Science.gov

Sample records for gene oct4b mrna

  1. EWS-Oct-4B, an alternative EWS-Oct-4 fusion gene, is a potent oncogene linked to human epithelial tumours

    PubMed Central

    Kim, S; Lim, B; Kim, J

    2010-01-01

    Background: Characterisation of EWS-Oct-4 translocation fusion product in bone and soft-tissue tumours revealed a chimeric gene resulting from an in-frame fusion between EWS (Ewing's sarcoma gene) exons 1–6 and Oct-4 exons 1–4. Recently, an alternative form of the fusion protein between the EWS and Oct-4 genes, named EWS-Oct-4B, was reported in two types of epithelial tumours, a hidradenoma of the skin and a mucoepidermoid carcinoma of the salivary glands. As the N-terminal and POU domains of the EWS-Oct-4 and EWS-Oct-4B proteins are not structurally identical, we decided to investigate the functional consequences of the EWS-Oct-4B fusion. Methods: In this report, we have characterised the EWS-Oct-4B fusion protein. To investigate how the EWS-Oct-4B protein contributes to tumourigenesis in human cancers, we analysed its DNA-binding activity, subcellular localisation, transcriptional activation behaviour, and oncogenic properties. Results: We found that this new chimeric gene encodes a nuclear protein that binds DNA with the same sequence specificity as the parental Oct-4 protein or the fusion EWS-Oct-4 protein. We show that the nuclear localisation signal of EWS-Oct-4B is dependent on the POU DNA-binding domain, and we identified a cluster of basic amino acids, 269RKRKR273, in the POU domain that specifically mediates the nuclear localisation of EWS-Oct-4B. Comparison of the properties of EWS-Oct-4B and EWS-Oct-4 indicated that EWS-Oct-4B is a less-potent transcriptional activator of a reporter construct carrying the Oct-4-binding sites. Deletion analysis of the functional domains of EWS-Oct-4B revealed that the EWS N-terminal domain (NTD)B, POU, and C-terminal domain (CTD) are necessary for its full transactivation potential. Despite its reduced activity as a transcriptional activator, EWS-Oct-4B regulated the expression of fgf-4 (fibroblast growth factor-4) and nanog, which are potent mitogens, as well as of Oct-4 downstream target genes, the promoters of

  2. Novel variant of OCT4B4 is differentially expressed in human embryonic stem and embryonic carcinoma cells.

    PubMed

    Poursani, Ensieh M; Mehravar, Majid; Soltani, Bahram Mohammad; Mowla, Seyed Javad

    2017-09-05

    POU domain proteins are an important family of transcription factors that regulates cell type-specific gene expression. One of the most crucial members of this family that maintains pluripotency and self-renewal of embryonic stem cells is POU5F1/OCT4. The OCT4 gene can generate several variants under different situations/cell types includes OCT4A that is the major factor sustains pluripotency in embryonic stem and embryonic carcinoma cells, and also OCT4B and OCT4B1, which are transcribed from a different potential promoter located in intron1 and are expressed in various tissues and cell types. In present study, during expression check of OCT4B1 in embryonic carcinoma cells (NT2), we discovered a novel OCT4 transcript for the first time and designated it as OCT4B4. This variant is expressed in various human pluripotent cells and its expression is down-regulated upon induction of differentiation. Moreover, knocking down of OCT4B4 by shRNA resulted in increased accumulation of transfected cells in G0/G1 phase compared to the mock-transfected control cells. Copyright © 2017. Published by Elsevier B.V.

  3. OCT4 spliced variants are highly expressed in brain cancer tissues and inhibition of OCT4B1 causes G2/M arrest in brain cancer cells.

    PubMed

    Asadi, Malek Hossein; Khalifeh, Khosrow; Mowla, Seyed Javad

    2016-12-01

    The new claim about the origin of cancer known as Cancer Stem Cell theory states that a somatic differentiated cell can dedifferentiated or reprogrammed for regaining the cancer cell features. It has been recently shown that expression of stemness factors such as Oct4, Sox2, Nanog and Klf4, in a variety of somatic cancers can leads to development of tumorogenesis. Here, the expression of Oct4 variants were evaluated in brain tumor tissues by quantitative RT-PCR and immunohistochemical (IHC) analysis. In next phase of our study, the expression of Oct4B1 was knock-down in brain cancer cell lines and its effect on cell cycle was assessed. Finally, in order to get insights into sequence-structure-function relationships of Oct4 isofroms, their sequences were analysed using bioinformatic tools. Our data revealed that all three variants of Oct4 are expressed in different types of brain cancer. The expression level of Oct4B1, in contast to Oct4B, was much higher in high-grade brain tumors compared with low-grade ones. In line with qPCR, the expression of Oct4A and B isofroms was confirmed with IHC in different types of brain tumors. Moreover, as a result of the suppression of Oct4B1 expression, the brain cancer cells were arrested in G2/M phase of cell cycle. Bioinfromatics data indicated that the predicted Oct4B1 protein have DNA binding properties. All together, our findings suggest that Oct4B1 has a potential role in tumorigenesis of brain cancer and can be considered as a new tumor marker with potential value in diagnosis and treatment of brain cancer.

  4. Linking gene regulation to mRNA production and export.

    PubMed

    Rodríguez-Navarro, Susana; Hurt, Ed

    2011-06-01

    Regulation of gene expression can occur at many different levels. One important step in the gene expression process is the transport of mRNA from the nucleus to the cytoplasm. In recent years, studies have described how nuclear mRNA export depends on the steps preceding and following transport through nuclear pore complexes. These include gene activation, transcription, mRNA processing and mRNP assembly and disassembly. In this review, we summarise recent insights into the links between these steps in the gene expression cascade.

  5. Post-transcriptional gene regulation by mRNA modifications

    PubMed Central

    Zhao, Boxuan Simen; Roundtree, Ian A.; He, Chuan

    2016-01-01

    The recent discovery of reversible mRNA methylation has opened a new realm of post-transcriptional gene regulation in eukaryotes. The identification and functional characterization of proteins that specifically recognize RNA N6-methyladenosine (m6A) unveiled it as a modification that cells utilize to accelerate mRNA metabolism and translation. N6-adenosine methylation directs mRNAs to distinct fates by grouping them for differential processing, translation and decay in processes such as cell differentiation, embryonic development and stress responses. Other mRNA modifications, including N1-methyladenosine (m1A), 5-methylcytosine (m5C) and pseudouridine, together with m6A form the epitranscriptome and collectively code a new layer of information that controls protein synthesis. PMID:27808276

  6. Mechanisms of mRNA translation of interferon stimulated genes.

    PubMed

    Joshi, Sonali; Kaur, Surinder; Kroczynska, Barbara; Platanias, Leonidas C

    2010-01-01

    Over the last two decades, a lot of research work has been focused on the interferon (IFN)-regulated JAK-STAT pathway and understanding the mechanisms governing the transcription of interferon stimulated genes (ISGs). Evidence suggests that the JAK-STAT pathway alone does not account in its entirety for mediating cellular responses to IFNs. There is emerging evidence that non-Stat pathways play important roles in mediating signals for the generation of IFN-responses. Various studies have underscored the importance of mitogen activated protein kinases (MAPKs), especially p38 and ERK1/2, as well as the PI 3'K/AKT pathway in transmitting signals that are of critical importance for the biological effects of IFNs. Besides regulating the transcription of ISGs in some cases, engagement of these signaling pathways by the IFN-receptor (IFNR) associated complexes also plays an important role in mediating the translation of ISGs. The mechanisms regulating mRNA translation of ISGs is an area of ongoing active research and a lot more efforts will be required to complete our understanding of the various cellular elements involved in this process. In this review we highlight the mechanisms regulating translation of ISGs. We focus on the proteins regulated by the PI 3'K/AKT pathway, their role in mediating mRNA translation of ISGs and the functional consequences of this regulation. In addition, MAPKs are known to regulate the phosphorylation of various eukaryotic initiation factors and we summarize the roles of eIF4B and eIF4E phosphorylations on the translation of ISGs. The emerging roles of microRNAs in mRNA translation of ISGs are also discussed.

  7. Oscillatory kinetics of gene expression: Protein conversion and slow mRNA transport

    SciTech Connect

    Zhdanov, V. P.

    2009-06-15

    The negative feedback between mRNA and regulatory-protein production may result in oscillations in the kinetics of gene expression if the mRNA-protein interplay includes protein conversion. Using a mean-field kinetic model, we show that such oscillations can be amplified due to limitations of the mRNA transport between the nucleus and cytoplasm. This effect may be dramatic for the mRNA population in the nucleus.

  8. Control of mammalian gene expression by selective mRNA export.

    PubMed

    Wickramasinghe, Vihandha O; Laskey, Ronald A

    2015-07-01

    Nuclear export of mRNAs is a crucial step in the regulation of gene expression, linking transcription in the nucleus to translation in the cytoplasm. Although important components of the mRNA export machinery are well characterized, such as transcription-export complexes TREX and TREX-2, recent work has shown that, in some instances, mammalian mRNA export can be selective and can regulate crucial biological processes such as DNA repair, gene expression, maintenance of pluripotency, haematopoiesis, proliferation and cell survival. Such findings show that mRNA export is an unexpected, yet potentially important, mechanism for the control of gene expression and of the mammalian transcriptome.

  9. Circadian oscillations in period gene mRNA levels are transcriptionally regulated.

    PubMed Central

    Hardin, P E; Hall, J C; Rosbash, M

    1992-01-01

    The period (per) gene is involved in regulating circadian rhythms in Drosophila melanogaster. The per gene is expressed in a circadian manner, where fluctuations in per mRNA abundance are influenced by its own translation product, which also cycles in abundance. Since per gene expression is necessary for circadian rhythmicity, we sought to determine how certain features of this feedback loop operate. The results of this study reveal that fluctuations in per mRNA are primarily controlled by fluctuations in per gene transcription, that per mRNA has a relatively short half-life, and that sequences sufficient to drive per mRNA cycling are present in 1.3 kilobases of 5' flanking sequences. These and other results indicate that the per feedback loop has all of the basic properties necessary to be a component of a circadian oscillator. Images PMID:1465387

  10. Histone gene expression and histone mRNA 3' end structure in Caenorhabditis elegans.

    PubMed

    Keall, Rebecca; Whitelaw, Sandra; Pettitt, Jonathan; Müller, Berndt

    2007-06-14

    Histone protein synthesis is essential for cell proliferation and required for the packaging of DNA into chromatin. In animals, histone proteins are provided by the expression of multicopy replication-dependent histone genes. Histone mRNAs that are processed by a histone-specific mechanism to end after a highly conserved RNA hairpin element, and lack a poly(A) tail. In vertebrates and Drosophila, their expression is dependent on HBP/SLBP that binds to the RNA hairpin element. We showed previously that these cis and trans acting regulators of histone gene expression are conserved in C. elegans. Here we report the results of an investigation of the histone mRNA 3' end structure and of histone gene expression during C. elegans development. Sequence analysis of replication-dependent histone genes revealed the presence of several highly conserved sequence elements in the 3' untranslated region of histone pre-mRNAs, including an RNA hairpin element and a polyadenylation signal. To determine whether in C. elegans histone mRNA 3' end formation occurs at this polyadenylation signal and results in polyadenylated histone mRNA, we investigated the mRNA 3' end structure of histone mRNA. Using poly(A) selection, RNAse protection and sequencing of histone mRNA ends, we determined that a majority of C. elegans histone mRNAs lack a poly(A) tail and end three to six nucleotides after the hairpin structure, after an A or a U, and have a 3' OH group. RNAi knock down of CDL-1, the C. elegans HBP/SLBP, does not significantly affect histone mRNA levels but severely depletes histone protein levels. Histone gene expression varies during development and is reduced in L3 animals compared to L1 animals and adults. In adults, histone gene expression is restricted to the germ line, where cell division occurs. Our findings indicate that the expression of C. elegans histone genes is subject to control mechanisms similar to the ones in other animals: the structure of C. elegans histone mRNA 3

  11. Molecular structure of the human argininosuccinate synthetase gene: Occurrence of alternative mRNA splicing

    SciTech Connect

    Freytag, S.O.; Beaudet, A.L.; Bock, H.G.O.; O'Brien, W.E.

