Science.gov

Sample records for gene network parameters

  1. Listening to the noise: random fluctuations reveal gene network parameters

    SciTech Connect

    Munsky, Brian; Khammash, Mustafa

    2009-01-01

    The cellular environment is abuzz with noise. The origin of this noise is attributed to the inherent random motion of reacting molecules that take part in gene expression and post expression interactions. In this noisy environment, clonal populations of cells exhibit cell-to-cell variability that frequently manifests as significant phenotypic differences within the cellular population. The stochastic fluctuations in cellular constituents induced by noise can be measured and their statistics quantified. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. This establishes a potentially powerful approach for the identification of gene networks and offers a new window into the workings of these networks.

  2. Network topology and parameter estimation: from experimental design methods to gene regulatory network kinetics using a community based approach

    PubMed Central

    2014-01-01

    Background Accurate estimation of parameters of biochemical models is required to characterize the dynamics of molecular processes. This problem is intimately linked to identifying the most informative experiments for accomplishing such tasks. While significant progress has been made, effective experimental strategies for parameter identification and for distinguishing among alternative network topologies remain unclear. We approached these questions in an unbiased manner using a unique community-based approach in the context of the DREAM initiative (Dialogue for Reverse Engineering Assessment of Methods). We created an in silico test framework under which participants could probe a network with hidden parameters by requesting a range of experimental assays; results of these experiments were simulated according to a model of network dynamics only partially revealed to participants. Results We proposed two challenges; in the first, participants were given the topology and underlying biochemical structure of a 9-gene regulatory network and were asked to determine its parameter values. In the second challenge, participants were given an incomplete topology with 11 genes and asked to find three missing links in the model. In both challenges, a budget was provided to buy experimental data generated in silico with the model and mimicking the features of different common experimental techniques, such as microarrays and fluorescence microscopy. Data could be bought at any stage, allowing participants to implement an iterative loop of experiments and computation. Conclusions A total of 19 teams participated in this competition. The results suggest that the combination of state-of-the-art parameter estimation and a varied set of experimental methods using a few datasets, mostly fluorescence imaging data, can accurately determine parameters of biochemical models of gene regulation. However, the task is considerably more difficult if the gene network topology is not completely

  3. Identification of robust adaptation gene regulatory network parameters using an improved particle swarm optimization algorithm.

    PubMed

    Huang, X N; Ren, H P

    2016-01-01

    Robust adaptation is a critical ability of gene regulatory network (GRN) to survive in a fluctuating environment, which represents the system responding to an input stimulus rapidly and then returning to its pre-stimulus steady state timely. In this paper, the GRN is modeled using the Michaelis-Menten rate equations, which are highly nonlinear differential equations containing 12 undetermined parameters. The robust adaption is quantitatively described by two conflicting indices. To identify the parameter sets in order to confer the GRNs with robust adaptation is a multi-variable, multi-objective, and multi-peak optimization problem, which is difficult to acquire satisfactory solutions especially high-quality solutions. A new best-neighbor particle swarm optimization algorithm is proposed to implement this task. The proposed algorithm employs a Latin hypercube sampling method to generate the initial population. The particle crossover operation and elitist preservation strategy are also used in the proposed algorithm. The simulation results revealed that the proposed algorithm could identify multiple solutions in one time running. Moreover, it demonstrated a superior performance as compared to the previous methods in the sense of detecting more high-quality solutions within an acceptable time. The proposed methodology, owing to its universality and simplicity, is useful for providing the guidance to design GRN with superior robust adaptation. PMID:27323043

  4. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.

    PubMed

    Moisset, P; Vaisman, D; Cintolesi, A; Urrutia, J; Rapaport, I; Andrews, B A; Asenjo, J A

    2012-09-01

    A continuous model of a metabolic network including gene regulation to simulate metabolic fluxes during batch cultivation of yeast Saccharomyces cerevisiae was developed. The metabolic network includes reactions of glycolysis, gluconeogenesis, glycerol and ethanol synthesis and consumption, the tricarboxylic acid cycle, and protein synthesis. Carbon sources considered were glucose and then ethanol synthesized during growth on glucose. The metabolic network has 39 fluxes, which represent the action of 50 enzymes and 64 genes and it is coupled with a gene regulation network which defines enzyme synthesis (activities) and incorporates regulation by glucose (enzyme induction and repression), modeled using ordinary differential equations. The model includes enzyme kinetics, equations that follow both mass-action law and transport as well as inducible, repressible, and constitutive enzymes of metabolism. The model was able to simulate a fermentation of S. cerevisiae during the exponential growth phase on glucose and the exponential growth phase on ethanol using only one set of kinetic parameters. All fluxes in the continuous model followed the behavior shown by the metabolic flux analysis (MFA) obtained from experimental results. The differences obtained between the fluxes given by the model and the fluxes determined by the MFA do not exceed 25% in 75% of the cases during exponential growth on glucose, and 20% in 90% of the cases during exponential growth on ethanol. Furthermore, the adjustment of the fermentation profiles of biomass, glucose, and ethanol were 95%, 95%, and 79%, respectively. With these results the simulation was considered successful. A comparison between the simulation of the continuous model and the experimental data of the diauxic yeast fermentation for glucose, biomass, and ethanol, shows an extremely good match using the parameters found. The small discrepancies between the fluxes obtained through MFA and those predicted by the differential

  5. Buffering in cyclic gene networks

    NASA Astrophysics Data System (ADS)

    Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh.

    2016-06-01

    We consider cyclic chains of unidirectionally coupled delay differential-difference equations that are mathematical models of artificial oscillating gene networks. We establish that the buffering phenomenon is realized in these system for an appropriate choice of the parameters: any given finite number of stable periodic motions of a special type, the so-called traveling waves, coexist.

  6. Parameter estimation in tree graph metabolic networks

    PubMed Central

    Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D.; Groenenboom, Marian; Molenaar, Jaap J.

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis–Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

  7. Parameter estimation in tree graph metabolic networks.

    PubMed

    Astola, Laura; Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D; Groenenboom, Marian; Molenaar, Jaap J

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

  8. Parameter estimation in tree graph metabolic networks.

    PubMed

    Astola, Laura; Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D; Groenenboom, Marian; Molenaar, Jaap J

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings. PMID:27688960

  9. Parameter estimation in tree graph metabolic networks

    PubMed Central

    Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D.; Groenenboom, Marian; Molenaar, Jaap J.

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis–Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings. PMID:27688960

  10. Computation in gene networks

    NASA Astrophysics Data System (ADS)

    Ben-Hur, Asa; Siegelmann, Hava T.

    2004-03-01

    Genetic regulatory networks have the complex task of controlling all aspects of life. Using a model of gene expression by piecewise linear differential equations we show that this process can be considered as a process of computation. This is demonstrated by showing that this model can simulate memory bounded Turing machines. The simulation is robust with respect to perturbations of the system, an important property for both analog computers and biological systems. Robustness is achieved using a condition that ensures that the model equations, that are generally chaotic, follow a predictable dynamics.

  11. Boolean networks with multiexpressions and parameters.

    PubMed

    Zou, Yi Ming

    2013-01-01

    To model biological systems using networks, it is desirable to allow more than two levels of expression for the nodes and to allow the introduction of parameters. Various modeling and simulation methods addressing these needs using Boolean models, both synchronous and asynchronous, have been proposed in the literature. However, analytical study of these more general Boolean networks models is lagging. This paper aims to develop a concise theory for these different Boolean logic-based modeling methods. Boolean models for networks where each node can have more than two levels of expression and Boolean models with parameters are defined algebraically with examples provided. Certain classes of random asynchronous Boolean networks and deterministic moduli asynchronous Boolean networks are investigated in detail using the setting introduced in this paper. The derived theorems provide a clear picture for the attractor structures of these asynchronous Boolean networks.

  12. Functional Module Analysis for Gene Coexpression Networks with Network Integration

    PubMed Central

    Zhang, Shuqin; Zhao, Hongyu

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with 3 complete subgraphs, and 11 modules with 2 complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally. PMID:26451826

  13. Predicting lithologic parameters using artificial neural networks

    SciTech Connect

    Link, C.A.; Wideman, C.J.; Hanneman, D.L.

    1995-06-01

    Artificial neural networks (ANNs) are becoming increasingly popular as a method for parameter classification and as a tool for recognizing complex relationships in a variety of data types. The power of ANNs lies in their ability to {open_quotes}learn{close_quotes} from a set of training data and then being able to {open_quotes}generalize{close_quotes} to new data sets. In addition, ANNs are able to incorporate data over a large range of scales and are robust in the presence of noise. A back propagation artificial neural network has proved to be a useful tool for predicting sequence boundaries from well logs in a Cenozoic basin. The network was trained using the following log set: neutron porosity, bulk density, pef, and interpreted paleosol horizons from a well in the Deer Lodge Valley, southwestern Montana. After successful training, this network was applied to the same set of well logs from a nearby well minus the interpreted paleosol horizons. The trained neural network was able to produce reasonable predictions for paleosol sequence boundaries in the test well based on the previous training. In an ongoing oil reservoir characterization project, a back propagation neural network is being used to produce estimates of porosity and permeability for subsequent input into a reservoir simulator. A combination of core, well log, geological, and 3-D seismic data serves as input to a back propagation network which outputs estimates of the spatial distribution of porosity and permeability away from the well.

  14. Reconstructing contact network parameters from viral phylogenies

    PubMed Central

    McCloskey, Rosemary M.; Liang, Richard H.; Poon, Art F.Y.

    2016-01-01

    Models of the spread of disease in a population often make the simplifying assumption that the population is homogeneously mixed, or is divided into homogeneously mixed compartments. However, human populations have complex structures formed by social contacts, which can have a significant influence on the rate of epidemic spread. Contact network models capture this structure by explicitly representing each contact which could possibly lead to a transmission. We developed a method based on approximate Bayesian computation (ABC), a likelihood-free inference strategy, for estimating structural parameters of the contact network underlying an observed viral phylogeny. The method combines adaptive sequential Monte Carlo for ABC, Gillespie simulation for propagating epidemics though networks, and a kernel-based tree similarity score. We used the method to fit the Barabási-Albert network model to simulated transmission trees, and also applied it to viral phylogenies estimated from ten published HIV sequence datasets. This model incorporates a feature called preferential attachment (PA), whereby individuals with more existing contacts accumulate new contacts at a higher rate. On simulated data, we found that the strength of PA and the number of infected nodes in the network can often be accurately estimated. On the other hand, the mean degree of the network, as well as the total number of nodes, was not estimable with ABC. We observed sub-linear PA power in all datasets, as well as higher PA power in networks of injection drug users. These results underscore the importance of considering contact structures when performing phylodynamic inference. Our method offers the potential to quantitatively investigate the contact network structure underlying viral epidemics.

  15. Model parameter updating using Bayesian networks

    SciTech Connect

    Treml, C. A.; Ross, Timothy J.

    2004-01-01

    This paper outlines a model parameter updating technique for a new method of model validation using a modified model reference adaptive control (MRAC) framework with Bayesian Networks (BNs). The model parameter updating within this method is generic in the sense that the model/simulation to be validated is treated as a black box. It must have updateable parameters to which its outputs are sensitive, and those outputs must have metrics that can be compared to that of the model reference, i.e., experimental data. Furthermore, no assumptions are made about the statistics of the model parameter uncertainty, only upper and lower bounds need to be specified. This method is designed for situations where a model is not intended to predict a complete point-by-point time domain description of the item/system behavior; rather, there are specific points, features, or events of interest that need to be predicted. These specific points are compared to the model reference derived from actual experimental data. The logic for updating the model parameters to match the model reference is formed via a BN. The nodes of this BN consist of updateable model input parameters and the specific output values or features of interest. Each time the model is executed, the input/output pairs are used to adapt the conditional probabilities of the BN. Each iteration further refines the inferred model parameters to produce the desired model output. After parameter updating is complete and model inputs are inferred, reliabilities for the model output are supplied. Finally, this method is applied to a simulation of a resonance control cooling system for a prototype coupled cavity linac. The results are compared to experimental data.

  16. Plant Evolution: Evolving Antagonistic Gene Regulatory Networks.

    PubMed

    Cooper, Endymion D

    2016-06-20

    Developing a structurally complex phenotype requires a complex regulatory network. A new study shows how gene duplication provides a potential source of antagonistic interactions, an important component of gene regulatory networks. PMID:27326708

  17. Plant Evolution: Evolving Antagonistic Gene Regulatory Networks.

    PubMed

    Cooper, Endymion D

    2016-06-20

    Developing a structurally complex phenotype requires a complex regulatory network. A new study shows how gene duplication provides a potential source of antagonistic interactions, an important component of gene regulatory networks.

  18. Gene networks and liar paradoxes.

    PubMed

    Isalan, Mark

    2009-10-01

    Network motifs are small patterns of connections, found over-represented in gene regulatory networks. An example is the negative feedback loop (e.g. factor A represses itself). This opposes its own state so that when 'on' it tends towards 'off' - and vice versa. Here, we argue that such self-opposition, if considered dimensionlessly, is analogous to the liar paradox: 'This statement is false'. When 'true' it implies 'false' - and vice versa. Such logical constructs have provided philosophical consternation for over 2000 years. Extending the analogy, other network topologies give strikingly varying outputs over different dimensions. For example, the motif 'A activates B and A. B inhibits A' can give switches or oscillators with time only, or can lead to Turing-type patterns with both space and time (spots, stripes or waves). It is argued here that the dimensionless form reduces to a variant of 'The following statement is true. The preceding statement is false'. Thus, merely having a static topological description of a gene network can lead to a liar paradox. Network diagrams are only snapshots of dynamic biological processes and apparent paradoxes can reveal important biological mechanisms that are far from paradoxical when considered explicitly in time and space. PMID:19722183

  19. Engineering stability in gene networks by autoregulation

    NASA Astrophysics Data System (ADS)

    Becskei, Attila; Serrano, Luis

    2000-06-01

    The genetic and biochemical networks which underlie such things as homeostasis in metabolism and the developmental programs of living cells, must withstand considerable variations and random perturbations of biochemical parameters. These occur as transient changes in, for example, transcription, translation, and RNA and protein degradation. The intensity and duration of these perturbations differ between cells in a population. The unique state of cells, and thus the diversity in a population, is owing to the different environmental stimuli the individual cells experience and the inherent stochastic nature of biochemical processes (for example, refs 5 and 6). It has been proposed, but not demonstrated, that autoregulatory, negative feedback loops in gene circuits provide stability, thereby limiting the range over which the concentrations of network components fluctuate. Here we have designed and constructed simple gene circuits consisting of a regulator and transcriptional repressor modules in Escherichia coli and we show the gain of stability produced by negative feedback.

  20. Order Parameters for Two-Dimensional Networks

    NASA Astrophysics Data System (ADS)

    Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi

    2007-10-01

    We derive methods that explain how to quantify the amount of order in ``ordered'' and ``highly ordered'' porous arrays. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete pair distribution function (PDF) and the Debye-Waller Factor (DWF) from 2-D discrete Fourier transforms calculated from the real-space data using MATLAB routines. An order parameter, OP3, is defined from the PDF to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare PDFs of man-made arrays with that of our honeycomb we find OP3=0.399 for the honeycomb and OP3=0.572 for man's best hexagonal array. The DWF also scales with this order parameter with the least disorder from a computer-generated hexagonal array and the most disorder from a random array. An ideal hexagonal array normalizes a two-dimensional Fourier transform from which a Debye-Waller parameter is derived which describes the disorder in the arrays. An order parameter S, defined by the DWF, takes values from [0, 1] and for the analyzed man-made array is 0.90, while for the honeycomb it is 0.65. This presentation describes methods to quantify the order found in these arrays.

  1. Exhaustive Search for Fuzzy Gene Networks from Microarray Data

    SciTech Connect

    Sokhansanj, B A; Fitch, J P; Quong, J N; Quong, A A

    2003-07-07

    Recent technological advances in high-throughput data collection allow for the study of increasingly complex systems on the scale of the whole cellular genome and proteome. Gene network models are required to interpret large and complex data sets. Rationally designed system perturbations (e.g. gene knock-outs, metabolite removal, etc) can be used to iteratively refine hypothetical models, leading to a modeling-experiment cycle for high-throughput biological system analysis. We use fuzzy logic gene network models because they have greater resolution than Boolean logic models and do not require the precise parameter measurement needed for chemical kinetics-based modeling. The fuzzy gene network approach is tested by exhaustive search for network models describing cyclin gene interactions in yeast cell cycle microarray data, with preliminary success in recovering interactions predicted by previous biological knowledge and other analysis techniques. Our goal is to further develop this method in combination with experiments we are performing on bacterial regulatory networks.

  2. GENIES: gene network inference engine based on supervised analysis.

    PubMed

    Kotera, Masaaki; Yamanishi, Yoshihiro; Moriya, Yuki; Kanehisa, Minoru; Goto, Susumu

    2012-07-01

    Gene network inference engine based on supervised analysis (GENIES) is a web server to predict unknown part of gene network from various types of genome-wide data in the framework of supervised network inference. The originality of GENIES lies in the construction of a predictive model using partially known network information and in the integration of heterogeneous data with kernel methods. The GENIES server accepts any 'profiles' of genes or proteins (e.g. gene expression profiles, protein subcellular localization profiles and phylogenetic profiles) or pre-calculated gene-gene similarity matrices (or 'kernels') in the tab-delimited file format. As a training data set to learn a predictive model, the users can choose either known molecular network information in the KEGG PATHWAY database or their own gene network data. The user can also select an algorithm of supervised network inference, choose various parameters in the method, and control the weights of heterogeneous data integration. The server provides the list of newly predicted gene pairs, maps the predicted gene pairs onto the associated pathway diagrams in KEGG PATHWAY and indicates candidate genes for missing enzymes in organism-specific metabolic pathways. GENIES (http://www.genome.jp/tools/genies/) is publicly available as one of the genome analysis tools in GenomeNet.

  3. Network- and network-element-level parameters for configuration, fault, and performance management of optical networks

    NASA Astrophysics Data System (ADS)

    Drion, Christophe; Berthelon, Luc; Chambon, Olivier; Eilenberger, Gert; Peden, Francoise R.; Jourdan, Amaury

    1998-10-01

    With the high interest of network operators and manufacturers for wavelength division multiplexing (WDM) networking technology, the need for management systems adapted to this new technology keeps increasing. We investigated this topic and produced outputs through the specification of the functional architecture, network layered model, and through the development of new, TMN- based, information models for the management of optical networks and network elements. Based on these first outputs, defects in each layer together with parameters for performance management/monitoring have been identified for each type of optical network element, and each atomic function describing the element, including functions for both the transport of payload signals and of overhead information. The list of probable causes has been established for the identified defects. A second aspect consists in the definition of network-level parameters, if such photonic technology-related parameters are to be considered at this level. It is our conviction that some parameters can be taken into account at the network level for performance management, based on physical measurements within the network. Some parameters could possibly be used as criteria for configuration management, in the route calculation processes, including protection. The outputs of these specification activities are taken into account in the development of a manageable WDM network prototype which will be used as a test platform to demonstrate configuration, fault, protection and performance management in a real network, in the scope of the ACTS-MEPHISTO project. This network prototype will also be used in a larger size experiment in the context of the ACTS-PELICAN field trial (Pan-European Lightwave Core and Access Network).

  4. Evolving Robust Gene Regulatory Networks

    PubMed Central

    Noman, Nasimul; Monjo, Taku; Moscato, Pablo; Iba, Hitoshi

    2015-01-01

    Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of ‘parts’ and ‘devices’. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems. PMID:25616055

  5. Inferring slowly-changing dynamic gene-regulatory networks.

    PubMed

    Wit, Ernst C; Abbruzzo, Antonino

    2015-01-01

    Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a class of models that connect the network with a conditional independence relationships between random variables. By interpreting these random variables as gene activities and the conditional independence relationships as functional non-relatedness, graphical models have been used to describe gene-regulatory networks. Whereas the literature has been focused on static networks, most time-course experiments are designed in order to tease out temporal changes in the underlying network. It is typically reasonable to assume that changes in genomic networks are few, because biological systems tend to be stable. We introduce a new model for estimating slow changes in dynamic gene-regulatory networks, which is suitable for high-dimensional data, e.g. time-course microarray data. Our aim is to estimate a dynamically changing genomic network based on temporal activity measurements of the genes in the network. Our method is based on the penalized likelihood with l1-norm, that penalizes conditional dependencies between genes as well as differences between conditional independence elements across time points. We also present a heuristic search strategy to find optimal tuning parameters. We re-write the penalized maximum likelihood problem into a standard convex optimization problem subject to linear equality constraints. We show that our method performs well in simulation studies. Finally, we apply the proposed model to a time-course T-cell dataset.

  6. Inferring slowly-changing dynamic gene-regulatory networks

    PubMed Central

    2015-01-01

    Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a class of models that connect the network with a conditional independence relationships between random variables. By interpreting these random variables as gene activities and the conditional independence relationships as functional non-relatedness, graphical models have been used to describe gene-regulatory networks. Whereas the literature has been focused on static networks, most time-course experiments are designed in order to tease out temporal changes in the underlying network. It is typically reasonable to assume that changes in genomic networks are few, because biological systems tend to be stable. We introduce a new model for estimating slow changes in dynamic gene-regulatory networks, which is suitable for high-dimensional data, e.g. time-course microarray data. Our aim is to estimate a dynamically changing genomic network based on temporal activity measurements of the genes in the network. Our method is based on the penalized likelihood with ℓ1-norm, that penalizes conditional dependencies between genes as well as differences between conditional independence elements across time points. We also present a heuristic search strategy to find optimal tuning parameters. We re-write the penalized maximum likelihood problem into a standard convex optimization problem subject to linear equality constraints. We show that our method performs well in simulation studies. Finally, we apply the proposed model to a time-course T-cell dataset. PMID:25917062

  7. Stochastic multiple-valued gene networks.

    PubMed

    Zhu, Peican; Han, Jie

    2014-02-01

    Among various approaches to modeling gene regulatory networks (GRNs), Boolean networks (BNs) and its probabilistic extension, probabilistic Boolean networks (PBNs), have been studied to gain insights into the dynamics of GRNs. To further exploit the simplicity of logical models, a multiple-valued network employs gene states that are not limited to binary values, thus providing a finer granularity in the modeling of GRNs. In this paper, stochastic multiple-valued networks (SMNs) are proposed for modeling the effects of noise and gene perturbation in a GRN. An SMN enables an accurate and efficient simulation of a probabilistic multiple-valued network (as an extension of a PBN). In a k-level SMN of n genes, it requires a complexity of O(nLk(n)) to compute the state transition matrix, where L is a factor related to the minimum sequence length in the SMN for achieving a desired accuracy. The use of randomly permuted stochastic sequences further increases computational efficiency and allows for a tunable tradeoff between accuracy and efficiency. The analysis of a p53-Mdm2 network and a WNT5A network shows that the proposed SMN approach is efficient in evaluating the network dynamics and steady state distribution of gene networks under random gene perturbation.

  8. Modular composition of gene transcription networks.

    PubMed

    Gyorgy, Andras; Del Vecchio, Domitilla

    2014-03-01

    Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial ways the dynamic performance of a module upon connection to other modules. Here, we establish an analysis framework for gene transcription networks that explicitly accounts for retroactivity. Specifically, a module's key properties are encoded by three retroactivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation and can be computed from macroscopic parameters (dissociation constants and promoter concentrations) and from the modules' topology. The internal retroactivity quantifies the effect of intramodular connections on an isolated module's dynamics. The scaling and mixing retroactivity establish how intermodular connections change the dynamics of connected modules. Based on these matrices and on the dynamics of modules in isolation, we can accurately predict how loading will affect the behavior of an arbitrary interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity on the performance of recurrent network motifs, including negative autoregulation, combinatorial regulation, two-gene clocks, the toggle switch, and the single-input motif. We further provide a quantitative metric that determines how robust the dynamic behavior of a module is to interconnection with other modules. This metric can be employed both to evaluate the extent of modularity of natural networks and to establish concrete design guidelines to minimize retroactivity between modules in synthetic systems.

  9. Learning About Gene Regulatory Networks From Gene Deletion Experiments

    PubMed Central

    Brazma, Alvis

    2002-01-01

    Gene regulatory networks are a major focus of interest in molecular biology. A crucial question is how complex regulatory systems are encoded and controlled by the genome. Three recent publications have raised the question of what can be learned about gene regulatory networks from microarray experiments on gene deletion mutants. Using this indirect approach, topological features such as connectivity and modularity have been studied. PMID:18629255

  10. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    PubMed

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  11. Bayesian Nonlinear Model Selection for Gene Regulatory Networks

    PubMed Central

    Ni, Yang; Stingo, Francesco C.; Baladandayuthapani, Veerabhadran

    2015-01-01

    Summary Gene regulatory networks represent the regulatory relationships between genes and their products and are important for exploring and defining the underlying biological processes of cellular systems. We develop a novel framework to recover the structure of nonlinear gene regulatory networks using semiparametric spline-based directed acyclic graphical models. Our use of splines allows the model to have both flexibility in capturing nonlinear dependencies as well as control of overfitting via shrinkage, using mixed model representations of penalized splines. We propose a novel discrete mixture prior on the smoothing parameter of the splines that allows for simultaneous selection of both linear and nonlinear functional relationships as well as inducing sparsity in the edge selection. Using simulation studies, we demonstrate the superior performance of our methods in comparison with several existing approaches in terms of network reconstruction and functional selection. We apply our methods to a gene expression dataset in glioblastoma multiforme, which reveals several interesting and biologically relevant nonlinear relationships. PMID:25854759

  12. Network Topology Reveals Key Cardiovascular Disease Genes

    PubMed Central

    Stojković, Neda; Radak, Djordje; Pržulj, Nataša

    2013-01-01

    The structure of protein-protein interaction (PPI) networks has already been successfully used as a source of new biological information. Even though cardiovascular diseases (CVDs) are a major global cause of death, many CVD genes still await discovery. We explore ways to utilize the structure of the human PPI network to find important genes for CVDs that should be targeted by drugs. The hope is to use the properties of such important genes to predict new ones, which would in turn improve a choice of therapy. We propose a methodology that examines the PPI network wiring around genes involved in CVDs. We use the methodology to identify a subset of CVD-related genes that are statistically significantly enriched in drug targets and “driver genes.” We seek such genes, since driver genes have been proposed to drive onset and progression of a disease. Our identified subset of CVD genes has a large overlap with the Core Diseasome, which has been postulated to be the key to disease formation and hence should be the primary object of therapeutic intervention. This indicates that our methodology identifies “key” genes responsible for CVDs. Thus, we use it to predict new CVD genes and we validate over 70% of our predictions in the literature. Finally, we show that our predicted genes are functionally similar to currently known CVD drug targets, which confirms a potential utility of our methodology towards improving therapy for CVDs. PMID:23977067

  13. Construction of a gene-gene interaction network with a combined score across multiple approaches.

    PubMed

    Zhang, A M; Song, H; Shen, Y H; Liu, Y

    2015-01-01

    Recent progress in computational methods for inves-tigating physical and functional gene interactions has provided new insights into the complexity of biological processes. An essential part of these methods is presented visually in the form of gene interaction networks that can be valuable in exploring the mechanisms of disease. Here, a combined network based on gene pairs with an extra layer of re-liability was constructed after converting and combining the gene pair scores using a novel algorithm across multiple approaches. Four groups of kidney cancer data sets from ArrayExpress were downloaded and analyzed to identify differentially expressed genes using a rank prod-ucts analysis tool. Gene co-expression network, protein-protein interac-tion, co-occurrence network and a combined network were constructed using empirical Bayesian meta-analysis approach, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, an odds ratio formula of the cBioPortal for Cancer Genomics and a novel rank algorithm with combined score, respectively. The topological features of these networks were then compared to evaluate their performances. The results indicated that the gene pairs and their relationship rank-ings were not uniform. The values of topological parameters, such as clustering coefficient and the fitting coefficient R(2) of interaction net-work constructed using our ranked based combination score, were much greater than the other networks. The combined network had a classic small world property which transferred information quickly and displayed great resilience to the dysfunction of low-degree hubs with high-clustering and short average path length. It also followed distinct-ly a scale-free network with a higher reliability. PMID:26125911

  14. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  15. Genes2FANs: connecting genes through functional association networks

    PubMed Central

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  16. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network.

    PubMed

    Keith, Benjamin P; Robertson, David L; Hentges, Kathryn E

    2014-01-01

    Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorized according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest additional genes that may contribute to diseases with locus heterogeneity.

  17. Optimization of multilayer neural network parameters for speaker recognition

    NASA Astrophysics Data System (ADS)

    Tovarek, Jaromir; Partila, Pavol; Rozhon, Jan; Voznak, Miroslav; Skapa, Jan; Uhrin, Dominik; Chmelikova, Zdenka

    2016-05-01

    This article discusses the impact of multilayer neural network parameters for speaker identification. The main task of speaker identification is to find a specific person in the known set of speakers. It means that the voice of an unknown speaker (wanted person) belongs to a group of reference speakers from the voice database. One of the requests was to develop the text-independent system, which means to classify wanted person regardless of content and language. Multilayer neural network has been used for speaker identification in this research. Artificial neural network (ANN) needs to set parameters like activation function of neurons, steepness of activation functions, learning rate, the maximum number of iterations and a number of neurons in the hidden and output layers. ANN accuracy and validation time are directly influenced by the parameter settings. Different roles require different settings. Identification accuracy and ANN validation time were evaluated with the same input data but different parameter settings. The goal was to find parameters for the neural network with the highest precision and shortest validation time. Input data of neural networks are a Mel-frequency cepstral coefficients (MFCC). These parameters describe the properties of the vocal tract. Audio samples were recorded for all speakers in a laboratory environment. Training, testing and validation data set were split into 70, 15 and 15 %. The result of the research described in this article is different parameter setting for the multilayer neural network for four speakers.

  18. Autonomous Boolean modeling of gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Socolar, Joshua; Sun, Mengyang; Cheng, Xianrui

    2014-03-01

    In cases where the dynamical properties of gene regulatory networks are important, a faithful model must include three key features: a network topology; a functional response of each element to its inputs; and timing information about the transmission of signals across network links. Autonomous Boolean network (ABN) models are efficient representations of these elements and are amenable to analysis. We present an ABN model of the gene regulatory network governing cell fate specification in the early sea urchin embryo, which must generate three bands of distinct tissue types after several cell divisions, beginning from an initial condition with only two distinct cell types. Analysis of the spatial patterning problem and the dynamics of a network constructed from available experimental results reveals that a simple mechanism is at work in this case. Supported by NSF Grant DMS-10-68602

  19. Modeling Gene Networks in Saccharomyces cerevisiae Based on Gene Expression Profiles.

    PubMed

    Zhang, Yulin; Lv, Kebo; Wang, Shudong; Su, Jionglong; Meng, Dazhi

    2015-01-01

    Detailed and innovative analysis of gene regulatory network structures may reveal novel insights to biological mechanisms. Here we study how gene regulatory network in Saccharomyces cerevisiae can differ under aerobic and anaerobic conditions. To achieve this, we discretized the gene expression profiles and calculated the self-entropy of down- and upregulation of gene expression as well as joint entropy. Based on these quantities the uncertainty coefficient was calculated for each gene triplet, following which, separate gene logic networks were constructed for the aerobic and anaerobic conditions. Four structural parameters such as average degree, average clustering coefficient, average shortest path, and average betweenness were used to compare the structure of the corresponding aerobic and anaerobic logic networks. Five genes were identified to be putative key components of the two energy metabolisms. Furthermore, community analysis using the Newman fast algorithm revealed two significant communities for the aerobic but only one for the anaerobic network. David Gene Functional Classification suggests that, under aerobic conditions, one such community reflects the cell cycle and cell replication, while the other one is linked to the mitochondrial respiratory chain function. PMID:26839582

  20. Modeling Gene Networks in Saccharomyces cerevisiae Based on Gene Expression Profiles.

    PubMed

    Zhang, Yulin; Lv, Kebo; Wang, Shudong; Su, Jionglong; Meng, Dazhi

    2015-01-01

    Detailed and innovative analysis of gene regulatory network structures may reveal novel insights to biological mechanisms. Here we study how gene regulatory network in Saccharomyces cerevisiae can differ under aerobic and anaerobic conditions. To achieve this, we discretized the gene expression profiles and calculated the self-entropy of down- and upregulation of gene expression as well as joint entropy. Based on these quantities the uncertainty coefficient was calculated for each gene triplet, following which, separate gene logic networks were constructed for the aerobic and anaerobic conditions. Four structural parameters such as average degree, average clustering coefficient, average shortest path, and average betweenness were used to compare the structure of the corresponding aerobic and anaerobic logic networks. Five genes were identified to be putative key components of the two energy metabolisms. Furthermore, community analysis using the Newman fast algorithm revealed two significant communities for the aerobic but only one for the anaerobic network. David Gene Functional Classification suggests that, under aerobic conditions, one such community reflects the cell cycle and cell replication, while the other one is linked to the mitochondrial respiratory chain function.

  1. Modeling Gene Networks in Saccharomyces cerevisiae Based on Gene Expression Profiles

    PubMed Central

    Zhang, Yulin; Lv, Kebo; Wang, Shudong; Su, Jionglong; Meng, Dazhi

    2015-01-01

    Detailed and innovative analysis of gene regulatory network structures may reveal novel insights to biological mechanisms. Here we study how gene regulatory network in Saccharomyces cerevisiae can differ under aerobic and anaerobic conditions. To achieve this, we discretized the gene expression profiles and calculated the self-entropy of down- and upregulation of gene expression as well as joint entropy. Based on these quantities the uncertainty coefficient was calculated for each gene triplet, following which, separate gene logic networks were constructed for the aerobic and anaerobic conditions. Four structural parameters such as average degree, average clustering coefficient, average shortest path, and average betweenness were used to compare the structure of the corresponding aerobic and anaerobic logic networks. Five genes were identified to be putative key components of the two energy metabolisms. Furthermore, community analysis using the Newman fast algorithm revealed two significant communities for the aerobic but only one for the anaerobic network. David Gene Functional Classification suggests that, under aerobic conditions, one such community reflects the cell cycle and cell replication, while the other one is linked to the mitochondrial respiratory chain function. PMID:26839582

  2. Boolean Networks with Multi-Expressions and Parameters.

    PubMed

    Zou, Yi Ming

    2013-07-01

    To model biological systems using networks, it is desirable to allow more than two levels of expression for the nodes and to allow the introduction of parameters. Various modeling and simulation methods addressing these needs using Boolean models, both synchronous and asynchronous, have been proposed in the literature. However, analytical study of these more general Boolean networks models is lagging. This paper aims to develop a concise theory for these different Boolean logic based modeling methods. Boolean models for networks where each node can have more than two levels of expression and Boolean models with parameters are defined algebraically with examples provided. Certain classes of random asynchronous Boolean networks and deterministic moduli asynchronous Boolean networks are investigated in detail using the setting introduced in this paper. The derived theorems provide a clear picture for the attractor structures of these asynchronous Boolean networks.

  3. Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks

    PubMed Central

    Hosseini, S. M. Hadi; Kesler, Shelli R.

    2013-01-01

    In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672

  4. Influence of choice of null network on small-world parameters of structural correlation networks.

    PubMed

    Hosseini, S M Hadi; Kesler, Shelli R

    2013-01-01

    In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures.

  5. Network Completion for Static Gene Expression Data

    PubMed Central

    Nakajima, Natsu

    2014-01-01

    We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data. PMID:24826192

  6. Phenotypic switching in gene regulatory networks.

    PubMed

    Thomas, Philipp; Popović, Nikola; Grima, Ramon

    2014-05-13

    Noise in gene expression can lead to reversible phenotypic switching. Several experimental studies have shown that the abundance distributions of proteins in a population of isogenic cells may display multiple distinct maxima. Each of these maxima may be associated with a subpopulation of a particular phenotype, the quantification of which is important for understanding cellular decision-making. Here, we devise a methodology which allows us to quantify multimodal gene expression distributions and single-cell power spectra in gene regulatory networks. Extending the commonly used linear noise approximation, we rigorously show that, in the limit of slow promoter dynamics, these distributions can be systematically approximated as a mixture of Gaussian components in a wide class of networks. The resulting closed-form approximation provides a practical tool for studying complex nonlinear gene regulatory networks that have thus far been amenable only to stochastic simulation. We demonstrate the applicability of our approach in a number of genetic networks, uncovering previously unidentified dynamical characteristics associated with phenotypic switching. Specifically, we elucidate how the interplay of transcriptional and translational regulation can be exploited to control the multimodality of gene expression distributions in two-promoter networks. We demonstrate how phenotypic switching leads to birhythmical expression in a genetic oscillator, and to hysteresis in phenotypic induction, thus highlighting the ability of regulatory networks to retain memory. PMID:24782538

  7. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    PubMed

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  8. Inference of Gene Regulatory Network Based on Local Bayesian Networks

    PubMed Central

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Chen, Luonan

    2016-01-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  9. Mutated Genes in Schizophrenia Map to Brain Networks

    MedlinePlus

    ... 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the prefrontal cortex area of the brain. ... of spontaneous mutations in genes that form a network in the front region of the brain. The ...

  10. Network-dosage compensation topologies as recurrent network motifs in natural gene networks

    PubMed Central

    2014-01-01

    Background Global noise in gene expression and chromosome duplication during cell-cycle progression cause inevitable fluctuations in the effective number of copies of gene networks in cells. These indirect and direct alterations of network copy numbers have the potential to change the output or activity of a gene network. For networks whose specific activity levels are crucial for optimally maintaining cellular functions, cells need to implement mechanisms to robustly compensate the effects of network dosage fluctuations. Results Here, we determine the necessary conditions for generalized N-component gene networks to be network-dosage compensated and show that the compensation mechanism can robustly operate over large ranges of gene expression levels. Furthermore, we show that the conditions that are necessary for network-dosage compensation are also sufficient. Finally, using genome-wide protein-DNA and protein-protein interaction data, we search the yeast genome for the abundance of specific dosage-compensation motifs and show that a substantial percentage of the natural networks identified contain at least one dosage-compensation motif. Conclusions Our results strengthen the hypothesis that the special network topologies that are necessary for network-dosage compensation may be recurrent network motifs in eukaryotic genomes and therefore may be an important design principle in gene network assembly in cells. PMID:24929807

  11. Genes and gene networks implicated in aggression related behaviour.

    PubMed

    Malki, Karim; Pain, Oliver; Du Rietz, Ebba; Tosto, Maria Grazia; Paya-Cano, Jose; Sandnabba, Kenneth N; de Boer, Sietse; Schalkwyk, Leonard C; Sluyter, Frans

    2014-10-01

    Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour.

  12. From gene expressions to genetic networks

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2009-03-01

    A method based on the principle of entropy maximization is used to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles [1]. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher order correlations. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabollic oscillations identifies a gene interaction network that reflects the intracellular communication pathways. These pathways adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. The time-dependent behavior of the genetic network is found to involve only a few fundamental modes [2,3]. [4pt] REFERENCES:[0pt] [1] T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. (USA) 103, 19033-19038 (2006) [0pt] [2] N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, and N. V. Fedoroff, Fundamental patterns underlying gene expression profiles: simplicity from complexity, Proc. Natl. Acad. Sci. USA 97, 8409-8414 (2000) [0pt] [3] N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, Dynamic modeling of gene expression data, Proc. Natl. Acad. Sci. USA 98, 1693-1698 (2001)

  13. Inversion of parameters for semiarid regions by a neural network

    NASA Technical Reports Server (NTRS)

    Zurk, Lisa M.; Davis, Daniel; Njoku, Eni G.; Tsang, Leung; Hwang, Jenq-Neng

    1992-01-01

    Microwave brightness temperatures obtained from a passive radiative transfer model are inverted through use of a neural network. The model is applicable to semiarid regions and produces dual-polarized brightness temperatures for 6.6-, 10.7-, and 37-GHz frequencies. A range of temperatures is generated by varying three geophysical parameters over acceptable ranges: soil moisture, vegetation moisture, and soil temperature. A multilayered perceptron (MLP) neural network is trained with a subset of the generated temperatures, and the remaining temperatures are inverted using a backpropagation method. Several synthetic terrains are devised and inverted by the network under local constraints. All the inversions show good agreement with the original geophysical parameters, falling within 5 percent of the actual value of the parameter range.

  14. [A generalized chemical-kinetic method for modeling gene networks].

    PubMed

    Likhoshvaĭ, V A; Matushkin, Iu G; Ratushnyĭ, A V; Anan'ko, E A; Ignat'eva, E V; Podkolodnaia, O A

    2001-01-01

    Development of methods for mathematical simulation of biological systems and building specific simulations is an important trend of bioinformatics development. Here we describe the method of generalized chemokinetic simulation generating flexible and adequate simulations of various biological systems. Adequate simulations of complex nonlinear gene networks--control system of cholesterol by synthesis in the cell and erythrocyte differentiation and maturation--are given as the examples. The simulations were expressed in terms of unit processes--biochemical reactions. Optimal sets of parameters were determined and the systems were numerically simulated under various conditions. The simulations allow us to study possible functional conditions of these gene networks, calculate consequences of mutations, and define optimal strategies for their correction including therapeutic ones. Graphical user interface for these simulations is available at http://wwwmgs.bionet.nsc.ru/systems/MGL/GeneNet/. PMID:11771132

  15. Applications of neural networks for gene finding.

    PubMed

    Sherriff, A; Ott, J

    2001-01-01

    A basic description of artificial neural networks is given and applications of neural nets to problems in human gene mapping are discussed. Specifically, three data types are considered: (1) affected sibpair data for nonparametric linkage analysis, (2) case-control data for disequilibrium analysis based on genetic markers, and (3) family data with trait and marker phenotypes and possibly environmental effects.

  16. Additive functions in boolean models of gene regulatory network modules.

    PubMed

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  17. Additive Functions in Boolean Models of Gene Regulatory Network Modules

    PubMed Central

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H.; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  18. Generation of oscillating gene regulatory network motifs

    NASA Astrophysics Data System (ADS)

    van Dorp, M.; Lannoo, B.; Carlon, E.

    2013-07-01

    Using an improved version of an evolutionary algorithm originally proposed by François and Hakim [Proc. Natl. Acad. Sci. USAPNASA60027-842410.1073/pnas.0304532101 101, 580 (2004)], we generated small gene regulatory networks in which the concentration of a target protein oscillates in time. These networks may serve as candidates for oscillatory modules to be found in larger regulatory networks and protein interaction networks. The algorithm was run for 105 times to produce a large set of oscillating modules, which were systematically classified and analyzed. The robustness of the oscillations against variations of the kinetic rates was also determined, to filter out the least robust cases. Furthermore, we show that the set of evolved networks can serve as a database of models whose behavior can be compared to experimentally observed oscillations. The algorithm found three smallest (core) oscillators in which nonlinearities and number of components are minimal. Two of those are two-gene modules: the mixed feedback loop, already discussed in the literature, and an autorepressed gene coupled with a heterodimer. The third one is a single gene module which is competitively regulated by a monomer and a dimer. The evolutionary algorithm also generated larger oscillating networks, which are in part extensions of the three core modules and in part genuinely new modules. The latter includes oscillators which do not rely on feedback induced by transcription factors, but are purely of post-transcriptional type. Analysis of post-transcriptional mechanisms of oscillation may provide useful information for circadian clock research, as recent experiments showed that circadian rhythms are maintained even in the absence of transcription.

  19. Establishing Distance Education Networks in New Zealand: Policy Parameters.

    ERIC Educational Resources Information Center

    McMahon, Tim

    This paper deals with the policy parameters of establishing distance education networks in New Zealand. The current decentralized educational system is described, including the role of the state through the Ministry of Education, funding and resource allocations, and staffing. Discussion includes the contracting out to third parties for the…

  20. Parameter estimation in space systems using recurrent neural networks

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.

    1991-01-01

    The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.

  1. Increasing feasibility of optimal gene network estimation.

    PubMed

    Hansen, Annika; Ott, Sascha; Koentges, Georgy

    2004-01-01

    Disentangling networks of regulation of gene expression is a major challenge in the field of computational biology. Harvesting the information contained in microarray data sets is a promising approach towards this challenge. We propose an algorithm for the optimal estimation of Bayesian networks from microarray data, which reduces the CPU time and memory consumption of previous algorithms. We prove that the space complexity can be reduced from O(n(2) x 2(n)) to O(2(n)), and that the expected calculation time can be reduced from O(n(2) x 2(n)) to O(n x 2(n)), where n is the number of genes. We make intrinsic use of a limitation of the maximal number of regulators of each gene, which has biological as well as statistical justifications. The improvements are significant for some applications in research.

  2. Gene regulatory networks and the underlying biology of developmental toxicity

    EPA Science Inventory

    Embryonic cells are specified by large-scale networks of functionally linked regulatory genes. Knowledge of the relevant gene regulatory networks is essential for understanding phenotypic heterogeneity that emerges from disruption of molecular functions, cellular processes or sig...

  3. Hybrid stochastic simplifications for multiscale gene networks

    PubMed Central

    Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu

    2009-01-01

    Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554

  4. Sensitivity analysis of permeability parameters for flows on Barcelona networks

    NASA Astrophysics Data System (ADS)

    Rarità, Luigi; D'Apice, Ciro; Piccoli, Benedetto; Helbing, Dirk

    We consider the problem of optimizing vehicular traffic flows on an urban network of Barcelona type, i.e. square network with streets of not equal length. In particular, we describe the effects of variation of permeability parameters, that indicate the amount of flow allowed to enter a junction from incoming roads. On each road, a model suggested by Helbing et al. (2007) [11] is considered: free and congested regimes are distinguished, characterized by an arrival flow and a departure flow, the latter depending on a permeability parameter. Moreover we provide a rigorous derivation of the model from fluid dynamic ones, using recent results of Bretti et al. (2006) [3]. For solving the dynamics at nodes of the network, a Riemann solver maximizing the through flux is used, see Coclite et al. (2005) [4] and Helbing et al. (2007) [11]. The network dynamics gives rise to complicate equations, where the evolution of fluxes at a single node may involve time-delayed terms from all other nodes. Thus we propose an alternative hybrid approach, introducing additional logic variables. Finally we compute the effects of variations on permeability parameters over the hybrid dynamics and test the obtained results via simulations.

  5. Functionalization of a protosynaptic gene expression network

    PubMed Central

    Conaco, Cecilia; Bassett, Danielle S.; Zhou, Hongjun; Arcila, Mary Luz; Degnan, Sandie M.; Degnan, Bernard M.; Kosik, Kenneth S.

    2012-01-01

    Assembly of a functioning neuronal synapse requires the precisely coordinated synthesis of many proteins. To understand the evolution of this complex cellular machine, we tracked the developmental expression patterns of a core set of conserved synaptic genes across a representative sampling of the animal kingdom. Coregulation, as measured by correlation of gene expression over development, showed a marked increase as functional nervous systems emerged. In the earliest branching animal phyla (Porifera), in which a nearly complete set of synaptic genes exists in the absence of morphological synapses, these “protosynaptic” genes displayed a lack of global coregulation although small modules of coexpressed genes are readily detectable by using network analysis techniques. These findings suggest that functional synapses evolved by exapting preexisting cellular machines, likely through some modification of regulatory circuitry. Evolutionarily ancient modules continue to operate seamlessly within the synapses of modern animals. This work shows that the application of network techniques to emerging genomic and expression data can provide insights into the evolution of complex cellular machines such as the synapse. PMID:22723359

  6. Coherent organization in gene regulation: a study on six networks

    NASA Astrophysics Data System (ADS)

    Aral, Neşe; Kabakçıoğlu, Alkan

    2016-04-01

    Structural and dynamical fingerprints of evolutionary optimization in biological networks are still unclear. Here we analyze the dynamics of genetic regulatory networks responsible for the regulation of cell cycle and cell differentiation in three organisms or cell types each, and show that they follow a version of Hebb's rule which we have termed coherence. More precisely, we find that simultaneously expressed genes with a common target are less likely to act antagonistically at the attractors of the regulatory dynamics. We then investigate the dependence of coherence on structural parameters, such as the mean number of inputs per node and the activatory/repressory interaction ratio, as well as on dynamically determined quantities, such as the basin size and the number of expressed genes.

  7. Extraction of exposure parameters by using neural networks

    NASA Astrophysics Data System (ADS)

    Jeon, Kyoung-Ah; Kim, Hyoung-Hee; Yoo, Ji-Yong; Park, Jun-Taek; Oh, Hye-Keun

    2003-06-01

    Dill"s ABC parameters are key parameters for the simulation of photolithography patterning. The exposure parameters of each resist should be exactly known to simulate the desired pattern. In ordinary extracting methods of Dill"s ABC parameters, the changed refractive index and the absorption coefficient of photoresist are needed during exposure process. Generally, these methods are not easy to be applied in a normal fab because of a difficulty of in-situ measuring. An empirical E0 (dose-to-clear) swing curve is used to extract ABC exposure parameters previously by our group. Dill"s ABC parameters are not independent from each other and different values of them would cause the dose to clear swing curve variation. By using the known relationship of ABC parameters, the experimental swing curves are to be matched with the simulated ones in order to extract the parameters. But sometimes this method is not easy in matching the procedure and performing simulation. This procedure would take much time for matching between the experimental data and the simulation by the naked eyes, and also the simulations are performed over and over again for different conditions. In this paper, Dill"s ABC parameters were extracted by applying the values, which are quantitatively determined by measuring the mean value, period, slope, and amplitude of the swing curve, to the neural network algorithm. As a result, Dill"s ABC parameters were able to rapidly and accurately extracted with some of the quantified values of the swing curve. This method of extracting the exposure parameters can be used in a normal fab so that any engineer can easily obtain the exposure parameters and apply them to the simulation tools.

