duplicated pathways and conserved processes across 10 plant species, thus allowing genome-wide inference of gene function. We highlight the importance of the atlas and the platform through the identification of duplicated cell wall modules, and show that a lignin biosynthesis module is conserved across angiosperms. We identified and functionally characterised a putative ferulate 5-hydroxylase gene through overexpression of it in Brachypodium, which resulted in an increase in lignin syringyl units and reduced lignin content of mature stems, and led to improved saccharification of the stem biomass. Our Brachypodium expression atlas thus provides a powerful resource to reveal functionally related genes, which may advance our understanding of important biological processes in grasses. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis.

    PubMed

    Hwang, Sun-Goo; Kim, Dong Sub; Hwang, Jung Eun; Han, A-Reum; Jang, Cheol Seong

    2014-05-15

    In order to better understand the biological systems that are affected in response to cosmic ray (CR), we conducted weighted gene co-expression network analysis using the module detection method. By using the Pearson's correlation coefficient (PCC) value, we evaluated complex gene-gene functional interactions between 680 CR-responsive probes from integrated microarray data sets, which included large-scale transcriptional profiling of 1000 microarray samples. These probes were divided into 6 distinct modules that contained 20 enriched gene ontology (GO) functions, such as oxidoreductase activity, hydrolase activity, and response to stimulus and stress. In particular, modules 1 and 2 commonly showed enriched annotation categories such as oxidoreductase activity, including enriched cis-regulatory elements known as ROS-specific regulators. These results suggest that the ROS-mediated irradiation response pathway is affected by CR in modules 1 and 2. We found 243 ionizing radiation (IR)-responsive probes that exhibited similarities in expression patterns in various irradiation microarray data sets. The expression patterns of 6 randomly selected IR-responsive genes were evaluated by quantitative reverse transcription polymerase chain reaction following treatment with CR, gamma rays (GR), and ion beam (IB); similar patterns were observed among these genes under these 3 treatments. Moreover, we constructed subnetworks of IR-responsive genes and evaluated the expression levels of their neighboring genes following GR treatment; similar patterns were observed among them. These results of network-based analyses might provide a clue to understanding the complex biological system related to the CR response in plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. B-cell Ligand Processing Pathways Detected by Large-scale Comparative Analysis

    PubMed Central

    Towfic, Fadi; Gupta, Shakti; Honavar, Vasant; Subramaniam, Shankar

    2012-01-01

    The initiation of B-cell ligand recognition is a critical step for the generation of an immune response against foreign bodies. We sought to identify the biochemical pathways involved in the B-cell ligand recognition cascade and sets of ligands that trigger similar immunological responses. We utilized several comparative approaches to analyze the gene coexpression networks generated from a set of microarray experiments spanning 33 different ligands. First, we compared the degree distributions of the generated networks. Second, we utilized a pairwise network alignment algorithm, BiNA, to align the networks based on the hubs in the networks. Third, we aligned the networks based on a set of KEGG pathways. We summarized our results by constructing a consensus hierarchy of pathways that are involved in B cell ligand recognition. The resulting pathways were further validated through literature for their common physiological responses. Collectively, the results based on our comparative analyses of degree distributions, alignment of hubs, and alignment based on KEGG pathways provide a basis for molecular characterization of the immune response states of B-cells and demonstrate the power of comparative approaches (e.g., gene coexpression network alignment algorithms) in elucidating biochemical pathways involved in complex signaling events in cells. PMID:22917187

  4. Dense module enumeration in biological networks

    NASA Astrophysics Data System (ADS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  5. Linear control theory for gene network modeling.

    PubMed

    Shin, Yong-Jun; Bleris, Leonidas

    2010-09-16

    Systems biology is an interdisciplinary field that aims at understanding complex interactions in cells. Here we demonstrate that linear control theory can provide valuable insight and practical tools for the characterization of complex biological networks. We provide the foundation for such analyses through the study of several case studies including cascade and parallel forms, feedback and feedforward loops. We reproduce experimental results and provide rational analysis of the observed behavior. We demonstrate that methods such as the transfer function (frequency domain) and linear state-space (time domain) can be used to predict reliably the properties and transient behavior of complex network topologies and point to specific design strategies for synthetic networks.

  6. GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.

    2015-01-01

    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.

  7. Topological and statistical analyses of gene regulatory networks reveal unifying yet quantitatively different emergent properties.

    PubMed

    Ouma, Wilberforce Zachary; Pogacar, Katja; Grotewold, Erich

    2018-04-01

    Understanding complexity in physical, biological, social and information systems is predicated on describing interactions amongst different components. Advances in genomics are facilitating the high-throughput identification of molecular interactions, and graphs are emerging as indispensable tools in explaining how the connections in the network drive organismal phenotypic plasticity. Here, we describe the architectural organization and associated emergent topological properties of gene regulatory networks (GRNs) that describe protein-DNA interactions (PDIs) in several model eukaryotes. By analyzing GRN connectivity, our results show that the anticipated scale-free network architectures are characterized by organism-specific power law scaling exponents. These exponents are independent of the fraction of the GRN experimentally sampled, enabling prediction of properties of the complete GRN for an organism. We further demonstrate that the exponents describe inequalities in transcription factor (TF)-target gene recognition across GRNs. These observations have the important biological implication that they predict the existence of an intrinsic organism-specific trans and/or cis regulatory landscape that constrains GRN topologies. Consequently, architectural GRN organization drives not only phenotypic plasticity within a species, but is also likely implicated in species-specific phenotype.

  8. Systematic network assessment of the carcinogenic activities of cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Peizhan; Duan, Xiaohua; Li, Mian

    Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscapemore » software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human. - Highlights: • A cadmium-influenced network with 850 nodes and 8770 edges was established. • The cadmium-rewired gene network was scale-free and highly connected. • Nine modules were identified, and 60 key signaling pathways related to cadmium-induced carcinogenesis were found. • Key mediators in the network were validated in multiple cellular models.« less

  9. Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes

    PubMed Central

    Chase, Mark W.; Kim, Joo-Hwan

    2013-01-01

    Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. The network method should play a greater role in phylogenetic analyses than it has in the past. To advance the understanding of evolutionary history of the largest order of monocots Asparagales, absolute diversification times were estimated for family-level clades using relaxed molecular clock analyses. PMID:23544071

  10. Control, responses and modularity of cellular regulatory networks: a control analysis perspective.

    PubMed

    Bruggeman, F J; Snoep, J L; Westerhoff, H V

    2008-11-01

    Cells adapt to changes in environmental conditions through the concerted action of signalling, gene expression and metabolic subsystems. The authors will discuss a theoretical framework addressing such integrated systems. This 'hierarchical analysis' was first developed as an extension to a metabolic control analysis. It builds on the phenomenon that often the communication between signalling, gene expression and metabolic subsystems is almost exclusively via regulatory interactions and not via mass flow interactions. This allows for the treatment of the said subsystems as 'levels' in a hierarchical view of the organisation of the molecular reaction network of cells. Such a hierarchical approach has as a major advantage that levels can be analysed conceptually in isolation of each other (from a local intra-level perspective) and at a later stage integrated via their interactions (from a global inter-level perspective). Hereby, it allows for a modular approach with variable scope. A number of different approaches have been developed for the analysis of hierarchical systems, for example hierarchical control analysis and modular response analysis. The authors, here, review these methods and illustrate the strength of these types of analyses using a core model of a system with gene expression, metabolic and signal transduction levels.

  11. Network Analysis Reveals Ecological Links between N-Fixing Bacteria and Wood-Decaying Fungi

    PubMed Central

    Hoppe, Björn; Kahl, Tiemo; Karasch, Peter; Wubet, Tesfaye; Bauhus, Jürgen; Buscot, François; Krüger, Dirk

    2014-01-01

    Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase) genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa. PMID:24505405

  12. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi.

    PubMed

    Hoppe, Björn; Kahl, Tiemo; Karasch, Peter; Wubet, Tesfaye; Bauhus, Jürgen; Buscot, François; Krüger, Dirk

    2014-01-01

    Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase) genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa.

  13. Neural networks underlying trait aggression depend on MAOA gene alleles.

    PubMed

    Klasen, Martin; Wolf, Dhana; Eisner, Patrick D; Habel, Ute; Repple, Jonathan; Vernaleken, Ingo; Schlüter, Thorben; Eggermann, Thomas; Zerres, Klaus; Zepf, Florian D; Mathiak, Klaus

    2018-03-01

    Low expressing alleles of the MAOA gene (MAOA-L) have been associated with an increased risk for developing an aggressive personality. This suggests an MAOA-L-specific neurobiological vulnerability associated with trait aggression. The neural networks underlying this vulnerability are unknown. The present study investigated genotype-specific associations between resting state brain networks and trait aggression (Buss-Perry Aggression Questionnaire) in 82 healthy Caucasian males. Genotype influences on aggression-related networks were studied for intrinsic and seed-based brain connectivity. Intrinsic connectivity was higher in the ventromedial prefrontal cortex (VMPFC) of MAOA-L compared to high expressing allele (MAOA-H) carriers. Seed-based connectivity analyses revealed genotype differences in the functional involvement of this region. MAOA genotype modulated the relationship between trait aggression and VMPFC connectivity with supramarginal gyrus (SMG) and areas of the default mode network (DMN). Separate analyses for the two groups were performed to better understand how the genotype modulated the relationship between aggression and brain networks. They revealed a positive correlation between VMPFC connectivity and aggression in right angular gyrus (AG) and a negative correlation in right SMG in the MAOA-L group. No such effect emerged in the MAOA-H carriers. The results indicate a particular relevance of VMPFC for aggression in MAOA-L carriers; in specific, a detachment from the DMN along with a strengthened coupling to the AG seems to go along with lower trait aggression. MAOA-L carriers may thus depend on a synchronization of emotion regulation systems (VMPFC) with core areas of empathy (SMG) to prevent aggression.

  14. Identification of differentially expressed genes associated with the enhancement of X-ray susceptibility by RITA in a hypopharyngeal squamous cell carcinoma cell line (FaDu).

    PubMed

    Luan, Jinwei; Li, Xianglan; Guo, Rutao; Liu, Shanshan; Luo, Hongyu; You, Qingshan

    2016-06-01

    Next generation sequencing and bio-informatic analyses were conducted to investigate the mechanism of reactivation of p53 and induction of tumor cell apoptosis (RITA)-enhancing X-ray susceptibility in FaDu cells. The cDNA was isolated from FaDu cells treated with 0 X-ray, 8 Gy X-ray, or 8 Gy X-ray + RITA. Then, cDNA libraries were created and sequenced using next generation sequencing, and each assay was repeated twice. Subsequently, differentially expressed genes (DEGs) were identified using Cuffdiff in Cufflinks and their functions were predicted by pathway enrichment analyses. Genes that were constantly up- or down-regulated in 8 Gy X-ray-treated FaDu cells and 8 Gy X-ray + RITA-treated FaDu cells were obtained as RITA genes. Afterward, the protein-protein interaction (PPI) relationships were obtained from the STRING database and a PPI network was constructed using Cytoscape. Furthermore, ClueGO was used for pathway enrichment analysis of genes in the PPI network. Total 2,040 and 297 DEGs were identified in FaDu cells treated with 8 Gy X-ray or 8 Gy X-ray + RITA, respectively. PARP3 and NEIL1 were enriched in base excision repair, and CDK1 was enriched in p53 signaling pathway. RFC2 and EZH2 were identified as RITA genes. In the PPI network, many interaction relationships were identified (e.g., RFC2-CDK1, EZH2-CDK1 and PARP3-EZH2). ClueGO analysis showed that RFC2 and EZH2 were related to cell cycle. RFC2, EZH2, CDK1, PARP3 and NEIL1 may be associated, and together enhance the susceptibility of FaDu cells treated with RITA to the deleterious effects of X-ray.

  15. Conserved noncoding sequences conserve biological networks and influence genome evolution.

    PubMed

    Xie, Jianbo; Qian, Kecheng; Si, Jingna; Xiao, Liang; Ci, Dong; Zhang, Deqiang

    2018-05-01

    Comparative genomics approaches have identified numerous conserved cis-regulatory sequences near genes in plant genomes. Despite the identification of these conserved noncoding sequences (CNSs), our knowledge of their functional importance and selection remains limited. Here, we used a combination of DNA methylome analysis, microarray expression analyses, and functional annotation to study these sequences in the model tree Populus trichocarpa. Methylation in CG contexts and non-CG contexts was lower in CNSs, particularly CNSs in the 5'-upstream regions of genes, compared with other sites in the genome. We observed that CNSs are enriched in genes with transcription and binding functions, and this also associated with syntenic genes and those from whole-genome duplications, suggesting that cis-regulatory sequences play a key role in genome evolution. We detected a significant positive correlation between CNS number and protein interactions, suggesting that CNSs may have roles in the evolution and maintenance of biological networks. The divergence of CNSs indicates that duplication-degeneration-complementation drives the subfunctionalization of a proportion of duplicated genes from whole-genome duplication. Furthermore, population genomics confirmed that most CNSs are under strong purifying selection and only a small subset of CNSs shows evidence of adaptive evolution. These findings provide a foundation for future studies exploring these key genomic features in the maintenance of biological networks, local adaptation, and transcription.

  16. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.

    PubMed

    Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M

    2017-01-01

    Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms and genes that lead to complex phenotypes, like meat quality, and the nutritional and healthfulness value of beef. Improvements in genome annotation and knowledge of gene function will contribute to more comprehensive analyses that will advance our ability to dissect the complex architecture of complex traits.

  17. Clinical value of miR-182-5p in lung squamous cell carcinoma: a study combining data from TCGA, GEO, and RT-qPCR validation.

    PubMed

    Luo, Jie; Shi, Ke; Yin, Shu-Ya; Tang, Rui-Xue; Chen, Wen-Jie; Huang, Lin-Zhen; Gan, Ting-Qing; Cai, Zheng-Wen; Chen, Gang

    2018-04-10

    MiR-182-5p, as a member of miRNA family, can be detected in lung cancer and plays an important role in lung cancer. To explore the clinical value of miR-182-5p in lung squamous cell carcinoma (LUSC) and to unveil the molecular mechanism of LUSC. The clinical value of miR-182-5p in LUSC was investigated by collecting and calculating data from The Cancer Genome Atlas (TCGA) database, the Gene Expression Omnibus (GEO) database, and real-time quantitative polymerase chain reaction (RT-qPCR). Twelve prediction platforms were used to predict the target genes of miR-182-5p. Protein-protein interaction (PPI) networks and gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to explore the molecular mechanism of LUSC. The expression of miR-182-5p was significantly over-expressed in LUSC than in non-cancerous tissues, as evidenced by various approaches, including the TCGA database, GEO microarrays, RT-qPCR, and a comprehensive meta-analysis of 501 LUSC cases and 148 non-cancerous cases. Furthermore, a total of 81 potential target genes were chosen from the union of predicted genes and the TCGA database. GO and KEGG analyses demonstrated that the target genes are involved in pathways related to biological processes. PPIs revealed the relationships between these genes, with EPAS1, PRKCE, NR3C1, and RHOB being located in the center of the PPI network. MiR-182-5p upregulation greatly contributes to LUSC and may serve as a biomarker in LUSC.

  18. The Probability of a Gene Tree Topology within a Phylogenetic Network with Applications to Hybridization Detection

    PubMed Central

    Yu, Yun; Degnan, James H.; Nakhleh, Luay

    2012-01-01

    Gene tree topologies have proven a powerful data source for various tasks, including species tree inference and species delimitation. Consequently, methods for computing probabilities of gene trees within species trees have been developed and widely used in probabilistic inference frameworks. All these methods assume an underlying multispecies coalescent model. However, when reticulate evolutionary events such as hybridization occur, these methods are inadequate, as they do not account for such events. Methods that account for both hybridization and deep coalescence in computing the probability of a gene tree topology currently exist for very limited cases. However, no such methods exist for general cases, owing primarily to the fact that it is currently unknown how to compute the probability of a gene tree topology within the branches of a phylogenetic network. Here we present a novel method for computing the probability of gene tree topologies on phylogenetic networks and demonstrate its application to the inference of hybridization in the presence of incomplete lineage sorting. We reanalyze a Saccharomyces species data set for which multiple analyses had converged on a species tree candidate. Using our method, though, we show that an evolutionary hypothesis involving hybridization in this group has better support than one of strict divergence. A similar reanalysis on a group of three Drosophila species shows that the data is consistent with hybridization. Further, using extensive simulation studies, we demonstrate the power of gene tree topologies at obtaining accurate estimates of branch lengths and hybridization probabilities of a given phylogenetic network. Finally, we discuss identifiability issues with detecting hybridization, particularly in cases that involve extinction or incomplete sampling of taxa. PMID:22536161

  19. Regulatory network analysis of Epstein-Barr virus identifies functional modules and hub genes involved in infectious mononucleosis.

    PubMed

    Poorebrahim, Mansour; Salarian, Ali; Najafi, Saeideh; Abazari, Mohammad Foad; Aleagha, Maryam Nouri; Dadras, Mohammad Nasr; Jazayeri, Seyed Mohammad; Ataei, Atousa; Poortahmasebi, Vahdat

    2017-05-01

    Epstein-Barr virus (EBV) is the most common cause of infectious mononucleosis (IM) and establishes lifetime infection associated with a variety of cancers and autoimmune diseases. The aim of this study was to develop an integrative gene regulatory network (GRN) approach and overlying gene expression data to identify the representative subnetworks for IM and EBV latent infection (LI). After identifying differentially expressed genes (DEGs) in both IM and LI gene expression profiles, functional annotations were applied using gene ontology (GO) and BiNGO tools, and construction of GRNs, topological analysis and identification of modules were carried out using several plugins of Cytoscape. In parallel, a human-EBV GRN was generated using the Hu-Vir database for further analyses. Our analysis revealed that the majority of DEGs in both IM and LI were involved in cell-cycle and DNA repair processes. However, these genes showed a significant negative correlation in the IM and LI states. Furthermore, cyclin-dependent kinase 2 (CDK2) - a hub gene with the highest centrality score - appeared to be the key player in cell cycle regulation in IM disease. The most significant functional modules in the IM and LI states were involved in the regulation of the cell cycle and apoptosis, respectively. Human-EBV network analysis revealed several direct targets of EBV proteins during IM disease. Our study provides an important first report on the response to IM/LI EBV infection in humans. An important aspect of our data was the upregulation of genes associated with cell cycle progression and proliferation.

  20. Gene set analysis using variance component tests.

    PubMed

    Huang, Yen-Tsung; Lin, Xihong

    2013-06-28

    Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.

  1. Brain Transcriptomic Response to Social Eavesdropping in Zebrafish (Danio rerio)

    PubMed Central

    Oliveira, Rui F.

    2015-01-01

    Public information is widely available at low cost to animals living in social groups. For instance, bystanders may eavesdrop on signaling interactions between conspecifics and use it to adapt their subsequent behavior towards the observed individuals. This social eavesdropping ability is expected to require specialized mechanisms such as social attention, which selects social information available for learning. To begin exploring the genetic basis of social eavesdropping, we used a previously established attention paradigm in the lab to study the brain gene expression profile of male zebrafish (Danio rerio) in relation to the attention they paid towards conspecifics involved or not involved in agonistic interactions. Microarray gene chips were used to characterize their brain transcriptomes based on differential expression of single genes and gene sets. These analyses were complemented by promoter region-based techniques. Using data from both approaches, we further drafted protein interaction networks. Our results suggest that attentiveness towards conspecifics, whether interacting or not, activates pathways linked to neuronal plasticity and memory formation. The network analyses suggested that fos and jun are key players on this response, and that npas4a, nr4a1 and egr4 may also play an important role. Furthermore, specifically observing fighting interactions further triggered pathways associated to a change in the alertness status (dnajb5) and to other genes related to memory formation (btg2, npas4b), which suggests that the acquisition of eavesdropped information about social relationships activates specific processes on top of those already activated just by observing conspecifics. PMID:26713440

  2. Therapeutic effects of Euphorbia Pekinensis and Glycyrrhiza glabra on Hepatocellular Carcinoma Ascites Partially Via Regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 Signal Axis

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiong; Yan, Chen; Li, Yuting; Mao, Xia; Tao, Weiwei; Tang, Yuping; Lin, Ya; Guo, Qiuyan; Duan, Jingao; Lin, Na

    2017-02-01

    To clarify unknown rationalities of herbaceous compatibility of Euphorbia Pekinensis (DJ) and Glycyrrhiza glabra (GC) acting on hepatocellular carcinoma (HCC) ascites, peritoneum transcriptomics profiling of 15 subjects, including normal control (Con), HCC ascites mouse model (Mod), DJ-alone, DJ/GC-synergy and DJ/GC-antagonism treatment groups were performed on OneArray platform, followed by differentially expressed genes (DEGs) screening. DEGs between Mod and Con groups were considered as HCC ascites-related genes, and those among different drug treatment and Mod groups were identified as DJ/GC-combination-related genes. Then, an interaction network of HCC ascites-related gene-DJ/GC combination-related gene-known therapeutic target gene for ascites was constructed. Based on nodes’ degree, closeness, betweenness and k-coreness, the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis with highly network topological importance was demonstrated to be a candidate target of DJ/GC combination acting on HCC ascites. Importantly, both qPCR and western blot analyses verified this regulatory effects based on HCC ascites mice in vivo and M-1 collecting duct cells in vitro. Collectively, different combination designs of DJ and GC may lead to synergistic or antagonistic effects on HCC ascites partially via regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis, implying that global gene expression profiling combined with network analysis can offer an effective way to understand pharmacological mechanisms of traditional Chinese medicine prescriptions.

  3. Understanding genetic variation - the value of systems biology.

    PubMed

    Hütt, Marc-Thorsten

    2014-04-01

    Pharmacology is currently transformed by the vast amounts of genome-associated information available for system-level interpretation. Here I review the potential of systems biology to facilitate this interpretation, thus paving the way for the emerging field of systems pharmacology. In particular, I will show how gene regulatory and metabolic networks can serve as a framework for interpreting high throughput data and as an interface to detailed dynamical models. In addition to the established connectivity analyses of effective networks, I suggest here to also analyze higher order architectural properties of effective networks. © 2013 The British Pharmacological Society.

  4. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava

    PubMed Central

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  5. Evolution of fruit development genes in flowering plants

    PubMed Central

    Pabón-Mora, Natalia; Wong, Gane Ka-Shu; Ambrose, Barbara A.

    2014-01-01

    The genetic mechanisms regulating dry fruit development and opercular dehiscence have been identified in Arabidopsis thaliana. In the bicarpellate silique, valve elongation and differentiation is controlled by FRUITFULL (FUL) that antagonizes SHATTERPROOF1-2 (SHP1/SHP2) and INDEHISCENT (IND) at the dehiscence zone where they control normal lignification. SHP1/2 are also repressed by REPLUMLESS (RPL), responsible for replum formation. Similarly, FUL indirectly controls two other factors ALCATRAZ (ALC) and SPATULA (SPT) that function in the proper formation of the separation layer. FUL and SHP1/2 belong to the MADS-box family, IND and ALC belong to the bHLH family and RPL belongs to the homeodomain family, all of which are large transcription factor families. These families have undergone numerous duplications and losses in plants, likely accompanied by functional changes. Functional analyses of homologous genes suggest that this network is fairly conserved in Brassicaceae and less conserved in other core eudicots. Only the MADS box genes have been functionally characterized in basal eudicots and suggest partial conservation of the functions recorded for Brassicaceae. Here we do a comprehensive search of SHP, IND, ALC, SPT, and RPL homologs across core-eudicots, basal eudicots, monocots and basal angiosperms. Based on gene-tree analyses we hypothesize what parts of the network for fruit development in Brassicaceae, in particular regarding direct and indirect targets of FUL, might be conserved across angiosperms. PMID:25018763

  6. Analysis of drought-responsive signalling network in two contrasting rice cultivars using transcriptome-based approach

    PubMed Central

    Borah, Pratikshya; Sharma, Eshan; Kaur, Amarjot; Chandel, Girish; Mohapatra, Trilochan; Kapoor, Sanjay; Khurana, Jitendra P.

    2017-01-01

    Traditional cultivars of rice in India exhibit tolerance to drought stress due to their inherent genetic variations. Here we present comparative physiological and transcriptome analyses of two contrasting cultivars, drought tolerant Dhagaddeshi (DD) and susceptible IR20. Microarray analysis revealed several differentially expressed genes (DEGs) exclusively in DD as compared to IR20 seedlings exposed to 3 h drought stress. Physiologically, DD seedlings showed higher cell membrane stability and differential ABA accumulation in response to dehydration, coupled with rapid changes in gene expression. Detailed analyses of metabolic pathways enriched in expression data suggest interplay of ABA dependent along with secondary and redox metabolic networks that activate osmotic and detoxification signalling in DD. By co-localization of DEGs with QTLs from databases or published literature for physiological traits of DD and IR20, candidate genes were identified including those underlying major QTL qDTY1.1 in DD. Further, we identified previously uncharacterized genes from both DD and IR20 under drought conditions including OsWRKY51, OsVP1 and confirmed their expression by qPCR in multiple rice cultivars. OsFBK1 was also functionally validated in susceptible PB1 rice cultivar and Arabidopsis for providing drought tolerance. Some of the DEGs mapped to the known QTLs could thus, be of potential significance for marker-assisted breeding. PMID:28181537

  7. Microarray analyses reveal novel targets of exercise-induced stress resistance in the dorsal raphe nucleus

    PubMed Central

    Loughridge, Alice B.; Greenwood, Benjamin N.; Day, Heidi E. W.; McQueen, Matthew B.; Fleshner, Monika

    2013-01-01

    Serotonin (5-HT) is implicated in the development of stress-related mood disorders in humans. Physical activity reduces the risk of developing stress-related mood disorders, such as depression and anxiety. In rats, 6 weeks of wheel running protects against stress-induced behaviors thought to resemble symptoms of human anxiety and depression. The mechanisms by which exercise confers protection against stress-induced behaviors, however, remain unknown. One way by which exercise could generate stress resistance is by producing plastic changes in gene expression in the dorsal raphe nucleus (DRN). The DRN has a high concentration of 5-HT neurons and is implicated in stress-related mood disorders. The goal of the current experiment was to identify changes in the expression of genes that could be novel targets of exercise-induced stress resistance in the DRN. Adult, male F344 rats were allowed voluntary access to running wheels for 6 weeks; exposed to inescapable stress or no stress; and sacrificed immediately and 2 h after stressor termination. Laser capture micro dissection selectively sampled the DRN. mRNA expression was measured using the whole genome Affymetrix microarray. Comprehensive data analyses of gene expression included differential gene expression, log fold change (LFC) contrast analyses with False Discovery Rate correction, KEGG and Wiki Web Gestalt pathway enrichment analyses, and Weighted Gene Correlational Network Analysis (WGCNA). Our results suggest that physically active rats exposed to stress modulate expression of twice the number of genes, and display a more rapid and strongly coordinated response, than sedentary rats. Bioinformatics analyses revealed several potential targets of stress resistance including genes that are related to immune processes, tryptophan metabolism, and circadian/diurnal rhythms. PMID:23717271

  8. Circuit- and Diagnosis-Specific DNA Methylation Changes at γ-Aminobutyric Acid-Related Genes in Postmortem Human Hippocampus in Schizophrenia and Bipolar Disorder.

    PubMed

    Ruzicka, W Brad; Subburaju, Sivan; Benes, Francine M

    2015-06-01

    Dysfunction related to γ-aminobutyric acid (GABA)-ergic neurotransmission in the pathophysiology of major psychosis has been well established by the work of multiple groups across several decades, including the widely replicated downregulation of GAD1. Prior gene expression and network analyses within the human hippocampus implicate a broader network of genes, termed the GAD1 regulatory network, in regulation of GAD1 expression. Several genes within this GAD1 regulatory network show diagnosis- and sector-specific expression changes within the circuitry of the hippocampus, influencing abnormal GAD1 expression in schizophrenia and bipolar disorder. To investigate the hypothesis that aberrant DNA methylation contributes to circuit- and diagnosis-specific abnormal expression of GAD1 regulatory network genes in psychotic illness. This epigenetic association study targeting GAD1 regulatory network genes was conducted between July 1, 2012, and June 30, 2014. Postmortem human hippocampus tissue samples were obtained from 8 patients with schizophrenia, 8 patients with bipolar disorder, and 8 healthy control participants matched for age, sex, postmortem interval, and other potential confounds from the Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, Massachusetts. We extracted DNA from laser-microdissected stratum oriens tissue of cornu ammonis 2/3 (CA2/3) and CA1 postmortem human hippocampus, bisulfite modified it, and assessed it with the Infinium HumanMethylation450 BeadChip (Illumina, Inc). The subset of CpG loci associated with GAD1 regulatory network genes was analyzed in R version 3.1.0 software (R Foundation) using the minfi package. Findings were validated using bisulfite pyrosequencing. Methylation levels at 1308 GAD1 regulatory network-associated CpG loci were assessed both as individual sites to identify differentially methylated positions and by sharing information among colocalized probes to identify differentially methylated regions. A total of 146 differentially methylated positions with a false detection rate lower than 0.05 were identified across all 6 groups (2 circuit locations in each of 3 diagnostic categories), and 54 differentially methylated regions with P < .01 were identified in single-group comparisons. Methylation changes were enriched in MSX1, CCND2, and DAXX at specific loci within the hippocampus of patients with schizophrenia and bipolar disorder. This work demonstrates diagnosis- and circuit-specific DNA methylation changes at a subset of GAD1 regulatory network genes in the human hippocampus in schizophrenia and bipolar disorder. These genes participate in chromatin regulation and cell cycle control, supporting the concept that the established GABAergic dysfunction in these disorders is related to disruption of GABAergic interneuron physiology at specific circuit locations within the human hippocampus.

  9. Multi-Omics and Integrated Network Analyses Reveal New Insights into the Systems Relationships between Metabolites, Structural Genes, and Transcriptional Regulators in Developing Grape Berries (Vitis vinifera L.) Exposed to Water Deficit.

    PubMed

    Savoi, Stefania; Wong, Darren C J; Degu, Asfaw; Herrera, Jose C; Bucchetti, Barbara; Peterlunger, Enrico; Fait, Aaron; Mattivi, Fulvio; Castellarin, Simone D

    2017-01-01

    Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit. Integrating RNA-sequencing analysis of the transcriptome with large-scale analysis of central and specialized metabolites, we reveal that these increases occur via a coordinated regulation of key structural pathway genes. Water deficit-induced up-regulation of flavonoid genes is also coordinated with the down-regulation of many stilbene synthases and a consistent decrease in stilbenoid concentration. Water deficit activated both ABA-dependent and ABA-independent signal transduction pathways by modulating the expression of several transcription factors. Gene-gene and gene-metabolite network analyses showed that water deficit-responsive transcription factors such as bZIPs, AP2/ERFs, MYBs, and NACs are implicated in the regulation of stress-responsive metabolites. Enrichment of known and novel cis -regulatory elements in the promoters of several ripening-specific/water deficit-induced modules further affirms the involvement of a transcription factor cross-talk in the berry response to water deficit. Together, our integrated approaches show that water deficit-regulated gene modules are strongly linked to key fruit-quality metabolites and multiple signal transduction pathways may be critical to achieve a balance between the regulation of the stress-response and the berry ripening program. This study constitutes an invaluable resource for future discoveries and comparative studies, in grapes and other fruits, centered on reproductive tissue metabolism under abiotic stress.

  10. Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes

    PubMed Central

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR–essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR–essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR–essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR–essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR–induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led us to suggest that DR commonly suppresses translation, while stimulating an ancient reproduction-related process. PMID:22912585

  11. LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function.

    PubMed

    Holmstrom, Sam R; Deering, Tye; Swift, Galvin H; Poelwijk, Frank J; Mangelsdorf, David J; Kliewer, Steven A; MacDonald, Raymond J

    2011-08-15

    We have determined the cistrome and transcriptome for the nuclear receptor liver receptor homolog-1 (LRH-1) in exocrine pancreas. Chromatin immunoprecipitation (ChIP)-seq and RNA-seq analyses reveal that LRH-1 directly induces expression of genes encoding digestive enzymes and secretory and mitochondrial proteins. LRH-1 cooperates with the pancreas transcription factor 1-L complex (PTF1-L) in regulating exocrine pancreas-specific gene expression. Elimination of LRH-1 in adult mice reduced the concentration of several lipases and proteases in pancreatic fluid and impaired pancreatic fluid secretion in response to cholecystokinin. Thus, LRH-1 is a key regulator of the exocrine pancreas-specific transcriptional network required for the production and secretion of pancreatic fluid.

  12. SYSTEMS BIOLOGY ANALYSES OF GENE EXPRESSION AND GENOME WIDE ASSOCIATION STUDY DATA IN OBSTRUCTIVE SLEEP APNEA

    PubMed Central

    LIU, YU; PATEL, SANJAY; NIBBE, ROD; MAXWELL, SEAN; CHOWDHURY, SALIM A.; KOYUTURK, MEHMET; ZHU, XIAOFENG; LARKIN, EMMA K.; BUXBAUM, SARAH G; PUNJABI, NARESH M.; GHARIB, SINA A.; REDLINE, SUSAN; CHANCE, MARK R.

    2015-01-01

    The precise molecular etiology of obstructive sleep apnea (OSA) is unknown; however recent research indicates that several interconnected aberrant pathways and molecular abnormalities are contributors to OSA. Identifying the genes and pathways associated with OSA can help to expand our understanding of the risk factors for the disease as well as provide new avenues for potential treatment. Towards these goals, we have integrated relevant high dimensional data from various sources, such as genome-wide expression data (microarray), protein-protein interaction (PPI) data and results from genome-wide association studies (GWAS) in order to define sub-network elements that connect some of the known pathways related to the disease as well as define novel regulatory modules related to OSA. Two distinct approaches are applied to identify sub-networks significantly associated with OSA. In the first case we used a biased approach based on sixty genes/proteins with known associations with sleep disorders and/or metabolic disease to seed a search using commercial software to discover networks associated with disease followed by information theoretic (mutual information) scoring of the sub-networks. In the second case we used an unbiased approach and generated an interactome constructed from publicly available gene expression profiles and PPI databases, followed by scoring of the network with p-values from GWAS data derived from OSA patients to uncover sub-networks significant for the disease phenotype. A comparison of the approaches reveals a number of proteins that have been previously known to be associated with OSA or sleep. In addition, our results indicate a novel association of Phosphoinositide 3-kinase, the STAT family of proteins and its related pathways with OSA. PMID:21121029

  13. Contextual Hub Analysis Tool (CHAT): A Cytoscape app for identifying contextually relevant hubs in biological networks.

    PubMed

    Muetze, Tanja; Goenawan, Ivan H; Wiencko, Heather L; Bernal-Llinares, Manuel; Bryan, Kenneth; Lynn, David J

    2016-01-01

    Highly connected nodes (hubs) in biological networks are topologically important to the structure of the network and have also been shown to be preferentially associated with a range of phenotypes of interest. The relative importance of a hub node, however, can change depending on the biological context. Here, we report a Cytoscape app, the Contextual Hub Analysis Tool (CHAT), which enables users to easily construct and visualize a network of interactions from a gene or protein list of interest, integrate contextual information, such as gene expression or mass spectrometry data, and identify hub nodes that are more highly connected to contextual nodes (e.g. genes or proteins that are differentially expressed) than expected by chance. In a case study, we use CHAT to construct a network of genes that are differentially expressed in Dengue fever, a viral infection. CHAT was used to identify and compare contextual and degree-based hubs in this network. The top 20 degree-based hubs were enriched in pathways related to the cell cycle and cancer, which is likely due to the fact that proteins involved in these processes tend to be highly connected in general. In comparison, the top 20 contextual hubs were enriched in pathways commonly observed in a viral infection including pathways related to the immune response to viral infection. This analysis shows that such contextual hubs are considerably more biologically relevant than degree-based hubs and that analyses which rely on the identification of hubs solely based on their connectivity may be biased towards nodes that are highly connected in general rather than in the specific context of interest. CHAT is available for Cytoscape 3.0+ and can be installed via the Cytoscape App Store ( http://apps.cytoscape.org/apps/chat).

  14. The Genetic Basis for Variation in Sensitivity to Lead Toxicity in Drosophila melanogaster

    PubMed Central

    Zhou, Shanshan; Morozova, Tatiana V.; Hussain, Yasmeen N.; Luoma, Sarah E.; McCoy, Lenovia; Yamamoto, Akihiko; Mackay, Trudy F.C.; Anholt, Robert R.H.

    2016-01-01

    Background: Lead toxicity presents a worldwide health problem, especially due to its adverse effects on cognitive development in children. However, identifying genes that give rise to individual variation in susceptibility to lead toxicity is challenging in human populations. Objectives: Our goal was to use Drosophila melanogaster to identify evolutionarily conserved candidate genes associated with individual variation in susceptibility to lead exposure. Methods: To identify candidate genes associated with variation in susceptibility to lead toxicity, we measured effects of lead exposure on development time, viability and adult activity in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association analyses to identify candidate genes. We used mutants to assess functional causality of candidate genes and constructed a genetic network associated with variation in sensitivity to lead exposure, on which we could superimpose human orthologs. Results: We found substantial heritabilities for all three traits and identified candidate genes associated with variation in susceptibility to lead exposure for each phenotype. The genetic architectures that determine variation in sensitivity to lead exposure are highly polygenic. Gene ontology and network analyses showed enrichment of genes associated with early development and function of the nervous system. Conclusions: Drosophila melanogaster presents an advantageous model to study the genetic underpinnings of variation in susceptibility to lead toxicity. Evolutionary conservation of cellular pathways that respond to toxic exposure allows predictions regarding orthologous genes and pathways across phyla. Thus, studies in the D. melanogaster model system can identify candidate susceptibility genes to guide subsequent studies in human populations. Citation: Zhou S, Morozova TV, Hussain YN, Luoma SE, McCoy L, Yamamoto A, Mackay TF, Anholt RR. 2016. The genetic basis for variation in sensitivity to lead toxicity in Drosophila melanogaster. Environ Health Perspect 124:1062–1070; http://dx.doi.org/10.1289/ehp.1510513 PMID:26859824

  15. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT

    PubMed Central

    Choudhary, Kumari Sonal; Rohatgi, Neha; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend. PMID:27253373

  16. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    PubMed

    Choudhary, Kumari Sonal; Rohatgi, Neha; Halldorsson, Skarphedinn; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-06-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  17. Quantitative trait loci mapping and gene network analysis implicate protocadherin-15 as a determinant of brain serotonin transporter expression.

    PubMed

    Ye, R; Carneiro, A M D; Han, Q; Airey, D; Sanders-Bush, E; Zhang, B; Lu, L; Williams, R; Blakely, R D

    2014-03-01

    Presynaptic serotonin (5-hydroxytryptamine, 5-HT) transporters (SERT) regulate 5-HT signaling via antidepressant-sensitive clearance of released neurotransmitter. Polymorphisms in the human SERT gene (SLC6A4) have been linked to risk for multiple neuropsychiatric disorders, including depression, obsessive-compulsive disorder and autism. Using BXD recombinant inbred mice, a genetic reference population that can support the discovery of novel determinants of complex traits, merging collective trait assessments with bioinformatics approaches, we examine phenotypic and molecular networks associated with SERT gene and protein expression. Correlational analyses revealed a network of genes that significantly associated with SERT mRNA levels. We quantified SERT protein expression levels and identified region- and gender-specific quantitative trait loci (QTLs), one of which associated with male midbrain SERT protein expression, centered on the protocadherin-15 gene (Pcdh15), overlapped with a QTL for midbrain 5-HT levels. Pcdh15 was also the only QTL-associated gene whose midbrain mRNA expression significantly associated with both SERT protein and 5-HT traits, suggesting an unrecognized role of the cell adhesion protein in the development or function of 5-HT neurons. To test this hypothesis, we assessed SERT protein and 5-HT traits in the Pcdh15 functional null line (Pcdh15(av-) (3J) ), studies that revealed a strong, negative influence of Pcdh15 on these phenotypes. Together, our findings illustrate the power of multidimensional profiling of recombinant inbred lines in the analysis of molecular networks that support synaptic signaling, and that, as in the case of Pcdh15, can reveal novel relationships that may underlie risk for mental illness. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease.