    1984-10-01

    The human genome contains one expressed argininosuccinate synthetase gene and ca. 14 pseudogenes that are dispersed to at least 11 human chromosomes. Eleven clones isolated from a human genomic DNA library were characterized extensively by restriction mapping, Southern blotting, and nucleotide sequencing. These 11 clones represent the entire expressed argininosuccinate synthetase gene that spans 63 kilobases and contains at least 13 exons. The expressed gene codes for two mRNAs that differ in their 5' untranslated sequences and arise by alternative splicing involving the inclusion or deletion of an entire exon. In normal human liver and cultured fibroblasts, the predominant mature argininosuccinate synthetase mRNA lacks sequences encoded by exon 2 in the expressed gene. In contrast, the predominant argininosuccinate synthetase mRNA in baboon liver contains exon 2 sequences. A transformed canavanine-resistant human cell line in which argininosuccinate synthetase activity is 180-fold higher than that in wild-type cells contains abundant amounts of both forms of the argininosuccinate synthetase mRNA. The mRNA lacking exon 2 sequences is the more abundant mRNA species in the canavanine-resistant cells. These observations show that splicing of the argininosuccinate synthetase mRNA is species specific in primates and varies among different human cell types.

  12. MRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas.

    PubMed

    Castelli, Martina Galatea; Rusten, Marte; Goksøyr, Anders; Routti, Heli

    2014-01-01

    There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes encoding hepatic PPARγ, adipose FABP4, adipose ADIPOQ and ΣPOP concentrations was observed. These findings suggest that lipid metabolism may be affected by contaminant exposure in the Baltic population. mRNA expression of genes encoding PPARβ, PPARγ, FABP4 and ADIPOQ were similar between the mid and inner adipose layer. Hepatic mRNA expression of genes encoding PPARα and PPARγ was higher in the pre

  13. Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes.

    PubMed

    Zhang, Qian; Koser, Stephanie L; Donkin, Shawn S

    2016-05-01

    Hepatocytes monolayers from neonatal calves were used to determine the responses of the cytosolic phosphoenolpyruvate carboxykinase (PCK1) mRNA expression to propionate and direct hormonal cues including cyclic AMP (cAMP), dexamethasone, and insulin. The responses of other key gluconeogenic genes, including mitochondrial phosphoenolpyruvate carboxykinase (PCK2), pyruvate carboxylase (PC), and glucose-6-phosphotase (G6PC), were also measured. Expression of PCK1 was linearly induced with increasing propionate concentrations in media and 2.5 mM propionate increased PCK1 mRNA at 3 and 6h of incubation; however, the induction disappeared at 12 and 24 h. The induction of PCK1 mRNA by propionate was mimicked by 1 mM cAMP, or in combination with 5 µM dexamethasone, but not by dexamethasone alone. The induction of PCK1 mRNA by propionate or cAMP was eliminated by addition of 100 nM insulin. Additionally, expression of PCK2 and PC mRNA was also induced by propionate in a concentration-dependent manner. Consistent with PCK1, propionate-stimulated PCK2 and PC mRNA expression was inhibited by insulin. Expression of G6PC mRNA was neither affected by propionate nor cAMP, dexamethasone, insulin, or their combinations. These findings demonstrate that propionate can directly regulate its own metabolism in bovine calf hepatocytes through upregulation of PCK1, PCK2, and PC mRNA expression.

  14. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export.

    PubMed

    Copeland, Anna Maria; Van Deusen, Nicole M; Schmaljohn, Connie S

    2015-12-01

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NSS gene, but not the N, GN or NSM genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NSS, confirming that expression of NSS is likely responsible for this phenomenon.

  15. Effects of codon optimization on the mRNA levels of heterologous genes in filamentous fungi.

    PubMed

    Tanaka, Mizuki; Tokuoka, Masafumi; Gomi, Katsuya

    2014-05-01

    Filamentous fungi, particularly Aspergillus species, have recently attracted attention as host organisms for recombinant protein production. Because the secretory yields of heterologous proteins are generally low compared with those of homologous proteins or proteins from closely related fungal species, several strategies to produce substantial amounts of recombinant proteins have been conducted. Codon optimization is a powerful tool for improving the production levels of heterologous proteins. Although codon optimization is generally believed to improve the translation efficiency of heterologous genes without affecting their mRNA levels, several studies have indicated that codon optimization causes an increase in the steady-state mRNA levels of heterologous genes in filamentous fungi. However, the mechanism that determines the low mRNA levels when native heterologous genes are expressed was poorly understood. We recently showed that the transcripts of heterologous genes are polyadenylated prematurely within the coding region and that the heterologous gene transcripts can be stabilized significantly by codon optimization, which is probably attributable to the prevention of premature polyadenylation in Aspergillus oryzae. In this review, we describe the detailed mechanism of premature polyadenylation and the rapid degradation of mRNA transcripts derived from heterologous genes in filamentous fungi.

  16. The genes and mRNA coding for the heavy chains of chick embryonic skeletal myosin.

    PubMed

    Patrinou-Georgoulas, M; John, H A

    1977-10-01

    A size class of polysomes was isolated from chick embryonic leg skeletal muscle which synthesized almost exclusively a polypeptide chain with a molecular weight identical to the myosin heavy chain. The mRNA purified from these polysomes was shown to synthesize the 200,000 dalton polypeptide in the wheat germ cell-free translation system. At least 90% of the polypeptide had properties similar to the myosin heavy chain. Isoelectric focusing indicated that the myosin heavy chain synthesized in vitro contained two chains in equal amounts, as did purified embryonic leg skeletal muscle myosin. The kinetics of hybridization of the complementary DNA with an excess of the myosin heavy chain mRNA (MHC mRNA) indicated the presence of two different mRNA sequences. Reassociation of the cDNA to an excess of the DNA of the genome suggest that there is little, if any, reiteration of the myosin heavy chain genes.

  17. Modulation of metabolic and clock gene mRNA rhythms by pineal and retinal circadian oscillators

    PubMed Central

    Karaganis, Stephen P.; Bartell, Paul A.; Shende, Vikram R.; Moore, Ashli F.; Cassone, Vincent M.

    2009-01-01

    Avian circadian organization involves interactions between three neural pacemakers: the suprachiasmatic nuclei (SCN), pineal, and retina. Each of these structures is linked within a neuroendocrine loop to influence downstream processes and peripheral oscillations. However, the contribution of each structure to drive or synchronize peripheral oscillators or circadian outputs in avian species is largely unknown. To explore these interactions in the chick, we measured 2-deoxy[14C]-glucose (2DG) uptake and mRNA expression of the chick clock genes bmal1, cry1, and per3 in three brain areas and in two peripheral organs in chicks that underwent pinealectomy, enucleation, or sham surgery. We found that 2DG uptake rhythms damp under constant darkness in intact animals, while clock gene mRNA levels continue to cycle, demonstrating that metabolic rhythms are not directly driven by clock gene transcription. Moreover, 2DG rhythms are not phase-locked to rhythms of clock gene mRNA. However, pinealectomy and enucleation had similar disruptive effects on both metabolic and clock gene rhythms, suggesting that both of these oscillators act similarly to reinforce molecular and physiological rhythms in the chicken. Finally, we show that the relative phasing of at least one clock gene, cry1, varies between central and peripheral oscillators in a tissue specific manner. These data point to a complex, differential orchestration of central and peripheral oscillators in the chick, and, importantly, indicate a disconnect between canonical clock gene regulation and circadian control of metabolism. PMID:19136000

  18. Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.

    PubMed

    Hamilton, Trinity L; Jacobson, Marty; Ludwig, Marcus; Boyd, Eric S; Bryant, Donald A; Dean, Dennis R; Peters, John W

    2011-09-01

    Northern analysis was employed to investigate mRNA produced by mutant strains of Azotobacter vinelandii with defined deletions in the nif structural genes and in the intergenic noncoding regions. The results indicate that intergenic RNA secondary structures effect the differential accumulation of transcripts, supporting the high Fe protein-to-MoFe protein ratio required for optimal diazotrophic growth.

  19. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export.

    PubMed

    Vinciguerra, Patrizia; Iglesias, Nahid; Camblong, Jurgi; Zenklusen, Daniel; Stutz, Françoise

    2005-02-23

    The mRNA export adaptor Yra1p/REF contributes to nascent mRNP assembly and recruitment of the export receptor Mex67p. yra1 mutants exhibit mRNA export defects and a decrease in LacZ reporter and certain endogenous transcripts. The loss of Mlp1p/Mlp2p, two TPR-like proteins attached to nuclear pores, rescues LacZ mRNA levels and increases their appearance in the cytoplasm, without restoring bulk poly(A)+ RNA export. Chromatin immunoprecipitation, FISH and pulse-chase experiments indicate that Mlps downregulate LacZ mRNA synthesis in a yra1 mutant strain. Microarray analyses reveal that Mlp2p also reduces a subset of cellular transcripts in the yra1 mutant. Finally, we show that Yra1p genetically interacts with the shuttling mRNA-binding protein Nab2p and that loss of Mlps rescues the growth defect of yra1 and nab2 but not other mRNA export mutants. We propose that Nab2p and Yra1p are required for proper mRNP docking to the Mlp platform. Defects in Yra1p prevent mRNPs from crossing the Mlp gate and this block negatively feeds back on the transcription of a subset of genes, suggesting that Mlps link mRNA transcription and export.

  20. Nonsense-mediated mRNA decay among coagulation factor genes.

    PubMed

    Shahbazi, Shirin

    2016-04-01

    Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD). There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8) does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade.