  8. Identification of direction in gene networks from expression and methylation

    PubMed Central

    2013-01-01

    Background Reverse-engineering gene regulatory networks from expression data is difficult, especially without temporal measurements or interventional experiments. In particular, the causal direction of an edge is generally not statistically identifiable, i.e., cannot be inferred as a statistical parameter, even from an unlimited amount of non-time series observational mRNA expression data. Some additional evidence is required and high-throughput methylation data can viewed as a natural multifactorial gene perturbation experiment. Results We introduce IDEM (Identifying Direction from Expression and Methylation), a method for identifying the causal direction of edges by combining DNA methylation and mRNA transcription data. We describe the circumstances under which edge directions become identifiable and experiments with both real and synthetic data demonstrate that the accuracy of IDEM for inferring both edge placement and edge direction in gene regulatory networks is significantly improved relative to other methods. Conclusion Reverse-engineering directed gene regulatory networks from static observational data becomes feasible by exploiting the context provided by high-throughput DNA methylation data. An implementation of the algorithm described is available at http://code.google.com/p/idem/. PMID:24182195

  9. Disease gene prioritization using network and feature.

    PubMed

    Xie, Bingqing; Agam, Gady; Balasubramanian, Sandhya; Xu, Jinbo; Gilliam, T Conrad; Maltsev, Natalia; Börnigen, Daniela

    2015-04-01

    Identifying high-confidence candidate genes that are causative for disease phenotypes, from the large lists of variations produced by high-throughput genomics, can be both time-consuming and costly. The development of novel computational approaches, utilizing existing biological knowledge for the prioritization of such candidate genes, can improve the efficiency and accuracy of the biomedical data analysis. It can also reduce the cost of such studies by avoiding experimental validations of irrelevant candidates. In this study, we address this challenge by proposing a novel gene prioritization approach that ranks promising candidate genes that are likely to be involved in a disease or phenotype under study. This algorithm is based on the modified conditional random field (CRF) model that simultaneously makes use of both gene annotations and gene interactions, while preserving their original representation. We validated our approach on two independent disease benchmark studies by ranking candidate genes using network and feature information. Our results showed both high area under the curve (AUC) value (0.86), and more importantly high partial AUC (pAUC) value (0.1296), and revealed higher accuracy and precision at the top predictions as compared with other well-performed gene prioritization tools, such as Endeavour (AUC-0.82, pAUC-0.083) and PINTA (AUC-0.76, pAUC-0.066). We were able to detect more target genes (9/18/19/27) on top positions (1/5/10/20) compared to Endeavour (3/11/14/23) and PINTA (6/10/13/18). To demonstrate its usability, we applied our method to a case study for the prediction of molecular mechanisms contributing to intellectual disability and autism. Our approach was able to correctly recover genes related to both disorders and provide suggestions for possible additional candidates based on their rankings and functional annotations. PMID:25844670

  10. Pathway network inference from gene expression data

    PubMed Central

    2014-01-01

    Background The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. PMID:25032889

  11. Gene Regulatory Networks Elucidating Huanglongbing Disease Mechanisms

    PubMed Central

    Martinelli, Federico; Reagan, Russell L.; Uratsu, Sandra L.; Phu, My L.; Albrecht, Ute; Zhao, Weixiang; Davis, Cristina E.; Bowman, Kim D.; Dandekar, Abhaya M.

    2013-01-01

    Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas), especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein – protein interaction network identified HLB-regulated genes for sugar transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-transporter, invertase, starch-related genes) would likely determine the source-sink relationship disruption. In infected leaves, transcriptomic changes were observed for light reactions genes (downregulation), sucrose metabolism (upregulation), and starch biosynthesis (upregulation). In parallel, symptomatic fruits over-expressed genes involved in photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70) was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally considered the sites where most new infections occur. PMID:24086326

  12. Gene networks controlling early cerebral cortex arealization.

    PubMed

    Mallamaci, Antonello; Stoykova, Anastassia

    2006-02-01

    Early thalamus-independent steps in the process of cortical arealization take place on the basis of information intrinsic to the cortical primordium, as proposed by Rakic in his classical protomap hypothesis [Rakic, P. (1988)Science, 241, 170-176]. These steps depend on a dense network of molecular interactions, involving genes encoding for diffusible ligands which are released around the borders of the cortical field, and transcription factor genes which are expressed in graded ways throughout this field. In recent years, several labs worldwide have put considerable effort into identifying members of this network and disentangling its topology. In this respect, a considerable amount of knowledge has accumulated and a first, provisional description of the network can be delineated. The aim of this review is to provide an organic synthesis of our current knowledge of molecular genetics of early cortical arealization, i.e. to summarise the mechanisms by which secreted ligands and graded transcription factor genes elaborate positional information and trigger the activation of distinctive area-specific morphogenetic programs.

  13. Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity.

    PubMed

    Noor, Amina; Serpedin, Erchin; Nounou, Mohamed; Nounou, Hazem N

    2012-01-01

    This paper considers the problem of learning the structure of gene regulatory networks from gene expression time series data. A more realistic scenario when the state space model representing a gene network evolves nonlinearly is considered while a linear model is assumed for the microarray data. To capture the nonlinearity, a particle filter-based state estimation algorithm is considered instead of the contemporary linear approximation-based approaches. The parameters characterizing the regulatory relations among various genes are estimated online using a Kalman filter. Since a particular gene interacts with a few other genes only, the parameter vector is expected to be sparse. The state estimates delivered by the particle filter and the observed microarray data are then subjected to a LASSO-based least squares regression operation which yields a parsimonious and efficient description of the regulatory network by setting the irrelevant coefficients to zero. The performance of the aforementioned algorithm is compared with the extended Kalman filter (EKF) and Unscented Kalman Filter (UKF) employing the Mean Square Error (MSE) as the fidelity criterion in recovering the parameters of gene regulatory networks from synthetic data and real biological data. Extensive computer simulations illustrate that the proposed particle filter-based network inference algorithm outperforms EKF and UKF, and therefore, it can serve as a natural framework for modeling gene regulatory networks with nonlinear and sparse structure. PMID:22350207

  14. Parameter estimation of general regression neural network using Bayesian approach

    NASA Astrophysics Data System (ADS)

    Choir, Achmad Syahrul; Prasetyo, Rindang Bangun; Ulama, Brodjol Sutijo Suprih; Iriawan, Nur; Fitriasari, Kartika; Dokhi, Mohammad

    2016-02-01

    General Regression Neural Network (GRNN) has been applied in a large number of forecasting/prediction problem. Generally, there are two types of GRNN: GRNN which is based on kernel density; and Mixture Based GRNN (MBGRNN) which is based on adaptive mixture model. The main problem on GRNN modeling lays on how its parameters were estimated. In this paper, we propose Bayesian approach and its computation using Markov Chain Monte Carlo (MCMC) algorithms for estimating the MBGRNN parameters. This method is applied in simulation study. In this study, its performances are measured by using MAPE, MAE and RMSE. The application of Bayesian method to estimate MBGRNN parameters using MCMC is straightforward but it needs much iteration to achieve convergence.

  15. Differential network analysis from cross-platform gene expression data

    PubMed Central

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-01-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes. PMID:27677586

  16. Differential network analysis from cross-platform gene expression data

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Fei; Ou-Yang, Le; Zhao, Xing-Ming; Yan, Hong

    2016-09-01

    Understanding how the structure of gene dependency network changes between two patient-specific groups is an important task for genomic research. Although many computational approaches have been proposed to undertake this task, most of them estimate correlation networks from group-specific gene expression data independently without considering the common structure shared between different groups. In addition, with the development of high-throughput technologies, we can collect gene expression profiles of same patients from multiple platforms. Therefore, inferring differential networks by considering cross-platform gene expression profiles will improve the reliability of network inference. We introduce a two dimensional joint graphical lasso (TDJGL) model to simultaneously estimate group-specific gene dependency networks from gene expression profiles collected from different platforms and infer differential networks. TDJGL can borrow strength across different patient groups and data platforms to improve the accuracy of estimated networks. Simulation studies demonstrate that TDJGL provides more accurate estimates of gene networks and differential networks than previous competing approaches. We apply TDJGL to the PI3K/AKT/mTOR pathway in ovarian tumors to build differential networks associated with platinum resistance. The hub genes of our inferred differential networks are significantly enriched with known platinum resistance-related genes and include potential platinum resistance-related genes.

  17. Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics

    NASA Astrophysics Data System (ADS)

    Ronen, Michal; Rosenberg, Revital; Shraiman, Boris I.; Alon, Uri

    2002-08-01

    A basic challenge in systems biology is to understand the dynamical behavior of gene regulation networks. Current approaches aim at determining the network structure based on genomic-scale data. However, the network connectivity alone is not sufficient to define its dynamics; one needs to also specify the kinetic parameters for the regulation reactions. Here, we ask whether effective kinetic parameters can be assigned to a transcriptional network based on expression data. We present a combined experimental and theoretical approach based on accurate high temporal-resolution measurement of promoter activities from living cells by using green fluorescent protein (GFP) reporter plasmids. We present algorithms that use these data to assign effective kinetic parameters within a mathematical model of the network. To demonstrate this, we employ a well defined network, the SOS DNA repair system of Escherichia coli. We find a strikingly detailed temporal program of expression that correlates with the functional role of the SOS genes and is driven by a hierarchy of effective kinetic parameter strengths for the various promoters. The calculated parameters can be used to determine the kinetics of all SOS genes given the expression profile of just one representative, allowing a significant reduction in complexity. The concentration profile of the master SOS transcriptional repressor can be calculated, demonstrating that relative protein levels may be determined from purely transcriptional data. This finding opens the possibility of assigning kinetic parameters to transcriptional networks on a genomic scale.

  18. Paper-based Synthetic Gene Networks

    PubMed Central

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  19. Integration of biological networks and gene expression data using Cytoscape.

    PubMed

    Cline, Melissa S; Smoot, Michael; Cerami, Ethan; Kuchinsky, Allan; Landys, Nerius; Workman, Chris; Christmas, Rowan; Avila-Campilo, Iliana; Creech, Michael; Gross, Benjamin; Hanspers, Kristina; Isserlin, Ruth; Kelley, Ryan; Killcoyne, Sarah; Lotia, Samad; Maere, Steven; Morris, John; Ono, Keiichiro; Pavlovic, Vuk; Pico, Alexander R; Vailaya, Aditya; Wang, Peng-Liang; Adler, Annette; Conklin, Bruce R; Hood, Leroy; Kuiper, Martin; Sander, Chris; Schmulevich, Ilya; Schwikowski, Benno; Warner, Guy J; Ideker, Trey; Bader, Gary D

    2007-01-01

    Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.

  20. Chaotic motifs in gene regulatory networks.

    PubMed

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.

  1. Pathway-Dependent Effectiveness of Network Algorithms for Gene Prioritization

    PubMed Central

    Shim, Jung Eun; Hwang, Sohyun; Lee, Insuk

    2015-01-01

    A network-based approach has proven useful for the identification of novel genes associated with complex phenotypes, including human diseases. Because network-based gene prioritization algorithms are based on propagating information of known phenotype-associated genes through networks, the pathway structure of each phenotype might significantly affect the effectiveness of algorithms. We systematically compared two popular network algorithms with distinct mechanisms – direct neighborhood which propagates information to only direct network neighbors, and network diffusion which diffuses information throughout the entire network – in prioritization of genes for worm and human phenotypes. Previous studies reported that network diffusion generally outperforms direct neighborhood for human diseases. Although prioritization power is generally measured for all ranked genes, only the top candidates are significant for subsequent functional analysis. We found that high prioritizing power of a network algorithm for all genes cannot guarantee successful prioritization of top ranked candidates for a given phenotype. Indeed, the majority of the phenotypes that were more efficiently prioritized by network diffusion showed higher prioritizing power for top candidates by direct neighborhood. We also found that connectivity among pathway genes for each phenotype largely determines which network algorithm is more effective, suggesting that the network algorithm used for each phenotype should be chosen with consideration of pathway gene connectivity. PMID:26091506

  2. Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence

    PubMed Central

    Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam

    2016-01-01

    We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case. PMID:27298752

  3. Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence.

    PubMed

    Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam

    2016-01-01

    We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.

  4. Sequence-based model of gap gene regulatory network

    PubMed Central

    2014-01-01

    Background The detailed analysis of transcriptional regulation is crucially important for understanding biological processes. The gap gene network in Drosophila attracts large interest among researches studying mechanisms of transcriptional regulation. It implements the most upstream regulatory layer of the segmentation gene network. The knowledge of molecular mechanisms involved in gap gene regulation is far less complete than that of genetics of the system. Mathematical modeling goes beyond insights gained by genetics and molecular approaches. It allows us to reconstruct wild-type gene expression patterns in silico, infer underlying regulatory mechanism and prove its sufficiency. Results We developed a new model that provides a dynamical description of gap gene regulatory systems, using detailed DNA-based information, as well as spatial transcription factor concentration data at varying time points. We showed that this model correctly reproduces gap gene expression patterns in wild type embryos and is able to predict gap expression patterns in Kr mutants and four reporter constructs. We used four-fold cross validation test and fitting to random dataset to validate the model and proof its sufficiency in data description. The identifiability analysis showed that most model parameters are well identifiable. We reconstructed the gap gene network topology and studied the impact of individual transcription factor binding sites on the model output. We measured this impact by calculating the site regulatory weight as a normalized difference between the residual sum of squares error for the set of all annotated sites and for the set with the site of interest excluded. Conclusions The reconstructed topology of the gap gene network is in agreement with previous modeling results and data from literature. We showed that 1) the regulatory weights of transcription factor binding sites show very weak correlation with their PWM score; 2) sites with low regulatory weight are

  5. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    PubMed

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  6. Biomarker Gene Signature Discovery Integrating Network Knowledge

    PubMed Central

    Cun, Yupeng; Fröhlich, Holger

    2012-01-01

    Discovery of prognostic and diagnostic biomarker gene signatures for diseases, such as cancer, is seen as a major step towards a better personalized medicine. During the last decade various methods, mainly coming from the machine learning or statistical domain, have been proposed for that purpose. However, one important obstacle for making gene signatures a standard tool in clinical diagnosis is the typical low reproducibility of these signatures combined with the difficulty to achieve a clear biological interpretation. For that purpose in the last years there has been a growing interest in approaches that try to integrate information from molecular interaction networks. Here we review the current state of research in this field by giving an overview about so-far proposed approaches. PMID:24832044

  7. Synthetic gene networks in plant systems.

    PubMed

    Junker, Astrid; Junker, Björn H

    2012-01-01

    Synthetic biology methods are routinely applied in the plant field as in other eukaryotic model systems. Several synthetic components have been developed in plants and an increasing number of studies report on the assembly into functional synthetic genetic circuits. This chapter gives an overview of the existing plant genetic networks and describes in detail the application of two systems for inducible gene expression. The ethanol-inducible system relies on the ethanol-responsive interaction of the AlcA transcriptional activator and the AlcR receptor resulting in the transcription of the gene of interest (GOI). In comparison, the translational fusion of GOI and the glucocorticoid receptor (GR) domain leads to the dexamethasone-dependent nuclear translocation of the GOI::GR protein. This chapter contains detailed protocols for the application of both systems in the model plants potato and Arabidopsis, respectively.

  8. Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks

    PubMed Central

    Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek

    2015-01-01

    Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org. PMID:26063822

  9. Using qualitative probability in reverse-engineering gene regulatory networks.

    PubMed

    Ibrahim, Zina M; Ngom, Alioune; Tawfik, Ahmed Y

    2011-01-01

    This paper demonstrates the use of qualitative probabilistic networks (QPNs) to aid Dynamic Bayesian Networks (DBNs) in the process of learning the structure of gene regulatory networks from microarray gene expression data. We present a study which shows that QPNs define monotonic relations that are capable of identifying regulatory interactions in a manner that is less susceptible to the many sources of uncertainty that surround gene expression data. Moreover, we construct a model that maps the regulatory interactions of genetic networks to QPN constructs and show its capability in providing a set of candidate regulators for target genes, which is subsequently used to establish a prior structure that the DBN learning algorithm can use and which 1) distinguishes spurious correlations from true regulations, 2) enables the discovery of sets of coregulators of target genes, and 3) results in a more efficient construction of gene regulatory networks. The model is compared to the existing literature using the known gene regulatory interactions of Drosophila Melanogaster.

  10. Cancer classification based on gene expression using neural networks.

    PubMed

    Hu, H P; Niu, Z J; Bai, Y P; Tan, X H

    2015-12-21

    Based on gene expression, we have classified 53 colon cancer patients with UICC II into two groups: relapse and no relapse. Samples were taken from each patient, and gene information was extracted. Of the 53 samples examined, 500 genes were considered proper through analyses by S-Kohonen, BP, and SVM neural networks. Classification accuracy obtained by S-Kohonen neural network reaches 91%, which was more accurate than classification by BP and SVM neural networks. The results show that S-Kohonen neural network is more plausible for classification and has a certain feasibility and validity as compared with BP and SVM neural networks.

  11. How to identify essential genes from molecular networks?

    PubMed Central

    del Rio, Gabriel; Koschützki, Dirk; Coello, Gerardo

    2009-01-01

    Background The prediction of essential genes from molecular networks is a way to test the understanding of essentiality in the context of what is known about the network. However, the current knowledge on molecular network structures is incomplete yet, and consequently the strategies aimed to predict essential genes are prone to uncertain predictions. We propose that simultaneously evaluating different network structures and different algorithms representing gene essentiality (centrality measures) may identify essential genes in networks in a reliable fashion. Results By simultaneously analyzing 16 different centrality measures on 18 different reconstructed metabolic networks for Saccharomyces cerevisiae, we show that no single centrality measure identifies essential genes from these networks in a statistically significant way; however, the combination of at least 2 centrality measures achieves a reliable prediction of most but not all of the essential genes. No improvement is achieved in the prediction of essential genes when 3 or 4 centrality measures were combined. Conclusion The method reported here describes a reliable procedure to predict essential genes from molecular networks. Our results show that essential genes may be predicted only by combining centrality measures, revealing the complex nature of the function of essential genes. PMID:19822021

  12. Large scale gene regulatory network inference with a multi-level strategy.

    PubMed

    Wu, Jun; Zhao, Xiaodong; Lin, Zongli; Shao, Zhifeng

    2016-02-01

    Transcriptional regulation is a basis of many crucial molecular processes and an accurate inference of the gene regulatory network is a helpful and essential task to understand cell functions and gain insights into biological processes of interest in systems biology. Inspired by the Dialogue for Reverse Engineering Assessments and Methods (DREAM) projects, many excellent gene regulatory network inference algorithms have been proposed. However, it is still a challenging problem to infer a gene regulatory network from gene expression data on a large scale. In this paper, we propose a gene regulatory network inference method based on a multi-level strategy (GENIMS), which can give results that are more accurate and robust than the state-of-the-art methods. The proposed method mainly consists of three levels, which are an original feature selection step based on guided regularized random forest, normalization of individual feature selection and the final refinement step according to the topological property of the gene regulatory network. To prove the accuracy and robustness of our method, we compare our method with the state-of-the-art methods on the DREAM4 and DREAM5 benchmark networks and the results indicate that the proposed method can significantly improve the performance of gene regulatory network inference. Additionally, we also discuss the influence of the selection of different parameters in our method. PMID:26687446

  13. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    PubMed

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures. PMID:21576756

  14. Variability of multifractal parameters in an urban precipitation monitoring network

    NASA Astrophysics Data System (ADS)

    Licznar, Paweł; De Michele, Carlo; Dżugaj, Dagmara; Niesobska, Maria

    2014-05-01

    Precipitation especially over urban areas is considered a highly non-linear process, with wide variability over a broad range of temporal and spatial scales. Despite obvious limitations of rainfall gauges location at urban sites, rainfall monitoring by gauge networks is a standard solution of urban hydrology. Often urban precipitation gauge networks are formed by modern electronic gauges and connected to control units of centralized urban drainage systems. Precipitation data, recorded online through these gauge networks, are used in so called Real-Time-Control (RTC) systems for the development of optimal strategies of urban drainage outflows management. As a matter of fact, the operation of RTC systems is motivated mainly by the urge of reducing the severity of urban floods and combined sewerage overflows, but at the same time, it creates new valuable precipitation data sources. The variability of precipitation process could be achieved by investigating multifractal behavior displayed by the temporal structure of precipitation data. There are multiply scientific communications concerning multifractal properties of point-rainfall data from different worldwide locations. However, very little is known about the close variability of multifractal parameters among closely located gauges, at the distances of single kilometers. Having this in mind, here we assess the variability of multifractal parameters among gauges of the urban precipitation monitoring network in Warsaw, Poland. We base our analysis on the set of 1-minute rainfall time series recorded in the period 2008-2011 by 25 electronic weighing type gauges deployed around the city by the Municipal Water Supply and Sewerage Company in Warsaw as a part of local RTC system. The presence of scale invariance and multifractal properties in the precipitation process was investigated with spectral analysis, functional box counting method and studying the probability distributions and statistical moments of the rainfall

  15. An efficient automated parameter tuning framework for spiking neural networks.

    PubMed

    Carlson, Kristofor D; Nageswaran, Jayram Moorkanikara; Dutt, Nikil; Krichmar, Jeffrey L

    2014-01-01

    As the desire for biologically realistic spiking neural networks (SNNs) increases, tuning the enormous number of open parameters in these models becomes a difficult challenge. SNNs have been used to successfully model complex neural circuits that explore various neural phenomena such as neural plasticity, vision systems, auditory systems, neural oscillations, and many other important topics of neural function. Additionally, SNNs are particularly well-adapted to run on neuromorphic hardware that will support biological brain-scale architectures. Although the inclusion of realistic plasticity equations, neural dynamics, and recurrent topologies has increased the descriptive power of SNNs, it has also made the task of tuning these biologically realistic SNNs difficult. To meet this challenge, we present an automated parameter tuning framework capable of tuning SNNs quickly and efficiently using evolutionary algorithms (EA) and inexpensive, readily accessible graphics processing units (GPUs). A sample SNN with 4104 neurons was tuned to give V1 simple cell-like tuning curve responses and produce self-organizing receptive fields (SORFs) when presented with a random sequence of counterphase sinusoidal grating stimuli. A performance analysis comparing the GPU-accelerated implementation to a single-threaded central processing unit (CPU) implementation was carried out and showed a speedup of 65× of the GPU implementation over the CPU implementation, or 0.35 h per generation for GPU vs. 23.5 h per generation for CPU. Additionally, the parameter value solutions found in the tuned SNN were studied and found to be stable and repeatable. The automated parameter tuning framework presented here will be of use to both the computational neuroscience and neuromorphic engineering communities, making the process of constructing and tuning large-scale SNNs much quicker and easier.

  16. An efficient automated parameter tuning framework for spiking neural networks

    PubMed Central

    Carlson, Kristofor D.; Nageswaran, Jayram Moorkanikara; Dutt, Nikil; Krichmar, Jeffrey L.

    2014-01-01

    As the desire for biologically realistic spiking neural networks (SNNs) increases, tuning the enormous number of open parameters in these models becomes a difficult challenge. SNNs have been used to successfully model complex neural circuits that explore various neural phenomena such as neural plasticity, vision systems, auditory systems, neural oscillations, and many other important topics of neural function. Additionally, SNNs are particularly well-adapted to run on neuromorphic hardware that will support biological brain-scale architectures. Although the inclusion of realistic plasticity equations, neural dynamics, and recurrent topologies has increased the descriptive power of SNNs, it has also made the task of tuning these biologically realistic SNNs difficult. To meet this challenge, we present an automated parameter tuning framework capable of tuning SNNs quickly and efficiently using evolutionary algorithms (EA) and inexpensive, readily accessible graphics processing units (GPUs). A sample SNN with 4104 neurons was tuned to give V1 simple cell-like tuning curve responses and produce self-organizing receptive fields (SORFs) when presented with a random sequence of counterphase sinusoidal grating stimuli. A performance analysis comparing the GPU-accelerated implementation to a single-threaded central processing unit (CPU) implementation was carried out and showed a speedup of 65× of the GPU implementation over the CPU implementation, or 0.35 h per generation for GPU vs. 23.5 h per generation for CPU. Additionally, the parameter value solutions found in the tuned SNN were studied and found to be stable and repeatable. The automated parameter tuning framework presented here will be of use to both the computational neuroscience and neuromorphic engineering communities, making the process of constructing and tuning large-scale SNNs much quicker and easier. PMID:24550771

  17. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Zhu, Shijia; Wang, Yadong

    2015-12-01

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.

  18. A Comprehensive Evaluation of Disease Phenotype Networks for Gene Prioritization

    PubMed Central

    Li, Jianhua; Lin, Xiaoyan; Teng, Yueyang; Qi, Shouliang; Xiao, Dayu; Zhang, Jianying; Kang, Yan

    2016-01-01

    Identification of disease-causing genes is a fundamental challenge for human health studies. The phenotypic similarity among diseases may reflect the interactions at the molecular level, and phenotype comparison can be used to predict disease candidate genes. Online Mendelian Inheritance in Man (OMIM) is a database of human genetic diseases and related genes that has become an authoritative source of disease phenotypes. However, disease phenotypes have been described by free text; thus, standardization of phenotypic descriptions is needed before diseases can be compared. Several disease phenotype networks have been established in OMIM using different standardization methods. Two of these networks are important for phenotypic similarity analysis: the first and most commonly used network (mimMiner) is standardized by medical subject heading, and the other network (resnikHPO) is the first to be standardized by human phenotype ontology. This paper comprehensively evaluates for the first time the accuracy of these two networks in gene prioritization based on protein–protein interactions using large-scale, leave-one-out cross-validation experiments. The results show that both networks can effectively prioritize disease-causing genes, and the approach that relates two diseases using a logistic function improves prioritization performance. Tanimoto, one of four methods for normalizing resnikHPO, generates a symmetric network and it performs similarly to mimMiner. Furthermore, an integration of these two networks outperforms either network alone in gene prioritization, indicating that these two disease networks are complementary. PMID:27415759

  19. Trainable Gene Regulation Networks with Applications to Drosophila Pattern Formation

    NASA Technical Reports Server (NTRS)

    Mjolsness, Eric

    2000-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila melanogaster. For details the reader is referred to the papers introduced below. It will then introduce a new gene regulation network model which can describe promoter-level substructure in gene regulation. As described in chapter 2, gene regulation may be thought of as a combination of cis-acting regulation by the extended promoter of a gene (including all regulatory sequences) by way of the transcription complex, and of trans-acting regulation by the transcription factor products of other genes. If we simplify the cis-action by using a phenomenological model which can be tuned to data, such as a unit or other small portion of an artificial neural network, then the full transacting interaction between multiple genes during development can be modelled as a larger network which can again be tuned or trained to data. The larger network will in general need to have recurrent (feedback) connections since at least some real gene regulation networks do. This is the basic modeling approach taken, which describes how a set of recurrent neural networks can be used as a modeling language for multiple developmental processes including gene regulation within a single cell, cell-cell communication, and cell division. Such network models have been called "gene circuits", "gene regulation networks", or "genetic regulatory networks", sometimes without distinguishing the models from the actual modeled systems.

  20. The Max-Min High-Order Dynamic Bayesian Network for Learning Gene Regulatory Networks with Time-Delayed Regulations.

    PubMed

    Li, Yifeng; Chen, Haifen; Zheng, Jie; Ngom, Alioune

    2016-01-01

    Accurately reconstructing gene regulatory network (GRN) from gene expression data is a challenging task in systems biology. Although some progresses have been made, the performance of GRN reconstruction still has much room for improvement. Because many regulatory events are asynchronous, learning gene interactions with multiple time delays is an effective way to improve the accuracy of GRN reconstruction. Here, we propose a new approach, called Max-Min high-order dynamic Bayesian network (MMHO-DBN) by extending the Max-Min hill-climbing Bayesian network technique originally devised for learning a Bayesian network's structure from static data. Our MMHO-DBN can explicitly model the time lags between regulators and targets in an efficient manner. It first uses constraint-based ideas to limit the space of potential structures, and then applies search-and-score ideas to search for an optimal HO-DBN structure. The performance of MMHO-DBN to GRN reconstruction was evaluated using both synthetic and real gene expression time-series data. Results show that MMHO-DBN is more accurate than current time-delayed GRN learning methods, and has an intermediate computing performance. Furthermore, it is able to learn long time-delayed relationships between genes. We applied sensitivity analysis on our model to study the performance variation along different parameter settings. The result provides hints on the setting of parameters of MMHO-DBN.

  1. The Effects of Gene Recruitment on the Evolvability and Robustness of Pattern-Forming Gene Networks

    NASA Astrophysics Data System (ADS)

    Spirov, Alexander V.; Holloway, David M.

    Gene recruitment or co-option is defined as the placement of a new gene under a foreign regulatory system. Such re-arrangement of pre-existing regulatory networks can lead to an increase in genomic complexity. This reorganization is recognized as a major driving force in evolution. We simulated the evolution of gene networks by means of the Genetic Algorithms (GA) technique. We used standard GA methods of point mutation and multi-point crossover, as well as our own operators for introducing or withdrawing new genes on the network. The starting point for our computer evolutionary experiments was a 4-gene dynamic model representing the real genetic network controlling segmentation in the fruit fly Drosophila. Model output was fit to experimentally observed gene expression patterns in the early fly embryo. We compared this to output for networks with more and less genes, and with variation in maternal regulatory input. We found that the mutation operator, together with the gene introduction procedure, was sufficient for recruiting new genes into pre-existing networks. Reinforcement of the evolutionary search by crossover operators facilitates this recruitment, but is not necessary. Gene recruitment causes outgrowth of an evolving network, resulting in redundancy, in the sense that the number of genes goes up, as well as the regulatory interactions on the original genes. The recruited genes can have uniform or patterned expressions, many of which recapitulate gene patterns seen in flies, including genes which are not explicitly put in our model. Recruitment of new genes can affect the evolvability of networks (in general, their ability to produce the variation to facilitate adaptive evolution). We see this in particular with a 2-gene subnetwork. To study robustness, we have subjected the networks to experimental levels of variability in maternal regulatory patterns. The majority of networks are not robust to these perturbations. However, a significant subset of the

  2. On the robustness of complex heterogeneous gene expression networks.

    PubMed

    Gómez-Gardeñes, Jesús; Moreno, Yamir; Floría, Luis M

    2005-04-01

    We analyze a continuous gene expression model on the underlying topology of a complex heterogeneous network. Numerical simulations aimed at studying the chaotic and periodic dynamics of the model are performed. The results clearly indicate that there is a region in which the dynamical and structural complexity of the system avoid chaotic attractors. However, contrary to what has been reported for Random Boolean Networks, the chaotic phase cannot be completely suppressed, which has important bearings on network robustness and gene expression modeling.

  3. Efficient Reverse-Engineering of a Developmental Gene Regulatory Network

    PubMed Central

    Cicin-Sain, Damjan; Ashyraliyev, Maksat; Jaeger, Johannes

    2012-01-01

    Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to

  4. Functional-network-based gene set analysis using gene-ontology.

    PubMed

    Chang, Billy; Kustra, Rafal; Tian, Weidong

    2013-01-01

    To account for the functional non-equivalence among a set of genes within a biological pathway when performing gene set analysis, we introduce GOGANPA, a network-based gene set analysis method, which up-weights genes with functions relevant to the gene set of interest. The genes are weighted according to its degree within a genome-scale functional network constructed using the functional annotations available from the gene ontology database. By benchmarking GOGANPA using a well-studied P53 data set and three breast cancer data sets, we will demonstrate the power and reproducibility of our proposed method over traditional unweighted approaches and a competing network-based approach that involves a complex integrated network. GOGANPA's sole reliance on gene ontology further allows GOGANPA to be widely applicable to the analysis of any gene-ontology-annotated genome. PMID:23418449

  5. Pathogenic Network Analysis Predicts Candidate Genes for Cervical Cancer

    PubMed Central

    Zhang, Yun-Xia

    2016-01-01

    Purpose. The objective of our study was to predicate candidate genes in cervical cancer (CC) using a network-based strategy and to understand the pathogenic process of CC. Methods. A pathogenic network of CC was extracted based on known pathogenic genes (seed genes) and differentially expressed genes (DEGs) between CC and normal controls. Subsequently, cluster analysis was performed to identify the subnetworks in the pathogenic network using ClusterONE. Each gene in the pathogenic network was assigned a weight value, and then candidate genes were obtained based on the weight distribution. Eventually, pathway enrichment analysis for candidate genes was performed. Results. In this work, a total of 330 DEGs were identified between CC and normal controls. From the pathogenic network, 2 intensely connected clusters were extracted, and a total of 52 candidate genes were detected under the weight values greater than 0.10. Among these candidate genes, VIM had the highest weight value. Moreover, candidate genes MMP1, CDC45, and CAT were, respectively, enriched in pathway in cancer, cell cycle, and methane metabolism. Conclusion. Candidate pathogenic genes including MMP1, CDC45, CAT, and VIM might be involved in the pathogenesis of CC. We believe that our results can provide theoretical guidelines for future clinical application. PMID:27034707

  6. Implicit methods for qualitative modeling of gene regulatory networks.

    PubMed

    Garg, Abhishek; Mohanram, Kartik; De Micheli, Giovanni; Xenarios, Ioannis

    2012-01-01

    Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.

  7. Noise reduction facilitated by dosage compensation in gene networks

    PubMed Central

    Peng, Weilin; Song, Ruijie; Acar, Murat

    2016-01-01

    Genetic noise together with genome duplication and volume changes during cell cycle are significant contributors to cell-to-cell heterogeneity. How can cells buffer the effects of these unavoidable epigenetic and genetic variations on phenotypes that are sensitive to such variations? Here we show that a simple network motif that is essential for network-dosage compensation can reduce the effects of extrinsic noise on the network output. Using natural and synthetic gene networks with and without the network motif, we measure gene network activity in single yeast cells and find that the activity of the compensated network is significantly lower in noise compared with the non-compensated network. A mathematical analysis provides intuitive insights into these results and a novel stochastic model tracking cell-volume and cell-cycle predicts the experimental results. Our work implies that noise is a selectable trait tunable by evolution. PMID:27694830

  8. Approaches for recognizing disease genes based on network.

    PubMed

    Zou, Quan; Li, Jinjin; Wang, Chunyu; Zeng, Xiangxiang

    2014-01-01

    Diseases are closely related to genes, thus indicating that genetic abnormalities may lead to certain diseases. The recognition of disease genes has long been a goal in biology, which may contribute to the improvement of health care and understanding gene functions, pathways, and interactions. However, few large-scale gene-gene association datasets, disease-disease association datasets, and gene-disease association datasets are available. A number of machine learning methods have been used to recognize disease genes based on networks. This paper states the relationship between disease and gene, summarizes the approaches used to recognize disease genes based on network, analyzes the core problems and challenges of the methods, and outlooks future research direction.

  9. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data.

    PubMed

    Xia, Jianguo; Gill, Erin E; Hancock, Robert E W

    2015-06-01

    Meta-analysis of gene expression data sets is increasingly performed to help identify robust molecular signatures and to gain insights into underlying biological processes. The complicated nature of such analyses requires both advanced statistics and innovative visualization strategies to support efficient data comparison, interpretation and hypothesis generation. NetworkAnalyst (http://www.networkanalyst.ca) is a comprehensive web-based tool designed to allow bench researchers to perform various common and complex meta-analyses of gene expression data via an intuitive web interface. By coupling well-established statistical procedures with state-of-the-art data visualization techniques, NetworkAnalyst allows researchers to easily navigate large complex gene expression data sets to determine important features, patterns, functions and connections, thus leading to the generation of new biological hypotheses. This protocol provides a step-wise description of how to effectively use NetworkAnalyst to perform network analysis and visualization from gene lists; to perform meta-analysis on gene expression data while taking into account multiple metadata parameters; and, finally, to perform a meta-analysis of multiple gene expression data sets. NetworkAnalyst is designed to be accessible to biologists rather than to specialist bioinformaticians. The complete protocol can be executed in ∼1.5 h. Compared with other similar web-based tools, NetworkAnalyst offers a unique visual analytics experience that enables data analysis within the context of protein-protein interaction networks, heatmaps or chord diagrams. All of these analysis methods provide the user with supporting statistical and functional evidence.

  10. Evolvability and hierarchy in rewired bacterial gene networks.

    PubMed

    Isalan, Mark; Lemerle, Caroline; Michalodimitrakis, Konstantinos; Horn, Carsten; Beltrao, Pedro; Raineri, Emanuele; Garriga-Canut, Mireia; Serrano, Luis

    2008-04-17

    Sequencing DNA from several organisms has revealed that duplication and drift of existing genes have primarily moulded the contents of a given genome. Though the effect of knocking out or overexpressing a particular gene has been studied in many organisms, no study has systematically explored the effect of adding new links in a biological network. To explore network evolvability, we constructed 598 recombinations of promoters (including regulatory regions) with different transcription or sigma-factor genes in Escherichia coli, added over a wild-type genetic background. Here we show that approximately 95% of new networks are tolerated by the bacteria, that very few alter growth, and that expression level correlates with factor position in the wild-type network hierarchy. Most importantly, we find that certain networks consistently survive over the wild type under various selection pressures. Therefore new links in the network are rarely a barrier for evolution and can even confer a fitness advantage.

  11. Evolvability and hierarchy in rewired bacterial gene networks

    PubMed Central

    Isalan, Mark; Lemerle, Caroline; Michalodimitrakis, Konstantinos; Beltrao, Pedro; Horn, Carsten; Raineri, Emanuele; Garriga-Canut, Mireia; Serrano, Luis

    2009-01-01

    Sequencing DNA from several organisms has revealed that duplication and drift of existing genes have primarily molded the contents of a given genome. Though the effect of knocking out or over-expressing a particular gene has been studied in many organisms, no study has systematically explored the effect of adding new links in a biological network. To explore network evolvability, we constructed 598 recombinations of promoters (including regulatory regions) with different transcription or σ-factor genes in Escherichia coli, added over a wild-type genetic background. Here we show that ~95% of new networks are tolerated by the bacteria, that very few alter growth, and that expression level correlates with factor position in the wild-type network hierarchy. Most importantly, we find that certain networks consistently survive over the wild-type under various selection pressures. Therefore new links in the network are rarely a barrier for evolution and can even confer a fitness advantage. PMID:18421347

  12. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.

  13. Functional Gene Networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering

    PubMed Central

    Aibar, Sara; Fontanillo, Celia; Droste, Conrad; De Las Rivas, Javier

    2015-01-01

    Summary: Functional Gene Networks (FGNet) is an R/Bioconductor package that generates gene networks derived from the results of functional enrichment analysis (FEA) and annotation clustering. The sets of genes enriched with specific biological terms (obtained from a FEA platform) are transformed into a network by establishing links between genes based on common functional annotations and common clusters. The network provides a new view of FEA results revealing gene modules with similar functions and genes that are related to multiple functions. In addition to building the functional network, FGNet analyses the similarity between the groups of genes and provides a distance heatmap and a bipartite network of functionally overlapping genes. The application includes an interface to directly perform FEA queries using different external tools: DAVID, GeneTerm Linker, TopGO or GAGE; and a graphical interface to facilitate the use. Availability and implementation: FGNet is available in Bioconductor, including a tutorial. URL: http://bioconductor.org/packages/release/bioc/html/FGNet.html Contact: jrivas@usal.es Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25600944

  14. Inferring functional relationships and causal network structure from gene expression profiles.

    PubMed

    Nagarajan, Radhakrishnan; Upreti, Meenakshi

    2011-01-01

    Inferring functional relationships and network structure from the observed gene expression profiles can provide a novel insight into the working of the genes as a system or network as opposed to independent entities. Such networks may also represent possible causal relationships between a given set of genes, hence can prove to be a convenient abstraction of the underlying signaling mechanism. The discovery of functional relationships from the observed gene expression profiles does not rely on prior literature, hence useful in identifying undocumented relationships between a given set of genes. Several techniques have been proposed in the literature. The present study investigates the choice Granger causality (GC) and its extensions in modeling the network structure between a given pair of genes from their expression profiles. The impact of noise variance on GC relationships is investigated. VAR parameter estimation is proposed to obtain a finer insight into the functional relationships inferred using GC tests. The results are presented on synthetic networks generated from known vector-autoregressive (VAR) models and those from cell-cycle gene expression profiles that can be modeled as a first-order bivariate VAR.

  15. Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks.

    PubMed

    Szedlak, Anthony; Smith, Nicholas; Liu, Li; Paternostro, Giovanni; Piermarocchi, Carlo

    2016-06-01

    The diverse, specialized genes present in today's lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins' binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes' evolutionary properties. Slowly evolving ("cold"), old genes tend to interact with each other, as do rapidly evolving ("hot"), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN's community structures and its genes' evolutionary properties provide new perspectives for understanding evolutionary genetics.

  16. GINI: From ISH Images to Gene Interaction Networks

    PubMed Central

    Puniyani, Kriti; Xing, Eric P.

    2013-01-01

    Accurate inference of molecular and functional interactions among genes, especially in multicellular organisms such as Drosophila, often requires statistical analysis of correlations not only between the magnitudes of gene expressions, but also between their temporal-spatial patterns. The ISH (in-situ-hybridization)-based gene expression micro-imaging technology offers an effective approach to perform large-scale spatial-temporal profiling of whole-body mRNA abundance. However, analytical tools for discovering gene interactions from such data remain an open challenge due to various reasons, including difficulties in extracting canonical representations of gene activities from images, and in inference of statistically meaningful networks from such representations. In this paper, we present GINI, a machine learning system for inferring gene interaction networks from Drosophila embryonic ISH images. GINI builds on a computer-vision-inspired vector-space representation of the spatial pattern of gene expression in ISH images, enabled by our recently developed system; and a new multi-instance-kernel algorithm that learns a sparse Markov network model, in which, every gene (i.e., node) in the network is represented by a vector-valued spatial pattern rather than a scalar-valued gene intensity as in conventional approaches such as a Gaussian graphical model. By capturing the notion of spatial similarity of gene expression, and at the same time properly taking into account the presence of multiple images per gene via multi-instance kernels, GINI is well-positioned to infer statistically sound, and biologically meaningful gene interaction networks from image data. Using both synthetic data and a small manually curated data set, we demonstrate the effectiveness of our approach in network building. Furthermore, we report results on a large publicly available collection of Drosophila embryonic ISH images from the Berkeley Drosophila Genome Project, where GINI makes novel and

  17. Gene network-based cancer prognosis analysis with sparse boosting

    PubMed Central

    Ma, Shuangge; Huang, Yuan; Huang, Jian; Fang, Kuangnan

    2013-01-01

    Summary High-throughput gene profiling studies have been extensively conducted, searching for markers associated with cancer development and progression. In this study, we analyse cancer prognosis studies with right censored survival responses. With gene expression data, we adopt the weighted gene co-expression network analysis (WGCNA) to describe the interplay among genes. In network analysis, nodes represent genes. There are subsets of nodes, called modules, which are tightly connected to each other. Genes within the same modules tend to have co-regulated biological functions. For cancer prognosis data with gene expression measurements, our goal is to identify cancer markers, while properly accounting for the network module structure. A two-step sparse boosting approach, called Network Sparse Boosting (NSBoost), is proposed for marker selection. In the first step, for each module separately, we use a sparse boosting approach for within-module marker selection and construct module-level ‘super markers ’. In the second step, we use the super markers to represent the effects of all genes within the same modules and conduct module-level selection using a sparse boosting approach. Simulation study shows that NSBoost can more accurately identify cancer-associated genes and modules than alternatives. In the analysis of breast cancer and lymphoma prognosis studies, NSBoost identifies genes with important biological implications. It outperforms alternatives including the boosting and penalization approaches by identifying a smaller number of genes/modules and/or having better prediction performance. PMID:22950901

  18. Parameter identification and synchronization for uncertain network group with different structures

    NASA Astrophysics Data System (ADS)

    Li, Chengren; Lü, Ling; Sun, Ying; Wang, Ying; Wang, Wenjun; Sun, Ao

    2016-09-01

    We design a novel synchronization technique to research the synchronization of network group constituted of uncertain networks with different structures. Based on Lyapunov theorem, the selection principles of the control inputs and the parameter identification laws of the networks are determined, and synchronization conditions of the network group are obtained. Some numerical simulations are provided to verify the correctness and effectiveness of the synchronization technique. We find that the network number, the number of network nodes and network connections indeed will not affect the stability of synchronization of network group.

  19. Robust model matching design methodology for a stochastic synthetic gene network.

    PubMed

    Chen, Bor-Sen; Chang, Chia-Hung; Wang, Yu-Chao; Wu, Chih-Hung; Lee, Hsiao-Ching

    2011-03-01

    Synthetic biology has shown its potential and promising applications in the last decade. However, many synthetic gene networks cannot work properly and maintain their desired behaviors due to intrinsic parameter variations and extrinsic disturbances. In this study, the intrinsic parameter uncertainties and external disturbances are modeled in a non-linear stochastic gene network to mimic the real environment in the host cell. Then a non-linear stochastic robust matching design methodology is introduced to withstand the intrinsic parameter fluctuations and to attenuate the extrinsic disturbances in order to achieve a desired reference matching purpose. To avoid solving the Hamilton-Jacobi inequality (HJI) in the non-linear stochastic robust matching design, global linearization technique is used to simplify the design procedure by solving a set of linear matrix inequalities (LMIs). As a result, the proposed matching design methodology of the robust synthetic gene network can be efficiently designed with the help of LMI toolbox in Matlab. Finally, two in silico design examples of the robust synthetic gene network are given to illustrate the design procedure and to confirm the robust model matching performance to achieve the desired behavior in spite of stochastic parameter fluctuations and environmental disturbances in the host cell. PMID:21215760

  20. Time-Delayed Models of Gene Regulatory Networks

    PubMed Central

    Parmar, K.; Blyuss, K. B.; Kyrychko, Y. N.; Hogan, S. J.

    2015-01-01

    We discuss different mathematical models of gene regulatory networks as relevant to the onset and development of cancer. After discussion of alternative modelling approaches, we use a paradigmatic two-gene network to focus on the role played by time delays in the dynamics of gene regulatory networks. We contrast the dynamics of the reduced model arising in the limit of fast mRNA dynamics with that of the full model. The review concludes with the discussion of some open problems. PMID:26576197

  1. Regulatory gene networks and the properties of the developmental process

    NASA Technical Reports Server (NTRS)

    Davidson, Eric H.; McClay, David R.; Hood, Leroy

    2003-01-01

    Genomic instructions for development are encoded in arrays of regulatory DNA. These specify large networks of interactions among genes producing transcription factors and signaling components. The architecture of such networks both explains and predicts developmental phenomenology. Although network analysis is yet in its early stages, some fundamental commonalities are already emerging. Two such are the use of multigenic feedback loops to ensure the progressivity of developmental regulatory states and the prevalence of repressive regulatory interactions in spatial control processes. Gene regulatory networks make it possible to explain the process of development in causal terms and eventually will enable the redesign of developmental regulatory circuitry to achieve different outcomes.

  2. Analysis of Gene Sets Based on the Underlying Regulatory Network

    PubMed Central

    Michailidis, George

    2009-01-01

    Abstract Networks are often used to represent the interactions among genes and proteins. These interactions are known to play an important role in vital cell functions and should be included in the analysis of genes that are differentially expressed. Methods of gene set analysis take advantage of external biological information and analyze a priori defined sets of genes. These methods can potentially preserve the correlation among genes; however, they do not directly incorporate the information about the gene network. In this paper, we propose a latent variable model that directly incorporates the network information. We then use the theory of mixed linear models to present a general inference framework for the problem of testing the significance of subnetworks. Several possible test procedures are introduced and a network based method for testing the changes in expression levels of genes as well as the structure of the network is presented. The performance of the proposed method is compared with methods of gene set analysis using both simulation studies, as well as real data on genes related to the galactose utilization pathway in yeast. PMID:19254181

  3. [Study on the automatic parameters identification of water pipe network model].

    PubMed

    Jia, Hai-Feng; Zhao, Qi-Feng

    2010-01-01

    Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved. PMID:20329520

  4. Phenotype accessibility and noise in random threshold gene regulatory networks.

    PubMed

    Pinho, Ricardo; Garcia, Victor; Feldman, Marcus W

    2014-01-01

    Evolution requires phenotypic variation in a population of organisms for selection to function. Gene regulatory processes involved in organismal development affect the phenotypic diversity of organisms. Since only a fraction of all possible phenotypes are predicted to be accessed by the end of development, organisms may evolve strategies to use environmental cues and noise-like fluctuations to produce additional phenotypic diversity, and hence to enhance the speed of adaptation. We used a generic model of organismal development --gene regulatory networks-- to investigate how different levels of noise on gene expression states (i.e. phenotypes) may affect access to new, unique phenotypes, thereby affecting phenotypic diversity. We studied additional strategies that organisms might adopt to attain larger phenotypic diversity: either by augmenting their genome or the number of gene expression states. This was done for different types of gene regulatory networks that allow for distinct levels of regulatory influence on gene expression or are more likely to give rise to stable phenotypes. We found that if gene expression is binary, increasing noise levels generally decreases phenotype accessibility for all network types studied. If more gene expression states are considered, noise can moderately enhance the speed of discovery if three or four gene expression states are allowed, and if there are enough distinct regulatory networks in the population. These results were independent of the network types analyzed, and were robust to different implementations of noise. Hence, for noise to increase the number of accessible phenotypes in gene regulatory networks, very specific conditions need to be satisfied. If the number of distinct regulatory networks involved in organismal development is large enough, and the acquisition of more genes or fine tuning of their expression states proves costly to the organism, noise can be useful in allowing access to more unique phenotypes

  5. Phenotype Accessibility and Noise in Random Threshold Gene Regulatory Networks

    PubMed Central

    Feldman, Marcus W.