    PubMed

    Greenblum, Sharon; Turnbaugh, Peter J; Borenstein, Elhanan

    2012-01-10

    The human microbiome plays a key role in a wide range of host-related processes and has a profound effect on human health. Comparative analyses of the human microbiome have revealed substantial variation in species and gene composition associated with a variety of disease states but may fall short of providing a comprehensive understanding of the impact of this variation on the community and on the host. Here, we introduce a metagenomic systems biology computational framework, integrating metagenomic data with an in silico systems-level analysis of metabolic networks. Focusing on the gut microbiome, we analyze fecal metagenomic data from 124 unrelated individuals, as well as six monozygotic twin pairs and their mothers, and generate community-level metabolic networks of the microbiome. Placing variations in gene abundance in the context of these networks, we identify both gene-level and network-level topological differences associated with obesity and inflammatory bowel disease (IBD). We show that genes associated with either of these host states tend to be located at the periphery of the metabolic network and are enriched for topologically derived metabolic "inputs." These findings may indicate that lean and obese microbiomes differ primarily in their interface with the host and in the way they interact with host metabolism. We further demonstrate that obese microbiomes are less modular, a hallmark of adaptation to low-diversity environments. We additionally link these topological variations to community species composition. The system-level approach presented here lays the foundation for a unique framework for studying the human microbiome, its organization, and its impact on human health.

  19. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease.

    PubMed

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine-based approach was proposed to identify the underlying molecular modules of PSCS complicated with IHD, which could be used for interpreting the pharmacological mechanisms of well-established Chinese herbal formulas ( e.g., Tao Hong Si Wu Tang, Dan Shen Yin, Hunag Lian Wen Dan Tang and Gua Lou Xie Bai Ban Xia Tang ). In addition, these results delivered novel understandings of the molecular network mechanisms of IHD phenotype subtypes with PSCS complications, which would be both insightful for IHD precision medicine and the integration of disease and TCM syndrome diagnoses.

  20. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease

    PubMed Central

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine-based approach was proposed to identify the underlying molecular modules of PSCS complicated with IHD, which could be used for interpreting the pharmacological mechanisms of well-established Chinese herbal formulas (e.g., Tao Hong Si Wu Tang, Dan Shen Yin, Hunag Lian Wen Dan Tang and Gua Lou Xie Bai Ban Xia Tang). In addition, these results delivered novel understandings of the molecular network mechanisms of IHD phenotype subtypes with PSCS complications, which would be both insightful for IHD precision medicine and the integration of disease and TCM syndrome diagnoses. PMID:29403392

  1. Heart morphogenesis gene regulatory networks revealed by temporal expression analysis.

    PubMed

    Hill, Jonathon T; Demarest, Bradley; Gorsi, Bushra; Smith, Megan; Yost, H Joseph

    2017-10-01

    During embryogenesis the heart forms as a linear tube that then undergoes multiple simultaneous morphogenetic events to obtain its mature shape. To understand the gene regulatory networks (GRNs) driving this phase of heart development, during which many congenital heart disease malformations likely arise, we conducted an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and identified 5861 genes with altered expression. We clustered the genes by temporal expression pattern, identified transcription factor binding motifs enriched in each cluster, and generated a model GRN for the major gene batteries in heart morphogenesis. This approach predicted hundreds of regulatory interactions and found batteries enriched in specific cell and tissue types, indicating that the approach can be used to narrow the search for novel genetic markers and regulatory interactions. Subsequent analyses confirmed the GRN using two mutants, Tbx5 and nkx2-5 , and identified sets of duplicated zebrafish genes that do not show temporal subfunctionalization. This dataset provides an essential resource for future studies on the genetic/epigenetic pathways implicated in congenital heart defects and the mechanisms of cardiac transcriptional regulation. © 2017. Published by The Company of Biologists Ltd.

  2. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana

    PubMed Central

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  3. Sex-specific microRNA expression networks in an acute mouse model of ozone-induced lung inflammation.

    PubMed

    Fuentes, Nathalie; Roy, Arpan; Mishra, Vikas; Cabello, Noe; Silveyra, Patricia

    2018-05-08

    Sex differences in the incidence and prognosis of respiratory diseases have been reported. Studies have shown that women are at increased risk of adverse health outcomes from air pollution than men, but sex-specific immune gene expression patterns and regulatory networks have not been well studied in the lung. MicroRNAs (miRNAs) are environmentally sensitive posttranscriptional regulators of gene expression that may mediate the damaging effects of inhaled pollutants in the lung, by altering the expression of innate immunity molecules. Male and female mice of the C57BL/6 background were exposed to 2 ppm of ozone or filtered air (control) for 3 h. Female mice were also exposed at different stages of the estrous cycle. Following exposure, lungs were harvested and total RNA was extracted. We used PCR arrays to study sex differences in the expression of 84 miRNAs predicted to target inflammatory and immune genes. We identified differentially expressed miRNA signatures in the lungs of male vs. female exposed to ozone. In silico pathway analyses identified sex-specific biological networks affected by exposure to ozone that ranged from direct predicted gene targeting to complex interactions with multiple intermediates. We also identified differences in miRNA expression and predicted regulatory networks in females exposed to ozone at different estrous cycle stages. Our results indicate that both sex and hormonal status can influence lung miRNA expression in response to ozone exposure, indicating that sex-specific miRNA regulation of inflammatory gene expression could mediate differential pollution-induced health outcomes in men and women.

  4. How the evolution of multicellularity set the stage for cancer

    PubMed Central

    Trigos, Anna S; Pearson, Richard B; Papenfuss, Anthony T; Goode, David L

    2018-01-01

    Neoplastic growth and many of the hallmark properties of cancer are driven by the disruption of molecular networks established during the emergence of multicellularity. Regulatory pathways and molecules that evolved to impose regulatory constraints upon networks established in earlier unicellular organisms enabled greater communication and coordination between the diverse cell types required for multicellularity, but also created liabilities in the form of points of vulnerability in the network that when mutated or dysregulated facilitate the development of cancer. These factors are usually overlooked in genomic analyses of cancer, but understanding where vulnerabilities to cancer lie in the networks of multicellular species would provide important new insights into how core molecular processes and gene regulation change during tumourigenesis. We describe how the evolutionary origins of genes influence their roles in cancer, and how connections formed between unicellular and multicellular genes that act as key regulatory hubs for normal tissue homeostasis can also contribute to malignant transformation when disrupted. Tumours in general are characterised by increased dependence on unicellular processes for survival, and major dysregulation of the control structures imposed on these processes during the evolution of multicellularity. Mounting molecular evidence suggests altered interactions at the interface between unicellular and multicellular genes play key roles in the initiation and progression of cancer. Furthermore, unicellular network regions activated in cancer show high degrees of robustness and plasticity, conferring increased adaptability to tumour cells by supporting effective responses to environmental pressures such as drug exposure. Examining how the links between multicellular and unicellular regions get disrupted in tumours has great potential to identify novel drivers of cancer, and to guide improvements to cancer treatment by identifying more effective therapeutic strategies. Recent successes in targeting unicellular processes by novel compounds underscore the logic of such approaches. Further gains could come from identifying genes at the interface between unicellular and multicellular processes and manipulating the communication between network regions of different evolutionary ages. PMID:29337961

  5. Multi-tissue analysis of co-expression networks by higher-order generalized singular value decomposition identifies functionally coherent transcriptional modules.

    PubMed

    Xiao, Xiaolin; Moreno-Moral, Aida; Rotival, Maxime; Bottolo, Leonardo; Petretto, Enrico

    2014-01-01

    Recent high-throughput efforts such as ENCODE have generated a large body of genome-scale transcriptional data in multiple conditions (e.g., cell-types and disease states). Leveraging these data is especially important for network-based approaches to human disease, for instance to identify coherent transcriptional modules (subnetworks) that can inform functional disease mechanisms and pathological pathways. Yet, genome-scale network analysis across conditions is significantly hampered by the paucity of robust and computationally-efficient methods. Building on the Higher-Order Generalized Singular Value Decomposition, we introduce a new algorithmic approach for efficient, parameter-free and reproducible identification of network-modules simultaneously across multiple conditions. Our method can accommodate weighted (and unweighted) networks of any size and can similarly use co-expression or raw gene expression input data, without hinging upon the definition and stability of the correlation used to assess gene co-expression. In simulation studies, we demonstrated distinctive advantages of our method over existing methods, which was able to recover accurately both common and condition-specific network-modules without entailing ad-hoc input parameters as required by other approaches. We applied our method to genome-scale and multi-tissue transcriptomic datasets from rats (microarray-based) and humans (mRNA-sequencing-based) and identified several common and tissue-specific subnetworks with functional significance, which were not detected by other methods. In humans we recapitulated the crosstalk between cell-cycle progression and cell-extracellular matrix interactions processes in ventricular zones during neocortex expansion and further, we uncovered pathways related to development of later cognitive functions in the cortical plate of the developing brain which were previously unappreciated. Analyses of seven rat tissues identified a multi-tissue subnetwork of co-expressed heat shock protein (Hsp) and cardiomyopathy genes (Bag3, Cryab, Kras, Emd, Plec), which was significantly replicated using separate failing heart and liver gene expression datasets in humans, thus revealing a conserved functional role for Hsp genes in cardiovascular disease.

  6. Mean field analysis of a spatial stochastic model of a gene regulatory network.

    PubMed

    Sturrock, M; Murray, P J; Matzavinos, A; Chaplain, M A J

    2015-10-01

    A gene regulatory network may be defined as a collection of DNA segments which interact with each other indirectly through their RNA and protein products. Such a network is said to contain a negative feedback loop if its products inhibit gene transcription, and a positive feedback loop if a gene product promotes its own production. Negative feedback loops can create oscillations in mRNA and protein levels while positive feedback loops are primarily responsible for signal amplification. It is often the case in real biological systems that both negative and positive feedback loops operate in parameter regimes that result in low copy numbers of gene products. In this paper we investigate the spatio-temporal dynamics of a single feedback loop in a eukaryotic cell. We first develop a simplified spatial stochastic model of a canonical feedback system (either positive or negative). Using a Gillespie's algorithm, we compute sample trajectories and analyse their corresponding statistics. We then derive a system of equations that describe the spatio-temporal evolution of the stochastic means. Subsequently, we examine the spatially homogeneous case and compare the results of numerical simulations with the spatially explicit case. Finally, using a combination of steady-state analysis and data clustering techniques, we explore model behaviour across a subregion of the parameter space that is difficult to access experimentally and compare the parameter landscape of our spatio-temporal and spatially-homogeneous models.

  7. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression.

    PubMed

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David's Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg's Hub Centrality and Bonacich's Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive behavioral characterization of group-living animals with the utilization of novel statistical methods to further our understanding of the neurobiological basis of social behavior at the individual, relationship and group levels.

  8. A Social Network Approach Reveals Associations between Mouse Social Dominance and Brain Gene Expression

    PubMed Central

    So, Nina; Franks, Becca; Lim, Sean; Curley, James P.

    2015-01-01

    Modelling complex social behavior in the laboratory is challenging and requires analyses of dyadic interactions occurring over time in a physically and socially complex environment. In the current study, we approached the analyses of complex social interactions in group-housed male CD1 mice living in a large vivarium. Intensive observations of social interactions during a 3-week period indicated that male mice form a highly linear and steep dominance hierarchy that is maintained by fighting and chasing behaviors. Individual animals were classified as dominant, sub-dominant or subordinate according to their David’s Scores and I& SI ranking. Using a novel dynamic temporal Glicko rating method, we ascertained that the dominance hierarchy was stable across time. Using social network analyses, we characterized the behavior of individuals within 66 unique relationships in the social group. We identified two individual network metrics, Kleinberg’s Hub Centrality and Bonacich’s Power Centrality, as accurate predictors of individual dominance and power. Comparing across behaviors, we establish that agonistic, grooming and sniffing social networks possess their own distinctive characteristics in terms of density, average path length, reciprocity out-degree centralization and out-closeness centralization. Though grooming ties between individuals were largely independent of other social networks, sniffing relationships were highly predictive of the directionality of agonistic relationships. Individual variation in dominance status was associated with brain gene expression, with more dominant individuals having higher levels of corticotropin releasing factor mRNA in the medial and central nuclei of the amygdala and the medial preoptic area of the hypothalamus, as well as higher levels of hippocampal glucocorticoid receptor and brain-derived neurotrophic factor mRNA. This study demonstrates the potential and significance of combining complex social housing and intensive behavioral characterization of group-living animals with the utilization of novel statistical methods to further our understanding of the neurobiological basis of social behavior at the individual, relationship and group levels. PMID:26226265

  9. SpirPro: A Spirulina proteome database and web-based tools for the analysis of protein-protein interactions at the metabolic level in Spirulina (Arthrospira) platensis C1.

    PubMed

    Senachak, Jittisak; Cheevadhanarak, Supapon; Hongsthong, Apiradee

    2015-07-29

    Spirulina (Arthrospira) platensis is the only cyanobacterium that in addition to being studied at the molecular level and subjected to gene manipulation, can also be mass cultivated in outdoor ponds for commercial use as a food supplement. Thus, encountering environmental changes, including temperature stresses, is common during the mass production of Spirulina. The use of cyanobacteria as an experimental platform, especially for photosynthetic gene manipulation in plants and bacteria, is becoming increasingly important. Understanding the mechanisms and protein-protein interaction networks that underlie low- and high-temperature responses is relevant to Spirulina mass production. To accomplish this goal, high-throughput techniques such as OMICs analyses are used. Thus, large datasets must be collected, managed and subjected to information extraction. Therefore, databases including (i) proteomic analysis and protein-protein interaction (PPI) data and (ii) domain/motif visualization tools are required for potential use in temperature response models for plant chloroplasts and photosynthetic bacteria. A web-based repository was developed including an embedded database, SpirPro, and tools for network visualization. Proteome data were analyzed integrated with protein-protein interactions and/or metabolic pathways from KEGG. The repository provides various information, ranging from raw data (2D-gel images) to associated results, such as data from interaction and/or pathway analyses. This integration allows in silico analyses of protein-protein interactions affected at the metabolic level and, particularly, analyses of interactions between and within the affected metabolic pathways under temperature stresses for comparative proteomic analysis. The developed tool, which is coded in HTML with CSS/JavaScript and depicted in Scalable Vector Graphics (SVG), is designed for interactive analysis and exploration of the constructed network. SpirPro is publicly available on the web at http://spirpro.sbi.kmutt.ac.th . SpirPro is an analysis platform containing an integrated proteome and PPI database that provides the most comprehensive data on this cyanobacterium at the systematic level. As an integrated database, SpirPro can be applied in various analyses, such as temperature stress response networking analysis in cyanobacterial models and interacting domain-domain analysis between proteins of interest.

  10. MONGKIE: an integrated tool for network analysis and visualization for multi-omics data.

    PubMed

    Jang, Yeongjun; Yu, Namhee; Seo, Jihae; Kim, Sun; Lee, Sanghyuk

    2016-03-18

    Network-based integrative analysis is a powerful technique for extracting biological insights from multilayered omics data such as somatic mutations, copy number variations, and gene expression data. However, integrated analysis of multi-omics data is quite complicated and can hardly be done in an automated way. Thus, a powerful interactive visual mining tool supporting diverse analysis algorithms for identification of driver genes and regulatory modules is much needed. Here, we present a software platform that integrates network visualization with omics data analysis tools seamlessly. The visualization unit supports various options for displaying multi-omics data as well as unique network models for describing sophisticated biological networks such as complex biomolecular reactions. In addition, we implemented diverse in-house algorithms for network analysis including network clustering and over-representation analysis. Novel functions include facile definition and optimized visualization of subgroups, comparison of a series of data sets in an identical network by data-to-visual mapping and subsequent overlaying function, and management of custom interaction networks. Utility of MONGKIE for network-based visual data mining of multi-omics data was demonstrated by analysis of the TCGA glioblastoma data. MONGKIE was developed in Java based on the NetBeans plugin architecture, thus being OS-independent with intrinsic support of module extension by third-party developers. We believe that MONGKIE would be a valuable addition to network analysis software by supporting many unique features and visualization options, especially for analysing multi-omics data sets in cancer and other diseases. .

  11. Treatment of obstructive sleep apnea alters cancer-associated transcriptional signatures in circulating leukocytes.

    PubMed

    Gharib, Sina A; Seiger, Ashley N; Hayes, Amanda L; Mehra, Reena; Patel, Sanjay R

    2014-04-01

    Obstructive sleep apnea (OSA) has been associated with a number of chronic disorders that may improve with effective therapy. However, the molecular pathways affected by continuous positive airway pressure (CPAP) treatment are largely unknown. We sought to assess the system-wide consequences of CPAP therapy by transcriptionally profiling peripheral blood leukocytes (PBLs). Subjects in whom severe OSA was diagnosed were treated with CPAP, and whole-genome expression measurement of PBLs was performed at baseline and following therapy. We used gene set enrichment analysis (GSEA) to identify pathways that were differentially enriched. Network analysis was then applied to highlight key drivers of processes influenced by CPAP. Eighteen subjects with significant OSA underwent CPAP therapy and microarray analysis of their PBLs. Treatment with CPAP improved apnea-hypopnea index (AHI), daytime sleepiness, and blood pressure, but did not affect anthropometric measures. GSEA revealed a number of enriched gene sets, many of which were involved in neoplastic processes and displayed downregulated expression patterns in response to CPAP. Network analysis identified several densely connected genes that are important modulators of cancer and tumor growth. Effective therapy of OSA with CPAP is associated with alterations in circulating leukocyte gene expression. Functional enrichment and network analyses highlighted transcriptional suppression in cancer-related pathways, suggesting potentially novel mechanisms linking OSA with neoplastic signatures.

  12. Genomics of the Effect of Spinal Cord Stimulation on an Animal Model of Neuropathic Pain.

    PubMed

    Vallejo, Ricardo; Tilley, Dana M; Cedeño, David L; Kelley, Courtney A; DeMaegd, Margaret; Benyamin, Ramsin

    2016-08-01

    Few studies have evaluated single-gene changes modulated by spinal cord stimulation (SCS), providing a narrow understanding of molecular changes. Genomics allows for a robust analysis of holistic gene changes in response to stimulation. Rats were randomized into six groups to determine the effect of continuous SCS in uninjured and spared-nerve injury (SNI) animals. After behavioral assessment, tissues from the dorsal quadrant of the spinal cord (SC) and dorsal root ganglion (DRG) underwent full-genome microarray analyses. Weighted Gene Correlation Network Analysis (WGCNA), and Gene Ontology (GO) analysis identified similar expression patterns, molecular functions and biological processes for significant genes. Microarray analyses reported 20,985 gene probes in SC and 19,104 in DRG. WGCNA sorted 7449 SC and 4275 DRG gene probes into 29 and 9 modules, respectively. WGCNA provided significant modules from paired comparisons of experimental groups. GO analyses reported significant biological processes influenced by injury, as well as the presence of an electric field. The genes Tlr2, Cxcl16, and Cd68 were used to further validate the microarray based on significant response to SCS in SNI animals. They were up-regulated in the SC while both Tlr2 and Cd68 were up-regulated in the DRG. The process described provides highly significant interconnected genes and pathways responsive to injury and/or electric field in the SC and DRG. Genes in the SC respond significantly to the SCS in both injured and uninjured animals, while those in the DRG significantly responded to injury, and SCS in injured animals. © 2016 International Neuromodulation Society.

  13. Circuit- and Diagnosis-Specific DNA Methylation Changes at γ-Aminobutyric Acid–Related Genes in Postmortem Human Hippocampus in Schizophrenia and Bipolar Disorder

    PubMed Central

    Ruzicka, W. Brad; Subburaju, Sivan; Benes, Francine M.

    2017-01-01

    IMPORTANCE Dysfunction related to γ-aminobutyric acid (GABA)–ergic neurotransmission in the pathophysiology of major psychosis has been well established by the work of multiple groups across several decades, including the widely replicated downregulation of GAD1. Prior gene expression and network analyses within the human hippocampus implicate a broader network of genes, termed the GAD1 regulatory network, in regulation of GAD1 expression. Several genes within this GAD1 regulatory network show diagnosis- and sector-specific expression changes within the circuitry of the hippocampus, influencing abnormal GAD1 expression in schizophrenia and bipolar disorder. OBJECTIVE To investigate the hypothesis that aberrant DNA methylation contributes to circuit- and diagnosis-specific abnormal expression of GAD1 regulatory network genes in psychotic illness. DESIGN, SETTING, AND PARTICIPANTS This epigenetic association study targeting GAD1 regulatory network genes was conducted between July 1, 2012, and June 30, 2014. Postmortem human hippocampus tissue samples were obtained from 8patients with schizophrenia, 8 patients with bipolar disorder, and 8 healthy control participants matched for age, sex, postmortem interval, and other potential confounds from the Harvard Brain Tissue Resource Center, McLean Hospital, Belmont,Massachusetts. We extracted DNA from laser-microdissected stratum oriens tissue of cornu ammonis 2/3 (CA2/3) and CA1 postmortem human hippocampus, bisulfite modified it, and assessed it with the Infinium HumanMethylation450 BeadChip (Illumina, Inc). The subset of CpG loci associated with GAD1 regulatory network genes was analyzed in R version 3.1.0 software (R Foundation) using the minfi package. Findings were validated using bisulfite pyrosequencing. MAIN OUTCOMES AND MEASURES Methylation levels at 1308 GAD1 regulatory network–associated CpG loci were assessed both as individual sites to identify differentially methylated positions and by sharing information among colocalized probes to identify differentially methylated regions. RESULTS A total of 146 differentially methylated positions with a false detection rate lower than 0.05 were identified across all 6 groups (2 circuit locations in each of 3 diagnostic categories), and 54 differentially methylated regions with P < .01 were identified in single-group comparisons. Methylation changes were enriched in MSX1, CCND2, and DAXX at specific loci within the hippocampus of patients with schizophrenia and bipolar disorder. CONCLUSIONS AND RELEVANCE This work demonstrates diagnosis- and circuit-specific DNA methylation changes at a subset of GAD1 regulatory network genes in the human hippocampus in schizophrenia and bipolar disorder. These genes participate in chromatin regulation and cell cycle control, supporting the concept that the established GABAergic dysfunction in these disorders is related to disruption of GABAergic interneuron physiology at specific circuit locations within the human hippocampus. PMID:25738424

  14. Genome-Wide Identification of Molecular Pathways and Biomarkers in Response to Arsenic Exposure in Zebrafish Liver

    PubMed Central

    Xu, Hongyan; Lam, Siew Hong; Shen, Yuan; Gong, Zhiyuan

    2013-01-01

    Inorganic arsenic is a worldwide metalloid pollutant in environment. Although extensive studies on arsenic-induced toxicity have been conducted using in vivo and in vitro models, the exact molecular mechanism of arsenate toxicity remains elusive. Here, the RNA-SAGE (serial analysis of gene expression) sequencing technology was used to analyse hepatic response to arsenic exposure at the transcriptome level. Based on more than 12 million SAGE tags mapped to zebrafish genes, 1,444 differentially expressed genes (750 up-regulated and 694 down-regulated) were identified from a relatively abundant transcripts (>10 TPM [transcripts per million]) based on minimal two-fold change. By gene ontology analyses, these differentially expressed genes were significantly enriched in several major biological processes including oxidation reduction, translation, iron ion transport, cell redox, homeostasis, etc. Accordingly, the main pathways disturbed include metabolic pathways, proteasome, oxidative phosphorylation, cancer, etc. Ingenity Pathway Analysis further revealed a network with four important upstream factors or hub genes, including Jun, Kras, APoE and Nr2f2. The network indicated apparent molecular events involved in oxidative stress, carcinogenesis, and metabolism. In order to identify potential biomarker genes for arsenic exposure, 27 out of 29 up-regulated transcripts were validated by RT-qPCR analysis in pooled RNA samples. Among these, 14 transcripts were further confirmed for up-regulation by a lower dosage of arsenic in majority of individual zebrafish. Finally, at least four of these genes, frh3 (ferrintin H3), mgst1 (microsomal glutathione S-transferase-like), cmbl (carboxymethylenebutenolidase homolog) and slc40a1 (solute carrier family 40 [iron-regulated transporter], member 1) could be confirmed in individual medaka fish similarly treated by arsenic; thus, these four genes might be robust arsenic biomarkers across species. Thus, our work represents the first comprehensive investigation of molecular mechanism of asenic toxicity and genome-wide search for potential biomarkers for arsenic exposure. PMID:23922661

  15. Discovering Implicit Entity Relation with the Gene-Citation-Gene Network

    PubMed Central

    Song, Min; Han, Nam-Gi; Kim, Yong-Hwan; Ding, Ying; Chambers, Tamy

    2013-01-01

    In this paper, we apply the entitymetrics model to our constructed Gene-Citation-Gene (GCG) network. Based on the premise there is a hidden, but plausible, relationship between an entity in one article and an entity in its citing article, we constructed a GCG network of gene pairs implicitly connected through citation. We compare the performance of this GCG network to a gene-gene (GG) network constructed over the same corpus but which uses gene pairs explicitly connected through traditional co-occurrence. Using 331,411 MEDLINE abstracts collected from 18,323 seed articles and their references, we identify 25 gene pairs. A comparison of these pairs with interactions found in BioGRID reveal that 96% of the gene pairs in the GCG network have known interactions. We measure network performance using degree, weighted degree, closeness, betweenness centrality and PageRank. Combining all measures, we find the GCG network has more gene pairs, but a lower matching rate than the GG network. However, combining top ranked genes in both networks produces a matching rate of 35.53%. By visualizing both the GG and GCG networks, we find that cancer is the most dominant disease associated with the genes in both networks. Overall, the study indicates that the GCG network can be useful for detecting gene interaction in an implicit manner. PMID:24358368

  16. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing.

    PubMed

    Gao, Shuai; Yan, Liying; Wang, Rui; Li, Jingyun; Yong, Jun; Zhou, Xin; Wei, Yuan; Wu, Xinglong; Wang, Xiaoye; Fan, Xiaoying; Yan, Jie; Zhi, Xu; Gao, Yun; Guo, Hongshan; Jin, Xiao; Wang, Wendong; Mao, Yunuo; Wang, Fengchao; Wen, Lu; Fu, Wei; Ge, Hao; Qiao, Jie; Tang, Fuchou

    2018-06-01

    The development of the digestive tract is critical for proper food digestion and nutrient absorption. Here, we analyse the main organs of the digestive tract, including the oesophagus, stomach, small intestine and large intestine, from human embryos between 6 and 25 weeks of gestation as well as the large intestine from adults using single-cell RNA-seq analyses. In total, 5,227 individual cells are analysed and 40 cell types clearly identified. Their crucial biological features, including developmental processes, signalling pathways, cell cycle, nutrient digestion and absorption metabolism, and transcription factor networks, are systematically revealed. Moreover, the differentiation and maturation processes of the large intestine are thoroughly investigated by comparing the corresponding transcriptome profiles between embryonic and adult stages. Our work offers a rich resource for investigating the gene regulation networks of the human fetal digestive tract and adult large intestine at single-cell resolution.

  17. Therapeutic effects of Euphorbia Pekinensis and Glycyrrhiza glabra on Hepatocellular Carcinoma Ascites Partially Via Regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 Signal Axis

    PubMed Central

    Zhang, Yanqiong; Yan, Chen; Li, Yuting; Mao, Xia; Tao, Weiwei; Tang, Yuping; Lin, Ya; Guo, Qiuyan; Duan, Jingao; Lin, Na

    2017-01-01

    To clarify unknown rationalities of herbaceous compatibility of Euphorbia Pekinensis (DJ) and Glycyrrhiza glabra (GC) acting on hepatocellular carcinoma (HCC) ascites, peritoneum transcriptomics profiling of 15 subjects, including normal control (Con), HCC ascites mouse model (Mod), DJ-alone, DJ/GC-synergy and DJ/GC-antagonism treatment groups were performed on OneArray platform, followed by differentially expressed genes (DEGs) screening. DEGs between Mod and Con groups were considered as HCC ascites-related genes, and those among different drug treatment and Mod groups were identified as DJ/GC-combination-related genes. Then, an interaction network of HCC ascites-related gene-DJ/GC combination-related gene-known therapeutic target gene for ascites was constructed. Based on nodes’ degree, closeness, betweenness and k-coreness, the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis with highly network topological importance was demonstrated to be a candidate target of DJ/GC combination acting on HCC ascites. Importantly, both qPCR and western blot analyses verified this regulatory effects based on HCC ascites mice in vivo and M-1 collecting duct cells in vitro. Collectively, different combination designs of DJ and GC may lead to synergistic or antagonistic effects on HCC ascites partially via regulating the Frk-Arhgdib-Inpp5d-Avpr2-Aqp4 axis, implying that global gene expression profiling combined with network analysis can offer an effective way to understand pharmacological mechanisms of traditional Chinese medicine prescriptions. PMID:28165501

  18. Genome-Wide Analysis of the Complex Transcriptional Networks of Rice Developing Seeds

    PubMed Central

    Xue, Liang-Jiao; Zhang, Jing-Jing; Xue, Hong-Wei

    2012-01-01

    Background The development of rice (Oryza sativa) seed is closely associated with assimilates storage and plant yield, and is fine controlled by complex regulatory networks. Exhaustive transcriptome analysis of developing rice embryo and endosperm will help to characterize the genes possibly involved in the regulation of seed development and provide clues of yield and quality improvement. Principal Findings Our analysis showed that genes involved in metabolism regulation, hormone response and cellular organization processes are predominantly expressed during rice development. Interestingly, 191 transcription factor (TF)-encoding genes are predominantly expressed in seed and 59 TFs are regulated during seed development, some of which are homologs of seed-specific TFs or regulators of Arabidopsis seed development. Gene co-expression network analysis showed these TFs associated with multiple cellular and metabolism pathways, indicating a complex regulation of rice seed development. Further, by employing a cold-resistant cultivar Hanfeng (HF), genome-wide analyses of seed transcriptome at normal and low temperature reveal that rice seed is sensitive to low temperature at early stage and many genes associated with seed development are down-regulated by low temperature, indicating that the delayed development of rice seed by low temperature is mainly caused by the inhibition of the development-related genes. The transcriptional response of seed and seedling to low temperature is different, and the differential expressions of genes in signaling and metabolism pathways may contribute to the chilling tolerance of HF during seed development. Conclusions These results provide informative clues and will significantly improve the understanding of rice seed development regulation and the mechanism of cold response in rice seed. PMID:22363552

  19. Simple Shared Motifs (SSM) in conserved region of promoters: a new approach to identify co-regulation patterns.

    PubMed

    Gruel, Jérémy; LeBorgne, Michel; LeMeur, Nolwenn; Théret, Nathalie

    2011-09-12

    Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the dynamics of transcription remains a challenging task. A host of computational approaches have been developed to identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites. Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly improved these methods. Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM), groups of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are over-represented in specific biological categories (Ontology and Pathways) and are enriched in co-expressed genes. Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have increased SSM values. Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution to provide a clearer definition of expression networks.

  20. Simple Shared Motifs (SSM) in conserved region of promoters: a new approach to identify co-regulation patterns

    PubMed Central

    2011-01-01

    Background Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the dynamics of transcription remains a challenging task. A host of computational approaches have been developed to identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites. Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly improved these methods. Results Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM), groups of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are over-represented in specific biological categories (Ontology and Pathways) and are enriched in co-expressed genes. Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have increased SSM values. Conclusions Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution to provide a clearer definition of expression networks. PMID:21910886

  1. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer

    PubMed Central

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  2. Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse

    PubMed Central

    Xie, Zhihui; Li, Jing; Baker, Jonathan; Eagleson, Kathie L.; Coba, Marcelo P.; Levitt, Pat

    2016-01-01

    Background Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. Methods Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays (PLA) in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. Results Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1 and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism, but not schizophrenia, bipolar disorder, major depressive disorder or attentional deficit hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices, but not with highly expressed genes that are not in the interactome. PLA and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. Conclusions The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs. PMID:27086544

  3. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis.

    PubMed

    Taroni, Jaclyn N; Greene, Casey S; Martyanov, Viktor; Wood, Tammara A; Christmann, Romy B; Farber, Harrison W; Lafyatis, Robert A; Denton, Christopher P; Hinchcliff, Monique E; Pioli, Patricia A; Mahoney, J Matthew; Whitfield, Michael L

    2017-03-23

    Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. We identified a common pathogenic gene expression signature-an immune-fibrotic axis-indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an "inflammatory" SSc gene expression signature. Our results suggest that the innate immune system is central to SSc disease processes but that subtle distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and tissue-specific disease processes in complex human diseases.

  4. Transcriptomics of mRNA and egg quality in farmed fish: Some recent developments and future directions.

    PubMed

    Sullivan, Craig V; Chapman, Robert W; Reading, Benjamin J; Anderson, Paul E

    2015-09-15

    Maternal mRNA transcripts deposited in growing oocytes regulate early development and are under intensive investigation as determinants of egg quality. The research has evolved from single gene studies to microarray and now RNA-Seq analyses in which mRNA expression by virtually every gene can be assessed and related to gamete quality. Such studies have mainly focused on genes changing two- to several-fold in expression between biological states, and have identified scores of candidate genes and a few gene networks whose functioning is related to successful development. However, ever-increasing yields of information from high throughput methods for detecting transcript abundance have far outpaced progress in methods for analyzing the massive quantities of gene expression data, and especially for meaningful relation of whole transcriptome profiles to gamete quality. We have developed a new approach to this problem employing artificial neural networks and supervised machine learning with other novel bioinformatics procedures to discover a previously unknown level of ovarian transcriptome function at which minute changes in expression of a few hundred genes is highly predictive of egg quality. In this paper, we briefly review the progress in transcriptomics of fish egg quality and discuss some future directions for this field of study. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Pluripotency and lineages in the mammalian blastocyst: an evolutionary view.

    PubMed

    Cañon, Susana; Fernandez-Tresguerres, Beatriz; Manzanares, Miguel

    2011-06-01

    Early mammalian development is characterized by a highly specific stage, the blastocyst, by which embryonic and extraembryonic lineages have been determined, but pattern formation has not yet begun. The blastocyst is also of interest because cell precursors of the embryo proper retain for a certain time the capability to generate all the cell types of the adult animal. This embryonic pluripotency is established and maintained by a regulatory network under the control of a small set of transcription factors, comprising Oct4, Sox2 and Nanog. This network is largely conserved in eutherian mammals, but there is scarce information about how it arose in vertebrates. We have analysed the conservation of gene regulatory networks controlling blastocyst lineages and pluripotency in the mouse by comparison with the chick. We found that few of elements of the network are novel to mammals; rather, most of them were present before the separation of the mammalian lineage from other amniotes, but acquired novel expression domains during early mammalian development. Our results strongly support the hypothesis that mammalian blastocyst regulatory networks evolved through rewiring of pre-existing components, involving the co-option and duplication of existing genes and the establishment of new regulatory interactions among them.

  6. Genome-wide network-based pathway analysis of CSF t-tau/Aβ1-42 ratio in the ADNI cohort.

    PubMed

    Cong, Wang; Meng, Xianglian; Li, Jin; Zhang, Qiushi; Chen, Feng; Liu, Wenjie; Wang, Ying; Cheng, Sipu; Yao, Xiaohui; Yan, Jingwen; Kim, Sungeun; Saykin, Andrew J; Liang, Hong; Shen, Li

    2017-05-30

    The cerebrospinal fluid (CSF) levels of total tau (t-tau) and Aβ 1-42 are potential early diagnostic markers for probable Alzheimer's disease (AD). The influence of genetic variation on these CSF biomarkers has been investigated in candidate or genome-wide association studies (GWAS). However, the investigation of statistically modest associations in GWAS in the context of biological networks is still an under-explored topic in AD studies. The main objective of this study is to gain further biological insights via the integration of statistical gene associations in AD with physical protein interaction networks. The CSF and genotyping data of 843 study subjects (199 CN, 85 SMC, 239 EMCI, 207 LMCI, 113 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed. PLINK was used to perform GWAS on the t-tau/Aβ 1-42 ratio using quality controlled genotype data, including 563,980 single nucleotide polymorphisms (SNPs), with age, sex and diagnosis as covariates. Gene-level p-values were obtained by VEGAS2. Genes with p-value ≤ 0.05 were mapped on to a protein-protein interaction (PPI) network (9,617 nodes, 39,240 edges, from the HPRD Database). We integrated a consensus model strategy into the iPINBPA network analysis framework, and named it as CM-iPINBPA. Four consensus modules (CMs) were discovered by CM-iPINBPA, and were functionally annotated using the pathway analysis tool Enrichr. The intersection of four CMs forms a common subnetwork of 29 genes, including those related to tau phosphorylation (GSK3B, SUMO1, AKAP5, CALM1 and DLG4), amyloid beta production (CASP8, PIK3R1, PPA1, PARP1, CSNK2A1, NGFR, and RHOA), and AD (BCL3, CFLAR, SMAD1, and HIF1A). This study coupled a consensus module (CM) strategy with the iPINBPA network analysis framework, and applied it to the GWAS of CSF t-tau/Aβ1-42 ratio in an AD study. The genome-wide network analysis yielded 4 enriched CMs that share not only genes related to tau phosphorylation or amyloid beta production but also multiple genes enriching several KEGG pathways such as Alzheimer's disease, colorectal cancer, gliomas, renal cell carcinoma, Huntington's disease, and others. This study demonstrated that integration of gene-level associations with CMs could yield statistically significant findings to offer valuable biological insights (e.g., functional interaction among the protein products of these genes) and suggest high confidence candidates for subsequent analyses.

  7. Gene expression atlas of pigeonpea and its application to gain insights into genes associated with pollen fertility implicated in seed formation

    PubMed Central

    Pazhamala, Lekha T.; Purohit, Shilp; Saxena, Rachit K.; Garg, Vanika; Krishnamurthy, L.; Verdier, Jerome

    2017-01-01

    Abstract Pigeonpea (Cajanus cajan) is an important grain legume of the semi-arid tropics, mainly used for its protein rich seeds. To link the genome sequence information with agronomic traits resulting from specific developmental processes, a Cajanus cajan gene expression atlas (CcGEA) was developed using the Asha genotype. Thirty tissues/organs representing developmental stages from germination to senescence were used to generate 590.84 million paired-end RNA-Seq data. The CcGEA revealed a compendium of 28 793 genes with differential, specific, spatio-temporal and constitutive expression during various stages of development in different tissues. As an example to demonstrate the application of the CcGEA, a network of 28 flower-related genes analysed for cis-regulatory elements and splicing variants has been identified. In addition, expression analysis of these candidate genes in male sterile and male fertile genotypes suggested their critical role in normal pollen development leading to seed formation. Gene network analysis also identified two regulatory genes, a pollen-specific SF3 and a sucrose–proton symporter, that could have implications for improvement of agronomic traits such as seed production and yield. In conclusion, the CcGEA provides a valuable resource for pigeonpea to identify candidate genes involved in specific developmental processes and to understand the well-orchestrated growth and developmental process in this resilient crop. PMID:28338822

  8. An ANOVA approach for statistical comparisons of brain networks.

    PubMed

    Fraiman, Daniel; Fraiman, Ricardo

    2018-03-16

    The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.

  9. Muscle myeloid type I interferon gene expression may predict therapeutic responses to rituximab in myositis patients

    PubMed Central

    Nagaraju, Kanneboyina; Ghimbovschi, Svetlana; Rayavarapu, Sree; Phadke, Aditi; Rider, Lisa G.; Hoffman, Eric P.

    2016-01-01

    Abstract Objective. To identify muscle gene expression patterns that predict rituximab responses and assess the effects of rituximab on muscle gene expression in PM and DM. Methods. In an attempt to understand the molecular mechanism of response and non-response to rituximab therapy, we performed Affymetrix gene expression array analyses on muscle biopsy specimens taken before and after rituximab therapy from eight PM and two DM patients in the Rituximab in Myositis study. We also analysed selected muscle-infiltrating cell phenotypes in these biopsies by immunohistochemical staining. Partek and Ingenuity pathway analyses assessed the gene pathways and networks. Results. Myeloid type I IFN signature genes were expressed at higher levels at baseline in the skeletal muscle of rituximab responders than in non-responders, whereas classic non-myeloid IFN signature genes were expressed at higher levels in non-responders at baseline. Also, rituximab responders have a greater reduction of the myeloid and non-myeloid type I IFN signatures than non-responders. The decrease in the type I IFN signature following administration of rituximab may be associated with the decreases in muscle-infiltrating CD19 + B cells and CD68 + macrophages in responders. Conclusion. Our findings suggest that high levels of myeloid type I IFN gene expression in skeletal muscle predict responses to rituximab in PM/DM and that rituximab responders also have a greater decrease in the expression of these genes. These data add further evidence to recent studies defining the type I IFN signature as both a predictor of therapeutic responses and a biomarker of myositis disease activity. PMID:27215813

  10. Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.