  1. Nonsense-mediated mRNA decay among coagulation factor genes

    PubMed Central

    Shahbazi, Shirin

    2016-01-01

    Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. Materials and Methods: A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Results: Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD). There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8) does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Conclusion: Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade. PMID:27279976

  2. Enhanced levels of scrapie responsive gene mRNA in BSE-infected mouse brain.

    PubMed

    Dandoy-Dron, F; Benboudjema, L; Guillo, F; Jaegly, A; Jasmin, C; Dormont, D; Tovey, M G; Dron, M

    2000-03-10

    The expression of the mRNA of nine scrapie responsive genes was analyzed in the brains of FVB/N mice infected with bovine spongiform encephalopathy (BSE). The RNA transcripts of eight genes were overexpressed to a comparable extent in both BSE-infected and scrapie-infected mice, indicating a common series of pathogenic events in the two transmissible spongiform encephalopathies (TSEs). In contrast, the serine proteinase inhibitor spi 2, an analogue of the human alpha-1 antichymotrypsin gene, was overexpressed to a greater extent in the brains of scrapie-infected animals than in animals infected with BSE, reflecting either an agent specific or a mouse strain specific response. The levels of spi 2 mRNA were increased during the course of scrapie prior to the onset of clinical signs of the disease and the increase reached 11 to 45 fold relative to uninfected controls in terminally ill mice. Spi 2, in common with four of the other scrapie responsive genes studied, is known to be associated with pro-inflammatory processes. These observations underline the importance of cell reactivity in TSE. In addition, scrg2 mRNA the level of which is enhanced in TSE-infected mouse brain, was identified as a previously unrecognized long transcript of the murine aldolase C gene. However, the level of the principal aldolase C mRNA is unaffected in TSE. The increased representation of the longer transcript in the late stage of the disease may reflect changes in mRNA processing and/or stability in reactive astrocytes or in damaged Purkinje cells.

  3. Low-level lasers and mRNA levels of reference genes used in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Teixeira, A. F.; Machado, Y. L. R. C.; Fonseca, A. S.; Mencalha, A. L.

    2016-11-01

    Low-level lasers are widely used for the treatment of diseases and antimicrobial photodynamic therapy. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is widely used to evaluate mRNA levels and output data from a target gene are commonly relative to a reference mRNA that cannot vary according to treatment. In this study, the level of reference genes from Escherichia coli exposed to red or infrared lasers at different fluences was evaluated. E. coli AB1157 cultures were exposed to red (660 nm) and infrared (808 nm) lasers, incubated (20 min, 37 °C), the total RNA was extracted, and cDNA synthesis was performed to evaluate mRNA levels from arcA, gyrA and rpoA genes by RT-qPCR. Melting curves and agarose gel electrophoresis were carried out to evaluate specific amplification. Data were analyzed by geNorm, NormFinder and BestKeeper. The melting curve and agarose gel electrophoresis showed specific amplification. Although mRNA levels from arcA, gyrA or rpoA genes presented no significant variations trough a traditional statistical analysis, Excel-based tools revealed that these reference genes are not suitable for E. coli cultures exposed to lasers. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from arcA, gyrA and rpoA in E. coli cells.

  4. Embedding mRNA stability in correlation analysis of time-series gene expression data.

    PubMed

    Farina, Lorenzo; De Santis, Alberto; Salvucci, Samanta; Morelli, Giorgio; Ruberti, Ida

    2008-08-01

    Current methods for the identification of putatively co-regulated genes directly from gene expression time profiles are based on the similarity of the time profile. Such association metrics, despite their central role in gene network inference and machine learning, have largely ignored the impact of dynamics or variation in mRNA stability. Here we introduce a simple, but powerful, new similarity metric called lead-lag R(2) that successfully accounts for the properties of gene dynamics, including varying mRNA degradation and delays. Using yeast cell-cycle time-series gene expression data, we demonstrate that the predictive power of lead-lag R(2) for the identification of co-regulated genes is significantly higher than that of standard similarity measures, thus allowing the selection of a large number of entirely new putatively co-regulated genes. Furthermore, the lead-lag metric can also be used to uncover the relationship between gene expression time-series and the dynamics of formation of multiple protein complexes. Remarkably, we found a high lead-lag R(2) value among genes coding for a transient complex.

  5. Exogenous mRNA delivery and bioavailability in gene transfer mediated by piggyBac transposition.

    PubMed

    Bire, Solenne; Gosset, David; Jégot, Gwenhael; Midoux, Patrick; Pichon, Chantal; Rouleux-Bonnin, Florence

    2013-09-26

    Up to now, the different uptake pathways and the subsequent intracellular trafficking of plasmid DNA have been largely explored. By contrast, the mode of internalization and the intracellular routing of an exogenous mRNA in transfected cells are poorly investigated and remain to be elucidated. The bioavailability of internalized mRNA depends on its intracellular routing and its potential accumulation in dynamic sorting sites for storage: stress granules and processing bodies. This question is of particular significance when a secure transposon-based system able to integrate a therapeutic transgene into the genome is used. Transposon vectors usually require two components: a plasmid DNA, carrying the gene of interest, and a source of transposase allowing the integration of the transgene. The principal drawback is the lasting presence of the transposase, which could remobilize the transgene once it has been inserted. Our study focused on the pharmacokinetics of the transposition process mediated by the piggyBac transposase mRNA transfection. Exogenous mRNA internalization and trafficking were investigated towards a better apprehension and fine control of the piggyBac transposase bioavailability. The mRNA prototype designed in this study provides a very narrow expression window of transposase, which allows high efficiency transposition with no cytotoxicity. Our data reveal that exogenous transposase mRNA enters cells by clathrin and caveolae-mediated endocytosis, before finishing in late endosomes 3 h after transfection. At this point, the mRNA is dissociated from its carrier and localized in stress granules, but not in cytoplasmic processing bodies. Some weaker signals have been observed in stress granules at 18 h and 48 h without causing prolonged production of the transposase. So, we designed an mRNA that is efficiently translated with a peak of transposase production 18 h post-transfection without additional release of the molecule. This confines the integration

  6. Translational signatures and mRNA levels are highly correlated in human stably expressed genes.

    PubMed

    Line, Sergio R P; Liu, Xiaoming; de Souza, Ana Paula; Yu, Fuli

    2013-04-19

    Gene expression is one of the most relevant biological processes of living cells. Due to the relative small population sizes, it is predicted that human gene sequences are not strongly influenced by selection towards expression efficiency. One of the major problems in estimating to what extent gene characteristics can be selected to maximize expression efficiency is the wide variation that exists in RNA and protein levels among physiological states and different tissues. Analyses of datasets of stably expressed genes (i.e. with consistent expression between physiological states and tissues) would provide more accurate and reliable measurements of associations between variations of a specific gene characteristic and expression, and how distinct gene features work to optimize gene expression. Using a dataset of human genes with consistent expression between physiological states we selected gene sequence signatures related to translation that can predict about 42% of mRNA variation. The prediction can be increased to 51% when selecting genes that are stably expressed in more than 1 tissue. These genes are enriched for translation and ribosome biosynthesis processes and have higher translation efficiency scores, smaller coding sequences and 3' UTR sizes and lower folding energies when compared to other datasets. Additionally, the amino acid frequencies weighted by expression showed higher correlations with isoacceptor tRNA gene copy number, and smaller absolute correlation values with biosynthetic costs. Our results indicate that human gene sequence characteristics related to transcription and translation processes can co-evolve in an integrated manner in order to optimize gene expression.

  7. Gene-environment interaction signatures by quantitative mRNA profiling in exfoliated buccal mucosal cells.

    PubMed

    Spivack, Simon D; Hurteau, Gregory J; Jain, Ritu; Kumar, Shalini V; Aldous, Kenneth M; Gierthy, John F; Kaminsky, Laurence S

    2004-09-15

    Exfoliated cytologic specimens from mouth (buccal) epithelium may contain viable cells, permitting assay of gene expression for direct and noninvasive measurement of gene-environment interactions, such as for inhalation (e.g., tobacco smoke) exposures. We determined specific mRNA levels in exfoliated buccal cells collected by cytologic brush, using a recently developed RNA-specific real-time quantitative reverse transcription-PCR strategy. In a pilot study, metabolic activity of exfoliated buccal cells was verified by 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium assay in vitro. Transcriptional activity was observed, after timed in vivo exposure to mainstream tobacco smoke resulted in induction of CYP1B1 in serially collected buccal samples from the one subject examined. For a set of 11 subjects, mRNA expression of nine genes encoding carcinogen- and oxidant-metabolizing enzymes qualitatively detected in buccal cells was then shown to correlate with that in laser-microdissected lung from the same individuals (Chi2 = 52.91, P < 0.001). Finally, quantitative real-time reverse transcription-PCR assays for seven target gene (AhR, CYP1A1, CYP1B1, GSTM1, GSTM3, GSTP1, and GSTT1) and three reference gene [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-actin, and 36B4] transcripts were performed on buccal specimens from 42 subjects. In multivariate analyses, gender, tobacco smoke exposure, and other factors were associated with the level of expression of CYP1B1, GSTP1, and other transcripts on a gene-specific basis, but substantial interindividual variability in mRNA expression remained unexplained. Within the power limits of this pilot study, gene expression signature was not clearly predictive of lung cancer case or control status. This noninvasive and quantitative method may be incorporated into high-throughput human applications for probing gene-environment interactions associated with cancer.

  8. Effects of ammonia and urea in vitro on mRNA of candidate bovine endometrial genes.

    PubMed

    Gunaretnam, I; Pretheeban, T; Rajamahendran, R

    2013-09-01

    Large amounts of protein intake are associated with elevated ammonia and urea concentrations in both plasma and uterine fluid in dairy cows. These increased concentrations affect successful embryo development and subsequent pregnancy establishment. The objective of the present study was to examine the effects of ammonia and urea on the expression of some candidate genes in the endometrium of mid-luteal phase of the estrous cycle of dairy cows. Endometrial explants were cultured and treated with 0, 75, 150, 300, 600μM of ammonium chloride or 0, 4, 8, 12, 16mM of urea. After the RNA extraction and reverse transcription, real time PCR was performed to assess the treatment effects on relative amounts of mRNA of candidate genes. BCL2 mRNA was greater in explants treated with 150μM of ammonium chloride compared to explants treated with 0, 75 and 300μM. Relative amounts of IGFBP1 mRNA were less in explants treated with 600μM of ammonium chloride when compared with other concentrations. Relative FGF2 gene expression was less in explants treated with a greater concentration (600μM) of ammonium chloride or urea (16mM) when compared with lesser concentrations. Expression of HSPA1A, IGFBP3 and SERPINA14 genes was greater in explants exposed to lesser concentrations (150μM) of ammonium chloride or urea (4mM). Relative amounts of IGF1 and BAX mRNA were not affected by any of the ammonium chloride or urea concentrations tested. In conclusion, greater concentrations of ammonia and urea have negative effects on some endometrial gene expression, while moderate concentrations have positive effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum

    PubMed Central

    Staudacher, Jonas J.; Naarmann-de Vries, Isabel S.; Ujvari, Stefanie J.; Klinger, Bertram; Kasim, Mumtaz; Benko, Edgar; Ostareck-Lederer, Antje; Ostareck, Dirk H.; Bondke Persson, Anja; Lorenzen, Stephan; Meier, Jochen C.; Blüthgen, Nils; Persson, Pontus B.; Henrion-Caude, Alexandra; Mrowka, Ralf; Fähling, Michael

    2015-01-01

    Protein synthesis is a primary energy-consuming process in the cell. Therefore, under hypoxic conditions, rapid inhibition of global mRNA translation represents a major protective strategy to maintain energy metabolism. How some mRNAs, especially those that encode crucial survival factors, continue to be efficiently translated in hypoxia is not completely understood. By comparing specific transcript levels in ribonucleoprotein complexes, cytoplasmic polysomes and endoplasmic reticulum (ER)-bound ribosomes, we show that the synthesis of proteins encoded by hypoxia marker genes is favoured at the ER in hypoxia. Gene expression profiling revealed that transcripts particularly increased by the HIF-1 transcription factor network show hypoxia-induced enrichment at the ER. We found that mRNAs favourably translated at the ER have higher conservation scores for both the 5′- and 3′-untranslated regions (UTRs) and contain less upstream initiation codons (uAUGs), indicating the significance of these sequence elements for sustained mRNA translation under hypoxic conditions. Furthermore, we found enrichment of specific cis-elements in mRNA 5′- as well as 3′-UTRs that mediate transcript localization to the ER in hypoxia. We conclude that transcriptome partitioning between the cytoplasm and the ER permits selective mRNA translation under conditions of energy shortage. PMID:25753659

  10. The stability of an mRNA is influenced by its concentration: a potential physical mechanism to regulate gene expression.