    2015-01-01

    Evolution requires phenotypic variation in a population of organisms for selection to function. Gene regulatory processes involved in organismal development affect the phenotypic diversity of organisms. Since only a fraction of all possible phenotypes are predicted to be accessed by the end of development, organisms may evolve strategies to use environmental cues and noise-like fluctuations to produce additional phenotypic diversity, and hence to enhance the speed of adaptation. We used a generic model of organismal development --gene regulatory networks-- to investigate how different levels of noise on gene expression states (i.e. phenotypes) may affect access to new, unique phenotypes, thereby affecting phenotypic diversity. We studied additional strategies that organisms might adopt to attain larger phenotypic diversity: either by augmenting their genome or the number of gene expression states. This was done for different types of gene regulatory networks that allow for distinct levels of regulatory influence on gene expression or are more likely to give rise to stable phenotypes. We found that if gene expression is binary, increasing noise levels generally decreases phenotype accessibility for all network types studied. If more gene expression states are considered, noise can moderately enhance the speed of discovery if three or four gene expression states are allowed, and if there are enough distinct regulatory networks in the population. These results were independent of the network types analyzed, and were robust to different implementations of noise. Hence, for noise to increase the number of accessible phenotypes in gene regulatory networks, very specific conditions need to be satisfied. If the number of distinct regulatory networks involved in organismal development is large enough, and the acquisition of more genes or fine tuning of their expression states proves costly to the organism, noise can be useful in allowing access to more unique phenotypes

  6. GeneMANIA: Fast gene network construction and function prediction for Cytoscape

    PubMed Central

    Montojo, Jason; Zuberi, Khalid; Rodriguez, Harold; Bader, Gary D.; Morris, Quaid

    2014-01-01

    The GeneMANIA Cytoscape app enables users to construct a composite gene-gene functional interaction network from a gene list. The resulting network includes the genes most related to the original list, and functional annotations from Gene Ontology. The edges are annotated with details about the publication or data source the interactions were derived from. The app leverages GeneMANIA’s database of 1800+ networks, containing over 500 million interactions spanning 8 organisms: A. thaliana, C. elegans, D. melanogaster, D. rerio, H. sapiens, M. musculus, R. norvegicus, and S. cerevisiae. Users may also import their own organisms, networks, and expression profiles. The app is compatible with Cytoscape versions 2 and 3. PMID:25254104

  7. Identifying gene regulatory network rewiring using latent differential graphical models.

    PubMed

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-09-30

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions.

  8. Identifying gene regulatory network rewiring using latent differential graphical models

    PubMed Central

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-01-01

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions. PMID:27378774

  9. Gene network analysis: from heart development to cardiac therapy.

    PubMed

    Ferrazzi, Fulvia; Bellazzi, Riccardo; Engel, Felix B

    2015-03-01

    Networks offer a flexible framework to represent and analyse the complex interactions between components of cellular systems. In particular gene networks inferred from expression data can support the identification of novel hypotheses on regulatory processes. In this review we focus on the use of gene network analysis in the study of heart development. Understanding heart development will promote the elucidation of the aetiology of congenital heart disease and thus possibly improve diagnostics. Moreover, it will help to establish cardiac therapies. For example, understanding cardiac differentiation during development will help to guide stem cell differentiation required for cardiac tissue engineering or to enhance endogenous repair mechanisms. We introduce different methodological frameworks to infer networks from expression data such as Boolean and Bayesian networks. Then we present currently available temporal expression data in heart development and discuss the use of network-based approaches in published studies. Collectively, our literature-based analysis indicates that gene network analysis constitutes a promising opportunity to infer therapy-relevant regulatory processes in heart development. However, the use of network-based approaches has so far been limited by the small amount of samples in available datasets. Thus, we propose to acquire high-resolution temporal expression data to improve the mathematical descriptions of regulatory processes obtained with gene network inference methodologies. Especially probabilistic methods that accommodate the intrinsic variability of biological systems have the potential to contribute to a deeper understanding of heart development.

  10. Reverse engineering sparse gene regulatory networks using cubature kalman filter and compressed sensing.

    PubMed

    Noor, Amina; Serpedin, Erchin; Nounou, Mohamed; Nounou, Hazem

    2013-01-01

    This paper proposes a novel algorithm for inferring gene regulatory networks which makes use of cubature Kalman filter (CKF) and Kalman filter (KF) techniques in conjunction with compressed sensing methods. The gene network is described using a state-space model. A nonlinear model for the evolution of gene expression is considered, while the gene expression data is assumed to follow a linear Gaussian model. The hidden states are estimated using CKF. The system parameters are modeled as a Gauss-Markov process and are estimated using compressed sensing-based KF. These parameters provide insight into the regulatory relations among the genes. The Cramér-Rao lower bound of the parameter estimates is calculated for the system model and used as a benchmark to assess the estimation accuracy. The proposed algorithm is evaluated rigorously using synthetic data in different scenarios which include different number of genes and varying number of sample points. In addition, the algorithm is tested on the DREAM4 in silico data sets as well as the in vivo data sets from IRMA network. The proposed algorithm shows superior performance in terms of accuracy, robustness, and scalability.

  11. Gene Expression Network Reconstruction by LEP Method Using Microarray Data

    PubMed Central

    You, Na; Mou, Peng; Qiu, Ting; Kou, Qiang; Zhu, Huaijin; Chen, Yuexi; Wang, Xueqin

    2012-01-01

    Gene expression network reconstruction using microarray data is widely studied aiming to investigate the behavior of a gene cluster simultaneously. Under the Gaussian assumption, the conditional dependence between genes in the network is fully described by the partial correlation coefficient matrix. Due to the high dimensionality and sparsity, we utilize the LEP method to estimate it in this paper. Compared to the existing methods, the LEP reaches the highest PPV with the sensitivity controlled at the satisfactory level. A set of gene expression data from the HapMap project is analyzed for illustration. PMID:23365528

  12. Microfluidic devices for measuring gene network dynamics in single cells

    PubMed Central

    Bennett, Matthew R.; Hasty, Jeff

    2010-01-01

    The dynamics governing gene regulation have an important role in determining the phenotype of a cell or organism. From processing extracellular signals to generating internal rhythms, gene networks are central to many time-dependent cellular processes. Recent technological advances now make it possible to track the dynamics of gene networks in single cells under various environmental conditions using microfluidic ‘lab-on-a-chip’ devices, and researchers are using these new techniques to analyse cellular dynamics and discover regulatory mechanisms. These technologies are expected to yield novel insights and allow the construction of mathematical models that more accurately describe the complex dynamics of gene regulation. PMID:19668248

  13. PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants.

    PubMed

    Liu, Qi; Ding, Changjun; Chu, Yanguang; Chen, Jiafei; Zhang, Weixi; Zhang, Bingyu; Huang, Qinjun; Su, Xiaohua

    2016-01-01

    Poplar is not only an important resource for the production of paper, timber and other wood-based products, but it has also emerged as an ideal model system for studying woody plants. To better understand the biological processes underlying various traits in poplar, e.g., wood development, a comprehensive functional gene interaction network is highly needed. Here, we constructed a genome-wide functional gene network for poplar (covering ~70% of the 41,335 poplar genes) and created the network web service PoplarGene, offering comprehensive functional interactions and extensive poplar gene functional annotations. PoplarGene incorporates two network-based gene prioritization algorithms, neighborhood-based prioritization and context-based prioritization, which can be used to perform gene prioritization in a complementary manner. Furthermore, the co-functional information in PoplarGene can be applied to other woody plant proteomes with high efficiency via orthology transfer. In addition to poplar gene sequences, the webserver also accepts Arabidopsis reference gene as input to guide the search for novel candidate functional genes in PoplarGene. We believe that PoplarGene (http://bioinformatics.caf.ac.cn/PoplarGene and http://124.127.201.25/PoplarGene) will greatly benefit the research community, facilitating studies of poplar and other woody plants. PMID:27515999

  14. PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants

    PubMed Central

    Liu, Qi; Ding, Changjun; Chu, Yanguang; Chen, Jiafei; Zhang, Weixi; Zhang, Bingyu; Huang, Qinjun; Su, Xiaohua

    2016-01-01

    Poplar is not only an important resource for the production of paper, timber and other wood-based products, but it has also emerged as an ideal model system for studying woody plants. To better understand the biological processes underlying various traits in poplar, e.g., wood development, a comprehensive functional gene interaction network is highly needed. Here, we constructed a genome-wide functional gene network for poplar (covering ~70% of the 41,335 poplar genes) and created the network web service PoplarGene, offering comprehensive functional interactions and extensive poplar gene functional annotations. PoplarGene incorporates two network-based gene prioritization algorithms, neighborhood-based prioritization and context-based prioritization, which can be used to perform gene prioritization in a complementary manner. Furthermore, the co-functional information in PoplarGene can be applied to other woody plant proteomes with high efficiency via orthology transfer. In addition to poplar gene sequences, the webserver also accepts Arabidopsis reference gene as input to guide the search for novel candidate functional genes in PoplarGene. We believe that PoplarGene (http://bioinformatics.caf.ac.cn/PoplarGene and http://124.127.201.25/PoplarGene) will greatly benefit the research community, facilitating studies of poplar and other woody plants. PMID:27515999

  15. Physical parameters collection based on wireless senor network

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  16. Interplay between gene expression noise and regulatory network architecture

    PubMed Central

    Chalancon, Guilhem; Ravarani, Charles; Balaji, S.; Martinez-Arias, Alfonso; Aravind, L.; Jothi, Raja; Babu, M. Madan

    2012-01-01

    Complex regulatory networks orchestrate most cellular processes in biological systems. Genes in such networks are subject to expression noise, resulting in isogenic cell populations exhibiting cell-to-cell variation in protein levels. Increasing evidence suggests that cells have evolved regulatory strategies to limit, tolerate, or amplify expression noise. In this context, fundamental questions arise: how can the architecture of gene regulatory networks generate, make use of, or be constrained by expression noise? Here, we discuss the interplay between expression noise and gene regulatory network at different levels of organization, ranging from a single regulatory interaction to entire regulatory networks. We then consider how this interplay impacts a variety of phenomena such as pathogenicity, disease, adaptation to changing environments, differential cell-fate outcome and incomplete or partial penetrance effects. Finally, we highlight recent technological developments that permit measurements at the single-cell level, and discuss directions for future research. PMID:22365642

  17. Approaches to modeling gene regulatory networks: a gentle introduction.

    PubMed

    Schlitt, Thomas

    2013-01-01

    This chapter is split into two main sections; first, I will present an introduction to gene networks. Second, I will discuss various approaches to gene network modeling which will include some examples for using different data sources. Computational modeling has been used for many different biological systems and many approaches have been developed addressing the different needs posed by the different application fields. The modeling approaches presented here are not limited to gene regulatory networks and occasionally I will present other examples. The material covered here is an update based on several previous publications by Thomas Schlitt and Alvis Brazma (FEBS Lett 579(8),1859-1866, 2005; Philos Trans R Soc Lond B Biol Sci 361(1467), 483-494, 2006; BMC Bioinformatics 8(suppl 6), S9, 2007) that formed the foundation for a lecture on gene regulatory networks at the In Silico Systems Biology workshop series at the European Bioinformatics Institute in Hinxton. PMID:23715978

  18. Systems Approaches to Identifying Gene Regulatory Networks in Plants

    PubMed Central

    Long, Terri A.; Brady, Siobhan M.; Benfey, Philip N.

    2009-01-01

    Complex gene regulatory networks are composed of genes, noncoding RNAs, proteins, metabolites, and signaling components. The availability of genome-wide mutagenesis libraries; large-scale transcriptome, proteome, and metabalome data sets; and new high-throughput methods that uncover protein interactions underscores the need for mathematical modeling techniques that better enable scientists to synthesize these large amounts of information and to understand the properties of these biological systems. Systems biology approaches can allow researchers to move beyond a reductionist approach and to both integrate and comprehend the interactions of multiple components within these systems. Descriptive and mathematical models for gene regulatory networks can reveal emergent properties of these plant systems. This review highlights methods that researchers are using to obtain large-scale data sets, and examples of gene regulatory networks modeled with these data. Emergent properties revealed by the use of these network models and perspectives on the future of systems biology are discussed. PMID:18616425

  19. Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks

    PubMed Central

    Szedlak, Anthony; Smith, Nicholas; Liu, Li; Paternostro, Giovanni; Piermarocchi, Carlo

    2016-01-01

    The diverse, specialized genes present in today’s lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins’ binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes’ evolutionary properties. Slowly evolving (“cold”), old genes tend to interact with each other, as do rapidly evolving (“hot”), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN’s community structures and its genes’ evolutionary properties provide new perspectives for understanding evolutionary genetics. PMID:27359334

  20. Asymmetric Regulation of Peripheral Genes by Two Transcriptional Regulatory Networks

    PubMed Central

    Li, Jing-Ru; Suzuki, Takahiro; Nishimura, Hajime; Kishima, Mami; Maeda, Shiori; Suzuki, Harukazu

    2016-01-01

    Transcriptional regulatory network (TRN) reconstitution and deconstruction occur simultaneously during reprogramming; however, it remains unclear how the starting and targeting TRNs regulate the induction and suppression of peripheral genes. Here we analyzed the regulation using direct cell reprogramming from human dermal fibroblasts to monocytes as the platform. We simultaneously deconstructed fibroblastic TRN and reconstituted monocytic TRN; monocytic and fibroblastic gene expression were analyzed in comparison with that of fibroblastic TRN deconstruction only or monocytic TRN reconstitution only. Global gene expression analysis showed cross-regulation of TRNs. Detailed analysis revealed that knocking down fibroblastic TRN positively affected half of the upregulated monocytic genes, indicating that intrinsic fibroblastic TRN interfered with the expression of induced genes. In contrast, reconstitution of monocytic TRN showed neutral effects on the majority of fibroblastic gene downregulation. This study provides an explicit example that demonstrates how two networks together regulate gene expression during cell reprogramming processes and contributes to the elaborate exploration of TRNs. PMID:27483142

  1. A computational framework for qualitative simulation of nonlinear dynamical models of gene-regulatory networks

    PubMed Central

    Ironi, Liliana; Panzeri, Luigi

    2009-01-01

    Background Due to the huge amount of information at genomic level made recently available by high-throughput experimental technologies, networks of regulatory interactions between genes and gene products, the so-called gene-regulatory networks, can be uncovered. Most networks of interest are quite intricate because of both the high dimension of interacting elements and the complexity of the kinds of interactions between them. Then, mathematical and computational modeling frameworks are a must to predict the network behavior in response to environmental stimuli. A specific class of Ordinary Differential Equations (ODE) has shown to be adequate to describe the essential features of the dynamics of gene-regulatory networks. But, deriving quantitative predictions of the network dynamics through the numerical simulation of such models is mostly impracticable as they are currently characterized by incomplete knowledge of biochemical reactions underlying regulatory interactions, and of numeric values of kinetic parameters. Results This paper presents a computational framework for qualitative simulation of a class of ODE models, based on the assumption that gene regulation is threshold-dependent, i.e. only effective above or below a certain threshold. The simulation algorithm we propose assumes that threshold-dependent regulation mechanisms are modeled by continuous steep sigmoid functions, unlike other simulation tools that considerably simplifies the problem by approximating threshold-regulated response functions by step functions discontinuous in the thresholds. The algorithm results from the interplay between methods to deal with incomplete knowledge and to study phenomena that occur at different time-scales. Conclusion The work herein presented establishes the computational groundwork for a sound and a complete algorithm capable to capture the dynamical properties that depend only on the network structure and are invariant for ranges of values of kinetic parameters

  2. Multiobjective H2/H∞ synthetic gene network design based on promoter libraries.

    PubMed

    Wu, Chih-Hung; Zhang, Weihei; Chen, Bor-Sen

    2011-10-01

    Some current promoter libraries have been developed for synthetic gene networks. But an efficient method to engineer a synthetic gene network with some desired behaviors by selecting adequate promoters from these promoter libraries has not been presented. Thus developing a systematic method to efficiently employ promoter libraries to improve the engineering of synthetic gene networks with desired behaviors is appealing for synthetic biologists. In this study, a synthetic gene network with intrinsic parameter fluctuations and environmental disturbances in vivo is modeled by a nonlinear stochastic system. In order to engineer a synthetic gene network with a desired behavior despite intrinsic parameter fluctuations and environmental disturbances in vivo, a multiobjective H(2)/H(∞) reference tracking (H(2) optimal tracking and H(∞) noise filtering) design is introduced. The H(2) optimal tracking can make the tracking errors between the behaviors of a synthetic gene network and the desired behaviors as small as possible from the minimum mean square error point of view, and the H(∞) noise filtering can attenuate all possible noises, from the worst-case noise effect point of view, to achieve a desired noise filtering ability. If the multiobjective H(2)/H(∞) reference tracking design is satisfied, the synthetic gene network can robustly and optimally track the desired behaviors, simultaneously. First, based on the dynamic gene regulation, the existing promoter libraries are redefined by their promoter activities so that they can be efficiently selected in the design procedure. Then a systematic method is developed to select an adequate promoter set from the redefined promoter libraries to synthesize a gene network satisfying these two design objectives. But the multiobjective H(2)/H(∞) reference tracking design problem needs to solve a difficult Hamilton-Jacobi Inequality (HJI)-constrained optimization problem. Therefore, the fuzzy approximation method is

  3. Gene Network Reconstruction by Integration of Prior Biological Knowledge.

    PubMed

    Li, Yupeng; Jackson, Scott A

    2015-03-30

    With the development of high-throughput genomic technologies, large, genome-wide datasets have been collected, and the integration of these datasets should provide large-scale, multidimensional, and insightful views of biological systems. We developed a method for gene association network construction based on gene expression data that integrate a variety of biological resources. Assuming gene expression data are from a multivariate Gaussian distribution, a graphical lasso (glasso) algorithm is able to estimate the sparse inverse covariance matrix by a lasso (L1) penalty. The inverse covariance matrix can be seen as direct correlation between gene pairs in the gene association network. In our work, instead of using a single penalty, different penalty values were applied for gene pairs based on a priori knowledge as to whether the two genes should be connected. The a priori information can be calculated or retrieved from other biological data, e.g., Gene Ontology similarity, protein-protein interaction, gene regulatory network. By incorporating prior knowledge, the weighted graphical lasso (wglasso) outperforms the original glasso both on simulations and on data from Arabidopsis. Simulation studies show that even when some prior knowledge is not correct, the overall quality of the wglasso network was still greater than when not incorporating that information, e.g., glasso.

  4. A Computational Approach towards a Gene Regulatory Network for the Developing Nematostella vectensis Gut

    PubMed Central

    Botman, Daniel; Röttinger, Eric; Martindale, Mark Q.; de Jong, Johann; Kaandorp, Jaap A.

    2014-01-01

    Background The starlet sea anemone Nematostella vectensis is a diploblastic cnidarian that expresses a set of conserved genes for gut formation during its early development. During the last decade, the spatial distribution of many of these genes has been visualized with RNA hybridization or protein immunolocalization techniques. However, due to N. vectensis' curved and changing morphology, quantification of these spatial data is problematic. A method is developed for two-dimensional gene expression quantification, which enables a numerical analysis and dynamic modeling of these spatial patterns. Methods/Result In this work, first standardized gene expression profiles are generated from publicly available N. vectensis embryo images that display mRNA and/or protein distributions. Then, genes expressed during gut formation are clustered based on their expression profiles, and further grouped based on temporal appearance of their gene products in embryonic development. Representative expression profiles are manually selected from these clusters, and used as input for a simulation-based optimization scheme. This scheme iteratively fits simulated profiles to the selected profiles, leading to an optimized estimation of the model parameters. Finally, a preliminary gene regulatory network is derived from the optimized model parameters. Outlook While the focus of this study is N. vectensis, the approach outlined here is suitable for inferring gene regulatory networks in the embryonic development of any animal, thus allowing to comparatively study gene regulation of gut formation in silico across various species. PMID:25076223

  5. Motifs emerge from function in model gene regulatory networks

    PubMed Central

    Burda, Z.; Krzywicki, A.; Martin, O. C.; Zagorski, M.

    2011-01-01

    Gene regulatory networks allow the control of gene expression patterns in living cells. The study of network topology has revealed that certain subgraphs of interactions or “motifs” appear at anomalously high frequencies. We ask here whether this phenomenon may emerge because of the functions carried out by these networks. Given a framework for describing regulatory interactions and dynamics, we consider in the space of all regulatory networks those that have prescribed functional capabilities. Markov Chain Monte Carlo sampling is then used to determine how these functional networks lead to specific motif statistics in the interactions. In the case where the regulatory networks are constrained to exhibit multistability, we find a high frequency of gene pairs that are mutually inhibitory and self-activating. In contrast, networks constrained to have periodic gene expression patterns (mimicking for instance the cell cycle) have a high frequency of bifan-like motifs involving four genes with at least one activating and one inhibitory interaction. PMID:21960444

  6. Reconstruction of a Functional Human Gene Network, with an Application for Prioritizing Positional Candidate Genes

    PubMed Central

    Franke, Lude; Bakel, Harm van; Fokkens, Like; de Jong, Edwin D.; Egmont-Petersen, Michael; Wijmenga, Cisca

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain hundreds of genes. However, in any disorder, most of the disease genes will be involved in only a few different molecular pathways. If we know something about the relationships between the genes, we can assess whether some genes (which may reside in different loci) functionally interact with each other, indicating a joint basis for the disease etiology. There are various repositories of information on pathway relationships. To consolidate this information, we developed a functional human gene network that integrates information on genes and the functional relationships between genes, based on data from the Kyoto Encyclopedia of Genes and Genomes, the Biomolecular Interaction Network Database, Reactome, the Human Protein Reference Database, the Gene Ontology database, predicted protein-protein interactions, human yeast two-hybrid interactions, and microarray coexpressions. We applied this network to interrelate positional candidate genes from different disease loci and then tested 96 heritable disorders for which the Online Mendelian Inheritance in Man database reported at least three disease genes. Artificial susceptibility loci, each containing 100 genes, were constructed around each disease gene, and we used the network to rank these genes on the basis of their functional interactions. By following up the top five genes per artificial locus, we were able to detect at least one known disease gene in 54% of the loci studied, representing a 2.8-fold increase over random selection. This suggests that our method can significantly reduce the cost and effort of pinpointing true disease genes in analyses of disorders for which numerous loci have been reported but for which

  7. Topological origin of global attractors in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Zhang, YunJun; Ouyang, Qi; Geng, Zhi

    2015-02-01

    Fixed-point attractors with global stability manifest themselves in a number of gene regulatory networks. This property indicates the stability of regulatory networks against small state perturbations and is closely related to other complex dynamics. In this paper, we aim to reveal the core modules in regulatory networks that determine their global attractors and the relationship between these core modules and other motifs. This work has been done via three steps. Firstly, inspired by the signal transmission in the regulation process, we extract the model of chain-like network from regulation networks. We propose a module of "ideal transmission chain (ITC)", which is proved sufficient and necessary (under certain condition) to form a global fixed-point in the context of chain-like network. Secondly, by examining two well-studied regulatory networks (i.e., the cell-cycle regulatory networks of Budding yeast and Fission yeast), we identify the ideal modules in true regulation networks and demonstrate that the modules have a superior contribution to network stability (quantified by the relative size of the biggest attraction basin). Thirdly, in these two regulation networks, we find that the double negative feedback loops, which are the key motifs of forming bistability in regulation, are connected to these core modules with high network stability. These results have shed new light on the connection between the topological feature and the dynamic property of regulatory networks.

  8. Network analysis of microRNAs, transcription factors, target genes and host genes in nasopharyngeal carcinoma

    PubMed Central

    WANG, HAO; XU, ZHIWEN; MA, MENGYAO; WANG, NING; WANG, KUNHAO

    2016-01-01

    Numerous studies on the morbidity of nasopharyngeal carcinoma (NPC) have identified several genes, microRNAs (miRNAs or miRs) and transcription factors (TFs) that influence the pathogenesis of NPC. However, summarizing all the regulatory networks involved in NPC is challenging. In the present study, the genes, miRNAs and TFs involved in NPC were considered as the nodes of the so-called regulatory network, and the associations between them were investigated. To clearly represent these associations, three regulatory networks were built seperately, namely, the differentially expressed network, the associated network and the global network. The differentially expressed network is the most important one of these three networks, since its nodes are differentially expressed genes whose mutations may lead to the development of NPC. Therefore, by modifying the aberrant expression of those genes that are differentially expressed in this network, their dysregulation may be corrected and the tumorigenesis of NPC may thus be prevented. Analysis of the aforementioned three networks highlighted the importance of certain pathways, such as self-adaptation pathways, in the development of NPC. For example, cyclin D1 (CCND1) was observed to regulate Homo sapiens-miR-20a, which in turn targeted CCND1. The present study conducted a systematic analysis of the pathogenesis of NPC through the three aforementioned regulatory networks, and provided a theoretical model for biologists. Future studies are required to evaluate the influence of the highlighted pathways in NPC. PMID:27313701

  9. Gene-based and semantic structure of the Gene Ontology as a complex network

    NASA Astrophysics Data System (ADS)

    Coronnello, Claudia; Tumminello, Michele; Miccichè, Salvatore

    2016-09-01

    The last decade has seen the advent and consolidation of ontology based tools for the identification and biological interpretation of classes of genes, such as the Gene Ontology. The Gene Ontology (GO) is constantly evolving over time. The information accumulated time-by-time and included in the GO is encoded in the definition of terms and in the setting up of semantic relations amongst terms. Here we investigate the Gene Ontology from a complex network perspective. We consider the semantic network of terms naturally associated with the semantic relationships provided by the Gene Ontology consortium. Moreover, the GO is a natural example of bipartite network of terms and genes. Here we are interested in studying the properties of the projected network of terms, i.e. a gene-based weighted network of GO terms, in which a link between any two terms is set if at least one gene is annotated in both terms. One aim of the present paper is to compare the structural properties of the semantic and the gene-based network. The relative importance of terms is very similar in the two networks, but the community structure changes. We show that in some cases GO terms that appear to be distinct from a semantic point of view are instead connected, and appear in the same community when considering their gene content. The identification of such gene-based communities of terms might therefore be the basis of a simple protocol aiming at improving the semantic structure of GO. Information about terms that share large gene content might also be important from a biomedical point of view, as it might reveal how genes over-expressed in a certain term also affect other biological processes, molecular functions and cellular components not directly linked according to GO semantics.

  10. Gene regulation: hacking the network on a sugar high.

    PubMed

    Ellis, Tom; Wang, Xiao; Collins, James J

    2008-04-11

    In a recent issue of Molecular Cell, Kaplan et al. (2008) determine the input functions for 19 E. coli sugar-utilization genes by using a two-dimensional high-throughput approach. The resulting input-function map reveals that gene network regulation follows non-Boolean, and often nonmonotonic, logic.

  11. Predictive networks: a flexible, open source, web application for integration and analysis of human gene networks

    PubMed Central

    Haibe-Kains, Benjamin; Olsen, Catharina; Djebbari, Amira; Bontempi, Gianluca; Correll, Mick; Bouton, Christopher; Quackenbush, John

    2012-01-01

    Genomics provided us with an unprecedented quantity of data on the genes that are activated or repressed in a wide range of phenotypes. We have increasingly come to recognize that defining the networks and pathways underlying these phenotypes requires both the integration of multiple data types and the development of advanced computational methods to infer relationships between the genes and to estimate the predictive power of the networks through which they interact. To address these issues we have developed Predictive Networks (PN), a flexible, open-source, web-based application and data services framework that enables the integration, navigation, visualization and analysis of gene interaction networks. The primary goal of PN is to allow biomedical researchers to evaluate experimentally derived gene lists in the context of large-scale gene interaction networks. The PN analytical pipeline involves two key steps. The first is the collection of a comprehensive set of known gene interactions derived from a variety of publicly available sources. The second is to use these ‘known’ interactions together with gene expression data to infer robust gene networks. The PN web application is accessible from http://predictivenetworks.org. The PN code base is freely available at https://sourceforge.net/projects/predictivenets/. PMID:22096235

  12. Network analysis of inflammatory genes and their transcriptional regulators in coronary artery disease.

    PubMed

    Nair, Jiny; Ghatge, Madankumar; Kakkar, Vijay V; Shanker, Jayashree

    2014-01-01

    Network analysis is a novel method to understand the complex pathogenesis of inflammation-driven atherosclerosis. Using this approach, we attempted to identify key inflammatory genes and their core transcriptional regulators in coronary artery disease (CAD). Initially, we obtained 124 candidate genes associated with inflammation and CAD using Polysearch and CADgene database for which protein-protein interaction network was generated using STRING 9.0 (Search Tool for the Retrieval of Interacting Genes) and visualized using Cytoscape v 2.8.3. Based on betweenness centrality (BC) and node degree as key topological parameters, we identified interleukin-6 (IL-6), vascular endothelial growth factor A (VEGFA), interleukin-1 beta (IL-1B), tumor necrosis factor (TNF) and prostaglandin-endoperoxide synthase 2 (PTGS2) as hub nodes. The backbone network constructed with these five hub genes showed 111 nodes connected via 348 edges, with IL-6 having the largest degree and highest BC. Nuclear factor kappa B1 (NFKB1), signal transducer and activator of transcription 3 (STAT3) and JUN were identified as the three core transcription factors from the regulatory network derived using MatInspector. For the purpose of validation of the hub genes, 97 test networks were constructed, which revealed the accuracy of the backbone network to be 0.7763 while the frequency of the hub nodes remained largely unaltered. Pathway enrichment analysis with ClueGO, KEGG and REACTOME showed significant enrichment of six validated CAD pathways - smooth muscle cell proliferation, acute-phase response, calcidiol 1-monooxygenase activity, toll-like receptor signaling, NOD-like receptor signaling and adipocytokine signaling pathways. Experimental verification of the above findings in 64 cases and 64 controls showed increased expression of the five candidate genes and the three transcription factors in the cases relative to the controls (p<0.05). Thus, analysis of complex networks aid in the prioritization of

  13. Investigating the Effects of Imputation Methods for Modelling Gene Networks Using a Dynamic Bayesian Network from Gene Expression Data

    PubMed Central

    CHAI, Lian En; LAW, Chow Kuan; MOHAMAD, Mohd Saberi; CHONG, Chuii Khim; CHOON, Yee Wen; DERIS, Safaai; ILLIAS, Rosli Md

    2014-01-01

    Background: Gene expression data often contain missing expression values. Therefore, several imputation methods have been applied to solve the missing values, which include k-nearest neighbour (kNN), local least squares (LLS), and Bayesian principal component analysis (BPCA). However, the effects of these imputation methods on the modelling of gene regulatory networks from gene expression data have rarely been investigated and analysed using a dynamic Bayesian network (DBN). Methods: In the present study, we separately imputed datasets of the Escherichia coli S.O.S. DNA repair pathway and the Saccharomyces cerevisiae cell cycle pathway with kNN, LLS, and BPCA, and subsequently used these to generate gene regulatory networks (GRNs) using a discrete DBN. We made comparisons on the basis of previous studies in order to select the gene network with the least error. Results: We found that BPCA and LLS performed better on larger networks (based on the S. cerevisiae dataset), whereas kNN performed better on smaller networks (based on the E. coli dataset). Conclusion: The results suggest that the performance of each imputation method is dependent on the size of the dataset, and this subsequently affects the modelling of the resultant GRNs using a DBN. In addition, on the basis of these results, a DBN has the capacity to discover potential edges, as well as display interactions, between genes. PMID:24876803

  14. A complex network analysis of hypertension-related genes

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Xu, Chuan-Yun; Hu, Jing-Bo; Cao, Ke-Fei

    2014-01-01

    In this paper, a network of hypertension-related genes is constructed by analyzing the correlations of gene expression data among the Dahl salt-sensitive rat and two consomic rat strains. The numerical calculations show that this sparse and assortative network has small-world and scale-free properties. Further, 16 key hub genes (Col4a1, Lcn2, Cdk4, etc.) are determined by introducing an integrated centrality and have been confirmed by biological/medical research to play important roles in hypertension.

  15. Gene network and pathway generation and analysis: Editorial

    SciTech Connect

    Zhao, Zhongming; Sanfilippo, Antonio P.; Huang, Kun

    2011-02-18

    The past decade has witnessed an exponential growth of biological data including genomic sequences, gene annotations, expression and regulation, and protein-protein interactions. A key aim in the post-genome era is to systematically catalogue gene networks and pathways in a dynamic living cell and apply them to study diseases and phenotypes. To promote the research in systems biology and its application to disease studies, we organized a workshop focusing on the reconstruction and analysis of gene networks and pathways in any organisms from high-throughput data collected through techniques such as microarray analysis and RNA-Seq.

  16. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif.

    PubMed

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto

    2016-01-01

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting. PMID:27256916

  17. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif

    PubMed Central

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; d’Onofrio, Alberto

    2016-01-01

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting. PMID:27256916

  18. Gene regulatory networks modelling using a dynamic evolutionary hybrid

    PubMed Central

    2010-01-01

    Background Inference of gene regulatory networks is a key goal in the quest for understanding fundamental cellular processes and revealing underlying relations among genes. With the availability of gene expression data, computational methods aiming at regulatory networks reconstruction are facing challenges posed by the data's high dimensionality, temporal dynamics or measurement noise. We propose an approach based on a novel multi-layer evolutionary trained neuro-fuzzy recurrent network (ENFRN) that is able to select potential regulators of target genes and describe their regulation type. Results The recurrent, self-organizing structure and evolutionary training of our network yield an optimized pool of regulatory relations, while its fuzzy nature avoids noise-related problems. Furthermore, we are able to assign scores for each regulation, highlighting the confidence in the retrieved relations. The approach was tested by applying it to several benchmark datasets of yeast, managing to acquire biologically validated relations among genes. Conclusions The results demonstrate the effectiveness of the ENFRN in retrieving biologically valid regulatory relations and providing meaningful insights for better understanding the dynamics of gene regulatory networks. The algorithms and methods described in this paper have been implemented in a Matlab toolbox and are available from: http://bioserver-1.bioacademy.gr/DataRepository/Project_ENFRN_GRN/. PMID:20298548

  19. Modeling DNA sequence-based cis-regulatory gene networks.

    PubMed

    Bolouri, Hamid; Davidson, Eric H

    2002-06-01

    Gene network analysis requires computationally based models which represent the functional architecture of regulatory interactions, and which provide directly testable predictions. The type of model that is useful is constrained by the particular features of developmentally active cis-regulatory systems. These systems function by processing diverse regulatory inputs, generating novel regulatory outputs. A computational model which explicitly accommodates this basic concept was developed earlier for the cis-regulatory system of the endo16 gene of the sea urchin. This model represents the genetically mandated logic functions that the system executes, but also shows how time-varying kinetic inputs are processed in different circumstances into particular kinetic outputs. The same basic design features can be utilized to construct models that connect the large number of cis-regulatory elements constituting developmental gene networks. The ultimate aim of the network models discussed here is to represent the regulatory relationships among the genomic control systems of the genes in the network, and to state their functional meaning. The target site sequences of the cis-regulatory elements of these genes constitute the physical basis of the network architecture. Useful models for developmental regulatory networks must represent the genetic logic by which the system operates, but must also be capable of explaining the real time dynamics of cis-regulatory response as kinetic input and output data become available. Most importantly, however, such models must display in a direct and transparent manner fundamental network design features such as intra- and intercellular feedback circuitry; the sources of parallel inputs into each cis-regulatory element; gene battery organization; and use of repressive spatial inputs in specification and boundary formation. Successful network models lead to direct tests of key architectural features by targeted cis-regulatory analysis. PMID

  20. Computational discovery of gene modules and regulatory networks.

    PubMed

    Bar-Joseph, Ziv; Gerber, Georg K; Lee, Tong Ihn; Rinaldi, Nicola J; Yoo, Jane Y; Robert, François; Gordon, D Benjamin; Fraenkel, Ernest; Jaakkola, Tommi S; Young, Richard A; Gifford, David K

    2003-11-01

    We describe an algorithm for discovering regulatory networks of gene modules, GRAM (Genetic Regulatory Modules), that combines information from genome-wide location and expression data sets. A gene module is defined as a set of coexpressed genes to which the same set of transcription factors binds. Unlike previous approaches that relied primarily on functional information from expression data, the GRAM algorithm explicitly links genes to the factors that regulate them by incorporating DNA binding data, which provide direct physical evidence of regulatory interactions. We use the GRAM algorithm to describe a genome-wide regulatory network in Saccharomyces cerevisiae using binding information for 106 transcription factors profiled in rich medium conditions data from over 500 expression experiments. We also present a genome-wide location analysis data set for regulators in yeast cells treated with rapamycin, and use the GRAM algorithm to provide biological insights into this regulatory network

  1. Development of a synthetic gene network to modulate gene expression by mechanical forces

    PubMed Central

    Kis, Zoltán; Rodin, Tania; Zafar, Asma; Lai, Zhangxing; Freke, Grace; Fleck, Oliver; Del Rio Hernandez, Armando; Towhidi, Leila; Pedrigi, Ryan M.; Homma, Takayuki; Krams, Rob

    2016-01-01

    The majority of (mammalian) cells in our body are sensitive to mechanical forces, but little work has been done to develop assays to monitor mechanosensor activity. Furthermore, it is currently impossible to use mechanosensor activity to drive gene expression. To address these needs, we developed the first mammalian mechanosensitive synthetic gene network to monitor endothelial cell shear stress levels and directly modulate expression of an atheroprotective transcription factor by shear stress. The technique is highly modular, easily scalable and allows graded control of gene expression by mechanical stimuli in hard-to-transfect mammalian cells. We call this new approach mechanosyngenetics. To insert the gene network into a high proportion of cells, a hybrid transfection procedure was developed that involves electroporation, plasmids replication in mammalian cells, mammalian antibiotic selection, a second electroporation and gene network activation. This procedure takes 1 week and yielded over 60% of cells with a functional gene network. To test gene network functionality, we developed a flow setup that exposes cells to linearly increasing shear stress along the length of the flow channel floor. Activation of the gene network varied logarithmically as a function of shear stress magnitude. PMID:27404994

  2. Development of a synthetic gene network to modulate gene expression by mechanical forces.

    PubMed

    Kis, Zoltán; Rodin, Tania; Zafar, Asma; Lai, Zhangxing; Freke, Grace; Fleck, Oliver; Del Rio Hernandez, Armando; Towhidi, Leila; Pedrigi, Ryan M; Homma, Takayuki; Krams, Rob

    2016-01-01

    The majority of (mammalian) cells in our body are sensitive to mechanical forces, but little work has been done to develop assays to monitor mechanosensor activity. Furthermore, it is currently impossible to use mechanosensor activity to drive gene expression. To address these needs, we developed the first mammalian mechanosensitive synthetic gene network to monitor endothelial cell shear stress levels and directly modulate expression of an atheroprotective transcription factor by shear stress. The technique is highly modular, easily scalable and allows graded control of gene expression by mechanical stimuli in hard-to-transfect mammalian cells. We call this new approach mechanosyngenetics. To insert the gene network into a high proportion of cells, a hybrid transfection procedure was developed that involves electroporation, plasmids replication in mammalian cells, mammalian antibiotic selection, a second electroporation and gene network activation. This procedure takes 1 week and yielded over 60% of cells with a functional gene network. To test gene network functionality, we developed a flow setup that exposes cells to linearly increasing shear stress along the length of the flow channel floor. Activation of the gene network varied logarithmically as a function of shear stress magnitude. PMID:27404994

  3. How Gene Networks Can Uncover Novel CVD Players

    PubMed Central

    Parnell, Laurence D; Casas-Agustench, Patricia; Iyer, Lakshmanan K; Ordovas, Jose M

    2014-01-01

    Cardiovascular diseases (CVD) are complex, involving numerous biological entities from genes and small molecules to organ function. Placing these entities in networks where the functional relationships among the constituents are drawn can aid in our understanding of disease onset, progression and prevention. While networks, or interactomes, are often classified by a general term, say lipids or inflammation, it is a more encompassing class of network that is more informative in showing connections among the active entities and allowing better hypotheses of novel CVD players to be formulated. A range of networks will be presented whereby the potential to bring new objects into the CVD milieu will be exemplified. PMID:24683432

  4. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.

    PubMed

    Grzegorczyk, Marco; Husmeier, Dirk

    2012-07-12

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment.

  5. A Synthesis Method of Gene Networks Having Cyclic Expression Pattern Sequences by Network Learning

    NASA Astrophysics Data System (ADS)

    Mori, Yoshihiro; Kuroe, Yasuaki

    Recently, synthesis of gene networks having desired functions has become of interest to many researchers because it is a complementary approach to understanding gene networks, and it could be the first step in controlling living cells. There exist several periodic phenomena in cells, e.g. circadian rhythm. These phenomena are considered to be generated by gene networks. We have already proposed synthesis method of gene networks based on gene expression. The method is applicable to synthesizing gene networks possessing the desired cyclic expression pattern sequences. It ensures that realized expression pattern sequences are periodic, however, it does not ensure that their corresponding solution trajectories are periodic, which might bring that their oscillations are not persistent. In this paper, in order to resolve the problem we propose a synthesis method of gene networks possessing the desired cyclic expression pattern sequences together with their corresponding solution trajectories being periodic. In the proposed method the persistent oscillations of the solution trajectories are realized by specifying passing points of them.

  6. Inferring gene regulatory networks using a time-delayed mass action model.

    PubMed

    Zhao, Yaou; Jiang, Mingyan; Chen, Yuehui

    2016-08-01

    This paper demonstrates a new time-delayed mass action model which applies a set of delay differential equations (DDEs) to represent the dynamics of gene regulatory networks (GRNs). The mass action model is a classical model which is often used to describe the kinetics of biochemical processes, so it is fit for GRN modeling. The ability to incorporate time-delayed parameters in this model enables different time delays of interaction between genes. Moreover, an efficient learning method which employs population-based incremental learning (PBIL) algorithm and trigonometric differential evolution (TDE) algorithm TDE is proposed to automatically evolve the structure of the network and infer the optimal parameters from observed time-series gene expression data. Experiments on three well-known motifs of GRN and a real budding yeast cell cycle network show that the proposal can not only successfully infer the network structure and parameters but also has a strong anti-noise ability. Compared with other works, this method also has a great improvement in performances.

  7. Gene-network inference by message passing

    NASA Astrophysics Data System (ADS)

    Braunstein, A.; Pagnani, A.; Weigt, M.; Zecchina, R.

    2008-01-01

    The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.

  8. Noise-tolerant model selection and parameter estimation for complex networks

    NASA Astrophysics Data System (ADS)

    Aliakbary, Sadegh; Motallebi, Sadegh; Rashidian, Sina; Habibi, Jafar; Movaghar, Ali

    2015-06-01

    Real networks often exhibit nontrivial topological features that do not occur in random graphs. The need for synthesizing realistic networks has resulted in development of various network models. In this paper, we address the problem of selecting and calibrating the model that best fits a given target network. The existing model fitting approaches mostly suffer from sensitivity to network perturbations, lack of the parameter estimation component, dependency on the size of the networks, and low accuracy. To overcome these limitations, we considered a broad range of network features and employed machine learning techniques such as genetic algorithms, distance metric learning, nearest neighbor classification, and artificial neural networks. Our proposed method, which is named ModelFit, outperforms the state-of-the-art baselines with respect to accuracy and noise tolerance in different network datasets.

  9. Stability Depends on Positive Autoregulation in Boolean Gene Regulatory Networks

    PubMed Central

    Pinho, Ricardo; Garcia, Victor; Irimia, Manuel; Feldman, Marcus W.

    2014-01-01

    Network motifs have been identified as building blocks of regulatory networks, including gene regulatory networks (GRNs). The most basic motif, autoregulation, has been associated with bistability (when positive) and with homeostasis and robustness to noise (when negative), but its general importance in network behavior is poorly understood. Moreover, how specific autoregulatory motifs are selected during evolution and how this relates to robustness is largely unknown. Here, we used a class of GRN models, Boolean networks, to investigate the relationship between autoregulation and network stability and robustness under various conditions. We ran evolutionary simulation experiments for different models of selection, including mutation and recombination. Each generation simulated the development of a population of organisms modeled by GRNs. We found that stability and robustness positively correlate with autoregulation; in all investigated scenarios, stable networks had mostly positive autoregulation. Assuming biological networks correspond to stable networks, these results suggest that biological networks should often be dominated by positive autoregulatory loops. This seems to be the case for most studied eukaryotic transcription factor networks, including those in yeast, flies and mammals. PMID:25375153

  10. Inferring the gene network underlying the branching of tomato inflorescence.

    PubMed

    Astola, Laura; Stigter, Hans; van Dijk, Aalt D J; van Daelen, Raymond; Molenaar, Jaap

    2014-01-01

    The architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the expressions of the involved genes. Our approach starts from employing biological expert knowledge to select the most probable gene candidates behind branching behavior. To find how these genes interact, we develop a stepwise procedure for computational inference of the network structure. Our data consists of expression levels from primary shoot meristems, measured at different developmental stages on three different genotypes of tomato. With the network inferred by our algorithm, we can explain the dynamics corresponding to all three genotypes simultaneously, despite their apparent dissimilarities. We also correctly predict the chronological order of expression peaks for the main hubs in the network. Based on the inferred network, using optimal experimental design criteria, we are able to suggest an informative set of experiments for further investigation of the mechanisms underlying branching behavior.

  11. Gap Gene Regulatory Dynamics Evolve along a Genotype Network.

    PubMed

    Crombach, Anton; Wotton, Karl R; Jiménez-Guri, Eva; Jaeger, Johannes

    2016-05-01

    Developmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as "system drift." System drift is illustrated by the gap gene network-involved in segmental patterning-in dipteran insects. In the classic model organism Drosophila melanogaster and the nonmodel scuttle fly Megaselia abdita, early activation and placement of gap gene expression domains show significant quantitative differences, yet the final patterning output of the system is essentially identical in both species. In this detailed modeling analysis of system drift, we use gene circuits which are fit to quantitative gap gene expression data in M. abdita and compare them with an equivalent set of models from D. melanogaster. The results of this comparative analysis show precisely how compensatory regulatory mechanisms achieve equivalent final patterns in both species. We discuss the larger implications of the work in terms of "genotype networks" and the ways in which the structure of regulatory networks can influence patterns of evolutionary change (evolvability).

  12. Multiscale Embedded Gene Co-expression Network Analysis

    PubMed Central

    Song, Won-Min; Zhang, Bin

    2015-01-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778

  13. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.

    PubMed

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C; Mohanty, Bidyut K; Gao, Nan; Tang, Jijun; Lawson, Andrew B; Hannun, Yusuf A; Zheng, W Jim

    2014-10-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes' Ontology Fingerprints--a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms' corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general.

  14. Stochastic S-system modeling of gene regulatory network.

    PubMed

    Chowdhury, Ahsan Raja; Chetty, Madhu; Evans, Rob

    2015-10-01

    Microarray gene expression data can provide insights into biological processes at a system-wide level and is commonly used for reverse engineering gene regulatory networks (GRN). Due to the amalgamation of noise from different sources, microarray expression profiles become inherently noisy leading to significant impact on the GRN reconstruction process. Microarray replicates (both biological and technical), generated to increase the reliability of data obtained under noisy conditions, have limited influence in enhancing the accuracy of reconstruction . Therefore, instead of the conventional GRN modeling approaches which are deterministic, stochastic techniques are becoming increasingly necessary for inferring GRN from noisy microarray data. In this paper, we propose a new stochastic GRN model by investigating incorporation of various standard noise measurements in the deterministic S-system model. Experimental evaluations performed for varying sizes of synthetic network, representing different stochastic processes, demonstrate the effect of noise on the accuracy of genetic network modeling and the significance of stochastic modeling for GRN reconstruction . The proposed stochastic model is subsequently applied to infer the regulations among genes in two real life networks: (1) the well-studied IRMA network, a real-life in-vivo synthetic network constructed within the Saccharomyces cerevisiae yeast, and (2) the SOS DNA repair network in Escherichia coli.

  15. Combining many interaction networks to predict gene function and analyze gene lists.

    PubMed

    Mostafavi, Sara; Morris, Quaid

    2012-05-01

    In this article, we review how interaction networks can be used alone or in combination in an automated fashion to provide insight into gene and protein function. We describe the concept of a "gene-recommender system" that can be applied to any large collection of interaction networks to make predictions about gene or protein function based on a query list of proteins that share a function of interest. We discuss these systems in general and focus on one specific system, GeneMANIA, that has unique features and uses different algorithms from the majority of other systems.

  16. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.

  17. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. PMID:26068849

  18. Yin and Yang of disease genes and death genes between reciprocally scale-free biological networks.

    PubMed

    Han, Hyun Wook; Ohn, Jung Hun; Moon, Jisook; Kim, Ju Han

    2013-11-01

    Biological networks often show a scale-free topology with node degree following a power-law distribution. Lethal genes tend to form functional hubs, whereas non-lethal disease genes are located at the periphery. Uni-dimensional analyses, however, are flawed. We created and investigated two distinct scale-free networks; a protein-protein interaction (PPI) and a perturbation sensitivity network (PSN). The hubs of both networks exhibit a low molecular evolutionary rate (P < 8 × 10(-12), P < 2 × 10(-4)) and a high codon adaptation index (P < 2 × 10(-16), P < 2 × 10(-8)), indicating that both hubs have been shaped under high evolutionary selective pressure. Moreover, the topologies of PPI and PSN are inversely proportional: hubs of PPI tend to be located at the periphery of PSN and vice versa. PPI hubs are highly enriched with lethal genes but not with disease genes, whereas PSN hubs are highly enriched with disease genes and drug targets but not with lethal genes. PPI hub genes are enriched with essential cellular processes, but PSN hub genes are enriched with environmental interaction processes, having more TATA boxes and transcription factor binding sites. It is concluded that biological systems may balance internal growth signaling and external stress signaling by unifying the two opposite scale-free networks that are seemingly opposite to each other but work in concert between death and disease.

  19. Visualizing Gene - Interactions within the Rice and Maize Network

    NASA Astrophysics Data System (ADS)

    Sampong, A.; Feltus, A.; Smith, M.