    PubMed

    Crombach, Anton; Cicin-Sain, Damjan; Wotton, Karl R; Jaeger, Johannes

    2012-01-01

    Understanding the function and evolution of developmental regulatory networks requires the characterisation and quantification of spatio-temporal gene expression patterns across a range of systems and species. However, most high-throughput methods to measure the dynamics of gene expression do not preserve the detailed spatial information needed in this context. For this reason, quantification methods based on image bioinformatics have become increasingly important over the past few years. Most available approaches in this field either focus on the detailed and accurate quantification of a small set of gene expression patterns, or attempt high-throughput analysis of spatial expression through binary pattern extraction and large-scale analysis of the resulting datasets. Here we present a robust, "medium-throughput" pipeline to process in situ hybridisation patterns from embryos of different species of flies. It bridges the gap between high-resolution, and high-throughput image processing methods, enabling us to quantify graded expression patterns along the antero-posterior axis of the embryo in an efficient and straightforward manner. Our method is based on a robust enzymatic (colorimetric) in situ hybridisation protocol and rapid data acquisition through wide-field microscopy. Data processing consists of image segmentation, profile extraction, and determination of expression domain boundary positions using a spline approximation. It results in sets of measured boundaries sorted by gene and developmental time point, which are analysed in terms of expression variability or spatio-temporal dynamics. Our method yields integrated time series of spatial gene expression, which can be used to reverse-engineer developmental gene regulatory networks across species. It is easily adaptable to other processes and species, enabling the in silico reconstitution of gene regulatory networks in a wide range of developmental contexts.

  11. Immunological network analysis in HPV associated head and neck squamous cancer and implications for disease prognosis.

    PubMed

    Chen, Xiaohang; Yan, Bingqing; Lou, Huihuang; Shen, Zhenji; Tong, Fangjia; Zhai, Aixia; Wei, Lanlan; Zhang, Fengmin

    2018-04-01

    Human papillomavirus-positive (HPV+) head and neck squamous cell cancer (HNSCC) exhibits a better prognosis than HPV-negative (HPV-) HNSCC. This difference may in part be due to enhanced immune activation in the HPV+ HNSCC tumor microenvironment. To characterize differences in immune activation between HPV+ and HPV- HNSCC tumors, we identified and annotated differentially expressed genes based upon mRNA expression data from The Cancer Genome Atlas (TCGA). Immune network between immune cells and cytokines was constructed by using single sample Gene Set Enrichment Analysis and conditional mutual information. Multivariate Cox regression analysis was used to determine the prognostic value of immune microenvironment characterization. A total of 1673 differentially expressed genes were functionally annotated. We found that genes upregulated in HPV+ HNSCC are enriched in immune-associated processes. And the up-regulated gene sets were validated by Gene Set Enrichment Analysis. The microenvironment of HPV+ HNSCC exhibited greater numbers of infiltrating B and T cells and fewer neutrophils than HPV- HNSCC. These findings were validated by two independent datasets in the Gene Expression Omnibus (GEO) database. Further analyses of T cell subtypes revealed that cytotoxic T cell subtypes predominated in HPV+ HNSCC. In addition, the ratio of M1/M2 macrophages was much higher in HPV+ HNSCC. The infiltration of these immune cells was correlated with differentially expressed cytokine-associated genes. Enhanced infiltration of B cells and CD8+ T cells were identified as independent protective factors, while high neutrophil infiltration was a risk enhancing factor for HPV+ HNSCC patients. A schematic model of immunological network was established for HPV+ HNSCC to summarize our findings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence.

    PubMed

    Balazadeh, Salma; Siddiqui, Hamad; Allu, Annapurna D; Matallana-Ramirez, Lilian P; Caldana, Camila; Mehrnia, Mohammad; Zanor, Maria-Inés; Köhler, Barbara; Mueller-Roeber, Bernd

    2010-04-01

    The onset and progression of senescence are under genetic and environmental control. The Arabidopsis thaliana NAC transcription factor ANAC092 (also called AtNAC2 and ORE1) has recently been shown to control age-dependent senescence, but its mode of action has not been analysed yet. To explore the regulatory network administered by ANAC092 we performed microarray-based expression profiling using estradiol-inducible ANAC092 overexpression lines. Approximately 46% of the 170 genes up-regulated upon ANAC092 induction are known senescence-associated genes, suggesting that the NAC factor exerts its role in senescence through a regulatory network that includes many of the genes previously reported to be senescence regulated. We selected 39 candidate genes and confirmed their time-dependent response to enhanced ANAC092 expression by quantitative RT-PCR. We also found that the majority of them (24 genes) are up-regulated by salt stress, a major promoter of plant senescence, in a manner similar to that of ANAC092, which itself is salt responsive. Furthermore, 24 genes like ANAC092 turned out to be stage-dependently expressed during seed growth with low expression at early and elevated expression at late stages of seed development. Disruption of ANAC092 increased the rate of seed germination under saline conditions, whereas the opposite occurred in respective overexpression plants. We also detected a delay of salinity-induced chlorophyll loss in detached anac092-1 mutant leaves. Promoter-reporter (GUS) studies revealed transcriptional control of ANAC092 expression during leaf and flower ageing and in response to salt stress. We conclude that ANAC092 exerts its functions during senescence and seed germination through partly overlapping target gene sets.

  13. The gene expression profile of resistant and susceptible Bombyx mori strains reveals cypovirus-associated variations in host gene transcript levels.

    PubMed

    Guo, Rui; Wang, Simei; Xue, Renyu; Cao, Guangli; Hu, Xiaolong; Huang, Moli; Zhang, Yangqi; Lu, Yahong; Zhu, Liyuan; Chen, Fei; Liang, Zi; Kuang, Sulan; Gong, Chengliang

    2015-06-01

    High-throughput paired-end RNA sequencing (RNA-Seq) was performed to investigate the gene expression profile of a susceptible Bombyx mori strain, Lan5, and a resistant B. mori strain, Ou17, which were both orally infected with B. mori cypovirus (BmCPV) in the midgut. There were 330 and 218 up-regulated genes, while there were 147 and 260 down-regulated genes in the Lan5 and Ou17 strains, respectively. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment for differentially expressed genes (DEGs) were carried out. Moreover, gene interaction network (STRING) analyses were performed to analyze the relationships among the shared DEGs. Some of these genes were related and formed a large network, in which the genes for B. mori cuticular protein RR-2 motif 123 (BmCPR123) and the gene for B. mori DNA replication licensing factor Mcm2-like (BmMCM2) were key genes among the common up-regulated DEGs, whereas the gene for B. mori heat shock protein 20.1 (Bmhsp20.1) was the central gene among the shared down-regulated DEGs between Lan5 vs Lan5-CPV and Ou17 vs Ou17-CPV. These findings established a comprehensive database of genes that are differentially expressed in response to BmCPV infection between silkworm strains that differed in resistance to BmCPV and implied that these DEGs might be involved in B. mori immune responses against BmCPV infection.

  14. Identification of Crowding Stress Tolerance Co-Expression Networks Involved in Sweet Corn Yield

    PubMed Central

    Choe, Eunsoo; Drnevich, Jenny; Williams, Martin M.

    2016-01-01

    Tolerance to crowding stress has played a crucial role in improving agronomic productivity in field corn; however, commercial sweet corn hybrids vary greatly in crowding stress tolerance. The objectives were to 1) explore transcriptional changes among sweet corn hybrids with differential yield under crowding stress, 2) identify relationships between phenotypic responses and gene expression patterns, and 3) identify groups of genes associated with yield and crowding stress tolerance. Under conditions of crowding stress, three high-yielding and three low-yielding sweet corn hybrids were grouped for transcriptional and phenotypic analyses. Transcriptional analyses identified from 372 to 859 common differentially expressed genes (DEGs) for each hybrid. Large gene expression pattern variation among hybrids and only 26 common DEGs across all hybrid comparisons were identified, suggesting each hybrid has a unique response to crowding stress. Over-represented biological functions of DEGs also differed among hybrids. Strong correlation was observed between: 1) modules with up-regulation in high-yielding hybrids and yield traits, and 2) modules with up-regulation in low-yielding hybrids and plant/ear traits. Modules linked with yield traits may be important crowding stress response mechanisms influencing crop yield. Functional analysis of the modules and common DEGs identified candidate crowding stress tolerant processes in photosynthesis, glycolysis, cell wall, carbohydrate/nitrogen metabolic process, chromatin, and transcription regulation. Moreover, these biological functions were greatly inter-connected, indicating the importance of improving the mechanisms as a network. PMID:26796516

  15. Genetic divergence in populations of Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis, in Ecuador and Peru.

    PubMed

    Kato, Hirotomo; Cáceres, Abraham G; Gomez, Eduardo A; Mimori, Tatsuyuki; Uezato, Hiroshi; Hashiguchi, Yoshihisa

    2015-01-01

    Haplotype and gene network analyses were performed on mitochondrial cytochrome oxidase I and cytochrome b gene sequences of Lutzomyia (Lu.) ayacuchensis populations from Andean areas of Ecuador and southern Peru where the sand fly species transmit Leishmania (Leishmania) mexicana and Leishmania (Viannia) peruviana, respectively, and populations from the northern Peruvian Andes, for which transmission of Leishmania by Lu. ayacuchensis has not been reported. The haplotype analyses showed higher intrapopulation genetic divergence in northern Peruvian Andes populations and less divergence in the southern Peru and Ecuador populations, suggesting that a population bottleneck occurred in the latter populations, but not in former ones. Importantly, both haplotype and phylogenetic analyses showed that populations from Ecuador consisted of clearly distinct clusters from southern Peru, and the two populations were separated from those of northern Peru. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  16. Genome-Wide Transcriptome Analyses of Silicon Metabolism in Phaeodactylum tricornutum Reveal the Multilevel Regulation of Silicic Acid Transporters

    PubMed Central

    Sapriel, Guillaume; Quinet, Michelle; Heijde, Marc; Jourdren, Laurent; Tanty, Véronique; Luo, Guangzuo; Le Crom, Stéphane; Lopez, Pascal Jean

    2009-01-01

    Background Diatoms are largely responsible for production of biogenic silica in the global ocean. However, in surface seawater, Si(OH)4 can be a major limiting factor for diatom productivity. Analyzing at the global scale the genes networks involved in Si transport and metabolism is critical in order to elucidate Si biomineralization, and to understand diatoms contribution to biogeochemical cycles. Methodology/Principal Findings Using whole genome expression analyses we evaluated the transcriptional response to Si availability for the model species Phaeodactylum tricornutum. Among the differentially regulated genes we found genes involved in glutamine-nitrogen pathways, encoding putative extracellular matrix components, or involved in iron regulation. Some of these compounds may be good candidates for intracellular intermediates involved in silicic acid storage and/or intracellular transport, which are very important processes that remain mysterious in diatoms. Expression analyses and localization studies gave the first picture of the spatial distribution of a silicic acid transporter in a diatom model species, and support the existence of transcriptional and post-transcriptional regulations. Conclusions/Significance Our global analyses revealed that about one fourth of the differentially expressed genes are organized in clusters, underlying a possible evolution of P. tricornutum genome, and perhaps other pennate diatoms, toward a better optimization of its response to variable environmental stimuli. High fitness and adaptation of diatoms to various Si levels in marine environments might arise in part by global regulations from gene (expression level) to genomic (organization in clusters, dosage compensation by gene duplication), and by post-transcriptional regulation and spatial distribution of SIT proteins. PMID:19829693

  17. Differential Retention of Gene Functions in a Secondary Metabolite Cluster.

    PubMed

    Reynolds, Hannah T; Slot, Jason C; Divon, Hege H; Lysøe, Erik; Proctor, Robert H; Brown, Daren W

    2017-08-01

    In fungi, distribution of secondary metabolite (SM) gene clusters is often associated with host- or environment-specific benefits provided by SMs. In the plant pathogen Alternaria brassicicola (Dothideomycetes), the DEP cluster confers an ability to synthesize the SM depudecin, a histone deacetylase inhibitor that contributes weakly to virulence. The DEP cluster includes genes encoding enzymes, a transporter, and a transcription regulator. We investigated the distribution and evolution of the DEP cluster in 585 fungal genomes and found a wide but sporadic distribution among Dothideomycetes, Sordariomycetes, and Eurotiomycetes. We confirmed DEP gene expression and depudecin production in one fungus, Fusarium langsethiae. Phylogenetic analyses suggested 6-10 horizontal gene transfers (HGTs) of the cluster, including a transfer that led to the presence of closely related cluster homologs in Alternaria and Fusarium. The analyses also indicated that HGTs were frequently followed by loss/pseudogenization of one or more DEP genes. Independent cluster inactivation was inferred in at least four fungal classes. Analyses of transitions among functional, pseudogenized, and absent states of DEP genes among Fusarium species suggest enzyme-encoding genes are lost at higher rates than the transporter (DEP3) and regulatory (DEP6) genes. The phenotype of an experimentally-induced DEP3 mutant of Fusarium did not support the hypothesis that selective retention of DEP3 and DEP6 protects fungi from exogenous depudecin. Together, the results suggest that HGT and gene loss have contributed significantly to DEP cluster distribution, and that some DEP genes provide a greater fitness benefit possibly due to a differential tendency to form network connections. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.

  18. A co-expression gene network associated with developmental regulation of apple fruit acidity.

    PubMed

    Bai, Yang; Dougherty, Laura; Cheng, Lailiang; Xu, Kenong

    2015-08-01

    Apple fruit acidity, which affects the fruit's overall taste and flavor to a large extent, is primarily determined by the concentration of malic acid. Previous studies demonstrated that the major QTL malic acid (Ma) on chromosome 16 is largely responsible for fruit acidity variations in apple. Recent advances suggested that a natural mutation that gives rise to a premature stop codon in one of the two aluminum-activated malate transporter (ALMT)-like genes (called Ma1) is the genetic causal element underlying Ma. However, the natural mutation does not explain the developmental changes of fruit malate levels in a given genotype. Using RNA-seq data from the fruit of 'Golden Delicious' taken at 14 developmental stages from 1 week after full-bloom (WAF01) to harvest (WAF20), we characterized their transcriptomes in groups of high (12.2 ± 1.6 mg/g fw, WAF03-WAF08), mid (7.4 ± 0.5 mg/g fw, WAF01-WAF02 and WAF10-WAF14) and low (5.4 ± 0.4 mg/g fw, WAF16-WAF20) malate concentrations. Detailed analyses showed that a set of 3,066 genes (including Ma1) were expressed not only differentially (P FDR < 0.05) between the high and low malate groups (or between the early and late developmental stages) but also in significant (P < 0.05) correlation with malate concentrations. The 3,066 genes fell in 648 MapMan (sub-) bins or functional classes, and 19 of them were significantly (P FDR < 0.05) co-enriched or co-suppressed in a malate dependent manner. Network inferring using the 363 genes encompassed in the 19 (sub-) bins, identified a major co-expression network of 239 genes. Since the 239 genes were also differentially expressed between the early (WAF03-WAF08) and late (WAF16-WAF20) developmental stages, the major network was considered to be associated with developmental regulation of apple fruit acidity in 'Golden Delicious'.

  19. Architecture of the human interactome defines protein communities and disease networks

    PubMed Central

    Huttlin, Edward L.; Bruckner, Raphael J.; Paulo, Joao A.; Cannon, Joe R.; Ting, Lily; Baltier, Kurt; Colby, Greg; Gebreab, Fana; Gygi, Melanie P.; Parzen, Hannah; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Pontano-Vaites, Laura; Swarup, Sharan; White, Anne E.; Schweppe, Devin K.; Rad, Ramin; Erickson, Brian K.; Obar, Robert A.; Guruharsha, K.G.; Li, Kejie; Artavanis-Tsakonas, Spyros; Gygi, Steven P.; Harper, J. Wade

    2017-01-01

    The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidation of how genome variation contributes to disease1–3. Here, we present BioPlex 2.0 (Biophysical Interactions of ORFEOME-derived complexes), which employs robust affinity purification-mass spectrometry (AP-MS) methodology4 to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein coding genes from the human genome, and constitutes the largest such network to date. With >56,000 candidate interactions, BioPlex 2.0 contains >29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering (MCL)5 of interacting proteins identified more than 1300 protein communities representing diverse cellular activities. Genes essential for cell fitness6,7 are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization. PMID:28514442

  20. Loss of delta catenin function in severe autism

    PubMed Central

    Turner, Tychele N.; Sharma, Kamal; Oh, Edwin C.; Liu, Yangfan P.; Collins, Ryan L.; Sosa, Maria X.; Auer, Dallas R.; Brand, Harrison; Sanders, Stephan J.; Moreno-De-Luca, Daniel; Pihur, Vasyl; Plona, Teri; Pike, Kristen; Soppet, Daniel R.; Smith, Michael W.; Cheung, Sau Wai; Martin, Christa Lese; State, Matthew W.; Talkowski, Michael E.; Cook, Edwin; Huganir, Richard; Katsanis, Nicholas; Chakravarti, Aravinda

    2015-01-01

    SUMMARY Autism is a multifactorial neurodevelopmental disorder affecting more males than females; consequently, under a multifactorial genetic hypothesis, females are affected only when they cross a higher biological threshold. We hypothesize that deleterious variants at conserved residues are enriched in severely affected patients arising from FEMFs (female-enriched multiplex families) with severe disease, enhancing the detection of key autism genes in modest numbers of cases. We show the utility of this strategy by identifying missense and dosage sequence variants in the gene encoding the adhesive junction-associated delta catenin protein (CTNND2) in FEMFs and demonstrating their loss-of-function effect by functional analyses in zebrafish embryos and cultured hippocampal neurons from wildtype and Ctnnd2 null mouse embryos. Finally, through gene expression and network analyses, we highlight a critical role for CTNND2 in neuronal development and an intimate connection to chromatin biology. Our data contribute to the understanding of the genetic architecture of autism and suggest that genetic analyses of phenotypic extremes, such as FEMFs, are of innate value in multifactorial disorders. PMID:25807484

  1. ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism.

    PubMed

    Ke, Tao; Yu, Jingyin; Dong, Caihua; Mao, Han; Hua, Wei; Liu, Shengyi

    2015-01-21

    Oil crop seeds are important sources of fatty acids (FAs) for human and animal nutrition. Despite their importance, there is a lack of an essential bioinformatics resource on gene transcription of oil crops from a comparative perspective. In this study, we developed ocsESTdb, the first database of expressed sequence tag (EST) information on seeds of four large-scale oil crops with an emphasis on global metabolic networks and oil accumulation metabolism that target the involved unigenes. A total of 248,522 ESTs and 106,835 unigenes were collected from the cDNA libraries of rapeseed (Brassica napus), soybean (Glycine max), sesame (Sesamum indicum) and peanut (Arachis hypogaea). These unigenes were annotated by a sequence similarity search against databases including TAIR, NR protein database, Gene Ontology, COG, Swiss-Prot, TrEMBL and Kyoto Encyclopedia of Genes and Genomes (KEGG). Five genome-scale metabolic networks that contain different numbers of metabolites and gene-enzyme reaction-association entries were analysed and constructed using Cytoscape and yEd programs. Details of unigene entries, deduced amino acid sequences and putative annotation are available from our database to browse, search and download. Intuitive and graphical representations of EST/unigene sequences, functional annotations, metabolic pathways and metabolic networks are also available. ocsESTdb will be updated regularly and can be freely accessed at http://ocri-genomics.org/ocsESTdb/ . ocsESTdb may serve as a valuable and unique resource for comparative analysis of acyl lipid synthesis and metabolism in oilseed plants. It also may provide vital insights into improving oil content in seeds of oil crop species by transcriptional reconstruction of the metabolic network.

  2. Incorporating interaction networks into the determination of functionally related hit genes in genomic experiments with Markov random fields

    PubMed Central

    Robinson, Sean; Nevalainen, Jaakko; Pinna, Guillaume; Campalans, Anna; Radicella, J. Pablo; Guyon, Laurent

    2017-01-01

    Abstract Motivation: Incorporating gene interaction data into the identification of ‘hit’ genes in genomic experiments is a well-established approach leveraging the ‘guilt by association’ assumption to obtain a network based hit list of functionally related genes. We aim to develop a method to allow for multivariate gene scores and multiple hit labels in order to extend the analysis of genomic screening data within such an approach. Results: We propose a Markov random field-based method to achieve our aim and show that the particular advantages of our method compared with those currently used lead to new insights in previously analysed data as well as for our own motivating data. Our method additionally achieves the best performance in an independent simulation experiment. The real data applications we consider comprise of a survival analysis and differential expression experiment and a cell-based RNA interference functional screen. Availability and implementation: We provide all of the data and code related to the results in the paper. Contact: sean.j.robinson@utu.fi or laurent.guyon@cea.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28881978

  3. Altered voxel-wise gray matter structural brain networks in schizophrenia: Association with brain genetic expression pattern.

    PubMed

    Liu, Feng; Tian, Hongjun; Li, Jie; Li, Shen; Zhuo, Chuanjun

    2018-05-04

    Previous seed- and atlas-based structural covariance/connectivity analyses have demonstrated that patients with schizophrenia is accompanied by aberrant structural connection and abnormal topological organization. However, it remains unclear whether this disruption is present in unbiased whole-brain voxel-wise structural covariance networks (SCNs) and whether brain genetic expression variations are linked with network alterations. In this study, ninety-five patients with schizophrenia and 95 matched healthy controls were recruited and gray matter volumes were extracted from high-resolution structural magnetic resonance imaging scans. Whole-brain voxel-wise gray matter SCNs were constructed at the group level and were further analyzed by using graph theory method. Nonparametric permutation tests were employed for group comparisons. In addition, regression modes along with random effect analysis were utilized to explore the associations between structural network changes and gene expression from the Allen Human Brain Atlas. Compared with healthy controls, the patients with schizophrenia showed significantly increased structural covariance strength (SCS) in the right orbital part of superior frontal gyrus and bilateral middle frontal gyrus, while decreased SCS in the bilateral superior temporal gyrus and precuneus. The altered SCS showed reproducible correlations with the expression profiles of the gene classes involved in therapeutic targets and neurodevelopment. Overall, our findings not only demonstrate that the topological architecture of whole-brain voxel-wise SCNs is impaired in schizophrenia, but also provide evidence for the possible role of therapeutic targets and neurodevelopment-related genes in gray matter structural brain networks in schizophrenia.

  4. Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork.

    PubMed

    Druka, Arnis; Druka, Ilze; Centeno, Arthur G; Li, Hongqiang; Sun, Zhaohui; Thomas, William T B; Bonar, Nicola; Steffenson, Brian J; Ullrich, Steven E; Kleinhofs, Andris; Wise, Roger P; Close, Timothy J; Potokina, Elena; Luo, Zewei; Wagner, Carola; Schweizer, Günther F; Marshall, David F; Kearsey, Michael J; Williams, Robert W; Waugh, Robbie

    2008-11-18

    A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork http://www.genenetwork.org. GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits). Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them. By integrating barley genotypic, phenotypic and mRNA abundance data sets directly within GeneNetwork's analytical environment we provide simple web access to the data for the research community. In this environment, a combination of correlation analysis and linkage mapping provides the potential to identify and substantiate gene targets for saturation mapping and positional cloning. By integrating datasets from an unsequenced crop plant (barley) in a database that has been designed for an animal model species (mouse) with a well established genome sequence, we prove the importance of the concept and practice of modular development and interoperability of software engineering for biological data sets.

  5. A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors.

    PubMed

    Urquhart, Kyle R; Zhao, Yinghong; Baker, Jessica A; Lu, Ye; Yan, Lei; Cook, Melloni N; Jones, Byron C; Hamre, Kristin M; Lu, Lu

    2016-04-01

    Genetic differences mediate individual differences in susceptibility and responses to stress and ethanol, although, the specific molecular pathways that control these responses are not fully understood. Heat shock protein alpha 8 (Hspa8) is a molecular chaperone and member of the heat shock protein family that plays an integral role in the stress response and that has been implicated as an ethanol-responsive gene. Therefore, we assessed its role in mediating responses to stress and ethanol across varying genetic backgrounds. The hippocampus is an important mediator of these responses, and thus, was examined in the BXD family of mice in this study. We conducted bioinformatic analyses to dissect genetic factors modulating Hspa8 expression, identify downstream targets of Hspa8, and examined its role. Hspa8 is trans-regulated by a gene or genes on chromosome 14 and is part of a molecular network that regulates stress- and ethanol-related behaviors. To determine additional components of this network, we identified direct or indirect targets of Hspa8 and show that these genes, as predicted, participate in processes such as protein folding and organic substance metabolic processes. Two phenotypes that map to the Hspa8 locus are anxiety-related and numerous other anxiety- and/or ethanol-related behaviors significantly correlate with Hspa8 expression. To more directly assay this relationship, we examined differences in gene expression following exposure to stress or alcohol and showed treatment-related differential expression of Hspa8 and a subset of the members of its network. Our findings suggest that Hspa8 plays a vital role in genetic differences in responses to stress and ethanol and their interactions.

  6. Statistical identification of gene association by CID in application of constructing ER regulatory network

    PubMed Central

    Liu, Li-Yu D; Chen, Chien-Yu; Chen, Mei-Ju M; Tsai, Ming-Shian; Lee, Cho-Han S; Phang, Tzu L; Chang, Li-Yun; Kuo, Wen-Hung; Hwa, Hsiao-Lin; Lien, Huang-Chun; Jung, Shih-Ming; Lin, Yi-Shing; Chang, King-Jen; Hsieh, Fon-Jou

    2009-01-01

    Background A variety of high-throughput techniques are now available for constructing comprehensive gene regulatory networks in systems biology. In this study, we report a new statistical approach for facilitating in silico inference of regulatory network structure. The new measure of association, coefficient of intrinsic dependence (CID), is model-free and can be applied to both continuous and categorical distributions. When given two variables X and Y, CID answers whether Y is dependent on X by examining the conditional distribution of Y given X. In this paper, we apply CID to analyze the regulatory relationships between transcription factors (TFs) (X) and their downstream genes (Y) based on clinical data. More specifically, we use estrogen receptor α (ERα) as the variable X, and the analyses are based on 48 clinical breast cancer gene expression arrays (48A). Results The analytical utility of CID was evaluated in comparison with four commonly used statistical methods, Galton-Pearson's correlation coefficient (GPCC), Student's t-test (STT), coefficient of determination (CoD), and mutual information (MI). When being compared to GPCC, CoD, and MI, CID reveals its preferential ability to discover the regulatory association where distribution of the mRNA expression levels on X and Y does not fit linear models. On the other hand, when CID is used to measure the association of a continuous variable (Y) against a discrete variable (X), it shows similar performance as compared to STT, and appears to outperform CoD and MI. In addition, this study established a two-layer transcriptional regulatory network to exemplify the usage of CID, in combination with GPCC, in deciphering gene networks based on gene expression profiles from patient arrays. Conclusion CID is shown to provide useful information for identifying associations between genes and transcription factors of interest in patient arrays. When coupled with the relationships detected by GPCC, the association predicted by CID are applicable to the construction of transcriptional regulatory networks. This study shows how information from different data sources and learning algorithms can be integrated to investigate whether relevant regulatory mechanisms identified in cell models can also be partially re-identified in clinical samples of breast cancers. Availability the implementation of CID in R codes can be freely downloaded from . PMID:19292896

  7. Gene regulatory network inference from multifactorial perturbation data using both regression and correlation analyses.

    PubMed

    Xiong, Jie; Zhou, Tong

    2012-01-01

    An important problem in systems biology is to reconstruct gene regulatory networks (GRNs) from experimental data and other a priori information. The DREAM project offers some types of experimental data, such as knockout data, knockdown data, time series data, etc. Among them, multifactorial perturbation data are easier and less expensive to obtain than other types of experimental data and are thus more common in practice. In this article, a new algorithm is presented for the inference of GRNs using the DREAM4 multifactorial perturbation data. The GRN inference problem among [Formula: see text] genes is decomposed into [Formula: see text] different regression problems. In each of the regression problems, the expression level of a target gene is predicted solely from the expression level of a potential regulation gene. For different potential regulation genes, different weights for a specific target gene are constructed by using the sum of squared residuals and the Pearson correlation coefficient. Then these weights are normalized to reflect effort differences of regulating distinct genes. By appropriately choosing the parameters of the power law, we constructe a 0-1 integer programming problem. By solving this problem, direct regulation genes for an arbitrary gene can be estimated. And, the normalized weight of a gene is modified, on the basis of the estimation results about the existence of direct regulations to it. These normalized and modified weights are used in queuing the possibility of the existence of a corresponding direct regulation. Computation results with the DREAM4 In Silico Size 100 Multifactorial subchallenge show that estimation performances of the suggested algorithm can even outperform the best team. Using the real data provided by the DREAM5 Network Inference Challenge, estimation performances can be ranked third. Furthermore, the high precision of the obtained most reliable predictions shows the suggested algorithm may be helpful in guiding biological experiment designs.

  8. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology

    PubMed Central

    Paley, Suzanne M.; Krummenacker, Markus; Latendresse, Mario; Dale, Joseph M.; Lee, Thomas J.; Kaipa, Pallavi; Gilham, Fred; Spaulding, Aaron; Popescu, Liviu; Altman, Tomer; Paulsen, Ian; Keseler, Ingrid M.; Caspi, Ron

    2010-01-01

    Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry. PMID:19955237

  9. Plant Omics Data Center: An Integrated Web Repository for Interspecies Gene Expression Networks with NLP-Based Curation

    PubMed Central

    Ohyanagi, Hajime; Takano, Tomoyuki; Terashima, Shin; Kobayashi, Masaaki; Kanno, Maasa; Morimoto, Kyoko; Kanegae, Hiromi; Sasaki, Yohei; Saito, Misa; Asano, Satomi; Ozaki, Soichi; Kudo, Toru; Yokoyama, Koji; Aya, Koichiro; Suwabe, Keita; Suzuki, Go; Aoki, Koh; Kubo, Yasutaka; Watanabe, Masao; Matsuoka, Makoto; Yano, Kentaro

    2015-01-01

    Comprehensive integration of large-scale omics resources such as genomes, transcriptomes and metabolomes will provide deeper insights into broader aspects of molecular biology. For better understanding of plant biology, we aim to construct a next-generation sequencing (NGS)-derived gene expression network (GEN) repository for a broad range of plant species. So far we have incorporated information about 745 high-quality mRNA sequencing (mRNA-Seq) samples from eight plant species (Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, Sorghum bicolor, Vitis vinifera, Solanum tuberosum, Medicago truncatula and Glycine max) from the public short read archive, digitally profiled the entire set of gene expression profiles, and drawn GENs by using correspondence analysis (CA) to take advantage of gene expression similarities. In order to understand the evolutionary significance of the GENs from multiple species, they were linked according to the orthology of each node (gene) among species. In addition to other gene expression information, functional annotation of the genes will facilitate biological comprehension. Currently we are improving the given gene annotations with natural language processing (NLP) techniques and manual curation. Here we introduce the current status of our analyses and the web database, PODC (Plant Omics Data Center; http://bioinf.mind.meiji.ac.jp/podc/), now open to the public, providing GENs, functional annotations and additional comprehensive omics resources. PMID:25505034

  10. GEM2Net: from gene expression modeling to -omics networks, a new CATdb module to investigate Arabidopsis thaliana genes involved in stress response.

    PubMed

    Zaag, Rim; Tamby, Jean Philippe; Guichard, Cécile; Tariq, Zakia; Rigaill, Guillem; Delannoy, Etienne; Renou, Jean-Pierre; Balzergue, Sandrine; Mary-Huard, Tristan; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Brunaud, Véronique

    2015-01-01

    CATdb (http://urgv.evry.inra.fr/CATdb) is a database providing a public access to a large collection of transcriptomic data, mainly for Arabidopsis but also for other plants. This resource has the rare advantage to contain several thousands of microarray experiments obtained with the same technical protocol and analyzed by the same statistical pipelines. In this paper, we present GEM2Net, a new module of CATdb that takes advantage of this homogeneous dataset to mine co-expression units and decipher Arabidopsis gene functions. GEM2Net explores 387 stress conditions organized into 18 biotic and abiotic stress categories. For each one, a model-based clustering is applied on expression differences to identify clusters of co-expressed genes. To characterize functions associated with these clusters, various resources are analyzed and integrated: Gene Ontology, subcellular localization of proteins, Hormone Families, Transcription Factor Families and a refined stress-related gene list associated to publications. Exploiting protein-protein interactions and transcription factors-targets interactions enables to display gene networks. GEM2Net presents the analysis of the 18 stress categories, in which 17,264 genes are involved and organized within 681 co-expression clusters. The meta-data analyses were stored and organized to compose a dynamic Web resource. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Mutual regulatory interactions of the trunk gap genes during blastoderm patterning in the hemipteran Oncopeltus fasciatus.

    PubMed

    Ben-David, Jonathan; Chipman, Ariel D

    2010-10-01

    The early embryo of the milkweed bug, Oncopeltus fasciatus, appears as a single cell layer - the embryonic blastoderm - covering the entire egg. It is at this blastoderm stage that morphological domains are first determined, long before the appearance of overt segmentation. Central to the process of patterning the blastoderm into distinct domains are a group of transcription factors known as gap genes. In Drosophila melanogaster these genes form a network of interactions, and maintain sharp expression boundaries through strong mutual repression. Their restricted expression domains define specific areas along the entire body. We have studied the expression domains of the four trunk gap gene homologues in O. fasciatus and have determined their interactions through dsRNA gene knockdown experiments, followed by expression analyses. While the blastoderm in O. fasciatus includes only the first six segments of the embryo, the expression domains of the gap genes within these segments are broadly similar to those in Drosophila where the blastoderm includes all 15 segments. However, the interactions between the gap genes are surprisingly different from those in Drosophila, and mutual repression between the genes seems to play a much less significant role. This suggests that the well-studied interaction pattern in Drosophila is evolutionarily derived, and has evolved from a less strongly interacting network. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. [Not Available].

    PubMed

    Yanashima, Ryoji; Kitagawa, Noriyuki; Matsubara, Yoshiya; Weatheritt, Robert; Oka, Kotaro; Kikuchi, Shinichi; Tomita, Masaru; Ishizaki, Shun

    2009-01-01

    The scale-free and small-world network models reflect the functional units of networks. However, when we investigated the network properties of a signaling pathway using these models, no significant differences were found between the original undirected graphs and the graphs in which inactive proteins were eliminated from the gene expression data. We analyzed signaling networks by focusing on those pathways that best reflected cellular function. Therefore, our analysis of pathways started from the ligands and progressed to transcription factors and cytoskeletal proteins. We employed the Python module to assess the target network. This involved comparing the original and restricted signaling cascades as a directed graph using microarray gene expression profiles of late onset Alzheimer's disease. The most commonly used method of shortest-path analysis neglects to consider the influences of alternative pathways that can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced included k-shortest paths and k-cycles in our network analysis using the Python modules, which allowed us to attain a reasonable computational time and identify k-shortest paths. This technique reflected results found in vivo and identified pathways not found when shortest path or degree analysis was applied. Our module enabled us to comprehensively analyse the characteristics of biomolecular networks and also enabled analysis of the effects of diseases considering the feedback loop and feedforward loop control structures as an alternative path.

  13. Construction and analysis of gene-gene dynamics influence networks based on a Boolean model.

    PubMed

    Mazaya, Maulida; Trinh, Hung-Cuong; Kwon, Yung-Keun

    2017-12-21

    Identification of novel gene-gene relations is a crucial issue to understand system-level biological phenomena. To this end, many methods based on a correlation analysis of gene expressions or structural analysis of molecular interaction networks have been proposed. They have a limitation in identifying more complicated gene-gene dynamical relations, though. To overcome this limitation, we proposed a measure to quantify a gene-gene dynamical influence (GDI) using a Boolean network model and constructed a GDI network to indicate existence of a dynamical influence for every ordered pair of genes. It represents how much a state trajectory of a target gene is changed by a knockout mutation subject to a source gene in a gene-gene molecular interaction (GMI) network. Through a topological comparison between GDI and GMI networks, we observed that the former network is denser than the latter network, which implies that there exist many gene pairs of dynamically influencing but molecularly non-interacting relations. In addition, a larger number of hub genes were generated in the GDI network. On the other hand, there was a correlation between these networks such that the degree value of a node was positively correlated to each other. We further investigated the relationships of the GDI value with structural properties and found that there are negative and positive correlations with the length of a shortest path and the number of paths, respectively. In addition, a GDI network could predict a set of genes whose steady-state expression is affected in E. coli gene-knockout experiments. More interestingly, we found that the drug-targets with side-effects have a larger number of outgoing links than the other genes in the GDI network, which implies that they are more likely to influence the dynamics of other genes. Finally, we found biological evidences showing that the gene pairs which are not molecularly interacting but dynamically influential can be considered for novel gene-gene relationships. Taken together, construction and analysis of the GDI network can be a useful approach to identify novel gene-gene relationships in terms of the dynamical influence.

  14. Analyses of Synteny Between Arabidopsis thaliana and Species in the Asteraceae Reveal a Complex Network of Small Syntenic Segments and Major Chromosomal Rearrangements

    PubMed Central

    Timms, Lee; Jimenez, Rosmery; Chase, Mike; Lavelle, Dean; McHale, Leah; Kozik, Alexander; Lai, Zhao; Heesacker, Adam; Knapp, Steven; Rieseberg, Loren; Michelmore, Richard; Kesseli, Rick

    2006-01-01

    Comparative genomic studies among highly divergent species have been problematic because reduced gene similarities make orthologous gene pairs difficult to identify and because colinearity is expected to be low with greater time since divergence from the last common ancestor. Nevertheless, synteny between divergent taxa in several lineages has been detected over short chromosomal segments. We have examined the level of synteny between the model species Arabidopsis thaliana and species in the Compositae, one of the largest and most diverse plant families. While macrosyntenic patterns covering large segments of the chromosomes are not evident, significant levels of local synteny are detected at a fine scale covering segments of 1-Mb regions of A. thaliana and regions of <5 cM in lettuce and sunflower. These syntenic patches are often not colinear, however, and form a network of regions that have likely evolved by duplications followed by differential gene loss. PMID:16783026

  15. Epigenetics of human asthma and allergy: promises to keep.

    PubMed

    Devries, Avery; Vercelli, Donata

    2013-09-01

    The interest in asthma epigenetics is high because epigenetic mechanisms likely contribute to the environmental origins of the disease and its phenotypic variability. This review presents the main findings of asthma epigenetics and the challenges that still delay progress. We examined the current literature on asthma epigenetics (31 reviews and 25 original data publications). We focused on DNA methylation studies in populations. Both genome-wide and candidate gene studies have explored DNA methylation in allergic disease. Genome-wide studies ask whether and which regions of the genome are differentially methylated in relation to the phenotype of interest. Identification of such regions provides clues about the identity of the genes, pathways and networks underpinning a phenotype and connects these networks to the phenotype through epigenetic mechanisms. Candidate gene studies examine DNA methylation in genes chosen because of their known or hypothesized role in immunity, responses to environmental stimuli or disease pathogenesis. Most existing studies in asthma and allergy focused on candidate genes involved in the response to environmental pollutants. Asthma epigenetics is still in its infancy. The paucity of primary literature originates from methodological and analytical challenges of genome-wide studies, the difficulties in interpreting small differences in DNA methylation, and the need to develop robust bioinformatic tools for pathway, network and system analyses of epigenetic data. Once these challenges have been overcome, epigenetic studies will likely provide important insights about the inception and pathogenesis of allergic disease and will help define disease endotypes.

  16. Analysis of molecular pathways in pancreatic ductal adenocarcinomas with a bioinformatics approach.

    PubMed

    Wang, Yan; Li, Yan

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death worldwide. Our study aimed to reveal molecular mechanisms. Microarray data of GSE15471 (including 39 matching pairs of pancreatic tumor tissues and patient-matched normal tissues) was downloaded from Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in PDAC tissues compared with normal tissues by limma package in R language. Then GO and KEGG pathway enrichment analyses were conducted with online DAVID. In addition, principal component analysis was performed and a protein-protein interaction network was constructed to study relationships between the DEGs through database STRING. A total of 532 DEGs were identified in the 38 PDAC tissues compared with 33 normal tissues. The results of principal component analysis of the top 20 DEGs could differentiate the PDAC tissues from normal tissues directly. In the PPI network, 8 of the 20 DEGs were all key genes of the collagen family. Additionally, FN1 (fibronectin 1) was also a hub node in the network. The genes of the collagen family as well as FN1 were significantly enriched in complement and coagulation cascades, ECM-receptor interaction and focal adhesion pathways. Our results suggest that genes of collagen family and FN1 may play an important role in PDAC progression. Meanwhile, these DEGs and enriched pathways, such as complement and coagulation cascades, ECM-receptor interaction and focal adhesion may be important molecular mechanisms involved in the development and progression of PDAC.