    PubMed

    Nouaille, Sébastien; Mondeil, Sophie; Finoux, Anne-Laure; Moulis, Claire; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2017-09-07

    Changing mRNA stability is a major post-transcriptional way of controlling gene expression, particularly in newly encountered conditions. As the concentration of mRNA is the result of an equilibrium between transcription and degradation, it is generally assumed that at constant transcription, any change in mRNA concentration is the consequence of mRNA stabilization or destabilization. However, the literature reports many cases of opposite variations in mRNA concentration and stability in bacteria. Here, we analyzed the causal link between the concentration and stability of mRNA in two phylogenetically distant bacteria Escherichia coli and Lactococcus lactis. Using reporter mRNAs, we showed that modifying the stability of an mRNA had unpredictable effects, either higher or lower, on its concentration, whereas increasing its concentration systematically reduced stability. This inverse relationship between the concentration and stability of mRNA was generalized to native genes at the genome scale in both bacteria. Higher mRNA turnover in the case of higher concentrations appears to be a simple physical mechanism to regulate gene expression in the bacterial kingdom. The consequences for bacterial adaptation of this control of the stability of an mRNA by its concentration are discussed. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Structural annotation of equine protein-coding genes determined by mRNA sequencing.

    PubMed

    Coleman, S J; Zeng, Z; Wang, K; Luo, S; Khrebtukova, I; Mienaltowski, M J; Schroth, G P; Liu, J; MacLeod, J N

    2010-12-01

    The horse, like the majority of animal species, has a limited amount of species-specific expressed sequence data available in public databases. As a result, structural models for the majority of genes defined in the equine genome are predictions based on ab initio sequence analysis or the projection of gene structures from other mammalian species. The current study used Illumina-based sequencing of messenger RNA (RNA-seq) to help refine structural annotation of equine protein-coding genes and for a preliminary assessment of gene expression patterns. Sequencing of mRNA from eight equine tissues generated 293,758105 sequence tags of 35 bases each, equalling 10.28 gbp of total sequence data. The tag alignments represent approximately 207 × coverage of the equine mRNA transcriptome and confirmed transcriptional activity for roughly 90% of the protein-coding gene structures predicted by Ensembl and NCBI. Tag coverage was sufficient to refine the structural annotation for 11,356 of these predicted genes, while also identifying an additional 456 transcripts with exon/intron features that are not listed by either Ensembl or NCBI. Genomic locus data and intervals for the protein-coding genes predicted by the Ensembl and NCBI annotation pipelines were combined with 75,116 RNA-seq-derived transcriptional units to generate a consensus equine protein-coding gene set of 20,302 defined loci. Gene ontology annotation was used to compare the functional and structural categories of genes expressed in either a tissue-restricted pattern or broadly across all tissue samples. © 2010 The Authors, Journal compilation © 2010 Stichting International Foundation for Animal Genetics.

  12. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    PubMed

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Characterization of the ptr5+ gene involved in nuclear mRNA export in fission yeast.

    PubMed

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka; Tani, Tokio

    2012-02-03

    To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A)(+) RNA transport] 1 to 11, which accumulate poly(A)(+) RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5-1 mutant shows dots- or a ring-like accumulation of poly(A)(+) RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5(+) gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5-1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5-1 mutation. In addition, we found that the ptr5-1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5-1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  14. Gene Manipulation of Human Embryonic Stem Cells by In Vitro-Synthesized mRNA for Gene Therapy.

    PubMed

    Wang, Xiao Li; Yu, Li; Ding, Yan; Guo, Xing Rong; Yuan, Ya Hong; Li, Dong Sheng

    2015-01-01

    The difficulty in producing genetically modified human embryonic stem cells (hESCs) limits research on their applications. Virus-based gene transfer is not safe for clinical use, whereas DNAbased non-viral methods are not efficient or safe, and mRNA-based methods are useful for genetic manipulation. In this study, we easily obtained multiple types and large amounts of in vitro-synthesized mRNA by PCR. The efficiency of different transfection methods was studied by flow cytometry. The effect of different mRNA modifications on protein translation efficiency and dynamics of luciferase mRNA expression in hESCs were studied using a bioluminescence imaging system. The pluripotency of hESCs after transfection was studied by immunofluorescence. In vitro-synthesized pancreatic-duodenal homeobox 1 (PDX1) mRNA was used to induce the differentiation of hESCs into insulin-producing cells. We found that electroporation is the most efficient transfection method, and it produces more than 95% transgene expression in multiple hESC lines. Synthesized mRNA with a combination of a polyA tail, cap and base analogues is more efficiently translated into protein in hESCs compared with single-modified mRNA. Transfection of mRNA into hESCs by trypsinizing the cells into single-cell suspensions did not affect their pluripotency, and multiple types of mRNAs can be transfected into hESCs efficiently. We found that PDX-1 mRNA transfection significantly improved the expression level of genes related to beta cells and differentiated cells that express insulin and C-peptide. ELISA analysis validate the insulin secretion of islet-like cell clusters in response to glucose stimulation. Our results indicate that electroporation of in vitro-synthesized mRNA is useful for genetic manipulation of hESCs and differentiation of hESCs into particular cell types, and this finding will pave the way for clinical applications of this method.

  15. mRNA trans‐splicing in gene therapy for genetic diseases

    PubMed Central

    Berger, Adeline; Maire, Séverine; Gaillard, Marie‐Claude; Sahel, José‐Alain; Hantraye, Philippe

    2016-01-01

    Spliceosome‐mediated RNA trans‐splicing, or SMaRT, is a promising strategy to design innovative gene therapy solutions for currently intractable genetic diseases. SMaRT relies on the correction of mutations at the post‐transcriptional level by modifying the mRNA sequence. To achieve this, an exogenous RNA is introduced into the target cell, usually by means of gene transfer, to induce a splice event in trans between the exogenous RNA and the target endogenous pre‐mRNA. This produces a chimeric mRNA composed partly of exons of the latter, and partly of exons of the former, encoding a sequence free of mutations. The principal challenge of SMaRT technology is to achieve a reaction as complete as possible, i.e., resulting in 100% repairing of the endogenous mRNA target. The proof of concept of SMaRT feasibility has already been established in several models of genetic diseases caused by recessive mutations. In such cases, in fact, the repair of only a portion of the mutant mRNA pool may be sufficient to obtain a significant therapeutic effect. However in the case of dominant mutations, the target cell must be freed from the majority of mutant mRNA copies, requiring a highly efficient trans‐splicing reaction. This likely explains why only a few examples of SMaRT approaches targeting dominant mutations are reported in the literature. In this review, we explain in details the mechanism of trans‐splicing, review the different strategies that are under evaluation to lead to efficient trans‐splicing, and discuss the advantages and limitations of SMaRT. WIREs RNA 2016, 7:487–498. doi: 10.1002/wrna.1347 For further resources related to this article, please visit the WIREs website. PMID:27018401

  16. mRNA trans-splicing in gene therapy for genetic diseases.

    PubMed

    Berger, Adeline; Maire, Séverine; Gaillard, Marie-Claude; Sahel, José-Alain; Hantraye, Philippe; Bemelmans, Alexis-Pierre

    2016-07-01

    Spliceosome-mediated RNA trans-splicing, or SMaRT, is a promising strategy to design innovative gene therapy solutions for currently intractable genetic diseases. SMaRT relies on the correction of mutations at the post-transcriptional level by modifying the mRNA sequence. To achieve this, an exogenous RNA is introduced into the target cell, usually by means of gene transfer, to induce a splice event in trans between the exogenous RNA and the target endogenous pre-mRNA. This produces a chimeric mRNA composed partly of exons of the latter, and partly of exons of the former, encoding a sequence free of mutations. The principal challenge of SMaRT technology is to achieve a reaction as complete as possible, i.e., resulting in 100% repairing of the endogenous mRNA target. The proof of concept of SMaRT feasibility has already been established in several models of genetic diseases caused by recessive mutations. In such cases, in fact, the repair of only a portion of the mutant mRNA pool may be sufficient to obtain a significant therapeutic effect. However in the case of dominant mutations, the target cell must be freed from the majority of mutant mRNA copies, requiring a highly efficient trans-splicing reaction. This likely explains why only a few examples of SMaRT approaches targeting dominant mutations are reported in the literature. In this review, we explain in details the mechanism of trans-splicing, review the different strategies that are under evaluation to lead to efficient trans-splicing, and discuss the advantages and limitations of SMaRT. WIREs RNA 2016, 7:487-498. doi: 10.1002/wrna.1347 For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs RNA published by Wiley Periodicals, Inc.

  17. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues.

    PubMed

    Zhang, Jing; Jing, Jiong-Jie; Jia, Xia-Li; Qiao, Li-Ying; Liu, Jian-Hua; Liang, Chen; Liu, Wen-Zhong

    2016-05-01

    Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism.

  18. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues

    PubMed Central

    Zhang, Jing; Jing, Jiong-Jie; Jia, Xia-Li; Qiao, Li-Ying; Liu, Jian-Hua; Liang, Chen; Liu, Wen-Zhong

    2016-01-01

    Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism. PMID:26954186

  19. Secondary structure of bacteriophage T4 gene 60 mRNA: implications for translational bypassing.

    PubMed

    Todd, Gabrielle C; Walter, Nils G

    2013-05-01

    Translational bypassing is a unique phenomenon of bacteriophage T4 gene 60 mRNA wherein the bacterial ribosome produces a single polypeptide chain from a discontinuous open reading frame (ORF). Upon reaching the 50-nucleotide untranslated region, or coding gap, the ribosome either dissociates or bypasses the interruption to continue translating the remainder of the ORF, generating a subunit of a type II DNA topoisomerase. Mutational and computational analyses have suggested that a compact structure, including a stable hairpin, forms in the coding gap to induce bypassing, yet direct evidence is lacking. Here we have probed the secondary structure of gene 60 mRNA with both Tb³⁺ ions and the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) reagent 1M7 under conditions where bypassing is observed. The resulting experimentally informed secondary structure models strongly support the presence of the predicted coding gap hairpin and highlight the benefits of using Tb³⁺ as a second, complementary probing reagent. Contrary to several previously proposed models, however, the rest of the coding gap is highly reactive with both probing reagents, suggesting that it forms only a short stem-loop. Mutational analyses coupled with functional assays reveal that two possible base-pairings of the coding gap with other regions of the mRNA are not required for bypassing. Such structural autonomy of the coding gap is consistent with its recently discovered role as a mobile genetic element inserted into gene 60 mRNA to inhibit cleavage by homing endonuclease MobA.