    2014-12-01

    The purpose of this research was to design a simpler visualization tool for comparing or viewing gene interaction graphs in systems biology. This visualization tool makes it possible and easier for a researcher to visualize the biological metadata of a plant and interact with the graph on a webpage. Currently available visualization software like Cytoscape and Walrus are difficult to interact with and do not scale effectively for large data sets, limiting the ability to visualize interactions within a biological system. The visualization tool developed is useful for viewing and interpreting the dataset of a gene interaction network. The graph layout drawn by this visualization tool is an improvement from the previous method of comparing lines of genes in two separate data files to, now having the ability to visually see the layout of the gene networks and how the two systems are related. The graph layout presented by the visualization tool draws a graph of the sample rice and maize gene networks, linking the common genes found in both plants and highlighting the functions served by common genes from each plant. The success of this visualization tool will enable Dr. Feltus to continue his investigations and draw conclusions on the biological evolution of the sorghum plant as well. REU Funded by NSF ACI Award 1359223 Vetria L. Byrd, PI

  20. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network

    PubMed Central

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C.; Mohanty, Bidyut K.; Gao, Nan; Tang, Jijun; Lawson, Andrew B.; Hannun, Yusuf A.; Zheng, W. Jim

    2014-01-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes’ Ontology Fingerprints—a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms’ corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. PMID:25063300

  1. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks.

    PubMed

    Tse, Margaret J; Chu, Brian K; Roy, Mahua; Read, Elizabeth L

    2015-10-20

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks.

  2. Evo–Devo in the Era of Gene Regulatory Networks

    PubMed Central

    Fischer, Antje H. L.; Smith, Joel

    2012-01-01

    Advanced genomics tools enable powerful new strategies for understanding complex biological processes, including development. By extension, we should be able to use these methods in a comparative fashion to capture evolutionary mechanisms. This requires a capacity to go deep and broad, to analyze developmental gene regulatory networks in many organisms, especially nontraditional models. As we usher in a new era of next-generation GRN (gene regulatory network) analysis, it is important to ask how to evaluate the evolution of network interactions. Particularly problematic, as always, is defining “independence”: Are two character traits found together because they are functionally linked or because of historical accident? The same basic question applies to understanding developmental GRN evolution. However, the essential difference here is that a GRN defines a causal chain of events. An understanding of causal relations—how Genes A and B work in concert to drive expression of Genes C and D to create a new Territory E—gives hope for establishing “trait independence” in a way that purely correlative arguments—the association of the expression of Gene D in Territory E—never could. Insight into causality provides the key to interpretation, as seen in this simplified scenario. Real-world networks bring new degrees of complexity, but the elucidation of causal relations remains the same. Has the day arrived when a single laboratory has the wherewithal to conduct multiorganism gene network projects in parallel? No. However, we argue that day is closer than one might suppose. We describe how a speedboat GRN project in one’s favorite nonmodel organism(s) might look and provide a framework for comparative network analysis. PMID:22927135

  3. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections.

    PubMed

    Lipner, Ettie M; Garcia, Benjamin J; Strong, Michael

    2016-01-01

    Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.

  4. Towards resolving the transcription factor network controlling myelin gene expression

    PubMed Central

    Fulton, Debra L.; Denarier, Eric; Friedman, Hana C.; Wasserman, Wyeth W.; Peterson, Alan C.

    2011-01-01

    In the central nervous system (CNS), myelin is produced from spirally-wrapped oligodendrocyte plasma membrane and, as exemplified by the debilitating effects of inherited or acquired myelin abnormalities in diseases such as multiple sclerosis, it plays a critical role in nervous system function. Myelin sheath production coincides with rapid up-regulation of numerous genes. The complexity of their subsequent expression patterns, along with recently recognized heterogeneity within the oligodendrocyte lineage, suggest that the regulatory networks controlling such genes drive multiple context-specific transcriptional programs. Conferring this nuanced level of control likely involves a large repertoire of interacting transcription factors (TFs). Here, we combined novel strategies of computational sequence analyses with in vivo functional analysis to establish a TF network model of coordinate myelin-associated gene transcription. Notably, the network model captures regulatory DNA elements and TFs known to regulate oligodendrocyte myelin gene transcription and/or oligodendrocyte development, thereby validating our approach. Further, it links to numerous TFs with previously unsuspected roles in CNS myelination and suggests collaborative relationships amongst both known and novel TFs, thus providing deeper insight into the myelin gene transcriptional network. PMID:21729871

  5. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections

    PubMed Central

    Lipner, Ettie M.; Garcia, Benjamin J.; Strong, Michael

    2016-01-01

    Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects. PMID:26751573

  6. Parameter estimates in binary black hole collisions using neural networks

    NASA Astrophysics Data System (ADS)

    Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.

    2016-10-01

    We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given gravitational wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.

  7. Using a hybrid approach to optimize experimental network design for aquifer parameter identification.

    PubMed

    Chang, Liang-Cheng; Chu, Hone-Jay; Lin, Yu-Pin; Chen, Yu-Wen

    2010-10-01

    This research develops an optimum design model of groundwater network using genetic algorithm (GA) and modified Newton approach, based on the experimental design conception. The goal of experiment design is to minimize parameter uncertainty, represented by the covariance matrix determinant of estimated parameters. The design problem is constrained by a specified cost and solved by GA and a parameter identification model. The latter estimates optimum parameter value and its associated sensitivity matrices. The general problem is simplified into two classes of network design problems: an observation network design problem and a pumping network design problem. Results explore the relationship between the experimental design and the physical processes. The proposed model provides an alternative to solve optimization problems for groundwater experimental design. PMID:19757116

  8. Propagation of genetic variation in gene regulatory networks.

    PubMed

    Plahte, Erik; Gjuvsland, Arne B; Omholt, Stig W

    2013-08-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network's feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation.

  9. MiRTargetLink--miRNAs, Genes and Interaction Networks.

    PubMed

    Hamberg, Maarten; Backes, Christina; Fehlmann, Tobias; Hart, Martin; Meder, Benjamin; Meese, Eckart; Keller, Andreas

    2016-04-14

    Information on miRNA targeting genes is growing rapidly. For high-throughput experiments, but also for targeted analyses of few genes or miRNAs, easy analysis with concise representation of results facilitates the work of life scientists. We developed miRTargetLink, a tool for automating respective analysis procedures that are frequently applied. Input of the web-based solution is either a single gene or single miRNA, but also sets of genes or miRNAs, can be entered. Validated and predicted targets are extracted from databases and an interaction network is presented. Users can select whether predicted targets, experimentally validated targets with strong or weak evidence, or combinations of those are considered. Central genes or miRNAs are highlighted and users can navigate through the network interactively. To discover the most relevant biochemical processes influenced by the target network, gene set analysis and miRNA set analysis are integrated. As a showcase for miRTargetLink, we analyze targets of five cardiac miRNAs. miRTargetLink is freely available without restrictions at www.ccb.uni-saarland.de/mirtargetlink.

  10. miRTargetLink—miRNAs, Genes and Interaction Networks

    PubMed Central

    Hamberg, Maarten; Backes, Christina; Fehlmann, Tobias; Hart, Martin; Meder, Benjamin; Meese, Eckart; Keller, Andreas

    2016-01-01

    Information on miRNA targeting genes is growing rapidly. For high-throughput experiments, but also for targeted analyses of few genes or miRNAs, easy analysis with concise representation of results facilitates the work of life scientists. We developed miRTargetLink, a tool for automating respective analysis procedures that are frequently applied. Input of the web-based solution is either a single gene or single miRNA, but also sets of genes or miRNAs, can be entered. Validated and predicted targets are extracted from databases and an interaction network is presented. Users can select whether predicted targets, experimentally validated targets with strong or weak evidence, or combinations of those are considered. Central genes or miRNAs are highlighted and users can navigate through the network interactively. To discover the most relevant biochemical processes influenced by the target network, gene set analysis and miRNA set analysis are integrated. As a showcase for miRTargetLink, we analyze targets of five cardiac miRNAs. miRTargetLink is freely available without restrictions at www.ccb.uni-saarland.de/mirtargetlink. PMID:27089332

  11. The values of the parameters of some multilayer distributed RC null networks

    NASA Technical Reports Server (NTRS)

    Huelsman, L. P.; Raghunath, S.

    1974-01-01

    In this correspondence, the values of the parameters of some multilayer distributed RC notch networks are determined, and the usually accepted values are shown to be in error. The magnitude of the error is illustrated by graphs of the frequency response of the networks.

  12. An algebra-based method for inferring gene regulatory networks

    PubMed Central

    2014-01-01

    Background The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. Results This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also

  13. Robustness of single and interdependent scale-free interaction networks with various parameters

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Liu, Jing

    2016-10-01

    The robustness of scale-free networks has attracted increasing attentions recently. It has been shown that scale-free networks are tolerant to random failures but fragile under malicious attacks. However, most existing studies focus on scale-free networks with fixed exponent (around 3) and assortativity (around 0), and the relationship between robustness and these parameters has not been studied systematically. Therefore, in this paper, we study the change of robustness along with different parameters, including scaling exponent and assortativity, of scale-free networks; moreover, the robustness of interdependent networks is also studied. In the experiments, synthetic single scale-free networks with varying scaling exponents are constructed and adjusted to fix assortativity. Several measures are adopted to estimate the robustness of networks under malicious and random attacks. Then, interdependent networks with varying parameters are constructed and their robustness against malicious attacks is studied. The results show that there is a positive correlation between robustness against node attacks and the scaling exponent as well as assortativity, and the positive correlation also exists in interdependent networks.

  14. Simultaneous Parameters Identifiability and Estimation of an E. coli Metabolic Network Model

    PubMed Central

    Alberton, André Luís; Di Maggio, Jimena Andrea; Estrada, Vanina Gisela; Díaz, María Soledad; Secchi, Argimiro Resende

    2015-01-01

    This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of the Escherichia coli K-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available. PMID:25654103

  15. Simultaneous parameters identifiability and estimation of an E. coli metabolic network model.

    PubMed

    Pontes Freitas Alberton, Kese; Alberton, André Luís; Di Maggio, Jimena Andrea; Estrada, Vanina Gisela; Díaz, María Soledad; Secchi, Argimiro Resende

    2015-01-01

    This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of the Escherichia coli K-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available. PMID:25654103

  16. Analysis of gene regulatory networks in the mammalian circadian rhythm.

    PubMed

    Yan, Jun; Wang, Haifang; Liu, Yuting; Shao, Chunxuan

    2008-10-01

    Circadian rhythm is fundamental in regulating a wide range of cellular, metabolic, physiological, and behavioral activities in mammals. Although a small number of key circadian genes have been identified through extensive molecular and genetic studies in the past, the existence of other key circadian genes and how they drive the genomewide circadian oscillation of gene expression in different tissues still remains unknown. Here we try to address these questions by integrating all available circadian microarray data in mammals. We identified 41 common circadian genes that showed circadian oscillation in a wide range of mouse tissues with a remarkable consistency of circadian phases across tissues. Comparisons across mouse, rat, rhesus macaque, and human showed that the circadian phases of known key circadian genes were delayed for 4-5 hours in rat compared to mouse and 8-12 hours in macaque and human compared to mouse. A systematic gene regulatory network for the mouse circadian rhythm was constructed after incorporating promoter analysis and transcription factor knockout or mutant microarray data. We observed the significant association of cis-regulatory elements: EBOX, DBOX, RRE, and HSE with the different phases of circadian oscillating genes. The analysis of the network structure revealed the paths through which light, food, and heat can entrain the circadian clock and identified that NR3C1 and FKBP/HSP90 complexes are central to the control of circadian genes through diverse environmental signals. Our study improves our understanding of the structure, design principle, and evolution of gene regulatory networks involved in the mammalian circadian rhythm.

  17. Sensitivity and Robustness Analysis for Stochastic Model of Nanog Gene Regulatory Network

    NASA Astrophysics Data System (ADS)

    Wu, Qianqian; Jiang, Feng; Tian, Tianhai

    2015-06-01

    The advances of systems biology have raised a large number of mathematical models for exploring the dynamic property of biological systems. A challenging issue in mathematical modeling is how to study the influence of parameter variation on system property. Robustness and sensitivity are two major measurements to describe the dynamic property of a system against the variation of model parameters. For stochastic models of discrete chemical reaction systems, although these two properties have been studied separately, no work has been done so far to investigate these two properties together. In this work, we propose an integrated framework to study these two properties for a biological system simultaneously. We also consider a stochastic model with intrinsic noise for the Nanog gene network based on a published model that studies extrinsic noise only. For the stochastic model of Nanog gene network, we identify key coefficients that have more influence on the network dynamics than the others through sensitivity analysis. In addition, robustness analysis suggests that the model parameters can be classified into four types regarding the bistability property of Nanog expression levels. Numerical results suggest that the proposed framework is an efficient approach to study the sensitivity and robustness properties of biological network models.

  18. Inference of nonlinear gene regulatory networks through optimized ensemble of support vector regression and dynamic Bayesian networks.

    PubMed

    Akutekwe, Arinze; Seker, Huseyin

    2015-08-01

    Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in systems biology. Most methods for modeling and inferring the dynamics of GRNs, such as those based on state space models, vector autoregressive models and G1DBN algorithm, assume linear dependencies among genes. However, this strong assumption does not make for true representation of time-course relationships across the genes, which are inherently nonlinear. Nonlinear modeling methods such as the S-systems and causal structure identification (CSI) have been proposed, but are known to be statistically inefficient and analytically intractable in high dimensions. To overcome these limitations, we propose an optimized ensemble approach based on support vector regression (SVR) and dynamic Bayesian networks (DBNs). The method called SVR-DBN, uses nonlinear kernels of the SVR to infer the temporal relationships among genes within the DBN framework. The two-stage ensemble is further improved by SVR parameter optimization using Particle Swarm Optimization. Results on eight insilico-generated datasets, and two real world datasets of Drosophila Melanogaster and Escherichia Coli, show that our method outperformed the G1DBN algorithm by a total average accuracy of 12%. We further applied our method to model the time-course relationships of ovarian carcinoma. From our results, four hub genes were discovered. Stratified analysis further showed that the expression levels Prostrate differentiation factor and BTG family member 2 genes, were significantly increased by the cisplatin and oxaliplatin platinum drugs; while expression levels of Polo-like kinase and Cyclin B1 genes, were both decreased by the platinum drugs. These hub genes might be potential biomarkers for ovarian carcinoma. PMID:26738192

  19. Graphlet Based Metrics for the Comparison of Gene Regulatory Networks

    PubMed Central

    Martin, Alberto J. M.; Dominguez, Calixto; Contreras-Riquelme, Sebastián; Holmes, David S.; Perez-Acle, Tomas

    2016-01-01

    Understanding the control of gene expression remains one of the main challenges in the post-genomic era. Accordingly, a plethora of methods exists to identify variations in gene expression levels. These variations underlay almost all relevant biological phenomena, including disease and adaptation to environmental conditions. However, computational tools to identify how regulation changes are scarce. Regulation of gene expression is usually depicted in the form of a gene regulatory network (GRN). Structural changes in a GRN over time and conditions represent variations in the regulation of gene expression. Like other biological networks, GRNs are composed of basic building blocks called graphlets. As a consequence, two new metrics based on graphlets are proposed in this work: REConstruction Rate (REC) and REC Graphlet Degree (RGD). REC determines the rate of graphlet similarity between different states of a network and RGD identifies the subset of nodes with the highest topological variation. In other words, RGD discerns how th GRN was rewired. REC and RGD were used to compare the local structure of nodes in condition-specific GRNs obtained from gene expression data of Escherichia coli, forming biofilms and cultured in suspension. According to our results, most of the network local structure remains unaltered in the two compared conditions. Nevertheless, changes reported by RGD necessarily imply that a different cohort of regulators (i.e. transcription factors (TFs)) appear on the scene, shedding light on how the regulation of gene expression occurs when E. coli transits from suspension to biofilm. Consequently, we propose that both metrics REC and RGD should be adopted as a quantitative approach to conduct differential analyses of GRNs. A tool that implements both metrics is available as an on-line web server (http://dlab.cl/loto). PMID:27695050

  20. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Head blight caused by Fusarium graminearum (Fg) is a major limiting factor of wheat production with both yield loss and mycotoxin contamination. Here we report a model for global Fg gene regulatory networks (GRNs) inferred from a large collection of transcriptomic data using a machine-learning appro...

  1. A gene network engineering platform for lactic acid bacteria.

    PubMed

    Kong, Wentao; Kapuganti, Venkata S; Lu, Ting

    2016-02-29

    Recent developments in synthetic biology have positioned lactic acid bacteria (LAB) as a major class of cellular chassis for applications. To achieve the full potential of LAB, one fundamental prerequisite is the capacity for rapid engineering of complex gene networks, such as natural biosynthetic pathways and multicomponent synthetic circuits, into which cellular functions are encoded. Here, we present a synthetic biology platform for rapid construction and optimization of large-scale gene networks in LAB. The platform involves a copy-controlled shuttle for hosting target networks and two associated strategies that enable efficient genetic editing and phenotypic validation. By using a nisin biosynthesis pathway and its variants as examples, we demonstrated multiplex, continuous editing of small DNA parts, such as ribosome-binding sites, as well as efficient manipulation of large building blocks such as genes and operons. To showcase the platform, we applied it to expand the phenotypic diversity of the nisin pathway by quickly generating a library of 63 pathway variants. We further demonstrated its utility by altering the regulatory topology of the nisin pathway for constitutive bacteriocin biosynthesis. This work demonstrates the feasibility of rapid and advanced engineering of gene networks in LAB, fostering their applications in biomedicine and other areas. PMID:26503255

  2. Network analysis of genes and their association with diseases.

    PubMed

    Kontou, Panagiota I; Pavlopoulou, Athanasia; Dimou, Niki L; Pavlopoulos, Georgios A; Bagos, Pantelis G

    2016-09-15

    A plethora of network-based approaches within the Systems Biology universe have been applied, to date, to investigate the underlying molecular mechanisms of various human diseases. In the present study, we perform a bipartite, topological and clustering graph analysis in order to gain a better understanding of the relationships between human genetic diseases and the relationships between the genes that are implicated in them. For this purpose, disease-disease and gene-gene networks were constructed from combined gene-disease association networks. The latter, were created by collecting and integrating data from three diverse resources, each one with different content covering from rare monogenic disorders to common complex diseases. This data pluralism enabled us to uncover important associations between diseases with unrelated phenotypic manifestations but with common genetic origin. For our analysis, the topological attributes and the functional implications of the individual networks were taken into account and are shortly discussed. We believe that some observations of this study could advance our understanding regarding the etiology of a disease with distinct pathological manifestations, and simultaneously provide the springboard for the development of preventive and therapeutic strategies and its underlying genetic mechanisms.

  3. A gene network engineering platform for lactic acid bacteria

    PubMed Central

    Kong, Wentao; Kapuganti, Venkata S.; Lu, Ting

    2016-01-01

    Recent developments in synthetic biology have positioned lactic acid bacteria (LAB) as a major class of cellular chassis for applications. To achieve the full potential of LAB, one fundamental prerequisite is the capacity for rapid engineering of complex gene networks, such as natural biosynthetic pathways and multicomponent synthetic circuits, into which cellular functions are encoded. Here, we present a synthetic biology platform for rapid construction and optimization of large-scale gene networks in LAB. The platform involves a copy-controlled shuttle for hosting target networks and two associated strategies that enable efficient genetic editing and phenotypic validation. By using a nisin biosynthesis pathway and its variants as examples, we demonstrated multiplex, continuous editing of small DNA parts, such as ribosome-binding sites, as well as efficient manipulation of large building blocks such as genes and operons. To showcase the platform, we applied it to expand the phenotypic diversity of the nisin pathway by quickly generating a library of 63 pathway variants. We further demonstrated its utility by altering the regulatory topology of the nisin pathway for constitutive bacteriocin biosynthesis. This work demonstrates the feasibility of rapid and advanced engineering of gene networks in LAB, fostering their applications in biomedicine and other areas. PMID:26503255

  4. Network analysis of genes and their association with diseases.

    PubMed

    Kontou, Panagiota I; Pavlopoulou, Athanasia; Dimou, Niki L; Pavlopoulos, Georgios A; Bagos, Pantelis G

    2016-09-15

    A plethora of network-based approaches within the Systems Biology universe have been applied, to date, to investigate the underlying molecular mechanisms of various human diseases. In the present study, we perform a bipartite, topological and clustering graph analysis in order to gain a better understanding of the relationships between human genetic diseases and the relationships between the genes that are implicated in them. For this purpose, disease-disease and gene-gene networks were constructed from combined gene-disease association networks. The latter, were created by collecting and integrating data from three diverse resources, each one with different content covering from rare monogenic disorders to common complex diseases. This data pluralism enabled us to uncover important associations between diseases with unrelated phenotypic manifestations but with common genetic origin. For our analysis, the topological attributes and the functional implications of the individual networks were taken into account and are shortly discussed. We believe that some observations of this study could advance our understanding regarding the etiology of a disease with distinct pathological manifestations, and simultaneously provide the springboard for the development of preventive and therapeutic strategies and its underlying genetic mechanisms. PMID:27265032

  5. Using SPEEDES to simulate the blue gene interconnect network

    NASA Technical Reports Server (NTRS)

    Springer, P.; Upchurch, E.

    2003-01-01

    JPL and the Center for Advanced Computer Architecture (CACR) is conducting application and simulation analyses of BG/L in order to establish a range of effectiveness for the Blue Gene/L MPP architecture in performing important classes of computations and to determine the design sensitivity of the global interconnect network in support of real world ASCI application execution.

  6. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    PubMed Central

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; Celniker, Susan E.; Yu, Bin; Frise, Erwin

    2016-01-01

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior–posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data. PMID:27071099

  7. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks.

    PubMed

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S; Celniker, Susan E; Yu, Bin; Frise, Erwin

    2016-04-19

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set ofDrosophilaearly embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation ofDrosophilaexpression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with theDrosophiladata suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.

  8. Integration of molecular network data reconstructs Gene Ontology

    PubMed Central

    Gligorijević, Vladimir; Janjić, Vuk; Pržulj, Nataša

    2014-01-01

    Motivation: Recently, a shift was made from using Gene Ontology (GO) to evaluate molecular network data to using these data to construct and evaluate GO. Dutkowski et al. provide the first evidence that a large part of GO can be reconstructed solely from topologies of molecular networks. Motivated by this work, we develop a novel data integration framework that integrates multiple types of molecular network data to reconstruct and update GO. We ask how much of GO can be recovered by integrating various molecular interaction data. Results: We introduce a computational framework for integration of various biological networks using penalized non-negative matrix tri-factorization (PNMTF). It takes all network data in a matrix form and performs simultaneous clustering of genes and GO terms, inducing new relations between genes and GO terms (annotations) and between GO terms themselves. To improve the accuracy of our predicted relations, we extend the integration methodology to include additional topological information represented as the similarity in wiring around non-interacting genes. Surprisingly, by integrating topologies of bakers’ yeasts protein–protein interaction, genetic interaction (GI) and co-expression networks, our method reports as related 96% of GO terms that are directly related in GO. The inclusion of the wiring similarity of non-interacting genes contributes 6% to this large GO term association capture. Furthermore, we use our method to infer new relationships between GO terms solely from the topologies of these networks and validate 44% of our predictions in the literature. In addition, our integration method reproduces 48% of cellular component, 41% of molecular function and 41% of biological process GO terms, outperforming the previous method in the former two domains of GO. Finally, we predict new GO annotations of yeast genes and validate our predictions through GIs profiling. Availability and implementation: Supplementary Tables of new GO

  9. Genes and experience shape brain networks of conscious control.

    PubMed

    Posner, Michael I

    2005-01-01

    One aspect of consciousness involves voluntary control over thoughts and feelings, often called will. Progress in neuroimaging and in sequencing the human genome makes it possible to think about voluntary control in terms of a specific neural network that includes midline and lateral frontal areas. A number of cognitive tasks involving conflict as well as the control of emotions have been shown to activate these brain areas. Studies have traced the development of this network in the ability to regulate cognition and emotion from about 2.5 to 7 years of age. Individual differences in this network have been related to parental reports of the ability of children to regulate their behavior, to delay reward and to develop a conscience. In adolescents these individual differences predict the propensity for antisocial behavior. Differences in specific genes are related to individual efficiency in performance of the network, and by neuroimaging, to the strength of its activation of this network. Future animal studies may make it possible to learn in detail how genes influence the common pattern of development of self-regulation made possible by this network. Moreover, a number of neurological and psychiatric pathologies involving difficulties in awareness and volition show deficits in parts of this network. We are now studying whether specific training experiences can influence the development of this network in 4-year-old children and if so, for whom it is most effective. Voluntary control is also important for the regulation of conscious input from the sensory environment. It seems likely that the same network involved in self-regulation is also crucial for focal attention to the sensory world.

  10. Synthetic in vivo validation of gene network circuitry.

    PubMed

    Damle, Sagar S; Davidson, Eric H

    2012-01-31

    Embryonic development is controlled by networks of interacting regulatory genes. The individual linkages of gene regulatory networks (GRNs) are customarily validated by functional cis-regulatory analysis, but an additional approach to validation is to rewire GRN circuitry to test experimentally predictions derived from network structure. Here we use this synthetic method to challenge specific predictions of the sea urchin embryo endomesoderm GRN. Expression vectors generated by in vitro recombination of exogenous sequences into BACs were used to cause elements of a nonskeletogenic mesoderm GRN to be deployed in skeletogenic cells and to detect their effects. The result of reengineering the regulatory circuitry in this way was to divert the developmental program of these cells from skeletogenesis to pigment cell formation, confirming a direct prediction of the GRN. In addition, the experiment revealed previously undetected cryptic repression functions. PMID:22238426

  11. Propagation of genetic variation in gene regulatory networks

    PubMed Central

    Plahte, Erik; Gjuvsland, Arne B.; Omholt, Stig W.

    2013-01-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network’s feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation. PMID:23997378

  12. Mean field analysis of a spatial stochastic model of a gene regulatory network.

    PubMed

    Sturrock, M; Murray, P J; Matzavinos, A; Chaplain, M A J

    2015-10-01

    A gene regulatory network may be defined as a collection of DNA segments which interact with each other indirectly through their RNA and protein products. Such a network is said to contain a negative feedback loop if its products inhibit gene transcription, and a positive feedback loop if a gene product promotes its own production. Negative feedback loops can create oscillations in mRNA and protein levels while positive feedback loops are primarily responsible for signal amplification. It is often the case in real biological systems that both negative and positive feedback loops operate in parameter regimes that result in low copy numbers of gene products. In this paper we investigate the spatio-temporal dynamics of a single feedback loop in a eukaryotic cell. We first develop a simplified spatial stochastic model of a canonical feedback system (either positive or negative). Using a Gillespie's algorithm, we compute sample trajectories and analyse their corresponding statistics. We then derive a system of equations that describe the spatio-temporal evolution of the stochastic means. Subsequently, we examine the spatially homogeneous case and compare the results of numerical simulations with the spatially explicit case. Finally, using a combination of steady-state analysis and data clustering techniques, we explore model behaviour across a subregion of the parameter space that is difficult to access experimentally and compare the parameter landscape of our spatio-temporal and spatially-homogeneous models.

  13. Gap Gene Regulatory Dynamics Evolve along a Genotype Network

    PubMed Central

    Crombach, Anton; Wotton, Karl R.; Jiménez-Guri, Eva; Jaeger, Johannes

    2016-01-01

    Developmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as “system drift.” System drift is illustrated by the gap gene network—involved in segmental patterning—in dipteran insects. In the classic model organism Drosophila melanogaster and the nonmodel scuttle fly Megaselia abdita, early activation and placement of gap gene expression domains show significant quantitative differences, yet the final patterning output of the system is essentially identical in both species. In this detailed modeling analysis of system drift, we use gene circuits which are fit to quantitative gap gene expression data in M. abdita and compare them with an equivalent set of models from D. melanogaster. The results of this comparative analysis show precisely how compensatory regulatory mechanisms achieve equivalent final patterns in both species. We discuss the larger implications of the work in terms of “genotype networks” and the ways in which the structure of regulatory networks can influence patterns of evolutionary change (evolvability). PMID:26796549

  14. Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks

    PubMed Central

    Ben-Tabou de-Leon, Smadar

    2016-01-01

    Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change. PMID:26913048

  15. Optimal Parameter Determination for Tritiated Water Storage in Polyacrylic Networks

    SciTech Connect

    Postolache, C.; Matei, Lidia; Georgescu, Rodica; Ionita, Gh.

    2005-07-15

    Due to the remarkable capacity of water retaining, croslinked polyacrylic acids (PAA) represent an interesting alternative for tritiated water trapping. The study was developed on radiolytical processes in PAA:HTO systems derivated from irradiation of polymeric network by disintegration of tritium atoms from HTO. The aim of these studies is the identification of polymeric structures and optimal storage conditions.Sol and gel fractions were determinated by radiometrical methods using PAA labeled with 14-C at carboxylic groups and T at main chains of the polymer. Simulation of radiolytical processes was realized using {gamma} radiation field emitted by a irradiation source of 60-Co which ensures a maximum of absorbed dose rate of 3 kGy/h. Self-radiolytical effects were investigated using labeled PAA in HTO with great radioactive concentration (37-185 GBq/mL). The experiment suggests as optimum for HTO storage as tritium liquid wastes a 1:30 PAA:HTO swelling degree at 18.5-37 MBqL. HTO radioactive concentration.RES studies of radiolytical processes were also realized on dry polyacrylic acid (PAA) and polyacrylic based hydrogels irradiated and determined at 77 K. In the study we observed the effect of swelling capacity of hydrogel o the formation of free radicals.

  16. Construction of coffee transcriptome networks based on gene annotation semantics.

    PubMed

    Castillo, Luis F; Galeano, Narmer; Isaza, Gustavo A; Gaitán, Alvaro

    2012-07-24

    Gene annotation is a process that encompasses multiple approaches on the analysis of nucleic acids or protein sequences in order to assign structural and functional characteristics to gene models. When thousands of gene models are being described in an organism genome, construction and visualization of gene networks impose novel challenges in the understanding of complex expression patterns and the generation of new knowledge in genomics research. In order to take advantage of accumulated text data after conventional gene sequence analysis, this work applied semantics in combination with visualization tools to build transcriptome networks from a set of coffee gene annotations. A set of selected coffee transcriptome sequences, chosen by the quality of the sequence comparison reported by Basic Local Alignment Search Tool (BLAST) and Interproscan, were filtered out by coverage, identity, length of the query, and e-values. Meanwhile, term descriptors for molecular biology and biochemistry were obtained along the Wordnet dictionary in order to construct a Resource Description Framework (RDF) using Ruby scripts and Methontology to find associations between concepts. Relationships between sequence annotations and semantic concepts were graphically represented through a total of 6845 oriented vectors, which were reduced to 745 non-redundant associations. A large gene network connecting transcripts by way of relational concepts was created where detailed connections remain to be validated for biological significance based on current biochemical and genetics frameworks. Besides reusing text information in the generation of gene connections and for data mining purposes, this tool development opens the possibility to visualize complex and abundant transcriptome data, and triggers the formulation of new hypotheses in metabolic pathways analysis.

  17. Landmine detection and classification with complex-valued hybrid neural network using scattering parameters dataset.

    PubMed

    Yang, Chih-Chung; Bose, N K

    2005-05-01

    Neural networks have been applied to landmine detection from data generated by different kinds of sensors. Real-valued neural networks have been used for detecting landmines from scattering parameters measured by ground penetrating radar (GPR) after disregarding phase information. This paper presents results using complex-valued neural networks, capable of phase-sensitive detection followed by classification. A two-layer hybrid neural network structure incorporating both supervised and unsupervised learning is proposed to detect and then classify the types of landmines. Tests are also reported on a benchmark data. PMID:15941001

  18. Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments.

    PubMed

    García-Alonso, Luz; Alonso, Roberto; Vidal, Enrique; Amadoz, Alicia; de María, Alejandro; Minguez, Pablo; Medina, Ignacio; Dopazo, Joaquín

    2012-11-01

    Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein-protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network. PMID:22844098

  19. A gene regulatory network armature for T-lymphocyte specification

    SciTech Connect

    Fung, Elizabeth-sharon

    2008-01-01

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.

  20. Parameter inference in small world network disease models with approximate Bayesian Computational methods

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Allingham, David; Lee, Heung Wing Joseph; Small, Michael

    2010-02-01

    Small world network models have been effective in capturing the variable behaviour of reported case data of the SARS coronavirus outbreak in Hong Kong during 2003. Simulations of these models have previously been realized using informed “guesses” of the proposed model parameters and tested for consistency with the reported data by surrogate analysis. In this paper we attempt to provide statistically rigorous parameter distributions using Approximate Bayesian Computation sampling methods. We find that such sampling schemes are a useful framework for fitting parameters of stochastic small world network models where simulation of the system is straightforward but expressing a likelihood is cumbersome.

  1. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    SciTech Connect

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y.; Chen, Jin

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstrate that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.

  2. Characterization of Genes for Beef Marbling Based on Applying Gene Coexpression Network

    PubMed Central

    Lim, Dajeong; Kim, Nam-Kuk; Lee, Seung-Hwan; Park, Hye-Sun; Cho, Yong-Min; Chai, Han-Ha; Kim, Heebal

    2014-01-01

    Marbling is an important trait in characterization beef quality and a major factor for determining the price of beef in the Korean beef market. In particular, marbling is a complex trait and needs a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with marbling, we used a weighted gene coexpression network analysis from the expression value of bovine genes. Hub genes were identified; they were topologically centered with large degree and BC values in the global network. We performed gene expression analysis to detect candidate genes in M. longissimus with divergent marbling phenotype (marbling scores 2 to 7) using qRT-PCR. The results demonstrate that transmembrane protein 60 (TMEM60) and dihydropyrimidine dehydrogenase (DPYD) are associated with increasing marbling fat. We suggest that the network-based approach in livestock may be an important method for analyzing the complex effects of candidate genes associated with complex traits like marbling or tenderness. PMID:24624372

  3. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    DOE PAGES

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y.; Chen, Jin

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstratemore » that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.« less

  4. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental

  5. Literature Mining and Ontology based Analysis of Host-Brucella Gene-Gene Interaction Network.

    PubMed

    Karadeniz, İlknur; Hur, Junguk; He, Yongqun; Özgür, Arzucan

    2015-01-01

    Brucella is an intracellular bacterium that causes chronic brucellosis in humans and various mammals. The identification of host-Brucella interaction is crucial to understand host immunity against Brucella infection and Brucella pathogenesis against host immune responses. Most of the information about the inter-species interactions between host and Brucella genes is only available in the text of the scientific publications. Many text-mining systems for extracting gene and protein interactions have been proposed. However, only a few of them have been designed by considering the peculiarities of host-pathogen interactions. In this paper, we used a text mining approach for extracting host-Brucella gene-gene interactions from the abstracts of articles in PubMed. The gene-gene interactions here represent the interactions between genes and/or gene products (e.g., proteins). The SciMiner tool, originally designed for detecting mammalian gene/protein names in text, was extended to identify host and Brucella gene/protein names in the abstracts. Next, sentence-level and abstract-level co-occurrence based approaches, as well as sentence-level machine learning based methods, originally designed for extracting intra-species gene interactions, were utilized to extract the interactions among the identified host and Brucella genes. The extracted interactions were manually evaluated. A total of 46 host-Brucella gene interactions were identified and represented as an interaction network. Twenty four of these interactions were identified from sentence-level processing. Twenty two additional interactions were identified when abstract-level processing was performed. The Interaction Network Ontology (INO) was used to represent the identified interaction types at a hierarchical ontology structure. Ontological modeling of specific gene-gene interactions demonstrates that host-pathogen gene-gene interactions occur at experimental conditions which can be ontologically represented. Our

  6. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins

    PubMed Central

    Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  7. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    PubMed

    Varrella, Stefano; Romano, Giovanna; Costantini, Susan; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  8. Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer

    PubMed Central

    2014-01-01

    Background Endometrial cancers (ECs) are the most common form of gynecologic malignancy. Recent studies have reported that ECs reveal distinct markers for molecular pathogenesis, which in turn is linked to the various histological types of ECs. To understand further the molecular events contributing to ECs and endometrial tumorigenesis in general, a more precise identification of cancer-associated molecules and signaling networks would be useful for the detection and monitoring of malignancy, improving clinical cancer therapy, and personalization of treatments. Results ECs-specific gene co-expression networks were constructed by differential expression analysis and weighted gene co-expression network analysis (WGCNA). Important pathways and putative cancer hub genes contribution to tumorigenesis of ECs were identified. An elastic-net regularized classification model was built using the cancer hub gene signatures to predict the phenotypic characteristics of ECs. The 19 cancer hub gene signatures had high predictive power to distinguish among three key principal features of ECs: grade, type, and stage. Intriguingly, these hub gene networks seem to contribute to ECs progression and malignancy via cell-cycle regulation, antigen processing and the citric acid (TCA) cycle. Conclusions The results of this study provide a powerful biomarker discovery platform to better understand the progression of ECs and to uncover potential therapeutic targets in the treatment of ECs. This information might lead to improved monitoring of ECs and resulting improvement of treatment of ECs, the 4th most common of cancer in women. PMID:24758163

  9. How difficult is inference of mammalian causal gene regulatory networks?

    PubMed

    Djordjevic, Djordje; Yang, Andrian; Zadoorian, Armella; Rungrugeecharoen, Kevin; Ho, Joshua W K

    2014-01-01

    Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for

  10. Innovation and robustness in complex regulatory gene networks

    PubMed Central

    Ciliberti, S.; Martin, O. C.; Wagner, A.

    2007-01-01

    The history of life involves countless evolutionary innovations, a steady stream of ingenuity that has been flowing for more than 3 billion years. Very little is known about the principles of biological organization that allow such innovation. Here, we examine these principles for evolutionary innovation in gene expression patterns. To this end, we study a model for the transcriptional regulation networks that are at the heart of embryonic development. A genotype corresponds to a regulatory network of a given topology, and a phenotype corresponds to a steady-state gene expression pattern. Networks with the same phenotype form a connected graph in genotype space, where two networks are immediate neighbors if they differ by one regulatory interaction. We show that an evolutionary search on this graph can reach genotypes that are as different from each other as if they were chosen at random in genotype space, allowing evolutionary access to different kinds of innovation while staying close to a viable phenotype. Thus, although robustness to mutations may hinder innovation in the short term, we conclude that long-term innovation in gene expression patterns can only emerge in the presence of the robustness caused by connected genotype graphs. PMID:17690244

  11. Reducing complexity: An iterative strategy for parameter determination in biological networks

    NASA Astrophysics Data System (ADS)

    Binder, Sebastian C.; Hernandez-Vargas, Esteban A.; Meyer-Hermann, Michael

    2015-05-01

    The dynamics of biological networks are fundamental to a variety of processes in many areas of biology and medicine. Understanding of such networks on a systemic level is facilitated by mathematical models describing these networks. However, since mathematical models of signalling networks commonly aim to describe several highly connected biological quantities and many model parameters cannot be measured directly, quantitative dynamic models often present challenges with respect to model calibration. Here, we propose an iterative fitting routine to decompose the problem of fitting a system of coupled ordinary differential equations describing a signalling network into smaller subproblems. Parameters for each differential equation are estimated separately using a Differential Evolution algorithm while all other dynamic quantities in the model are treated as input to the system. The performance of this algorithm is evaluated on artificial networks with known structure and known model parameters and compared to a conventional optimisation procedure for the same problem. Our analysis indicates that the procedure results in a significantly higher quality of fit and more efficient reconstruction of the true parameters than the conventional algorithm.

  12. Gene regulation networks generate diverse pigmentation patterns in plants.

    PubMed

    Albert, Nick W; Davies, Kevin M; Schwinn, Kathy E

    2014-01-01

    The diversity of pigmentation patterns observed in plants occurs due to the spatial distribution and accumulation of colored compounds, which may also be associated with structural changes to the tissue. Anthocyanins are flavonoids that provide red/purple/blue coloration to plants, often forming complex patterns such as spots, stripes, and vein-associated pigmentation, particularly in flowers. These patterns are determined by the activity of MYB-bHLH-WDR (MBW) transcription factor complexes, which activate the anthocyanin biosynthesis genes, resulting in anthocyanin pigment accumulation. Recently, we established that the MBW complex controlling anthocyanin synthesis acts within a gene regulation network that is conserved within at least the Eudicots. This network involves hierarchy, reinforcement, and feedback mechanisms that allow for stringent and responsive regulation of the anthocyanin biosynthesis genes. The gene network and mobile nature of the WDR and R3-MYB proteins provide exciting new opportunities to explore the basis of pigmentation patterning, and to investigate the evolutionary history of the MBW components in land plants.

  13. Evolution of the mammalian embryonic pluripotency gene regulatory network.

    PubMed

    Fernandez-Tresguerres, Beatriz; Cañon, Susana; Rayon, Teresa; Pernaute, Barbara; Crespo, Miguel; Torroja, Carlos; Manzanares, Miguel

    2010-11-16

    Embryonic pluripotency in the mouse is established and maintained by a gene-regulatory network under the control of a core set of transcription factors that include octamer-binding protein 4 (Oct4; official name POU domain, class 5, transcription factor 1, Pou5f1), sex-determining region Y (SRY)-box containing gene 2 (Sox2), and homeobox protein Nanog. Although this network is largely conserved in eutherian mammals, very little information is available regarding its evolutionary conservation in other vertebrates. We have compared the embryonic pluripotency networks in mouse and chick by means of expression analysis in the pregastrulation chicken embryo, genomic comparisons, and functional assays of pluripotency-related regulatory elements in ES cells and blastocysts. We find that multiple components of the network are either novel to mammals or have acquired novel expression domains in early developmental stages of the mouse. We also find that the downstream action of the mouse core pluripotency factors is mediated largely by genomic sequence elements nonconserved with chick. In the case of Sox2 and Fgf4, we find that elements driving expression in embryonic pluripotent cells have evolved by a small number of nucleotide changes that create novel binding sites for core factors. Our results show that the network in charge of embryonic pluripotency is an evolutionary novelty of mammals that is related to the comparatively extended period during which mammalian embryonic cells need to be maintained in an undetermined state before engaging in early differentiation events.

  14. Establishing the Architecture of Plant Gene Regulatory Networks.

    PubMed

    Yang, F; Ouma, W Z; Li, W; Doseff, A I; Grotewold, E

    2016-01-01

    Gene regulatory grids (GRGs) encompass the space of all the possible transcription factor (TF)-target gene interactions that regulate gene expression, with gene regulatory networks (GRNs) representing a temporal and spatial manifestation of a portion of the GRG, essential for the specification of gene expression. Thus, understanding GRG architecture provides a valuable tool to explain how genes are expressed in an organism, an important aspect of synthetic biology and essential toward the development of the "in silico" cell. Progress has been made in some unicellular model systems (eg, yeast), but significant challenges remain in more complex multicellular organisms such as plants. Key to understanding the organization of GRGs is therefore identifying the genes that TFs bind to, and control. The application of sensitive and high-throughput methods to investigate genome-wide TF-target gene interactions is providing a wealth of information that can be linked to important agronomic traits. We describe here the methods and resources that have been developed to investigate the architecture of plant GRGs and GRNs. We also provide information regarding where to obtain clones or other resources necessary for synthetic biology or metabolic engineering. PMID:27480690

  15. Social network analysis - centrality parameters and individual network positions of agonistic behavior in pigs over three different age levels.

    PubMed

    Büttner, Kathrin; Scheffler, Katharina; Czycholl, Irena; Krieter, Joachim

    2015-01-01

    Knowledge of the network structure of agonistic interactions helps to understand the formation and the development of aggressive behavior. Therefore, video observation data of 149 pigs over three different age levels were investigated for 2 days each directly after mixing (65 groups in the rearing area, 24 groups in the growing stable and 12 groups in the breeding stable). The aim of the study was to use network analysis to investigate the development of individual network positions of specific animals and to determine whether centrality parameters in previous mixing situations have an impact on the future behavior of the animals. The results of the weighted degree centrality indicated that weaned pigs had a higher fighting intensity directly after mixing compared to growing pigs and gilts. Also, the number of different opponents (degree centrality) was higher compared to the older age groups. The betweenness centrality showed relatively small values and no significant differences between the different age levels, whereas the closeness centrality showed high values at all observed age levels. Experiences gained in previous agonistic interactions had an impact on the centrality parameters in subsequent mixing situations. It was shown that the position of individual animals in agonistic interaction networks can be characterized using social network analysis and that changes over different age levels can be detected. Therefore, social network analysis provides insights into the formation and evolution of behavioral patterns which could be of particular interest for the identification of key factors with regard to abnormal behavior (e.g. tail biting). PMID:25932371

  16. An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis

    PubMed Central

    Taylor-Teeples, M; Lin, L; de Lucas, M; Turco, G; Toal, TW; Gaudinier, A; Young, NF; Trabucco, GM; Veling, MT; Lamothe, R; Handakumbura, PP; Xiong, G; Wang, C; Corwin, J; Tsoukalas, A; Zhang, L; Ware, D; Pauly, M; Kliebenstein, DJ; Dehesh, K; Tagkopoulos, I; Breton, G; Pruneda-Paz, JL; Ahnert, SE; Kay, SA; Hazen, SP; Brady, SM

    2014-01-01

    Summary The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component. PMID:25533953

  17. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  18. Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks

    PubMed Central

    Priedigkeit, Nolan; Wolfe, Nicholas; Clark, Nathan L.

    2015-01-01

    Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC), is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting “disease map” network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks. PMID:25679399

  19. Reconstruction of Gene Networks of Iron Response in Shewanella oneidensis

    SciTech Connect

    Yang, Yunfeng; Harris, Daniel P; Luo, Feng; Joachimiak, Marcin; Wu, Liyou; Dehal, Paramvir; Jacobsen, Janet; Yang, Zamin Koo; Gao, Haichun; Arkin, Adam; Palumbo, Anthony Vito; Zhou, Jizhong

    2009-01-01

    It is of great interest to study the iron response of the -proteobacterium Shewanella oneidensis since it possesses a high content of iron and is capable of utilizing iron for anaerobic respiration. We report here that the iron response in S. oneidensis is a rapid process. To gain more insights into the bacterial response to iron, temporal gene expression profiles were examined for iron depletion and repletion, resulting in identification of iron-responsive biological pathways in a gene co-expression network. Iron acquisition systems, including genes unique to S. oneidensis, were rapidly and strongly induced by iron depletion, and repressed by iron repletion. Some were required for iron depletion, as exemplified by the mutational analysis of the putative siderophore biosynthesis protein SO3032. Unexpectedly, a number of genes related to anaerobic energy metabolism were repressed by iron depletion and induced by repletion, which might be due to the iron storage potential of their protein products. Other iron-responsive biological pathways include protein degradation, aerobic energy metabolism and protein synthesis. Furthermore, sequence motifs enriched in gene clusters as well as their corresponding DNA-binding proteins (Fur, CRP and RpoH) were identified, resulting in a regulatory network of iron response in S. oneidensis. Together, this work provides an overview of iron response and reveals novel features in S. oneidensis, including Shewanella-specific iron acquisition systems, and suggests the intimate relationship between anaerobic energy metabolism and iron response.

  20. Ethanol modulation of gene networks: implications for alcoholism.

    PubMed

    Farris, Sean P; Miles, Michael F

    2012-01-01

    Alcoholism is a complex disease caused by a confluence of environmental and genetic factors influencing multiple brain pathways to produce a variety of behavioral sequelae, including addiction. Genetic factors contribute to over 50% of the risk for alcoholism and recent evidence points to a large number of genes with small effect sizes as the likely molecular basis for this disease. Recent progress in genomics (microarrays or RNA-Seq) and genetics has led to the identification of a large number of potential candidate genes influencing ethanol behaviors or alcoholism itself. To organize this complex information, investigators have begun to focus on the contribution of gene networks, rather than individual genes, for various ethanol-induced behaviors in animal models or behavioral endophenotypes comprising alcoholism. This chapter reviews some of the methods used for constructing gene networks from genomic data and some of the recent progress made in applying such approaches to the study of the neurobiology of ethanol. We show that rapid technology development in gathering genomic data, together with sophisticated experimental design and a growing collection of analysis tools are producing novel insights for understanding the molecular basis of alcoholism and that such approaches promise new opportunities for therapeutic development.

  1. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    PubMed Central

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M.; Bansal, Kailash C.

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by “top-down” and “guide-gene” approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via “top-down” approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by “guide-gene” approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  2. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  3. Improved parameters metropolitan area network supported with all-optical network's technology

    NASA Astrophysics Data System (ADS)

    Gradkowska, Magdalena; Kalita, Mariusz

    2006-03-01

    The advantages of all-optical network's technics make them one of main elements of the metropolitan area networks. They enable different applications in high quality mulitimedia services and guarantee a constant and reliable access to the Internet. As the growing expansion of the Internet continues in an unpredictable direction, many new solutions are expected. The major challenge is the increasing demand for flexible, transparent and customised bandwidth services for both private and business customers.

  4. Noise Control in Gene Regulatory Networks with Negative Feedback.

    PubMed

    Hinczewski, Michael; Thirumalai, D

    2016-07-01

    Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.

  5. Sex-dependent gene regulatory networks of the heart rhythm

    PubMed Central

    Iacobas, S.; Thomas, N.; Spray, D. C.