  17. Bipartite Community Structure of eQTLs.

    PubMed

    Platig, John; Castaldi, Peter J; DeMeo, Dawn; Quackenbush, John

    2016-09-01

    Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network "hub" SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community ("core SNPs") and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits.

  18. Microscopy and bioinformatic analyses of lipid metabolism implicate a sporophytic signaling network supporting pollen development in Arabidopsis.

    PubMed

    Wang, Yixing; Wu, Hong; Yang, Ming

    2008-07-01

    The Arabidopsis sporophytic tapetum undergoes a programmed degeneration process to secrete lipid and other materials to support pollen development. However, the molecular mechanism regulating the degeneration process is unknown. To gain insight into this molecular mechanism, we first determined that the most critical period for tapetal secretion to support pollen development is from the vacuolate microspore stage to the early binucleate pollen stage. We then analyzed the expression of enzymes responsible for lipid biosynthesis and degradation with available in-silico data. The genes for these enzymes that are expressed in the stamen but not in the concurrent uninucleate microspore and binucleate pollen are of particular interest, as they presumably hold the clues to unique molecular processes in the sporophytic tissues compared to the gametophytic tissue. No gene for lipid biosynthesis but a single gene encoding a patatin-like protein likely for lipid mobilization was identified based on the selection criterion. A search for genes co-expressed with this gene identified additional genes encoding typical signal transduction components such as a leucine-rich repeat receptor kinase, an extra-large G-protein, other protein kinases, and transcription factors. In addition, proteases, cell wall degradation enzymes, and other proteins were also identified. These proteins thus may be components of a signaling network leading to degradation of a broad range of cellular components. Since a broad range of degradation activities is expected to occur only in the tapetal degeneration process at this stage in the stamen, it is further hypothesized that the signaling network acts in the tapetal degeneration process.

  19. Are There Genetic Paths Common to Obesity, Cardiovascular Disease Outcomes, and Cardiovascular Risk Factors?

    PubMed Central

    Rankinen, Tuomo; Sarzynski, Mark A.; Ghosh, Sujoy; Bouchard, Claude

    2015-01-01

    Clustering of obesity, coronary artery disease, and cardiovascular disease risk factors is observed in epidemiological studies and clinical settings. Twin and family studies have provided some supporting evidence for the clustering hypothesis. Loci nearest a lead single nucleotide polymorphism (SNP) showing genome-wide significant associations with coronary artery disease, body mass index, C-reactive protein, blood pressure, lipids, and type 2 diabetes mellitus were selected for pathway and network analyses. Eighty-seven autosomal regions (181 SNPs), mapping to 56 genes, were found to be pleiotropic. Most pleiotropic regions contained genes associated with coronary artery disease and plasma lipids, whereas some exhibited coaggregation between obesity and cardiovascular disease risk factors. We observed enrichment for liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor/RXR nuclear receptor signaling among pleiotropic genes and for signatures of coronary artery disease and hepatic steatosis. In the search for functionally interacting networks, we found that 43 pleiotropic genes were interacting in a network with an additional 24 linker genes. ENCODE (Encyclopedia of DNA Elements) data were queried for distribution of pleiotropic SNPs among regulatory elements and coding sequence variations. Of the 181 SNPs, 136 were annotated to ≥1 regulatory feature. An enrichment analysis found over-representation of enhancers and DNAse hypersensitive regions when compared against all SNPs of the 1000 Genomes pilot project. In summary, there are genomic regions exerting pleiotropic effects on cardiovascular disease risk factors, although only a few included obesity. Further studies are needed to resolve the clustering in terms of DNA variants, genes, pathways, and actionable targets. PMID:25722444

  20. Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis.

    PubMed

    Han, Xinxin; Yin, Linlin; Xue, Hongwei

    2012-07-01

    Fatty acids (FAs) play crucial rules in signal transduction and plant development, however, the regulation of FA metabolism is still poorly understood. To study the relevant regulatory network, fifty-eight FA biosynthesis genes including de novo synthases, desaturases and elongases were selected as "guide genes" to construct the co-expression network. Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT) identifies 797 candidate FA-correlated genes. Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism, and function in many processes. Interestingly, 63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched. Two TF genes, CRC and AP1, both correlating with 8 FA guide genes, were further characterized. Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds. The contents of palmitoleic acid, stearic acid, arachidic acid and eicosadienoic acid are decreased, whereas that of oleic acid is increased in ap1 and crc seeds, which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes. In addition, yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15, indicating that CRC may directly regulate FA biosynthesis. © 2012 Institute of Botany, Chinese Academy of Sciences.

  1. General theory for integrated analysis of growth, gene, and protein expression in biofilms.

    PubMed

    Zhang, Tianyu; Pabst, Breana; Klapper, Isaac; Stewart, Philip S

    2013-01-01

    A theory for analysis and prediction of spatial and temporal patterns of gene and protein expression within microbial biofilms is derived. The theory integrates phenomena of solute reaction and diffusion, microbial growth, mRNA or protein synthesis, biomass advection, and gene transcript or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of planktonic cells. Specific scenarios analyzed include an inducible GFP or fluorescent protein reporter, a denitrification gene repressed by oxygen, an acid stress response gene, and a quorum sensing circuit. It is shown that the patterns of activity revealed by inducible stable fluorescent proteins or reporter unstable proteins overestimate the region of activity. This is due to advective spreading and finite protein turnover rates. In the cases of a gene induced by either limitation for a metabolic substrate or accumulation of a metabolic product, maximal expression is predicted in an internal stratum of the biofilm. A quorum sensing system that includes an oxygen-responsive negative regulator exhibits behavior that is distinct from any stage of a batch planktonic culture. Though here the analyses have been limited to simultaneous interactions of up to two substrates and two genes, the framework applies to arbitrarily large networks of genes and metabolites. Extension of reaction-diffusion modeling in biofilms to the analysis of individual genes and gene networks is an important advance that dovetails with the growing toolkit of molecular and genetic experimental techniques.

  2. Integrative functional transcriptomic analyses implicate specific molecular pathways in pulmonary toxicity from exposure to aluminum oxide nanoparticles.

    PubMed

    Li, Xiaobo; Zhang, Chengcheng; Bian, Qian; Gao, Na; Zhang, Xin; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Xia, Yankai; Chen, Rui

    2016-09-01

    Gene expression profiling has developed rapidly in recent years and it can predict and define mechanisms underlying chemical toxicity. Here, RNA microarray and computational technology were used to show that aluminum oxide nanoparticles (Al2O3 NPs) were capable of triggering up-regulation of genes related to the cell cycle and cell death in a human A549 lung adenocarcinoma cell line. Gene expression levels were validated in Al2O3 NPs exposed A549 cells and mice lung tissues, most of which showed consistent trends in regulation. Gene-transcription factor network analysis coupled with cell- and animal-based assays demonstrated that the genes encoding PTPN6, RTN4, BAX and IER play a role in the biological responses induced by the nanoparticle exposure, which caused cell death and cell cycle arrest in the G2/S phase. Further, down-regulated PTPN6 expression demonstrated a core role in the network, thus expression level of PTPN6 was rescued by plasmid transfection, which showed ameliorative effects of A549 cells against cell death and cell cycle arrest. These results demonstrate the feasibility of using gene expression profiling to predict cellular responses induced by nanomaterials, which could be used to develop a comprehensive knowledge of nanotoxicity.

  3. A study of structural properties of gene network graphs for mathematical modeling of integrated mosaic gene networks.

    PubMed

    Petrovskaya, Olga V; Petrovskiy, Evgeny D; Lavrik, Inna N; Ivanisenko, Vladimir A

    2017-04-01

    Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.

  4. Network-based ranking methods for prediction of novel disease associated microRNAs.

    PubMed

    Le, Duc-Hau

    2015-10-01

    Many studies have shown roles of microRNAs on human disease and a number of computational methods have been proposed to predict such associations by ranking candidate microRNAs according to their relevance to a disease. Among them, machine learning-based methods usually have a limitation in specifying non-disease microRNAs as negative training samples. Meanwhile, network-based methods are becoming dominant since they well exploit a "disease module" principle in microRNA functional similarity networks. Of which, random walk with restart (RWR) algorithm-based method is currently state-of-the-art. The use of this algorithm was inspired from its success in predicting disease gene because the "disease module" principle also exists in protein interaction networks. Besides, many algorithms designed for webpage ranking have been successfully applied in ranking disease candidate genes because web networks share topological properties with protein interaction networks. However, these algorithms have not yet been utilized for disease microRNA prediction. We constructed microRNA functional similarity networks based on shared targets of microRNAs, and then we integrated them with a microRNA functional synergistic network, which was recently identified. After analyzing topological properties of these networks, in addition to RWR, we assessed the performance of (i) PRINCE (PRIoritizatioN and Complex Elucidation), which was proposed for disease gene prediction; (ii) PageRank with Priors (PRP) and K-Step Markov (KSM), which were used for studying web networks; and (iii) a neighborhood-based algorithm. Analyses on topological properties showed that all microRNA functional similarity networks are small-worldness and scale-free. The performance of each algorithm was assessed based on average AUC values on 35 disease phenotypes and average rankings of newly discovered disease microRNAs. As a result, the performance on the integrated network was better than that on individual ones. In addition, the performance of PRINCE, PRP and KSM was comparable with that of RWR, whereas it was worst for the neighborhood-based algorithm. Moreover, all the algorithms were stable with the change of parameters. Final, using the integrated network, we predicted six novel miRNAs (i.e., hsa-miR-101, hsa-miR-181d, hsa-miR-192, hsa-miR-423-3p, hsa-miR-484 and hsa-miR-98) associated with breast cancer. Network-based ranking algorithms, which were successfully applied for either disease gene prediction or for studying social/web networks, can be also used effectively for disease microRNA prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Phylomemetics—Evolutionary Analysis beyond the Gene

    PubMed Central

    Howe, Christopher J.; Windram, Heather F.

    2011-01-01

    Genes are propagated by error-prone copying, and the resulting variation provides the basis for phylogenetic reconstruction of evolutionary relationships. Horizontal gene transfer may be superimposed on a tree-like evolutionary pattern, with some relationships better depicted as networks. The copying of manuscripts by scribes is very similar to the replication of genes, and phylogenetic inference programs can be used directly for reconstructing the copying history of different versions of a manuscript text. Phylogenetic methods have also been used for some time to analyse the evolution of languages and the development of physical cultural artefacts. These studies can help to answer a range of anthropological questions. We propose the adoption of the term “phylomemetics” for phylogenetic analysis of reproducing non-genetic elements. PMID:21655311

  6. Chemical-Gene Interactions from ToxCast Bioactivity Data ...

    EPA Pesticide Factsheets

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets. To evaluate the information gained from the ToxCast project, a ToxCast bioactivity network was created comprising ToxCast chemical-gene interactions based on assay data and compared to a chemical-gene association network from literature. The literature network was compiled from PubMed articles, excluding ToxCast publications, mapped to genes and chemicals. Genes were identified by curated associations available from NCBI while chemicals were identified by PubChem submissions. The frequencies of chemical-gene associations from the literature network were log-scaled and then compared to the ToxCast bioactivity network. In total, 140 times more chemical-gene associations were present in the ToxCast network in comparison to the literature-derived network highlighting the vast increase in chemical-gene interactions putatively elucidated by the ToxCast research program. There were 165 associations found in the literature network that were reproduced by ToxCast bioactivity data, and 336 associations in the literature network were not reproduced by the ToxCast bioactivity network. The literature network relies on the assumption that chemical-gene associations represent a true chemical-gene inte

  7. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen

    2015-03-01

    The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.

  8. Analysis of blood-based gene expression in idiopathic Parkinson disease.

    PubMed

    Shamir, Ron; Klein, Christine; Amar, David; Vollstedt, Eva-Juliane; Bonin, Michael; Usenovic, Marija; Wong, Yvette C; Maver, Ales; Poths, Sven; Safer, Hershel; Corvol, Jean-Christophe; Lesage, Suzanne; Lavi, Ofer; Deuschl, Günther; Kuhlenbaeumer, Gregor; Pawlack, Heike; Ulitsky, Igor; Kasten, Meike; Riess, Olaf; Brice, Alexis; Peterlin, Borut; Krainc, Dimitri

    2017-10-17

    To examine whether gene expression analysis of a large-scale Parkinson disease (PD) patient cohort produces a robust blood-based PD gene signature compared to previous studies that have used relatively small cohorts (≤220 samples). Whole-blood gene expression profiles were collected from a total of 523 individuals. After preprocessing, the data contained 486 gene profiles (n = 205 PD, n = 233 controls, n = 48 other neurodegenerative diseases) that were partitioned into training, validation, and independent test cohorts to identify and validate a gene signature. Batch-effect reduction and cross-validation were performed to ensure signature reliability. Finally, functional and pathway enrichment analyses were applied to the signature to identify PD-associated gene networks. A gene signature of 100 probes that mapped to 87 genes, corresponding to 64 upregulated and 23 downregulated genes differentiating between patients with idiopathic PD and controls, was identified with the training cohort and successfully replicated in both an independent validation cohort (area under the curve [AUC] = 0.79, p = 7.13E-6) and a subsequent independent test cohort (AUC = 0.74, p = 4.2E-4). Network analysis of the signature revealed gene enrichment in pathways, including metabolism, oxidation, and ubiquitination/proteasomal activity, and misregulation of mitochondria-localized genes, including downregulation of COX4I1 , ATP5A1 , and VDAC3 . We present a large-scale study of PD gene expression profiling. This work identifies a reliable blood-based PD signature and highlights the importance of large-scale patient cohorts in developing potential PD biomarkers. © 2017 American Academy of Neurology.

  9. Construction of a cDNA microarray derived from the ascidian Ciona intestinalis.

    PubMed

    Azumi, Kaoru; Takahashi, Hiroki; Miki, Yasufumi; Fujie, Manabu; Usami, Takeshi; Ishikawa, Hisayoshi; Kitayama, Atsusi; Satou, Yutaka; Ueno, Naoto; Satoh, Nori

    2003-10-01

    A cDNA microarray was constructed from a basal chordate, the ascidian Ciona intestinalis. The draft genome of Ciona has been read and inferred to contain approximately 16,000 protein-coding genes, and cDNAs for transcripts of 13,464 genes have been characterized and compiled as the "Ciona intestinalis Gene Collection Release I". In the present study, we constructed a cDNA microarray of these 13,464 Ciona genes. A preliminary experiment with Cy3- and Cy5-labeled probes showed extensive differential gene expression between fertilized eggs and larvae. In addition, there was a good correlation between results obtained by the present microarray analysis and those from previous EST analyses. This first microarray of a large collection of Ciona intestinalis cDNA clones should facilitate the analysis of global gene expression and gene networks during the embryogenesis of basal chordates.

  10. Genetic Influences on the Development of Alcoholism

    PubMed Central

    Enoch, Mary-Anne

    2014-01-01

    Alcoholism has a substantial heritability yet the detection of specific genetic influences has largely proved elusive. The strongest findings are with genes encoding alcohol metabolizing enzymes. A few candidate genes such as GABRA2 have shown robust associations with alcoholism. Moreover, it has become apparent that variants in stress-related genes such as CRHR1, may only confer risk in individuals exposed to trauma, particularly in early life. Over the past decade there have been tremendous advances in large scale SNP genotyping technologies allowing for genome-wide associations studies (GWAS). As a result, it is now recognized that genetic risk for alcoholism is likely to be due to common variants in very many genes, each of small effect, although rare variants with large effects might also play a role. This has resulted in a paradigm shift away from gene centric studies towards analyses of gene interactions and gene networks within biologically relevant pathways. PMID:24091936

  11. Genetic influences on the development of alcoholism.

    PubMed

    Enoch, Mary-Anne

    2013-11-01

    Alcoholism has a substantial heritability yet the detection of specific genetic influences has largely proved elusive. The strongest findings are with genes encoding alcohol metabolizing enzymes. A few candidate genes such as GABRA2 have shown robust associations with alcoholism. Moreover, it has become apparent that variants in stress-related genes such as CRHR1, may only confer risk in individuals exposed to trauma, particularly in early life. Over the past decade there have been tremendous advances in large scale SNP genotyping technologies allowing for genome-wide associations studies (GWAS). As a result, it is now recognized that genetic risk for alcoholism is likely to be due to common variants in very many genes, each of small effect, although rare variants with large effects might also play a role. This has resulted in a paradigm shift away from gene centric studies toward analyses of gene interactions and gene networks within biologically relevant pathways.

  12. The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6

    PubMed Central

    Antosova, Barbora; Smolikova, Jana; Klimova, Lucie; Lachova, Jitka; Bendova, Michaela; Kozmikova, Iryna; Machon, Ondrej; Kozmik, Zbynek

    2016-01-01

    Lens induction is a classical developmental model allowing investigation of cell specification, spatiotemporal control of gene expression, as well as how transcription factors are integrated into highly complex gene regulatory networks (GRNs). Pax6 represents a key node in the gene regulatory network governing mammalian lens induction. Meis1 and Meis2 homeoproteins are considered as essential upstream regulators of Pax6 during lens morphogenesis based on their interaction with the ectoderm enhancer (EE) located upstream of Pax6 transcription start site. Despite this generally accepted regulatory pathway, Meis1-, Meis2- and EE-deficient mice have surprisingly mild eye phenotypes at placodal stage of lens development. Here, we show that simultaneous deletion of Meis1 and Meis2 in presumptive lens ectoderm results in arrested lens development in the pre-placodal stage, and neither lens placode nor lens is formed. We found that in the presumptive lens ectoderm of Meis1/Meis2 deficient embryos Pax6 expression is absent. We demonstrate using chromatin immunoprecipitation (ChIP) that in addition to EE, Meis homeoproteins bind to a remote, ultraconserved SIMO enhancer of Pax6. We further show, using in vivo gene reporter analyses, that the lens-specific activity of SIMO enhancer is dependent on the presence of three Meis binding sites, phylogenetically conserved from man to zebrafish. Genetic ablation of EE and SIMO enhancers demostrates their requirement for lens induction and uncovers an apparent redundancy at early stages of lens development. These findings identify a genetic requirement for Meis1 and Meis2 during the early steps of mammalian eye development. Moreover, they reveal an apparent robustness in the gene regulatory mechanism whereby two independent "shadow enhancers" maintain critical levels of a dosage-sensitive gene, Pax6, during lens induction. PMID:27918583

  13. Directed random walks and constraint programming reveal active pathways in hepatocyte growth factor signaling.

    PubMed

    Kittas, Aristotelis; Delobelle, Aurélien; Schmitt, Sabrina; Breuhahn, Kai; Guziolowski, Carito; Grabe, Niels

    2016-01-01

    An effective means to analyze mRNA expression data is to take advantage of established knowledge from pathway databases, using methods such as pathway-enrichment analyses. However, pathway databases are not case-specific and expression data could be used to infer gene-regulation patterns in the context of specific pathways. In addition, canonical pathways may not always describe the signaling mechanisms properly, because interactions can frequently occur between genes in different pathways. Relatively few methods have been proposed to date for generating and analyzing such networks, preserving the causality between gene interactions and reasoning over the qualitative logic of regulatory effects. We present an algorithm (MCWalk) integrated with a logic programming approach, to discover subgraphs in large-scale signaling networks by random walks in a fully automated pipeline. As an exemplary application, we uncover the signal transduction mechanisms in a gene interaction network describing hepatocyte growth factor-stimulated cell migration and proliferation from gene-expression measured with microarray and RT-qPCR using in-house perturbation experiments in a keratinocyte-fibroblast co-culture. The resulting subgraphs illustrate possible associations of hepatocyte growth factor receptor c-Met nodes, differentially expressed genes and cellular states. Using perturbation experiments and Answer Set programming, we are able to select those which are more consistent with the experimental data. We discover key regulator nodes by measuring the frequency with which they are traversed when connecting signaling between receptors and significantly regulated genes and predict their expression-shift consistently with the measured data. The Java implementation of MCWalk is publicly available under the MIT license at: https://bitbucket.org/akittas/biosubg. © 2015 FEBS.

  14. Effects of 5-h multimodal stress on the molecules and pathways involved in dendritic morphology and cognitive function.

    PubMed

    Xu, Yiran; Cheng, Xiaorui; Cui, Xiuliang; Wang, Tongxing; Liu, Gang; Yang, Ruishang; Wang, Jianhui; Bo, Xiaochen; Wang, Shengqi; Zhou, Wenxia; Zhang, Yongxiang

    2015-09-01

    Stress induces cognitive impairments, which are likely related to the damaged dendritic morphology in the brain. Treatments for stress-induced impairments remain limited because the molecules and pathways underlying these impairments are unknown. Therefore, the aim of this study was to find the potential molecules and pathways related to damage of the dendritic morphology induced by stress. To do this, we detected gene expression, constructed a protein-protein interaction (PPI) network, and analyzed the molecular pathways in the brains of mice exposed to 5-h multimodal stress. The results showed that stress increased plasma corticosterone concentration, decreased cognitive function, damaged dendritic morphologies, and altered APBB1, CLSTN1, KCNA4, NOTCH3, PLAU, RPS6KA1, SYP, TGFB1, KCNA1, NTRK3, and SNCA expression in the brains of mice. Further analyses found that the abnormal expressions of CLSTN1, PLAU, NOTCH3, and TGFB1 induced by stress were related to alterations in the dendritic morphology. These four genes demonstrated interactions with 55 other genes, and configured a closed PPI network. Molecular pathway analysis use the Database for Annotation, Visualization, and Integrated Discovery (DAVID), specifically the gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG), each identified three pathways that were significantly enriched in the gene list of the PPI network, with genes belonging to the Notch and transforming growth factor-beta (TGF-B) signaling pathways being the most enriched. Our results suggest that TGFB1, PLAU, NOTCH3, and CLSTN1 may be related to the alterations in dendritic morphology induced by stress, and imply that the Notch and TGF-B signaling pathways may be involved. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    PubMed

    Zhou, Xionghui; Liu, Juan

    2014-01-01

    Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene signature for phenotypic change.

  16. Rational confederation of genes and diseases: NGS interpretation via GeneCards, MalaCards and VarElect.

    PubMed

    Rappaport, Noa; Fishilevich, Simon; Nudel, Ron; Twik, Michal; Belinky, Frida; Plaschkes, Inbar; Stein, Tsippi Iny; Cohen, Dana; Oz-Levi, Danit; Safran, Marilyn; Lancet, Doron

    2017-08-18

    A key challenge in the realm of human disease research is next generation sequencing (NGS) interpretation, whereby identified filtered variant-harboring genes are associated with a patient's disease phenotypes. This necessitates bioinformatics tools linked to comprehensive knowledgebases. The GeneCards suite databases, which include GeneCards (human genes), MalaCards (human diseases) and PathCards (human pathways) together with additional tools, are presented with the focus on MalaCards utility for NGS interpretation as well as for large scale bioinformatic analyses. VarElect, our NGS interpretation tool, leverages the broad information in the GeneCards suite databases. MalaCards algorithms unify disease-related terms and annotations from 69 sources. Further, MalaCards defines hierarchical relatedness-aliases, disease families, a related diseases network, categories and ontological classifications. GeneCards and MalaCards delineate and share a multi-tiered, scored gene-disease network, with stringency levels, including the definition of elite status-high quality gene-disease pairs, coming from manually curated trustworthy sources, that includes 4500 genes for 8000 diseases. This unique resource is key to NGS interpretation by VarElect. VarElect, a comprehensive search tool that helps infer both direct and indirect links between genes and user-supplied disease/phenotype terms, is robustly strengthened by the information found in MalaCards. The indirect mode benefits from GeneCards' diverse gene-to-gene relationships, including SuperPaths-integrated biological pathways from 12 information sources. We are currently adding an important information layer in the form of "disease SuperPaths", generated from the gene-disease matrix by an algorithm similar to that previously employed for biological pathway unification. This allows the discovery of novel gene-disease and disease-disease relationships. The advent of whole genome sequencing necessitates capacities to go beyond protein coding genes. GeneCards is highly useful in this respect, as it also addresses 101,976 non-protein-coding RNA genes. In a more recent development, we are currently adding an inclusive map of regulatory elements and their inferred target genes, generated by integration from 4 resources. MalaCards provides a rich big-data scaffold for in silico biomedical discovery within the gene-disease universe. VarElect, which depends significantly on both GeneCards and MalaCards power, is a potent tool for supporting the interpretation of wet-lab experiments, notably NGS analyses of disease. The GeneCards suite has thus transcended its 2-decade role in biomedical research, maturing into a key player in clinical investigation.

  17. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.

    PubMed

    Suo, Chen; Hrydziuszko, Olga; Lee, Donghwan; Pramana, Setia; Saputra, Dhany; Joshi, Himanshu; Calza, Stefano; Pawitan, Yudi

    2015-08-15

    Genome and transcriptome analyses can be used to explore cancers comprehensively, and it is increasingly common to have multiple omics data measured from each individual. Furthermore, there are rich functional data such as predicted impact of mutations on protein coding and gene/protein networks. However, integration of the complex information across the different omics and functional data is still challenging. Clinical validation, particularly based on patient outcomes such as survival, is important for assessing the relevance of the integrated information and for comparing different procedures. An analysis pipeline is built for integrating genomic and transcriptomic alterations from whole-exome and RNA sequence data and functional data from protein function prediction and gene interaction networks. The method accumulates evidence for the functional implications of mutated potential driver genes found within and across patients. A driver-gene score (DGscore) is developed to capture the cumulative effect of such genes. To contribute to the score, a gene has to be frequently mutated, with high or moderate mutational impact at protein level, exhibiting an extreme expression and functionally linked to many differentially expressed neighbors in the functional gene network. The pipeline is applied to 60 matched tumor and normal samples of the same patient from The Cancer Genome Atlas breast-cancer project. In clinical validation, patients with high DGscores have worse survival than those with low scores (P = 0.001). Furthermore, the DGscore outperforms the established expression-based signatures MammaPrint and PAM50 in predicting patient survival. In conclusion, integration of mutation, expression and functional data allows identification of clinically relevant potential driver genes in cancer. The documented pipeline including annotated sample scripts can be found in http://fafner.meb.ki.se/biostatwiki/driver-genes/. yudi.pawitan@ki.se Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.

  19. Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots.

    PubMed

    Özsu, Nesibe; Monteiro, Antónia

    2017-10-16

    One hypothesis surrounding the origin of novel traits is that they originate from the co-option of pre-existing genes or larger gene regulatory networks into novel developmental contexts. Insights into a trait's evolutionary origins can, thus, be gained via identification of the genes underlying trait development, and exploring whether those genes also function in other developmental contexts. Here we investigate the set of genes associated with the development of eyespot color patterns, a trait that originated once within the Nymphalid family of butterflies. Although several genes associated with eyespot development have been identified, the eyespot gene regulatory network remains largely unknown. In this study, next-generation sequencing and transcriptome analyses were used to identify a large set of genes associated with eyespot development of Bicyclus anynana butterflies, at 3-6 h after pupation, prior to the differentiation of the color rings. Eyespot-associated genes were identified by comparing the transcriptomes of homologous micro-dissected wing tissues that either develop or do not develop eyespots in wild-type and a mutant line of butterflies, Spotty, with extra eyespots. Overall, 186 genes were significantly up and down-regulated in wing tissues that develop eyespots compared to wing tissues that do not. Many of the differentially expressed genes have yet to be annotated. New signaling pathways, including the Toll, Fibroblast Growth Factor (FGF), extracellular signal-regulated kinase (ERK) and/or Jun N-terminal kinase (JNK) signaling pathways are associated for the first time with eyespot development. In addition, several genes involved in wound healing and calcium signaling were also found to be associated with eyespots. Overall, this study provides the identity of many new genes and signaling pathways associated with eyespots, and suggests that the ancient wound healing gene regulatory network may have been co-opted to cells at the center of the pattern to aid in eyespot origins. New transcription factors that may be providing different identities to distinct wing sectors, and genes with sexually dimorphic expression in the eyespots were also identified.

  20. Comparative RNA-Seq based dissection of the regulatory networks and environmental stimuli underlying Vibrio parahaemolyticus gene expression during infection

    PubMed Central

    Livny, Jonathan; Zhou, Xiaohui; Mandlik, Anjali; Hubbard, Troy; Davis, Brigid M.; Waldor, Matthew K.

    2014-01-01

    Vibrio parahaemolyticus is the leading worldwide cause of seafood-associated gastroenteritis, yet little is known regarding its intraintestinal gene expression or physiology. To date, in vivo analyses have focused on identification and characterization of virulence factors—e.g. a crucial Type III secretion system (T3SS2)—rather than genome-wide analyses of in vivo biology. Here, we used RNA-Seq to profile V. parahaemolyticus gene expression in infected infant rabbits, which mimic human infection. Comparative transcriptomic analysis of V. parahaemolyticus isolated from rabbit intestines and from several laboratory conditions enabled identification of mRNAs and sRNAs induced during infection and of regulatory factors that likely control them. More than 12% of annotated V. parahaemolyticus genes are differentially expressed in the intestine, including the genes of T3SS2, which are likely induced by bile-mediated activation of the transcription factor VtrB. Our analyses also suggest that V. parahaemolyticus has access to glucose or other preferred carbon sources in vivo, but that iron is inconsistently available. The V. parahaemolyticus transcriptional response to in vivo growth is far more widespread than and largely distinct from that of V. cholerae, likely due to the distinct ways in which these diarrheal pathogens interact with and modulate the environment in the small intestine. PMID:25262354

  1. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks

    PubMed Central

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD. PMID:29262568

  2. Prioritizing chronic obstructive pulmonary disease (COPD) candidate genes in COPD-related networks.

    PubMed

    Zhang, Yihua; Li, Wan; Feng, Yuyan; Guo, Shanshan; Zhao, Xilei; Wang, Yahui; He, Yuehan; He, Weiming; Chen, Lina

    2017-11-28

    Chronic obstructive pulmonary disease (COPD) is a multi-factor disease, which could be caused by many factors, including disturbances of metabolism and protein-protein interactions (PPIs). In this paper, a weighted COPD-related metabolic network and a weighted COPD-related PPI network were constructed base on COPD disease genes and functional information. Candidate genes in these weighted COPD-related networks were prioritized by making use of a gene prioritization method, respectively. Literature review and functional enrichment analysis of the top 100 genes in these two networks suggested the correlation of COPD and these genes. The performance of our gene prioritization method was superior to that of ToppGene and ToppNet for genes from the COPD-related metabolic network or the COPD-related PPI network after assessing using leave-one-out cross-validation, literature validation and functional enrichment analysis. The top-ranked genes prioritized from COPD-related metabolic and PPI networks could promote the better understanding about the molecular mechanism of this disease from different perspectives. The top 100 genes in COPD-related metabolic network or COPD-related PPI network might be potential markers for the diagnosis and treatment of COPD.

  3. Dissecting the Calcium-Induced Differentiation of Human Primary Keratinocytes Stem Cells by Integrative and Structural Network Analyses

    PubMed Central

    Toufighi, Kiana; Yang, Jae-Seong; Luis, Nuno Miguel; Aznar Benitah, Salvador; Lehner, Ben; Serrano, Luis; Kiel, Christina

    2015-01-01

    The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55%) are composed of non-dynamic and dynamic gene products (‘di-chromatic’), 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation. PMID:25946651

  4. Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse.

    PubMed

    Xie, Zhihui; Li, Jing; Baker, Jonathan; Eagleson, Kathie L; Coba, Marcelo P; Levitt, Pat

    2016-12-15

    Atypical synapse development and plasticity are implicated in many neurodevelopmental disorders (NDDs). NDD-associated, high-confidence risk genes have been identified, yet little is known about functional relationships at the level of protein-protein interactions, which are the dominant molecular bases responsible for mediating circuit development. Proteomics in three independent developing neocortical synaptosomal preparations identified putative interacting proteins of the ligand-activated MET receptor tyrosine kinase, an autism risk gene that mediates synapse development. The candidates were translated into interactome networks and analyzed bioinformatically. Additionally, three independent quantitative proximity ligation assays in cultured neurons and four independent immunoprecipitation analyses of synaptosomes validated protein interactions. Approximately 11% (8/72) of MET-interacting proteins, including SHANK3, SYNGAP1, and GRIN2B, are associated with NDDs. Proteins in the MET interactome were translated into a novel MET interactome network based on human protein-protein interaction databases. High-confidence genes from different NDD datasets that encode synaptosomal proteins were analyzed for being enriched in MET interactome proteins. This was found for autism but not schizophrenia, bipolar disorder, major depressive disorder, or attention-deficit/hyperactivity disorder. There is correlated gene expression between MET and its interactive partners in developing human temporal and visual neocortices but not with highly expressed genes that are not in the interactome. Proximity ligation assays and biochemical analyses demonstrate that MET-protein partner interactions are dynamically regulated by receptor activation. The results provide a novel molecular framework for deciphering the functional relations of key regulators of synaptogenesis that contribute to both typical cortical development and to NDDs. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Gene networks and toxicity pathways induced by acute cadmium exposure in adult largemouth bass (Micropterus salmoides).

    PubMed

    Mehinto, Alvine C; Prucha, Melinda S; Colli-Dula, Reyna C; Kroll, Kevin J; Lavelle, Candice M; Barber, David S; Vulpe, Christopher D; Denslow, Nancy D

    2014-07-01

    Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20μg/kg of cadmium chloride (mean exposure level - 2.6μg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri Net modelling and simulation.

    PubMed

    Marwan, Wolfgang; Sujatha, Arumugam; Starostzik, Christine

    2005-10-21

    We reconstruct the regulatory network controlling commitment and sporulation of Physarum polycephalum from experimental results using a hierarchical Petri Net-based modelling and simulation framework. The stochastic Petri Net consistently describes the structure and simulates the dynamics of the molecular network as analysed by genetic, biochemical and physiological experiments within a single coherent model. The Petri Net then is extended to simulate time-resolved somatic complementation experiments performed by mixing the cytoplasms of mutants altered in the sporulation response, to systematically explore the network structure and to probe its dynamics. This reverse engineering approach presumably can be employed to explore other molecular or genetic signalling systems where the activity of genes or their products can be experimentally controlled in a time-resolved manner.

  7. Evaluation of a Partial Genome Screening of Two Asthma Susceptibility Regions Using Bayesian Network Based Bayesian Multilevel Analysis of Relevance

    PubMed Central

    Antal, Péter; Kiszel, Petra Sz.; Gézsi, András; Hadadi, Éva; Virág, Viktor; Hajós, Gergely; Millinghoffer, András; Nagy, Adrienne; Kiss, András; Semsei, Ágnes F.; Temesi, Gergely; Melegh, Béla; Kisfali, Péter; Széll, Márta; Bikov, András; Gálffy, Gabriella; Tamási, Lilla; Falus, András; Szalai, Csaba

    2012-01-01

    Genetic studies indicate high number of potential factors related to asthma. Based on earlier linkage analyses we selected the 11q13 and 14q22 asthma susceptibility regions, for which we designed a partial genome screening study using 145 SNPs in 1201 individuals (436 asthmatic children and 765 controls). The results were evaluated with traditional frequentist methods and we applied a new statistical method, called Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA). This method uses Bayesian network representation to provide detailed characterization of the relevance of factors, such as joint significance, the type of dependency, and multi-target aspects. We estimated posteriors for these relations within the Bayesian statistical framework, in order to estimate the posteriors whether a variable is directly relevant or its association is only mediated. With frequentist methods one SNP (rs3751464 in the FRMD6 gene) provided evidence for an association with asthma (OR = 1.43(1.2–1.8); p = 3×10−4). The possible role of the FRMD6 gene in asthma was also confirmed in an animal model and human asthmatics. In the BN-BMLA analysis altogether 5 SNPs in 4 genes were found relevant in connection with asthma phenotype: PRPF19 on chromosome 11, and FRMD6, PTGER2 and PTGDR on chromosome 14. In a subsequent step a partial dataset containing rhinitis and further clinical parameters was used, which allowed the analysis of relevance of SNPs for asthma and multiple targets. These analyses suggested that SNPs in the AHNAK and MS4A2 genes were indirectly associated with asthma. This paper indicates that BN-BMLA explores the relevant factors more comprehensively than traditional statistical methods and extends the scope of strong relevance based methods to include partial relevance, global characterization of relevance and multi-target relevance. PMID:22432035

  8. Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.).

    PubMed

    Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Khan, Yusuf; Parida, Swarup Kumar; Prasad, Manoj

    2014-01-01

    WD40 proteins play a crucial role in diverse protein-protein interactions by acting as scaffolding molecules and thus assisting in the proper activity of proteins. Hence, systematic characterization and expression profiling of these WD40 genes in foxtail millet would enable us to understand the networks of WD40 proteins and their biological processes and gene functions. In the present study, a genome-wide survey was conducted and 225 potential WD40 genes were identified. Phylogenetic analysis categorized the WD40 proteins into 5 distinct sub-families (I-V). Gene Ontology annotation revealed the biological roles of the WD40 proteins along with its cellular components and molecular functions. In silico comparative mapping with sorghum, maize and rice demonstrated the orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of WD40 genes. Estimation of synonymous and non-synonymous substitution rates revealed its evolutionary significance in terms of gene-duplication and divergence. Expression profiling against abiotic stresses provided novel insights into specific and/or overlapping expression patterns of SiWD40 genes. Homology modeling enabled three-dimensional structure prediction was performed to understand the molecular functions of WD40 proteins. Although, recent findings had shown the importance of WD40 domains in acting as hubs for cellular networks during many biological processes, it has invited a lesser research attention unlike other common domains. Being a most promiscuous interactors, WD40 domains are versatile in mediating critical cellular functions and hence this genome-wide study especially in the model crop foxtail millet would serve as a blue-print for functional characterization of WD40s in millets and bioenergy grass species. In addition, the present analyses would also assist the research community in choosing the candidate WD40s for comprehensive studies towards crop improvement of millets and biofuel grasses.

  9. Genome-Wide Investigation and Expression Analyses of WD40 Protein Family in the Model Plant Foxtail Millet (Setaria italica L.)

    PubMed Central

    Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Khan, Yusuf; Parida, Swarup Kumar; Prasad, Manoj

    2014-01-01

    WD40 proteins play a crucial role in diverse protein-protein interactions by acting as scaffolding molecules and thus assisting in the proper activity of proteins. Hence, systematic characterization and expression profiling of these WD40 genes in foxtail millet would enable us to understand the networks of WD40 proteins and their biological processes and gene functions. In the present study, a genome-wide survey was conducted and 225 potential WD40 genes were identified. Phylogenetic analysis categorized the WD40 proteins into 5 distinct sub-families (I–V). Gene Ontology annotation revealed the biological roles of the WD40 proteins along with its cellular components and molecular functions. In silico comparative mapping with sorghum, maize and rice demonstrated the orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of WD40 genes. Estimation of synonymous and non-synonymous substitution rates revealed its evolutionary significance in terms of gene-duplication and divergence. Expression profiling against abiotic stresses provided novel insights into specific and/or overlapping expression patterns of SiWD40 genes. Homology modeling enabled three-dimensional structure prediction was performed to understand the molecular functions of WD40 proteins. Although, recent findings had shown the importance of WD40 domains in acting as hubs for cellular networks during many biological processes, it has invited a lesser research attention unlike other common domains. Being a most promiscuous interactors, WD40 domains are versatile in mediating critical cellular functions and hence this genome-wide study especially in the model crop foxtail millet would serve as a blue-print for functional characterization of WD40s in millets and bioenergy grass species. In addition, the present analyses would also assist the research community in choosing the candidate WD40s for comprehensive studies towards crop improvement of millets and biofuel grasses. PMID:24466268

  10. Next generation of network medicine: interdisciplinary signaling approaches.

    PubMed

    Korcsmaros, Tamas; Schneider, Maria Victoria; Superti-Furga, Giulio

    2017-02-20

    In the last decade, network approaches have transformed our understanding of biological systems. Network analyses and visualizations have allowed us to identify essential molecules and modules in biological systems, and improved our understanding of how changes in cellular processes can lead to complex diseases, such as cancer, infectious and neurodegenerative diseases. "Network medicine" involves unbiased large-scale network-based analyses of diverse data describing interactions between genes, diseases, phenotypes, drug targets, drug transport, drug side-effects, disease trajectories and more. In terms of drug discovery, network medicine exploits our understanding of the network connectivity and signaling system dynamics to help identify optimal, often novel, drug targets. Contrary to initial expectations, however, network approaches have not yet delivered a revolution in molecular medicine. In this review, we propose that a key reason for the limited impact, so far, of network medicine is a lack of quantitative multi-disciplinary studies involving scientists from different backgrounds. To support this argument, we present existing approaches from structural biology, 'omics' technologies (e.g., genomics, proteomics, lipidomics) and computational modeling that point towards how multi-disciplinary efforts allow for important new insights. We also highlight some breakthrough studies as examples of the potential of these approaches, and suggest ways to make greater use of the power of interdisciplinarity. This review reflects discussions held at an interdisciplinary signaling workshop which facilitated knowledge exchange from experts from several different fields, including in silico modelers, computational biologists, biochemists, geneticists, molecular and cell biologists as well as cancer biologists and pharmacologists.