  20. On a stochastic gene expression with pre-mRNA, mRNA and protein contribution.

    PubMed

    Rudnicki, Ryszard; Tomski, Andrzej

    2015-12-21

    In this paper we develop a model of stochastic gene expression, which is an extension of the model investigated in the paper [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.R. Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, J. Theor. Biol. 238 (2006) 348-367]. In our model, stochastic effects still originate from random fluctuations in gene activity status, but we precede mRNA production by the formation of pre-mRNA, which enriches classical transcription phase. We obtain a stochastically regulated system of ordinary differential equations (ODEs) describing evolution of pre-mRNA, mRNA and protein levels. We perform mathematical analysis of a long-time behavior of this stochastic process, identified as a piece-wise deterministic Markov process (PDMP). We check exact results using numerical simulations for the distributions of all three types of particles. Moreover, we investigate the deterministic (adiabatic) limit state of the process, when depending on parameters it can exhibit two specific types of behavior: bistability and the existence of the limit cycle. The latter one is not present when only two kinds of gene expression products are considered.

  1. Mucin gene mRNA levels in broilers challenged with eimeria and/or Clostridium perfringens.

    PubMed

    Kitessa, Soressa M; Nattrass, Gregory S; Forder, Rebecca E A; McGrice, Hayley A; Wu, Shu-Biao; Hughes, Robert J

    2014-09-01

    The effects of Eimeria (EM) and Clostridium perfringens (CP) challenges on the mRNA levels of genes involved in mucin (Muc) synthesis (Muc2, Muc5ac, Muc13, and trefoil family factor-2 [TFF2]), inflammation (tumor necrosis factor alpha [TNF-alpha] and interleukin-18 [IL-18]), and metabolic processes (cluster of differentiation [CD]36) in the jejunum of broilers were investigated. Two parallel experiments involving 1) EM challenge and 2) EM and CP challenges were conducted. The first experiment was a 2 X 2 study with 12 birds per treatment (N = 48) involving fishmeal substitution (25%) in the diet (FM) and EM challenge. The treatments were: Control (FM-, EM-), Fishmeal (FM+, EM-), EM challenge (FM-, EM+), and fishmeal substitution and EM challenge (FM+, EM+). The second experiment was a 2 X 2 X 2 experiment with six birds per treatment (N = 48) involving fishmeal (FM-, FM+), Eimeria (EM-, EM+), and C perfringens (CP-, CP+). In both arms of the study, male broilers were given a starter diet for the whole period of 16 days, except those assigned to FM+, where 25% of the starter ration was replaced with fishmeal from days 8 to 14. EM inoculation was performed on day 9 and CP inoculation on days 14 and 15. The EM challenge birds were euthanatized for sampling on day 13; postmortem examination and sampling for the Eimeria plus C perfringens challenge arm of the study were on day 16. In the Eimeria challenge arm of the study, fishmeal supplementation significantly suppressed the mRNA levels of TNF-alpha, TFF2, and IL-18 pre-CP inoculation but simultaneously increased the levels of Muc13 and CD36 mRNAs. Birds challenged with Eimeria exhibited increased mRNA levels of Muc13, Muc5ac, TNF-alpha, and IL-18. In the Eimeria and C. perfringens challenge arm, birds exposed to EM challenge exhibited significantly lower mRNA levels of Muc2 and CD36. The mRNA levels of CD36 were also significantly suppressed by CP challenge. Our results showed that the transcription of mucin synthesis

  2. Sugar regulates mRNA abundance of H(+)-ATPase gene family members in tomato.

    PubMed Central

    Mito, N; Wimmers, L E; Bennett, A B

    1996-01-01

    The plant plasma membrane H(+)-ATPase energizes the secondary uptake of nutrients and may facilitate cell expansion by acidifying the cell wall. In yeast, Glc stimulates the accumulation of H(+)-ATPase mRNA, and the growth rate supported by various sugars is correlated with H(+)-ATPase protein abundance. Expression of three H(+)-ATPase genes, LHA1, LHA2, and LHA4, was previously detected in tomato (Lycopersicon esculentum). We have characterized the sequence of the LHA4 gene and examined the expression of these three tomato H(+)-ATPase genes in growing tissues and in response to exogenous sugars. LHA4 is a member of the H(+)-ATPase subfamily, including the Arabidopsis thaliana genes AHA1, AHA2, and AHA3. The 5' untranslated region of the deduced LHA4 cDNA contains a short, open reading frame very similar to that in the Nicotiana plumbaginifolia gene PMA1. LHA4 transcript abundance in seedlings is correlated with cell growth, being 2.5 times greater in hypocotyls of dark- versus light-grown plants. The accumulation of both LHA4 and LHA2 mRNAs is induced by the addition of exogenous sugars and this induction appears to be dependent on sugar uptake and metabolism, because mannitol and 3-O-methylglucose do not stimulate mRNA accumulation. These results suggest that the induction of expression of H(+)-ATPase genes by metabolizable sugars may be part of a generalized cellular response to increased cell growth and metabolism promoted by the availability of an abundant carbon source. PMID:8938420

  3. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    SciTech Connect

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S.

    2015-12-15

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Rift Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.

  4. Regulation of interferon-dependent mRNA translation of target genes.

    PubMed

    Kroczynska, Barbara; Mehrotra, Swarna; Arslan, Ahmet Dirim; Kaur, Surinder; Platanias, Leonidas C

    2014-04-01

    Interferons (IFNs) are released by cells on exposure to various stimuli, including viruses, double-stranded RNA, and other cytokines and various polypeptides. These IFNs play important physiological and pathophysiological roles in humans. Many clinical studies have established activity for these cytokines in the treatment of several malignancies, viral syndromes, and autoimmune disorders. In this review, the regulatory effects of type I and II IFN receptors on the translation-initiation process mediated by mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways and the known mechanisms of control of mRNA translation of IFN-stimulated genes are summarized and discussed.

  5. Identification of Powdery Mildew Responsive Genes in Hevea brasiliensis through mRNA Differential Display.

    PubMed

    Li, Xiang; Bi, Zhenghong; Di, Rong; Liang, Peng; He, Qiguang; Liu, Wenbo; Miao, Weiguo; Zheng, Fucong

    2016-01-29

    Powdery mildew is an important disease of rubber trees caused by Oidium heveae B. A. Steinmann. As far as we know, none of the resistance genes related to powdery mildew have been isolated from the rubber tree. There is little information available at the molecular level regarding how a rubber tree develops defense mechanisms against this pathogen. We have studied rubber tree mRNA transcripts from the resistant RRIC52 cultivar by differential display analysis. Leaves inoculated with the spores of O. heveae were collected from 0 to 120 hpi in order to identify pathogen-regulated genes at different infection stages. We identified 78 rubber tree genes that were differentially expressed during the plant-pathogen interaction. BLAST analysis for these 78 ESTs classified them into seven functional groups: cell wall and membrane pathways, transcription factor and regulatory proteins, transporters, signal transduction, phytoalexin biosynthesis, other metabolism functions, and unknown functions. The gene expression for eight of these genes was validated by qRT-PCR in both RRIC52 and the partially susceptible Reyan 7-33-97 cultivars, revealing the similar or differential changes of gene expressions between these two cultivars. This study has improved our overall understanding of the molecular mechanisms of rubber tree resistance to powdery mildew.

  6. Identification of Powdery Mildew Responsive Genes in Hevea brasiliensis through mRNA Differential Display

    PubMed Central

    Li, Xiang; Bi, Zhenghong; Di, Rong; Liang, Peng; He, Qiguang; Liu, Wenbo; Miao, Weiguo; Zheng, Fucong

    2016-01-01

    Powdery mildew is an important disease of rubber trees caused by Oidium heveae B. A. Steinmann. As far as we know, none of the resistance genes related to powdery mildew have been isolated from the rubber tree. There is little information available at the molecular level regarding how a rubber tree develops defense mechanisms against this pathogen. We have studied rubber tree mRNA transcripts from the resistant RRIC52 cultivar by differential display analysis. Leaves inoculated with the spores of O. heveae were collected from 0 to 120 hpi in order to identify pathogen-regulated genes at different infection stages. We identified 78 rubber tree genes that were differentially expressed during the plant–pathogen interaction. BLAST analysis for these 78 ESTs classified them into seven functional groups: cell wall and membrane pathways, transcription factor and regulatory proteins, transporters, signal transduction, phytoalexin biosynthesis, other metabolism functions, and unknown functions. The gene expression for eight of these genes was validated by qRT-PCR in both RRIC52 and the partially susceptible Reyan 7-33-97 cultivars, revealing the similar or differential changes of gene expressions between these two cultivars. This study has improved our overall understanding of the molecular mechanisms of rubber tree resistance to powdery mildew. PMID:26840302

  7. Streamlining gene expression analysis: integration of co-culture and mRNA purification.

    PubMed

    Berry, Scott M; Singh, Chandresh; Lang, Jessica D; Strotman, Lindsay N; Alarid, Elaine T; Beebe, David J

    2014-02-01

    Co-culture of multiple cell types within a single device enables the study of paracrine signaling events. However, extracting gene expression endpoints from co-culture experiments is laborious, due in part to pre-PCR processing of the sample (i.e., post-culture cell sorting and nucleic acid purification). Also, a significant loss of nucleic acid may occur during these steps, especially with microfluidic cell culture where lysate volumes are small and difficult to access. Here, we describe an integrated platform for performing microfluidic cell culture and extraction of mRNA for gene expression analysis. This platform was able to recover 30-fold more mRNA than a similar, non-integrated system. Additionally, using a breast cancer/bone marrow stroma co-culture, we recapitulated stromal-dependent, estrogen-independent growth of the breast cancer cells, coincident with transcriptional changes. We anticipate that this platform will be used for streamlined analysis of paracrine signaling events as well as for screening potential drugs and/or patient samples.

  8. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles.

    PubMed

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte; Pedersen, Bente K; Saltin, Bengt; Pilegaard, Henriette

    2006-09-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle. Triceps brachii, vastus lateralis quadriceps, and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers, because these muscles are characterized by different fiber-type compositions. As expected, citrate synthase and 3-hydroxyacyl dehydrogenase activity was more than twofold higher in soleus and vastus than in triceps. Contrary, phosphofructokinase and total lactate dehydrogenase (LDH) activity was approximately three- and twofold higher in triceps than in both soleus and vastus. Expression of metabolic genes was assessed by determining the mRNA content of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly, such mRNA differences were not evident for any of the genes encoding mitochondrial oxidative proteins, 3-hydroxyacyl dehydrogenase, carnitine palmitoyl transferase I, citrate synthase, alpha-ketogluterate dehydrogenase, and cytochrome c, nor for the transcriptional regulators peroxisome proliferator activator receptor gamma coactivator-1alpha, forkhead box O1, or peroxisome proliferator activator receptor-alpha. Thus the mRNA expression of genes encoding mitochondrial proteins and transcriptional regulators does not seem to be fiber type specific as the genes encoding glycolytic and lipid metabolism genes, which suggests that basal mRNA regulation of genes encoding mitochondrial proteins does not match the wide differences in mitochondrial content of these muscles.

  9. Predicting gene targets of perturbations via network-based filtering of mRNA expression compendia

    PubMed Central

    Cosgrove, Elissa J.; Zhou, Yingchun; Gardner, Timothy S.; Kolaczyk, Eric D.