    2010-01-01

    Expression level, control, and intercoordination of 66 selected heart rhythm determinant (HRD) genes were compared in atria and ventricles of four male and four female adult mice. We found that genes encoding various adrenergic receptors, ankyrins, ion channels and transporters, connexins, cadherins, plakophilins, and other components of the intercalated discs form a complex network that is chamber dependent and differs between the two sexes. In addition, most HRD genes in atria had higher expression in males than in females, while in ventricles, expression levels were mostly higher in females than in males. Moreover, significant chamber differences were observed between the sexes, with higher expression in atria than ventricles for males and higher expression in ventricles than atria for females. We have ranked the selected genes according to their prominence (new concept) within the HRD gene web defined as extent of expression coordination with the other web genes and stability of expression. Interestingly, the prominence hierarchy was substantially different between the two sexes. Taken together, these findings indicate that the organizational principles of the heart rhythm transcriptome are sex dependent, with the newly introduced prominence analysis allowing identification of genes that are pivotal for the sexual dichotomy. PMID:19756788

  6. Reverse engineering of gene regulatory networks based on S-systems and Bat algorithm.

    PubMed

    Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat Kumar

    2016-06-01

    The correct inference of gene regulatory networks for the understanding of the intricacies of the complex biological regulations remains an intriguing task for researchers. With the availability of large dimensional microarray data, relationships among thousands of genes can be simultaneously extracted. Among the prevalent models of reverse engineering genetic networks, S-system is considered to be an efficient mathematical tool. In this paper, Bat algorithm, based on the echolocation of bats, has been used to optimize the S-system model parameters. A decoupled S-system has been implemented to reduce the complexity of the algorithm. Initially, the proposed method has been successfully tested on an artificial network with and without the presence of noise. Based on the fact that a real-life genetic network is sparsely connected, a novel Accumulative Cardinality based decoupled S-system has been proposed. The cardinality has been varied from zero up to a maximum value, and this model has been implemented for the reconstruction of the DNA SOS repair network of Escherichia coli. The obtained results have shown significant improvements in the detection of a greater number of true regulations, and in the minimization of false detections compared to other existing methods.

  7. Reverse engineering of gene regulatory networks based on S-systems and Bat algorithm.

    PubMed

    Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat Kumar

    2016-06-01

    The correct inference of gene regulatory networks for the understanding of the intricacies of the complex biological regulations remains an intriguing task for researchers. With the availability of large dimensional microarray data, relationships among thousands of genes can be simultaneously extracted. Among the prevalent models of reverse engineering genetic networks, S-system is considered to be an efficient mathematical tool. In this paper, Bat algorithm, based on the echolocation of bats, has been used to optimize the S-system model parameters. A decoupled S-system has been implemented to reduce the complexity of the algorithm. Initially, the proposed method has been successfully tested on an artificial network with and without the presence of noise. Based on the fact that a real-life genetic network is sparsely connected, a novel Accumulative Cardinality based decoupled S-system has been proposed. The cardinality has been varied from zero up to a maximum value, and this model has been implemented for the reconstruction of the DNA SOS repair network of Escherichia coli. The obtained results have shown significant improvements in the detection of a greater number of true regulations, and in the minimization of false detections compared to other existing methods. PMID:26932274

  8. Phase transitions in the evolution of gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Skanata, Antun; Kussell, Edo

    The role of gene regulatory networks is to respond to environmental conditions and optimize growth of the cell. A typical example is found in bacteria, where metabolic genes are activated in response to nutrient availability, and are subsequently turned off to conserve energy when their specific substrates are depleted. However, in fluctuating environmental conditions, regulatory networks could experience strong evolutionary pressures not only to turn the right genes on and off, but also to respond optimally under a wide spectrum of fluctuation timescales. The outcome of evolution is predicted by the long-term growth rate, which differentiates between optimal strategies. Here we present an analytic computation of the long-term growth rate in randomly fluctuating environments, by using mean-field and higher order expansion in the environmental history. We find that optimal strategies correspond to distinct regions in the phase space of fluctuations, separated by first and second order phase transitions. The statistics of environmental randomness are shown to dictate the possible evolutionary modes, which either change the structure of the regulatory network abruptly, or gradually modify and tune the interactions between its components.

  9. Predicting chemotherapeutic drug combinations through gene network profiling

    PubMed Central

    Nguyen, Thi Thuy Trang; Chua, Jacqueline Kia Kee; Seah, Kwi Shan; Koo, Seok Hwee; Yee, Jie Yin; Yang, Eugene Guorong; Lim, Kim Kiat; Pang, Shermaine Yu Wen; Yuen, Audrey; Zhang, Louxin; Ang, Wee Han; Dymock, Brian; Lee, Edmund Jon Deoon; Chen, Ee Sin

    2016-01-01

    Contemporary chemotherapeutic treatments incorporate the use of several agents in combination. However, selecting the most appropriate drugs for such therapy is not necessarily an easy or straightforward task. Here, we describe a targeted approach that can facilitate the reliable selection of chemotherapeutic drug combinations through the interrogation of drug-resistance gene networks. Our method employed single-cell eukaryote fission yeast (Schizosaccharomyces pombe) as a model of proliferating cells to delineate a drug resistance gene network using a synthetic lethality workflow. Using the results of a previous unbiased screen, we assessed the genetic overlap of doxorubicin with six other drugs harboring varied mechanisms of action. Using this fission yeast model, drug-specific ontological sub-classifications were identified through the computation of relative hypersensitivities. We found that human gastric adenocarcinoma cells can be sensitized to doxorubicin by concomitant treatment with cisplatin, an intra-DNA strand crosslinking agent, and suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. Our findings point to the utility of fission yeast as a model and the differential targeting of a conserved gene interaction network when screening for successful chemotherapeutic drug combinations for human cells. PMID:26791325

  10. Antagonistic Coevolution Drives Whack-a-Mole Sensitivity in Gene Regulatory Networks

    PubMed Central

    Shin, Jeewoen; MacCarthy, Thomas

    2015-01-01

    Robustness, defined as tolerance to perturbations such as mutations and environmental fluctuations, is pervasive in biological systems. However, robustness often coexists with its counterpart, evolvability—the ability of perturbations to generate new phenotypes. Previous models of gene regulatory network evolution have shown that robustness evolves under stabilizing selection, but it is unclear how robustness and evolvability will emerge in common coevolutionary scenarios. We consider a two-species model of coevolution involving one host and one parasite population. By using two interacting species, key model parameters that determine the fitness landscapes become emergent properties of the model, avoiding the need to impose these parameters externally. In our study, parasites are modeled on species such as cuckoos where mimicry of the host phenotype confers high fitness to the parasite but lower fitness to the host. Here, frequent phenotype changes are favored as each population continually adapts to the other population. Sensitivity evolves at the network level such that point mutations can induce large phenotype changes. Crucially, the sensitive points of the network are broadly distributed throughout the network and continually relocate. Each time sensitive points in the network are mutated, new ones appear to take their place. We have therefore named this phenomenon “whack-a-mole” sensitivity, after a popular fun park game. We predict that this type of sensitivity will evolve under conditions of strong directional selection, an observation that helps interpret existing experimental evidence, for example, during the emergence of bacterial antibiotic resistance. PMID:26451700

  11. An evaluation of neural networks for identification of system parameters in reactor noise signals

    SciTech Connect

    Miller, L.F.

    1991-01-01

    Several backpropagation neural networks for identifying fundamental mode eigenvalues were evaluated. The networks were trained and tested on analytical data and on results from other numerical methods. They were then used to predict first mode break frequencies for noise data from several sources. These predictions were, in turn, compared with analytical values and with results from alternative methods. Comparisons of results for some data sets suggest that the accuracy of predictions from neural networks are essentially equivalent to results from conventional methods while other evaluations indicate that either method may be superior. Experience gained from these numerical experiments provide insight for improving the performance of neural networks relative to other methods for identifying parameters associated with experimental data. Neural networks may also be used in support of conventional algorithms by providing starting points for nonlinear minimization algorithms.

  12. An evaluation of neural networks for identification of system parameters in reactor noise signals

    SciTech Connect

    Miller, L.F.

    1991-12-31

    Several backpropagation neural networks for identifying fundamental mode eigenvalues were evaluated. The networks were trained and tested on analytical data and on results from other numerical methods. They were then used to predict first mode break frequencies for noise data from several sources. These predictions were, in turn, compared with analytical values and with results from alternative methods. Comparisons of results for some data sets suggest that the accuracy of predictions from neural networks are essentially equivalent to results from conventional methods while other evaluations indicate that either method may be superior. Experience gained from these numerical experiments provide insight for improving the performance of neural networks relative to other methods for identifying parameters associated with experimental data. Neural networks may also be used in support of conventional algorithms by providing starting points for nonlinear minimization algorithms.

  13. How to infer gene networks from expression profiles, revisited.

    PubMed

    Penfold, Christopher A; Wild, David L

    2011-12-01

    Inferring the topology of a gene-regulatory network (GRN) from genome-scale time-series measurements of transcriptional change has proved useful for disentangling complex biological processes. To address the challenges associated with this inference, a number of competing approaches have previously been used, including examples from information theory, Bayesian and dynamic Bayesian networks (DBNs), and ordinary differential equation (ODE) or stochastic differential equation. The performance of these competing approaches have previously been assessed using a variety of in silico and in vivo datasets. Here, we revisit this work by assessing the performance of more recent network inference algorithms, including a novel non-parametric learning approach based upon nonlinear dynamical systems. For larger GRNs, containing hundreds of genes, these non-parametric approaches more accurately infer network structures than do traditional approaches, but at significant computational cost. For smaller systems, DBNs are competitive with the non-parametric approaches with respect to computational time and accuracy, and both of these approaches appear to be more accurate than Granger causality-based methods and those using simple ODEs models.

  14. Wisdom of crowds for robust gene network inference.

    PubMed

    Marbach, Daniel; Costello, James C; Küffner, Robert; Vega, Nicole M; Prill, Robert J; Camacho, Diogo M; Allison, Kyle R; Kellis, Manolis; Collins, James J; Stolovitzky, Gustavo

    2012-07-15

    Reconstructing gene regulatory networks from high-throughput data is a long-standing challenge. Through the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we performed a comprehensive blind assessment of over 30 network inference methods on Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae and in silico microarray data. We characterize the performance, data requirements and inherent biases of different inference approaches, and we provide guidelines for algorithm application and development. We observed that no single inference method performs optimally across all data sets. In contrast, integration of predictions from multiple inference methods shows robust and high performance across diverse data sets. We thereby constructed high-confidence networks for E. coli and S. aureus, each comprising ~1,700 transcriptional interactions at a precision of ~50%. We experimentally tested 53 previously unobserved regulatory interactions in E. coli, of which 23 (43%) were supported. Our results establish community-based methods as a powerful and robust tool for the inference of transcriptional gene regulatory networks.

  15. Wisdom of crowds for robust gene network inference.

    PubMed

    Marbach, Daniel; Costello, James C; Küffner, Robert; Vega, Nicole M; Prill, Robert J; Camacho, Diogo M; Allison, Kyle R; Kellis, Manolis; Collins, James J; Stolovitzky, Gustavo

    2012-08-01

    Reconstructing gene regulatory networks from high-throughput data is a long-standing challenge. Through the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we performed a comprehensive blind assessment of over 30 network inference methods on Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae and in silico microarray data. We characterize the performance, data requirements and inherent biases of different inference approaches, and we provide guidelines for algorithm application and development. We observed that no single inference method performs optimally across all data sets. In contrast, integration of predictions from multiple inference methods shows robust and high performance across diverse data sets. We thereby constructed high-confidence networks for E. coli and S. aureus, each comprising ~1,700 transcriptional interactions at a precision of ~50%. We experimentally tested 53 previously unobserved regulatory interactions in E. coli, of which 23 (43%) were supported. Our results establish community-based methods as a powerful and robust tool for the inference of transcriptional gene regulatory networks. PMID:22796662

  16. Functional divergence and convergence between the transcript network and gene network in lung adenocarcinoma

    PubMed Central

    Hsu, Min-Kung; Pan, Chia-Lin; Chen, Feng-Chi

    2016-01-01

    Introduction Alternative RNA splicing is a critical regulatory mechanism during tumorigenesis. However, previous oncological studies mainly focused on the splicing of individual genes. Whether and how transcript isoforms are coordinated to affect cellular functions remain underexplored. Also of great interest is how the splicing regulome cooperates with the transcription regulome to facilitate tumorigenesis. The answers to these questions are of fundamental importance to cancer biology. Results Here, we report a comparative study between the transcript-based network (TN) and the gene-based network (GN) derived from the transcriptomes of paired tumor–normal tissues from 77 lung adenocarcinoma patients. We demonstrate that the two networks differ significantly from each other in terms of patient clustering and the number and functions of network modules. Interestingly, the majority (89.5%) of multi-transcript genes have their transcript isoforms distributed in at least two TN modules, suggesting regulatory and functional divergences between transcript isoforms. Furthermore, TN and GN modules share onlŷ50%–60% of their biological functions. TN thus appears to constitute a regulatory layer separate from GN. Nevertheless, our results indicate that functional convergence and divergence both occur between TN and GN, implying complex interactions between the two regulatory layers. Finally, we report that the expression profiles of module members in both TN and GN shift dramatically yet concordantly during tumorigenesis. The mechanisms underlying this coordinated shifting remain unclear yet are worth further explorations. Conclusion We show that in lung adenocarcinoma, transcript isoforms per se are coordinately regulated to conduct biological functions not conveyed by the network of genes. However, the two networks may interact closely with each other by sharing the same or related biological functions. Unraveling the effects and mechanisms of such interactions will

  17. The Efficacy of Galaxy Shape Parameters in Photometric Redshift Estimation: A Neural Network Approach

    SciTech Connect

    Singal, J.; Shmakova, M.; Gerke, B.; Griffith, R.L.; Lotz, J.; /NOAO, Tucson

    2011-05-20

    We present a determination of the effects of including galaxy morphological parameters in photometric redshift estimation with an artificial neural network method. Neural networks, which recognize patterns in the information content of data in an unbiased way, can be a useful estimator of the additional information contained in extra parameters, such as those describing morphology, if the input data are treated on an equal footing. We show that certain principal components of the morphology information are correlated with galaxy type. However, we find that for the data used the inclusion of morphological information does not have a statistically significant benefit for photometric redshift estimation with the techniques employed here. The inclusion of these parameters may result in a trade-off between extra information and additional noise, with the additional noise becoming more dominant as more parameters are added.

  18. Inference of gene interaction networks using conserved subsequential patterns from multiple time course gene expression datasets

    PubMed Central

    2015-01-01

    Motivation Deciphering gene interaction networks (GINs) from time-course gene expression (TCGx) data is highly valuable to understand gene behaviors (e.g., activation, inhibition, time-lagged causality) at the system level. Existing methods usually use a global or local proximity measure to infer GINs from a single dataset. As the noise contained in a single data set is hardly self-resolved, the results are sometimes not reliable. Also, these proximity measurements cannot handle the co-existence of the various in vivo positive, negative and time-lagged gene interactions. Methods and results We propose to infer reliable GINs from multiple TCGx datasets using a novel conserved subsequential pattern of gene expression. A subsequential pattern is a maximal subset of genes sharing positive, negative or time-lagged correlations of one expression template on their own subsets of time points. Based on these patterns, a GIN can be built from each of the datasets. It is assumed that reliable gene interactions would be detected repeatedly. We thus use conserved gene pairs from the individual GINs of the multiple TCGx datasets to construct a reliable GIN for a species. We apply our method on six TCGx datasets related to yeast cell cycle, and validate the reliable GINs using protein interaction networks, biopathways and transcription factor-gene regulations. We also compare the reliable GINs with those GINs reconstructed by a global proximity measure Pearson correlation coefficient method from single datasets. It has been demonstrated that our reliable GINs achieve much better prediction performance especially with much higher precision. The functional enrichment analysis also suggests that gene sets in a reliable GIN are more functionally significant. Our method is especially useful to decipher GINs from multiple TCGx datasets related to less studied organisms where little knowledge is available except gene expression data. PMID:26681650

  19. Shaping protein distributions in stochastic self-regulated gene expression networks

    NASA Astrophysics Data System (ADS)

    Pájaro, Manuel; Alonso, Antonio A.; Vázquez, Carlos

    2015-09-01

    In this work, we study connections between dynamic behavior and network parameters, for self-regulatory networks. To that aim, a method to compute the regions in the space of parameters that sustain bimodal or binary protein distributions has been developed. Such regions are indicative of stochastic dynamics manifested either as transitions between absence and presence of protein or between two positive protein levels. The method is based on the continuous approximation of the chemical master equation, unlike other approaches that make use of a deterministic description, which as will be shown can be misleading. We find that bimodal behavior is a ubiquitous phenomenon in cooperative gene expression networks under positive feedback. It appears for any range of transcription and translation rate constants whenever leakage remains below a critical threshold. Above such a threshold, the region in the parameters space which sustains bimodality persists, although restricted to low transcription and high translation rate constants. Remarkably, such a threshold is independent of the transcription or translation rates or the proportion of an active or inactive promoter and depends only on the level of cooperativity. The proposed method can be employed to identify bimodal or binary distributions leading to stochastic dynamics with specific switching properties, by searching inside the parameter regions that sustain such behavior.

  20. How reliable is the linear noise approximation of gene regulatory networks?

    PubMed Central

    2013-01-01

    Background The linear noise approximation (LNA) is commonly used to predict how noise is regulated and exploited at the cellular level. These predictions are exact for reaction networks composed exclusively of first order reactions or for networks involving bimolecular reactions and large numbers of molecules. It is however well known that gene regulation involves bimolecular interactions with molecule numbers as small as a single copy of a particular gene. It is therefore questionable how reliable are the LNA predictions for these systems. Results We implement in the software package intrinsic Noise Analyzer (iNA), a system size expansion based method which calculates the mean concentrations and the variances of the fluctuations to an order of accuracy higher than the LNA. We then use iNA to explore the parametric dependence of the Fano factors and of the coefficients of variation of the mRNA and protein fluctuations in models of genetic networks involving nonlinear protein degradation, post-transcriptional, post-translational and negative feedback regulation. We find that the LNA can significantly underestimate the amplitude and period of noise-induced oscillations in genetic oscillators. We also identify cases where the LNA predicts that noise levels can be optimized by tuning a bimolecular rate constant whereas our method shows that no such regulation is possible. All our results are confirmed by stochastic simulations. Conclusion The software iNA allows the investigation of parameter regimes where the LNA fares well and where it does not. We have shown that the parametric dependence of the coefficients of variation and Fano factors for common gene regulatory networks is better described by including terms of higher order than LNA in the system size expansion. This analysis is considerably faster than stochastic simulations due to the extensive ensemble averaging needed to obtain statistically meaningful results. Hence iNA is well suited for performing

  1. Sensitive dependence on initial conditions in gene networks

    NASA Astrophysics Data System (ADS)

    Machina, A.; Edwards, R.; van den Driessche, P.

    2013-06-01

    Active regulation in gene networks poses mathematical challenges that have led to conflicting approaches to analysis. Competing regulation that keeps concentrations of some transcription factors at or near threshold values leads to so-called singular dynamics when steeply sigmoidal interactions are approximated by step functions. An extension, due to Artstein and coauthors, of the classical singular perturbation approach was suggested as an appropriate way to handle the complex situation where non-trivial dynamics, such as a limit cycle, of fast variables occur in switching domains. This non-trivial behaviour can occur when a gene regulates multiple other genes at the same threshold. Here, it is shown that it is possible for nonuniqueness to arise in such a system in the case of limiting step-function interactions. This nonuniqueness is reminiscent of but not identical to the nonuniqueness of Filippov solutions. More realistic gene network models have sigmoidal interactions, however, and in the example considered here, it is shown numerically that the corresponding phenomenon in smooth systems is a sensitivity to initial conditions that leads in the limit to densely interwoven basins of attraction of different fixed point attractors.

  2. Identification of microRNA-regulated gene networks by expression analysis of target genes

    PubMed Central

    Gennarino, Vincenzo Alessandro; D'Angelo, Giovanni; Dharmalingam, Gopuraja; Fernandez, Serena; Russolillo, Giorgio; Sanges, Remo; Mutarelli, Margherita; Belcastro, Vincenzo; Ballabio, Andrea; Verde, Pasquale; Sardiello, Marco; Banfi, Sandro

    2012-01-01

    MicroRNAs (miRNAs) and transcription factors control eukaryotic cell proliferation, differentiation, and metabolism through their specific gene regulatory networks. However, differently from transcription factors, our understanding of the processes regulated by miRNAs is currently limited. Here, we introduce gene network analysis as a new means for gaining insight into miRNA biology. A systematic analysis of all human miRNAs based on Co-expression Meta-analysis of miRNA Targets (CoMeTa) assigns high-resolution biological functions to miRNAs and provides a comprehensive, genome-scale analysis of human miRNA regulatory networks. Moreover, gene cotargeting analyses show that miRNAs synergistically regulate cohorts of genes that participate in similar processes. We experimentally validate the CoMeTa procedure through focusing on three poorly characterized miRNAs, miR-519d/190/340, which CoMeTa predicts to be associated with the TGFβ pathway. Using lung adenocarcinoma A549 cells as a model system, we show that miR-519d and miR-190 inhibit, while miR-340 enhances TGFβ signaling and its effects on cell proliferation, morphology, and scattering. Based on these findings, we formalize and propose co-expression analysis as a general paradigm for second-generation procedures to recognize bona fide targets and infer biological roles and network communities of miRNAs. PMID:22345618

  3. Network Security via Biometric Recognition of Patterns of Gene Expression

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT (Information Technology) organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time assays of gene expression products.

  4. Network Security via Biometric Recognition of Patterns of Gene Expression

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time expression and assay of gene expression products.

  5. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation.

    PubMed

    Goode, Debbie K; Obier, Nadine; Vijayabaskar, M S; Lie-A-Ling, Michael; Lilly, Andrew J; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-03-01

    Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  6. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation

    PubMed Central

    Goode, Debbie K.; Obier, Nadine; Vijayabaskar, M.S.; Lie-A-Ling, Michael; Lilly, Andrew J.; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A.; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R.; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-01-01

    Summary Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  7. Data-driven modelling of a gene regulatory network for cell fate decisions in the growing limb bud

    PubMed Central

    Uzkudun, Manu; Marcon, Luciano; Sharpe, James

    2015-01-01

    Parameter optimization coupled with model selection is a convenient approach to infer gene regulatory networks from experimental gene expression data, but so far it has been limited to single cells or static tissues where growth is not significant. Here, we present a computational study in which we determine an optimal gene regulatory network from the spatiotemporal dynamics of gene expression patterns in a complex 2D growing tissue (non-isotropic and heterogeneous growth rates). We use this method to predict the regulatory mechanisms that underlie proximodistal (PD) patterning of the developing limb bud. First, we map the expression patterns of the PD markers Meis1, Hoxa11 and Hoxa13 into a dynamic description of the tissue movements that drive limb morphogenesis. Secondly, we use reverse-engineering to test how different gene regulatory networks can interpret the opposing gradients of fibroblast growth factors (FGF) and retinoic acid (RA) to pattern the PD markers. Finally, we validate and extend the best model against various previously published manipulative experiments, including exogenous application of RA, surgical removal of the FGF source and genetic ectopic expression of Meis1. Our approach identifies the most parsimonious gene regulatory network that can correctly pattern the PD markers downstream of FGF and RA. This network reveals a new model of PD regulation which we call the “crossover model”, because the proximal morphogen (RA) controls the distal boundary of Hoxa11, while conversely the distal morphogens (FGFs) control the proximal boundary. PMID:26174932

  8. Data-driven modelling of a gene regulatory network for cell fate decisions in the growing limb bud.

    PubMed

    Uzkudun, Manu; Marcon, Luciano; Sharpe, James

    2015-07-14

    Parameter optimization coupled with model selection is a convenient approach to infer gene regulatory networks from experimental gene expression data, but so far it has been limited to single cells or static tissues where growth is not significant. Here, we present a computational study in which we determine an optimal gene regulatory network from the spatiotemporal dynamics of gene expression patterns in a complex 2D growing tissue (non-isotropic and heterogeneous growth rates). We use this method to predict the regulatory mechanisms that underlie proximodistal (PD) patterning of the developing limb bud. First, we map the expression patterns of the PD markers Meis1, Hoxa11 and Hoxa13 into a dynamic description of the tissue movements that drive limb morphogenesis. Secondly, we use reverse-engineering to test how different gene regulatory networks can interpret the opposing gradients of fibroblast growth factors (FGF) and retinoic acid (RA) to pattern the PD markers. Finally, we validate and extend the best model against various previously published manipulative experiments, including exogenous application of RA, surgical removal of the FGF source and genetic ectopic expression of Meis1. Our approach identifies the most parsimonious gene regulatory network that can correctly pattern the PD markers downstream of FGF and RA. This network reveals a new model of PD regulation which we call the "crossover model", because the proximal morphogen (RA) controls the distal boundary of Hoxa11, while conversely the distal morphogens (FGFs) control the proximal boundary.

  9. Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana

    PubMed Central

    Lee, Insuk; Ambaru, Bindu; Thakkar, Pranjali; Marcotte, Edward M.; Rhee, Seung Y.

    2010-01-01

    Plants are essential sources of food, fiber and renewable energy. Effective methods for manipulating plant traits have important agricultural and economic consequences. We introduce a rational approach for associating genes with plant traits by combined use of a genome-scale functional network and targeted reverse genetic screening. We present a probabilistic network (AraNet) of functional associations among 19,647 (73%) genes of the reference flowering plant Arabidopsis thaliana. AraNet associations have measured precision greater than literature-based protein interactions (21%) for 55% of genes, and are highly predictive for diverse biological pathways. Using AraNet, we found a 10-fold enrichment in identifying early seedling development genes. By interrogating network neighborhoods, we identify At1g80710 (now Drought sensitive 1; Drs1) and At3g05090 (now Lateral root stimulator 1; Lrs1) as novel regulators of drought sensitivity and lateral root development, respectively. AraNet (http://www.functionalnet.org/aranet/) provides a global resource for plant gene function identification and genetic dissection of plant traits. PMID:20118918

  10. Topology association analysis in weighted protein interaction network for gene prioritization

    NASA Astrophysics Data System (ADS)

    Wu, Shunyao; Shao, Fengjing; Zhang, Qi; Ji, Jun; Xu, Shaojie; Sun, Rencheng; Sun, Gengxin; Du, Xiangjun; Sui, Yi

    2016-11-01

    Although lots of algorithms for disease gene prediction have been proposed, the weights of edges are rarely taken into account. In this paper, the strengths of topology associations between disease and essential genes are analyzed in weighted protein interaction network. Empirical analysis demonstrates that compared to other genes, disease genes are weakly connected with essential genes in protein interaction network. Based on this finding, a novel global distance measurement for gene prioritization with weighted protein interaction network is proposed in this paper. Positive and negative flow is allocated to disease and essential genes, respectively. Additionally network propagation model is extended for weighted network. Experimental results on 110 diseases verify the effectiveness and potential of the proposed measurement. Moreover, weak links play more important role than strong links for gene prioritization, which is meaningful to deeply understand protein interaction network.

  11. Network Scale Modeling of Lymph Transport and Its Effective Pumping Parameters.

    PubMed

    Jamalian, Samira; Davis, Michael J; Zawieja, David C; Moore, James E

    2016-01-01

    The lymphatic system is an open-ended network of vessels that run in parallel to the blood circulation system. These vessels are present in almost all of the tissues of the body to remove excess fluid. Similar to blood vessels, lymphatic vessels are found in branched arrangements. Due to the complexity of experiments on lymphatic networks and the difficulty to control the important functional parameters in these setups, computational modeling becomes an effective and essential means of understanding lymphatic network pumping dynamics. Here we aimed to determine the effect of pumping coordination in branched network structures on the regulation of lymph flow. Lymphatic vessel networks were created by building upon our previous lumped-parameter model of lymphangions in series. In our network model, each vessel is itself divided into multiple lymphangions by lymphatic valves that help maintain forward flow. Vessel junctions are modeled by equating the pressures and balancing mass flows. Our results demonstrated that a 1.5 s rest-period between contractions optimizes the flow rate. A time delay between contractions of lymphangions at the junction of branches provided an advantage over synchronous pumping, but additional time delays within individual vessels only increased the flow rate for adverse pressure differences greater than 10.5 cmH2O. Additionally, we quantified the pumping capability of the system under increasing levels of steady transmural pressure and outflow pressure for different network sizes. We observed that peak flow rates normally occurred under transmural pressures between 2 to 4 cmH2O (for multiple pressure differences and network sizes). Networks with 10 lymphangions per vessel had the highest pumping capability under a wide range of adverse pressure differences. For favorable pressure differences, pumping was more efficient with fewer lymphangions. These findings are valuable for translating experimental measurements from the single lymphangion

  12. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.

    PubMed

    Zhang, Shao-Wu; Shao, Dong-Dong; Zhang, Song-Yao; Wang, Yi-Bin

    2014-06-01

    The identification of disease genes is very important not only to provide greater understanding of gene function and cellular mechanisms which drive human disease, but also to enhance human disease diagnosis and treatment. Recently, high-throughput techniques have been applied to detect dozens or even hundreds of candidate genes. However, experimental approaches to validate the many candidates are usually time-consuming, tedious and expensive, and sometimes lack reproducibility. Therefore, numerous theoretical and computational methods (e.g. network-based approaches) have been developed to prioritize candidate disease genes. Many network-based approaches implicitly utilize the observation that genes causing the same or similar diseases tend to correlate with each other in gene-protein relationship networks. Of these network approaches, the random walk with restart algorithm (RWR) is considered to be a state-of-the-art approach. To further improve the performance of RWR, we propose a novel method named ESFSC to identify disease-related genes, by enlarging the seed set according to the centrality of disease genes in a network and fusing information of the protein-protein interaction (PPI) network topological similarity and the gene expression correlation. The ESFSC algorithm restarts at all of the nodes in the seed set consisting of the known disease genes and their k-nearest neighbor nodes, then walks in the global network separately guided by the similarity transition matrix constructed with PPI network topological similarity properties and the correlational transition matrix constructed with the gene expression profiles. As a result, all the genes in the network are ranked by weighted fusing the above results of the RWR guided by two types of transition matrices. Comprehensive simulation results of the 10 diseases with 97 known disease genes collected from the Online Mendelian Inheritance in Man (OMIM) database show that ESFSC outperforms existing methods for

  13. Evolution of a core gene network for skeletogenesis in chordates.

    PubMed

    Hecht, Jochen; Stricker, Sigmar; Wiecha, Ulrike; Stiege, Asita; Panopoulou, Georgia; Podsiadlowski, Lars; Poustka, Albert J; Dieterich, Christoph; Ehrich, Siegfried; Suvorova, Julia; Mundlos, Stefan; Seitz, Volkhard

    2008-03-21

    The skeleton is one of the most important features for the reconstruction of vertebrate phylogeny but few data are available to understand its molecular origin. In mammals the Runt genes are central regulators of skeletogenesis. Runx2 was shown to be essential for osteoblast differentiation, tooth development, and bone formation. Both Runx2 and Runx3 are essential for chondrocyte maturation. Furthermore, Runx2 directly regulates Indian hedgehog expression, a master coordinator of skeletal development. To clarify the correlation of Runt gene evolution and the emergence of cartilage and bone in vertebrates, we cloned the Runt genes from hagfish as representative of jawless fish (MgRunxA, MgRunxB) and from dogfish as representative of jawed cartilaginous fish (ScRunx1-3). According to our phylogenetic reconstruction the stem species of chordates harboured a single Runt gene and thereafter Runt locus duplications occurred during early vertebrate evolution. All newly isolated Runt genes were expressed in cartilage according to quantitative PCR. In situ hybridisation confirmed high MgRunxA expression in hard cartilage of hagfish. In dogfish ScRunx2 and ScRunx3 were expressed in embryonal cartilage whereas all three Runt genes were detected in teeth and placoid scales. In cephalochordates (lancelets) Runt, Hedgehog and SoxE were strongly expressed in the gill bars and expression of Runt and Hedgehog was found in endo- as well as ectodermal cells. Furthermore we demonstrate that the lancelet Runt protein binds to Runt binding sites in the lancelet Hedgehog promoter and regulates its activity. Together, these results suggest that Runt and Hedgehog were part of a core gene network for cartilage formation, which was already active in the gill bars of the common ancestor of cephalochordates and vertebrates and diversified after Runt duplications had occurred during vertebrate evolution. The similarities in expression patterns of Runt genes support the view that teeth and

  14. Evolution of a Core Gene Network for Skeletogenesis in Chordates

    PubMed Central

    Hecht, Jochen; Panopoulou, Georgia; Podsiadlowski, Lars; Poustka, Albert J.; Dieterich, Christoph; Ehrich, Siegfried; Suvorova, Julia; Mundlos, Stefan; Seitz, Volkhard

    2008-01-01

    The skeleton is one of the most important features for the reconstruction of vertebrate phylogeny but few data are available to understand its molecular origin. In mammals the Runt genes are central regulators of skeletogenesis. Runx2 was shown to be essential for osteoblast differentiation, tooth development, and bone formation. Both Runx2 and Runx3 are essential for chondrocyte maturation. Furthermore, Runx2 directly regulates Indian hedgehog expression, a master coordinator of skeletal development. To clarify the correlation of Runt gene evolution and the emergence of cartilage and bone in vertebrates, we cloned the Runt genes from hagfish as representative of jawless fish (MgRunxA, MgRunxB) and from dogfish as representative of jawed cartilaginous fish (ScRunx1–3). According to our phylogenetic reconstruction the stem species of chordates harboured a single Runt gene and thereafter Runt locus duplications occurred during early vertebrate evolution. All newly isolated Runt genes were expressed in cartilage according to quantitative PCR. In situ hybridisation confirmed high MgRunxA expression in hard cartilage of hagfish. In dogfish ScRunx2 and ScRunx3 were expressed in embryonal cartilage whereas all three Runt genes were detected in teeth and placoid scales. In cephalochordates (lancelets) Runt, Hedgehog and SoxE were strongly expressed in the gill bars and expression of Runt and Hedgehog was found in endo- as well as ectodermal cells. Furthermore we demonstrate that the lancelet Runt protein binds to Runt binding sites in the lancelet Hedgehog promoter and regulates its activity. Together, these results suggest that Runt and Hedgehog were part of a core gene network for cartilage formation, which was already active in the gill bars of the common ancestor of cephalochordates and vertebrates and diversified after Runt duplications had occurred during vertebrate evolution. The similarities in expression patterns of Runt genes support the view that teeth and

  15. Neural model of gene regulatory network: a survey on supportive meta-heuristics.

    PubMed

    Biswas, Surama; Acharyya, Sriyankar

    2016-06-01

    Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here. PMID:27048512

  16. Neural model of gene regulatory network: a survey on supportive meta-heuristics.

    PubMed

    Biswas, Surama; Acharyya, Sriyankar

    2016-06-01

    Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.

  17. Adaptive RBF network for parameter estimation and stable air-fuel ratio control.

    PubMed

    Wang, Shiwei; Yu, D L

    2008-01-01

    In the application of variable structure control to engine air-fuel ratio, the ratio is subjected to chattering due to system uncertainty, such as unknown parameters or time varying dynamics. This paper proposes an adaptive neural network method to estimate two immeasurable physical parameters on-line and to compensate for the model uncertainty and engine time varying dynamics, so that the chattering is substantially reduced and the air-fuel ratio is regulated within the desired range of the stoichiometric value. The adaptive law of the neural network is derived using the Lyapunov method, so that the stability of the whole system and the convergence of the networks are guaranteed. Computer simulations based on a mean value engine model demonstrate the effectiveness of the technique. PMID:18166378

  18. On the use of neural network techniques for the identification of ship stability parameters at sea

    SciTech Connect

    Haddara, M.R.

    1995-12-31

    In this work, neural network techniques are used to identify the stability parameters for a ship sailing in a random sea. The random decrement is calculated from the random roll response. This equation has been shown to resemble the differential equation describing the free rolling motion. The nonlinearities in the free role equation in addition to the linear damping term are lumped in one nonlinear function, F({phi},{dot {phi}}), in the role angle, {phi}, and velocity, {dot {phi}}. A feedforward network with a single hidden layer is then used to identify this general function. The function, F({phi},{dot {phi}}) can be used to identify the parameters in the righting moment using regression techniques. An example for applying this technique using model experiments for a series 60 block 60 model is presented. The agreement between curves predicted using neural network techniques and the actual curves is excellent.

  19. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.

    PubMed

    Méheust, Raphaël; Zelzion, Ehud; Bhattacharya, Debashish; Lopez, Philippe; Bapteste, Eric

    2016-03-29

    The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the "recycling" of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance. PMID:26976593

  20. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis

    PubMed Central

    Méheust, Raphaël; Zelzion, Ehud; Bhattacharya, Debashish; Lopez, Philippe; Bapteste, Eric

    2016-01-01

    The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the “recycling” of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance. PMID:26976593

  1. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.

    PubMed

    Méheust, Raphaël; Zelzion, Ehud; Bhattacharya, Debashish; Lopez, Philippe; Bapteste, Eric

    2016-03-29

    The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the "recycling" of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance.

  2. Elements of an algorithm for optimizing a parameter-structural neural network

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2016-06-01

    The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.

  3. Reverse engineering and analysis of genome-wide gene regulatory networks from gene expression profiles using high-performance computing.

    PubMed

    Belcastro, Vincenzo; Gregoretti, Francesco; Siciliano, Velia; Santoro, Michele; D'Angelo, Giovanni; Oliva, Gennaro; di Bernardo, Diego

    2012-01-01

    Regulation of gene expression is a carefully regulated phenomenon in the cell. “Reverse-engineering” algorithms try to reconstruct the regulatory interactions among genes from genome-scale measurements of gene expression profiles (microarrays). Mammalian cells express tens of thousands of genes; hence, hundreds of gene expression profiles are necessary in order to have acceptable statistical evidence of interactions between genes. As the number of profiles to be analyzed increases, so do computational costs and memory requirements. In this work, we designed and developed a parallel computing algorithm to reverse-engineer genome-scale gene regulatory networks from thousands of gene expression profiles. The algorithm is based on computing pairwise Mutual Information between each gene-pair. We successfully tested it to reverse engineer the Mus Musculus (mouse) gene regulatory network in liver from gene expression profiles collected from a public repository. A parallel hierarchical clustering algorithm was implemented to discover “communities” within the gene network. Network communities are enriched for genes involved in the same biological functions. The inferred network was used to identify two mitochondrial proteins.

  4. Complex Dynamic Behavior in Simple Gene Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Santillán Zerón, Moisés

    2007-02-01

    Knowing the complete genome of a given species is just a piece of the puzzle. To fully unveil the systems behavior of an organism, an organ, or even a single cell, we need to understand the underlying gene regulatory dynamics. Given the complexity of the whole system, the ultimate goal is unattainable for the moment. But perhaps, by analyzing the most simple genetic systems, we may be able to develop the mathematical techniques and procedures required to tackle more complex genetic networks in the near future. In the present work, the techniques for developing mathematical models of simple bacterial gene networks, like the tryptophan and lactose operons are introduced. Despite all of the underlying assumptions, such models can provide valuable information regarding gene regulation dynamics. Here, we pay special attention to robustness as an emergent property. These notes are organized as follows. In the first section, the long historical relation between mathematics, physics, and biology is briefly reviewed. Recently, the multidisciplinary work in biology has received great attention in the form of systems biology. The main concepts of this novel science are discussed in the second section. A very slim introduction to the essential concepts of molecular biology is given in the third section. In the fourth section, a brief introduction to chemical kinetics is presented. Finally, in the fifth section, a mathematical model for the lactose operon is developed and analyzed..

  5. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    PubMed Central

    Sîrbu, Alina; Crane, Martin; Ruskin, Heather J.

    2015-01-01

    Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions). Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  6. Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions.

    PubMed

    Ammar, Amine; Cueto, Elías; Chinesta, Francisco

    2012-09-01

    The numerical solution of the chemical master equation (CME) governing gene regulatory networks and cell signaling processes remains a challenging task owing to its complexity, exponentially growing with the number of species involved. Although most of the existing techniques rely on the use of Monte Carlo-like techniques, we present here a new technique based on the approximation of the unknown variable (the probability of having a particular chemical state) in terms of a finite sum of separable functions. In this framework, the complexity of the CME grows only linearly with the number of state space dimensions. This technique generalizes the so-called Hartree approximation, by using terms as needed in the finite sums decomposition for ensuring convergence. But noteworthy, the ease of the approximation allows for an easy treatment of unknown parameters (as is frequently the case when modeling gene regulatory networks, for instance). These unknown parameters can be considered as new space dimensions. In this way, the proposed method provides solutions for any value of the unknown parameters (within some interval of arbitrary size) in one execution of the program.

  7. Parameter estimation and topology identification of uncertain fractional order complex networks

    NASA Astrophysics Data System (ADS)

    Si, Gangquan; Sun, Zhiyong; Zhang, Hongying; Zhang, Yanbin

    2012-12-01

    This paper focuses on a significant issue in the research of fractional order complex network, i.e., the identification problem of unknown system parameters and network topologies in uncertain complex networks with fractional-order node dynamics. Based on the stability analysis of fractional order systems and the adaptive control method, we propose a novel and general approach to address this challenge. The theoretical results in this paper have generalized the synchronization-based identification method that has been reported in several literatures on identifying integer order complex networks. We further derive the sufficient condition that ensures successful network identification. An uncertain complex network with four fractional-order Lorenz systems is employed to verify the effectiveness of the proposed approach. The numerical results show that this approach is applicable for online monitoring of the static or changing network topology. In addition, we present a discussion to explore which factor would influence the identification process. Certain interesting conclusions from the discussion are obtained, which reveal that large coupling strengths and small fractional orders are both harmful for a successful identification.

  8. Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes

    PubMed Central

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR–essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR–essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR–essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR–essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR–induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple

  9. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.

    PubMed

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR-essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR-essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR-essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR-essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR-induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led

  10. Quantitative assessment of gene expression network module-validation methods.

    PubMed

    Li, Bing; Zhang, Yingying; Yu, Yanan; Wang, Pengqian; Wang, Yongcheng; Wang, Zhong; Wang, Yongyan

    2015-01-01

    Validation of pluripotent modules in diverse networks holds enormous potential for systems biology and network pharmacology. An arising challenge is how to assess the accuracy of discovering all potential modules from multi-omic networks and validating their architectural characteristics based on innovative computational methods beyond function enrichment and biological validation. To display the framework progress in this domain, we systematically divided the existing Computational Validation Approaches based on Modular Architecture (CVAMA) into topology-based approaches (TBA) and statistics-based approaches (SBA). We compared the available module validation methods based on 11 gene expression datasets, and partially consistent results in the form of homogeneous models were obtained with each individual approach, whereas discrepant contradictory results were found between TBA and SBA. The TBA of the Zsummary value had a higher Validation Success Ratio (VSR) (51%) and a higher Fluctuation Ratio (FR) (80.92%), whereas the SBA of the approximately unbiased (AU) p-value had a lower VSR (12.3%) and a lower FR (45.84%). The Gray area simulated study revealed a consistent result for these two models and indicated a lower Variation Ratio (VR) (8.10%) of TBA at 6 simulated levels. Despite facing many novel challenges and evidence limitations, CVAMA may offer novel insights into modular networks. PMID:26470848

  11. Novel genes dramatically alter regulatory network topology in amphioxus

    PubMed Central

    Zhang, Qing; Zmasek, Christian M; Dishaw, Larry J; Mueller, M Gail; Ye, Yuzhen; Litman, Gary W; Godzik, Adam

    2008-01-01

    Background Regulation in protein networks often utilizes specialized domains that 'join' (or 'connect') the network through specific protein-protein interactions. The innate immune system, which provides a first and, in many species, the only line of defense against microbial and viral pathogens, is regulated in this way. Amphioxus (Branchiostoma floridae), whose genome was recently sequenced, occupies a unique position in the evolution of innate immunity, having diverged within the chordate lineage prior to the emergence of the adaptive immune system in vertebrates. Results The repertoire of several families of innate immunity proteins is expanded in amphioxus compared to both vertebrates and protostome invertebrates. Part of this expansion consists of genes encoding proteins with unusual domain architectures, which often contain both upstream receptor and downstream activator domains, suggesting a potential role for direct connections (shortcuts) that bypass usual signal transduction pathways. Conclusion Domain rearrangements can potentially alter the topology of protein-protein interaction (and regulatory) networks. The extent of such arrangements in the innate immune network of amphioxus suggests that domain shuffling, which is an important mechanism in the evolution of multidomain proteins, has also shaped the development of immune systems. PMID:18680598

  12. Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.

    PubMed

    Rubiolo, Mariano; Milone, Diego H; Stegmayer, Georgina

    2015-01-01

    Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.

  13. Data and programs in support of network analysis of genes and their association with diseases.

    PubMed

    Kontou, Panagiota I; Pavlopoulou, Athanasia; Dimou, Niki L; Pavlopoulos, Georgios A; Bagos, Pantelis G

    2016-09-01

    The network-based approaches that were employed in order to depict the relationships between human genetic diseases and their associated genes are described. Towards this direction, monopartite disease-disease and gene-gene networks were constructed from bipartite gene-disease association networks. The latter were created by collecting and integrating data from three diverse resources, each one with different content, covering from rare monogenic disorders to common complex diseases. Moreover, topological and clustering graph analyses were performed. The methodology and the programs presented in this article are related to the research article entitled "Network analysis of genes and their association with diseases" [1]. PMID:27508260

  14. Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data.

    PubMed

    Liu, Zhi-Ping

    2015-02-01

    Transcriptional regulation plays vital roles in many fundamental biological processes. Reverse engineering of genome-wide regulatory networks from high-throughput transcriptomic data provides a promising way to characterize the global scenario of regulatory relationships between regulators and their targets. In this review, we summarize and categorize the main frameworks and methods currently available for inferring transcriptional regulatory networks from microarray gene expression profiling data. We overview each of strategies and introduce representative methods respectively. Their assumptions, advantages, shortcomings, and possible improvements and extensions are also clarified and commented.

  15. A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises

    PubMed Central

    Chen, Bor-Sen; Chang, Yu-Te

    2008-01-01

    Background Gene networks in nanoscale are of nonlinear stochastic process. Time delays are common and substantial in these biochemical processes due to gene transcription, translation, posttranslation protein modification and diffusion. Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering and biochemical process delay compensation in gene networks is crucial to understand the signal processing in gene networks and the design of noise-tolerant and delay-robust gene circuits for synthetic biology. Results A nonlinear stochastic dynamic model with multiple time delays is proposed for describing a gene network under process delays, intrinsic molecular fluctuations, and extrinsic molecular noises. Then, the stochastic biochemical processing scheme of gene regulatory networks for attenuating these molecular noises and compensating process delays is investigated from the nonlinear signal processing perspective. In order to improve the robust stability for delay toleration and noise filtering, a robust gene circuit for nonlinear stochastic time-delay gene networks is engineered based on the nonlinear robust H∞ stochastic filtering scheme. Further, in order to avoid solving these complicated noise-tolerant and delay-robust design problems, based on Takagi-Sugeno (T-S) fuzzy time-delay model and linear matrix inequalities (LMIs) technique, a systematic gene circuit design method is proposed to simplify the design procedure. Conclusion The proposed gene circuit design method has much potential for application to systems biology, synthetic biology and drug design when a gene regulatory network has to be designed for improving its robust stability and filtering ability of disease-perturbed gene network or when a synthetic gene network needs to perform robustly under process delays and molecular noises. PMID:19038029

  16. Explicitly integrating parameter, input, and structure uncertainties into Bayesian Neural Networks for probabilistic hydrologic forecasting

    SciTech Connect

    Zhang, Xuesong; Liang, Faming; Yu, Beibei; Zong, Ziliang

    2011-11-09

    Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework to incorporate the uncertainties associated with input, model structure, and parameter into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform the BNNs that only consider uncertainties associated with parameter and model structure. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters show that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of different uncertainty sources and including output error into the MCMC framework are expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting.

  17. Parameters Affecting Image-guided, Hydrodynamic Gene Delivery to Swine Liver

    PubMed Central

    Kamimura, Kenya; Suda, Takeshi; Zhang, Guisheng; Aoyagi, Yutaka; Liu, Dexi

    2013-01-01

    Development of a safe and effective method for gene delivery to hepatocytes is a critical step toward gene therapy for liver diseases. Here, we assessed the parameters for gene delivery to the livers of large animals (pigs, 40–65 kg) using an image-guided hydrodynamics-based procedure that involves image-guided catheter insertion into the lobular hepatic vein and hydrodynamic injection of reporter plasmids using a computer-controlled injector. We demonstrated that injection parameters (relative position of the catheter in the hepatic vasculature, intravascular pressure upon injection, and injection volume) are directly related to the safety and efficiency of the procedure. By optimizing these parameters, we explored for the first time, the advantage of the procedure for sequential injections to multiple lobes in human-sized pigs. The optimized procedure resulted in sustained expression of the human α-1 antitrypsin gene in livers for more than 2 months after gene delivery. In addition, repeated hydrodynamic gene delivery was safely conducted and no adverse events were seen in the entire period of the study. Our results support the clinical applicability of the image-guided hydrodynamic gene delivery method for the treatment of liver diseases. PMID:24129227

  18. Quantitative and logic modelling of gene and molecular networks

    PubMed Central

    Le Novère, Nicolas

    2015-01-01

    Behaviours of complex biomolecular systems are often irreducible to the elementary properties of their individual components. Explanatory and predictive mathematical models are therefore useful for fully understanding and precisely engineering cellular functions. The development and analyses of these models require their adaptation to the problems that need to be solved and the type and amount of available genetic or molecular data. Quantitative and logic modelling are among the main methods currently used to model molecular and gene networks. Each approach comes with inherent advantages and weaknesses. Recent developments show that hybrid approaches will become essential for further progress in synthetic biology and in the development of virtual organisms. PMID:25645874

  19. Neural network predictions of acoustical parameters in multi-purpose performance halls.

    PubMed

    Cheung, L Y; Tang, S K

    2013-09-01

    A detailed binaural sound measurement was carried out in two multi-purpose performance halls of different seating capacities and designs in Hong Kong in the present study. The effectiveness of using neural network in the predictions of the acoustical properties using a limited number of measurement points was examined. The root-mean-square deviation from measurements, statistical parameter distribution matching, and the results of a t-test for vanishing mean difference between simulations and measurements were adopted as the evaluation criteria for the neural network performance. The audience locations relative to the sound source were used as the inputs to the neural network. Results show that the neural network training scheme using nine uniformly located measurement points in each specific hall area is the best choice regardless of the hall setting and design. It is also found that the neural network prediction of hall spaciousness does not require a large amount of training data, but the accuracy of the reverberance related parameter predictions increases with increasing volume of training data.