  11. A Comprehensive Analysis of Nuclear-Encoded Mitochondrial Genes in Schizophrenia.

    PubMed

    Gonçalves, Vanessa F; Cappi, Carolina; Hagen, Christian M; Sequeira, Adolfo; Vawter, Marquis P; Derkach, Andriy; Zai, Clement C; Hedley, Paula L; Bybjerg-Grauholm, Jonas; Pouget, Jennie G; Cuperfain, Ari B; Sullivan, Patrick F; Christiansen, Michael; Kennedy, James L; Sun, Lei

    2018-05-01

    The genetic risk factors of schizophrenia (SCZ), a severe psychiatric disorder, are not yet fully understood. Multiple lines of evidence suggest that mitochondrial dysfunction may play a role in SCZ, but comprehensive association studies are lacking. We hypothesized that variants in nuclear-encoded mitochondrial genes influence susceptibility to SCZ. We conducted gene-based and gene-set analyses using summary association results from the Psychiatric Genomics Consortium Schizophrenia Phase 2 (PGC-SCZ2) genome-wide association study comprising 35,476 cases and 46,839 control subjects. We applied the MAGMA method to three sets of nuclear-encoded mitochondrial genes: oxidative phosphorylation genes, other nuclear-encoded mitochondrial genes, and genes involved in nucleus-mitochondria crosstalk. Furthermore, we conducted a replication study using the iPSYCH SCZ sample of 2290 cases and 21,621 control subjects. In the PGC-SCZ2 sample, 1186 mitochondrial genes were analyzed, among which 159 had p values < .05 and 19 remained significant after multiple testing correction. A meta-analysis of 818 genes combining the PGC-SCZ2 and iPSYCH samples resulted in 104 nominally significant and nine significant genes, suggesting a polygenic model for the nuclear-encoded mitochondrial genes. Gene-set analysis, however, did not show significant results. In an in silico protein-protein interaction network analysis, 14 mitochondrial genes interacted directly with 158 SCZ risk genes identified in PGC-SCZ2 (permutation p = .02), and aldosterone signaling in epithelial cells and mitochondrial dysfunction pathways appeared to be overrepresented in this network of mitochondrial and SCZ risk genes. This study provides evidence that specific aspects of mitochondrial function may play a role in SCZ, but we did not observe its broad involvement even using a large sample. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Muscle myeloid type I interferon gene expression may predict therapeutic responses to rituximab in myositis patients.

    PubMed

    Nagaraju, Kanneboyina; Ghimbovschi, Svetlana; Rayavarapu, Sree; Phadke, Aditi; Rider, Lisa G; Hoffman, Eric P; Miller, Frederick W

    2016-09-01

    To identify muscle gene expression patterns that predict rituximab responses and assess the effects of rituximab on muscle gene expression in PM and DM. In an attempt to understand the molecular mechanism of response and non-response to rituximab therapy, we performed Affymetrix gene expression array analyses on muscle biopsy specimens taken before and after rituximab therapy from eight PM and two DM patients in the Rituximab in Myositis study. We also analysed selected muscle-infiltrating cell phenotypes in these biopsies by immunohistochemical staining. Partek and Ingenuity pathway analyses assessed the gene pathways and networks. Myeloid type I IFN signature genes were expressed at higher levels at baseline in the skeletal muscle of rituximab responders than in non-responders, whereas classic non-myeloid IFN signature genes were expressed at higher levels in non-responders at baseline. Also, rituximab responders have a greater reduction of the myeloid and non-myeloid type I IFN signatures than non-responders. The decrease in the type I IFN signature following administration of rituximab may be associated with the decreases in muscle-infiltrating CD19(+) B cells and CD68(+) macrophages in responders. Our findings suggest that high levels of myeloid type I IFN gene expression in skeletal muscle predict responses to rituximab in PM/DM and that rituximab responders also have a greater decrease in the expression of these genes. These data add further evidence to recent studies defining the type I IFN signature as both a predictor of therapeutic responses and a biomarker of myositis disease activity. Published by Oxford University Press on behalf British Society for Rheumatology 2016. This work is written by US Government employees and is in the public domain in the US.

  13. Genome-Wide Analyses of the NAC Transcription Factor Gene Family in Pepper (Capsicum annuum L.): Chromosome Location, Phylogeny, Structure, Expression Patterns, Cis-Elements in the Promoter, and Interaction Network

    PubMed Central

    Diao, Weiping; Snyder, John C.; Liu, Jinbing; Pan, Baogui; Guo, Guangjun; Ge, Wei; Dawood, Mohammad Hasan Salman Ali

    2018-01-01

    The NAM, ATAF1/2, and CUC2 (NAC) transcription factors form a large plant-specific gene family, which is involved in the regulation of tissue development in response to biotic and abiotic stress. To date, there have been no comprehensive studies investigating chromosomal location, gene structure, gene phylogeny, conserved motifs, or gene expression of NAC in pepper (Capsicum annuum L.). The recent release of the complete genome sequence of pepper allowed us to perform a genome-wide investigation of Capsicum annuum L. NAC (CaNAC) proteins. In the present study, a comprehensive analysis of the CaNAC gene family in pepper was performed, and a total of 104 CaNAC genes were identified. Genome mapping analysis revealed that CaNAC genes were enriched on four chromosomes (chromosomes 1, 2, 3, and 6). In addition, phylogenetic analysis of the NAC domains from pepper, potato, Arabidopsis, and rice showed that CaNAC genes could be clustered into three groups (I, II, and III). Group III, which contained 24 CaNAC genes, was exclusive to the Solanaceae plant family. Gene structure and protein motif analyses showed that these genes were relatively conserved within each subgroup. The number of introns in CaNAC genes varied from 0 to 8, with 83 (78.9%) of CaNAC genes containing two or less introns. Promoter analysis confirmed that CaNAC genes are involved in pepper growth, development, and biotic or abiotic stress responses. Further, the expression of 22 selected CaNAC genes in response to seven different biotic and abiotic stresses [salt, heat shock, drought, Phytophthora capsici, abscisic acid, salicylic acid (SA), and methyl jasmonate (MeJA)] was evaluated by quantitative RT-PCR to determine their stress-related expression patterns. Several putative stress-responsive CaNAC genes, including CaNAC72 and CaNAC27, which are orthologs of the known stress-responsive Arabidopsis gene ANAC055 and potato gene StNAC30, respectively, were highly regulated by treatment with different types of stress. Our results also showed that CaNAC36 plays an important role in the interaction network, interacting with 48 genes. Most of these genes are in the mitogen-activated protein kinase (MAPK) family. Taken together, our results provide a platform for further studies to identify the biological functions of CaNAC genes. PMID:29596349

  14. The application of artificial intelligence to microarray data: identification of a novel gene signature to identify bladder cancer progression.

    PubMed

    Catto, James W F; Abbod, Maysam F; Wild, Peter J; Linkens, Derek A; Pilarsky, Christian; Rehman, Ishtiaq; Rosario, Derek J; Denzinger, Stefan; Burger, Maximilian; Stoehr, Robert; Knuechel, Ruth; Hartmann, Arndt; Hamdy, Freddie C

    2010-03-01

    New methods for identifying bladder cancer (BCa) progression are required. Gene expression microarrays can reveal insights into disease biology and identify novel biomarkers. However, these experiments produce large datasets that are difficult to interpret. To develop a novel method of microarray analysis combining two forms of artificial intelligence (AI): neurofuzzy modelling (NFM) and artificial neural networks (ANN) and validate it in a BCa cohort. We used AI and statistical analyses to identify progression-related genes in a microarray dataset (n=66 tumours, n=2800 genes). The AI-selected genes were then investigated in a second cohort (n=262 tumours) using immunohistochemistry. We compared the accuracy of AI and statistical approaches to identify tumour progression. AI identified 11 progression-associated genes (odds ratio [OR]: 0.70; 95% confidence interval [CI], 0.56-0.87; p=0.0004), and these were more discriminate than genes chosen using statistical analyses (OR: 1.24; 95% CI, 0.96-1.60; p=0.09). The expression of six AI-selected genes (LIG3, FAS, KRT18, ICAM1, DSG2, and BRCA2) was determined using commercial antibodies and successfully identified tumour progression (concordance index: 0.66; log-rank test: p=0.01). AI-selected genes were more discriminate than pathologic criteria at determining progression (Cox multivariate analysis: p=0.01). Limitations include the use of statistical correlation to identify 200 genes for AI analysis and that we did not compare regression identified genes with immunohistochemistry. AI and statistical analyses use different techniques of inference to determine gene-phenotype associations and identify distinct prognostic gene signatures that are equally valid. We have identified a prognostic gene signature whose members reflect a variety of carcinogenic pathways that could identify progression in non-muscle-invasive BCa. 2009 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  15. Unravelling the effects of mechanical physiological conditioning on cardiac adipose tissue-derived progenitor cells in vitro and in silico.

    PubMed

    Llucià-Valldeperas, Aida; Bragós, Ramon; Soler-Botija, Carolina; Roura, Santiago; Gálvez-Montón, Carolina; Prat-Vidal, Cristina; Perea-Gil, Isaac; Bayes-Genis, Antoni

    2018-01-11

    Mechanical conditioning is incompletely characterized for stimulating therapeutic cells within the physiological range. We sought to unravel the mechanism of action underlying mechanical conditioning of adipose tissue-derived progenitor cells (ATDPCs), both in vitro and in silico. Cardiac ATDPCs, grown on 3 different patterned surfaces, were mechanically stretched for 7 days at 1 Hz. A custom-designed, magnet-based, mechanical stimulator device was developed to apply ~10% mechanical stretching to monolayer cell cultures. Gene and protein analyses were performed for each cell type and condition. Cell supernatants were also collected to analyze secreted proteins and construct an artificial neural network. Gene and protein modulations were different for each surface pattern. After mechanostimulation, cardiac ATDPCs increased the expression of structural genes and there was a rising trend on cardiac transcription factors. Finally, secretome analyses revealed upregulation of proteins associated with both myocardial infarction and cardiac regeneration, such as regulators of the immune response, angiogenesis or cell adhesion. To conclude, mechanical conditioning of cardiac ATDPCs enhanced the expression of early and late cardiac genes in vitro. Additionally, in silico analyses of secreted proteins showed that mechanical stimulation of cardiac ATDPCs was highly associated with myocardial infarction and repair.

  16. Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.

    PubMed

    Rubiolo, Mariano; Milone, Diego H; Stegmayer, Georgina

    2015-01-01

    Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.

  17. Gene expression atlas of pigeonpea and its application to gain insights into genes associated with pollen fertility implicated in seed formation.

    PubMed

    Pazhamala, Lekha T; Purohit, Shilp; Saxena, Rachit K; Garg, Vanika; Krishnamurthy, L; Verdier, Jerome; Varshney, Rajeev K

    2017-04-01

    Pigeonpea (Cajanus cajan) is an important grain legume of the semi-arid tropics, mainly used for its protein rich seeds. To link the genome sequence information with agronomic traits resulting from specific developmental processes, a Cajanus cajan gene expression atlas (CcGEA) was developed using the Asha genotype. Thirty tissues/organs representing developmental stages from germination to senescence were used to generate 590.84 million paired-end RNA-Seq data. The CcGEA revealed a compendium of 28 793 genes with differential, specific, spatio-temporal and constitutive expression during various stages of development in different tissues. As an example to demonstrate the application of the CcGEA, a network of 28 flower-related genes analysed for cis-regulatory elements and splicing variants has been identified. In addition, expression analysis of these candidate genes in male sterile and male fertile genotypes suggested their critical role in normal pollen development leading to seed formation. Gene network analysis also identified two regulatory genes, a pollen-specific SF3 and a sucrose-proton symporter, that could have implications for improvement of agronomic traits such as seed production and yield. In conclusion, the CcGEA provides a valuable resource for pigeonpea to identify candidate genes involved in specific developmental processes and to understand the well-orchestrated growth and developmental process in this resilient crop. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Detection of changes in gene regulatory patterns, elicited by perturbations of the Hsp90 molecular chaperone complex, by visualizing multiple experiments with an animation

    PubMed Central

    2011-01-01

    Background To make sense out of gene expression profiles, such analyses must be pushed beyond the mere listing of affected genes. For example, if a group of genes persistently display similar changes in expression levels under particular experimental conditions, and the proteins encoded by these genes interact and function in the same cellular compartments, this could be taken as very strong indicators for co-regulated protein complexes. One of the key requirements is having appropriate tools to detect such regulatory patterns. Results We have analyzed the global adaptations in gene expression patterns in the budding yeast when the Hsp90 molecular chaperone complex is perturbed either pharmacologically or genetically. We integrated these results with publicly accessible expression, protein-protein interaction and intracellular localization data. But most importantly, all experimental conditions were simultaneously and dynamically visualized with an animation. This critically facilitated the detection of patterns of gene expression changes that suggested underlying regulatory networks that a standard analysis by pairwise comparison and clustering could not have revealed. Conclusions The results of the animation-assisted detection of changes in gene regulatory patterns make predictions about the potential roles of Hsp90 and its co-chaperone p23 in regulating whole sets of genes. The simultaneous dynamic visualization of microarray experiments, represented in networks built by integrating one's own experimental with publicly accessible data, represents a powerful discovery tool that allows the generation of new interpretations and hypotheses. PMID:21672238

  19. Epigenetic determinants of ovarian clear cell carcinoma biology

    PubMed Central

    Yamaguchi, Ken; Huang, Zhiqing; Matsumura, Noriomi; Mandai, Masaki; Okamoto, Takako; Baba, Tsukasa; Konishi, Ikuo; Berchuck, Andrew; Murphy, Susan K.

    2015-01-01

    Targeted approaches have revealed frequent epigenetic alterations in ovarian cancer, but the scope and relation of these changes to histologic subtype of disease is unclear. Genome-wide methylation and expression data for 14 clear cell carcinoma (CCC), 32 non-CCC, and 4 corresponding normal cell lines were generated to determine how methylation profiles differ between cells of different histological derivations of ovarian cancer. Consensus clustering showed that CCC is epigenetically distinct. Inverse relationships between expression and methylation in CCC were identified, suggesting functional regulation by methylation, and included 22 hypomethylated (UM) genes and 276 hypermethylated (HM) genes. Categorical and pathway analyses indicated that the CCC-specific UM genes were involved in response to stress and many contain hepatocyte nuclear factor (HNF) 1 binding sites, while the CCC-specific HM genes included members of the estrogen receptor alpha (ERalpha) network and genes involved in tumor development. We independently validated the methylation status of 17 of these pathway-specific genes, and confirmed increased expression of HNF1 network genes and repression of ERalpha pathway genes in CCC cell lines and primary cancer tissues relative to non-CCC specimens. Treatment of three CCC cell lines with the demethylating agent Decitabine significantly induced expression for all five genes analyzed. Coordinate changes in pathway expression were confirmed using two primary ovarian cancer datasets (p<0.0001 for both). Our results suggest that methylation regulates specific pathways and biological functions in CCC, with hypomethylation influencing the characteristic biology of the disease while hypermethylation contributes to the carcinogenic process. PMID:24382740

  20. Constructing an integrated gene similarity network for the identification of disease genes.

    PubMed

    Tian, Zhen; Guo, Maozu; Wang, Chunyu; Xing, LinLin; Wang, Lei; Zhang, Yin

    2017-09-20

    Discovering novel genes that are involved human diseases is a challenging task in biomedical research. In recent years, several computational approaches have been proposed to prioritize candidate disease genes. Most of these methods are mainly based on protein-protein interaction (PPI) networks. However, since these PPI networks contain false positives and only cover less half of known human genes, their reliability and coverage are very low. Therefore, it is highly necessary to fuse multiple genomic data to construct a credible gene similarity network and then infer disease genes on the whole genomic scale. We proposed a novel method, named RWRB, to infer causal genes of interested diseases. First, we construct five individual gene (protein) similarity networks based on multiple genomic data of human genes. Then, an integrated gene similarity network (IGSN) is reconstructed based on similarity network fusion (SNF) method. Finally, we employee the random walk with restart algorithm on the phenotype-gene bilayer network, which combines phenotype similarity network, IGSN as well as phenotype-gene association network, to prioritize candidate disease genes. We investigate the effectiveness of RWRB through leave-one-out cross-validation methods in inferring phenotype-gene relationships. Results show that RWRB is more accurate than state-of-the-art methods on most evaluation metrics. Further analysis shows that the success of RWRB is benefited from IGSN which has a wider coverage and higher reliability comparing with current PPI networks. Moreover, we conduct a comprehensive case study for Alzheimer's disease and predict some novel disease genes that supported by literature. RWRB is an effective and reliable algorithm in prioritizing candidate disease genes on the genomic scale. Software and supplementary information are available at http://nclab.hit.edu.cn/~tianzhen/RWRB/ .

  1. Transcriptional regulatory networks controlling woolliness in peach in response to preharvest gibberellin application and cold storage.

    PubMed

    Pegoraro, Camila; Tadiello, Alice; Girardi, César L; Chaves, Fábio C; Quecini, Vera; de Oliveira, Antonio Costa; Trainotti, Livio; Rombaldi, Cesar Valmor

    2015-11-18

    Postharvest fruit conservation relies on low temperatures and manipulations of hormone metabolism to maintain sensory properties. Peaches are susceptible to chilling injuries, such as 'woolliness' that is caused by juice loss leading to a 'wooly' fruit texture. Application of gibberellic acid at the initial stages of pit hardening impairs woolliness incidence, however the mechanisms controlling the response remain unknown. We have employed genome wide transcriptional profiling to investigate the effects of gibberellic acid application and cold storage on harvested peaches. Approximately half of the investigated genes exhibited significant differential expression in response to the treatments. Cellular and developmental process gene ontologies were overrepresented among the differentially regulated genes, whereas sequences in cell death and immune response categories were underrepresented. Gene set enrichment demonstrated a predominant role of cold storage in repressing the transcription of genes associated to cell wall metabolism. In contrast, genes involved in hormone responses exhibited a more complex transcriptional response, indicating an extensive network of crosstalk between hormone signaling and low temperatures. Time course transcriptional analyses demonstrate the large contribution of gene expression regulation on the biochemical changes leading to woolliness in peach. Overall, our results provide insights on the mechanisms controlling the complex phenotypes associated to postharvest textural changes in peach and suggest that hormone mediated reprogramming previous to pit hardening affects the onset of chilling injuries.

  2. Reverse engineering highlights potential principles of large gene regulatory network design and learning.

    PubMed

    Carré, Clément; Mas, André; Krouk, Gabriel

    2017-01-01

    Inferring transcriptional gene regulatory networks from transcriptomic datasets is a key challenge of systems biology, with potential impacts ranging from medicine to agronomy. There are several techniques used presently to experimentally assay transcription factors to target relationships, defining important information about real gene regulatory networks connections. These techniques include classical ChIP-seq, yeast one-hybrid, or more recently, DAP-seq or target technologies. These techniques are usually used to validate algorithm predictions. Here, we developed a reverse engineering approach based on mathematical and computer simulation to evaluate the impact that this prior knowledge on gene regulatory networks may have on training machine learning algorithms. First, we developed a gene regulatory networks-simulating engine called FRANK (Fast Randomizing Algorithm for Network Knowledge) that is able to simulate large gene regulatory networks (containing 10 4 genes) with characteristics of gene regulatory networks observed in vivo. FRANK also generates stable or oscillatory gene expression directly produced by the simulated gene regulatory networks. The development of FRANK leads to important general conclusions concerning the design of large and stable gene regulatory networks harboring scale free properties (built ex nihilo). In combination with supervised (accepting prior knowledge) support vector machine algorithm we (i) address biologically oriented questions concerning our capacity to accurately reconstruct gene regulatory networks and in particular we demonstrate that prior-knowledge structure is crucial for accurate learning, and (ii) draw conclusions to inform experimental design to performed learning able to solve gene regulatory networks in the future. By demonstrating that our predictions concerning the influence of the prior-knowledge structure on support vector machine learning capacity holds true on real data ( Escherichia coli K14 network reconstruction using network and transcriptomic data), we show that the formalism used to build FRANK can to some extent be a reasonable model for gene regulatory networks in real cells.

  3. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions

    PubMed Central

    Nayak, Renuka R.; Kearns, Michael; Spielman, Richard S.; Cheung, Vivian G.

    2009-01-01

    Genes interact in networks to orchestrate cellular processes. Analysis of these networks provides insights into gene interactions and functions. Here, we took advantage of normal variation in human gene expression to infer gene networks, which we constructed using correlations in expression levels of more than 8.5 million gene pairs in immortalized B cells from three independent samples. The resulting networks allowed us to identify biological processes and gene functions. Among the biological pathways, we found processes such as translation and glycolysis that co-occur in the same subnetworks. We predicted the functions of poorly characterized genes, including CHCHD2 and TMEM111, and provided experimental evidence that TMEM111 is part of the endoplasmic reticulum-associated secretory pathway. We also found that IFIH1, a susceptibility gene of type 1 diabetes, interacts with YES1, which plays a role in glucose transport. Furthermore, genes that predispose to the same diseases are clustered nonrandomly in the coexpression network, suggesting that networks can provide candidate genes that influence disease susceptibility. Therefore, our analysis of gene coexpression networks offers information on the role of human genes in normal and disease processes. PMID:19797678

  4. A Systematic Approach to Time-series Metabolite Profiling and RNA-seq Analysis of Chinese Hamster Ovary Cell Culture.

    PubMed

    Hsu, Han-Hsiu; Araki, Michihiro; Mochizuki, Masao; Hori, Yoshimi; Murata, Masahiro; Kahar, Prihardi; Yoshida, Takanobu; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-03-02

    Chinese hamster ovary (CHO) cells are the primary host used for biopharmaceutical protein production. The engineering of CHO cells to produce higher amounts of biopharmaceuticals has been highly dependent on empirical approaches, but recent high-throughput "omics" methods are changing the situation in a rational manner. Omics data analyses using gene expression or metabolite profiling make it possible to identify key genes and metabolites in antibody production. Systematic omics approaches using different types of time-series data are expected to further enhance understanding of cellular behaviours and molecular networks for rational design of CHO cells. This study developed a systematic method for obtaining and analysing time-dependent intracellular and extracellular metabolite profiles, RNA-seq data (enzymatic mRNA levels) and cell counts from CHO cell cultures to capture an overall view of the CHO central metabolic pathway (CMP). We then calculated correlation coefficients among all the profiles and visualised the whole CMP by heatmap analysis and metabolic pathway mapping, to classify genes and metabolites together. This approach provides an efficient platform to identify key genes and metabolites in CHO cell culture.

  5. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    PubMed

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We found that social recognition memory is consolidated through CREB-meditated gene expression in the hippocampus, medial prefrontal cortex, anterior cingulate cortex (ACC), and amygdala. Importantly, network analyses based on c-fos expression suggest that functional connectivity of these four brain regions with other brain regions is increased with time spent in social investigation toward the generation of brain networks to consolidate social recognition memory. Furthermore, our findings suggest that hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. Copyright © 2017 the authors 0270-6474/17/374103-14$15.00/0.

  6. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening.

    PubMed

    Ghan, Ryan; Petereit, Juli; Tillett, Richard L; Schlauch, Karen A; Toubiana, David; Fait, Aaron; Cramer, Grant R

    2017-05-30

    Wine grapes are important economically in many countries around the world. Defining the optimum time for grape harvest is a major challenge to the grower and winemaker. Berry skins are an important source of flavor, color and other quality traits in the ripening stage. Senescent-like processes such as chloroplast disorganization and cell death characterize the late ripening stage. To better understand the molecular and physiological processes involved in the late stages of berry ripening, RNA-seq analysis of the skins of seven wine grape cultivars (Cabernet Franc, Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay, Sauvignon Blanc and Semillon) was performed. RNA-seq analysis identified approximately 2000 common differentially expressed genes for all seven cultivars across four different berry sugar levels (20 to 26 °Brix). Network analyses, both a posteriori (standard) and a priori (gene co-expression network analysis), were used to elucidate transcriptional subnetworks and hub genes associated with traits in the berry skins of the late stages of berry ripening. These independent approaches revealed genes involved in photosynthesis, catabolism, and nucleotide metabolism. The transcript abundance of most photosynthetic genes declined with increasing sugar levels in the berries. The transcript abundance of other processes increased such as nucleic acid metabolism, chromosome organization and lipid catabolism. Weighted gene co-expression network analysis (WGCNA) identified 64 gene modules that were organized into 12 subnetworks of three modules or more and six higher order gene subnetworks. Some gene subnetworks were highly correlated with sugar levels and some subnetworks were highly enriched in the chloroplast and nucleus. The petal R package was utilized independently to construct a true small-world and scale-free complex gene co-expression network model. A subnetwork of 216 genes with the highest connectivity was elucidated, consistent with the module results from WGCNA. Hub genes in these subnetworks were identified including numerous members of the core circadian clock, RNA splicing, proteolysis and chromosome organization. An integrated model was constructed linking light sensing with alternative splicing, chromosome remodeling and the circadian clock. A common set of differentially expressed genes and gene subnetworks from seven different cultivars were examined in the skin of the late stages of grapevine berry ripening. A densely connected gene subnetwork was elucidated involving a complex interaction of berry senescent processes (autophagy), catabolism, the circadian clock, RNA splicing, proteolysis and epigenetic regulation. Hypotheses were induced from these data sets involving sugar accumulation, light, autophagy, epigenetic regulation, and fruit development. This work provides a better understanding of berry development and the transcriptional processes involved in the late stages of ripening.

  7. Application of the Gini correlation coefficient to infer regulatory relationships in transcriptome analysis.

    PubMed

    Ma, Chuang; Wang, Xiangfeng

    2012-09-01

    One of the computational challenges in plant systems biology is to accurately infer transcriptional regulation relationships based on correlation analyses of gene expression patterns. Despite several correlation methods that are applied in biology to analyze microarray data, concerns regarding the compatibility of these methods with the gene expression data profiled by high-throughput RNA transcriptome sequencing (RNA-Seq) technology have been raised. These concerns are mainly due to the fact that the distribution of read counts in RNA-Seq experiments is different from that of fluorescence intensities in microarray experiments. Therefore, a comprehensive evaluation of the existing correlation methods and, if necessary, introduction of novel methods into biology is appropriate. In this study, we compared four existing correlation methods used in microarray analysis and one novel method called the Gini correlation coefficient on previously published microarray-based and sequencing-based gene expression data in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). The comparisons were performed on more than 11,000 regulatory relationships in Arabidopsis, including 8,929 pairs of transcription factors and target genes. Our analyses pinpointed the strengths and weaknesses of each method and indicated that the Gini correlation can compensate for the shortcomings of the Pearson correlation, the Spearman correlation, the Kendall correlation, and the Tukey's biweight correlation. The Gini correlation method, with the other four evaluated methods in this study, was implemented as an R package named rsgcc that can be utilized as an alternative option for biologists to perform clustering analyses of gene expression patterns or transcriptional network analyses.

  8. Application of the Gini Correlation Coefficient to Infer Regulatory Relationships in Transcriptome Analysis[W][OA

    PubMed Central

    Ma, Chuang; Wang, Xiangfeng

    2012-01-01

    One of the computational challenges in plant systems biology is to accurately infer transcriptional regulation relationships based on correlation analyses of gene expression patterns. Despite several correlation methods that are applied in biology to analyze microarray data, concerns regarding the compatibility of these methods with the gene expression data profiled by high-throughput RNA transcriptome sequencing (RNA-Seq) technology have been raised. These concerns are mainly due to the fact that the distribution of read counts in RNA-Seq experiments is different from that of fluorescence intensities in microarray experiments. Therefore, a comprehensive evaluation of the existing correlation methods and, if necessary, introduction of novel methods into biology is appropriate. In this study, we compared four existing correlation methods used in microarray analysis and one novel method called the Gini correlation coefficient on previously published microarray-based and sequencing-based gene expression data in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). The comparisons were performed on more than 11,000 regulatory relationships in Arabidopsis, including 8,929 pairs of transcription factors and target genes. Our analyses pinpointed the strengths and weaknesses of each method and indicated that the Gini correlation can compensate for the shortcomings of the Pearson correlation, the Spearman correlation, the Kendall correlation, and the Tukey’s biweight correlation. The Gini correlation method, with the other four evaluated methods in this study, was implemented as an R package named rsgcc that can be utilized as an alternative option for biologists to perform clustering analyses of gene expression patterns or transcriptional network analyses. PMID:22797655

  9. From Gene Trees to a Dated Allopolyploid Network: Insights from the Angiosperm Genus Viola (Violaceae)

    PubMed Central

    Marcussen, Thomas; Heier, Lise; Brysting, Anne K.; Oxelman, Bengt; Jakobsen, Kjetill S.

    2015-01-01

    Allopolyploidization accounts for a significant fraction of speciation events in many eukaryotic lineages. However, existing phylogenetic and dating methods require tree-like topologies and are unable to handle the network-like phylogenetic relationships of lineages containing allopolyploids. No explicit framework has so far been established for evaluating competing network topologies, and few attempts have been made to date phylogenetic networks. We used a four-step approach to generate a dated polyploid species network for the cosmopolitan angiosperm genus Viola L. (Violaceae Batch.). The genus contains ca 600 species and both recent (neo-) and more ancient (meso-) polyploid lineages distributed over 16 sections. First, we obtained DNA sequences of three low-copy nuclear genes and one chloroplast region, from 42 species representing all 16 sections. Second, we obtained fossil-calibrated chronograms for each nuclear gene marker. Third, we determined the most parsimonious multilabeled genome tree and its corresponding network, resolved at the section (not the species) level. Reconstructing the “correct” network for a set of polyploids depends on recovering all homoeologs, i.e., all subgenomes, in these polyploids. Assuming the presence of Viola subgenome lineages that were not detected by the nuclear gene phylogenies (“ghost subgenome lineages”) significantly reduced the number of inferred polyploidization events. We identified the most parsimonious network topology from a set of five competing scenarios differing in the interpretation of homoeolog extinctions and lineage sorting, based on (i) fewest possible ghost subgenome lineages, (ii) fewest possible polyploidization events, and (iii) least possible deviation from expected ploidy as inferred from available chromosome counts of the involved polyploid taxa. Finally, we estimated the homoploid and polyploid speciation times of the most parsimonious network. Homoploid speciation times were estimated by coalescent analysis of gene tree node ages. Polyploid speciation times were estimated by comparing branch lengths and speciation rates of lineages with and without ploidy shifts. Our analyses recognize Viola as an old genus (crown age 31 Ma) whose evolutionary history has been profoundly affected by allopolyploidy. Between 16 and 21 allopolyploidizations are necessary to explain the diversification of the 16 major lineages (sections) of Viola, suggesting that allopolyploidy has accounted for a high percentage—between 67% and 88%—of the speciation events at this level. The theoretical and methodological approaches presented here for (i) constructing networks and (ii) dating speciation events within a network, have general applicability for phylogenetic studies of groups where allopolyploidization has occurred. They make explicit use of a hitherto underexplored source of ploidy information from chromosome counts to help resolve phylogenetic cases where incomplete sequence data hampers network inference. Importantly, the coalescent-based method used herein circumvents the assumption of tree-like evolution required by most techniques for dating speciation events. PMID:25281848

  10. SZDB: A Database for Schizophrenia Genetic Research

    PubMed Central

    Wu, Yong; Yao, Yong-Gang

    2017-01-01

    Abstract Schizophrenia (SZ) is a debilitating brain disorder with a complex genetic architecture. Genetic studies, especially recent genome-wide association studies (GWAS), have identified multiple variants (loci) conferring risk to SZ. However, how to efficiently extract meaningful biological information from bulk genetic findings of SZ remains a major challenge. There is a pressing need to integrate multiple layers of data from various sources, eg, genetic findings from GWAS, copy number variations (CNVs), association and linkage studies, gene expression, protein–protein interaction (PPI), co-expression, expression quantitative trait loci (eQTL), and Encyclopedia of DNA Elements (ENCODE) data, to provide a comprehensive resource to facilitate the translation of genetic findings into SZ molecular diagnosis and mechanism study. Here we developed the SZDB database (http://www.szdb.org/), a comprehensive resource for SZ research. SZ genetic data, gene expression data, network-based data, brain eQTL data, and SNP function annotation information were systematically extracted, curated and deposited in SZDB. In-depth analyses and systematic integration were performed to identify top prioritized SZ genes and enriched pathways. Multiple types of data from various layers of SZ research were systematically integrated and deposited in SZDB. In-depth data analyses and integration identified top prioritized SZ genes and enriched pathways. We further showed that genes implicated in SZ are highly co-expressed in human brain and proteins encoded by the prioritized SZ risk genes are significantly interacted. The user-friendly SZDB provides high-confidence candidate variants and genes for further functional characterization. More important, SZDB provides convenient online tools for data search and browse, data integration, and customized data analyses. PMID:27451428

  11. A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM.

    PubMed

    Xu, Guangru; Zhang, Minghui; Zhu, Hongxing; Xu, Jinhua

    2017-03-10

    To screen the gene signature for distinguishing patients with high risks from those with low-risks for colon cancer recurrence and predicting their prognosis. Five microarray datasets of colon cancer samples were collected from Gene Expression Omnibus database and one was obtained from The Cancer Genome Atlas (TCGA). After preprocessing, data in GSE17537 were analyzed using the Linear Models for Microarray data (LIMMA) method to identify the differentially expressed genes (DEGs). The DEGs further underwent PPI network-based neighborhood scoring and support vector machine (SVM) analyses to screen the feature genes associated with recurrence and prognosis, which were then validated by four datasets GSE38832, GSE17538, GSE28814 and TCGA using SVM and Cox regression analyses. A total of 1207 genes were identified as DEGs between recurrence and no-recurrence samples, including 726 downregulated and 481 upregulated genes. Using SVM analysis and five gene expression profile data confirmation, a 15-gene signature (HES5, ZNF417, GLRA2, OR8D2, HOXA7, FABP6, MUSK, HTR6, GRIP2, KLRK1, VEGFA, AKAP12, RHEB, NCRNA00152 and PMEPA1) were identified as a predictor of recurrence risk and prognosis for colon cancer patients. Our identified 15-gene signature may be useful to classify colon cancer patients with different prognosis and some genes in this signature may represent new therapeutic targets. Copyright © 2016. Published by Elsevier B.V.

  12. Topology association analysis in weighted protein interaction network for gene prioritization

    NASA Astrophysics Data System (ADS)

    Wu, Shunyao; Shao, Fengjing; Zhang, Qi; Ji, Jun; Xu, Shaojie; Sun, Rencheng; Sun, Gengxin; Du, Xiangjun; Sui, Yi

    2016-11-01

    Although lots of algorithms for disease gene prediction have been proposed, the weights of edges are rarely taken into account. In this paper, the strengths of topology associations between disease and essential genes are analyzed in weighted protein interaction network. Empirical analysis demonstrates that compared to other genes, disease genes are weakly connected with essential genes in protein interaction network. Based on this finding, a novel global distance measurement for gene prioritization with weighted protein interaction network is proposed in this paper. Positive and negative flow is allocated to disease and essential genes, respectively. Additionally network propagation model is extended for weighted network. Experimental results on 110 diseases verify the effectiveness and potential of the proposed measurement. Moreover, weak links play more important role than strong links for gene prioritization, which is meaningful to deeply understand protein interaction network.

  13. Integrative and conjugative elements and their hosts: composition, distribution and organization

    PubMed Central

    Touchon, Marie; Rocha, Eduardo P. C.

    2017-01-01

    Abstract Conjugation of single-stranded DNA drives horizontal gene transfer between bacteria and was widely studied in conjugative plasmids. The organization and function of integrative and conjugative elements (ICE), even if they are more abundant, was only studied in a few model systems. Comparative genomics of ICE has been precluded by the difficulty in finding and delimiting these elements. Here, we present the results of a method that circumvents these problems by requiring only the identification of the conjugation genes and the species’ pan-genome. We delimited 200 ICEs and this allowed the first large-scale characterization of these elements. We quantified the presence in ICEs of a wide set of functions associated with the biology of mobile genetic elements, including some that are typically associated with plasmids, such as partition and replication. Protein sequence similarity networks and phylogenetic analyses revealed that ICEs are structured in functional modules. Integrases and conjugation systems have different evolutionary histories, even if the gene repertoires of ICEs can be grouped in function of conjugation types. Our characterization of the composition and organization of ICEs paves the way for future functional and evolutionary analyses of their cargo genes, composed of a majority of unknown function genes. PMID:28911112

  14. Genomic signatures of adaptation to wine biological ageing conditions in biofilm-forming flor yeasts.

    PubMed

    Coi, A L; Bigey, F; Mallet, S; Marsit, S; Zara, G; Gladieux, P; Galeote, V; Budroni, M; Dequin, S; Legras, J L

    2017-04-01

    The molecular and evolutionary processes underlying fungal domestication remain largely unknown despite the importance of fungi to bioindustry and for comparative adaptation genomics in eukaryotes. Wine fermentation and biological ageing are performed by strains of S. cerevisiae with, respectively, pelagic fermentative growth on glucose and biofilm aerobic growth utilizing ethanol. Here, we use environmental samples of wine and flor yeasts to investigate the genomic basis of yeast adaptation to contrasted anthropogenic environments. Phylogenetic inference and population structure analysis based on single nucleotide polymorphisms revealed a group of flor yeasts separated from wine yeasts. A combination of methods revealed several highly differentiated regions between wine and flor yeasts, and analyses using codon-substitution models for detecting molecular adaptation identified sites under positive selection in the high-affinity transporter gene ZRT1. The cross-population composite likelihood ratio revealed selective sweeps at three regions, including in the hexose transporter gene HXT7, the yapsin gene YPS6 and the membrane protein coding gene MTS27. Our analyses also revealed that the biological ageing environment has led to the accumulation of numerous mutations in proteins from several networks, including Flo11 regulation and divalent metal transport. Together, our findings suggest that the tuning of FLO11 expression and zinc transport networks are a distinctive feature of the genetic changes underlying the domestication of flor yeasts. Our study highlights the multiplicity of genomic changes underlying yeast adaptation to man-made habitats and reveals that flor/wine yeast lineage can serve as a useful model for studying the genomics of adaptive divergence. © 2017 John Wiley & Sons Ltd.

  15. Analysis of copy number variations in Holstein cows identify potential mechanisms contributing to differences in residual feed intake.

    PubMed

    Hou, Yali; Bickhart, Derek M; Chung, Hoyoung; Hutchison, Jana L; Norman, H Duane; Connor, Erin E; Liu, George E

    2012-11-01

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. In this study, we performed an initial analysis of copy number variations (CNVs) using BovineHD SNP genotyping data from 147 Holstein cows identified as having high or low feed efficiency as estimated by residual feed intake (RFI). We detected 443 candidate CNV regions (CNVRs) that represent 18.4 Mb (0.6 %) of the genome. To investigate the functional impacts of CNVs, we created two groups of 30 individual animals with extremely low or high estimated breeding values (EBVs) for RFI, and referred to these groups as low intake (LI; more efficient) or high intake (HI; less efficient), respectively. We identified 240 (~9.0 Mb) and 274 (~10.2 Mb) CNVRs from LI and HI groups, respectively. Approximately 30-40 % of the CNVRs were specific to the LI group or HI group of animals. The 240 LI CNVRs overlapped with 137 Ensembl genes. Network analyses indicated that the LI-specific genes were predominantly enriched for those functioning in the inflammatory response and immunity. By contrast, the 274 HI CNVRs contained 177 Ensembl genes. Network analyses indicated that the HI-specific genes were particularly involved in the cell cycle, and organ and bone development. These results relate CNVs to two key variables, namely immune response and organ and bone development. The data indicate that greater feed efficiency relates more closely to immune response, whereas cattle with reduced feed efficiency may have a greater capacity for organ and bone development.