    2008-01-01

    Motivation: DNA microarrays are routinely applied to study diseased or drug-treated cell populations. A critical challenge is distinguishing the genes directly affected by these perturbations from the hundreds of genes that are indirectly affected. Here, we developed a sparse simultaneous equation model (SSEM) of mRNA expression data and applied Lasso regression to estimate the model parameters, thus constructing a network model of gene interaction effects. This inferred network model was then used to filter data from a given experimental condition of interest and predict the genes directly targeted by that perturbation. Results: Our proposed SSEM–Lasso method demonstrated substantial improvement in sensitivity compared with other tested methods for predicting the targets of perturbations in both simulated datasets and microarray compendia. In simulated data, for two different network types, and over a wide range of signal-to-noise ratios, our algorithm demonstrated a 167% increase in sensitivity on average for the top 100 ranked genes, compared with the next best method. Our method also performed well in identifying targets of genetic perturbations in microarray compendia, with up to a 24% improvement in sensitivity on average for the top 100 ranked genes. The overall performance of our network-filtering method shows promise for identifying the direct targets of genetic dysregulation in cancer and disease from expression profiles. Availability: Microarray data are available at the Many Microbe Microarrays Database (M3D, http://m3d.bu.edu). Algorithm scripts are available at the Gardner Lab website (http://gardnerlab.bu.edu/SSEMLasso). Contact: kolaczyk@math.bu.edu Supplementary information: Supplementary Data are available at Bioinformatics on line. PMID:18779235

  10. Abnormal mRNA splicing resulting from three different mutations in the CFTR gene.

    PubMed

    Hull, J; Shackleton, S; Harris, A

    1993-06-01

    Three different putative splicing mutations in the CFTR gene have been studied by analysing mRNA extracted from nasal epithelial cells harvested from patients with cystic fibrosis. Six patients were analysed, all of whom had classical symptoms of cystic fibrosis (CF). Two patients carried the 621 + 1G-->T mutation, 3 patients carried the 1717 - 1G-->A mutation and 1 patient carried the 1898 + 1G-->A mutation. All patients carried the delta F508 mutation on the other chromosome. Ten non-CF control subjects were also studied. The 621 + 1G-->T mutation resulted in activation of an alternative splice site within exon 4 in one patient and activation of this site or skipping of exon 4 in the other patient. The 1717 - 1G-->A mutation resulted in skipping of exon 11 in all 3 patients studied and the 1898 + 1G-->T mutation resulted in skipping of exon 12. These experiments demonstrate that these mutations do result in aberrant splicing of CFTR mRNA as predicted from the changes in genomic sequence.

  11. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

    PubMed Central

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A.; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E.

    2016-01-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay. The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. PMID:26717982

  12. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons.

    PubMed

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E

    2016-05-05

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth.

  13. Identification of an additional gene required for eukaryotic nonsense mRNA turnover.

    PubMed Central

    Lee, B S; Culbertson, M R

    1995-01-01

    Loss of function of any one of three UPF genes prevents the accelerated decay of nonsense mRNAs in Saccharomyces cerevisiae. We report the identification and DNA sequence of UPF3, which is present in one nonessential copy on chromosome VII. Upf3 contains three putative nuclear localization signal sequences, suggesting that it may be located in a different compartment than the cytoplasmic Upf1 protein. Epitope-tagged Upf3 (FLAG-Upf3) does not cofractionate with polyribosomes or 80S ribosomal particles. Double disruptions of UPF1 and UPF3 affect nonsense mRNA decay in a manner indistinguishable from single disruptions. These results suggest that the Upf proteins perform related functions in a common pathway. Images Fig. 1 Fig. 3 PMID:7479783

  14. Aly/ REF, a factor for mRNA transport, activates RH gene promoter function.

    PubMed

    Suganuma, Hiroshi; Kumada, Maki; Omi, Toshinori; Gotoh, Takaya; Lkhagvasuren, Munkhtulga; Okuda, Hiroshi; Kamesaki, Toyomi; Kajii, Eiji; Iwamoto, Sadahiko

    2005-06-01

    The rhesus (Rh) blood group antigens are of considerable importance in transfusion medicine as well as in newborn or autoimmune hemolytic diseases due to their high antigenicity. We identified a major DNaseI hypersensitive site at the 5' flanking regions of both RHD and RHCE exon 1. A 34 bp fragment located at -191 to -158 from a translation start position, and containing the TCCCCTCCC sequence, was involved in enhancing promoter activity, which was assessed by luciferase reporter gene assay. A biotin-labelled 34 bp probe isolated an mRNA transporter protein, Aly/REF. The specific binding of Aly/REF to RH promoter in erythroid was confirmed by chromatin immunoprecipitation assay. The silencing of Aly/REF by siRNA reduced not only the RH promoter activity of the reporter gene but also transcription from the native genome. These facts provide second proof of Aly/REF as a transcription coactivator, initially identified as a coactivator for the TCRalpha enhancer function. Aly/REF might be a novel transcription cofactor for erythroid-specific genes.

  15. Comprehensive expression analysis of FSHD candidate genes at the mRNA and protein level.

    PubMed

    Klooster, Rinse; Straasheijm, Kirsten; Shah, Bharati; Sowden, Janet; Frants, Rune; Thornton, Charles; Tawil, Rabi; van der Maarel, Silvère

    2009-12-01

    In facioscapulohumeral muscular dystrophy (FSHD) the majority of patients carry a D4Z4 macrosatellite repeat contraction in the subtelomere of chromosome 4q. Several disease mechanisms have been proposed to explain how repeat contraction causes muscular dystrophy. All proposed mechanisms foresee a change from a closed to a more open chromatin structure followed by loss of control over expression of genes in or proximal to D4Z4. Initially, a distance and residual repeat size-dependent upregulation of the candidate genes FRG2, FRG1 and ANT1 was observed, but most successive expression studies failed to support transcriptional upregulation of 4qter genes. Moreover, chromatin studies do not provide evidence for a cis-spreading mechanism operating at 4qter in FSHD. In part, this inconsistency may be explained by differences in the techniques used, and the use of RNA samples obtained from different muscle groups. The aim of this study is to comprehensively and uniformly study the expression of the FSHD candidate genes FRG1, FRG2, CRYM, ANT1, ALP, PITX1 and LRP2BP at the RNA and protein level in identically processed primary myoblasts, myotubes and quadriceps muscle. Expression was compared between samples obtained from FSHD patients and normal controls with samples from myotonic dystrophy type 1 patients as disease controls. No consistent changes in RNA or protein expression levels were observed between the samples. The one exception was a selective increase in FRG2 mRNA expression in FSHD myotubes. This study provides further evidence that there is no demonstrable consistent, large magnitude, overexpression of any of the FSHD candidate genes.

  16. Protein synthesis inhibitors enhance the expression of mRNAs for early inducible inflammatory genes via mRNA stabilization.

    PubMed

    Yamazaki, Soh; Takeshige, Koichiro

    2008-02-01

    Expression of inflammatory genes is regulated at multiple steps, including transcriptional activation and mRNA stabilization. During an investigation into the requirement of de novo protein synthesis for the induction of inflammatory genes, it was revealed that protein synthesis inhibitors unexpectedly potentiated the induction of mRNAs for primary response genes, while the inhibitors suppressed the induction of secondary inducible genes as previously described. Stimulus-induced nuclear translocation and promoter recruitment of NF-kappaB, which is responsible for the transcriptional activation of many inflammatory genes, were largely unaffected by the inhibitors. Instead, these inhibitors prolonged the half-lives of all of the primary inducible mRNAs tested. Thus, these findings emphasize the important contribution of regulated mRNA longevity to gene expression induced by pro-inflammatory stimulation.

  17. Comparative mRNA Expression Profiles of Riboflavin Biosynthesis Genes in Lactobacilli Isolated from Human Feces and Fermented Bamboo Shoots.

    PubMed

    Thakur, Kiran; Tomar, Sudhir K; Wei, Zhao-Jun

    2017-01-01

    With the aim to bioprospect potent riboflavin producing lactobacilli, the present study was carried out to evaluate the relative mRNA expression of riboflavin biosynthesis genes namely Rib 1, Rib 2, Rib 3, and Rib 4 from potent riboflavin producers obtained from our previous studies. All the four genes were successfully cloned and sequenced for further analysis by in silico procedures. As studied by non-denaturing Polyacrylamide gel electrophoresis, no difference in size of all the four genes among those of various lactobacilli was observed. The relative fold increase in mRNA expression in Rib 1, Rib 2, Rib 3, and Rib 4 genes has been observed to be 10-, 1-, 0.7-, and 8.5-fold, respectively. Due to increase in relative mRNA expression for all the Rib genes as well as phenotypic production attribute, KTLF1 strain was used further for expression studies in milk and whey. The fold increase in mRNA expression for all the four Rib genes was higher at 12 and 18 h in milk and whey respectively. After exposure to roseoflavin, resistant variant of KTLF1 showed considerable increase in expression of all the targets genes. This is the first ever study to compare the mRNA expression of riboflavin biosynthesis pathway genes in lactobacilli and it also under lines the effect of media and harvesting time which significantly affect the expression of rib genes. The use of roseoflavin-resistant strains capable of synthesizing riboflavin in milk and whey paves a way for an exciting and economically viable biotechnological approach to develop novel riboflavin bio-enriched functional foods.

  18. Comparative mRNA Expression Profiles of Riboflavin Biosynthesis Genes in Lactobacilli Isolated from Human Feces and Fermented Bamboo Shoots

    PubMed Central

    Thakur, Kiran; Tomar, Sudhir K.; Wei, Zhao-Jun

    2017-01-01

    With the aim to bioprospect potent riboflavin producing lactobacilli, the present study was carried out to evaluate the relative mRNA expression of riboflavin biosynthesis genes namely Rib 1, Rib 2, Rib 3, and Rib 4 from potent riboflavin producers obtained from our previous studies. All the four genes were successfully cloned and sequenced for further analysis by in silico procedures. As studied by non-denaturing Polyacrylamide gel electrophoresis, no difference in size of all the four genes among those of various lactobacilli was observed. The relative fold increase in mRNA expression in Rib 1, Rib 2, Rib 3, and Rib 4 genes has been observed to be 10-, 1-, 0.7-, and 8.5-fold, respectively. Due to increase in relative mRNA expression for all the Rib genes as well as phenotypic production attribute, KTLF1 strain was used further for expression studies in milk and whey. The fold increase in mRNA expression for all the four Rib genes was higher at 12 and 18 h in milk and whey respectively. After exposure to roseoflavin, resistant variant of KTLF1 showed considerable increase in expression of all the targets genes. This is the first ever study to compare the mRNA expression of riboflavin biosynthesis pathway genes in lactobacilli and it also under lines the effect of media and harvesting time which significantly affect the expression of rib genes. The use of roseoflavin-resistant strains capable of synthesizing riboflavin in milk and whey paves a way for an exciting and economically viable biotechnological approach to develop novel riboflavin bio-enriched functional foods. PMID:28367143

  19. Simultaneous Identification of Two Cyclohexanone Oxidation Genes from an Environmental Brevibacterium Isolate Using mRNA Differential Display

    PubMed Central

    Brzostowicz, Patricia C.; Gibson, Katharine L.; Thomas, Stuart M.; Blasko, Mary Sue; Rouvière, Pierre E.