  20. Evolutionary Design of Gene Networks: Forced Evolution by Genomic Parasites

    PubMed Central

    Spirov, A. V.; Zagriychuk, E. A.; Holloway, D. M.

    2014-01-01

    The co-evolution of species with their genomic parasites (transposons) is thought to be one of the primary ways of rewiring gene regulatory networks (GRNs). We develop a framework for conducting evolutionary computations (EC) using the transposon mechanism. We find that the selective pressure of transposons can speed evolutionary searches for solutions and lead to outgrowth of GRNs (through co-option of new genes to acquire insensitivity to the attacking transposons). We test the approach by finding GRNs which can solve a fundamental problem in developmental biology: how GRNs in early embryo development can robustly read maternal signaling gradients, despite continued attacks on the genome by transposons. We observed co-evolutionary oscillations in the abundance of particular GRNs and their transposons, reminiscent of predator-prey or host-parasite dynamics. PMID:25558118

  1. A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks

    PubMed Central

    Kerkhofs, Johan; Geris, Liesbet

    2015-01-01

    Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model’s scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. PMID:26067297

  2. A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks.

    PubMed

    Kerkhofs, Johan; Geris, Liesbet

    2015-01-01

    Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model's scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. PMID:26067297

  3. Relative stability of network states in Boolean network models of gene regulation in development.

    PubMed

    Zhou, Joseph Xu; Samal, Areejit; d'Hérouël, Aymeric Fouquier; Price, Nathan D; Huang, Sui

    2016-01-01

    Progress in cell type reprogramming has revived the interest in Waddington's concept of the epigenetic landscape. Recently researchers developed the quasi-potential theory to represent the Waddington's landscape. The Quasi-potential U(x), derived from interactions in the gene regulatory network (GRN) of a cell, quantifies the relative stability of network states, which determine the effort required for state transitions in a multi-stable dynamical system. However, quasi-potential landscapes, originally developed for continuous systems, are not suitable for discrete-valued networks which are important tools to study complex systems. In this paper, we provide a framework to quantify the landscape for discrete Boolean networks (BNs). We apply our framework to study pancreas cell differentiation where an ensemble of BN models is considered based on the structure of a minimal GRN for pancreas development. We impose biologically motivated structural constraints (corresponding to specific type of Boolean functions) and dynamical constraints (corresponding to stable attractor states) to limit the space of BN models for pancreas development. In addition, we enforce a novel functional constraint corresponding to the relative ordering of attractor states in BN models to restrict the space of BN models to the biological relevant class. We find that BNs with canalyzing/sign-compatible Boolean functions best capture the dynamics of pancreas cell differentiation. This framework can also determine the genes' influence on cell state transitions, and thus can facilitate the rational design of cell reprogramming protocols.

  4. A study of neural network parameters for improvement in classification accuracy

    NASA Astrophysics Data System (ADS)

    Pathak, Avijit; Tiwari, K. C.

    2016-05-01

    Hyperspectral data due to large number of spectral bands facilitates discrimination between large numbers of classes in a data; however, the advantage afforded by the hyperspectral data often tends to get lost in the limitations of convection al classifier techniques. Artificial Neural Networks (ANN) in several studies has shown to outperform convection al classifiers, however; there are several issues with regard to selection of parameters for achieving best possible classification accuracy. Objectives of this study have been accordingly formulated to include an investigation of t he effect of various Neural Network parameters on the accuracy of hyperspectral image classification. AVIRIS Hyperspectral Indian Pine Test site 3 dataset acquiredin220 Bands on June 12, 1992 has been used in the stud y. Thereafter, maximal feature extraction technique of Principle component analysis (PCA) is used to reduce the dataset t o 10 bands preserving of 99.96% variance. The data contains 16 major classes of which 4 have been considered for ANN based classification. The parameters selected for the study are - number of hidden layers, hidden Nodes, training sample size, learning rate and learning momentum. Backpropagation method of learning is adopted. The overall accuracy of the network trained has been assessed using test sample size of 300 pixels. Although, the study throws up certain distinct ranges within which higher classification accuracies can be expected, however, no definite relationship could be identified between various ANN parameters under study.

  5. Measurement variation determines the gene network topology reconstructed from experimental data: a case study of the yeast cyclin network.

    PubMed

    To, Cuong Chieu; Vohradsky, Jiri

    2010-09-01

    Inference of the topology of gene regulatory networks from experimental data is one of the primary challenges of systems biology. In an example of a genetic network of cyclins in the yeast cell cycle, we analyzed static genome-wide location data together with microarray kinetic measurements using a recurrent neural network-based model of gene expression and a newly developed, unbiased algorithm based on evolutionary programming principles. The modeling and simulation of gene expression dynamics identified cyclin genetic networks that were active during the cell cycle. We document that because there is inherent experimental variation, it is not possible to identify a single genetic network, only a set of equivalent networks with the same probability of occurrence. Analysis of these networks showed that each target gene was controlled by only a few regulators and that the control was robust. These results led to the reformulation of the cyclin genetic network in the yeast cell cycle as previously published. The analysis shows that with the methodologies that are currently available, it is not possible to predict only one genetic network; rather, we must work with the hypothesis of multiple, equivalent networks. Chromatin immunoprecipitation (ChIP)-on-chip experiments are not sufficient to predict the functional networks that are active during an investigated process. Such predictions must be considered as only potential, and their actual realization during particular cellular processes must be identified by incorporating both kinetic and other types of data.

  6. Electrotransfer parameters as a tool for controlled and targeted gene expression in skin

    PubMed Central

    Kos, Spela; Blagus, Tanja; Cemazar, Maja; Lampreht Tratar, Ursa; Stimac, Monika; Prosen, Lara; Dolinsek, Tanja; Kamensek, Urska; Kranjc, Simona; Steinstraesser, Lars; Vandermeulen, Gaëlle; Préat, Véronique; Sersa, Gregor

    2016-01-01

    Skin is an attractive target for gene electrotransfer. It consists of different cell types that can be transfected, leading to various responses to gene electrotransfer. We demonstrate that these responses could be controlled by selecting the appropriate electrotransfer parameters. Specifically, the application of low or high electric pulses, applied by multi-electrode array, provided the possibility to control the depth of the transfection in the skin, the duration and the level of gene expression, as well as the local or systemic distribution of the transgene. The influence of electric pulse type was first studied using a plasmid encoding a reporter gene (DsRed). Then, plasmids encoding therapeutic genes (IL-12, shRNA against endoglin, shRNA against melanoma cell adhesion molecule) were used, and their effects on wound healing and cutaneous B16F10 melanoma tumors were investigated. The high-voltage pulses resulted in gene expression that was restricted to superficial skin layers and induced a local response. In contrast, the low-voltage electric pulses promoted transfection into the deeper skin layers, resulting in prolonged gene expression and higher transgene production, possibly with systemic distribution. Therefore, in the translation into the clinics, it will be of the utmost importance to adjust the electrotransfer parameters for different therapeutic approaches and specific mode of action of the therapeutic gene. PMID:27574782

  7. Electrotransfer parameters as a tool for controlled and targeted gene expression in skin.

    PubMed

    Kos, Spela; Blagus, Tanja; Cemazar, Maja; Lampreht Tratar, Ursa; Stimac, Monika; Prosen, Lara; Dolinsek, Tanja; Kamensek, Urska; Kranjc, Simona; Steinstraesser, Lars; Vandermeulen, Gaëlle; Préat, Véronique; Sersa, Gregor

    2016-01-01

    Skin is an attractive target for gene electrotransfer. It consists of different cell types that can be transfected, leading to various responses to gene electrotransfer. We demonstrate that these responses could be controlled by selecting the appropriate electrotransfer parameters. Specifically, the application of low or high electric pulses, applied by multi-electrode array, provided the possibility to control the depth of the transfection in the skin, the duration and the level of gene expression, as well as the local or systemic distribution of the transgene. The influence of electric pulse type was first studied using a plasmid encoding a reporter gene (DsRed). Then, plasmids encoding therapeutic genes (IL-12, shRNA against endoglin, shRNA against melanoma cell adhesion molecule) were used, and their effects on wound healing and cutaneous B16F10 melanoma tumors were investigated. The high-voltage pulses resulted in gene expression that was restricted to superficial skin layers and induced a local response. In contrast, the low-voltage electric pulses promoted transfection into the deeper skin layers, resulting in prolonged gene expression and higher transgene production, possibly with systemic distribution. Therefore, in the translation into the clinics, it will be of the utmost importance to adjust the electrotransfer parameters for different therapeutic approaches and specific mode of action of the therapeutic gene. PMID:27574782

  8. Discovering gene re-ranking efficiency and conserved gene-gene relationships derived from gene co-expression network analysis on breast cancer data.

    PubMed

    Bourdakou, Marilena M; Athanasiadis, Emmanouil I; Spyrou, George M

    2016-01-01

    Systemic approaches are essential in the discovery of disease-specific genes, offering a different perspective and new tools on the analysis of several types of molecular relationships, such as gene co-expression or protein-protein interactions. However, due to lack of experimental information, this analysis is not fully applicable. The aim of this study is to reveal the multi-potent contribution of statistical network inference methods in highlighting significant genes and interactions. We have investigated the ability of statistical co-expression networks to highlight and prioritize genes for breast cancer subtypes and stages in terms of: (i) classification efficiency, (ii) gene network pattern conservation, (iii) indication of involved molecular mechanisms and (iv) systems level momentum to drug repurposing pipelines. We have found that statistical network inference methods are advantageous in gene prioritization, are capable to contribute to meaningful network signature discovery, give insights regarding the disease-related mechanisms and boost drug discovery pipelines from a systems point of view. PMID:26892392

  9. Discovering gene re-ranking efficiency and conserved gene-gene relationships derived from gene co-expression network analysis on breast cancer data

    PubMed Central

    Bourdakou, Marilena M.; Athanasiadis, Emmanouil I.; Spyrou, George M.

    2016-01-01

    Systemic approaches are essential in the discovery of disease-specific genes, offering a different perspective and new tools on the analysis of several types of molecular relationships, such as gene co-expression or protein-protein interactions. However, due to lack of experimental information, this analysis is not fully applicable. The aim of this study is to reveal the multi-potent contribution of statistical network inference methods in highlighting significant genes and interactions. We have investigated the ability of statistical co-expression networks to highlight and prioritize genes for breast cancer subtypes and stages in terms of: (i) classification efficiency, (ii) gene network pattern conservation, (iii) indication of involved molecular mechanisms and (iv) systems level momentum to drug repurposing pipelines. We have found that statistical network inference methods are advantageous in gene prioritization, are capable to contribute to meaningful network signature discovery, give insights regarding the disease-related mechanisms and boost drug discovery pipelines from a systems point of view. PMID:26892392

  10. Gene network analysis of Arabidopsis thaliana flower development through dynamic gene perturbations.

    PubMed

    Ó'Maoiléidigh, Diarmuid S; Thomson, Bennett; Raganelli, Andrea; Wuest, Samuel E; Ryan, Patrick T; Kwaśniewska, Kamila; Carles, Cristel C; Graciet, Emmanuelle; Wellmer, Frank

    2015-07-01

    Understanding how flowers develop from undifferentiated stem cells has occupied developmental biologists for decades. Key to unraveling this process is a detailed knowledge of the global regulatory hierarchies that control developmental transitions, cell differentiation and organ growth. These hierarchies may be deduced from gene perturbation experiments, which determine the effects on gene expression after specific disruption of a regulatory gene. Here, we tested experimental strategies for gene perturbation experiments during Arabidopsis thaliana flower development. We used artificial miRNAs (amiRNAs) to disrupt the functions of key floral regulators, and expressed them under the control of various inducible promoter systems that are widely used in the plant research community. To be able to perform genome-wide experiments with stage-specific resolution using the various inducible promoter systems for gene perturbation experiments, we also generated a series of floral induction systems that allow collection of hundreds of synchronized floral buds from a single plant. Based on our results, we propose strategies for performing dynamic gene perturbation experiments in flowers, and outline how they may be combined with versions of the floral induction system to dissect the gene regulatory network underlying flower development.

  11. Linear and nonlinear ARMA model parameter estimation using an artificial neural network

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Cohen, R. J.

    1997-01-01

    This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

  12. Use of Network Analysis to Establish Neurosurgical Parameters in Gliomas and Epilepsy.

    PubMed

    Maesawa, Satoshi; Bagarinao, Epifanio; Fujii, Masazumi; Futamura, Miyako; Wakabayashi, Toshihiko

    2016-01-01

    Cutting-edge neuroimaging technologies can facilitate preoperative evaluation in various neurosurgical settings. Surgery for gliomas and epilepsy requires precise localization for resection due to the need to preserve (or perhaps improve) higher cognitive functions. Accordingly, a hodological approach should be taken that considers subcortical networks as well as cortical functions within various functional domains. Resting state functional magnetic resonance imaging (fMRI) has the potential to provide new insights that are valuable for this approach. In this review, we describe recent developments in network analysis using resting state fMRI related to factors in glioma and epilepsy surgery: the identification of functionally dominant areas, evaluation of cognitive function by alteration of resting state networks (RSNs), glioma grading, and epileptic focus detection. One particular challenge that is close to realization is using fMRI for the identification of sensorimotor- and language-dominant areas during a task-free resting state. Various RSNs representative of the default mode network demonstrated at least some alterations in both patient groups, which correlated with behavioral changes including cognition, memory, and attention, and the development of psychosis. Still challenging is the detection of epileptic foci and propagation pathways when using only network analysis with resting state fMRI; however, a combined method with simultaneous electroencephalography has produced promising results. Consequently, network analysis is expected to continue to advance as neuroimaging technology improves in the next decade, and preoperative evaluation for neurosurgical parameters through these techniques should improve parallel with them. PMID:26923836

  13. Use of Network Analysis to Establish Neurosurgical Parameters in Gliomas and Epilepsy

    PubMed Central

    MAESAWA, Satoshi; BAGARINAO, Epifanio; FUJII, Masazumi; FUTAMURA, Miyako; WAKABAYASHI, Toshihiko

    2016-01-01

    Cutting-edge neuroimaging technologies can facilitate preoperative evaluation in various neurosurgical settings. Surgery for gliomas and epilepsy requires precise localization for resection due to the need to preserve (or perhaps improve) higher cognitive functions. Accordingly, a hodological approach should be taken that considers subcortical networks as well as cortical functions within various functional domains. Resting state functional magnetic resonance imaging (fMRI) has the potential to provide new insights that are valuable for this approach. In this review, we describe recent developments in network analysis using resting state fMRI related to factors in glioma and epilepsy surgery: the identification of functionally dominant areas, evaluation of cognitive function by alteration of resting state networks (RSNs), glioma grading, and epileptic focus detection. One particular challenge that is close to realization is using fMRI for the identification of sensorimotor- and language-dominant areas during a task-free resting state. Various RSNs representative of the default mode network demonstrated at least some alterations in both patient groups, which correlated with behavioral changes including cognition, memory, and attention, and the development of psychosis. Still challenging is the detection of epileptic foci and propagation pathways when using only network analysis with resting state fMRI; however, a combined method with simultaneous electroencephalography has produced promising results. Consequently, network analysis is expected to continue to advance as neuroimaging technology improves in the next decade, and preoperative evaluation for neurosurgical parameters through these techniques should improve parallel with them. PMID:26923836

  14. Gene Coexpression Analyses Differentiate Networks Associated with Diverse Cancers Harboring TP53 Missense or Null Mutations

    PubMed Central

    Oros Klein, Kathleen; Oualkacha, Karim; Lafond, Marie-Hélène; Bhatnagar, Sahir; Tonin, Patricia N.; Greenwood, Celia M. T.

    2016-01-01

    In a variety of solid cancers, missense mutations in the well-established TP53 tumor suppressor gene may lead to the presence of a partially-functioning protein molecule, whereas mutations affecting the protein encoding reading frame, often referred to as null mutations, result in the absence of p53 protein. Both types of mutations have been observed in the same cancer type. As the resulting tumor biology may be quite different between these two groups, we used RNA-sequencing data from The Cancer Genome Atlas (TCGA) from four different cancers with poor prognosis, namely ovarian, breast, lung and skin cancers, to compare the patterns of coexpression of genes in tumors grouped according to their TP53 missense or null mutation status. We used Weighted Gene Coexpression Network analysis (WGCNA) and a new test statistic built on differences between groups in the measures of gene connectivity. For each cancer, our analysis identified a set of genes showing differential coexpression patterns between the TP53 missense- and null mutation-carrying groups that was robust to the choice of the tuning parameter in WGCNA. After comparing these sets of genes across the four cancers, one gene (KIR3DL2) consistently showed differential coexpression patterns between the null and missense groups. KIR3DL2 is known to play an important role in regulating the immune response, which is consistent with our observation that this gene's strongly-correlated partners implicated many immune-related pathways. Examining mutation-type-related changes in correlations between sets of genes may provide new insight into tumor biology. PMID:27536319

  15. An empiric comparison of linkage disequilibrium parameters in disease gene localizations; the myotonic dystrophy experience

    SciTech Connect

    Podolsky, L.; Baird, S.; Korneluk, R.G.

    1994-09-01

    Analyses of linkage disequilibrium (LD) between markers of known location and disease phenotypes often provide valuable information in efforts to clone the causative genes. However, there exist a number of factors which may attenuate a consistent inverse relationship between physical distance and LD for a given pairing of a genetic marker and a human disease gene. Chief among these is the effect of the general population frequency of an allele which demonstrates LD with a disease gene. Possibly as a result of this, a number of methods of calculating LD has been proposed. We have calculated seven such LD parameters for twelve physically mapped RFLP`s from a 1.3 Mb DM gene containing region of 19q13.3 using 107 DM and 213 non-DM chromosomes. Correlation of the DM-marker physical distance with LD for the 12 loci reveals the Yule coefficient and Dij{prime} parameter to give the most consistent relationship. The D{prime} parameter shown to have a relative allele frequency independence gave only a weak correlation. A similar analysis is being carried out on published cystic fibrosis genetic and physical mapping data. The parameters identified in this study may be the most appropriate for future LD based localizations of disease genes.

  16. MicroRNAs and deregulated gene expression networks in neurodegeneration.

    PubMed

    Sonntag, Kai-Christian

    2010-06-18

    Neurodegeneration is characterized by the progressive loss of neuronal cell types in the nervous system. Although the main cause of cell dysfunction and death in many neurodegenerative diseases is not known, there is increasing evidence that their demise is a result of a combination of genetic and environmental factors which affect key signaling pathways in cell function. This view is supported by recent observations that disease-compromised cells in late-stage neurodegeneration exhibit profound dysregulation of gene expression. MicroRNAs (miRNAs) introduce a novel concept of regulatory control over gene expression and there is increasing evidence that they play a profound role in neuronal cell identity as well as multiple aspects of disease pathogenesis. Here, we review the molecular properties of brain cells derived from patients with neurodegenerative diseases, and discuss how deregulated miRNA/mRNA expression networks could be a mechanism in neurodegeneration. In addition, we emphasize that the dysfunction of these regulatory networks might overlap between different cell systems and suggest that miRNA functions might be common between neurodegeneration and other disease entities.

  17. Asteroseismic determination of fundamental parameters of Sun-like stars using multilayered neural networks

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep; Hanasoge, Shravan; Bhattacharya, Jishnu; Antia, H. M.; Krishnamurthi, Ganapathy

    2016-10-01

    The advent of space-based observatories such as Convection, Rotation and planetary Transits (CoRoT) and Kepler has enabled the testing of our understanding of stellar evolution on thousands of stars. Evolutionary models typically require five input parameters, the mass, initial helium abundance, initial metallicity, mixing length (assumed to be constant over time), and the age to which the star must be evolved. Some of these parameters are also very useful in characterizing the associated planets and in studying Galactic archaeology. How to obtain these parameters from observations rapidly and accurately, specifically in the context of surveys of thousands of stars, is an outstanding question, one that has eluded straightforward resolution. For a given star, we typically measure the effective temperature and surface metallicity spectroscopically and low-degree oscillation frequencies through space observatories. Here we demonstrate that statistical learning, using artificial neural networks, is successful in determining the evolutionary parameters based on spectroscopic and seismic measurements. Our trained networks show robustness over a broad range of parameter space, and critically, are entirely computationally inexpensive and fully automated. We analyse the observations of a few stars using this method and the results compare well to inferences obtained using other techniques. This method is both computationally cheap and inferentially accurate, paving the way for analysing the vast quantities of stellar observations from past, current, and future missions.

  18. Distributed parameter estimation in unreliable sensor networks via broadcast gossip algorithms.

    PubMed

    Wang, Huiwei; Liao, Xiaofeng; Wang, Zidong; Huang, Tingwen; Chen, Guo

    2016-01-01

    In this paper, we present an asynchronous algorithm to estimate the unknown parameter under an unreliable network which allows new sensors to join and old sensors to leave, and can tolerate link failures. Each sensor has access to partially informative measurements when it is awakened. In addition, the proposed algorithm can avoid the interference among messages and effectively reduce the accumulated measurement and quantization errors. Based on the theory of stochastic approximation, we prove that our proposed algorithm almost surely converges to the unknown parameter. Finally, we present a numerical example to assess the performance and the communication cost of the algorithm.

  19. Algorithm of definition of parameters of Katkon—Element of optimization of electrical networks modes

    NASA Astrophysics Data System (ADS)

    Butyrin, P. A.; Gusev, G. G.; Mikheev, D. V.; Shakirzianov, F. N.

    2015-12-01

    The authors consider the algorithm of defining of basic parameters of a filter compensative device based on new element of electrical circuits—katkon. Katkon is a two-terminal network consisting of two parallel coiled and electrically unconnected coils having both inductive and capacitive properties. Filter compensative device based on katkon realizes reactive power compensation on the industrial frequency and filtering of high harmonics: in other words, it realizes functions of energy quality management in an electrical network. The design of such a filter compensative device and its equivalent circuit and algorithm of defining of its parameters that allows choosing its layout and design are described in the article. The results of physical experimental studies with katkon that confirm the adequacy of the proposed algorithm are demonstrated.

  20. Data identification for improving gene network inference using computational algebra.

    PubMed

    Dimitrova, Elena; Stigler, Brandilyn

    2014-11-01

    Identification of models of gene regulatory networks is sensitive to the amount of data used as input. Considering the substantial costs in conducting experiments, it is of value to have an estimate of the amount of data required to infer the network structure. To minimize wasted resources, it is also beneficial to know which data are necessary to identify the network. Knowledge of the data and knowledge of the terms in polynomial models are often required a priori in model identification. In applications, it is unlikely that the structure of a polynomial model will be known, which may force data sets to be unnecessarily large in order to identify a model. Furthermore, none of the known results provides any strategy for constructing data sets to uniquely identify a model. We provide a specialization of an existing criterion for deciding when a set of data points identifies a minimal polynomial model when its monomial terms have been specified. Then, we relax the requirement of the knowledge of the monomials and present results for model identification given only the data. Finally, we present a method for constructing data sets that identify minimal polynomial models.

  1. Reconstruct modular phenotype-specific gene networks by knowledge-driven matrix factorization

    PubMed Central

    Yang, Xuerui; Zhou, Yang; Jin, Rong; Chan, Christina

    2009-01-01

    Motivation: Reconstructing gene networks from microarray data has provided mechanistic information on cellular processes. A popular structure learning method, Bayesian network inference, has been used to determine network topology despite its shortcomings, i.e. the high-computational cost when analyzing a large number of genes and the inefficiency in exploiting prior knowledge, such as the co-regulation information of the genes. To address these limitations, we are introducing an alternative method, knowledge-driven matrix factorization (KMF) framework, to reconstruct phenotype-specific modular gene networks. Results: Considering the reconstruction of gene network as a matrix factorization problem, we first use the gene expression data to estimate a correlation matrix, and then factorize the correlation matrix to recover the gene modules and the interactions between them. Prior knowledge from Gene Ontology is integrated into the matrix factorization. We applied this KMF algorithm to hepatocellular carcinoma (HepG2) cells treated with free fatty acids (FFAs). By comparing the module networks for the different conditions, we identified the specific modules that are involved in conferring the cytotoxic phenotype induced by palmitate. Further analysis of the gene modules of the different conditions suggested individual genes that play important roles in palmitate-induced cytotoxicity. In summary, KMF can efficiently integrate gene expression data with prior knowledge, thereby providing a powerful method of reconstructing phenotype-specific gene networks and valuable insights into the mechanisms that govern the phenotype. Contact: krischan@msu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19542155

  2. Basic parameter estimation of binary neutron star systems by the advanced LIGO/Vigro network

    SciTech Connect

    Rodriguez, Carl L.; Farr, Benjamin; Raymond, Vivien; Farr, Will M.; Littenberg, Tyson B.; Fazi, Diego; Kalogera, Vicky

    2014-04-01

    Within the next five years, it is expected that the Advanced LIGO/Virgo network will have reached a sensitivity sufficient to enable the routine detection of gravitational waves. Beyond the initial detection, the scientific promise of these instruments relies on the effectiveness of our physical parameter estimation capabilities. A major part of this effort has been toward the detection and characterization of gravitational waves from compact binary coalescence, e.g., the coalescence of binary neutron stars. While several previous studies have investigated the accuracy of parameter estimation with advanced detectors, the majority have relied on approximation techniques such as the Fisher Matrix which are insensitive to the non-Gaussian nature of the gravitational wave posterior distribution function. Here we report average statistical uncertainties that will be achievable for strong detection candidates (S/N = 20) over a comprehensive sample of source parameters. We use the Markov Chain Monte Carlo based parameter estimation software developed by the LIGO/Virgo Collaboration with the goal of updating the previously quoted Fisher Matrix bounds. We find the recovery of the individual masses to be fractionally within 9% (15%) at the 68% (95%) credible intervals for equal-mass systems, and within 1.9% (3.7%) for unequal-mass systems. We also find that the Advanced LIGO/Virgo network will constrain the locations of binary neutron star mergers to a median uncertainty of 5.1 deg{sup 2} (13.5 deg{sup 2}) on the sky. This region is improved to 2.3 deg{sup 2} (6 deg{sup 2}) with the addition of the proposed LIGO India detector to the network. We also report the average uncertainties on the luminosity distances and orbital inclinations of strong detections that can be achieved by different network configurations.

  3. Infinitely robust order and local order-parameter tulips in Apollonian networks with quenched disorder

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Hinczewski, Michael; Berker, A. Nihat

    2009-06-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder. We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns.

  4. Toward the establishment of IERS reference frame through the intercomparison of Earth Rotation Parameters determined with independent VLBI networks.

    NASA Astrophysics Data System (ADS)

    Yoshino, T.

    The celestial and the terrestrial reference frames were improved with VLBI techniques. To extend VLBI network or to combine VLBI stations into a new network, the celestial and terrestrial reference frames should be unique and consistent. Earth Rotation Parameters (ERP) can be used both to test the self-consistency of the data set through the intercomparison of the results with independent networks and to establish the IERS reference frame because ERP are conversion parameters between celestial and terrestrial reference frames.

  5. Effects of laser parameters on propagation characteristics of laser-induced stress wave for gene transfer

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Terakawa, Mitsuhiro; Ashida, Hiroshi; Obara, Minoru

    2010-02-01

    Laser-based gene delivery is attractive as a new method for topical gene therapy because of the high spatial controllability of laser energy. Previously, we demonstrated that an exogenous gene can be transferred to cells both in vitro and in vivo by applying nanosecond pulsed laser-induced stress waves (LISWs) or photomechanical waves (PMWs). In this study, we investigated effects of laser parameters on the propagation characteristics of LISWs in soft tissue phantoms and depth-dependent properties of gene transfection. Temporal pressure profiles of LISWs were measured with a hydrophone, showing that with a larger laser spot diameter, LISWs can be propagated more efficiently in phantoms with keeping flat wavefront. Phantoms with various thicknesses were placed on the rat dorsal skin that had been injected with plasmid DNA coding for reporter gene, and LISWs were applied from the top of the phantom. Efficient gene expression was observed in the rat skin that had interacted with LISWs propagating through a 15-mm-thick phantom. These results would be useful to determine appropriate laser parameters for gene delivery to deep-located tissue by transcutaneous application of LISWs.

  6. Discovery of Core Biotic Stress Responsive Genes in Arabidopsis by Weighted Gene Co-Expression Network Analysis

    PubMed Central

    Amrine, Katherine C. H.; Blanco-Ulate, Barbara; Cantu, Dario

    2015-01-01

    Intricate signal networks and transcriptional regulators translate the recognition of pathogens into defense responses. In this study, we carried out a gene co-expression analysis of all currently publicly available microarray data, which were generated in experiments that studied the interaction of the model plant Arabidopsis thaliana with microbial pathogens. This work was conducted to identify (i) modules of functionally related co-expressed genes that are differentially expressed in response to multiple biotic stresses, and (ii) hub genes that may function as core regulators of disease responses. Using Weighted Gene Co-expression Network Analysis (WGCNA) we constructed an undirected network leveraging a rich curated expression dataset comprising 272 microarrays that involved microbial infections of Arabidopsis plants with a wide array of fungal and bacterial pathogens with biotrophic, hemibiotrophic, and necrotrophic lifestyles. WGCNA produced a network with scale-free and small-world properties composed of 205 distinct clusters of co-expressed genes. Modules of functionally related co-expressed genes that are differentially regulated in response to multiple pathogens were identified by integrating differential gene expression testing with functional enrichment analyses of gene ontology terms, known disease associated genes, transcriptional regulators, and cis-regulatory elements. The significance of functional enrichments was validated by comparisons with randomly generated networks. Network topology was then analyzed to identify intra- and inter-modular gene hubs. Based on high connectivity, and centrality in meta-modules that are clearly enriched in defense responses, we propose a list of 66 target genes for reverse genetic experiments to further dissect the Arabidopsis immune system. Our results show that statistical-based data trimming prior to network analysis allows the integration of expression datasets generated by different groups, under different

  7. Data- and knowledge-based modeling of gene regulatory networks: an update

    PubMed Central

    Linde, Jörg; Schulze, Sylvie; Henkel, Sebastian G.; Guthke, Reinhard

    2015-01-01

    Gene regulatory network inference is a systems biology approach which predicts interactions between genes with the help of high-throughput data. In this review, we present current and updated network inference methods focusing on novel techniques for data acquisition, network inference assessment, network inference for interacting species and the integration of prior knowledge. After the advance of Next-Generation-Sequencing of cDNAs derived from RNA samples (RNA-Seq) we discuss in detail its application to network inference. Furthermore, we present progress for large-scale or even full-genomic network inference as well as for small-scale condensed network inference and review advances in the evaluation of network inference methods by crowdsourcing. Finally, we reflect the current availability of data and prior knowledge sources and give an outlook for the inference of gene regulatory networks that reflect interacting species, in particular pathogen-host interactions. PMID:27047314

  8. Data- and knowledge-based modeling of gene regulatory networks: an update.

    PubMed

    Linde, Jörg; Schulze, Sylvie; Henkel, Sebastian G; Guthke, Reinhard

    2015-01-01

    Gene regulatory network inference is a systems biology approach which predicts interactions between genes with the help of high-throughput data. In this review, we present current and updated network inference methods focusing on novel techniques for data acquisition, network inference assessment, network inference for interacting species and the integration of prior knowledge. After the advance of Next-Generation-Sequencing of cDNAs derived from RNA samples (RNA-Seq) we discuss in detail its application to network inference. Furthermore, we present progress for large-scale or even full-genomic network inference as well as for small-scale condensed network inference and review advances in the evaluation of network inference methods by crowdsourcing. Finally, we reflect the current availability of data and prior knowledge sources and give an outlook for the inference of gene regulatory networks that reflect interacting species, in particular pathogen-host interactions.

  9. Multi-parametric profiling network based on gene expression and phenotype data: a novel approach to developmental neurotoxicity testing.

    PubMed

    Nagano, Reiko; Akanuma, Hiromi; Qin, Xian-Yang; Imanishi, Satoshi; Toyoshiba, Hiroyoshi; Yoshinaga, Jun; Ohsako, Seiichiroh; Sone, Hideko

    2012-01-01

    The establishment of more efficient approaches for developmental neurotoxicity testing (DNT) has been an emerging issue for children's environmental health. Here we describe a systematic approach for DNT using the neuronal differentiation of mouse embryonic stem cells (mESCs) as a model of fetal programming. During embryoid body (EB) formation, mESCs were exposed to 12 chemicals for 24 h and then global gene expression profiling was performed using whole genome microarray analysis. Gene expression signatures for seven kinds of gene sets related to neuronal development and neuronal diseases were selected for further analysis. At the later stages of neuronal cell differentiation from EBs, neuronal phenotypic parameters were determined using a high-content image analyzer. Bayesian network analysis was then performed based on global gene expression and neuronal phenotypic data to generate comprehensive networks with a linkage between early events and later effects. Furthermore, the probability distribution values for the strength of the linkage between parameters in each network was calculated and then used in principal component analysis. The characterization of chemicals according to their neurotoxic potential reveals that the multi-parametric analysis based on phenotype and gene expression profiling during neuronal differentiation of mESCs can provide a useful tool to monitor fetal programming and to predict developmentally neurotoxic compounds. PMID:22312247

  10. Coated or doped carbon nanotube network sensors as affected by environmental parameters

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor)

    2011-01-01

    Methods for using modified single wall carbon nanotubes ("SWCNTs") to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl.sub.2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., C.sub.nH.sub.2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component. Two general algorithms are presented for estimating concentration value(s), or upper or lower concentration bounds on such values, from measured differences of response values.

  11. Parameter estimation for metabolic networks with two stage Bregman regularization homotopy inversion algorithm.

    PubMed

    Wang, Hong; Wang, Xi-cheng

    2014-02-21

    Metabolism is a very important cellular process and its malfunction contributes to human disease. Therefore, building dynamic models for metabolic networks with experimental data in order to analyze biological process rationally has attracted a lot of attention. Owing to the technical limitations, some unknown parameters contained in models need to be estimated effectively by means of the computational method. Generally, problems of parameter estimation of nonlinear biological network are known to be ill condition and multimodal. In particular, with the increasing amount and enlarging the scope of parameters, many optimization algorithms often fail to find a global solution. In this paper, two-stage variable factor Bregman regularization homotopy method is proposed. Discrete homotopy is used to identify the possible extreme region and continuous homotopy is executed for the purpose of stability of path tracing in the special region. Meanwhile, Latin hypercube sampling is introduced to get the good initial guess value and a perturbation strategy is developed to jump out of the local optimum. Three metabolic network inverse problems are investigated to demonstrate the effectiveness of the proposed method. PMID:24060619

  12. Gene regulatory networks in the evolution and development of the heart.

    PubMed

    Olson, Eric N

    2006-09-29

    The heart, an ancient organ and the first to form and function during embryogenesis, evolved by the addition of new structures and functions to a primitive pump. Heart development is controlled by an evolutionarily conserved network of transcription factors that connect signaling pathways with genes for muscle growth, patterning, and contractility. During evolution, this ancestral gene network was expanded through gene duplication and co-option of additional networks. Mutations in components of the cardiac gene network cause congenital heart disease, the most common human birth defect. The consequences of such mutations reveal the logic of organogenesis and the evolutionary origins of morphological complexity.

  13. Dynamic optimization of metabolic networks coupled with gene expression.

    PubMed

    Waldherr, Steffen; Oyarzún, Diego A; Bockmayr, Alexander

    2015-01-21

    The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition. Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition. An approximation by a timescale separation leads to a coupled model of quasi-steady state constraints on the metabolic reactions, and differential equations for the substrate concentrations and biomass composition. We propose a dynamic optimization approach to determine reaction fluxes for this model, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. Discretization of the optimization problems leads to a linear program that can be efficiently solved. We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle.

  14. Gene, protein, and network of male sterility in rice.

    PubMed

    Wang, Kun; Peng, Xiaojue; Ji, Yanxiao; Yang, Pingfang; Zhu, Yingguo; Li, Shaoqing

    2013-01-01

    Rice is one of the most important model crop plants whose heterosis has been well-exploited in commercial hybrid seed production via a variety of types of male-sterile lines. Hybrid rice cultivation area is steadily expanding around the world, especially in Southern Asia. Characterization of genes and proteins related to male sterility aims to understand how and why the male sterility occurs, and which proteins are the key players for microspores abortion. Recently, a series of genes and proteins related to cytoplasmic male sterility (CMS), photoperiod-sensitive male sterility, self-incompatibility, and other types of microspores deterioration have been characterized through genetics or proteomics. Especially the latter, offers us a powerful and high throughput approach to discern the novel proteins involving in male-sterile pathways which may help us to breed artificial male-sterile system. This represents an alternative tool to meet the critical challenge of further development of hybrid rice. In this paper, we reviewed the recent developments in our understanding of male sterility in rice hybrid production across gene, protein, and integrated network levels, and also, present a perspective on the engineering of male-sterile lines for hybrid rice production.

  15. A Predictive Based Regression Algorithm for Gene Network Selection

    PubMed Central

    Guerrier, Stéphane; Mili, Nabil; Molinari, Roberto; Orso, Samuel; Avella-Medina, Marco; Ma, Yanyuan

    2016-01-01

    Gene selection has become a common task in most gene expression studies. The objective of such research is often to identify the smallest possible set of genes that can still achieve good predictive performance. To do so, many of the recently proposed classification methods require some form of dimension-reduction of the problem which finally provide a single model as an output and, in most cases, rely on the likelihood function in order to achieve variable selection. We propose a new prediction-based objective function that can be tailored to the requirements of practitioners and can be used to assess and interpret a given problem. Based on cross-validation techniques and the idea of importance sampling, our proposal scans low-dimensional models under the assumption of sparsity and, for each of them, estimates their objective function to assess their predictive power in order to select. Two applications on cancer data sets and a simulation study show that the proposal compares favorably with competing alternatives such as, for example, Elastic Net and Support Vector Machine. Indeed, the proposed method not only selects smaller models for better, or at least comparable, classification errors but also provides a set of selected models instead of a single one, allowing to construct a network of possible models for a target prediction accuracy level. PMID:27379155

  16. A Predictive Based Regression Algorithm for Gene Network Selection.

    PubMed

    Guerrier, Stéphane; Mili, Nabil; Molinari, Roberto; Orso, Samuel; Avella-Medina, Marco; Ma, Yanyuan

    2016-01-01

    Gene selection has become a common task in most gene expression studies. The objective of such research is often to identify the smallest possible set of genes that can still achieve good predictive performance. To do so, many of the recently proposed classification methods require some form of dimension-reduction of the problem which finally provide a single model as an output and, in most cases, rely on the likelihood function in order to achieve variable selection. We propose a new prediction-based objective function that can be tailored to the requirements of practitioners and can be used to assess and interpret a given problem. Based on cross-validation techniques and the idea of importance sampling, our proposal scans low-dimensional models under the assumption of sparsity and, for each of them, estimates their objective function to assess their predictive power in order to select. Two applications on cancer data sets and a simulation study show that the proposal compares favorably with competing alternatives such as, for example, Elastic Net and Support Vector Machine. Indeed, the proposed method not only selects smaller models for better, or at least comparable, classification errors but also provides a set of selected models instead of a single one, allowing to construct a network of possible models for a target prediction accuracy level. PMID:27379155

  17. The Impact of Gene Expression Variation on the Robustness and Evolvability of a Developmental Gene Regulatory Network

    PubMed Central

    Garfield, David A.; Runcie, Daniel E.; Babbitt, Courtney C.; Haygood, Ralph; Nielsen, William J.; Wray, Gregory A.

    2013-01-01

    Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive variation in gene expression in this network throughout development in a natural population, some of which has a heritable genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later development are typically more sensitive (linear), allowing variation in expression to affect downstream target genes. Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at terminal positions within the network. These results indicate that the position and properties of gene interactions within a network can have important evolutionary consequences independent of their immediate regulatory role. PMID:24204211

  18. Neural networks for simultaneous classification and parameter estimation in musical instrument control

    NASA Astrophysics Data System (ADS)

    Lee, Michael; Freed, Adrian; Wessel, David

    1992-08-01

    In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.

  19. Implementation of Linear Pipe Channel Network to Estimate Hydraulic Parameters of Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Han, J.; Um, J. G.; Wang, S.

    2014-12-01

    Modeling of fluid flow is important in geological, petroleum, environmental, civil and mining engineering. Fluid flow through fractured hard rock is very much dependent on the fracture network pattern in the rock mass and on the flow behavior through these fractures. This research deals with fluid flow behavior through fractures at an abandoned copper mine in southeast Korea. An injection well and three observation wells were installed at the mine site to monitor the hydraulic heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability and corresponding effective hydraulic aperture of the fractures. The three dimensional stochastic fracture network model was built and validated for the mine site. The two dimensional linear pipe network systems were constructed in directions of the observation wells using the fracture network model. A procedure of the fluid flow analysis on two dimensional discrete domain was applied to estimate the conductance, flow quantity and nodal head in the 2-D linear pipe channel network. The present results indicate that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic characteristics of fractured rock masses.

  20. Application of neural networks for determining optical parameters of strongly scattering media from the intensity profile of backscattered radiation

    SciTech Connect

    Kotova, S P; Maiorov, I V; Maiorova, A M

    2007-01-31

    We analyse the possibilities of simultaneous measuring three optical parameters of scattering media, namely, the scattering and absorption coefficients and the scattering anisotropy parameter by the intensity profile of backscattered radiation by using the neural network inversion method and the method of adaptive-network-based fuzzy inference system. The measurement errors of the absorption and scattering coefficients and the scattering anisotropy parameter are 20%, 5%, and 10%, respectively. (special issue devoted to multiple radiation scattering in random media)

  1. The influence of assortativity on the robustness and evolvability of gene regulatory networks upon gene birth

    PubMed Central

    Pechenick, Dov A.; Moore, Jason H.; Payne, Joshua L.

    2013-01-01

    Gene regulatory networks (GRNs) represent the interactions between genes and gene products, which drive the gene expression patterns that produce cellular phenotypes. GRNs display a number of characteristics that are beneficial for the development and evolution of organisms. For example, they are often robust to genetic perturbation, such as mutations in regulatory regions or loss of gene function. Simultaneously, GRNs are often evolvable as these genetic perturbations are occasionally exploited to innovate novel regulatory programs. Several topological properties, such as degree distribution, are known to influence the robustness and evolvability of GRNs. Assortativity, which measures the propensity of nodes of similar connectivity to connect to one another, is a separate topological property that has recently been shown to influence the robustness of GRNs to point mutations in cis-regulatory regions. However, it remains to be seen how assortativity may influence the robustness and evolvability of GRNs to other forms of genetic perturbation, such as gene birth via duplication or de novo origination. Here, we employ a computational model of genetic regulation to investigate whether the assortativity of a GRN influences its robustness and evolvability upon gene birth. We find that the robustness of a GRN generally increases with increasing assortativity, while its evolvability generally decreases. However, the rate of change in robustness outpaces that of evolvability, resulting in an increased proportion of assortative GRNs that are simultaneously robust and evolvable. By providing a mechanistic explanation for these observations, this work extends our understanding of how the assortativity of a GRN influences its robustness and evolvability upon gene birth. PMID:23542384

  2. Gene interaction network analysis suggests differences between high and low doses of acetaminophen

    SciTech Connect

    Toyoshiba, Hiroyoshi . E-mail: toyoshiba.hiroyoshi@nies.go.jp; Sone, Hideko; Yamanaka, Takeharu; Parham, Frederick M.; Irwin, Richard D.; Boorman, Gary A.; Portier, Christopher J.

    2006-09-15

    Bayesian networks for quantifying linkages between genes were applied to detect differences in gene expression interaction networks between multiple doses of acetaminophen at multiple time points. Seventeen (17) genes were selected from the gene expression profiles from livers of rats orally exposed to 50, 150 and 1500 mg/kg acetaminophen (APAP) at 6, 24 and 48 h after exposure using a variety of statistical and bioinformatics approaches. The selected genes are related to three biological categories: apoptosis, oxidative stress and other. Gene interaction networks between all 17 genes were identified for the nine dose-time observation points by the TAO-Gen algorithm. Using k-means clustering analysis, the estimated nine networks could be clustered into two consensus networks, the first consisting of the low and middle dose groups, and the second consisting of the high dose. The analysis suggests that the networks could be segregated by doses and were consistent in structure over time of observation within grouped doses. The consensus networks were quantified to calculate the probability distribution for the strength of the linkage between genes connected in the networks. The quantifying analysis showed that, at lower doses, the genes related to the oxidative stress signaling pathway did not interact with the apoptosis-related genes. In contrast, the high-dose network demonstrated significant interactions between the oxidative stress genes and the apoptosis genes and also demonstrated a different network between genes in the oxidative stress pathway. The approaches shown here could provide predictive information to understand high- versus low-dose mechanisms of toxicity.

  3. An Efficient Data Assimilation Schema for Restoration and Extension of Gene Regulatory Networks Using Time-Course Observation Data

    PubMed Central

    Mori, Tomoya; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru; Akutsu, Tatsuya

    2014-01-01

    Abstract Gene regulatory networks (GRNs) play a central role in sustaining complex biological systems in cells. Although we can construct GRNs by integrating biological interactions that have been recorded in literature, they can include suspicious data and a lack of information. Therefore, there has been an urgent need for an approach by which the validity of constructed networks can be evaluated; simulation-based methods have been applied in which biological observational data are assimilated. However, these methods apply nonlinear models that require high computational power to evaluate even one network consisting of only several genes. Therefore, to explore candidate networks whose simulation models can better predict the data by modifying and extending literature-based GRNs, an efficient and versatile method is urgently required. We applied a combinatorial transcription model, which can represent combinatorial regulatory effects of genes, as a biological simulation model, to reproduce the dynamic behavior of gene expressions within a state space model. Under the model, we applied the unscented Kalman filter to obtain the approximate posterior probability distribution of the hidden state to efficiently estimate parameter values maximizing prediction ability for observational data by the EM-algorithm. Utilizing the method, we propose a novel algorithm to modify GRNs reported in the literature so that their simulation models become consistent with observed data. The effectiveness of our approach was validated through comparison analysis to the previous methods using synthetic networks. Finally, as an application example, a Kyoto Encyclopedia of Genes and Genomes (KEGG)-based yeast cell cycle network was extended with additional candidate genes to better predict the real mRNA expressions data using the proposed method. PMID:25244077

  4. Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach.

    PubMed

    Paskiabi, Farnoush Asghari; Mirzaei, Esmaeil; Amani, Amir; Shokrgozar, Mohammad Ali; Saber, Reza; Faridi-Majidi, Reza

    2015-11-01

    This paper proposes an artificial neural networks approach to finding the effects of electrospinning parameters on alignment of poly(ɛ-caprolactone)/poly(glycolic acid) blend nanofibers. Four electrospinning parameters, namely total polymer concentration, working distance, drum speed and applied voltage were considered as input and the standard deviation of the angles of nanofibers, introducing fibers alignments, as the output of the model. The results demonstrated that drum speed and applied voltage are two critical factors influencing nanofibers alignment, however their effect are entirely interdependent. Their effects also are not independent of other electrospinning parameters. In obtaining aligned electrospun nanofibers, the concentration and working distance can also be effective. In vitro cell culture study on random and aligned nanofibers showed directional growth of cells on aligned fibers.

  5. An atlas of gene regulatory networks reveals multiple three-gene mechanisms for interpreting morphogen gradients

    PubMed Central

    Cotterell, James; Sharpe, James

    2010-01-01

    The interpretation of morphogen gradients is a pivotal concept in developmental biology, and several mechanisms have been proposed to explain how gene regulatory networks (GRNs) achieve concentration-dependent responses. However, the number of different mechanisms that may exist for cells to interpret morphogens, and the importance of design features such as feedback or local cell–cell communication, is unclear. A complete understanding of such systems will require going beyond a case-by-case analysis of real morphogen interpretation mechanisms and mapping out a complete GRN ‘design space.' Here, we generate a first atlas of design space for GRNs capable of patterning a homogeneous field of cells into discrete gene expression domains by interpreting a fixed morphogen gradient. We uncover multiple very distinct mechanisms distributed discretely across the atlas, thereby expanding the repertoire of morphogen interpretation network motifs. Analyzing this diverse collection of mechanisms also allows us to predict that local cell–cell communication will rarely be responsible for the basic dose-dependent response of morphogen interpretation networks. PMID:21045819

  6. Network-based characterization of drug-regulated genes, drug targets, and toxicity.

    PubMed

    Kotlyar, Max; Fortney, Kristen; Jurisica, Igor

    2012-08-01

    Proteins do not exert their effects in isolation of one another, but interact together in complex networks. In recent years, sophisticated methods have been developed to leverage protein-protein interaction (PPI) network structure to improve several stages of the drug discovery process. Network-based methods have been applied to predict drug targets, drug side effects, and new therapeutic indications. In this paper we have two aims. First, we review the past contributions of network approaches and methods to drug discovery, and discuss their limitations and possible future directions. Second, we show how past work can be generalized to gain a more complete understanding of how drugs perturb networks. Previous network-based characterizations of drug effects focused on the small number of known drug targets, i.e., direct binding partners of drugs. However, drugs affect many more genes than their targets - they can profoundly affect the cell's transcriptome. For the first time, we use networks to characterize genes that are differentially regulated by drugs. We found that drug-regulated genes differed from drug targets in terms of functional annotations, cellular localizations, and topological properties. Drug targets mainly included receptors on the plasma membrane, down-regulated genes were largely in the nucleus and were enriched for DNA binding, and genes lacking drug relationships were enriched in the extracellular region. Network topology analysis indicated several significant graph properties, including high degree and betweenness for the drug targets and drug-regulated genes, though possibly due to network biases. Topological analysis also showed that proteins of down-regulated genes appear to be frequently involved in complexes. Analyzing network distances between regulated genes, we found that genes regulated by structurally similar drugs were significantly closer than genes regulated by dissimilar drugs. Finally, network centrality of a drug

  7. An efficient approach of attractor calculation for large-scale Boolean gene regulatory networks.

    PubMed

    He, Qinbin; Xia, Zhile; Lin, Bin

    2016-11-01

    Boolean network models provide an efficient way for studying gene regulatory networks. The main dynamics of a Boolean network is determined by its attractors. Attractor calculation plays a key role for analyzing Boolean gene regulatory networks. An approach of attractor calculation was proposed in this study, which improved the predecessor-based approach. Furthermore, the proposed approach combined with the identification of constant nodes and simplified Boolean networks to accelerate attractor calculation. The proposed algorithm is effective to calculate all attractors for large-scale Boolean gene regulatory networks. If the average degree of the network is not too large, the algorithm can get all attractors of a Boolean network with dozens or even hundreds of nodes.