  16. Applications of graph theory to landscape genetics

    PubMed Central

    Garroway, Colin J; Bowman, Jeff; Carr, Denis; Wilson, Paul J

    2008-01-01

    We investigated the relationships among landscape quality, gene flow, and population genetic structure of fishers (Martes pennanti) in ON, Canada. We used graph theory as an analytical framework considering each landscape as a network node. The 34 nodes were connected by 93 edges. Network structure was characterized by a higher level of clustering than expected by chance, a short mean path length connecting all pairs of nodes, and a resiliency to the loss of highly connected nodes. This suggests that alleles can be efficiently spread through the system and that extirpations and conservative harvest are not likely to affect their spread. Two measures of node centrality were negatively related to both the proportion of immigrants in a node and node snow depth. This suggests that central nodes are producers of emigrants, contain high-quality habitat (i.e., deep snow can make locomotion energetically costly) and that fishers were migrating from high to low quality habitat. A method of community detection on networks delineated five genetic clusters of nodes suggesting cryptic population structure. Our analyses showed that network models can provide system-level insight into the process of gene flow with implications for understanding how landscape alterations might affect population fitness and evolutionary potential. PMID:25567802

  17. Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing

    NASA Astrophysics Data System (ADS)

    Piñero, Janet; Berenstein, Ariel; Gonzalez-Perez, Abel; Chernomoretz, Ariel; Furlong, Laura I.

    2016-04-01

    Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules.

  18. Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing

    PubMed Central

    Piñero, Janet; Berenstein, Ariel; Gonzalez-Perez, Abel; Chernomoretz, Ariel; Furlong, Laura I.

    2016-01-01

    Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules. PMID:27080396

  19. Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature.

    PubMed

    Zahoor, Imran; de Koning, Dirk-Jan; Hocking, Paul M

    2017-09-20

    In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype × treatment interaction. This gene set was analysed with the BioLayout Express 3D and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle of heat-stressed broilers.

  20. Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network.

    PubMed

    Al-Harazi, Olfat; Al Insaif, Sadiq; Al-Ajlan, Monirah A; Kaya, Namik; Dzimiri, Nduna; Colak, Dilek

    2016-06-20

    A disease phenotype generally reflects various pathobiological processes that interact in a complex network. The highly interconnected nature of the human protein interaction network (interactome) indicates that, at the molecular level, it is difficult to consider diseases as being independent of one another. Recently, genome-wide molecular measurements, data mining and bioinformatics approaches have provided the means to explore human diseases from a molecular basis. The exploration of diseases and a system of disease relationships based on the integration of genome-wide molecular data with the human interactome could offer a powerful perspective for understanding the molecular architecture of diseases. Recently, subnetwork markers have proven to be more robust and reliable than individual biomarker genes selected based on gene expression profiles alone, and achieve higher accuracy in disease classification. We have applied one of these methodologies to idiopathic dilated cardiomyopathy (IDCM) data that we have generated using a microarray and identified significant subnetworks associated with the disease. In this paper, we review the recent endeavours in this direction, and summarize the existing methodologies and computational tools for network-based analysis of complex diseases and molecular relationships among apparently different disorders and human disease network. We also discuss the future research trends and topics of this promising field. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  1. Proteomic and Genomic Analyses of the Rvb1 and Rvb2 Interaction Network upon Deletion of R2TP Complex Components*

    PubMed Central

    Lakshminarasimhan, Mahadevan; Boanca, Gina; Banks, Charles A. S.; Hattem, Gaye L.; Gabriel, Ana E.; Groppe, Brad D.; Smoyer, Christine; Malanowski, Kate E.; Peak, Allison; Florens, Laurence; Washburn, Michael P.

    2016-01-01

    The highly conserved yeast R2TP complex, consisting of Rvb1, Rvb2, Pih1, and Tah1, participates in diverse cellular processes ranging from assembly of protein complexes to apoptosis. Rvb1 and Rvb2 are closely related proteins belonging to the AAA+ superfamily and are essential for cell survival. Although Rvbs have been shown to be associated with various protein complexes including the Ino80 and Swr1chromatin remodeling complexes, we performed a systematic quantitative proteomic analysis of their associated proteins and identified two additional complexes that associate with Rvb1 and Rvb2: the chaperonin-containing T-complex and the 19S regulatory particle of the proteasome complex. We also analyzed Rvb1 and Rvb2 purified from yeast strains devoid of PIH1 and TAH1. These analyses revealed that both Rvb1 and Rvb2 still associated with Hsp90 and were highly enriched with RNA polymerase II complex components. Our analyses also revealed that both Rvb1 and Rvb2 were recruited to the Ino80 and Swr1 chromatin remodeling complexes even in the absence of Pih1 and Tah1 proteins. Using further biochemical analysis, we showed that Rvb1 and Rvb2 directly interacted with Hsp90 as well as with the RNA polymerase II complex. RNA-Seq analysis of the deletion strains compared with the wild-type strains revealed an up-regulation of ribosome biogenesis and ribonucleoprotein complex biogenesis genes, down-regulation of response to abiotic stimulus genes, and down-regulation of response to temperature stimulus genes. A Gene Ontology analysis of the 80 proteins whose protein associations were altered in the PIH1 or TAH1 deletion strains found ribonucleoprotein complex proteins to be the most enriched category. This suggests an important function of the R2TP complex in ribonucleoprotein complex biogenesis at both the proteomic and genomic levels. Finally, these results demonstrate that deletion network analyses can provide novel insights into cellular systems. PMID:26831523

  2. Comparative transcriptomics reveals similarities and differences between astrocytoma grades.

    PubMed

    Seifert, Michael; Garbe, Martin; Friedrich, Betty; Mittelbronn, Michel; Klink, Barbara

    2015-12-16

    Astrocytomas are the most common primary brain tumors distinguished into four histological grades. Molecular analyses of individual astrocytoma grades have revealed detailed insights into genetic, transcriptomic and epigenetic alterations. This provides an excellent basis to identify similarities and differences between astrocytoma grades. We utilized public omics data of all four astrocytoma grades focusing on pilocytic astrocytomas (PA I), diffuse astrocytomas (AS II), anaplastic astrocytomas (AS III) and glioblastomas (GBM IV) to identify similarities and differences using well-established bioinformatics and systems biology approaches. We further validated the expression and localization of Ang2 involved in angiogenesis using immunohistochemistry. Our analyses show similarities and differences between astrocytoma grades at the level of individual genes, signaling pathways and regulatory networks. We identified many differentially expressed genes that were either exclusively observed in a specific astrocytoma grade or commonly affected in specific subsets of astrocytoma grades in comparison to normal brain. Further, the number of differentially expressed genes generally increased with the astrocytoma grade with one major exception. The cytokine receptor pathway showed nearly the same number of differentially expressed genes in PA I and GBM IV and was further characterized by a significant overlap of commonly altered genes and an exclusive enrichment of overexpressed cancer genes in GBM IV. Additional analyses revealed a strong exclusive overexpression of CX3CL1 (fractalkine) and its receptor CX3CR1 in PA I possibly contributing to the absence of invasive growth. We further found that PA I was significantly associated with the mesenchymal subtype typically observed for very aggressive GBM IV. Expression of endothelial and mesenchymal markers (ANGPT2, CHI3L1) indicated a stronger contribution of the micro-environment to the manifestation of the mesenchymal subtype than the tumor biology itself. We further inferred a transcriptional regulatory network associated with specific expression differences distinguishing PA I from AS II, AS III and GBM IV. Major central transcriptional regulators were involved in brain development, cell cycle control, proliferation, apoptosis, chromatin remodeling or DNA methylation. Many of these regulators showed directly underlying DNA methylation changes in PA I or gene copy number mutations in AS II, AS III and GBM IV. This computational study characterizes similarities and differences between all four astrocytoma grades confirming known and revealing novel insights into astrocytoma biology. Our findings represent a valuable resource for future computational and experimental studies.

  3. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera.

    PubMed

    Barchuk, Angel R; Cristino, Alexandre S; Kucharski, Robert; Costa, Luciano F; Simões, Zilá L P; Maleszka, Ryszard

    2007-06-18

    In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees. This network of interactions is activated by nutrition-driven stimuli in early larval stages. Our data are consistent with the hypothesis that JH is a key component of the developmental determination of queen-like characters. Finally, we propose a conceptual model of caste differentiation in A. mellifera based on gene-regulatory networks.

  4. Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera

    PubMed Central

    Barchuk, Angel R; Cristino, Alexandre S; Kucharski, Robert; Costa, Luciano F; Simões, Zilá LP; Maleszka, Ryszard

    2007-01-01

    Background In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. Results By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. Conclusion We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees. This network of interactions is activated by nutrition-driven stimuli in early larval stages. Our data are consistent with the hypothesis that JH is a key component of the developmental determination of queen-like characters. Finally, we propose a conceptual model of caste differentiation in A. mellifera based on gene-regulatory networks. PMID:17577409

  5. A complex regulatory network coordinating cell cycles during C. elegans development is revealed by a genome-wide RNAi screen.

    PubMed

    Roy, Sarah H; Tobin, David V; Memar, Nadin; Beltz, Eleanor; Holmen, Jenna; Clayton, Joseph E; Chiu, Daniel J; Young, Laura D; Green, Travis H; Lubin, Isabella; Liu, Yuying; Conradt, Barbara; Saito, R Mako

    2014-02-28

    The development and homeostasis of multicellular animals requires precise coordination of cell division and differentiation. We performed a genome-wide RNA interference screen in Caenorhabditis elegans to reveal the components of a regulatory network that promotes developmentally programmed cell-cycle quiescence. The 107 identified genes are predicted to constitute regulatory networks that are conserved among higher animals because almost half of the genes are represented by clear human orthologs. Using a series of mutant backgrounds to assess their genetic activities, the RNA interference clones displaying similar properties were clustered to establish potential regulatory relationships within the network. This approach uncovered four distinct genetic pathways controlling cell-cycle entry during intestinal organogenesis. The enhanced phenotypes observed for animals carrying compound mutations attest to the collaboration between distinct mechanisms to ensure strict developmental regulation of cell cycles. Moreover, we characterized ubc-25, a gene encoding an E2 ubiquitin-conjugating enzyme whose human ortholog, UBE2Q2, is deregulated in several cancers. Our genetic analyses suggested that ubc-25 acts in a linear pathway with cul-1/Cul1, in parallel to pathways employing cki-1/p27 and lin-35/pRb to promote cell-cycle quiescence. Further investigation of the potential regulatory mechanism demonstrated that ubc-25 activity negatively regulates CYE-1/cyclin E protein abundance in vivo. Together, our results show that the ubc-25-mediated pathway acts within a complex network that integrates the actions of multiple molecular mechanisms to control cell cycles during development. Copyright © 2014 Roy et al.

  6. Trainable Gene Regulation Networks with Applications to Drosophila Pattern Formation

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric

    2000-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila melanogaster. For details the reader is referred to the papers introduced below. It will then introduce a new gene regulation network model which can describe promoter-level substructure in gene regulation. As described in chapter 2, gene regulation may be thought of as a combination of cis-acting regulation by the extended promoter of a gene (including all regulatory sequences) by way of the transcription complex, and of trans-acting regulation by the transcription factor products of other genes. If we simplify the cis-action by using a phenomenological model which can be tuned to data, such as a unit or other small portion of an artificial neural network, then the full transacting interaction between multiple genes during development can be modelled as a larger network which can again be tuned or trained to data. The larger network will in general need to have recurrent (feedback) connections since at least some real gene regulation networks do. This is the basic modeling approach taken, which describes how a set of recurrent neural networks can be used as a modeling language for multiple developmental processes including gene regulation within a single cell, cell-cell communication, and cell division. Such network models have been called "gene circuits", "gene regulation networks", or "genetic regulatory networks", sometimes without distinguishing the models from the actual modeled systems.

  7. Robust Learning of High-dimensional Biological Networks with Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Nägele, Andreas; Dejori, Mathäus; Stetter, Martin

    Structure learning of Bayesian networks applied to gene expression data has become a potentially useful method to estimate interactions between genes. However, the NP-hardness of Bayesian network structure learning renders the reconstruction of the full genetic network with thousands of genes unfeasible. Consequently, the maximal network size is usually restricted dramatically to a small set of genes (corresponding with variables in the Bayesian network). Although this feature reduction step makes structure learning computationally tractable, on the downside, the learned structure might be adversely affected due to the introduction of missing genes. Additionally, gene expression data are usually very sparse with respect to the number of samples, i.e., the number of genes is much greater than the number of different observations. Given these problems, learning robust network features from microarray data is a challenging task. This chapter presents several approaches tackling the robustness issue in order to obtain a more reliable estimation of learned network features.

  8. Systematic Analysis of mRNA and miRNA Expression of 3D-Cultured Neural Stem Cells (NSCs) in Spaceflight.

    PubMed

    Cui, Yi; Han, Jin; Xiao, Zhifeng; Qi, Yiduo; Zhao, Yannan; Chen, Bing; Fang, Yongxiang; Liu, Sumei; Wu, Xianming; Dai, Jianwu

    2017-01-01

    Recently, with the development of the space program there are growing concerns about the influence of spaceflight on tissue engineering. The purpose of this study was thus to determine the variations of neural stem cells (NSCs) during spaceflight. RNA-Sequencing (RNA-Seq) based transcriptomic profiling of NSCs identified many differentially expressed mRNAs and miRNAs between space and earth groups. Subsequently, those genes with differential expression were subjected to bioinformatic evaluation using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) and miRNA-mRNA network analyses. The results showed that NSCs maintain greater stemness ability during spaceflight although the growth rate of NSCs was slowed down. Furthermore, the results indicated that NSCs tended to differentiate into neuron in outer space conditions. Detailed genomic analyses of NSCs during spaceflight will help us to elucidate the molecular mechanisms behind their differentiation and proliferation when they are in outer space.

  9. Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow

    PubMed Central

    Árnason, Úlfur; Kumar, Vikas

    2018-01-01

    Reconstructing the evolution of baleen whales (Mysticeti) has been problematic because morphological and genetic analyses have produced different scenarios. This might be caused by genomic admixture that may have taken place among some rorquals. We present the genomes of six whales, including the blue whale (Balaenoptera musculus), to reconstruct a species tree of baleen whales and to identify phylogenetic conflicts. Evolutionary multilocus analyses of 34,192 genome fragments reveal a fast radiation of rorquals at 10.5 to 7.5 million years ago coinciding with oceanic circulation shifts. The evolutionarily enigmatic gray whale (Eschrichtius robustus) is placed among rorquals, and the blue whale genome shows a high degree of heterozygosity. The nearly equal frequency of conflicting gene trees suggests that speciation of rorqual evolution occurred under gene flow, which is best depicted by evolutionary networks. Especially in marine environments, sympatric speciation might be common; our results raise questions about how genetic divergence can be established. PMID:29632892

  10. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.

    PubMed

    Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming

    2015-01-01

    In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.

  11. A hybrid network-based method for the detection of disease-related genes

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Cai, Meng; Dai, Yang; Stanley, H. Eugene

    2018-02-01

    Detecting disease-related genes is crucial in disease diagnosis and drug design. The accepted view is that neighbors of a disease-causing gene in a molecular network tend to cause the same or similar diseases, and network-based methods have been recently developed to identify novel hereditary disease-genes in available biomedical networks. Despite the steady increase in the discovery of disease-associated genes, there is still a large fraction of disease genes that remains under the tip of the iceberg. In this paper we exploit the topological properties of the protein-protein interaction (PPI) network to detect disease-related genes. We compute, analyze, and compare the topological properties of disease genes with non-disease genes in PPI networks. We also design an improved random forest classifier based on these network topological features, and a cross-validation test confirms that our method performs better than previous similar studies.

  12. Gene network biological validity based on gene-gene interaction relevance.

    PubMed

    Gómez-Vela, Francisco; Díaz-Díaz, Norberto

    2014-01-01

    In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in KEGG are one of the most widely used knowledgeable sources for analyzing relationships between genes. This paper introduces a new methodology, GeneNetVal, to assess the biological validity of gene networks based on the relevance of the gene-gene interactions stored in KEGG metabolic pathways. Hence, a complete KEGG pathway conversion into a gene association network and a new matching distance based on gene-gene interaction relevance are proposed. The performance of GeneNetVal was established with three different experiments. Firstly, our proposal is tested in a comparative ROC analysis. Secondly, a randomness study is presented to show the behavior of GeneNetVal when the noise is increased in the input network. Finally, the ability of GeneNetVal to detect biological functionality of the network is shown.

  13. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases

    PubMed Central

    Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H

    2003-01-01

    Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935

  14. Association weight matrix for the genetic dissection of puberty in beef cattle.

    PubMed

    Fortes, Marina R S; Reverter, Antonio; Zhang, Yuandan; Collis, Eliza; Nagaraj, Shivashankar H; Jonsson, Nick N; Prayaga, Kishore C; Barris, Wes; Hawken, Rachel J

    2010-08-03

    We describe a systems biology approach for the genetic dissection of complex traits based on applying gene network theory to the results from genome-wide associations. The associations of single-nucleotide polymorphisms (SNP) that were individually associated with a primary phenotype of interest, age at puberty in our study, were explored across 22 related traits. Genomic regions were surveyed for genes harboring the selected SNP. As a result, an association weight matrix (AWM) was constructed with as many rows as genes and as many columns as traits. Each {i, j} cell value in the AWM corresponds to the z-score normalized additive effect of the ith gene (via its neighboring SNP) on the jth trait. Columnwise, the AWM recovered the genetic correlations estimated via pedigree-based restricted maximum-likelihood methods. Rowwise, a combination of hierarchical clustering, gene network, and pathway analyses identified genetic drivers that would have been missed by standard genome-wide association studies. Finally, the promoter regions of the AWM-predicted targets of three key transcription factors (TFs), estrogen-related receptor gamma (ESRRG), Pal3 motif, bound by a PPAR-gamma homodimer, IR3 sites (PPARG), and Prophet of Pit 1, PROP paired-like homeobox 1 (PROP1), were surveyed to identify binding sites corresponding to those TFs. Applied to our case, the AWM results recapitulate the known biology of puberty, captured experimentally validated binding sites, and identified candidate genes and gene-gene interactions for further investigation.

  15. Changes in the Peripheral Blood Gene Expression Profile Induced by 3 Months of Valproate Treatment in Patients with Newly Diagnosed Epilepsy

    PubMed Central

    Rakitin, Aleksei; Kõks, Sulev; Reimann, Ene; Prans, Ele; Haldre, Sulev

    2015-01-01

    Valproic acid (VPA) is a widely used antiepileptic drug with a broad range of effects and broad clinical efficacy. As a well-known histone deacetylase (HDAC) inhibitor, VPA regulates epigenetic programming by altering the expression of many genes. The aim of study was to analyze differences in gene expression profiles before and after the start of VPA treatment in patients with newly diagnosed epilepsy. RNA sequencing was used to compare whole-genome gene expression patterns of peripheral blood from nine patients with epilepsy before and 3 months after the start of treatment with VPA. Of the 23,099 analyzed genes, only 11 showed statistically significant differential expression with false discovery rate-adjusted p-values below 0.1. Functional annotation and network analyses showed activation of only one genetic network (enrichment score = 30), which included genes for cardiovascular system development and function, cell morphology, and hematological system development and function. The finding of such a small number of differently expressed genes between before and after the start of treatment suggests a lack of HDAC inhibition in these patients, which could be explained by the relatively low doses of VPA that were used. In conclusion, VPA at standard therapeutic dosages modulates the expression of a small number of genes. Therefore, to minimize the potential side effects of HDAC inhibition, it is recommended that the lowest effective dose of VPA be used for treating epilepsy. PMID:26379622

  16. Plant Omics Data Center: an integrated web repository for interspecies gene expression networks with NLP-based curation.

    PubMed

    Ohyanagi, Hajime; Takano, Tomoyuki; Terashima, Shin; Kobayashi, Masaaki; Kanno, Maasa; Morimoto, Kyoko; Kanegae, Hiromi; Sasaki, Yohei; Saito, Misa; Asano, Satomi; Ozaki, Soichi; Kudo, Toru; Yokoyama, Koji; Aya, Koichiro; Suwabe, Keita; Suzuki, Go; Aoki, Koh; Kubo, Yasutaka; Watanabe, Masao; Matsuoka, Makoto; Yano, Kentaro

    2015-01-01

    Comprehensive integration of large-scale omics resources such as genomes, transcriptomes and metabolomes will provide deeper insights into broader aspects of molecular biology. For better understanding of plant biology, we aim to construct a next-generation sequencing (NGS)-derived gene expression network (GEN) repository for a broad range of plant species. So far we have incorporated information about 745 high-quality mRNA sequencing (mRNA-Seq) samples from eight plant species (Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, Sorghum bicolor, Vitis vinifera, Solanum tuberosum, Medicago truncatula and Glycine max) from the public short read archive, digitally profiled the entire set of gene expression profiles, and drawn GENs by using correspondence analysis (CA) to take advantage of gene expression similarities. In order to understand the evolutionary significance of the GENs from multiple species, they were linked according to the orthology of each node (gene) among species. In addition to other gene expression information, functional annotation of the genes will facilitate biological comprehension. Currently we are improving the given gene annotations with natural language processing (NLP) techniques and manual curation. Here we introduce the current status of our analyses and the web database, PODC (Plant Omics Data Center; http://bioinf.mind.meiji.ac.jp/podc/), now open to the public, providing GENs, functional annotations and additional comprehensive omics resources. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  17. Gene expression profiling of selenophosphate synthetase 2 knockdown in Drosophila melanogaster.

    PubMed

    Li, Gaopeng; Liu, Liying; Li, Ping; Chen, Luonan; Song, Haiyun; Zhang, Yan

    2016-03-01

    Selenium (Se) is an important trace element for many organisms and is incorporated into selenoproteins as selenocysteine (Sec). In eukaryotes, selenophosphate synthetase SPS2 is essential for Sec biosynthesis. In recent years, genetic disruptions of both Sec biosynthesis genes and selenoprotein genes have been investigated in different animal models, which provide important clues for understanding the Se metabolism and function in these organisms. However, a systematic study on the knockdown of SPS2 has not been performed in vivo. Herein, we conducted microarray experiments to study the transcriptome of fruit flies with knockdown of SPS2 in larval and adult stages. Several hundred differentially expressed genes were identified in each stage. In spite that the expression levels of other Sec biosynthesis genes and selenoprotein genes were not significantly changed, it is possible that selenoprotein translation might be reduced without impacting the mRNA level. Functional enrichment and network-based analyses revealed that although different sets of differentially expressed genes were obtained in each stage, they were both significantly enriched in the carbohydrate metabolism and redox processes. Furthermore, protein-protein interaction (PPI)-based network clustering analysis implied that several hub genes detected in the top modules, such as Nimrod C1 and regucalcin, could be considered as key regulators that are responsible for the complex responses caused by SPS2 knockdown. Overall, our data provide new insights into the relationship between Se utilization and several fundamental cellular processes as well as diseases.

  18. Systematic profiling of alternative splicing signature reveals prognostic predictor for ovarian cancer.

    PubMed

    Zhu, Junyong; Chen, Zuhua; Yong, Lei

    2018-02-01

    The majority of genes are alternatively spliced and growing evidence suggests that alternative splicing is modified in cancer and is associated with cancer progression. Systematic analysis of alternative splicing signature in ovarian cancer is lacking and greatly needed. We profiled genome-wide alternative splicing events in 408 ovarian serous cystadenocarcinoma (OV) patients in TCGA. Seven types of alternative splicing events were curated and prognostic analyses were performed with predictive models and splicing network built for OV patients. Among 48,049 mRNA splicing events in 10,582 genes, we detected 2,611 alternative splicing events in 2,036 genes which were significant associated with overall survival of OV patients. Exon skip events were the most powerful prognostic factors among the seven types. The area under the curve of the receiver-operator characteristic curve for prognostic predictor, which was built with top significant alternative splicing events, was 0.937 at 2,000 days of overall survival, indicating powerful efficiency in distinguishing patient outcome. Interestingly, splicing correlation network suggested obvious trends in the role of splicing factors in OV. In summary, we built powerful prognostic predictors for OV patients and uncovered interesting splicing networks which could be underlying mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Systematic Evaluation of Molecular Networks for Discovery of Disease Genes. | Office of Cancer Genomics

    Cancer.gov

    Gene networks are rapidly growing in size and number, raising the question of which networks are most appropriate for particular applications. Here, we evaluate 21 human genome-wide interaction networks for their ability to recover 446 disease gene sets identified through literature curation, gene expression profiling, or genome-wide association studies. While all networks have some ability to recover disease genes, we observe a wide range of performance with STRING, ConsensusPathDB, and GIANT networks having the best performance overall.

  20. SiBIC: a web server for generating gene set networks based on biclusters obtained by maximal frequent itemset mining.

    PubMed

    Takahashi, Kei-ichiro; Takigawa, Ichigaku; Mamitsuka, Hiroshi

    2013-01-01

    Detecting biclusters from expression data is useful, since biclusters are coexpressed genes under only part of all given experimental conditions. We present a software called SiBIC, which from a given expression dataset, first exhaustively enumerates biclusters, which are then merged into rather independent biclusters, which finally are used to generate gene set networks, in which a gene set assigned to one node has coexpressed genes. We evaluated each step of this procedure: 1) significance of the generated biclusters biologically and statistically, 2) biological quality of merged biclusters, and 3) biological significance of gene set networks. We emphasize that gene set networks, in which nodes are not genes but gene sets, can be more compact than usual gene networks, meaning that gene set networks are more comprehensible. SiBIC is available at http://utrecht.kuicr.kyoto-u.ac.jp:8080/miami/faces/index.jsp.

  1. Microarray analysis to identify the similarities and differences of pathogenesis between aortic occlusive disease and abdominal aortic aneurysm.

    PubMed

    Wang, Guofu; Bi, Lechang; Wang, Gaofeng; Huang, Feilai; Lu, Mingjing; Zhu, Kai

    2018-06-01

    Objectives Expression profile of GSE57691 was analyzed to identify the similarities and differences between aortic occlusive disease and abdominal aortic aneurysm. Methods The expression profile of GSE57691 was downloaded from Gene Expression Omnibus database, including 20 small abdominal aortic aneurysm samples, 29 large abdominal aortic aneurysm samples, 9 aortic occlusive disease samples, and 10 control samples. Using the limma package in R, the differentially expressed genes were screened. Followed by enrichment analysis was performed for the differentially expressed genes using database for annotation, visualization, and integrated discovery online tool. Based on string online tool and Cytoscape software, protein-protein interaction network and module analyses were carried out. Moreover, integrated TF platform database and Cytoscape software were used for constructing transcriptional regulatory networks. Results As a result, 1757, 354, and 396 differentially expressed genes separately were identified in aortic occlusive disease, large abdominal aortic aneurysm, and small abdominal aortic aneurysm samples. UBB was significantly enriched in proteolysis related pathways with a high degree in three groups. SPARCL1 was another gene shared by these groups and regulated by NFIA, which had a high degree in transcriptional regulatory network. ACTB, a significant upregulated gene in abdominal aortic aneurysm samples, could be regulated by CLIC4, which was significantly enriched in cell motions. ACLY and NFIB were separately identified in aortic occlusive disease and small abdominal aortic aneurysm samples, and separately enriched in lipid metabolism and negative regulation of cell proliferation. Conclusions The downregulated UBB, NFIA, and SPARCL1 might play key roles in both aortic occlusive disease and abdominal aortic aneurysm, while the upregulated ACTB might only involve in abdominal aortic aneurysm. ACLY and NFIB were specifically involved in aortic occlusive disease and small abdominal aortic aneurysm separately.

  2. Comprehensive analysis of coding-lncRNA gene co-expression network uncovers conserved functional lncRNAs in zebrafish.

    PubMed

    Chen, Wen; Zhang, Xuan; Li, Jing; Huang, Shulan; Xiang, Shuanglin; Hu, Xiang; Liu, Changning

    2018-05-09

    Zebrafish is a full-developed model system for studying development processes and human disease. Recent studies of deep sequencing had discovered a large number of long non-coding RNAs (lncRNAs) in zebrafish. However, only few of them had been functionally characterized. Therefore, how to take advantage of the mature zebrafish system to deeply investigate the lncRNAs' function and conservation is really intriguing. We systematically collected and analyzed a series of zebrafish RNA-seq data, then combined them with resources from known database and literatures. As a result, we obtained by far the most complete dataset of zebrafish lncRNAs, containing 13,604 lncRNA genes (21,128 transcripts) in total. Based on that, a co-expression network upon zebrafish coding and lncRNA genes was constructed and analyzed, and used to predict the Gene Ontology (GO) and the KEGG annotation of lncRNA. Meanwhile, we made a conservation analysis on zebrafish lncRNA, identifying 1828 conserved zebrafish lncRNA genes (1890 transcripts) that have their putative mammalian orthologs. We also found that zebrafish lncRNAs play important roles in regulation of the development and function of nervous system; these conserved lncRNAs present a significant sequential and functional conservation, with their mammalian counterparts. By integrative data analysis and construction of coding-lncRNA gene co-expression network, we gained the most comprehensive dataset of zebrafish lncRNAs up to present, as well as their systematic annotations and comprehensive analyses on function and conservation. Our study provides a reliable zebrafish-based platform to deeply explore lncRNA function and mechanism, as well as the lncRNA commonality between zebrafish and human.

  3. Role of extracytoplasmic function sigma factor PG1660 (RpoE) in the oxidative stress resistance regulatory network of Porphyromonas gingivalis

    PubMed Central

    Dou, Y.; Rutanhira, H.; Chen, X.; Mishra, A.; Wang, C.; Fletcher, H.M.

    2018-01-01

    Summary In Porphyromonas gingivalis, the protein PG1660, composed of 174 amino acids, is annotated as an extracytoplasmic function (ECF) sigma factor (RpoE homologue-σ24). Because PG1660 can modulate several virulence factors and responds to environmental signals in P. gingivalis, its genetic properties were evaluated. PG1660 is co-transcribed with its downstream gene PG1659, and the transcription start site was identified as adenine residue 54-nucleotides upstream of the ATG translation start codon. In addition to binding its own promoter, using the purified rPG1660 and RNAP core enzyme from Escherichia coli with the PG1660 promoter DNA as template, the function of PG1660 as a sigma factor was demonstrated in an in vitro transcription assay. Transcriptome analyses of a P. gingivalis PG1660-defective isogenic mutant revealed that under oxidative stress conditions 176 genes including genes involved in secondary metabolism were downregulated more than two-fold compared with the parental strain. The rPG1660 protein also showed the ability to bind to the promoters of the highly downregulated genes in the PG1660-deficient mutant. As the ECF sigma factor PG0162 has a 29% identity with PG1660 and can modulate its expression, the cross-talk between their regulatory networks was explored. The expression profile of the PG0162PG1660-deficient mutant (P. gingivalis FLL356) revealed that the type IX secretion system genes and several virulence genes were downregulated under hydrogen peroxide stress conditions. Taken together, we have confirmed that PG1660 can function as a sigma factor, and plays an important regulatory role in the oxidative stress and virulence regulatory network of P. gingivalis. PMID:29059500

  4. Caenorhabditis elegans ABCRNAi transporters interact genetically with rde-2 and mut-7.

    PubMed

    Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa

    2008-02-01

    RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABC(RNAi) mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABC(RNAi) gene class. Genetic complementation tests reveal functions for ABC(RNAi) transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABC(RNAi) proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABC(RNAi) mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABC(RNAi) gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABC(RNAi) transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity.

  5. Caenorhabditis elegans ABCRNAi Transporters Interact Genetically With rde-2 and mut-7

    PubMed Central

    Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa

    2008-01-01

    RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABCRNAi mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABCRNAi gene class. Genetic complementation tests reveal functions for ABCRNAi transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABCRNAi proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABCRNAi mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABCRNAi gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABCRNAi transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity. PMID:18245353

  6. A novel dysregulated pathway-identification analysis based on global influence of within-pathway effects and crosstalk between pathways

    PubMed Central

    Han, Junwei; Li, Chunquan; Yang, Haixiu; Xu, Yanjun; Zhang, Chunlong; Ma, Jiquan; Shi, Xinrui; Liu, Wei; Shang, Desi; Yao, Qianlan; Zhang, Yunpeng; Su, Fei; Feng, Li; Li, Xia

    2015-01-01

    Identifying dysregulated pathways from high-throughput experimental data in order to infer underlying biological insights is an important task. Current pathway-identification methods focus on single pathways in isolation; however, consideration of crosstalk between pathways could improve our understanding of alterations in biological states. We propose a novel method of pathway analysis based on global influence (PAGI) to identify dysregulated pathways, by considering both within-pathway effects and crosstalk between pathways. We constructed a global gene–gene network based on the relationships among genes extracted from a pathway database. We then evaluated the extent of differential expression for each gene, and mapped them to the global network. The random walk with restart algorithm was used to calculate the extent of genes affected by global influence. Finally, we used cumulative distribution functions to determine the significance values of the dysregulated pathways. We applied the PAGI method to five cancer microarray datasets, and compared our results with gene set enrichment analysis and five other methods. Based on these analyses, we demonstrated that PAGI can effectively identify dysregulated pathways associated with cancer, with strong reproducibility and robustness. We implemented PAGI using the freely available R-based and Web-based tools (http://bioinfo.hrbmu.edu.cn/PAGI). PMID:25551156

  7. Plasticity of genetic interactions in metabolic networks of yeast.

    PubMed

    Harrison, Richard; Papp, Balázs; Pál, Csaba; Oliver, Stephen G; Delneri, Daniela

    2007-02-13

    Why are most genes dispensable? The impact of gene deletions may depend on the environment (plasticity), the presence of compensatory mechanisms (mutational robustness), or both. Here, we analyze the interaction between these two forces by exploring the condition-dependence of synthetic genetic interactions that define redundant functions and alternative pathways. We performed systems-level flux balance analysis of the yeast (Saccharomyces cerevisiae) metabolic network to identify genetic interactions and then tested the model's predictions with in vivo gene-deletion studies. We found that the majority of synthetic genetic interactions are restricted to certain environmental conditions, partly because of the lack of compensation under some (but not all) nutrient conditions. Moreover, the phylogenetic cooccurrence of synthetically interacting pairs is not significantly different from random expectation. These findings suggest that these gene pairs have at least partially independent functions, and, hence, compensation is only a byproduct of their evolutionary history. Experimental analyses that used multiple gene deletion strains not only confirmed predictions of the model but also showed that investigation of false predictions may both improve functional annotation within the model and also lead to the discovery of higher-order genetic interactions. Our work supports the view that functional redundancy may be more apparent than real, and it offers a unified framework for the evolution of environmental adaptation and mutational robustness.

  8. Do Branch Lengths Help to Locate a Tree in a Phylogenetic Network?

    PubMed

    Gambette, Philippe; van Iersel, Leo; Kelk, Steven; Pardi, Fabio; Scornavacca, Celine

    2016-09-01

    Phylogenetic networks are increasingly used in evolutionary biology to represent the history of species that have undergone reticulate events such as horizontal gene transfer, hybrid speciation and recombination. One of the most fundamental questions that arise in this context is whether the evolution of a gene with one copy in all species can be explained by a given network. In mathematical terms, this is often translated in the following way: is a given phylogenetic tree contained in a given phylogenetic network? Recently this tree containment problem has been widely investigated from a computational perspective, but most studies have only focused on the topology of the phylogenies, ignoring a piece of information that, in the case of phylogenetic trees, is routinely inferred by evolutionary analyses: branch lengths. These measure the amount of change (e.g., nucleotide substitutions) that has occurred along each branch of the phylogeny. Here, we study a number of versions of the tree containment problem that explicitly account for branch lengths. We show that, although length information has the potential to locate more precisely a tree within a network, the problem is computationally hard in its most general form. On a positive note, for a number of special cases of biological relevance, we provide algorithms that solve this problem efficiently. This includes the case of networks of limited complexity, for which it is possible to recover, among the trees contained by the network with the same topology as the input tree, the closest one in terms of branch lengths.

  9. Deciphering the associations between gene expression and copy number alteration using a sparse double Laplacian shrinkage approach

    PubMed Central

    Shi, Xingjie; Zhao, Qing; Huang, Jian; Xie, Yang; Ma, Shuangge

    2015-01-01

    Motivation: Both gene expression levels (GEs) and copy number alterations (CNAs) have important biological implications. GEs are partly regulated by CNAs, and much effort has been devoted to understanding their relations. The regulation analysis is challenging with one gene expression possibly regulated by multiple CNAs and one CNA potentially regulating the expressions of multiple genes. The correlations among GEs and among CNAs make the analysis even more complicated. The existing methods have limitations and cannot comprehensively describe the regulation. Results: A sparse double Laplacian shrinkage method is developed. It jointly models the effects of multiple CNAs on multiple GEs. Penalization is adopted to achieve sparsity and identify the regulation relationships. Network adjacency is computed to describe the interconnections among GEs and among CNAs. Two Laplacian shrinkage penalties are imposed to accommodate the network adjacency measures. Simulation shows that the proposed method outperforms the competing alternatives with more accurate marker identification. The Cancer Genome Atlas data are analysed to further demonstrate advantages of the proposed method. Availability and implementation: R code is available at http://works.bepress.com/shuangge/49/ Contact: shuangge.ma@yale.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26342102

  10. Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon.

    PubMed

    Koda, Satoru; Onda, Yoshihiko; Matsui, Hidetoshi; Takahagi, Kotaro; Yamaguchi-Uehara, Yukiko; Shimizu, Minami; Inoue, Komaki; Yoshida, Takuhiro; Sakurai, Tetsuya; Honda, Hiroshi; Eguchi, Shinto; Nishii, Ryuei; Mochida, Keiichi

    2017-01-01

    We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon . To reveal the diurnal changes in the transcriptome in B. distachyon , we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon . On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon , aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.

  11. Construction of a rice glycoside hydrolase phylogenomic database and identification of targets for biofuel research

    PubMed Central

    Sharma, Rita; Cao, Peijian; Jung, Ki-Hong; Sharma, Manoj K.; Ronald, Pamela C.