    2000-01-01

    The technique of mRNA differential display was used to identify simultaneously two metabolic genes involved in the degradation of cyclohexanone in a new halotolerant Brevibacterium environmental isolate. In a strategy based only on the knowledge that cyclohexanone oxidation was inducible in this strain, the mRNA population of cells exposed to cyclohexanone was compared to that of control cells using reverse transcription-PCR reactions primed with a collection of 81 arbitrary oligonucleotides. Three DNA fragments encoding segments of flavin monooxygenases were isolated with this technique, leading to the identification of the genes of two distinct cyclohexanone monooxygenases, the enzymes responsible for the oxidation of cyclohexanone. Each monooxygenase was expressed in Escherichia coli and characterized. This work validates the application of mRNA differential display for the discovery of new microbial metabolic genes. PMID:10894733

  20. Regulation of adeno-associated virus gene expression in 293 cells: control of mRNA abundance and translation

    SciTech Connect

    Trempe, J.P.; Carter, B.J.

    1988-01-01

    The authors studied the effects of the adeno-associated virus (AAV) rep gene on the control of gene expression from the AAV p/sub 40/ promoter in 293 cells in the absence of an adenovirus coinfection. AAV vectors containing the chloramphenicol acetyltransferase (cat) gene were used to measure the levels of cat expression and steady-state mRNA from p/sub 40/. When the rep gene was present in cis or in trans, cat expression from p/sub 40/ was decreased 3- to 10-fold, but there was a 2- to 10-fold increase in the level of p/sub 40/ mRNA. Conversely, cat expression increased and the p/sub 40/ mRNA level decreased in the absence of the rep gene. Both wild-type and carboxyl-terminal truncated Rep proteins were capable of eliciting both effects. These data suggest two roles for the pleiotropic AAV rep gene: as a translational inhibitor and as a positive regulator of p/sub 40/ mRNA levels. They also provide additional evidence for a cis-acting negative regulatory region which decreases RNA from the AAV p/sub 5/ promoter in a fashion independent of rep.

  1. Global SUMO Proteome Responses Guide Gene Regulation, mRNA Biogenesis, and Plant Stress Responses.

    PubMed

    Mazur, Magdalena J; van den Burg, Harrold A

    2012-01-01

    Small Ubiquitin-like MOdifier (SUMO) is a key regulator of abiotic stress, disease resistance, and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins (HSPs), transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (de)acetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by plant transcription factors (TFs) containing an (ERF)-associated Amphiphilic Repression (EAR) motif. These TFs are not necessarily themselves a SUMO target. Conversely, SUMO acetylation (Ac) prevents binding of downstream partners by blocking binding of their SUMO-interaction peptide motifs to Ac-SUMO. In addition, SUMO acetylation has emerged as a mechanism to recruit specifically bromodomains. Bromodomains are generally linked with gene activation. These findings strengthen the idea of a bi-directional sumo-acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (a)biotic stress in plants.

  2. Arsenic Induces Polyadenylation of Canonical Histone mRNA by Down-regulating Stem-Loop-binding Protein Gene Expression*

    PubMed Central

    Brocato, Jason; Fang, Lei; Chervona, Yana; Chen, Danqi; Kiok, Kathrin; Sun, Hong; Tseng, Hsiang-Chi; Xu, Dazhong; Shamy, Magdy; Jin, Chunyuan; Costa, Max

    2014-01-01

    The replication-dependent histone genes are the only metazoan genes whose messenger RNA (mRNA) does not terminate with a poly(A) tail at the 3′-end. Instead, the histone mRNAs display a stem-loop structure at their 3′-end. Stem-loop-binding protein (SLBP) binds the stem-loop and regulates canonical histone mRNA metabolism. Here we report that exposure to arsenic, a carcinogenic metal, decreased cellular levels of SLBP by inducing its proteasomal degradation and inhibiting SLBP transcription via epigenetic mechanisms. Notably, arsenic exposure dramatically increased polyadenylation of canonical histone H3.1 mRNA possibly through down-regulation of SLBP expression. The polyadenylated H3.1 mRNA induced by arsenic was not susceptible to normal degradation that occurs at the end of S phase, resulting in continued presence into mitosis, increased total H3.1 mRNA, and increased H3 protein levels. Excess expression of canonical histones have been shown to increase sensitivity to DNA damage as well as increase the frequency of missing chromosomes and induce genomic instability. Thus, polyadenylation of canonical histone mRNA following arsenic exposure may contribute to arsenic-induced carcinogenesis. PMID:25266719

  3. Low-level lasers alter mRNA levels from traditional reference genes used in breast cancer cells

    NASA Astrophysics Data System (ADS)

    Teixeira, A. F.; Canuto, K. S.; Rodrigues, J. A.; Fonseca, A. S.; Mencalha, A. L.

    2017-07-01

    Cancer is among the leading causes of mortality worldwide, increasing the importance of treatment development. Low-level lasers are used in several diseases, but some concerns remains on cancers. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a technique used to understand cellular behavior through quantification of mRNA levels. Output data from target genes are commonly relative to a reference that cannot vary according to treatment. This study evaluated reference genes levels from MDA-MB-231 cells exposed to red or infrared lasers at different fluences. Cultures were exposed to red and infrared lasers, incubated (4 h, 37 °C), total RNA was extracted and cDNA synthesis was performed to evaluate mRNA levels from ACTB, GUSB and TRFC genes by RT-qPCR. Specific amplification was verified by melting curves and agarose gel electrophoresis. RefFinder enabled data analysis by geNorm, NormFinder and BestKeeper. Specific amplifications were obtained and, although mRNA levels from ACTB, GUSB or TRFC genes presented no significant variation through traditional statistical analysis, Excel-based tools revealed that the use of these reference genes are dependent of laser characteristics. Our data showed that exposure to low-level red and infrared lasers at different fluences alter the mRNA levels from ACTB, GUSB and TRFC in MDA-MB-231 cells.

  4. Comparing mRNA levels using in situ hybridization of a target gene and co-stain.

    PubMed

    Wunderlich, Zeba; Bragdon, Meghan D; DePace, Angela H

    2014-06-15

    In situ hybridization is an important technique for measuring the spatial expression patterns of mRNA in cells, tissues, and whole animals. However, mRNA levels cannot be compared across experiments using typical protocols. Here we present a semi-quantitative method to compare mRNA levels of a gene across multiple samples. This method yields an estimate of the error in the measurement to allow statistical comparison. Our method uses a typical in situ hybridization protocol to stain for a target gene and an internal standard, which we refer to as a co-stain. As a proof of concept, we apply this method to multiple lines of transgenic Drosophila embryos, harboring constructs that express reporter genes to different levels. We generated this test set by mutating enhancer sequences to contain different numbers of binding sites for Zelda, a transcriptional activator. We demonstrate that using a co-stain with in situ hybridization is an effective method to compare mRNA levels across samples. This method requires only minor modifications to existing in situ hybridization protocols and uses straightforward analysis techniques. This strategy can be broadly applied to detect quantitative, spatially resolved changes in mRNA levels.

  5. Comparing mRNA levels using in situ hybridization of a target gene and co-stain

    PubMed Central

    Wunderlich, Zeba; Bragdon, Meghan D; DePace, Angela H

    2014-01-01

    In situ hybridization is an important technique for measuring the spatial expression patterns of mRNA in cells, tissues, and whole animals. However, mRNA levels cannot be compared across experiments using typical protocols. Here we present a semi-quantitative method to compare mRNA levels of a gene across multiple samples. This method yields an estimate of the error in the measurement to allow statistical comparison. Our method uses a typical in situ hybridization protocol to stain for a target gene and an internal standard, which we refer to as a co-stain. As a proof of concept, we apply this method to multiple lines of transgenic Drosophila embryos, harboring constructs that express reporter genes to different levels. We generated this test set by mutating enhancer sequences to contain different numbers of binding sites for Zelda, a transcriptional activator. We demonstrate that using a co-stain with in situ hybridization is an effective method to compare mRNA levels across samples. This method requires only minor modifications to existing in situ hybridization protocols and uses straightforward analysis techniques. This strategy can be broadly applied to detect quantitative, spatially resolved changes in mRNA levels. PMID:24434507

  6. Influence of an altered methylation potential on mRNA methylation and gene expression in HepG2 cells.

    PubMed

    Hermes, Marina; Osswald, Hartmut; Mattar, Julia; Kloor, Doris

    2004-04-01

    S-adenosylhomocysteine (AdoHcy), a by-product and inhibitor of S-adenosylmethionine (AdoMet)-dependent methylation reactions, is removed by AdoHcy hydrolase. The ratio of AdoMet and AdoHcy, also termed methylation potential (MP), is a metabolic indicator for cellular methylation status. In the present study, we have investigated the influence of hypoxia and inhibition of AdoHcy hydrolase on MP in HepG2 cells. Furthermore, we studied the impact of deviations in MP on mRNA and DNA methylation and the expression of selected genes: erythropoietin, VEGF-A, AdoHcy hydrolase, cyclophilin, and HIF-1alpha. Under hypoxic conditions, the MP raised from 53.4 +/- 3.3 to 239.4 +/- 24.8, which is the result of increased AdoMet and decreased AdoHcy levels. Inhibition of AdoHcy hydrolase by adenosine-2',3'-dialdehyde leads to a 40-fold reduction of the MP under both normoxic and hypoxic conditions. Hypoxia increases erythropoietin (2.7-fold) and VEGF-A (5-fold) mRNA expression. During a reduced MP erythropoietin mRNA expression is lowered under normoxia and hypoxia by 70%, whereas VEGF-A mRNA expression is only reduced under hypoxic conditions by 60%. The mRNA expression of AdoHcy hydrolase, HIF-1alpha, and cyclophilin is insensitive to an altered MP. Furthermore, decreased MP leads to a highly significant decrease in overall mRNA methylation. Our results show that the mRNA levels of the studied genes respond differentially to changes in MP. This implies that genes with a slower transcription rate and mRNAs with a slower turnover are insensitive to short-term changes in MP.

  7. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus

    PubMed Central

    Legendre, Matthieu; Audic, Stéphane; Poirot, Olivier; Hingamp, Pascal; Seltzer, Virginie; Byrne, Deborah; Lartigue, Audrey; Lescot, Magali; Bernadac, Alain; Poulain, Julie; Abergel, Chantal; Claverie, Jean-Michel

    2010-01-01

    Mimivirus, a virus infecting Acanthamoeba, is the prototype of the Mimiviridae, the latest addition to the nucleocytoplasmic large DNA viruses. The Mimivirus genome encodes close to 1000 proteins, many of them never before encountered in a virus, such as four amino-acyl tRNA synthetases. To explore the physiology of this exceptional virus and identify the genes involved in the building of its characteristic intracytoplasmic “virion factory,” we coupled electron microscopy observations with the massively parallel pyrosequencing of the polyadenylated RNA fractions of Acanthamoeba castellanii cells at various time post-infection. We generated 633,346 reads, of which 322,904 correspond to Mimivirus transcripts. This first application of deep mRNA sequencing (454 Life Sciences [Roche] FLX) to a large DNA virus allowed the precise delineation of the 5′ and 3′ extremities of Mimivirus mRNAs and revealed 75 new transcripts including several noncoding RNAs. Mimivirus genes are expressed across a wide dynamic range, in a finely regulated manner broadly described by three main temporal classes: early, intermediate, and late. This RNA-seq study confirmed the AAAATTGA sequence as an early promoter element, as well as the presence of palindromes at most of the polyadenylation sites. It also revealed a new promoter element correlating with late gene expression, which is also prominent in Sputnik, the recently described Mimivirus “virophage.” These results—validated genome-wide by the hybridization of total RNA extracted from infected Acanthamoeba cells on a tiling array (Agilent)—will constitute the foundation on which to build subsequent functional studies of the Mimivirus/Acanthamoeba system. PMID:20360389

  8. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus.