  8. Eric Davidson: Steps to a gene regulatory network for development.

    PubMed

    Rothenberg, Ellen V

    2016-04-15

    Eric Harris Davidson was a unique and creative intellectual force who grappled with the diversity of developmental processes used by animal embryos and wrestled them into an intelligible set of principles, then spent his life translating these process elements into molecularly definable terms through the architecture of gene regulatory networks. He took speculative risks in his theoretical writing but ran a highly organized, rigorous experimental program that yielded an unprecedentedly full characterization of a developing organism. His writings created logical order and a framework for mechanism from the complex phenomena at the heart of advanced multicellular organism development. This is a reminiscence of intellectual currents in his work as observed by the author through the last 30-35 years of Davidson's life. PMID:26825392

  9. Modern tools for the time-discrete dynamics and optimization of gene-environment networks

    NASA Astrophysics Data System (ADS)

    Defterli, Ozlem; Fügenschuh, Armin; Weber, Gerhard Wilhelm

    2011-12-01

    In this study, we discuss the models of genetic regulatory systems, so-called gene-environment networks. The dynamics of such kind of systems are described by a class of time-continuous ordinary differential equations having a general form E˙=M(E)E, where E is a vector of gene-expression levels and environmental factors and M(E) is the matrix having functional entries containing unknown parameters to be optimized. Accordingly, time-discrete versions of that model class are studied and improved by introducing 3rd-order Heun's method and 4th-order classical Runge-Kutta method. The corresponding iteration formulas are derived and their matrix algebras are obtained. After that, we use nonlinear mixed-integer programming for the parameter estimation in the considered model and present the solution of a constrained and regularized given mixed-integer problem as an example. By using this solution and applying both the new and existing discretization schemes, we generate corresponding time-series of gene-expressions for each method. The comparison of the experimental data and the calculated approximate results is additionally done with the help of the figures to exercise the performance of the numerical schemes on this example.

  10. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.

    PubMed

    Famili, Iman; Mahadevan, Radhakrishnan; Palsson, Bernhard O

    2005-03-01

    The absence of comprehensive measured kinetic values and the observed inconsistency in the available in vitro kinetic data has hindered the formulation of network-scale kinetic models of biochemical reaction networks. To meet this challenge we present an approach to construct a convex space, termed the k-cone, which contains all the allowable numerical values of the kinetic constants in large-scale biochemical networks. The definition of the k-cone relies on the incorporation of in vivo concentration data and a simplified approach to represent enzyme kinetics within an established constraint-based modeling approach. The k-cone approach was implemented to define the allowable combination of numerical values for a full kinetic model of human red blood cell metabolism and to study its correlated kinetic parameters. The k-cone approach can be used to determine consistency between in vitro measured kinetic values and in vivo concentration and flux measurements when used in a network-scale kinetic model. k-Cone analysis was successful in determining whether in vitro measured kinetic values used in the reconstruction of a kinetic-based model of Saccharomyces cerevisiae central metabolism could reproduce in vivo measurements. Further, the k-cone can be used to determine which numerical values of in vitro measured parameters are required to be changed in a kinetic model if in vivo measured values are not reproduced. k-Cone analysis could identify what minimum number of in vitro determined kinetic parameters needed to be adjusted in the S. cerevisiae model to be consistent with the in vivo data. Applying the k-cone analysis a priori to kinetic model development may reduce the time and effort involved in model building and parameter adjustment. With the recent developments in high-throughput profiling of metabolite concentrations at a whole-cell scale and advances in metabolomics technologies, the k-cone approach presented here may hold the promise for kinetic

  11. k-Cone Analysis: Determining All Candidate Values for Kinetic Parameters on a Network Scale

    PubMed Central

    Famili, Iman; Mahadevan, Radhakrishnan; Palsson, Bernhard O.

    2005-01-01

    The absence of comprehensive measured kinetic values and the observed inconsistency in the available in vitro kinetic data has hindered the formulation of network-scale kinetic models of biochemical reaction networks. To meet this challenge we present an approach to construct a convex space, termed the k-cone, which contains all the allowable numerical values of the kinetic constants in large-scale biochemical networks. The definition of the k-cone relies on the incorporation of in vivo concentration data and a simplified approach to represent enzyme kinetics within an established constraint-based modeling approach. The k-cone approach was implemented to define the allowable combination of numerical values for a full kinetic model of human red blood cell metabolism and to study its correlated kinetic parameters. The k-cone approach can be used to determine consistency between in vitro measured kinetic values and in vivo concentration and flux measurements when used in a network-scale kinetic model. k-Cone analysis was successful in determining whether in vitro measured kinetic values used in the reconstruction of a kinetic-based model of Saccharomyces cerevisiae central metabolism could reproduce in vivo measurements. Further, the k-cone can be used to determine which numerical values of in vitro measured parameters are required to be changed in a kinetic model if in vivo measured values are not reproduced. k-Cone analysis could identify what minimum number of in vitro determined kinetic parameters needed to be adjusted in the S. cerevisiae model to be consistent with the in vivo data. Applying the k-cone analysis a priori to kinetic model development may reduce the time and effort involved in model building and parameter adjustment. With the recent developments in high-throughput profiling of metabolite concentrations at a whole-cell scale and advances in metabolomics technologies, the k-cone approach presented here may hold the promise for kinetic

  12. Gene co-citation networks associated with worker sterility in honey bees

    PubMed Central

    2014-01-01

    Background The evolution of reproductive self-sacrifice is well understood from kin theory, yet our understanding of how actual genes influence the expression of reproductive altruism is only beginning to take shape. As a model in the molecular study of social behaviour, the honey bee Apis mellifera has yielded hundreds of genes associated in their expression with differences in reproductive status of females, including genes directly associated with sterility, yet there has not been an attempt to link these candidates into functional networks that explain how workers regulate sterility in the presence of queen pheromone. In this study we use available microarray data and a co-citation analysis to describe what gene interactions might regulate a worker’s response to ovary suppressing queen pheromone. Results We reconstructed a total of nine gene networks that vary in size and gene composition, but that are significantly enriched for genes of reproductive function. The networks identify, for the first time, which candidate microarray genes are of functional importance, as evidenced by their degree of connectivity to other genes within each of the inferred networks. Our study identifies single genes of interest related to oogenesis, including eggless, and further implicates pathways related to insulin, ecdysteroid, and dopamine signaling as potentially important to reproductive decision making in honey bees. Conclusions The networks derived here appear to be variable in gene composition, hub gene identity, and the overall interactions they describe. One interpretation is that workers use different networks to control personal reproduction via ovary activation, perhaps as a function of age or environmental circumstance. Alternatively, the multiple networks inferred here may represent segments of the larger, single network that remains unknown in its entirety. The networks generated here are provisional but do offer a new multi-gene framework for understanding how

  13. Quality assurance of the gene ontology using abstraction networks.

    PubMed

    Ochs, Christopher; Perl, Yehoshua; Halper, Michael; Geller, James; Lomax, Jane

    2016-06-01

    The gene ontology (GO) is used extensively in the field of genomics. Like other large and complex ontologies, quality assurance (QA) efforts for GO's content can be laborious and time consuming. Abstraction networks (AbNs) are summarization networks that reveal and highlight high-level structural and hierarchical aggregation patterns in an ontology. They have been shown to successfully support QA work in the context of various ontologies. Two kinds of AbNs, called the area taxonomy and the partial-area taxonomy, are developed for GO hierarchies and derived specifically for the biological process (BP) hierarchy. Within this framework, several QA heuristics, based on the identification of groups of anomalous terms which exhibit certain taxonomy-defined characteristics, are introduced. Such groups are expected to have higher error rates when compared to other terms. Thus, by focusing QA efforts on anomalous terms one would expect to find relatively more erroneous content. By automatically identifying these potential problem areas within an ontology, time and effort will be saved during manual reviews of GO's content. BP is used as a testbed, with samples of three kinds of anomalous BP terms chosen for a taxonomy-based QA review. Additional heuristics for QA are demonstrated. From the results of this QA effort, it is observed that different kinds of inconsistencies in the modeling of GO can be exposed with the use of the proposed heuristics. For comparison, the results of QA work on a sample of terms chosen from GO's general population are presented. PMID:27301779

  14. Molecular systems governing leaf growth: from genes to networks.

    PubMed

    González, Nathalie; Inzé, Dirk

    2015-02-01

    Arabidopsis leaf growth consists of a complex sequence of interconnected events involving cell division and cell expansion, and requiring multiple levels of genetic regulation. With classical genetics, numerous leaf growth regulators have been identified, but the picture is far from complete. With the recent advances made in quantitative phenotyping, the study of the quantitative, dynamic, and multifactorial features of leaf growth is now facilitated. The use of high-throughput phenotyping technologies to study large numbers of natural accessions or mutants, or to screen for the effects of large sets of chemicals will allow for further identification of the additional players that constitute the leaf growth regulatory networks. Only a tight co-ordination between these numerous molecular players can support the formation of a functional organ. The connections between the components of the network and their dynamics can be further disentangled through gene-stacking approaches and ultimately through mathematical modelling. In this review, we describe these different approaches that should help to obtain a holistic image of the molecular regulation of organ growth which is of high interest in view of the increasing needs for plant-derived products.

  15. Updating Parameters for Volcanic Hazard Assessment Using Multi-parameter Monitoring Data Streams And Bayesian Belief Networks

    NASA Astrophysics Data System (ADS)

    Odbert, Henry; Aspinall, Willy

    2014-05-01

    Evidence-based hazard assessment at volcanoes assimilates knowledge about the physical processes of hazardous phenomena and observations that indicate the current state of a volcano. Incorporating both these lines of evidence can inform our belief about the likelihood (probability) and consequences (impact) of possible hazardous scenarios, forming a basis for formal quantitative hazard assessment. However, such evidence is often uncertain, indirect or incomplete. Approaches to volcano monitoring have advanced substantially in recent decades, increasing the variety and resolution of multi-parameter timeseries data recorded at volcanoes. Interpreting these multiple strands of parallel, partial evidence thus becomes increasingly complex. In practice, interpreting many timeseries requires an individual to be familiar with the idiosyncrasies of the volcano, monitoring techniques, configuration of recording instruments, observations from other datasets, and so on. In making such interpretations, an individual must consider how different volcanic processes may manifest as measureable observations, and then infer from the available data what can or cannot be deduced about those processes. We examine how parts of this process may be synthesised algorithmically using Bayesian inference. Bayesian Belief Networks (BBNs) use probability theory to treat and evaluate uncertainties in a rational and auditable scientific manner, but only to the extent warranted by the strength of the available evidence. The concept is a suitable framework for marshalling multiple strands of evidence (e.g. observations, model results and interpretations) and their associated uncertainties in a methodical manner. BBNs are usually implemented in graphical form and could be developed as a tool for near real-time, ongoing use in a volcano observatory, for example. We explore the application of BBNs in analysing volcanic data from the long-lived eruption at Soufriere Hills Volcano, Montserrat. We discuss

  16. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    NASA Technical Reports Server (NTRS)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  17. Intercomparison of the earth rotation parameters determined by two independent VLBI networks

    NASA Astrophysics Data System (ADS)

    Yoshino, T.; Takahashi, Y.; Kawaguchi, N.; Heki, K.; Yokoyama, K.

    1989-10-01

    The earth rotation parameters (ERP) are being monitored independently with three very long baseline interferometry (VLBI) networks in the International Earth Rotation Service (IERS) program. The available ERP from different VLBI networks should be consistent and comparable with each other for accurate ERP monitoring. However, systematic offsets have been found between the ERP results of the IRIS-Pacific (IRIS-P) and IRIS-Atlantic (IRIS-A) networks. Since the IRIS-P VLBI network consists of two station groups belonging to different global VLBI projects, the source and station coordinates used in each group are required to be expressed in a unified system for analysis. The data base of the Crustal Dynamics Project (CDP) experiment series 'POLAR', including both CDP and IRIS regular stations, is introduced to obtain the unified station coordinates in the IRIS system. Thereby, the ERP determined by IRIS-P VLBI data come to be in agreement with those of the other regular program IRIS-A. The average offsets between IRIS-P and -A of x-pole, y-pole, UT1, nutation in longitude, and nutation in obliquity are 0.45 marcsec, -1.14 marcsec, -0.035 msec, -0.82 marcsec and 0.18 marcsec each, and are comparable to the formal errors.

  18. A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef cattle.

    PubMed

    Ramayo-Caldas, Y; Fortes, M R S; Hudson, N J; Porto-Neto, L R; Bolormaa, S; Barendse, W; Kelly, M; Moore, S S; Goddard, M E; Lehnert, S A; Reverter, A

    2014-07-01

    High intramuscular fat (IMF) awards price premiums to beef producers and is associated with meat quality and flavor. Studying gene interactions and pathways that affect IMF might unveil causative physiological mechanisms and inform genomic selection, leading to increased accuracy of predictions of breeding value. To study gene interactions and pathways, a gene network was derived from genetic markers associated with direct measures of IMF, other fat phenotypes, feedlot performance, and a number of meat quality traits relating to body conformation, development, and metabolism that might be plausibly expected to interact with IMF biology. Marker associations were inferred from genomewide association studies (GWAS) based on high density genotypes and 29 traits measured on 10,181 beef cattle animals from 3 breed types. For the network inference, SNP pairs were assessed according to the strength of the correlation between their additive association effects across the 29 traits. The co-association inferred network was formed by 2,434 genes connected by 28,283 edges. Topological network parameters suggested a highly cohesive network, in which the genes are strongly functionally interconnected. Pathway and network analyses pointed towards a trio of transcription factors (TF) as key regulators of carcass IMF: PPARGC1A, HNF4G, and FOXP3. Importantly, none of these genes would have been deemed as significantly associated with IMF from the GWAS. Instead, a total of 313 network genes show significant co-association with the 3 TF. These genes belong to a wide variety of biological functions, canonical pathways, and genetic networks linked to IMF-related phenotypes. In summary, our GWAS and network predictions are supported by the current literature and suggest a cooperative role for the 3 TF and other interacting genes including CAPN6, STC2, MAP2K4, EYA1, COPS5, XKR4, NR2E1, TOX, ATF1, ASPH, TGS1, and TTPA as modulators of carcass and meat quality traits in beef cattle.

  19. Parameter sensitivity analysis of stochastic models: application to catalytic reaction networks.

    PubMed

    Damiani, Chiara; Filisetti, Alessandro; Graudenzi, Alex; Lecca, Paola

    2013-02-01

    A general numerical methodology for parametric sensitivity analysis is proposed, which allows to determine the parameters exerting the greatest influence on the output of a stochastic computational model, especially when the knowledge about the actual value of a parameter is insufficient. An application of the procedure is performed on a model of protocell, in order to detect the kinetic rates mainly affecting the capability of a catalytic reaction network enclosed in a semi-permeable membrane to retain material from its environment and to generate a variety of molecular species within its boundaries. It is shown that the former capability is scarcely sensitive to variations in the model parameters, whereas a kinetic rate responsible for profound modifications of the latter can be identified and it depends on the specific reaction network. A faster uptaking of limited resources from the environment may have represented a significant advantage from an evolutionary point of view and this result is a first indication in order to decipher which kind of structures are more suitable to achieve a viable evolution. PMID:23246776

  20. Predicting future conflict between team-members with parameter-free models of social networks

    NASA Astrophysics Data System (ADS)

    Rovira-Asenjo, Núria; Gumí, Tània; Sales-Pardo, Marta; Guimerà, Roger

    2013-06-01

    Despite the well-documented benefits of working in teams, teamwork also results in communication, coordination and management costs, and may lead to personal conflict between team members. In a context where teams play an increasingly important role, it is of major importance to understand conflict and to develop diagnostic tools to avert it. Here, we investigate empirically whether it is possible to quantitatively predict future conflict in small teams using parameter-free models of social network structure. We analyze data of conflict appearance and resolution between 86 team members in 16 small teams, all working in a real project for nine consecutive months. We find that group-based models of complex networks successfully anticipate conflict in small teams whereas micro-based models of structural balance, which have been traditionally used to model conflict, do not.

  1. Estimating Photometric Redshifts with Artificial Neural Networks and Multi-Parameters

    NASA Astrophysics Data System (ADS)

    Li, Li-Li; Zhang, Yan-Xia; Zhao, Yong-Heng; Yang, Da-Wei

    2007-06-01

    We calculate photometric redshifts from the Sloan Digital Sky Survey Data Release 2 (SDSS DR2) Galaxy Sample using artificial neural networks (ANNs). Different input sets based on various parameters (e.g. magnitude, color index, flux information) are explored. Mainly, parameters from broadband photometry are utilized and their performances in redshift prediction are compared. While any parameter may be easily incorporated in the input, our results indicate that using the dereddened magnitudes often produces more accurate photometric redshifts than using the Petrosian magnitudes or model magnitudes as input, but the model magnitudes are superior to the Petrosian magnitudes. Also, better performance results when more effective parameters are used in the training set. The method is tested on a sample of 79 346 galaxies from the SDSS DR2. When using 19 parameters based on the dereddened magnitudes, the rms error in redshift estimation is σz = 0.020184. The ANN is highly competitive tool compared to the traditional template-fitting methods when a large and representative training set is available.

  2. The identification of the relationship between chemical and electrical parameters of honeys using artificial neural networks.

    PubMed

    Pentoś, Katarzyna; Luczycka, Deta; Wróbel, Radosław

    2014-10-01

    A number of significant scientific studies have confirmed the health benefits of honey. Due to the high price of natural honey, it is a common target for adulteration which reduces its medicinal value. Adulteration detection methods require specific laboratory equipment and are very expensive. The development of measurement techniques enables the measurement of electrical characteristics of strained honey. Honey electrical parameters can possibly be used for its quality assessment. The identification of the relationship between chemical and electrical parameters of honeys and analysis to determine if there are frequency-dependent changes, can help in developing of that group of methods. The aim of this research was to determine how the chemical parameters of certain honeys influence the dielectric loss factor and the permittivity of strained honey measured in various frequencies. Another aim was to determine whether the percentage influence of certain chemical parameters of honeys on electrical characteristics significantly depends on frequency value. The research was based on neural network models and sensitivity analysis. The percentage influence of certain chemical parameters on electrical characteristics significantly depends on frequency value.

  3. Parametric analysis of parameters for electrical-load forecasting using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Gerber, William J.; Gonzalez, Avelino J.; Georgiopoulos, Michael

    1997-04-01

    Accurate total system electrical load forecasting is a necessary part of resource management for power generation companies. The better the hourly load forecast, the more closely the power generation assets of the company can be configured to minimize the cost. Automating this process is a profitable goal and neural networks should provide an excellent means of doing the automation. However, prior to developing such a system, the optimal set of input parameters must be determined. The approach of this research was to determine what those inputs should be through a parametric study of potentially good inputs. Input parameters tested were ambient temperature, total electrical load, the day of the week, humidity, dew point temperature, daylight savings time, length of daylight, season, forecast light index and forecast wind velocity. For testing, a limited number of temperatures and total electrical loads were used as a basic reference input parameter set. Most parameters showed some forecasting improvement when added individually to the basic parameter set. Significantly, major improvements were exhibited with the day of the week, dew point temperatures, additional temperatures and loads, forecast light index and forecast wind velocity.

  4. Adaptive Control Parameters for Dispersal of Multi-Agent Mobile Ad Hoc Network (MANET) Swarms

    SciTech Connect

    Kurt Derr; Milos Manic

    2013-11-01

    A mobile ad hoc network is a collection of independent nodes that communicate wirelessly with one another. This paper investigates nodes that are swarm robots with communications and sensing capabilities. Each robot in the swarm may operate in a distributed and decentralized manner to achieve some goal. This paper presents a novel approach to dynamically adapting control parameters to achieve mesh configuration stability. The presented approach to robot interaction is based on spring force laws (attraction and repulsion laws) to create near-optimal mesh like configurations. In prior work, we presented the extended virtual spring mesh (EVSM) algorithm for the dispersion of robot swarms. This paper extends the EVSM framework by providing the first known study on the effects of adaptive versus static control parameters on robot swarm stability. The EVSM algorithm provides the following novelties: 1) improved performance with adaptive control parameters and 2) accelerated convergence with high formation effectiveness. Simulation results show that 120 robots reach convergence using adaptive control parameters more than twice as fast as with static control parameters in a multiple obstacle environment.

  5. Parameter degeneracy in neutrino oscillation — Solution network and structural overview

    NASA Astrophysics Data System (ADS)

    Minakata, Hisakazu; Uchinami, Shoichi

    2010-04-01

    It is known that there is a phenomenon called “parameter degeneracy” in neutrino oscillation measurement of lepton mixing parameters; A set of the oscillation probabilities, e.g., P( ν μ → ν e ) and its CP-conjugate Pleft( {{{bar ν }_μ } to {{bar ν }_e}} right) at a particular neutrino energy does not determine uniquely the values of θ 13 and δ. With use of the approximate form of the oscillation probability á la Cervera et al., a complete analysis of the eightfold parameter degeneracy is presented. We propose a unified view of the various types of the degeneracy as invariance of the oscillation probabilities under discrete mappings of the mixing parameters. Explicit form of the mapping is obtained either by symmetry argument, or by deriving exact analytic expressions of all the degeneracy solutions for a given true solution. Due to the one-to-one mapping structure the degeneracy solutions are shown to form a network. We extend our analysis into the parameter degeneracy in T- and CPT-conjugate measurement as well as to the setup with the golden and the silver channels, P( ν e → ν μ ) and P( ν e → ν τ ). Some characteristic features of the degeneracy solutions in CP-conjugate measurement, in particular their energy dependences, are illuminated by utilizing the explicit analytic solutions.

  6. GENES REGULATED BY CALORIC RESTRICTION HAVE UNIQUE ROLES WITHIN TRANSCRIPTIONAL NETWORKS

    PubMed Central

    Swindell, William R.

    2009-01-01

    Caloric restriction (CR) has received much interest as an intervention that delays age-related disease and increases lifespan. Whole-genome microarrays have been used to identify specific genes underlying these effects, and in mice, this has led to the identification of genes with expression responses to CR that are shared across multiple tissue types. Such CR-regulated genes represent strong candidates for future investigation, but have been understood only as a list, without regard to their broader role within transcriptional networks. In this study, co-expression and network properties of CR-regulated genes were investigated using data generated by more than 600 Affymetrix microarrays. This analysis identified groups of co-expressed genes and regulatory factors associated with the mammalian CR response, and uncovered surprising network properties of CR-regulated genes. Genes downregulated by CR were highly connected and located in dense network regions. In contrast, CR-upregulated genes were weakly connected and positioned in sparse network regions. Some network properties were mirrored by CR-regulated genes from invertebrate models, suggesting an evolutionary basis for the observed patterns. These findings contribute to a systems-level picture of how CR influences transcription within mammalian cells, and point towards a comprehensive understanding of CR in terms of its influence on biological networks. PMID:18634819

  7. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response.

    PubMed

    Watson, Emma; MacNeil, Lesley T; Arda, H Efsun; Zhu, Lihua Julie; Walhout, Albertha J M

    2013-03-28

    Expression profiles are tailored according to dietary input. However, the networks that control dietary responses remain largely uncharacterized. Here, we combine forward and reverse genetic screens to delineate a network of 184 genes that affect the C. elegans dietary response to Comamonas DA1877 bacteria. We find that perturbation of a mitochondrial network composed of enzymes involved in amino acid metabolism and the TCA cycle affects the dietary response. In humans, mutations in the corresponding genes cause inborn diseases of amino acid metabolism, most of which are treated by dietary intervention. We identify several transcription factors (TFs) that mediate the changes in gene expression upon metabolic network perturbations. Altogether, our findings unveil a transcriptional response system that is poised to sense dietary cues and metabolic imbalances, illustrating extensive communication between metabolic networks in the mitochondria and gene regulatory networks in the nucleus.

  8. Identifying Gene Regulatory Networks in Arabidopsis by In Silico Prediction, Yeast-1-Hybrid, and Inducible Gene Profiling Assays.

    PubMed

    Sparks, Erin E; Benfey, Philip N

    2016-01-01

    A system-wide understanding of gene regulation will provide deep insights into plant development and physiology. In this chapter we describe a threefold approach to identify the gene regulatory networks in Arabidopsis thaliana that function in a specific tissue or biological process. Since no single method is sufficient to establish comprehensive and high-confidence gene regulatory networks, we focus on the integration of three approaches. First, we describe an in silico prediction method of transcription factor-DNA binding, then an in vivo assay of transcription factor-DNA binding by yeast-1-hybrid and lastly the identification of co-expression clusters by transcription factor induction in planta. Each of these methods provides a unique tool to advance our understanding of gene regulation, and together provide a robust model for the generation of gene regulatory networks.

  9. A Bayesian approach for parameter estimation in the extended clock gene circuit of Arabidopsis thaliana.

    PubMed

    Higham, Catherine F; Husmeier, Dirk

    2013-01-01

    The circadian clock is an important molecular mechanism that enables many organisms to anticipate and adapt to environmental change. Pokhilko et al. recently built a deterministic ODE mathematical model of the plant circadian clock in order to understand the behaviour, mechanisms and properties of the system. The model comprises 30 molecular species (genes, mRNAs and proteins) and over 100 parameters. The parameters have been fitted heuristically to available gene expression time series data and the calibrated model has been shown to reproduce the behaviour of the clock components. Ongoing work is extending the clock model to cover downstream effects, in particular metabolism, necessitating further parameter estimation and model selection. This work investigates the challenges facing a full Bayesian treatment of parameter estimation. Using an efficient adaptive MCMC proposed by Haario et al. and working in a high performance computing setting, we quantify the posterior distribution around the proposed parameter values and explore the basin of attraction. We investigate if Bayesian inference is feasible in this high dimensional setting and thoroughly assess convergence and mixing with different statistical diagnostics, to prevent apparent convergence in some domains masking poor mixing in others.

  10. Infinitely Robust Order and Local Order-Parameter Tulips in Apollonian Networks with Quenched Disorder

    NASA Astrophysics Data System (ADS)

    Nadir Kaplan, C.; Hinczewski, Michael; Berker, A. Nihat

    2009-03-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder.[1] We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns. [1] C.N. Kaplan, M. Hinczewski, and A.N. Berker, arXiv:0811.3437v1 [cond-mat.dis-nn] (2008).

  11. Reconstruction of gene co-expression network from microarray data using local expression patterns

    PubMed Central

    2014-01-01

    Background Biological networks connect genes, gene products to one another. A network of co-regulated genes may form gene clusters that can encode proteins and take part in common biological processes. A gene co-expression network describes inter-relationships among genes. Existing techniques generally depend on proximity measures based on global similarity to draw the relationship between genes. It has been observed that expression profiles are sharing local similarity rather than global similarity. We propose an expression pattern based method called GeCON to extract Gene CO-expression Network from microarray data. Pair-wise supports are computed for each pair of genes based on changing tendencies and regulation patterns of the gene expression. Gene pairs showing negative or positive co-regulation under a given number of conditions are used to construct such gene co-expression network. We construct co-expression network with signed edges to reflect up- and down-regulation between pairs of genes. Most existing techniques do not emphasize computational efficiency. We exploit a fast correlogram matrix based technique for capturing the support of each gene pair to construct the network. Results We apply GeCON to both real and synthetic gene expression data. We compare our results using the DREAM (Dialogue for Reverse Engineering Assessments and Methods) Challenge data with three well known algorithms, viz., ARACNE, CLR and MRNET. Our method outperforms other algorithms based on in silico regulatory network reconstruction. Experimental results show that GeCON can extract functionally enriched network modules from real expression data. Conclusions In view of the results over several in-silico and real expression datasets, the proposed GeCON shows satisfactory performance in predicting co-expression network in a computationally inexpensive way. We further establish that a simple expression pattern matching is helpful in finding biologically relevant gene network. In

  12. Gene network inference and visualization tools for biologists: application to new human transcriptome datasets

    PubMed Central

    Hurley, Daniel; Araki, Hiromitsu; Tamada, Yoshinori; Dunmore, Ben; Sanders, Deborah; Humphreys, Sally; Affara, Muna; Imoto, Seiya; Yasuda, Kaori; Tomiyasu, Yuki; Tashiro, Kosuke; Savoie, Christopher; Cho, Vicky; Smith, Stephen; Kuhara, Satoru; Miyano, Satoru; Charnock-Jones, D. Stephen; Crampin, Edmund J.; Print, Cristin G.

    2012-01-01

    Gene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data. We welcome contact from researchers interested in using our inference and visualization tools to answer biological questions. PMID:22121215

  13. Prediction of disease-gene-drug relationships following a differential network analysis.

    PubMed

    Zickenrott, S; Angarica, V E; Upadhyaya, B B; del Sol, A

    2016-01-01

    Great efforts are being devoted to get a deeper understanding of disease-related dysregulations, which is central for introducing novel and more effective therapeutics in the clinics. However, most human diseases are highly multifactorial at the molecular level, involving dysregulation of multiple genes and interactions in gene regulatory networks. This issue hinders the elucidation of disease mechanism, including the identification of disease-causing genes and regulatory interactions. Most of current network-based approaches for the study of disease mechanisms do not take into account significant differences in gene regulatory network topology between healthy and disease phenotypes. Moreover, these approaches are not able to efficiently guide database search for connections between drugs, genes and diseases. We propose a differential network-based methodology for identifying candidate target genes and chemical compounds for reverting disease phenotypes. Our method relies on transcriptomics data to reconstruct gene regulatory networks corresponding to healthy and disease states separately. Further, it identifies candidate genes essential for triggering the reversion of the disease phenotype based on network stability determinants underlying differential gene expression. In addition, our method selects and ranks chemical compounds targeting these genes, which could be used as therapeutic interventions for complex diseases.

  14. Deciphering the onychophoran 'segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network.

    PubMed

    Janssen, Ralf; Budd, Graham E

    2013-10-01

    The hallmark of the arthropods is their segmented body, although origin of segmentation, however, is unresolved. In order to shed light on the origin of segmentation we investigated orthologs of pair rule genes (PRGs) and segment polarity genes (SPGs) in a member of the closest related sister-group to the arthropods, the onychophorans. Our gene expression data analysis suggests that most of the onychophoran PRGs do not play a role in segmentation. One possible exception is the even-skipped (eve) gene that is expressed in the posterior end of the onychophoran where new segments are likely patterned, and is also expressed in segmentation-gene typical transverse stripes in at least a number of newly formed segments. Other onychophoran PRGs such as runt (run), hairy/Hes (h/Hes) and odd-skipped (odd) do not appear to have a function in segmentation at all. Onychophoran PRGs that act low in the segmentation gene cascade in insects, however, are potentially involved in segment-patterning. Most obvious is that from the expression of the pairberry (pby) gene ortholog that is expressed in a typical SPG-pattern. Since this result suggested possible conservation of the SPG-network we further investigated SPGs (and associated factors) such as Notum in the onychophoran. We find that the expression patterns of SPGs in arthropods and the onychophoran are highly conserved, suggesting a conserved SPG-network in these two clades, and indeed also in an annelid. This may suggest that the common ancestor of lophotrochozoans and ecdysozoans was already segmented utilising the same SPG-network, or that the SPG-network was recruited independently in annelids and onychophorans/arthropods. PMID:23880430

  15. Deciphering the onychophoran 'segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network.

    PubMed

    Janssen, Ralf; Budd, Graham E

    2013-10-01

    The hallmark of the arthropods is their segmented body, although origin of segmentation, however, is unresolved. In order to shed light on the origin of segmentation we investigated orthologs of pair rule genes (PRGs) and segment polarity genes (SPGs) in a member of the closest related sister-group to the arthropods, the onychophorans. Our gene expression data analysis suggests that most of the onychophoran PRGs do not play a role in segmentation. One possible exception is the even-skipped (eve) gene that is expressed in the posterior end of the onychophoran where new segments are likely patterned, and is also expressed in segmentation-gene typical transverse stripes in at least a number of newly formed segments. Other onychophoran PRGs such as runt (run), hairy/Hes (h/Hes) and odd-skipped (odd) do not appear to have a function in segmentation at all. Onychophoran PRGs that act low in the segmentation gene cascade in insects, however, are potentially involved in segment-patterning. Most obvious is that from the expression of the pairberry (pby) gene ortholog that is expressed in a typical SPG-pattern. Since this result suggested possible conservation of the SPG-network we further investigated SPGs (and associated factors) such as Notum in the onychophoran. We find that the expression patterns of SPGs in arthropods and the onychophoran are highly conserved, suggesting a conserved SPG-network in these two clades, and indeed also in an annelid. This may suggest that the common ancestor of lophotrochozoans and ecdysozoans was already segmented utilising the same SPG-network, or that the SPG-network was recruited independently in annelids and onychophorans/arthropods.

  16. LEGO: a novel method for gene set over-representation analysis by incorporating network-based gene weights.

    PubMed

    Dong, Xinran; Hao, Yun; Wang, Xiao; Tian, Weidong

    2016-01-11

    Pathway or gene set over-representation analysis (ORA) has become a routine task in functional genomics studies. However, currently widely used ORA tools employ statistical methods such as Fisher's exact test that reduce a pathway into a list of genes, ignoring the constitutive functional non-equivalent roles of genes and the complex gene-gene interactions. Here, we develop a novel method named LEGO (functional Link Enrichment of Gene Ontology or gene sets) that takes into consideration these two types of information by incorporating network-based gene weights in ORA analysis. In three benchmarks, LEGO achieves better performance than Fisher and three other network-based methods. To further evaluate LEGO's usefulness, we compare LEGO with five gene expression-based and three pathway topology-based methods using a benchmark of 34 disease gene expression datasets compiled by a recent publication, and show that LEGO is among the top-ranked methods in terms of both sensitivity and prioritization for detecting target KEGG pathways. In addition, we develop a cluster-and-filter approach to reduce the redundancy among the enriched gene sets, making the results more interpretable to biologists. Finally, we apply LEGO to two lists of autism genes, and identify relevant gene sets to autism that could not be found by Fisher.

  17. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe.

    PubMed

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  18. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe

    PubMed Central

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  19. Linking chemical parameters to sensory panel results through neural networks to distinguish olive oil quality.

    PubMed

    Cancilla, John C; Wang, Selina C; Díaz-Rodríguez, Pablo; Matute, Gemma; Cancilla, John D; Flynn, Dan; Torrecilla, José S

    2014-11-01

    A wide variety of olive oil samples from different origins and olive types has been chemically analyzed as well as evaluated by trained sensory panelists. Six chemical parameters have been obtained for each sample (free fatty acids, peroxide value, two UV absorption parameters (K232 and K268), 1,2-diacylglycerol content, and pyropheophytins) and linked to their quality using an artificial neural network-based model. Herein, the nonlinear algorithms were used to distinguish olive oil quality. Two different methods were defined to assess the statistical performance of the model (a K-fold cross-validation (K = 6) and three different blind tests), and both of them showed around a 95-96% correct classification rate. These results support that a relationship between the chemical and the sensory analyses exists and that the mathematical tool can potentially be implemented into a device that could be employed for various useful applications.

  20. Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks.

    PubMed

    Sun, Xiaodian; Medvedovic, Mario

    2016-02-01

    Parameter estimation for high dimension complex dynamic system is a hot topic. However, the current statistical model and inference approach is known as a large p small n problem. How to reduce the dimension of the dynamic model and improve the accuracy of estimation is more important. To address this question, the authors take some known parameters and structure of system as priori knowledge and incorporate it into dynamic model. At the same time, they decompose the whole dynamic model into subset network modules, based on different modules, and then they apply different estimation approaches. This technique is called Rao-Blackwellised particle filters decomposition methods. To evaluate the performance of this method, the authors apply it to synthetic data generated from repressilator model and experimental data of the JAK-STAT pathway, but this method can be easily extended to large-scale cases. PMID:26816394

  1. On-orbit nonlinear structural parameters realization via artificial neural network

    SciTech Connect

    Gluck, R.; Dai, H.; Karplus, W.J.

    1994-09-01

    Structural parameters realization is formulated as a pattern recognition problem. Candidate mathematical models are designated as `patterns` with which computer simulations are conducted to generate simulated system responses. Patterns are organized into pattern classes in a topdown dichotomous manner based on the variation of the simulated system responses such that the coherence property of patterns within any pattern class is embedded. An adaptive neural network serves as a pattern classifier. The actual response of the real world system is classified as the pattern class of the most similar system response to determine the most probable mathematical descriptors of structural parameters. The proposed methodology was successfully applied to the realization of the disturbance damping torques at the alpha gimbals of the Phase I Space Station Freedom model. Our experimental data were obtained analytically by simulation with additive Gaussian noise. The results are encouraging, showing a high percentage of correct classification in a noisy environment. 9 refs.

  2. Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks.

    PubMed

    Sun, Xiaodian; Medvedovic, Mario

    2016-02-01

    Parameter estimation for high dimension complex dynamic system is a hot topic. However, the current statistical model and inference approach is known as a large p small n problem. How to reduce the dimension of the dynamic model and improve the accuracy of estimation is more important. To address this question, the authors take some known parameters and structure of system as priori knowledge and incorporate it into dynamic model. At the same time, they decompose the whole dynamic model into subset network modules, based on different modules, and then they apply different estimation approaches. This technique is called Rao-Blackwellised particle filters decomposition methods. To evaluate the performance of this method, the authors apply it to synthetic data generated from repressilator model and experimental data of the JAK-STAT pathway, but this method can be easily extended to large-scale cases.

  3. A receding horizon scheme for discrete-time polytopic linear parameter varying systems in networked architectures

    NASA Astrophysics Data System (ADS)

    Franzè, Giuseppe; Lucia, Walter; Tedesco, Francesco

    2014-12-01

    This paper proposes a Model Predictive Control (MPC) strategy to address regulation problems for constrained polytopic Linear Parameter Varying (LPV) systems subject to input and state constraints in which both plant measurements and command signals in the loop are sent through communication channels subject to time-varying delays (Networked Control System (NCS)). The results here proposed represent a significant extension to the LPV framework of a recent Receding Horizon Control (RHC) scheme developed for the so-called robust case. By exploiting the parameter availability, the pre-computed sequences of one- step controllable sets inner approximations are less conservative than the robust counterpart. The resulting framework guarantees asymptotic stability and constraints fulfilment regardless of plant uncertainties and time-delay occurrences. Finally, experimental results on a laboratory two-tank test-bed show the effectiveness of the proposed approach.

  4. Gene networks and developmental context: the importance of understanding complex gene expression patterns in evolution.

    PubMed

    Signor, Sarah A; Arbeitman, Michelle N; Nuzhdin, Sergey V

    2016-05-01

    Animal development is the product of distinct components and interactions-genes, regulatory networks, and cells-and it exhibits emergent properties that cannot be inferred from the components in isolation. Often the focus is on the genotype-to-phenotype map, overlooking the process of development that turns one into the other. We propose a move toward micro-evolutionary analysis of development, incorporating new tools that enable cell type resolution and single-cell microscopy. Using the sex determination pathway in Drosophila to illustrate potential avenues of research, we highlight some of the questions that these emerging technologies can address. For example, they provide an unprecedented opportunity to study heterogeneity within cell populations, and the potential to add the dimension of time to gene regulatory network analysis. Challenges still remain in developing methods to analyze this data and to increase the throughput. However this line of research has the potential to bridge the gaps between previously more disparate fields, such as population genetics and development, opening up new avenues of research. PMID:27161950

  5. System Review about Function Role of ESCC Driver Gene KDM6A by Network Biology Approach

    PubMed Central

    Ran, Jihua; Li, Hui; Li, Huiwu

    2016-01-01

    Background. KDM6A (Lysine (K)-Specific Demethylase 6A) is the driver gene related to esophageal squamous cell carcinoma (ESCC). In order to provide more biological insights into KDM6A, in this paper, we treat PPI (protein-protein interaction) network derived from KDM6A as a conceptual framework and follow it to review its biological function. Method. We constructed a PPI network with Cytoscape software and performed clustering of network with Clust&See. Then, we evaluate the pathways, which are statistically involved in the network derived from KDM6A. Lastly, gene ontology analysis of clusters of genes in the network was conducted. Result. The network includes three clusters that consist of 74 nodes connected via 453 edges. Fifty-five pathways are statistically involved in the network and most of them are functionally related to the processes of cell cycle, gene expression, and carcinogenesis. The biology themes of clusters 1, 2, and 3 are chromatin modification, regulation of gene expression by transcription factor complex, and control of cell cycle, respectively. Conclusion. The PPI network presents a panoramic view which can facilitate for us to understand the function role of KDM6A. It is a helpful way by network approach to perform system review on a certain gene. PMID:27294188

  6. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters

    PubMed Central

    2014-01-01

    This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD. PMID:24456676

  7. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters.

    PubMed

    Zare Abyaneh, Hamid

    2014-01-01

    This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD. PMID:24456676

  8. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters.

    PubMed

    Zare Abyaneh, Hamid

    2014-01-01

    This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD.

  9. Identification of Hub Genes Related to the Recovery Phase of Irradiation Injury by Microarray and Integrated Gene Network Analysis

    PubMed Central

    Zhang, Jing; Yang, Yue; Wang, Yin; Zhang, Jinyuan; Wang, Zejian; Yin, Ming; Shen, Xudong

    2011-01-01

    Background Irradiation commonly causes long-term bone marrow injury charactertized by defective HSC self-renewal and a decrease in HSC reserve. However, the effect of high-dose IR on global gene expression during bone marrow recovery remains unknown. Methodology Microarray analysis was used to identify differentially expressed genes that are likely to be critical for bone marrow recovery. Multiple bioinformatics analyses were conducted to identify key hub genes, pathways and biological processes. Principal Findings 1) We identified 1302 differentially expressed genes in murine bone marrow at 3, 7, 11 and 21 days after irradiation. Eleven of these genes are known to be HSC self-renewal associated genes, including Adipoq, Ccl3, Ccnd1, Ccnd2, Cdkn1a, Cxcl12, Junb, Pten, Tal1, Thy1 and Tnf; 2) These 1302 differentially expressed genes function in multiple biological processes of immunity, including hematopoiesis and response to stimuli, and cellular processes including cell proliferation, differentiation, adhesion and signaling; 3) Dynamic Gene Network analysis identified a subgroup of 25 core genes that participate in immune response, regulation of transcription and nucleosome assembly; 4) A comparison of our data with known irradiation-related genes extracted from literature showed 42 genes that matched the results of our microarray analysis, thus demonstrated consistency between studies; 5) Protein-protein interaction network and pathway analyses indicated several essential protein-protein interactions and signaling pathways, including focal adhesion and several immune-related signaling pathways. Conclusions Comparisons to other gene array datasets indicate that global gene expression profiles of irradiation damaged bone marrow show significant differences between injury and recovery phases. Our data suggest that immune response (including hematopoiesis) can be considered as a critical biological process in bone marrow recovery. Several critical hub genes that are

  10. NDRC: A Disease-Causing Genes Prioritized Method Based on Network Diffusion and Rank Concordance.

    PubMed

    Fang, Minghong; Hu, Xiaohua; Wang, Yan; Zhao, Junmin; Shen, Xianjun; He, Tingting

    2015-07-01

    Disease-causing genes prioritization is very important to understand disease mechanisms and biomedical applications, such as design of drugs. Previous studies have shown that promising candidate genes are mostly ranked according to their relatedness to known disease genes or closely related disease genes. Therefore, a dangling gene (isolated gene) with no edges in the network can not be effectively prioritized. These approaches tend to prioritize those genes that are highly connected in the PPI network while perform poorly when they are applied to loosely connected disease genes. To address these problems, we propose a new disease-causing genes prioritization method that based on network diffusion and rank concordance (NDRC). The method is evaluated by leave-one-out cross validation on 1931 diseases in which at least one gene is known to be involved, and it is able to rank the true causal gene first in 849 of all 2542 cases. The experimental results suggest that NDRC significantly outperforms other existing methods such as RWR, VAVIEN, DADA and PRINCE on identifying loosely connected disease genes and successfully put dangling genes as potential candidate disease genes. Furthermore, we apply NDRC method to study three representative diseases, Meckel syndrome 1, Protein C deficiency and Peroxisome biogenesis disorder 1A (Zellweger). Our study has also found that certain complex disease-causing genes can be divided into several modules that are closely associated with different disease phenotype.

  11. Evolutionary model selection and parameter estimation for protein-protein interaction network based on differential evolution algorithm

    PubMed Central

    Huang, Lei; Liao, Li; Wu, Cathy H.

    2016-01-01

    Revealing the underlying evolutionary mechanism plays an important role in understanding protein interaction networks in the cell. While many evolutionary models have been proposed, the problem about applying these models to real network data, especially for differentiating which model can better describe evolutionary process for the observed network urgently remains as a challenge. The traditional way is to use a model with presumed parameters to generate a network, and then evaluate the fitness by summary statistics, which however cannot capture the complete network structures information and estimate parameter distribution. In this work we developed a novel method based on Approximate Bayesian Computation and modified Differential Evolution (ABC-DEP) that is capable of conducting model selection and parameter estimation simultaneously and detecting the underlying evolutionary mechanisms more accurately. We tested our method for its power in differentiating models and estimating parameters on the simulated data and found significant improvement in performance benchmark, as compared with a previous method. We further applied our method to real data of protein interaction networks in human and yeast. Our results show Duplication Attachment model as the predominant evolutionary mechanism for human PPI networks and Scale-Free model as the predominant mechanism for yeast PPI networks. PMID:26357273

  12. Associations Between Newly Discovered Polymorphisms of the CEBPD GENE LOCUS and Body Parameters in Sheep.

    PubMed

    Trukhachev, Vladimir; Skripkin, Valentin; Kvochko, Andrey; Kulichenko, Alexander; Kovalev, Dmitry; Pisarenko, Sergey; Volynkina, Anna; Selionova, Marina; Aybazov, Magomet; Golovanova, Natalia; Yatsyk, Olesya; Krivoruchko, Alexander

    2016-10-01

    An understanding of what effects particular genes can have on body parameters in productive animals is particularly significant for the process of marker-assisted selection. The gene of transcriptional factor CCAAT/enhancer-binding protein delta (CEBPD gene) is involved in the process of growth in animals and is known to be a promising candidate for use as a genomic marker. The structure of the CEBPD gene locus was determined using NimbleGen sequencing technology (Roche, USA). The effect of polymorphisms, which were identified using the aforementioned technology, was investigated in 30 rams of the Manych Merino sheep breed. Twenty-two single nucleotide polymorphisms (SNP) were detected in the CEBPD gene locus. Significantly, two SNPs, namely, g.315T>G and g.327C>T, have been identified for the first time. It was demonstrated that the complex of linked SNPs, consisting of g.301A>T, g.426T>C, and g.1226T>C, had a negligible effect on body parameters in Manych Merino sheep. Animals with the heterozygous type of SNP g.1142C>T exhibited changes solely in the chest and croup width. The newly discovered SNP g.327C>T was proven to have a negative effect on live weight and body size (p < 0.05) in Manych Merino sheep. Sheep with the heterozygous type of g.562G>A and g.3112C>G SNP complex showed an increase in live weight and dimensions (p < 0.05) compared with those of wild homozygous type. Consequently, SNPs g.327C>T, g.562G>A, and g.3112C>G in the CEBPD gene locus can be successfully used as markers in sheep breeding. Future research will evaluate the influence of the aforementioned SNPs on slaughter indicators for sheep meat production. PMID:27565864

  13. Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering

    PubMed Central

    McDowell, Ian C.; Zhao, Shiwen; Brown, Christopher D.; Engelhardt, Barbara E.

    2016-01-01

    Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues. PMID:27467526

  14. Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering.

    PubMed

    Gao, Chuan; McDowell, Ian C; Zhao, Shiwen; Brown, Christopher D; Engelhardt, Barbara E

    2016-07-01

    Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues. PMID:27467526

  15. Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers.

    PubMed

    Pramparo, Tiziano; Lombardo, Michael V; Campbell, Kathleen; Barnes, Cynthia Carter; Marinero, Steven; Solso, Stephanie; Young, Julia; Mayo, Maisi; Dale, Anders; Ahrens-Barbeau, Clelia; Murray, Sarah S; Lopez, Linda; Lewis, Nathan; Pierce, Karen; Courchesne, Eric

    2015-12-14

    Genetic mechanisms underlying abnormal early neural development in toddlers with Autism Spectrum Disorder (ASD) remain uncertain due to the impossibility of direct brain gene expression measurement during critical periods of early development. Recent findings from a multi-tissue study demonstrated high expression of many of the same gene networks between blood and brain tissues, in particular with cell cycle functions. We explored relationships between blood gene expression and total brain volume (TBV) in 142 ASD and control male toddlers. In control toddlers, TBV variation significantly correlated with cell cycle and protein folding gene networks, potentially impacting neuron number and synapse development. In ASD toddlers, their correlations with brain size were lost as a result of considerable changes in network organization, while cell adhesion gene networks significantly correlated with TBV variation. Cell cycle networks detected in blood are highly preserved in the human brain and are upregulated during prenatal states of development. Overall, alterations were more pronounced in bigger brains. We identified 23 candidate genes for brain maldevelopment linked to 32 genes frequently mutated in ASD. The integrated network includes genes that are dysregulated in leukocyte and/or postmortem brain tissue of ASD subjects and belong to signaling pathways regulating cell cycle G1/S and G2/M phase transition. Finally, analyses of the CHD8 subnetwork and altered transcript levels from an independent study of CHD8 suppression further confirmed the central role of genes regulating neurogenesis and cell adhesion processes in ASD brain maldevelopment.