    2013-01-01

    Glycoside hydrolases (GH) catalyze the hydrolysis of glycosidic bonds in cell wall polymers and can have major effects on cell wall architecture. Taking advantage of the massive datasets available in public databases, we have constructed a rice phylogenomic database of GHs (http://ricephylogenomics.ucdavis.edu/cellwalls/gh/). This database integrates multiple data types including the structural features, orthologous relationships, mutant availability, and gene expression patterns for each GH family in a phylogenomic context. The rice genome encodes 437 GH genes classified into 34 families. Based on pairwise comparison with eight dicot and four monocot genomes, we identified 138 GH genes that are highly diverged between monocots and dicots, 57 of which have diverged further in rice as compared with four monocot genomes scanned in this study. Chromosomal localization and expression analysis suggest a role for both whole-genome and localized gene duplications in expansion and diversification of GH families in rice. We examined the meta-profiles of expression patterns of GH genes in twenty different anatomical tissues of rice. Transcripts of 51 genes exhibit tissue or developmental stage-preferential expression, whereas, seventeen other genes preferentially accumulate in actively growing tissues. When queried in RiceNet, a probabilistic functional gene network that facilitates functional gene predictions, nine out of seventeen genes form a regulatory network with the well-characterized genes involved in biosynthesis of cell wall polymers including cellulose synthase and cellulose synthase-like genes of rice. Two-thirds of the GH genes in rice are up regulated in response to biotic and abiotic stress treatments indicating a role in stress adaptation. Our analyses identify potential GH targets for cell wall modification. PMID:23986771

  12. Evolution and Expression Patterns of TCP Genes in Asparagales

    PubMed Central

    Madrigal, Yesenia; Alzate, Juan F.; Pabón-Mora, Natalia

    2017-01-01

    CYCLOIDEA-like genes are involved in the symmetry gene network, limiting cell proliferation in the dorsal regions of bilateral flowers in core eudicots. CYC-like and closely related TCP genes (acronym for TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATION CELL FACTOR) have been poorly studied in Asparagales, the largest order of monocots that includes both bilateral flowers in Orchidaceae (ca. 25.000 spp) and radially symmetrical flowers in Hypoxidaceae (ca. 200 spp). With the aim of assessing TCP gene evolution in the Asparagales, we isolated TCP-like genes from publicly available databases and our own transcriptomes of Cattleya trianae (Orchidaceae) and Hypoxis decumbens (Hypoxidaceae). Our matrix contains 452 sequences representing the three major clades of TCP genes. Besides the previously identified CYC specific core eudicot duplications, our ML phylogenetic analyses recovered an early CIN-like duplication predating all angiosperms, two CIN-like Asparagales-specific duplications and a duplication prior to the diversification of Orchidoideae and Epidendroideae. In addition, we provide evidence of at least three duplications of PCF-like genes in Asparagales. While CIN-like and PCF-like genes have multiplied in Asparagales, likely enhancing the genetic network for cell proliferation, CYC-like genes remain as single, shorter copies with low expression. Homogeneous expression of CYC-like genes in the labellum as well as the lateral petals suggests little contribution to the bilateral perianth in C. trianae. CIN-like and PCF-like gene expression suggests conserved roles in cell proliferation in leaves, sepals and petals, carpels, ovules and fruits in Asparagales by comparison with previously reported functions in core eudicots and monocots. This is the first large scale analysis of TCP-like genes in Asparagales that will serve as a platform for in-depth functional studies in emerging model monocots. PMID:28144250

  13. Abnormal DNA methylation may contribute to the progression of osteosarcoma.

    PubMed

    Chen, Xiao-Gang; Ma, Liang; Xu, Jia-Xin

    2018-01-01

    The identification of optimal methylation biomarkers to achieve maximum diagnostic ability remains a challenge. The present study aimed to elucidate the potential molecular mechanisms underlying osteosarcoma (OS) using DNA methylation analysis. Based on the GSE36002 dataset obtained from the Gene Expression Omnibus database, differentially methylated genes were extracted between patients with OS and controls using t‑tests. Subsequently, hierarchical clustering was performed to segregate the samples into two distinct clusters, OS and normal. Gene Ontology (GO) and pathway enrichment analyses for differentially methylated genes were performed using the Database for Annotation, Visualization and Integrated Discovery tool. A protein‑protein interaction (PPI) network was established, followed by hub gene identification. Using the cut‑off threshold of ≥0.2 average β‑value difference, 3,725 unique CpGs (2,862 genes) were identified to be differentially methylated between the OS and normal groups. Among these 2,862 genes, 510 genes were differentially hypermethylated and 2,352 were differentially hypomethylated. The differentially hypermethylated genes were primarily involved in 20 GO terms, and the top 3 terms were associated with potassium ion transport. For differentially hypomethylated genes, GO functions principally included passive transmembrane transporter activity, channel activity and metal ion transmembrane transporter activity. In addition, a total of 10 significant pathways were enriched by differentially hypomethylated genes; notably, neuroactive ligand‑receptor interaction was the most significant pathway. Based on a connectivity degree >90, 7 hub genes were selected from the PPI network, including neuromedin U (NMU; degree=103) and NMU receptor 1 (NMUR1; degree=103). Functional terms (potassium ion transport, transmembrane transporter activity, and neuroactive ligand‑receptor interaction) and hub genes (NMU and NMUR1) may serve as potential targets for the treatment and diagnosis of OS.

  14. Genes located in a chromosomal inversion are correlated with territorial song in white-throated sparrows.

    PubMed

    Zinzow-Kramer, W M; Horton, B M; McKee, C D; Michaud, J M; Tharp, G K; Thomas, J W; Tuttle, E M; Yi, S; Maney, D L

    2015-11-01

    The genome of the white-throated sparrow (Zonotrichia albicollis) contains an inversion polymorphism on chromosome 2 that is linked to predictable variation in a suite of phenotypic traits including plumage color, aggression and parental behavior. Differences in gene expression between the two color morphs, which represent the two common inversion genotypes (ZAL2/ZAL2 and ZAL2/ZAL2(m) ), may therefore advance our understanding of the molecular underpinnings of these phenotypes. To identify genes that are differentially expressed between the two morphs and correlated with behavior, we quantified gene expression and terrirorial aggression, including song, in a population of free-living white-throated sparrows. We analyzed gene expression in two brain regions, the medial amygdala (MeA) and hypothalamus. Both regions are part of a 'social behavior network', which is rich in steroid hormone receptors and previously linked with territorial behavior. Using weighted gene co-expression network analyses, we identified modules of genes that were correlated with both morph and singing behavior. The majority of these genes were located within the inversion, showing the profound effect of the inversion on the expression of genes captured by the rearrangement. These modules were enriched with genes related to retinoic acid signaling and basic cellular functioning. In the MeA, the most prominent pathways were those related to steroid hormone receptor activity. Within these pathways, the only gene encoding such a receptor was ESR1 (estrogen receptor 1), a gene previously shown to predict song rate in this species. The set of candidate genes we identified may mediate the effects of a chromosomal inversion on territorial behavior. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Evolutionary Dynamics of Small RNAs in 27 Escherichia coli and Shigella Genomes

    PubMed Central

    Skippington, Elizabeth; Ragan, Mark A.

    2012-01-01

    Small RNAs (sRNAs) are widespread in bacteria and play critical roles in regulating physiological processes. They are best characterized in Escherichia coli K-12 MG1655, where 83 sRNAs constitute nearly 2% of the gene complement. Most sRNAs act by base pairing with a target mRNA, modulating its translation and/or stability; many of these RNAs share only limited complementarity to their mRNA target, and require the chaperone Hfq to facilitate base pairing. Little is known about the evolutionary dynamics of bacterial sRNAs. Here, we apply phylogenetic and network analyses to investigate the evolutionary processes and principles that govern sRNA gene distribution in 27 E. coli and Shigella genomes. We identify core (encoded in all 27 genomes) and variable sRNAs; more than two-thirds of the E. coli K-12 MG1655 sRNAs are core, whereas the others show patterns of presence and absence that are principally due to genetic loss, not duplication or lateral genetic transfer. We present evidence that variable sRNAs are less tightly integrated into cellular genetic regulatory networks than are the core sRNAs, and that Hfq facilitates posttranscriptional cross talk between the E. coli–Shigella core and variable genomes. Finally, we present evidence that more than 80% of genes targeted by Hfq-associated core sRNAs have been transferred within the E. coli–Shigella clade, and that most of these genes have been transferred intact. These results suggest that Hfq and sRNAs help integrate laterally acquired genes into established regulatory networks. PMID:22223756

  16. Artificial intelligence in hematology.

    PubMed

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.

  17. Genome-Wide Analysis of the GRF Family Reveals Their Involvement in Abiotic Stress Response in Cassava.

    PubMed

    Shang, Sang; Wu, Chunlai; Huang, Chao; Tie, Weiwei; Yan, Yan; Ding, Zehong; Xia, Zhiqiang; Wang, Wenquan; Peng, Ming; Tian, Libo; Hu, Wei

    2018-02-20

    GENERAL REGULATORY FACTOR (GRF) proteins play vital roles in the regulation of plant growth, development, and response to abiotic stress. However, little information is known for this gene family in cassava ( Manihot esculenta ). In this study, 15 MeGRFs were identified from the cassava genome and were clustered into the ε and the non-ε groups according to phylogenetic, conserved motif, and gene structure analyses. Transcriptomic analyses showed eleven Me GRFs with constitutively high expression in stems, leaves, and storage roots of two cassava genotypes. Expression analyses revealed that the majority of GRFs showed transcriptional changes under cold, osmotic, salt, abscisic acid (ABA), and H₂O₂ treatments. Six Me GRFs were found to be commonly upregulated by abiotic stress, ABA, and H₂O₂ treatments, which may be the converging points of multiple signaling pathways. Interaction network analysis identified 18 possible interactors of MeGRFs. Taken together, this study elucidates the transcriptional control of Me GRFs in tissue development and the responses of abiotic stress and related signaling in cassava. Some constitutively expressed, tissue-specific, and abiotic stress-responsive candidate MeGRF genes were identified for the further genetic improvement of crops.

  18. Degrees of separation as a statistical tool for evaluating candidate genes.

    PubMed

    Nelson, Ronald M; Pettersson, Mats E

    2014-12-01

    Selection of candidate genes is an important step in the exploration of complex genetic architecture. The number of gene networks available is increasing and these can provide information to help with candidate gene selection. It is currently common to use the degree of connectedness in gene networks as validation in Genome Wide Association (GWA) and Quantitative Trait Locus (QTL) mapping studies. However, it can cause misleading results if not validated properly. Here we present a method and tool for validating the gene pairs from GWA studies given the context of the network they co-occur in. It ensures that proposed interactions and gene associations are not statistical artefacts inherent to the specific gene network architecture. The CandidateBacon package provides an easy and efficient method to calculate the average degree of separation (DoS) between pairs of genes to currently available gene networks. We show how these empirical estimates of average connectedness are used to validate candidate gene pairs. Validation of interacting genes by comparing their connectedness with the average connectedness in the gene network will provide support for said interactions by utilising the growing amount of gene network information available. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases.

    PubMed

    Mezlini, Aziz M; Goldenberg, Anna

    2017-10-01

    Discovering genetic mechanisms driving complex diseases is a hard problem. Existing methods often lack power to identify the set of responsible genes. Protein-protein interaction networks have been shown to boost power when detecting gene-disease associations. We introduce a Bayesian framework, Conflux, to find disease associated genes from exome sequencing data using networks as a prior. There are two main advantages to using networks within a probabilistic graphical model. First, networks are noisy and incomplete, a substantial impediment to gene discovery. Incorporating networks into the structure of a probabilistic models for gene inference has less impact on the solution than relying on the noisy network structure directly. Second, using a Bayesian framework we can keep track of the uncertainty of each gene being associated with the phenotype rather than returning a fixed list of genes. We first show that using networks clearly improves gene detection compared to individual gene testing. We then show consistently improved performance of Conflux compared to the state-of-the-art diffusion network-based method Hotnet2 and a variety of other network and variant aggregation methods, using randomly generated and literature-reported gene sets. We test Hotnet2 and Conflux on several network configurations to reveal biases and patterns of false positives and false negatives in each case. Our experiments show that our novel Bayesian framework Conflux incorporates many of the advantages of the current state-of-the-art methods, while offering more flexibility and improved power in many gene-disease association scenarios.

  20. Discovering disease-associated genes in weighted protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Cai, Meng; Stanley, H. Eugene

    2018-04-01

    Although there have been many network-based attempts to discover disease-associated genes, most of them have not taken edge weight - which quantifies their relative strength - into consideration. We use connection weights in a protein-protein interaction (PPI) network to locate disease-related genes. We analyze the topological properties of both weighted and unweighted PPI networks and design an improved random forest classifier to distinguish disease genes from non-disease genes. We use a cross-validation test to confirm that weighted networks are better able to discover disease-associated genes than unweighted networks, which indicates that including link weight in the analysis of network properties provides a better model of complex genotype-phenotype associations.

  1. Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork

    PubMed Central

    Druka, Arnis; Druka, Ilze; Centeno, Arthur G; Li, Hongqiang; Sun, Zhaohui; Thomas, William TB; Bonar, Nicola; Steffenson, Brian J; Ullrich, Steven E; Kleinhofs, Andris; Wise, Roger P; Close, Timothy J; Potokina, Elena; Luo, Zewei; Wagner, Carola; Schweizer, Günther F; Marshall, David F; Kearsey, Michael J; Williams, Robert W; Waugh, Robbie

    2008-01-01

    Background A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. Description Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork . GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits). Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them. Conclusion By integrating barley genotypic, phenotypic and mRNA abundance data sets directly within GeneNetwork's analytical environment we provide simple web access to the data for the research community. In this environment, a combination of correlation analysis and linkage mapping provides the potential to identify and substantiate gene targets for saturation mapping and positional cloning. By integrating datasets from an unsequenced crop plant (barley) in a database that has been designed for an animal model species (mouse) with a well established genome sequence, we prove the importance of the concept and practice of modular development and interoperability of software engineering for biological data sets. PMID:19017390

  2. The transfer and transformation of collective network information in gene-matched networks.

    PubMed

    Kitsukawa, Takashi; Yagi, Takeshi

    2015-10-09

    Networks, such as the human society network, social and professional networks, and biological system networks, contain vast amounts of information. Information signals in networks are distributed over nodes and transmitted through intricately wired links, making the transfer and transformation of such information difficult to follow. Here we introduce a novel method for describing network information and its transfer using a model network, the Gene-matched network (GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected according to their expression of common genes. Because neurons have multiple genes, the GMN is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled systematically, according to the activity level of the network. Furthermore, information transfer and transformation could be traced numerically with a vector using genes expressed in the activated neurons, the active-gene array, which was used to assess the relative activity among overlapping neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding theory. The method introduced here could be applied to many real-world networks, since many systems, including human society and various biological systems, can be represented as a network of this type.

  3. Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks.

    PubMed

    Blatti, Charles; Sinha, Saurabh

    2016-07-15

    Analysis of co-expressed gene sets typically involves testing for enrichment of different annotations or 'properties' such as biological processes, pathways, transcription factor binding sites, etc., one property at a time. This common approach ignores any known relationships among the properties or the genes themselves. It is believed that known biological relationships among genes and their many properties may be exploited to more accurately reveal commonalities of a gene set. Previous work has sought to achieve this by building biological networks that combine multiple types of gene-gene or gene-property relationships, and performing network analysis to identify other genes and properties most relevant to a given gene set. Most existing network-based approaches for recognizing genes or annotations relevant to a given gene set collapse information about different properties to simplify (homogenize) the networks. We present a network-based method for ranking genes or properties related to a given gene set. Such related genes or properties are identified from among the nodes of a large, heterogeneous network of biological information. Our method involves a random walk with restarts, performed on an initial network with multiple node and edge types that preserve more of the original, specific property information than current methods that operate on homogeneous networks. In this first stage of our algorithm, we find the properties that are the most relevant to the given gene set and extract a subnetwork of the original network, comprising only these relevant properties. We then re-rank genes by their similarity to the given gene set, based on a second random walk with restarts, performed on the above subnetwork. We demonstrate the effectiveness of this algorithm for ranking genes related to Drosophila embryonic development and aggressive responses in the brains of social animals. DRaWR was implemented as an R package available at veda.cs.illinois.edu/DRaWR. blatti@illinois.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  4. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci

    PubMed Central

    Ju, Jin Hyun; Crystal, Ronald G.

    2017-01-01

    Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL. PMID:28505156

  5. An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci.

    PubMed

    Ju, Jin Hyun; Shenoy, Sushila A; Crystal, Ronald G; Mezey, Jason G

    2017-05-01

    Genome-wide expression Quantitative Trait Loci (eQTL) studies in humans have provided numerous insights into the genetics of both gene expression and complex diseases. While the majority of eQTL identified in genome-wide analyses impact a single gene, eQTL that impact many genes are particularly valuable for network modeling and disease analysis. To enable the identification of such broad impact eQTL, we introduce CONFETI: Confounding Factor Estimation Through Independent component analysis. CONFETI is designed to address two conflicting issues when searching for broad impact eQTL: the need to account for non-genetic confounding factors that can lower the power of the analysis or produce broad impact eQTL false positives, and the tendency of methods that account for confounding factors to model broad impact eQTL as non-genetic variation. The key advance of the CONFETI framework is the use of Independent Component Analysis (ICA) to identify variation likely caused by broad impact eQTL when constructing the sample covariance matrix used for the random effect in a mixed model. We show that CONFETI has better performance than other mixed model confounding factor methods when considering broad impact eQTL recovery from synthetic data. We also used the CONFETI framework and these same confounding factor methods to identify eQTL that replicate between matched twin pair datasets in the Multiple Tissue Human Expression Resource (MuTHER), the Depression Genes Networks study (DGN), the Netherlands Study of Depression and Anxiety (NESDA), and multiple tissue types in the Genotype-Tissue Expression (GTEx) consortium. These analyses identified both cis-eQTL and trans-eQTL impacting individual genes, and CONFETI had better or comparable performance to other mixed model confounding factor analysis methods when identifying such eQTL. In these analyses, we were able to identify and replicate a few broad impact eQTL although the overall number was small even when applying CONFETI. In light of these results, we discuss the broad impact eQTL that have been previously reported from the analysis of human data and suggest that considerable caution should be exercised when making biological inferences based on these reported eQTL.

  6. Identification of key genes and pathways associated with neuropathic pain in uninjured dorsal root ganglion by using bioinformatic analysis.

    PubMed

    Chen, Chao-Jin; Liu, De-Zhao; Yao, Wei-Feng; Gu, Yu; Huang, Fei; Hei, Zi-Qing; Li, Xiang

    2017-01-01

    Neuropathic pain is a complex chronic condition occurring post-nervous system damage. The transcriptional reprogramming of injured dorsal root ganglia (DRGs) drives neuropathic pain. However, few comparative analyses using high-throughput platforms have investigated uninjured DRG in neuropathic pain, and potential interactions among differentially expressed genes (DEGs) and pathways were not taken into consideration. The aim of this study was to identify changes in genes and pathways associated with neuropathic pain in uninjured L4 DRG after L5 spinal nerve ligation (SNL) by using bioinformatic analysis. The microarray profile GSE24982 was downloaded from the Gene Expression Omnibus database to identify DEGs between DRGs in SNL and sham rats. The prioritization for these DEGs was performed using the Toppgene database followed by gene ontology and pathway enrichment analyses. The relationships among DEGs from the protein interactive perspective were analyzed using protein-protein interaction (PPI) network and module analysis. Real-time polymerase chain reaction (PCR) and Western blotting were used to confirm the expression of DEGs in the rodent neuropathic pain model. A total of 206 DEGs that might play a role in neuropathic pain were identified in L4 DRG, of which 75 were upregulated and 131 were downregulated. The upregulated DEGs were enriched in biological processes related to transcription regulation and molecular functions such as DNA binding, cell cycle, and the FoxO signaling pathway. Ctnnb1 protein had the highest connectivity degrees in the PPI network. The in vivo studies also validated that mRNA and protein levels of Ctnnb1 were upregulated in both L4 and L5 DRGs. This study provides insight into the functional gene sets and pathways associated with neuropathic pain in L4 uninjured DRG after L5 SNL, which might promote our understanding of the molecular mechanisms underlying the development of neuropathic pain.

  7. Molecular analyses of neurogenic defects in a human pluripotent stem cell model of fragile X syndrome.

    PubMed

    Boland, Michael J; Nazor, Kristopher L; Tran, Ha T; Szücs, Attila; Lynch, Candace L; Paredes, Ryder; Tassone, Flora; Sanna, Pietro Paolo; Hagerman, Randi J; Loring, Jeanne F

    2017-03-01

    New research suggests that common pathways are altered in many neurodevelopmental disorders including autism spectrum disorder; however, little is known about early molecular events that contribute to the pathology of these diseases. The study of monogenic, neurodevelopmental disorders with a high incidence of autistic behaviours, such as fragile X syndrome, has the potential to identify genes and pathways that are dysregulated in autism spectrum disorder as well as fragile X syndrome. In vitro generation of human disease-relevant cell types provides the ability to investigate aspects of disease that are impossible to study in patients or animal models. Differentiation of human pluripotent stem cells recapitulates development of the neocortex, an area affected in both fragile X syndrome and autism spectrum disorder. We have generated induced human pluripotent stem cells from several individuals clinically diagnosed with fragile X syndrome and autism spectrum disorder. When differentiated to dorsal forebrain cell fates, our fragile X syndrome human pluripotent stem cell lines exhibited reproducible aberrant neurogenic phenotypes. Using global gene expression and DNA methylation profiling, we have analysed the early stages of neurogenesis in fragile X syndrome human pluripotent stem cells. We discovered aberrant DNA methylation patterns at specific genomic regions in fragile X syndrome cells, and identified dysregulated gene- and network-level correlates of fragile X syndrome that are associated with developmental signalling, cell migration, and neuronal maturation. Integration of our gene expression and epigenetic analysis identified altered epigenetic-mediated transcriptional regulation of a distinct set of genes in fragile X syndrome. These fragile X syndrome-aberrant networks are significantly enriched for genes associated with autism spectrum disorder, giving support to the idea that underlying similarities exist among these neurodevelopmental diseases. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Technologies and Approaches to Elucidate and Model the Virulence Program of Salmonella.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Yoon, Hyunjin; Nakayasu, Ernesto S.

    Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated a large amount of datamore » and driven development of computational approaches required for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird’s eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host.« less

  9. HOXB7 and Hsa-miR-222 as the Potential Therapeutic Candidates for Metastatic Colorectal Cancer.

    PubMed

    Iman, Maryam; Mostafavi, Seyede Samaneh; Arab, Seyed Shahriar; Azimzadeh, Sadegh; Poorebrahim, Mansour

    2016-01-01

    Recent studies have shown that the high mortality of patients with colorectal cancer (CRC) is related to its ability to spread the surrounding tissues, thus there is a need for designing and developing new drugs. Here, we proposed a combinational therapy strategy, an inhibitory peptide in combination with miRNA targeting, for modulating CRC metastasis. In this study, some of the recent patents were also reviewed. After data analysis with GEO2R and gene annotation using DAVID server, regulatory interactions of differentially expressed genes (DEGs) were obtained from STRING, GeneMANIA, KEGG and TRED databases. In parallel, the corresponding validated microRNAs (miRNAs) were obtained from mirDIP web server and a miRNA-DEG regulatory network was also reconstructed. Clustering and topological analyses of the regulatory networks were performed using Cytoscape plug-ins. We found the HOXB family as the most important functional complex in DEG-derived regulatory network. Accordingly, an anti-HOXB7 peptide was designed based on the binding interface of its coactivator, PBX1. Topological analysis of miRNA-DEG network indicated that hsa-miR-222 is one of the most important oncomirs involved in regulation of DEGs activities. Thus, this miRNA, along with HOXB7, was also considered as the potential target for inhibiting CRC metastasis. Molecular docking studies exhibited that the designed peptide can bind to desired binding pocket of HOXB7 in a highaffinity manner. Further confirmations were also observed in Molecular dynamics (MD) simulations carried out by GROMACS v5.0.2 simulation package. In conclusion, our findings suggest that simultaneous targeting of key regulatory genes and miRNAs may be a useful strategy for prevention of CRC metastasis.

  10. MetNet: Software to Build and Model the Biogenetic Lattice of Arabidopsis

    DOE PAGES

    Wurtele, Eve Syrkin; Li, Jie; Diao, Lixia; ...

    2003-01-01

    MetNet (http://www.botany.iastate.edu/∼mash/metnetex/metabolicnetex.html) is publicly available software in development for analysis of genome-wide RNA, protein and metabolite profiling data. The software is designed to enable the biologist to visualize, statistically analyse and model a metabolic and regulatory network map of Arabidopsis , combined with gene expression profiling data. It contains a JAVA interface to an interactions database (MetNetDB) containing information on regulatory and metabolic interactions derived from a combination of web databases (TAIR, KEGG, BRENDA) and input from biologists in their area of expertise. FCModeler captures input from MetNetDB in a graphical form. Sub-networks can be identified and interpreted using simplemore » fuzzy cognitive maps. FCModeler is intended to develop and evaluate hypotheses, and provide a modelling framework for assessing the large amounts of data captured by high-throughput gene expression experiments. FCModeler and MetNetDB are currently being extended to three-dimensional virtual reality display. The MetNet map, together with gene expression data, can be viewed using multivariate graphics tools in GGobi linked with the data analytic tools in R. Users can highlight different parts of the metabolic network and see the relevant expression data highlighted in other data plots. Multi-dimensional expression data can be rotated through different dimensions. Statistical analysis can be computed alongside the visual. MetNet is designed to provide a framework for the formulation of testable hypotheses regarding the function of specific genes, and in the long term provide the basis for identification of metabolic and regulatory networks that control plant composition and development.« less

  11. Meta-Analysis of Genome-Wide Association Studies and Network Analysis-Based Integration with Gene Expression Data Identify New Suggestive Loci and Unravel a Wnt-Centric Network Associated with Dupuytren’s Disease

    PubMed Central

    Becker, Kerstin; Siegert, Sabine; Toliat, Mohammad Reza; Du, Juanjiangmeng; Casper, Ramona; Dolmans, Guido H.; Werker, Paul M.; Tinschert, Sigrid; Franke, Andre; Gieger, Christian; Strauch, Konstantin; Nothnagel, Michael; Nürnberg, Peter; Hennies, Hans Christian

    2016-01-01

    Dupuytren´s disease, a fibromatosis of the connective tissue in the palm, is a common complex disease with a strong genetic component. Up to date nine genetic loci have been found to be associated with the disease. Six of these loci contain genes that code for Wnt signalling proteins. In spite of this striking first insight into the genetic factors in Dupuytren´s disease, much of the inherited risk in Dupuytren´s disease still needs to be discovered. The already identified loci jointly explain ~1% of the heritability in this disease. To further elucidate the genetic basis of Dupuytren´s disease, we performed a genome-wide meta-analysis combining three genome-wide association study (GWAS) data sets, comprising 1,580 cases and 4,480 controls. We corroborated all nine previously identified loci, six of these with genome-wide significance (p-value < 5x10-8). In addition, we identified 14 new suggestive loci (p-value < 10−5). Intriguingly, several of these new loci contain genes associated with Wnt signalling and therefore represent excellent candidates for replication. Next, we compared whole-transcriptome data between patient- and control-derived tissue samples and found the Wnt/β-catenin pathway to be the top deregulated pathway in patient samples. We then conducted network and pathway analyses in order to identify protein networks that are enriched for genes highlighted in the GWAS meta-analysis and expression data sets. We found further evidence that the Wnt signalling pathways in conjunction with other pathways may play a critical role in Dupuytren´s disease. PMID:27467239

  12. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation.

    PubMed

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-12-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Molecular mechanisms of OLIG2 transcription factor in brain cancer

    PubMed Central

    Lian, Nathan; Kesari, Santosh

    2016-01-01

    Oligodendrocyte lineage transcription factor 2 (OLIG2) plays a pivotal role in glioma development. Here we conducted a comprehensive study of the critical gene regulatory networks involving OLIG2. These include the networks responsible for OLIG2 expression, its translocation to nucleus, cell cycle, epigenetic regulation, and Rho-pathway interactions. We described positive feedback loops including OLIG2: loops of epigenetic regulation and loops involving receptor tyrosine kinases. These loops may be responsible for the prolonged oncogenic activity of OLIG2. The proposed schemes for epigenetic regulation of the gene networks involving OLIG2 are confirmed by patient survival (Kaplan–Meier) curves based on the cancer genome atlas (TCGA) datasets. Finally, we elucidate the Coherent-Gene Modules (CGMs) networks—framework of OLIG2 involvement in cancer. We showed that genes interacting with OLIG2 formed eight CGMs having a set of intermodular connections. We showed also that among the genes involved in these modules the most connected hub is EGFR, then, on lower level, HSP90 and CALM1, followed by three lower levels including epigenetic genes KDM1A and NCOR1. The genes on the six upper levels of the hierarchy are involved in interconnections of all eight CGMs and organize functionally defined gene-signaling subnetworks having specific functions. For example, CGM1 is involved in epigenetic control. CGM2 is significantly related to cell proliferation and differentiation. CGM3 includes a number of interconnected helix–loop–helix transcription factors (bHLH) including OLIG2. Many of these TFs are partially controlled by OLIG2. The CGM4 is involved in PDGF-related: angiogenesis, tumor cell proliferation and differentiation. These analyses provide testable hypotheses and approaches to inhibit OLIG2 pathway and relevant feed-forward and feedback loops to be interrogated. This broad approach can be applied to other TFs. PMID:27447975

  14. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation

    PubMed Central

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-01-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant ‘Blondee’ (BLO) and its red-skin parent ‘Kidd’s D-8’ (KID), the original name of ‘Gala’, to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10–13) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. PMID:26417021

  15. The Orphan Disease Networks

    PubMed Central

    Zhang, Minlu; Zhu, Cheng; Jacomy, Alexis; Lu, Long J.; Jegga, Anil G.

    2011-01-01

    The low prevalence rate of orphan diseases (OD) requires special combined efforts to improve diagnosis, prevention, and discovery of novel therapeutic strategies. To identify and investigate relationships based on shared genes or shared functional features, we have conducted a bioinformatic-based global analysis of all orphan diseases with known disease-causing mutant genes. Starting with a bipartite network of known OD and OD-causing mutant genes and using the human protein interactome, we first construct and topologically analyze three networks: the orphan disease network, the orphan disease-causing mutant gene network, and the orphan disease-causing mutant gene interactome. Our results demonstrate that in contrast to the common disease-causing mutant genes that are predominantly nonessential, a majority of orphan disease-causing mutant genes are essential. In confirmation of this finding, we found that OD-causing mutant genes are topologically important in the protein interactome and are ubiquitously expressed. Additionally, functional enrichment analysis of those genes in which mutations cause ODs shows that a majority result in premature death or are lethal in the orthologous mouse gene knockout models. To address the limitations of traditional gene-based disease networks, we also construct and analyze OD networks on the basis of shared enriched features (biological processes, cellular components, pathways, phenotypes, and literature citations). Analyzing these functionally-linked OD networks, we identified several additional OD-OD relations that are both phenotypically similar and phenotypically diverse. Surprisingly, we observed that the wiring of the gene-based and other feature-based OD networks are largely different; this suggests that the relationship between ODs cannot be fully captured by the gene-based network alone. PMID:21664998

  16. Reconstructing directed gene regulatory network by only gene expression data.

    PubMed

    Zhang, Lu; Feng, Xi Kang; Ng, Yen Kaow; Li, Shuai Cheng

    2016-08-18

    Accurately identifying gene regulatory network is an important task in understanding in vivo biological activities. The inference of such networks is often accomplished through the use of gene expression data. Many methods have been developed to evaluate gene expression dependencies between transcription factor and its target genes, and some methods also eliminate transitive interactions. The regulatory (or edge) direction is undetermined if the target gene is also a transcription factor. Some methods predict the regulatory directions in the gene regulatory networks by locating the eQTL single nucleotide polymorphism, or by observing the gene expression changes when knocking out/down the candidate transcript factors; regrettably, these additional data are usually unavailable, especially for the samples deriving from human tissues. In this study, we propose the Context Based Dependency Network (CBDN), a method that is able to infer gene regulatory networks with the regulatory directions from gene expression data only. To determine the regulatory direction, CBDN computes the influence of source to target by evaluating the magnitude changes of expression dependencies between the target gene and the others with conditioning on the source gene. CBDN extends the data processing inequality by involving the dependency direction to distinguish between direct and transitive relationship between genes. We also define two types of important regulators which can influence a majority of the genes in the network directly or indirectly. CBDN can detect both of these two types of important regulators by averaging the influence functions of candidate regulator to the other genes. In our experiments with simulated and real data, even with the regulatory direction taken into account, CBDN outperforms the state-of-the-art approaches for inferring gene regulatory network. CBDN identifies the important regulators in the predicted network: 1. TYROBP influences a batch of genes that are related to Alzheimer's disease; 2. ZNF329 and RB1 significantly regulate those 'mesenchymal' gene expression signature genes for brain tumors. By merely leveraging gene expression data, CBDN can efficiently infer the existence of gene-gene interactions as well as their regulatory directions. The constructed networks are helpful in the identification of important regulators for complex diseases.

  17. Screening of Critical Genes and MicroRNAs in Blood Samples of Patients with Ruptured Intracranial Aneurysms by Bioinformatic Analysis of Gene Expression Data.

    PubMed

    Bo, Lijuan; Wei, Bo; Wang, Zhanfeng; Kong, Daliang; Gao, Zheng; Miao, Zhuang

    2017-09-20

    BACKGROUND This study aimed to identify more potential genes and miRNAs associated with the pathogenesis of intracranial aneurysms (IAs). MATERIAL AND METHODS The dataset of GSE36791 (accession number) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened for in the blood samples from patients with ruptured IAs and controls, followed by functional and pathway enrichment analyses. In addition, gene co-expression network was constructed and significant modules were extracted from the network by WGCNA R package. Screening for miRNAs that could regulate DEGs in the modules was performed and an analysis of regulatory relationships was conducted. RESULTS A total of 304 DEGs (167 up-regulated and 137 down-regulated genes) were screened for in blood samples from patients with ruptured IAs compared with those from controls. Functional enrichment analysis showed that the up-regulated genes were mainly associated with immune response and the down-regulated DEGs were mainly concerned with the structure of ribosome and translation. Besides, six functional modules were significantly identified, including four modules enriched by up-regulated genes and two modules enriched by down-regulated genes. Thereinto, the blue, yellow, and turquoise modules of up-regulated genes were all linked with immune response. Additionally, 16 miRNAs were predicted to regulate DEGs in the three modules associated with immune response, such as hsa-miR-1304, hsa-miR-33b, hsa-miR-125b, and hsa-miR-125a-5p. CONCLUSIONS Several genes and miRNAs (such as miR-1304, miR-33b, IRS2 and KCNJ2) may take part in the pathogenesis of IAs.

  18. Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities

    PubMed Central

    2011-01-01

    Background Gene regulatory networks play essential roles in living organisms to control growth, keep internal metabolism running and respond to external environmental changes. Understanding the connections and the activity levels of regulators is important for the research of gene regulatory networks. While relevance score based algorithms that reconstruct gene regulatory networks from transcriptome data can infer genome-wide gene regulatory networks, they are unfortunately prone to false positive results. Transcription factor activities (TFAs) quantitatively reflect the ability of the transcription factor to regulate target genes. However, classic relevance score based gene regulatory network reconstruction algorithms use models do not include the TFA layer, thus missing a key regulatory element. Results This work integrates TFA prediction algorithms with relevance score based network reconstruction algorithms to reconstruct gene regulatory networks with improved accuracy over classic relevance score based algorithms. This method is called Gene expression and Transcription factor activity based Relevance Network (GTRNetwork). Different combinations of TFA prediction algorithms and relevance score functions have been applied to find the most efficient combination. When the integrated GTRNetwork method was applied to E. coli data, the reconstructed genome-wide gene regulatory network predicted 381 new regulatory links. This reconstructed gene regulatory network including the predicted new regulatory links show promising biological significances. Many of the new links are verified by known TF binding site information, and many other links can be verified from the literature and databases such as EcoCyc. The reconstructed gene regulatory network is applied to a recent transcriptome analysis of E. coli during isobutanol stress. In addition to the 16 significantly changed TFAs detected in the original paper, another 7 significantly changed TFAs have been detected by using our reconstructed network. Conclusions The GTRNetwork algorithm introduces the hidden layer TFA into classic relevance score-based gene regulatory network reconstruction processes. Integrating the TFA biological information with regulatory network reconstruction algorithms significantly improves both detection of new links and reduces that rate of false positives. The application of GTRNetwork on E. coli gene transcriptome data gives a set of potential regulatory links with promising biological significance for isobutanol stress and other conditions. PMID:21668997

  19. FRONTO-STRIATAL FUNCTIONAL CONNECTIVITY DURING RESPONSE INHIBITION IN ALCOHOL DEPENDENCE

    PubMed Central

    Courtney, Kelly E.; Ghahremani, Dara G.; Ray, Lara A.

    2013-01-01

    Poor response inhibition has been implicated in the development of alcohol dependence, yet little is known about how neural pathways underlying cognitive control are affected in this disorder. Moreover, endogenous opioid levels may impact the functionality of inhibitory control pathways. This study investigated the relationship between alcohol dependence severity and functional connectivity of fronto-striatal networks during response inhibition in an alcohol dependent sample. A secondary aim of this study was to test the moderating effect of a functional polymorphism (A118G) of the µ-opioid receptor (OPRM1) gene. Twenty individuals with alcohol dependence (6 females; 90% Caucasian; mean age = 29.4) who were prospectively genotyped on the OPRM1 gene underwent blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) while performing a Stop Signal Task (SST). The relationship between alcohol dependence severity and functional connectivity within fronto-striatal networks important for response inhibition was assessed using psychophysiological interaction (PPI) analyses. Analyses revealed greater alcohol dependence severity associated with weaker functional connectivity between the putamen and prefrontal regions (e.g., the anterior insula, anterior cingulate, and medial prefrontal cortex) during response inhibition. Further, the OPRM1 genotype was associated with differential response inhibition-related functional connectivity. This study demonstrates that individuals with more severe alcohol dependence exhibit less frontal connectivity with the striatum, a component of cognitive control networks important for response inhibition. These findings suggest that the fronto-striatal pathway underlying response inhibition is weakened as alcoholism progresses. PMID:23240858

  20. Database of cattle candidate genes and genetic markers for milk production and mastitis

    PubMed Central

    Ogorevc, J; Kunej, T; Razpet, A; Dovc, P

    2009-01-01

    A cattle database of candidate genes and genetic markers for milk production and mastitis has been developed to provide an integrated research tool incorporating different types of information supporting a genomic approach to study lactation, udder development and health. The database contains 943 genes and genetic markers involved in mammary gland development and function, representing candidates for further functional studies. The candidate loci were drawn on a genetic map to reveal positional overlaps. For identification of candidate loci, data from seven different research approaches were exploited: (i) gene knockouts or transgenes in mice that result in specific phenotypes associated with mammary gland (143 loci); (ii) cattle QTL for milk production (344) and mastitis related traits (71); (iii) loci with sequence variations that show specific allele-phenotype interactions associated with milk production (24) or mastitis (10) in cattle; (iv) genes with expression profiles associated with milk production (207) or mastitis (107) in cattle or mouse; (v) cattle milk protein genes that exist in different genetic variants (9); (vi) miRNAs expressed in bovine mammary gland (32) and (vii) epigenetically regulated cattle genes associated with mammary gland function (1). Fourty-four genes found by multiple independent analyses were suggested as the most promising candidates and were further in silico analysed for expression levels in lactating mammary gland, genetic variability and top biological functions in functional networks. A miRNA target search for mammary gland expressed miRNAs identified 359 putative binding sites in 3′UTRs of candidate genes. PMID:19508288

  1. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family

    PubMed Central

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones. PMID:27066030

  2. Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family.

    PubMed

    Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua

    2016-01-01

    Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones.

  3. Comparative RNA-Seq based dissection of the regulatory networks and environmental stimuli underlying Vibrio parahaemolyticus gene expression during infection.

    PubMed

    Livny, Jonathan; Zhou, Xiaohui; Mandlik, Anjali; Hubbard, Troy; Davis, Brigid M; Waldor, Matthew K

    2014-10-29

    Vibrio parahaemolyticus is the leading worldwide cause of seafood-associated gastroenteritis, yet little is known regarding its intraintestinal gene expression or physiology. To date, in vivo analyses have focused on identification and characterization of virulence factors--e.g. a crucial Type III secretion system (T3SS2)--rather than genome-wide analyses of in vivo biology. Here, we used RNA-Seq to profile V. parahaemolyticus gene expression in infected infant rabbits, which mimic human infection. Comparative transcriptomic analysis of V. parahaemolyticus isolated from rabbit intestines and from several laboratory conditions enabled identification of mRNAs and sRNAs induced during infection and of regulatory factors that likely control them. More than 12% of annotated V. parahaemolyticus genes are differentially expressed in the intestine, including the genes of T3SS2, which are likely induced by bile-mediated activation of the transcription factor VtrB. Our analyses also suggest that V. parahaemolyticus has access to glucose or other preferred carbon sources in vivo, but that iron is inconsistently available. The V. parahaemolyticus transcriptional response to in vivo growth is far more widespread than and largely distinct from that of V. cholerae, likely due to the distinct ways in which these diarrheal pathogens interact with and modulate the environment in the small intestine. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Rare copy number variants in patients with congenital conotruncal heart defects.

    PubMed

    Xie, Hongbo M; Werner, Petra; Stambolian, Dwight; Bailey-Wilson, Joan E; Hakonarson, Hakon; White, Peter S; Taylor, Deanne M; Goldmuntz, Elizabeth

    2017-03-01

    Previous studies using different cardiac phenotypes, technologies and designs suggest a burden of large, rare or de novo copy number variants (CNVs) in subjects with congenital heart defects. We sought to identify disease-related CNVs, candidate genes, and functional pathways in a large number of cases with conotruncal and related defects that carried no known genetic syndrome. Cases and control samples were divided into two cohorts and genotyped to assess each subject's CNV content. Analyses were performed to ascertain differences in overall CNV prevalence and to identify enrichment of specific genes and functional pathways in conotruncal cases relative to healthy controls. Only findings present in both cohorts are presented. From 973 total conotruncal cases, a burden of rare CNVs was detected in both cohorts. Candidate genes from rare CNVs found in both cohorts were identified based on their association with cardiac development or disease, and/or their reported disruption in published studies. Functional and pathway analyses revealed significant enrichment of terms involved in either heart or early embryonic development. Our study tested one of the largest cohorts specifically with cardiac conotruncal and related defects. These results confirm and extend previous findings that CNVs contribute to disease risk for congenital heart defects in general and conotruncal defects in particular. As disease heterogeneity renders identification of single recurrent genes or loci difficult, functional pathway and gene regulation network analyses appear to be more informative. Birth Defects Research 109:271-295, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Orthoscape: a cytoscape application for grouping and visualization KEGG based gene networks by taxonomy and homology principles.