  16. Network-based gene prediction for Plasmodium falciparum malaria towards genetics-based drug discovery

    PubMed Central

    2015-01-01

    Background Malaria is the most deadly parasitic infectious disease. Existing drug treatments have limited efficacy in malaria elimination, and the complex pathogenesis of the disease is not fully understood. Detecting novel malaria-associated genes not only contributes in revealing the disease pathogenesis, but also facilitates discovering new targets for anti-malaria drugs. Methods In this study, we developed a network-based approach to predict malaria-associated genes. We constructed a cross-species network to integrate human-human, parasite-parasite and human-parasite protein interactions. Then we extended the random walk algorithm on this network, and used known malaria genes as the seeds to find novel candidate genes for malaria. Results We validated our algorithms using 77 known malaria genes: 14 human genes and 63 parasite genes were ranked averagely within top 2% and top 4%, respectively among human and parasite genomes. We also evaluated our method for predicting novel malaria genes using a set of 27 genes with literature supporting evidence. Our approach ranked 12 genes within top 1% and 24 genes within top 5%. In addition, we demonstrated that top-ranked candied genes were enriched for drug targets, and identified commonalities underlying top-ranked malaria genes through pathway analysis. In summary, the candidate malaria-associated genes predicted by our data-driven approach have the potential to guide genetics-based anti-malaria drug discovery. PMID:26099491

  17. Earth Rotation Parameter Solutions using BDS and GPS Data from MEGX Network

    NASA Astrophysics Data System (ADS)

    Xu, Tianhe; Yu, Sumei; Li, Jiajing; He, Kaifei

    2014-05-01

    Earth rotation parameters (ERPs) are necessary parameters to achieve mutual transformation of the celestial reference frame and earth-fix reference frame. They are very important for satellite precise orbit determination (POD), high-precision space navigation and positioning. In this paper, the determination of ERPs including polar motion (PM), polar motion rate (PMR) and length of day (LOD) are presented using BDS and GPS data of June 2013 from MEGX network based on least square (LS) estimation with constraint condition. BDS and GPS data of 16 co-location stations from MEGX network are the first time used to estimate the ERPs. The results show that the RMSs of x and y component errors of PM and PM rate are about 0.9 mas, 1.0 mas, 0.2 mas/d and 0.3 mas/d respectively using BDS data. The RMS of LOD is about 0.03 ms/d using BDS data. The RMSs of x and y component errors of PM and PM rate are about 0.2 mas, 0.2 mas/d respectively using GPS data. The RMS of LOD is about 0.02 ms/d using GPS data. The optimal relative weight is determined by using variance component estimation when combining BDS and GPS data. The accuracy improvements of adding BDS data is between 8% to 20% for PM and PM rate. There is no obvious improvement in LOD when BDS data is involved. System biases between BDS and GPS are also resolved per station. They are very stable from day to day with the average accuracy of about 20 cm. Keywords: Earth rotation parameter; International GNSS Service; polar motion; length of day; least square with constraint condition Acknowledgments: This work was supported by Natural Science Foundation of China (41174008) and the Foundation for the Author of National Excellent Doctoral Dissertation of China (2007B51) .

  18. Control of sleep by a network of cell cycle genes.

    PubMed

    Afonso, Dinis J S; Machado, Daniel R; Koh, Kyunghee

    2015-01-01

    Sleep is essential for health and cognition, but the molecular and neural mechanisms of sleep regulation are not well understood. We recently reported the identification of TARANIS (TARA) as a sleep-promoting factor that acts in a previously unknown arousal center in Drosophila. tara mutants exhibit a dose-dependent reduction in sleep amount of up to ∼60%. TARA and its mammalian homologs, the Trip-Br (Transcriptional Regulators Interacting with PHD zinc fingers and/or Bromodomains) family of proteins, are primarily known as transcriptional coregulators involved in cell cycle progression, and contain a conserved Cyclin-A (CycA) binding homology domain. We found that tara and CycA synergistically promote sleep, and CycA levels are reduced in tara mutants. Additional data demonstrated that Cyclin-dependent kinase 1 (Cdk1) antagonizes tara and CycA to promote wakefulness. Moreover, we identified a subset of CycA expressing neurons in the pars lateralis, a brain region proposed to be analogous to the mammalian hypothalamus, as an arousal center. In this Extra View article, we report further characterization of tara mutants and provide an extended discussion of our findings and future directions within the framework of a working model, in which a network of cell cycle genes, tara, CycA, and Cdk1, interact in an arousal center to regulate sleep. PMID:26925838

  19. Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation

    PubMed Central

    Parikh, Abhirath; Wu, Jincheng; Blanton, Robert M.

    2015-01-01

    Strategies for harnessing stem cells as a source to treat cell loss in heart disease are the subject of intense research. Human pluripotent stem cells (hPSCs) can be expanded extensively in vitro and therefore can potentially provide sufficient quantities of patient-specific differentiated cardiomyocytes. Although multiple stimuli direct heart development, the differentiation process is driven in large part by signaling activity. The engineering of hPSCs to heart cell progeny has extensively relied on establishing proper combinations of soluble signals, which target genetic programs thereby inducing cardiomyocyte specification. Pertinent differentiation strategies have relied as a template on the development of embryonic heart in multiple model organisms. Here, information on the regulation of cardiomyocyte development from in vivo genetic and embryological studies is critically reviewed. A fresh interpretation is provided of in vivo and in vitro data on signaling pathways and gene regulatory networks (GRNs) underlying cardiopoiesis. The state-of-the-art understanding of signaling pathways and GRNs presented here can inform the design and optimization of methods for the engineering of tissues for heart therapies. PMID:25813860

  20. Network Candidate Genes in Breeding for Drought Tolerant Crops.

    PubMed

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-07-17

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  1. Network Candidate Genes in Breeding for Drought Tolerant Crops

    PubMed Central

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-01-01

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance. PMID:26193269

  2. fabp4 is central to eight obesity associated genes: a functional gene network-based polymorphic study.

    PubMed

    Bag, Susmita; Ramaiah, Sudha; Anbarasu, Anand

    2015-01-01

    Network study on genes and proteins offers functional basics of the complexity of gene and protein, and its interacting partners. The gene fatty acid-binding protein 4 (fabp4) is found to be highly expressed in adipose tissue, and is one of the most abundant proteins in mature adipocytes. Our investigations on functional modules of fabp4 provide useful information on the functional genes interacting with fabp4, their biochemical properties and their regulatory functions. The present study shows that there are eight set of candidate genes: acp1, ext2, insr, lipe, ostf1, sncg, usp15, and vim that are strongly and functionally linked up with fabp4. Gene ontological analysis of network modules of fabp4 provides an explicit idea on the functional aspect of fabp4 and its interacting nodes. The hierarchal mapping on gene ontology indicates gene specific processes and functions as well as their compartmentalization in tissues. The fabp4 along with its interacting genes are involved in lipid metabolic activity and are integrated in multi-cellular processes of tissues and organs. They also have important protein/enzyme binding activity. Our study elucidated disease-associated nsSNP prediction for fabp4 and it is interesting to note that there are four rsID׳s (rs1051231, rs3204631, rs140925685 and rs141169989) with disease allelic variation (T104P, T126P, G27D and G90V respectively). On the whole, our gene network analysis presents a clear insight about the interactions and functions associated with fabp4 gene network.

  3. Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization.

    PubMed

    Zhao, Zhi-Qin; Han, Guo-Sheng; Yu, Zu-Guo; Li, Jinyan

    2015-08-01

    Random walk on heterogeneous networks is a recently emerging approach to effective disease gene prioritization. Laplacian normalization is a technique capable of normalizing the weight of edges in a network. We use this technique to normalize the gene matrix and the phenotype matrix before the construction of the heterogeneous network, and also use this idea to define the transition matrices of the heterogeneous network. Our method has remarkably better performance than the existing methods for recovering known gene-phenotype relationships. The Shannon information entropy of the distribution of the transition probabilities in our networks is found to be smaller than the networks constructed by the existing methods, implying that a higher number of top-ranked genes can be verified as disease genes. In fact, the most probable gene-phenotype relationships ranked within top 3 or top 5 in our gene lists can be confirmed by the OMIM database for many cases. Our algorithms have shown remarkably superior performance over the state-of-the-art algorithms for recovering gene-phenotype relationships. All Matlab codes can be available upon email request.

  4. A knowledge driven supervised learning approach to identify gene network of differentially up-regulated genes during neuronal senescence in Rattus norvegicus.

    PubMed

    Dholaniya, Pankaj Singh; Ghosh, Soumitra; Surampudi, Bapi Raju; Kondapi, Anand K

    2015-09-01

    Various approaches have been described to infer the gene interaction network from expression data. Several models based on computational and mathematical methods are available. The fundamental thing in the identification of the gene interaction is their biological relevance. Two genes belonging to the same pathway are more likely to affect the expression of each other than the genes of two different pathways. In the present study, interaction network of genes is described based on upregulated genes during neuronal senescence in the Cerebellar granule neurons of rat. We have adopted a supervised learning method and used it in combination with biological pathway information of the genes to develop a gene interaction network. Further modular analysis of the network has been done to identify senescence-related marker genes. Currently there is no adequate information available about the genes implicated in neuronal senescence. Thus identifying multipath genes belonging to the pathway affected by senescence might be very useful in studying the senescence process. PMID:26163927

  5. Integrative neural networks model for prediction of sediment rating curve parameters for ungauged basins

    NASA Astrophysics Data System (ADS)

    Atieh, M.; Mehltretter, S. L.; Gharabaghi, B.; Rudra, R.

    2015-12-01

    One of the most uncertain modeling tasks in hydrology is the prediction of ungauged stream sediment load and concentration statistics. This study presents integrated artificial neural networks (ANN) models for prediction of sediment rating curve parameters (rating curve coefficient α and rating curve exponent β) for ungauged basins. The ANN models integrate a comprehensive list of input parameters to improve the accuracy achieved; the input parameters used include: soil, land use, topographic, climatic, and hydrometric data sets. The ANN models were trained on the randomly selected 2/3 of the dataset of 94 gauged streams in Ontario, Canada and validated on the remaining 1/3. The developed models have high correlation coefficients of 0.92 and 0.86 for α and β, respectively. The ANN model for the rating coefficient α is directly proportional to rainfall erosivity factor, soil erodibility factor, and apportionment entropy disorder index, whereas it is inversely proportional to vegetation cover and mean annual snowfall. The ANN model for the rating exponent β is directly proportional to mean annual precipitation, the apportionment entropy disorder index, main channel slope, standard deviation of daily discharge, and inversely proportional to the fraction of basin area covered by wetlands and swamps. Sediment rating curves are essential tools for the calculation of sediment load, concentration-duration curve (CDC), and concentration-duration-frequency (CDF) analysis for more accurate assessment of water quality for ungauged basins.

  6. Identification of thin elastic isotropic plate parameters applying Guided Wave Measurement and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Pabisek, Ewa; Waszczyszyn, Zenon

    2015-12-01

    A new hybrid computational system for material identification (HCSMI) is presented, developed for the identification of homogeneous, elastic, isotropic plate parameters. Attention is focused on the construction of dispersion curves, related to Lamb waves. The main idea of the system HCSMI lies in separation of two essential basic computational stages, corresponding to direct or inverse analyses. In the frame of the first stage an experimental dispersion curve DCexp is constructed, applying Guided Wave Measurement (GWM) technique. Then, in the other stage, corresponding to the inverse analysis, an Artificial Neural Network (ANN) is trained 'off line'. The substitution of results of the first stage, treated as inputs of the ANN, gives the values of identified plate parameters. In such a way no iteration is needed, unlike to the classical approach. In such an approach, the "distance" between the approximate experimental curves DCexp and dispersion curves DCnum obtained in the direct analysis, is iteratively minimized. Two case studies are presented, corresponding either to measurements in laboratory tests or those related to pseudo-experimental noisy data of computer simulations. The obtained results prove high numerical efficiency of HCSMI, applied to the identification of aluminum plate parameters.

  7. An artificial neural network approach for ranking quenching parameters in central galaxies

    NASA Astrophysics Data System (ADS)

    Teimoorinia, Hossen; Bluck, Asa F. L.; Ellison, Sara L.

    2016-04-01

    We present a novel technique for ranking the relative importance of galaxy properties in the process of quenching star formation. Specifically, we develop an artificial neural network (ANN) approach for pattern recognition and apply it to a population of over 400 000 central galaxies taken from the Sloan Digital Sky Survey Data Release 7. We utilize a variety of physical galaxy properties for training the pattern recognition algorithm to recognize star-forming and passive systems, for a `training set' of ˜100 000 galaxies. We then apply the ANN model to a `verification set' of ˜100 000 different galaxies, randomly chosen from the remaining sample. The success rate of each parameter singly, and in conjunction with other parameters, is taken as an indication of how important the parameters are to the process(es) of central galaxy quenching. We find that central velocity dispersion, bulge mass and bulge-to-total stellar mass ratio are excellent predictors of the passive state of the system, indicating that properties related to the central mass of the galaxy are most closely linked to the cessation of star formation. Larger scale galaxy properties (total or disc stellar masses), or those linked to environment (halo masses or δ5), perform significantly less well. Our results are plausibly explained by AGN feedback driving the quenching of central galaxies, although we discuss other possibilities as well.

  8. Global Landscape of a Co-Expressed Gene Network in Barley and its Application to Gene Discovery in Triticeae Crops

    PubMed Central

    Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo

    2011-01-01

    Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/. PMID:21441235

  9. Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks

    PubMed Central

    Blatti, Charles; Sinha, Saurabh

    2016-01-01

    Motivation: Analysis of co-expressed gene sets typically involves testing for enrichment of different annotations or ‘properties’ such as biological processes, pathways, transcription factor binding sites, etc., one property at a time. This common approach ignores any known relationships among the properties or the genes themselves. It is believed that known biological relationships among genes and their many properties may be exploited to more accurately reveal commonalities of a gene set. Previous work has sought to achieve this by building biological networks that combine multiple types of gene–gene or gene–property relationships, and performing network analysis to identify other genes and properties most relevant to a given gene set. Most existing network-based approaches for recognizing genes or annotations relevant to a given gene set collapse information about different properties to simplify (homogenize) the networks. Results: We present a network-based method for ranking genes or properties related to a given gene set. Such related genes or properties are identified from among the nodes of a large, heterogeneous network of biological information. Our method involves a random walk with restarts, performed on an initial network with multiple node and edge types that preserve more of the original, specific property information than current methods that operate on homogeneous networks. In this first stage of our algorithm, we find the properties that are the most relevant to the given gene set and extract a subnetwork of the original network, comprising only these relevant properties. We then re-rank genes by their similarity to the given gene set, based on a second random walk with restarts, performed on the above subnetwork. We demonstrate the effectiveness of this algorithm for ranking genes related to Drosophila embryonic development and aggressive responses in the brains of social animals. Availability and Implementation: DRaWR was implemented as

  10. Digital Signal Processing and Control for the Study of Gene Networks.

    PubMed

    Shin, Yong-Jun

    2016-04-22

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  11. Digital Signal Processing and Control for the Study of Gene Networks

    PubMed Central

    Shin, Yong-Jun

    2016-01-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks. PMID:27102828

  12. A new asynchronous parallel algorithm for inferring large-scale gene regulatory networks.

    PubMed

    Xiao, Xiangyun; Zhang, Wei; Zou, Xiufen

    2015-01-01

    The reconstruction of gene regulatory networks (GRNs) from high-throughput experimental data has been considered one of the most important issues in systems biology research. With the development of high-throughput technology and the complexity of biological problems, we need to reconstruct GRNs that contain thousands of genes. However, when many existing algorithms are used to handle these large-scale problems, they will encounter two important issues: low accuracy and high computational cost. To overcome these difficulties, the main goal of this study is to design an effective parallel algorithm to infer large-scale GRNs based on high-performance parallel computing environments. In this study, we proposed a novel asynchronous parallel framework to improve the accuracy and lower the time complexity of large-scale GRN inference by combining splitting technology and ordinary differential equation (ODE)-based optimization. The presented algorithm uses the sparsity and modularity of GRNs to split whole large-scale GRNs into many small-scale modular subnetworks. Through the ODE-based optimization of all subnetworks in parallel and their asynchronous communications, we can easily obtain the parameters of the whole network. To test the performance of the proposed approach, we used well-known benchmark datasets from Dialogue for Reverse Engineering Assessments and Methods challenge (DREAM), experimentally determined GRN of Escherichia coli and one published dataset that contains more than 10 thousand genes to compare the proposed approach with several popular algorithms on the same high-performance computing environments in terms of both accuracy and time complexity. The numerical results demonstrate that our parallel algorithm exhibits obvious superiority in inferring large-scale GRNs.

  13. Association of IL-8 (-251 A/T) Gene Polymorphism with Clinical Parameters and Chronic Periodontitis

    PubMed Central

    Khosropanah, Hengameh; Sarvestani, Eskandar Kamali; Mahmoodi, Ashkan; Golshah, Masoud

    2013-01-01

    Objective: To investigate the correlation between IL-8 (-251 A/T) gene polymorphism and susceptibility to chronic periodontitis as well as different clinical parameters and severity of the condition in patients referred to dental school, Shiraz University of Medical Sciences, Shiraz, Iran. Materials and Methods: In this randomized cross sectional study, 227 non-smoking patients with chronic periodontitis (test) and 40 healthy individuals (control) were enrolled in this experiment and the following clinical parameters were employed in the study: Periodontal Pocket Depth (PPD), Clinical Attachment Level (CAL) and Bone Loss (BL). All participants underwent the PCR (Polymerase Chain Reaction) test to detect 251 A/T Single Nucleotide Polymorphism of IL8 gene. Results: No significant correlation was perceived between different genotypes of IL-8 and the severity of the periodontal condition (P= 0.164), neither did we detect any substantial association between different IL-8 genotypes and the mean PPD (P=0.525), CAL (P=0.151), BL (P=0.255), PI (P=0.087), BOP (P=0.265) and the average number of teeth (P=0.931). Conclusion: The results implied that there was no explicit correlation between 251 (A/T) IL-8 gene polymorphism and the severity of the chronic periodontal disease or to the susceptibility to it. PMID:24396350

  14. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.

    PubMed

    Warmflash, Aryeh; Francois, Paul; Siggia, Eric D

    2012-10-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.

  15. Predicting Variabilities in Cardiac Gene Expression with a Boolean Network Incorporating Uncertainty.

    PubMed

    Grieb, Melanie; Burkovski, Andre; Sträng, J Eric; Kraus, Johann M; Groß, Alexander; Palm, Günther; Kühl, Michael; Kestler, Hans A

    2015-01-01

    Gene interactions in cells can be represented by gene regulatory networks. A Boolean network models gene interactions according to rules where gene expression is represented by binary values (on / off or {1, 0}). In reality, however, the gene's state can have multiple values due to biological properties. Furthermore, the noisy nature of the experimental design results in uncertainty about a state of the gene. Here we present a new Boolean network paradigm to allow intermediate values on the interval [0, 1]. As in the Boolean network, fixed points or attractors of such a model correspond to biological phenotypes or states. We use our new extension of the Boolean network paradigm to model gene expression in first and second heart field lineages which are cardiac progenitor cell populations involved in early vertebrate heart development. By this we are able to predict additional biological phenotypes that the Boolean model alone is not able to identify without utilizing additional biological knowledge. The additional phenotypes predicted by the model were confirmed by published biological experiments. Furthermore, the new method predicts gene expression propensities for modelled but yet to be analyzed genes.

  16. Gene identification and analysis: an application of neural network-based information fusion

    SciTech Connect

    Matis, S.; Xu, Y.; Shah, M.B.; Mural, R.J.; Einstein, J.R.; Uberbacher, E.C.

    1996-10-01

    Identifying genes within large regions of uncharacterized DNA is a difficult undertaking and is currently the focus of many research efforts. We describe a gene localization and modeling system called GRAIL. GRAIL is a multiple sensor-neural network based system. It localizes genes in anonymous DNA sequence by recognizing gene features related to protein-coding slice sites, and then combines the recognized features using a neural network system. Localized coding regions are then optimally parsed into a gene mode. RNA polymerase II promoters can also be predicted. Through years of extensive testing, GRAIL consistently localizes about 90 percent of coding portions of test genes with a false positive rate of about 10 percent. A number of genes for major genetic diseases have been located through the use of GRAIL, and over 1000 research laboratories worldwide use GRAIL on regular bases for localization of genes on their newly sequenced DNA.

  17. Identification of hub genes and pathways associated with retinoblastoma based on co-expression network analysis.

    PubMed

    Wang, Q L; Chen, X; Zhang, M H; Shen, Q H; Qin, Z M

    2015-01-01

    The objective of this paper was to identify hub genes and pathways associated with retinoblastoma using centrality analysis of the co-expression network and pathway-enrichment analysis. The co-expression network of retinoblastoma was constructed by weighted gene co-expression network analysis (WGCNA) based on differentially expressed (DE) genes, and clusters were obtained through the molecular complex detection (MCODE) algorithm. Degree centrality analysis of the co-expression network was performed to explore hub genes present in retinoblastoma. Pathway-enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Validation of hub gene expression in retinoblastoma was performed by reverse transcription-polymerase chain reaction (RT-PCR) analysis. The co-expression network based on 221 DE genes between retinoblastoma and normal controls consisted of 210 nodes and 3965 edges, and 5 clusters of the network were evaluated. By assessing the centrality analysis of the co-expression network, 21 hub genes were identified, such as SNORD115-41, RASSF2, and SNORD115-44. According to RT-PCR analysis, 16 of the 21 hub genes were differently expressed, including RASSF2 and CDCA7, and 5 were not differently expressed in retinoblastoma compared to normal controls. Pathway analysis showed that genes in 2 clusters were enriched in 3 pathways: purine metabolism, p53 signaling pathway, and melanogenesis. In this study, we successfully identified 16 hub genes and 3 pathways associated with retinoblastoma, which may be potential biomarkers for early detection and therapy for retinoblastoma. PMID:26662407

  18. Genes and Gene Networks Involved in Sodium Fluoride-Elicited Cell Death Accompanying Endoplasmic Reticulum Stress in Oral Epithelial Cells

    PubMed Central

    Tabuchi, Yoshiaki; Yunoki, Tatsuya; Hoshi, Nobuhiko; Suzuki, Nobuo; Kondo, Takashi

    2014-01-01

    Here, to understand the molecular mechanisms underlying cell death induced by sodium fluoride (NaF), we analyzed gene expression patterns in rat oral epithelial ROE2 cells exposed to NaF using global-scale microarrays and bioinformatics tools. A relatively high concentration of NaF (2 mM) induced cell death concomitant with decreases in mitochondrial membrane potential, chromatin condensation and caspase-3 activation. Using 980 probe sets, we identified 432 up-regulated and 548 down-regulated genes, that were differentially expressed by >2.5-fold in the cells treated with 2 mM of NaF and categorized them into 4 groups by K-means clustering. Ingenuity® pathway analysis revealed several gene networks from gene clusters. The gene networks Up-I and Up-II included many up-regulated genes that were mainly associated with the biological function of induction or prevention of cell death, respectively, such as Atf3, Ddit3 and Fos (for Up-I) and Atf4 and Hspa5 (for Up-II). Interestingly, knockdown of Ddit3 and Hspa5 significantly increased and decreased the number of viable cells, respectively. Moreover, several endoplasmic reticulum (ER) stress-related genes including, Ddit3, Atf4 and Hapa5, were observed in these gene networks. These findings will provide further insight into the molecular mechanisms of NaF-induced cell death accompanying ER stress in oral epithelial cells. PMID:24853129

  19. Cooperative adaptive responses in gene regulatory networks with many degrees of freedom.

    PubMed

    Inoue, Masayo; Kaneko, Kunihiko

    2013-04-01

    Cells generally adapt to environmental changes by first exhibiting an immediate response and then gradually returning to their original state to achieve homeostasis. Although simple network motifs consisting of a few genes have been shown to exhibit such adaptive dynamics, they do not reflect the complexity of real cells, where the expression of a large number of genes activates or represses other genes, permitting adaptive behaviors. Here, we investigated the responses of gene regulatory networks containing many genes that have undergone numerical evolution to achieve high fitness due to the adaptive response of only a single target gene; this single target gene responds to changes in external inputs and later returns to basal levels. Despite setting a single target, most genes showed adaptive responses after evolution. Such adaptive dynamics were not due to common motifs within a few genes; even without such motifs, almost all genes showed adaptation, albeit sometimes partial adaptation, in the sense that expression levels did not always return to original levels. The genes split into two groups: genes in the first group exhibited an initial increase in expression and then returned to basal levels, while genes in the second group exhibited the opposite changes in expression. From this model, genes in the first group received positive input from other genes within the first group, but negative input from genes in the second group, and vice versa. Thus, the adaptation dynamics of genes from both groups were consolidated. This cooperative adaptive behavior was commonly observed if the number of genes involved was larger than the order of ten. These results have implications in the collective responses of gene expression networks in microarray measurements of yeast Saccharomyces cerevisiae and the significance to the biological homeostasis of systems with many components.

  20. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    SciTech Connect

    Song, Mingzhou; Lewis, Chris K.; Lance, Eric; Chesler, Elissa J; Kirova, Roumyana; Langston, Michael A; Bergeson, Susan

    2009-01-01

    The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  1. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.

    PubMed

    Ahnert, S E; Fink, T M A

    2016-07-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. PMID:27440255

  2. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space

    PubMed Central

    Ahnert, S. E.; Fink, T. M. A.

    2016-01-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the ‘function’ of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. PMID:27440255

  3. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.

    PubMed

    Ahnert, S E; Fink, T M A

    2016-07-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature.

  4. Predicting CYP2C19 catalytic parameters for enantioselective oxidations using artificial neural networks and a chirality code.

    PubMed

    Hartman, Jessica H; Cothren, Steven D; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A; Miller, Grover P

    2013-07-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (k(cat), K(m), and k(cat)/K(m)), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (k(cat) and K(m)) were more consistent with experimental values than those for catalytic efficiency (k(cat)/K(m)). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds.

  5. Modelling the effects of cell-to-cell variability on the output of interconnected gene networks in bacterial populations

    PubMed Central

    2015-01-01

    Background The interconnection of quantitatively characterized biological devices may lead to composite systems with apparently unpredictable behaviour. Context-dependent variability of biological parts has been investigated in several studies, measuring its entity and identifying the factors contributing to variability. Such studies rely on the experimental analysis of model systems, by quantifying reporter genes via population or single-cell approaches. However, cell-to-cell variability is not commonly included in predictability analyses, thus relying on predictive models trained and tested on central tendency values. This work aims to study in silico the effects of cell-to-cell variability on the population-averaged output of interconnected biological circuits. Methods The steady-state deterministic transfer function of individual devices was described by Hill equations and lognormal synthetic noise was applied to their output. Two- and three-module networks were studied, where individual devices implemented inducible/repressible functions. The single-cell output of such networks was simulated as a function of noise entity; their population-averaged output was computed and used to investigate the expected variability in transfer function identification. The study was extended by testing different noise models, module logic, intrinsic/extrinsic noise proportions and network configurations. Results First, the transfer function of an individual module was identified from simulated data of a two-module network. The estimated parameter variability among different noise entities was limited (14%), while a larger difference was observed (up to 62%) when estimated and true parameters were compared. Thus, low-variability parameter estimates can be obtained for different noise entities, although deviating from the true parameters, whose measurement requires noise knowledge. Second, the black-box input-output function of a two/three-module network was predicted from the

  6. Gene Network Rewiring to Study Melanoma Stage Progression and Elements Essential for Driving Melanoma

    PubMed Central

    Kaushik, Abhinav; Bhatia, Yashuma; Ali, Shakir; Gupta, Dinesh

    2015-01-01

    Metastatic melanoma patients have a poor prognosis, mainly attributable to the underlying heterogeneity in melanoma driver genes and altered gene expression profiles. These characteristics of melanoma also make the development of drugs and identification of novel drug targets for metastatic melanoma a daunting task. Systems biology offers an alternative approach to re-explore the genes or gene sets that display dysregulated behaviour without being differentially expressed. In this study, we have performed systems biology studies to enhance our knowledge about the conserved property of disease genes or gene sets among mutually exclusive datasets representing melanoma progression. We meta-analysed 642 microarray samples to generate melanoma reconstructed networks representing four different stages of melanoma progression to extract genes with altered molecular circuitry wiring as compared to a normal cellular state. Intriguingly, a majority of the melanoma network-rewired genes are not differentially expressed and the disease genes involved in melanoma progression consistently modulate its activity by rewiring network connections. We found that the shortlisted disease genes in the study show strong and abnormal network connectivity, which enhances with the disease progression. Moreover, the deviated network properties of the disease gene sets allow ranking/prioritization of different enriched, dysregulated and conserved pathway terms in metastatic melanoma, in agreement with previous findings. Our analysis also reveals presence of distinct network hubs in different stages of metastasizing tumor for the same set of pathways in the statistically conserved gene sets. The study results are also presented as a freely available database at http://bioinfo.icgeb.res.in/m3db/. The web-based database resource consists of results from the analysis presented here, integrated with cytoscape web and user-friendly tools for visualization, retrieval and further analysis. PMID

  7. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo

    NASA Technical Reports Server (NTRS)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; Otim, Ochan; Brown, C. Titus; Livi, Carolina B.; Lee, Pei Yun; Revilla, Roger; Schilstra, Maria J.; Clarke, Peter J C.; Rust, Alistair G.; Pan, Zhengjun; Arnone, Maria I.; Rowen, Lee; Cameron, R. Andrew; McClay, David R.; Hood, Leroy; Bolouri, Hamid

    2002-01-01

    We present the current form of a provisional DNA sequence-based regulatory gene network that explains in outline how endomesodermal specification in the sea urchin embryo is controlled. The model of the network is in a continuous process of revision and growth as new genes are added and new experimental results become available; see http://www.its.caltech.edu/mirsky/endomeso.htm (End-mes Gene Network Update) for the latest version. The network contains over 40 genes at present, many newly uncovered in the course of this work, and most encoding DNA-binding transcriptional regulatory factors. The architecture of the network was approached initially by construction of a logic model that integrated the extensive experimental evidence now available on endomesoderm specification. The internal linkages between genes in the network have been determined functionally, by measurement of the effects of regulatory perturbations on the expression of all relevant genes in the network. Five kinds of perturbation have been applied: (1) use of morpholino antisense oligonucleotides targeted to many of the key regulatory genes in the network; (2) transformation of other regulatory factors into dominant repressors by construction of Engrailed repressor domain fusions; (3) ectopic expression of given regulatory factors, from genetic expression constructs and from injected mRNAs; (4) blockade of the beta-catenin/Tcf pathway by introduction of mRNA encoding the intracellular domain of cadherin; and (5) blockade of the Notch signaling pathway by introduction of mRNA encoding the extracellular domain of the Notch receptor. The network model predicts the cis-regulatory inputs that link each gene into the network. Therefore, its architecture is testable by cis-regulatory analysis. Strongylocentrotus purpuratus and Lytechinus variegatus genomic BAC recombinants that include a large number of the genes in the network have been sequenced and annotated. Tests of the cis-regulatory predictions of

  8. Use of Artificial Neural Networks to Examine Parameters Affecting the Immobilization of Streptokinase in Chitosan

    PubMed Central

    Modaresi, Seyed Mohamad Sadegh; Faramarzi, Mohammad Ali; Soltani, Arash; Baharifar, Hadi; Amani, Amir

    2014-01-01

    Streptokinase is a potent fibrinolytic agent which is widely used in treatment of deep vein thrombosis (DVT), pulmonary embolism (PE) and acute myocardial infarction (MI). Major limitation of this enzyme is its short biological half-life in the blood stream. Our previous report showed that complexing streptokinase with chitosan could be a solution to overcome this limitation. The aim of this research was to establish an artificial neural networks (ANNs) model for identifying main factors influencing the loading efficiency of streptokinase, as an essential parameter determining efficacy of the enzyme. Three variables, namely, chitosan concentration, buffer pH and enzyme concentration were considered as input values and the loading efficiency was used as output. Subsequently, the experimental data were modeled and the model was validated against a set of unseen data. The developed model indicated chitosan concentration as probably the most important factor, having reverse effect on the loading efficiency. PMID:25587327

  9. Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease

    PubMed Central

    Mäkinen, Ville-Petteri; Civelek, Mete; Meng, Qingying; Zhang, Bin; Zhu, Jun; Levian, Candace; Huan, Tianxiao; Segrè, Ayellet V.; Ghosh, Sujoy; Vivar, Juan; Nikpay, Majid; Stewart, Alexandre F. R.; Nelson, Christopher P.; Willenborg, Christina; Erdmann, Jeanette; Blakenberg, Stefan; O'Donnell, Christopher J.; März, Winfried; Laaksonen, Reijo; Epstein, Stephen E.; Kathiresan, Sekar; Shah, Svati H.; Hazen, Stanley L.; Reilly, Muredach P.; Lusis, Aldons J.; Samani, Nilesh J.; Schunkert, Heribert; Quertermous, Thomas; McPherson, Ruth; Yang, Xia; Assimes, Themistocles L.

    2014-01-01

    The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions. PMID:25033284

  10. Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR-/-) mouse.

    PubMed

    List, Edward O; Sackmann-Sala, Lucila; Berryman, Darlene E; Funk, Kevin; Kelder, Bruce; Gosney, Elahu S; Okada, Shigeru; Ding, Juan; Cruz-Topete, Diana; Kopchick, John J

    2011-06-01

    Disruption of the GH receptor (GHR) gene eliminates GH-induced intracellular signaling and, thus, its biological actions. Therefore, the GHR gene disrupted mouse (GHR-/-) has been and is a valuable tool for helping to define various parameters of GH physiology. Since its creation in 1995, this mouse strain has been used by our laboratory and others for numerous studies ranging from growth to aging. Some of the most notable discoveries are their extreme insulin sensitivity in the presence of obesity. Also, the animals have an extended lifespan, which has generated a large number of investigations into the roles of GH and IGF-I in the aging process. This review summarizes the many results derived from the GHR-/- mice. We have attempted to present the findings in the context of current knowledge regarding GH action and, where applicable, to discuss how these mice compare to GH insensitivity syndrome in humans. PMID:21123740

  11. Endocrine Parameters and Phenotypes of the Growth Hormone Receptor Gene Disrupted (GHR−/−) Mouse

    PubMed Central

    List, Edward O.; Sackmann-Sala, Lucila; Berryman, Darlene E.; Funk, Kevin; Kelder, Bruce; Gosney, Elahu S.; Okada, Shigeru; Ding, Juan; Cruz-Topete, Diana

    2011-01-01

    Disruption of the GH receptor (GHR) gene eliminates GH-induced intracellular signaling and, thus, its biological actions. Therefore, the GHR gene disrupted mouse (GHR−/−) has been and is a valuable tool for helping to define various parameters of GH physiology. Since its creation in 1995, this mouse strain has been used by our laboratory and others for numerous studies ranging from growth to aging. Some of the most notable discoveries are their extreme insulin sensitivity in the presence of obesity. Also, the animals have an extended lifespan, which has generated a large number of investigations into the roles of GH and IGF-I in the aging process. This review summarizes the many results derived from the GHR−/− mice. We have attempted to present the findings in the context of current knowledge regarding GH action and, where applicable, to discuss how these mice compare to GH insensitivity syndrome in humans. PMID:21123740

  12. Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks

    NASA Astrophysics Data System (ADS)

    Uwamahoro, J.; McKinnell, L. A.; Habarulema, J. B.

    2012-06-01

    Estimating the geoeffectiveness of solar events is of significant importance for space weather modelling and prediction. This paper describes the development of a neural network-based model for estimating the probability occurrence of geomagnetic storms following halo coronal mass ejection (CME) and related interplanetary (IP) events. This model incorporates both solar and IP variable inputs that characterize geoeffective halo CMEs. Solar inputs include numeric values of the halo CME angular width (AW), the CME speed (Vcme), and the comprehensive flare index (cfi), which represents the flaring activity associated with halo CMEs. IP parameters used as inputs are the numeric peak values of the solar wind speed (Vsw) and the southward Z-component of the interplanetary magnetic field (IMF) or Bs. IP inputs were considered within a 5-day time window after a halo CME eruption. The neural network (NN) model training and testing data sets were constructed based on 1202 halo CMEs (both full and partial halo and their properties) observed between 1997 and 2006. The performance of the developed NN model was tested using a validation data set (not part of the training data set) covering the years 2000 and 2005. Under the condition of halo CME occurrence, this model could capture 100% of the subsequent intense geomagnetic storms (Dst ≤ -100 nT). For moderate storms (-100 < Dst ≤ -50), the model is successful up to 75%. This model's estimate of the storm occurrence rate from halo CMEs is estimated at a probability of 86%.

  13. Swelling, diffusion, network parameters and adsorption properties of IPN hydrogel of chitosan and acrylic copolymer.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2014-11-01

    Interpenetrating network (IPN) type hydrogels of a biopolymer and a synthetic polymer were prepared from chitosan and crosslink copolymer of acrylic acid, sodium acrylate and hydroxyethyl methacrylate. Acrylic acid, sodium acrylate, hydroxyethyl methacrylate and N'N'-methylenebisacrylamide (MBA) monomers were free radically copolymerized and crosslinked in aqueous solution of chitosan. Several IPN hydrogels were prepared by varying concentrations of initiator, crosslinker (MBA) and weight% of chitosan . These hydrogels were characterized by free acid content, pH at point of zero charge (PZC), FTIR, DTA-TGA, SEM and XRD. The swelling and diffusion characteristics, network parameters and adsorption of cationic methyl violet (MV) and anionic congo red (CR) dyes by these hydrogels were studied. The hydrogels showed high adsorption (9.5-119 mg/g for CR and 9.2-98 mg/g for MV) and removal% (98-73% for CR and 94-66% for MV) over the feed concentration of 10-140 mg/l dye in water. The isotherms and kinetics of dye adsorption by the hydrogels were also studied.

  14. Effects of operation parameters on multitarget tracking in proximity sensor networks

    NASA Astrophysics Data System (ADS)

    Le, Qiang; Kaplan, Lance M.

    2011-06-01

    This paper investigates effects of operation parameters on multitarget tracking in proximity sensor networks. In such a network, the sensors report a detection when a target is within the proximity; otherwise, the sensors report no detection. Previous work has revealed the potential of multitarget tracking via the particle-based probability hypothesis density (PHD) filter when incorporating these binary reports. This work investigates how the sensor density, sensing range, and target separation affect the ability of the PHD filter to estimate the number of targets in the scene and to localize these targets (as measured by four different metrics). Two possible measurement models are considered. The disc model assumes target detection within a sensing radius, and the probabilistic model assumes 1/rα propagation decay of the source signal so that the probability of detection decreases with range r. The simulations demonstrate the simplistic disc model is inadequate for the PHD filter to estimate the number of targets, and the filter for the disc model exhibits difficulty to localize widely separated targets for low sensor densities. On the other hand, the more realistic probabilistic model leads to a PHD filter that can accurately estimate the number and locations of targets even for small target separations.

  15. MUFFINN: cancer gene discovery via network analysis of somatic mutation data.

    PubMed

    Cho, Ara; Shim, Jung Eun; Kim, Eiru; Supek, Fran; Lehner, Ben; Lee, Insuk

    2016-01-01

    A major challenge for distinguishing cancer-causing driver mutations from inconsequential passenger mutations is the long-tail of infrequently mutated genes in cancer genomes. Here, we present and evaluate a method for prioritizing cancer genes accounting not only for mutations in individual genes but also in their neighbors in functional networks, MUFFINN (MUtations For Functional Impact on Network Neighbors). This pathway-centric method shows high sensitivity compared with gene-centric analyses of mutation data. Notably, only a marginal decrease in performance is observed when using 10 % of TCGA patient samples, suggesting the method may potentiate cancer genome projects with small patient populations. PMID:27333808

  16. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle.

    PubMed

    Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; Fonseca e Silva, Fabyano; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen

    2015-01-01

    Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate

  17. Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle

    PubMed Central

    Crispim, Aline Camporez; Kelly, Matthew John; Guimarães, Simone Eliza Facioni; e Silva, Fabyano Fonseca; Fortes, Marina Rufino Salinas; Wenceslau, Raphael Rocha; Moore, Stephen

    2015-01-01

    Understanding the genetic architecture of beef cattle growth cannot be limited simply to the genome-wide association study (GWAS) for body weight at any specific ages, but should be extended to a more general purpose by considering the whole growth trajectory over time using a growth curve approach. For such an approach, the parameters that are used to describe growth curves were treated as phenotypes under a GWAS model. Data from 1,255 Brahman cattle that were weighed at birth, 6, 12, 15, 18, and 24 months of age were analyzed. Parameter estimates, such as mature weight (A) and maturity rate (K) from nonlinear models are utilized as substitutes for the original body weights for the GWAS analysis. We chose the best nonlinear model to describe the weight-age data, and the estimated parameters were used as phenotypes in a multi-trait GWAS. Our aims were to identify and characterize associated SNP markers to indicate SNP-derived candidate genes and annotate their function as related to growth processes in beef cattle. The Brody model presented the best goodness of fit, and the heritability values for the parameter estimates for mature weight (A) and maturity rate (K) were 0.23 and 0.32, respectively, proving that these traits can be a feasible alternative when the objective is to change the shape of growth curves within genetic improvement programs. The genetic correlation between A and K was -0.84, indicating that animals with lower mature body weights reached that weight at younger ages. One hundred and sixty seven (167) and two hundred and sixty two (262) significant SNPs were associated with A and K, respectively. The annotated genes closest to the most significant SNPs for A had direct biological functions related to muscle development (RAB28), myogenic induction (BTG1), fetal growth (IL2), and body weights (APEX2); K genes were functionally associated with body weight, body height, average daily gain (TMEM18), and skeletal muscle development (SMN1). Candidate

  18. Robust H infinity-stabilization design in gene networks under stochastic molecular noises: fuzzy-interpolation approach.

    PubMed

    Chen, Bor-Sen; Chang, Yu-Te; Wang, Yu-Chao

    2008-02-01

    Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering in gene networks is crucial to understand the signal processing in gene networks and to design noise-tolerant gene circuits for synthetic biology. A nonlinear stochastic dynamic model is proposed in describing a gene network under intrinsic molecular fluctuations and extrinsic molecular noises. The stochastic molecular-noise-processing scheme of gene regulatory networks for attenuating these molecular noises is investigated from the nonlinear robust stabilization and filtering perspective. In order to improve the robust stability and noise filtering, a robust gene circuit design for gene networks is proposed based on the nonlinear robust H infinity stochastic stabilization and filtering scheme, which needs to solve a nonlinear Hamilton-Jacobi inequality. However, in order to avoid solving these complicated nonlinear stabilization and filtering problems, a fuzzy approximation method is employed to interpolate several linear stochastic gene networks at different operation points via fuzzy bases to approximate the nonlinear stochastic gene network. In this situation, the method of linear matrix inequality technique could be employed to simplify the gene circuit design problems to improve robust stability and molecular-noise-filtering ability of gene networks to overcome intrinsic molecular fluctuations and extrinsic molecular noises. PMID:18270080

  19. Analysis of regulatory networks constructed based on gene coexpression in pituitary adenoma.

    PubMed

    Gong, Jie; Diao, Bo; Yao, Guo Jie; Liu, Ying; Xu, Guo Zheng

    2013-12-01

    Gene coexpression patterns can reveal gene collections with functional consistency. This study systematically constructs regulatory networks for pituitary tumours by integrating gene coexpression, transcriptional and posttranscriptional regulation. Through network analysis, we elaborate the incidence mechanism of pituitary adenoma. The Pearson's correlation coefficient was utilized to calculate the level of gene coexpression. By comparing pituitary adenoma samples with normal samples, pituitary adenoma-specific gene coexpression patterns were identified. For pituitary adenoma-specific coexpressed genes, we integrated transcription factor (TF) and microRNA (miRNA) regulation to construct a complex regulatory network from the transcriptional and posttranscriptional perspectives. Network module analysis identified the synergistic regulation of genes by miRNAs and TFs in pituitary adenoma. We identified 142 pituitary adenoma-specific active genes, including 43 TFs and 99 target genes of TFs. Functional enrichment of these 142 genes revealed that the occurrence of pituitary adenoma induced abnormalities in intracellular metabolism and angiogenesis process. These 142 genes were also significantly enriched in adenoma pathway. Module analysis of the systematic regulatory network found that three modules contained elements that were closely related to pituitary adenoma, such as FGF2 and SP1, as well as transcription factors and miRNAs involved in the tumourigenesis. These results show that in the occurrence of pituitary adenoma, miRNA, TF and genes interact with each other. Based on gene expression, the proposed method integrates interaction information from different levels and systematically explains the occurrence of pituitary tumours. It facilitates the tracing of the origin of the disease and can provide basis for early diagnosis of complex diseases or cancer without obvious symptoms.

  20. Predicting Variabilities in Cardiac Gene Expression with a Boolean Network Incorporating Uncertainty

    PubMed Central

    Kraus, Johann M.; Groß, Alexander; Palm, Günther; Kühl, Michael; Kestler, Hans A.

    2015-01-01

    Gene interactions in cells can be represented by gene regulatory networks. A Boolean network models gene interactions according to rules where gene expression is represented by binary values (on / off or {1, 0}). In reality, however, the gene’s state can have multiple values due to biological properties. Furthermore, the noisy nature of the experimental design results in uncertainty about a state of the gene. Here we present a new Boolean network paradigm to allow intermediate values on the interval [0, 1]. As in the Boolean network, fixed points or attractors of such a model correspond to biological phenotypes or states. We use our new extension of the Boolean network paradigm to model gene expression in first and second heart field lineages which are cardiac progenitor cell populations involved in early vertebrate heart development. By this we are able to predict additional biological phenotypes that the Boolean model alone is not able to identify without utilizing additional biological knowledge. The additional phenotypes predicted by the model were confirmed by published biological experiments. Furthermore, the new method predicts gene expression propensities for modelled but yet to be analyzed genes. PMID:26207376

  1. Meta-Analysis of Differential Connectivity in Gene Co-Expression Networks in Multiple Sclerosis

    PubMed Central

    Creanza, Teresa Maria; Liguori, Maria; Liuni, Sabino; Nuzziello, Nicoletta; Ancona, Nicola

    2016-01-01

    Differential gene expression analyses to investigate multiple sclerosis (MS) molecular pathogenesis cannot detect genes harboring genetic and/or epigenetic modifications that change the gene functions without affecting their expression. Differential co-expression network approaches may capture changes in functional interactions resulting from these alterations. We re-analyzed 595 mRNA arrays from publicly available datasets by studying changes in gene co-expression networks in MS and in response to interferon (IFN)-β treatment. Interestingly, MS networks show a reduced connectivity relative to the healthy condition, and the treatment activates the transcription of genes and increases their connectivity in MS patients. Importantly, the analysis of changes in gene connectivity in MS patients provides new evidence of association for genes already implicated in MS by single-nucleotide polymorphism studies and that do not show differential expression. This is the case of amiloride-sensitive cation channel 1 neuronal (ACCN1) that shows a reduced number of interacting partners in MS networks, and it is known for its role in synaptic transmission and central nervous system (CNS) development. Furthermore, our study confirms a deregulation of the vitamin D system: among the transcription factors that potentially regulate the deregulated genes, we find TCF3 and SP1 that are both involved in vitamin D3-induced p27Kip1 expression. Unveiling differential network properties allows us to gain systems-level insights into disease mechanisms and may suggest putative targets for the treatment. PMID:27314336

  2. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    PubMed

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery.

  3. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    PubMed

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. PMID:27181059

  4. Gene set enrichment and topological analyses based on interaction networks in pediatric acute lymphoblastic leukemia

    PubMed Central

    SUI, SHUXIANG; WANG, XIN; ZHENG, HUA; GUO, HUA; CHEN, TONG; JI, DONG-MEI

    2015-01-01

    Pediatric acute lymphoblastic leukemia (ALL) accounts for over one-quarter of all pediatric cancers. Interacting genes and proteins within the larger human gene interaction network of the human genome are rarely investigated by studies investigating pediatric ALL. In the present study, interaction networks were constructed using the empirical Bayesian approach and the Search Tool for the Retrieval of Interacting Genes/proteins database, based on the differentially-expressed (DE) genes in pediatric ALL, which were identified using the RankProd package. Enrichment analysis of the interaction network was performed using the network-based methods EnrichNet and PathExpand, which were compared with the traditional expression analysis systematic explored (EASE) method. In total, 398 DE genes were identified in pediatric ALL, and LIF was the most significantly DE gene. The co-expression network consisted of 272 nodes, which indicated genes and proteins, and 602 edges, which indicated the number of interactions adjacent to the node. Comparison between EASE and PathExpand revealed that PathExpand detected more pathways or processes that were closely associated with pediatric ALL compared with the EASE method. There were 294 nodes and 1,588 edges in the protein-protein interaction network, with the processes of hematopoietic cell lineage and porphyrin metabolism demonstrating a close association with pediatric ALL. Network enrichment analysis based on the PathExpand algorithm was revealed to be more powerful for the analysis of interaction networks in pediatric ALL compared with the EASE method. LIF and MLLT11 were identified as the most significantly DE genes in pediatric ALL. The process of hematopoietic cell lineage was the pathway most significantly associated with pediatric ALL. PMID:26788135

  5. Effective Boolean dynamics analysis to identify functionally important genes in large-scale signaling networks.

    PubMed

    Trinh, Hung-Cuong; Kwon, Yung-Keun

    2015-11-01

    Efficiently identifying functionally important genes in order to understand the minimal requirements of normal cellular development is challenging. To this end, a variety of structural measures have been proposed and their effectiveness has been investigated in recent literature; however, few studies have shown the effectiveness of dynamics-ba