    PubMed

    Mustafin, Zakhar Sergeevich; Lashin, Sergey Alexandrovich; Matushkin, Yury Georgievich; Gunbin, Konstantin Vladimirovich; Afonnikov, Dmitry Arkadievich

    2017-01-27

    There are many available software tools for visualization and analysis of biological networks. Among them, Cytoscape ( http://cytoscape.org/ ) is one of the most comprehensive packages, with many plugins and applications which extends its functionality by providing analysis of protein-protein interaction, gene regulatory and gene co-expression networks, metabolic, signaling, neural as well as ecological-type networks including food webs, communities networks etc. Nevertheless, only three plugins tagged 'network evolution' found in Cytoscape official app store and in literature. We have developed a new Cytoscape 3.0 application Orthoscape aimed to facilitate evolutionary analysis of gene networks and visualize the results. Orthoscape aids in analysis of evolutionary information available for gene sets and networks by highlighting: (1) the orthology relationships between genes; (2) the evolutionary origin of gene network components; (3) the evolutionary pressure mode (diversifying or stabilizing, negative or positive selection) of orthologous groups in general and/or branch-oriented mode. The distinctive feature of Orthoscape is the ability to control all data analysis steps via user-friendly interface. Orthoscape allows its users to analyze gene networks or separated gene sets in the context of evolution. At each step of data analysis, Orthoscape also provides for convenient visualization and data manipulation.

  6. Transcriptome-Wide Mega-Analyses Reveal Joint Dysregulation of Immunologic Genes and Transcription Regulators in Brain and Blood in Schizophrenia

    PubMed Central

    Hess, Jonathan L.; Tylee, Daniel S.; Barve, Rahul; de Jong, Simone; Ophoff, Roel A.; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J.; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T.; Glatt, Stephen J.

    2016-01-01

    The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n = 315) and from ex-vivo blood tissues (n = 578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. PMID:27450777

  7. Transcriptome-wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in brain and blood in schizophrenia.

    PubMed

    Hess, Jonathan L; Tylee, Daniel S; Barve, Rahul; de Jong, Simone; Ophoff, Roel A; Kumarasinghe, Nishantha; Tooney, Paul; Schall, Ulrich; Gardiner, Erin; Beveridge, Natalie Jane; Scott, Rodney J; Yasawardene, Surangi; Perera, Antionette; Mendis, Jayan; Carr, Vaughan; Kelly, Brian; Cairns, Murray; Tsuang, Ming T; Glatt, Stephen J

    2016-10-01

    The application of microarray technology in schizophrenia research was heralded as paradigm-shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology was widely adopted, initially in studies of postmortem brain tissue, and later in studies of peripheral blood. The collective body of schizophrenia microarray literature contains apparent inconsistencies between studies, with failures to replicate top hits, in part due to small sample sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to summarize existing studies of schizophrenia cases and non-related comparison subjects, we performed two mega-analyses of a combined set of microarray data from postmortem prefrontal cortices (n=315) and from ex-vivo blood tissues (n=578). We adjusted regression models per gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-expression modules, and assessed enrichment of cell types and genetic risk factors. The identities of the most significantly dysregulated genes were largely distinct for each tissue, but the findings indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., predicted targets of transcription factors and miRNA species across tissues). Our network-based analyses converged upon similar patterns of heightened innate immune gene expression in both brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers using the blood-based microarray data. Our study provides an informative atlas for future pathophysiologic and biomarker studies of schizophrenia. Published by Elsevier B.V.

  8. RNA Sequencing and Bioinformatics Analysis Implicate the Regulatory Role of a Long Noncoding RNA-mRNA Network in Hepatic Stellate Cell Activation.

    PubMed

    Guo, Can-Jie; Xiao, Xiao; Sheng, Li; Chen, Lili; Zhong, Wei; Li, Hai; Hua, Jing; Ma, Xiong

    2017-01-01

    To analyze the long noncoding (lncRNA)-mRNA expression network and potential roles in rat hepatic stellate cells (HSCs) during activation. LncRNA expression was analyzed in quiescent and culture-activated HSCs by RNA sequencing, and differentially expressed lncRNAs verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) were subjected to bioinformatics analysis. In vivo analyses of differential lncRNA-mRNA expression were performed on a rat model of liver fibrosis. We identified upregulation of 12 lncRNAs and 155 mRNAs and downregulation of 12 lncRNAs and 374 mRNAs in activated HSCs. Additionally, we identified the differential expression of upregulated lncRNAs (NONRATT012636.2, NONRATT016788.2, and NONRATT021402.2) and downregulated lncRNAs (NONRATT007863.2, NONRATT019720.2, and NONRATT024061.2) in activated HSCs relative to levels observed in quiescent HSCs, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that changes in lncRNAs associated with HSC activation revealed 11 significantly enriched pathways according to their predicted targets. Moreover, based on the predicted co-expression network, the relative dynamic levels of NONRATT013819.2 and lysyl oxidase (Lox) were compared during HSC activation both in vitro and in vivo. Our results confirmed the upregulation of lncRNA NONRATT013819.2 and Lox mRNA associated with the extracellular matrix (ECM)-related signaling pathway in HSCs and fibrotic livers. Our results detailing a dysregulated lncRNA-mRNA network might provide new treatment strategies for hepatic fibrosis based on findings indicating potentially critical roles for NONRATT013819.2 and Lox in ECM remodeling during HSC activation. © 2017 The Author(s). Published by S. Karger AG, Basel.

  9. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks.

    PubMed

    Nariai, N; Kim, S; Imoto, S; Miyano, S

    2004-01-01

    We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.

  10. Polycomb-like 2 Associates with PRC2 and Regulates Transcriptional Networks during Mouse Embryonic Stem Cell Self-Renewal and Differentiation

    PubMed Central

    Walker, Emily; Chang, Wing Y.; Hunkapiller, Julie; Cagney, Gerard; Garcha, Kamal; Torchia, Joseph; Krogan, Nevan J.; Reiter, Jeremy F.; Stanford, William L.

    2010-01-01

    Summary Polycomb group (PcG) proteins are conserved epigenetic transcriptional repressors that control numerous developmental gene expression programs and have recently been implicated in modulating embryonic stem cell (ESC) fate. We identified the PcG protein PCL2 (polycomb-like 2) in a genome-wide screen for regulators of self-renewal and pluripotency and predicted that it would play an important role in mouse ESC fate determination. Using multiple biochemical strategies, we provide evidence that PCL2 is a Polycomb Repressive Complex 2 (PRC2)-associated protein in mouse ESCs. Knockdown of Pcl2 in ESCs resulted in heightened self-renewal characteristics, defects in differentiation and altered patterns of histone methylation. Integration of global gene expression and promoter occupancy analyses allowed us to identify PCL2 and PRC2 transcriptional targets and draft regulatory networks. We describe the role of PCL2 in both modulating transcription of ESC self-renewal genes in undifferentiated ESCs as well as developmental regulators during early commitment and differentiation. PMID:20144788

  11. The Plant Genome Integrative Explorer Resource: PlantGenIE.org.

    PubMed

    Sundell, David; Mannapperuma, Chanaka; Netotea, Sergiu; Delhomme, Nicolas; Lin, Yao-Cheng; Sjödin, Andreas; Van de Peer, Yves; Jansson, Stefan; Hvidsten, Torgeir R; Street, Nathaniel R

    2015-12-01

    Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Integration of a splicing regulatory network within the meiotic gene expression program of Saccharomyces cerevisiae

    PubMed Central

    Munding, Elizabeth M.; Igel, A. Haller; Shiue, Lily; Dorighi, Kristel M.; Treviño, Lisa R.; Ares, Manuel

    2010-01-01

    Splicing regulatory networks are essential components of eukaryotic gene expression programs, yet little is known about how they are integrated with transcriptional regulatory networks into coherent gene expression programs. Here we define the MER1 splicing regulatory network and examine its role in the gene expression program during meiosis in budding yeast. Mer1p splicing factor promotes splicing of just four pre-mRNAs. All four Mer1p-responsive genes also require Nam8p for splicing activation by Mer1p; however, other genes require Nam8p but not Mer1p, exposing an overlapping meiotic splicing network controlled by Nam8p. MER1 mRNA and three of the four Mer1p substrate pre-mRNAs are induced by the transcriptional regulator Ume6p. This unusual arrangement delays expression of Mer1p-responsive genes relative to other genes under Ume6p control. Products of Mer1p-responsive genes are required for initiating and completing recombination and for activation of Ndt80p, the activator of the transcriptional network required for subsequent steps in the program. Thus, the MER1 splicing regulatory network mediates the dependent relationship between the UME6 and NDT80 transcriptional regulatory networks in the meiotic gene expression program. This study reveals how splicing regulatory networks can be interlaced with transcriptional regulatory networks in eukaryotic gene expression programs. PMID:21123654

  13. Comprehensive Logic Based Analyses of Toll-Like Receptor 4 Signal Transduction Pathway

    PubMed Central

    Padwal, Mahesh Kumar; Sarma, Uddipan; Saha, Bhaskar

    2014-01-01

    Among the 13 TLRs in the vertebrate systems, only TLR4 utilizes both Myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adapter interferon-β-inducing Factor (TRIF) adaptors to transduce signals triggering host-protective immune responses. Earlier studies on the pathway combined various experimental data in the form of one comprehensive map of TLR signaling. But in the absence of adequate kinetic parameters quantitative mathematical models that reveal emerging systems level properties and dynamic inter-regulation among the kinases/phosphatases of the TLR4 network are not yet available. So, here we used reaction stoichiometry-based and parameter independent logical modeling formalism to build the TLR4 signaling network model that captured the feedback regulations, interdependencies between signaling kinases and phosphatases and the outcome of simulated infections. The analyses of the TLR4 signaling network revealed 360 feedback loops, 157 negative and 203 positive; of which, 334 loops had the phosphatase PP1 as an essential component. The network elements' interdependency (positive or negative dependencies) in perturbation conditions such as the phosphatase knockout conditions revealed interdependencies between the dual-specific phosphatases MKP-1 and MKP-3 and the kinases in MAPK modules and the role of PP2A in the auto-regulation of Calmodulin kinase-II. Our simulations under the specific kinase or phosphatase gene-deficiency or inhibition conditions corroborated with several previously reported experimental data. The simulations to mimic Yersinia pestis and E. coli infections identified the key perturbation in the network and potential drug targets. Thus, our analyses of TLR4 signaling highlights the role of phosphatases as key regulatory factors in determining the global interdependencies among the network elements; uncovers novel signaling connections; identifies potential drug targets for infections. PMID:24699232

  14. Intrinsic limits to gene regulation by global crosstalk

    PubMed Central

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  15. Ascorbate peroxidase-related (APx-R) is not a duplicable gene.

    PubMed

    Dunand, Christophe; Mathé, Catherine; Lazzarotto, Fernanda; Margis, Rogério; Margis-Pinheiro, Marcia

    2011-12-01

    Phylogenetic, genomic and functional analyses have allowed the identification of a new class of putative heme peroxidases, so called APx-R (APx-Related). These new class, mainly present in the green lineage (including green algae and land plants), can also be detected in other unicellular chloroplastic organisms. Except for recent polyploid organisms, only single-copy of APx-R gene was detected in each genome, suggesting that the majority of the APx-R extra-copies were lost after chromosomal or segmental duplications. In a similar way, most APx-R co-expressed genes in Arabidopsis genome do not have conserved extra-copies after chromosomal duplications and are predicted to be localized in organelles, as are the APx-R. The member of this gene network can be considered as unique gene, well conserved through the evolution due to a strong negative selection pressure and a low evolution rate. © 2011 Landes Bioscience

  16. Human cognitive ability is influenced by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins

    PubMed Central

    Hill, W D; Davies, G; van de Lagemaat, L N; Christoforou, A; Marioni, R E; Fernandes, C P D; Liewald, D C; Croning, M D R; Payton, A; Craig, L C A; Whalley, L J; Horan, M; Ollier, W; Hansell, N K; Wright, M J; Martin, N G; Montgomery, G W; Steen, V M; Le Hellard, S; Espeseth, T; Lundervold, A J; Reinvang, I; Starr, J M; Pendleton, N; Grant, S G N; Bates, T C; Deary, I J

    2014-01-01

    Differences in general cognitive ability (intelligence) account for approximately half of the variation in any large battery of cognitive tests and are predictive of important life events including health. Genome-wide analyses of common single-nucleotide polymorphisms indicate that they jointly tag between a quarter and a half of the variance in intelligence. However, no single polymorphism has been reliably associated with variation in intelligence. It remains possible that these many small effects might be aggregated in networks of functionally linked genes. Here, we tested a network of 1461 genes in the postsynaptic density and associated complexes for an enriched association with intelligence. These were ascertained in 3511 individuals (the Cognitive Ageing Genetics in England and Scotland (CAGES) consortium) phenotyped for general cognitive ability, fluid cognitive ability, crystallised cognitive ability, memory and speed of processing. By analysing the results of a genome wide association study (GWAS) using Gene Set Enrichment Analysis, a significant enrichment was found for fluid cognitive ability for the proteins found in the complexes of N-methyl-D-aspartate receptor complex; P=0.002. Replication was sought in two additional cohorts (N=670 and 2062). A meta-analytic P-value of 0.003 was found when these were combined with the CAGES consortium. The results suggest that genetic variation in the macromolecular machines formed by membrane-associated guanylate kinase (MAGUK) scaffold proteins and their interaction partners contributes to variation in intelligence. PMID:24399044

  17. Association weight matrix for the genetic dissection of puberty in beef cattle

    PubMed Central

    Fortes, Marina R. S.; Reverter, Antonio; Zhang, Yuandan; Collis, Eliza; Nagaraj, Shivashankar H.; Jonsson, Nick N.; Prayaga, Kishore C.; Barris, Wes; Hawken, Rachel J.

    2010-01-01

    We describe a systems biology approach for the genetic dissection of complex traits based on applying gene network theory to the results from genome-wide associations. The associations of single-nucleotide polymorphisms (SNP) that were individually associated with a primary phenotype of interest, age at puberty in our study, were explored across 22 related traits. Genomic regions were surveyed for genes harboring the selected SNP. As a result, an association weight matrix (AWM) was constructed with as many rows as genes and as many columns as traits. Each {i, j} cell value in the AWM corresponds to the z-score normalized additive effect of the ith gene (via its neighboring SNP) on the jth trait. Columnwise, the AWM recovered the genetic correlations estimated via pedigree-based restricted maximum-likelihood methods. Rowwise, a combination of hierarchical clustering, gene network, and pathway analyses identified genetic drivers that would have been missed by standard genome-wide association studies. Finally, the promoter regions of the AWM-predicted targets of three key transcription factors (TFs), estrogen-related receptor γ (ESRRG), Pal3 motif, bound by a PPAR-γ homodimer, IR3 sites (PPARG), and Prophet of Pit 1, PROP paired-like homeobox 1 (PROP1), were surveyed to identify binding sites corresponding to those TFs. Applied to our case, the AWM results recapitulate the known biology of puberty, captured experimentally validated binding sites, and identified candidate genes and gene–gene interactions for further investigation. PMID:20643938

  18. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Brian T.; Imam, Saheed; Scarborough, Matthew J.

    Rhodobacter sphaeroides is one of the best-studied alphaproteobacteria from biochemical, genetic, and genomic perspectives. To gain a better systems-level understanding of this organism, we generated a large transposon mutant library and used transposon sequencing (Tn-seq) to identify genes that are essential under several growth conditions. Using newly developed Tn-seq analysis software (TSAS), we identified 493 genes as essential for aerobic growth on a rich medium. We then used the mutant library to identify conditionally essential genes under two laboratory growth conditions, identifying 85 additional genes required for aerobic growth in a minimal medium and 31 additional genes required for photosyntheticmore » growth. In all instances, our analyses confirmed essentiality for many known genes and identified genes not previously considered to be essential. We used the resulting Tn-seq data to refine and improve a genome-scale metabolic network model (GEM) for R. sphaeroides. Together, we demonstrate how genetic, genomic, and computational approaches can be combined to obtain a systems-level understanding of the genetic framework underlying metabolic diversity in bacterial species.« less

  20. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    PubMed

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene-encoded proteins are attached to the core at more peripheral positions of the networks.

  1. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.

    PubMed

    Valentini, Giorgio; Paccanaro, Alberto; Caniza, Horacio; Romero, Alfonso E; Re, Matteo

    2014-06-01

    In the context of "network medicine", gene prioritization methods represent one of the main tools to discover candidate disease genes by exploiting the large amount of data covering different types of functional relationships between genes. Several works proposed to integrate multiple sources of data to improve disease gene prioritization, but to our knowledge no systematic studies focused on the quantitative evaluation of the impact of network integration on gene prioritization. In this paper, we aim at providing an extensive analysis of gene-disease associations not limited to genetic disorders, and a systematic comparison of different network integration methods for gene prioritization. We collected nine different functional networks representing different functional relationships between genes, and we combined them through both unweighted and weighted network integration methods. We then prioritized genes with respect to each of the considered 708 medical subject headings (MeSH) diseases by applying classical guilt-by-association, random walk and random walk with restart algorithms, and the recently proposed kernelized score functions. The results obtained with classical random walk algorithms and the best single network achieved an average area under the curve (AUC) across the 708 MeSH diseases of about 0.82, while kernelized score functions and network integration boosted the average AUC to about 0.89. Weighted integration, by exploiting the different "informativeness" embedded in different functional networks, outperforms unweighted integration at 0.01 significance level, according to the Wilcoxon signed rank sum test. For each MeSH disease we provide the top-ranked unannotated candidate genes, available for further bio-medical investigation. Network integration is necessary to boost the performances of gene prioritization methods. Moreover the methods based on kernelized score functions can further enhance disease gene ranking results, by adopting both local and global learning strategies, able to exploit the overall topology of the network. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Pathway analyses and understanding disease associations

    PubMed Central

    Liu, Yu; Chance, Mark R

    2013-01-01

    High throughput technologies have been applied to investigate the underlying mechanisms of complex diseases, identify disease-associations and help to improve treatment. However it is challenging to derive biological insight from conventional single gene based analysis of “omics” data from high throughput experiments due to sample and patient heterogeneity. To address these challenges, many novel pathway and network based approaches were developed to integrate various “omics” data, such as gene expression, copy number alteration, Genome Wide Association Studies, and interaction data. This review will cover recent methodological developments in pathway analysis for the detection of dysregulated interactions and disease-associated subnetworks, prioritization of candidate disease genes, and disease classifications. For each application, we will also discuss the associated challenges and potential future directions. PMID:24319650

  3. Social Regulation of Human Gene Expression: Mechanisms and Implications for Public Health

    PubMed Central

    2013-01-01

    Recent analyses have discovered broad alterations in the expression of human genes across different social environments. The emerging field of social genomics has begun to identify the types of genes sensitive to social regulation, the biological signaling pathways mediating these effects, and the genetic polymorphisms that modify their individual impact. The human genome appears to have evolved specific “social programs” to adapt molecular physiology to the changing patterns of threat and opportunity ancestrally associated with changing social conditions. In the context of the immune system, this programming now fosters many of the diseases that dominate public health. The embedding of individual genomes within a broader metagenomic network provides a framework for integrating molecular, physiologic, and social perspectives on human health. PMID:23927506

  4. Genome-Wide Linkage and Positional Association Analyses Identify Associations of Novel AFF3 and NTM Genes with Triglycerides: The GenSalt Study

    PubMed Central

    Li, Changwei; Bazzano, Lydia A.L.; Rao, Dabeeru C.; Hixson, James E.; He, Jiang; Gu, Dongfeng; Gu, Charles C.; Shimmin, Lawrence C.; Jaquish, Cashell E.; Schwander, Karen; Liu, De-Pei; Huang, Jianfeng; Lu, Fanghong; Cao, Jie; Chong, Shen; Lu, Xiangfeng; Kelly, Tanika N.

    2016-01-01

    We conducted a genome-wide linkage scan and positional association study to identify genes and variants influencing blood lipid levels among participants of the Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) study. The GenSalt study was conducted among 1906 participants from 633 Han Chinese families. Lipids were measured from overnight fasting blood samples using standard methods. Multipoint quantitative trait genome-wide linkage scans were performed on the high-density lipoprotein, low-density lipoprotein, and log-transformed triglyceride phenotypes. Using dense panels of single nucleotide polymorphisms (SNPs), single-marker and gene-based association analyses were conducted to follow-up on promising linkage signals. Additive associations between each SNP and lipid phenotypes were tested using mixed linear regression models. Gene-based analyses were performed by combining P-values from single-marker analyses within each gene using the truncated product method (TPM). Significant associations were assessed for replication among 777 Asian participants of the Multi-ethnic Study of Atherosclerosis (MESA). Bonferroni correction was used to adjust for multiple testing. In the GenSalt study, suggestive linkage signals were identified at 2p11.2–2q12.1 [maximum multipoint LOD score (MML) = 2.18 at 2q11.2] and 11q24.3–11q25 (MML = 2.29 at 11q25) for the log-transformed triglyceride phenotype. Follow-up analyses of these two regions revealed gene-based associations of charged multivesicular body protein 3 (CHMP3), ring finger protein 103 (RNF103), AF4/FMR2 family, member 3 (AFF3), and neurotrimin (NTM ) with triglycerides (P = 4 × 10−4, 1.00 × 10−5, 2.00 × 10−5, and 1.00 × 10−7, respectively). Both the AFF3 and NTM triglyceride associations were replicated among MESA study participants (P = 1.00 × 10−7 and 8.00 × 10−5, respectively). Furthermore, NTM explained the linkage signal on chromosome 11. In conclusion, we identified novel genes associated with lipid phenotypes in linkage regions on chromosomes 2 and 11. PMID:25819087

  5. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Anamika; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078; Liu Jing

    2010-10-15

    Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2 mg/kg) gene expression profiles and changes in cell signaling pathways 24 h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0 mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clusteringmore » while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis (registered) . Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2 mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2 mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2 mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2 mg/kg CPF (MAPK, oxidative stress, NF{Kappa}B, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse/synaptic transmission and transcription/translation. Nine genes were differentially affected in all four CPF dosing groups. We conclude that the most robust, consistent changes in differential gene expression in neonatal forebrain across a range of acute CPF dosages occurred at an exposure level associated with the classical marker of OP toxicity, AChE inhibition. Disruption of multiple cellular pathways, in particular cell adhesion, may contribute to the developmental neurotoxicity potential of this pesticide.« less

  6. Massive Collection of Full-Length Complementary DNA Clones and Microarray Analyses:. Keys to Rice Transcriptome Analysis

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shoshi

    2009-02-01

    Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.

  7. From gene trees to a dated allopolyploid network: insights from the angiosperm genus Viola (Violaceae).

    PubMed

    Marcussen, Thomas; Heier, Lise; Brysting, Anne K; Oxelman, Bengt; Jakobsen, Kjetill S

    2015-01-01

    Allopolyploidization accounts for a significant fraction of speciation events in many eukaryotic lineages. However, existing phylogenetic and dating methods require tree-like topologies and are unable to handle the network-like phylogenetic relationships of lineages containing allopolyploids. No explicit framework has so far been established for evaluating competing network topologies, and few attempts have been made to date phylogenetic networks. We used a four-step approach to generate a dated polyploid species network for the cosmopolitan angiosperm genus Viola L. (Violaceae Batch.). The genus contains ca 600 species and both recent (neo-) and more ancient (meso-) polyploid lineages distributed over 16 sections. First, we obtained DNA sequences of three low-copy nuclear genes and one chloroplast region, from 42 species representing all 16 sections. Second, we obtained fossil-calibrated chronograms for each nuclear gene marker. Third, we determined the most parsimonious multilabeled genome tree and its corresponding network, resolved at the section (not the species) level. Reconstructing the "correct" network for a set of polyploids depends on recovering all homoeologs, i.e., all subgenomes, in these polyploids. Assuming the presence of Viola subgenome lineages that were not detected by the nuclear gene phylogenies ("ghost subgenome lineages") significantly reduced the number of inferred polyploidization events. We identified the most parsimonious network topology from a set of five competing scenarios differing in the interpretation of homoeolog extinctions and lineage sorting, based on (i) fewest possible ghost subgenome lineages, (ii) fewest possible polyploidization events, and (iii) least possible deviation from expected ploidy as inferred from available chromosome counts of the involved polyploid taxa. Finally, we estimated the homoploid and polyploid speciation times of the most parsimonious network. Homoploid speciation times were estimated by coalescent analysis of gene tree node ages. Polyploid speciation times were estimated by comparing branch lengths and speciation rates of lineages with and without ploidy shifts. Our analyses recognize Viola as an old genus (crown age 31 Ma) whose evolutionary history has been profoundly affected by allopolyploidy. Between 16 and 21 allopolyploidizations are necessary to explain the diversification of the 16 major lineages (sections) of Viola, suggesting that allopolyploidy has accounted for a high percentage-between 67% and 88%-of the speciation events at this level. The theoretical and methodological approaches presented here for (i) constructing networks and (ii) dating speciation events within a network, have general applicability for phylogenetic studies of groups where allopolyploidization has occurred. They make explicit use of a hitherto underexplored source of ploidy information from chromosome counts to help resolve phylogenetic cases where incomplete sequence data hampers network inference. Importantly, the coalescent-based method used herein circumvents the assumption of tree-like evolution required by most techniques for dating speciation events. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  8. Editor's Highlight: Off-Target Effects of Neuroleptics and Antidepressants on Saccharomyces cerevisiae.

    PubMed

    Caldara, Marina; Graziano, Sara; Gullì, Mariolina; Cadonici, Stefania; Marmiroli, Nelson

    2017-04-01

    Over the past years, the use of antidepressants and neuroleptics has steadily increased. Although incredibly useful to treat disorders like depression, schizophrenia, epilepsy, or mental retardation, these drugs display many side effects. Toxicogenomic studies aim to limit this problem by trying to identify cellular targets and off-targets of medical compounds. The baker yeast Saccharomyces cerevisiae has been shown to be a key player in this approach, as it represents an incredible toolbox for the dissection of complex biological processes. Moreover, the evolutionary conservation of many pathways allows the translation of yeast data to the human system. In this paper, a better attention was paid to chlorpromazine, as it still is one of the most widely used drug in therapy. The results of a toxicogenomic screening performed on a yeast mutants collection treated with chlorpromazine were instrumental to identify a set of genes for further analyses. For this purpose, a multidisciplinary approach was used based on growth phenotypes identification, Gene Ontology search, and network analysis. Then, the impacts of three antidepressants (imipramine, doxepin, and nortriptyline) and three neuroleptics (promazine, chlorpromazine, and promethazine) on S. cerevisiae were compared through physiological analyses, microscopy characterization, and transcriptomic studies. Data highlight key differences between neuroleptics and antidepressants, but also between the individual molecules. By performing a network analysis on the human homologous genes, it emerged that genes and proteins involved in the Notch pathway are possible off-targets of these molecules, along with key regulatory proteins. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Molecular analyses reveal two geographic and genetic lineages for tapeworms, Taenia solium and Taenia saginata, from Ecuador using mitochondrial DNA.

    PubMed

    Solano, Danilo; Navarro, Juan Carlos; León-Reyes, Antonio; Benítez-Ortiz, Washington; Rodríguez-Hidalgo, Richar

    2016-12-01

    Tapeworms Taenia solium and Taenia saginata are the causative agents of taeniasis/cysticercosis. These are diseases with high medical and veterinary importance due to their impact on public health and rural economy in tropical countries. The re-emergence of T. solium as a result of human migration, the economic burden affecting livestock industry, and the large variability of symptoms in several human cysticercosis, encourage studies on genetic diversity, and the identification of these parasites with molecular phylogenetic tools. Samples collected from the Ecuadorian provinces: Loja, Guayas, Manabí, Tungurahua (South), and Imbabura, Pichincha (North) from 2000 to 2012 were performed under Maximum Parsimony analyses and haplotype networks using partial sequences of mitochondrial DNA, cytochrome oxidase subunit I (COI) and NADH subunit I (NDI), from Genbank and own sequences of Taenia solium and Taenia saginata from Ecuador. Both species have shown reciprocal monophyly, which confirms its molecular taxonomic identity. The COI and NDI genes results suggest phylogenetic structure for both parasite species from south and north of Ecuador. In T. solium, both genes gene revealed greater geographic structure, whereas in T. saginata, the variability for both genes was low. In conclusion, COI haplotype networks of T. solium suggest two geographical events in the introduction of this species in Ecuador (African and Asian lineages) and occurring sympatric, probably through the most common routes of maritime trade between the XV-XIX centuries. Moreover, the evidence of two NDI geographical lineages in T. solium from the north (province of Imbabura) and the south (province of Loja) of Ecuador derivate from a common Indian ancestor open new approaches for studies on genetic populations and eco-epidemiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Enhancing gene regulatory network inference through data integration with markov random fields

    DOE PAGES

    Banf, Michael; Rhee, Seung Y.

    2017-02-01

    Here, a gene regulatory network links transcription factors to their target genes and represents a map of transcriptional regulation. Much progress has been made in deciphering gene regulatory networks computationally. However, gene regulatory network inference for most eukaryotic organisms remain challenging. To improve the accuracy of gene regulatory network inference and facilitate candidate selection for experimentation, we developed an algorithm called GRACE (Gene Regulatory network inference ACcuracy Enhancement). GRACE exploits biological a priori and heterogeneous data integration to generate high- confidence network predictions for eukaryotic organisms using Markov Random Fields in a semi-supervised fashion. GRACE uses a novel optimization schememore » to integrate regulatory evidence and biological relevance. It is particularly suited for model learning with sparse regulatory gold standard data. We show GRACE’s potential to produce high confidence regulatory networks compared to state of the art approaches using Drosophila melanogaster and Arabidopsis thaliana data. In an A. thaliana developmental gene regulatory network, GRACE recovers cell cycle related regulatory mechanisms and further hypothesizes several novel regulatory links, including a putative control mechanism of vascular structure formation due to modifications in cell proliferation.« less

  11. Enhancing gene regulatory network inference through data integration with markov random fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banf, Michael; Rhee, Seung Y.

    Here, a gene regulatory network links transcription factors to their target genes and represents a map of transcriptional regulation. Much progress has been made in deciphering gene regulatory networks computationally. However, gene regulatory network inference for most eukaryotic organisms remain challenging. To improve the accuracy of gene regulatory network inference and facilitate candidate selection for experimentation, we developed an algorithm called GRACE (Gene Regulatory network inference ACcuracy Enhancement). GRACE exploits biological a priori and heterogeneous data integration to generate high- confidence network predictions for eukaryotic organisms using Markov Random Fields in a semi-supervised fashion. GRACE uses a novel optimization schememore » to integrate regulatory evidence and biological relevance. It is particularly suited for model learning with sparse regulatory gold standard data. We show GRACE’s potential to produce high confidence regulatory networks compared to state of the art approaches using Drosophila melanogaster and Arabidopsis thaliana data. In an A. thaliana developmental gene regulatory network, GRACE recovers cell cycle related regulatory mechanisms and further hypothesizes several novel regulatory links, including a putative control mechanism of vascular structure formation due to modifications in cell proliferation.« less

  12. An Integrated Systems Biology Approach Identifies TRIM25 as a Key Determinant of Breast Cancer Metastasis.

    PubMed

    Walsh, Logan A; Alvarez, Mariano J; Sabio, Erich Y; Reyngold, Marsha; Makarov, Vladimir; Mukherjee, Suranjit; Lee, Ken-Wing; Desrichard, Alexis; Turcan, Şevin; Dalin, Martin G; Rajasekhar, Vinagolu K; Chen, Shuibing; Vahdat, Linda T; Califano, Andrea; Chan, Timothy A

    2017-08-15

    At the root of most fatal malignancies are aberrantly activated transcriptional networks that drive metastatic dissemination. Although individual metastasis-associated genes have been described, the complex regulatory networks presiding over the initiation and maintenance of metastatic tumors are still poorly understood. There is untapped value in identifying therapeutic targets that broadly govern coordinated transcriptional modules dictating metastatic progression. Here, we reverse engineered and interrogated a breast cancer-specific transcriptional interaction network (interactome) to define transcriptional control structures causally responsible for regulating genetic programs underlying breast cancer metastasis in individual patients. Our analyses confirmed established pro-metastatic transcription factors, and they uncovered TRIM25 as a key regulator of metastasis-related transcriptional programs. Further, in vivo analyses established TRIM25 as a potent regulator of metastatic disease and poor survival outcome. Our findings suggest that identifying and targeting keystone proteins, like TRIM25, can effectively collapse transcriptional hierarchies necessary for metastasis formation, thus representing an innovative cancer intervention strategy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Evolution of Drosophila ribosomal protein gene core promoters.

    PubMed

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2009-03-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, and mammals, demonstrating the evolutionary dynamics of the ribosomal gene regulatory network. We also report a motif present in similar numbers of RPGs among Drosophila species which does not appear to be conserved at the individual RPG gene level. A module-wise stabilizing selection theory is proposed to explain this observation. Overall, our results provide significant insight into the fast-evolving nature of transcriptional regulation in the RPG module.

  14. Evolution of Drosophila ribosomal protein gene core promoters

    PubMed Central

    Ma, Xiaotu; Zhang, Kangyu; Li, Xiaoman

    2011-01-01

    The coordinated expression of ribosomal protein genes (RPGs) has been well documented in many species. Previous analyses of RPG promoters focus only on Fungi and mammals. Recognizing this gap and using a comparative genomics approach, we utilize a motif-finding algorithm that incorporates cross-species conservation to identify several significant motifs in Drosophila RPG promoters. As a result, significant differences of the enriched motifs in RPG promoter are found among Drosophila, Fungi, and mammals, demonstrating the evolutionary dynamics of the ribosomal gene regulatory network. We also report a motif present in similar numbers of RPGs among Drosophila species which does not appear to be conserved at the individual RPG gene level. A module-wise stabilizing selection theory is proposed to explain this observation. Overall, our results provide significant insight into the fast-evolving nature of transcriptional regulation in the RPG module. PMID:19059316

  15. Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia.

    PubMed

    Kwok, Chau-To; Marshall, Amy D; Rasko, John E J; Wong, Justin J L

    2017-02-02

    Methylation of N 6 adenosine (m 6 A) is known to be important for diverse biological processes including gene expression control, translation of protein, and messenger RNA (mRNA) splicing. However, its role in the development of human cancers is poorly understood. By analyzing datasets from the Cancer Genome Atlas Research Network (TCGA) acute myeloid leukemia (AML) study, we discover that mutations and/or copy number variations of m 6 A regulatory genes are strongly associated with the presence of TP53 mutations in AML patients. Further, our analyses reveal that alterations in m 6 A regulatory genes confer a worse survival in AML. Our work indicates that genetic alterations of m 6 A regulatory genes may cooperate with TP53 and/or its regulator/downstream targets in the pathogenesis and/or maintenance of AML.

  16. Stationary and structural control in gene regulatory networks: basic concepts

    NASA Astrophysics Data System (ADS)

    Dougherty, Edward R.; Pal, Ranadip; Qian, Xiaoning; Bittner, Michael L.; Datta, Aniruddha

    2010-01-01

    A major reason for constructing gene regulatory networks is to use them as models for determining therapeutic intervention strategies by deriving ways of altering their long-run dynamics in such a way as to reduce the likelihood of entering undesirable states. In general, two paradigms have been taken for gene network intervention: (1) stationary external control is based on optimally altering the status of a control gene (or genes) over time to drive network dynamics; and (2) structural intervention involves an optimal one-time change of the network structure (wiring) to beneficially alter the long-run behaviour of the network. These intervention approaches have mainly been developed within the context of the probabilistic Boolean network model for gene regulation. This article reviews both types of intervention and applies them to reducing the metastatic competence of cells via intervention in a melanoma-related network.

  17. Differentially Coexpressed Disease Gene Identification Based on Gene Coexpression Network.

    PubMed

    Jiang, Xue; Zhang, Han; Quan, Xiongwen

    2016-01-01

    Screening disease-related genes by analyzing gene expression data has become a popular theme. Traditional disease-related gene selection methods always focus on identifying differentially expressed gene between case samples and a control group. These traditional methods may not fully consider the changes of interactions between genes at different cell states and the dynamic processes of gene expression levels during the disease progression. However, in order to understand the mechanism of disease, it is important to explore the dynamic changes of interactions between genes in biological networks at different cell states. In this study, we designed a novel framework to identify disease-related genes and developed a differentially coexpressed disease-related gene identification method based on gene coexpression network (DCGN) to screen differentially coexpressed genes. We firstly constructed phase-specific gene coexpression network using time-series gene expression data and defined the conception of differential coexpression of genes in coexpression network. Then, we designed two metrics to measure the value of gene differential coexpression according to the change of local topological structures between different phase-specific networks. Finally, we conducted meta-analysis of gene differential coexpression based on the rank-product method. Experimental results demonstrated the feasibility and effectiveness of DCGN and the superior performance of DCGN over other popular disease-related gene selection methods through real-world gene expression data sets.

  18. Network diffusion-based analysis of high-throughput data for the detection of differentially enriched modules

    PubMed Central

    Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Castellani, Gastone; Milanesi, Luciano

    2016-01-01

    A relation exists between network proximity of molecular entities in interaction networks, functional similarity and association with diseases. The identification of network regions associated with biological functions and pathologies is a major goal in systems biology. We describe a network diffusion-based pipeline for the interpretation of different types of omics in the context of molecular interaction networks. We introduce the network smoothing index, a network-based quantity that allows to jointly quantify the amount of omics information in genes and in their network neighbourhood, using network diffusion to define network proximity. The approach is applicable to both descriptive and inferential statistics calculated on omics data. We also show that network resampling, applied to gene lists ranked by quantities derived from the network smoothing index, indicates the presence of significantly connected genes. As a proof of principle, we identified gene modules enriched in somatic mutations and transcriptional variations observed in samples of prostate adenocarcinoma (PRAD). In line with the local hypothesis, network smoothing index and network resampling underlined the existence of a connected component of genes harbouring molecular alterations in PRAD. PMID:27731320

  19. Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization.

    PubMed

    Zhao, Zhi-Qin; Han, Guo-Sheng; Yu, Zu-Guo; Li, Jinyan

    2015-08-01

    Random walk on heterogeneous networks is a recently emerging approach to effective disease gene prioritization. Laplacian normalization is a technique capable of normalizing the weight of edges in a network. We use this technique to normalize the gene matrix and the phenotype matrix before the construction of the heterogeneous network, and also use this idea to define the transition matrices of the heterogeneous network. Our method has remarkably better performance than the existing methods for recovering known gene-phenotype relationships. The Shannon information entropy of the distribution of the transition probabilities in our networks is found to be smaller than the networks constructed by the existing methods, implying that a higher number of top-ranked genes can be verified as disease genes. In fact, the most probable gene-phenotype relationships ranked within top 3 or top 5 in our gene lists can be confirmed by the OMIM database for many cases. Our algorithms have shown remarkably superior performance over the state-of-the-art algorithms for recovering gene-phenotype relationships. All Matlab codes can be available upon email request. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.

    PubMed

    Ni, Jingchao; Koyuturk, Mehmet; Tong, Hanghang; Haines, Jonathan; Xu, Rong; Zhang, Xiang

    2016-11-10

    Accurately prioritizing candidate disease genes is an important and challenging problem. Various network-based methods have been developed to predict potential disease genes by utilizing the disease similarity network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a common limitation of the existing methods is that they assume all diseases share the same molecular network and a single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method should be able to incorporate tissue-specific molecular networks for different diseases. In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate the problem of candidate gene prioritization as an optimization problem based on network propagation. When there are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate gene prioritization compared with the state-of-the-art methods. In our experiments, we compare our methods with 7 popular network-based disease gene prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental results demonstrate that our methods recover true associations more accurately than other methods in terms of AUC values, and the performance differences are significant (with paired t-test p-values less than 0.05). This validates the importance to integrate tissue-specific molecular networks for studying disease gene prioritization and show the superiority of our network models and ranking algorithms toward this purpose. The source code and datasets are available at http://nijingchao.github.io/CRstar/ .

Top