    PubMed

    Legendre, Matthieu; Audic, Stéphane; Poirot, Olivier; Hingamp, Pascal; Seltzer, Virginie; Byrne, Deborah; Lartigue, Audrey; Lescot, Magali; Bernadac, Alain; Poulain, Julie; Abergel, Chantal; Claverie, Jean-Michel

    2010-05-01

    Mimivirus, a virus infecting Acanthamoeba, is the prototype of the Mimiviridae, the latest addition to the nucleocytoplasmic large DNA viruses. The Mimivirus genome encodes close to 1000 proteins, many of them never before encountered in a virus, such as four amino-acyl tRNA synthetases. To explore the physiology of this exceptional virus and identify the genes involved in the building of its characteristic intracytoplasmic "virion factory," we coupled electron microscopy observations with the massively parallel pyrosequencing of the polyadenylated RNA fractions of Acanthamoeba castellanii cells at various time post-infection. We generated 633,346 reads, of which 322,904 correspond to Mimivirus transcripts. This first application of deep mRNA sequencing (454 Life Sciences [Roche] FLX) to a large DNA virus allowed the precise delineation of the 5' and 3' extremities of Mimivirus mRNAs and revealed 75 new transcripts including several noncoding RNAs. Mimivirus genes are expressed across a wide dynamic range, in a finely regulated manner broadly described by three main temporal classes: early, intermediate, and late. This RNA-seq study confirmed the AAAATTGA sequence as an early promoter element, as well as the presence of palindromes at most of the polyadenylation sites. It also revealed a new promoter element correlating with late gene expression, which is also prominent in Sputnik, the recently described Mimivirus "virophage." These results-validated genome-wide by the hybridization of total RNA extracted from infected Acanthamoeba cells on a tiling array (Agilent)--will constitute the foundation on which to build subsequent functional studies of the Mimivirus/Acanthamoeba system.

  9. The full-length transcript of a caulimovirus is a polycistronic mRNA whose genes are trans activated by the product of gene VI.

    PubMed

    Scholthof, H B; Gowda, S; Wu, F C; Shepherd, R J

    1992-05-01

    Gene expression of figwort mosaic virus (FMV), a caulimovirus, was investigated by electroporation of Nicotiana edwardsonii cell suspension protoplasts with cloned viral constructs in which a reporter gene was inserted at various positions on the genome. The results showed that the genome of FMV contains two promoters; one is used for the production of a full-length RNA and another initiates synthesis of a separate monocistronic RNA for gene VI. Evidence is provided that the full-length transcript, the probable template for reverse transcription, can serve as a polycistronic mRNA for translation of genes I through V and perhaps also gene VI. Expression of all the genes on the polycistronic mRNA is trans activated by the gene VI protein. Reporter gene expression appears most efficient when its start codon is in close proximity to the stop codon of the preceding gene, as for the native genes of caulimoviruses. We propose that the gene VI product enables expression of the polycistronic mRNA by promoting reinitiation of ribosomes to give translational coupling of individual genes.

  10. Vascular endothelial growth factor-A mRNA gene expression in clinical phases of multiple sclerosis.

    PubMed

    Rasol, Hoiyda A Abdel; Helmy, Hanan; El-Mously, Sherine; Aziz, Margeret A; El Bahaie, Hossam

    2016-03-01

    Vascular endothelial growth factor A stimulates angiogenesis, but is also pro-inflammatory and plays an important role in the development of neurological disease. This study aimed to investigate whether vascular endothelial growth factor A mRNA expression could be used as a marker for the prediction of susceptibility to multiple sclerosis and relate vascular endothelial growth factor to the clinical phases of multiple sclerosis. This was a cross-sectional study, consisting of a total of 60 subjects with multiple sclerosis and 20 healthy controls. Subjects were subjected to history taking, neurological examination and peripheral blood sampling for vascular endothelial growth factor A mRNA gene expression. Vascular endothelial growth factor A gene expression was measured by real-time polymerase chain reaction using the SYBR Green technique. Vascular endothelial growth factor A mRNA gene expression level was significantly lower in the multiple sclerosis group than in the healthy control group (P < 0.001). Vascular endothelial growth factor A mRNA gene expression level was higher in relapsing remitting multiple sclerosis (RRMS) patients than in those in remission (P < 0.001) and in relapsing remitting multiple sclerosis compared with secondary progressive multiple sclerosis (P < 0.001). There was no correlation between vascular endothelial growth factor A gene expression levels and duration of disease, multiple sclerosis progression index or expanded disability status scale. A lower vascular endothelial growth factor A mRNA gene expression level was independently associated with a higher risk of multiple sclerosis. © The Author(s) 2015.

  11. Identification of HAVCR1 gene haplotypes associated with mRNA expression levels and susceptibility to autoimmune diseases.

    PubMed

    García-Lozano, José Raúl; Abad, Cristina; Escalera, Ana; Torres, Belén; Fernández, Olga; García, Alicia; Sánchez-Román, Julio; Sabio, José-Mario; Ortego-Centeno, Norberto; Raya-Alvarez, Enrique; Núñez-Roldán, Antonio; Martín, Javier; González-Escribano, María Francisca

    2010-08-01

    Human HAVCR1 gene maps on 5q33.2, a region linked with susceptibility to allergic and autoimmune diseases. The aims of the present study were to define the haplotypes of HAVCR1 gene taking into account both HapMap Project SNP haplotypes and exon 4 variants, to investigate a possible relationship between these haplotypes and mRNA expression levels, and to assess whether HAVCR1 gene is involved in susceptibility to rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Genotyping of three ins/del variants in the exon 4 was performed by fragment length analysis. Five tag SNPs genotypes and mRNA levels were determined using TaqMan assays. We defined four major haplotypes in our population: the two major haplotypes (named haplotypes A and B) bear both the 5383_5397del variant and the two most common SNP sets found in the CEU population. Quantification analysis revealed that genotype B/B had the highest median of mRNA expression levels (vs. BX + XX, p < 0.0001). Additionally, frequency of the genotype BB was significantly higher in RA patients than in controls (12.3 vs. 5.9% in controls, p = 0.0046, p (c) = 0.014, OR = 2.23, 95% CI 1.23-4.10). Our results support a relationship between HAVCR1 haplotypes and mRNA expression levels, and suggest an association of this gene with autoimmune diseases.

  12. A Candida albicans gene expressed in Saccharomyces cerevisiae results in a distinct pattern of mRNA processing.

    PubMed

    Iborra, A; Sentandreu, R; Gozalbo, D

    1996-09-01

    Two plasmids (derived from YCplac22 and YEplac112) carrying a Candida albicans gene (including the 5' non-coding promoter sequences) coding for a 30 kDa membrane-bound protein, were used to transform Saccharomyces cerevisiae cells. A 30 kDa protein was immunodetected by Western blot in the membrane fraction of transformants. Northern analysis showed the presence of three mRNA species (of about 1.1, 0.7 and 0.5 kb) hybridizing with the C. albicans gene as a probe. The same result was obtained using the 5' and 3' regions of the gene as probes, whereas only a 1.1 kb mRNA was found in C. albicans and none was detected in S. cerevisiae control transformants. Thus, heterologous expression of this gene in S. cerevisiae results in a distinct pattern of mRNA processing, either due to the location on plasmid vectors and/or to differences in the mRNA processing systems in the two microorganisms.

  13. IKBKAP mRNA in peripheral blood leukocytes: a molecular marker of gene expression and splicing in familial dysautonomia.

    PubMed

    Gold-von Simson, Gabrielle; Leyne, Maire; Mull, James; Rolnitzky, Linda M; Goldberg, Judith D; Berlin, Dena; Axelrod, Felicia B; Slaugenhaupt, Susan A

    2008-02-01

    The common familial dysautonomia (FD) mutation results in tissue specific mis-splicing with reduced amount of wild-type (WT) IkappaB kinase associated protein gene (IKBKAP) mRNA and ELP1. ELP1 is a subunit of Elongator, formerly called the IkappaB kinase associated protein (IKAP) protein. We measured IKBKAP mRNA in peripheral blood leukocytes to determine whether FD subjects and carriers have characteristic levels. Estimated mean IKBKAP mRNA levels, measured by quantitative PCR and expressed as amount relative to the noncarrier average, were significantly different for the two groups when not adjusted for age and sex (p < 0.001): FD subjects 0.23, 95% confidence interval (CI) (0.19, 0.28); carriers 0.58, 95% CI (0.50, 0.68); or adjusted for age and sex (p < 0.001): FD subjects 0.21, 95% CI (0.16, 0.26); carriers 0.66, 95% CI (0.55, 0.79). Comparison of IKBKAP mRNA levels of the 22 FD subjects and their related carriers showed a strong correlation, providing evidence for genetic control of splicing efficiency. IKBKAP mRNA levels were not higher in those subjects using tocotrienols or epigallocatechin gallate. Levels of IKBKAP mRNA in peripheral blood leukocytes can be used to assess molecular response to therapies aimed at enhancing exon 20 inclusion and increasing cellular levels of ELP1/IKAP.

  14. Nucleocytoplasmic transport of luciferase gene mRNA requires CRM1/Exportin1 and RanGTPase.

    PubMed

    Kimura, Tominori; Hashimoto, Iwao; Nishikawa, Masao; Yamada, Hisao

    2009-06-01

    Human immunodeficiency virus type 1 Rev (regulator of the expression of the virion) protein was shown to reduce the expression level of the co-transfected luciferase reporter gene (luc+) introduced to monitor transfection efficiency. We studied the mechanism of the inhibitory Rev effect. The effect, caused by nuclear retention of luc+ mRNA, was reversed if rev had a point mutation that makes its nuclear export signal (NES) unable to associate with cellular transport factors. The Rev NES receptor CRM1 (chromosome region maintenance 1)-specific inhibitor, leptomycin B, blocked luc+ mRNA export. This finding was also supported by the overexpression of delta CAN, another specific CRM1 inhibitor that caused inhibition of luciferase gene expression. Experiments involving tsBN2 cells, which have a temperature-sensitive RCC1 (regulator of chromosome condensation 1) allele, demonstrated that luc+ expression required generation of the GTP-bound form of RanGTPase (RanGTP) by RCC1. The constitutive transport element (CTE)-mediated nuclear export of luc+ mRNA was found to also depend upon RanGTP. Nuclear export of luc+ mRNA is thus suggested to involve CRM1 and RanGTP, which Rev employs to transport viral mRNA. The Rev effect is therefore considered to involve competition between two molecules for common transport factors.

  15. Human placental lactogen mRNA and its structural genes during pregnancy: quantitation with a complementary DNA.

    PubMed Central

    McWilliams, D; Callahan, R C; Boime, I

    1977-01-01

    A complementary DNA (cDNA) strand was transcribed from human placental lactogen (hPL) mRNA. Based on alkaline sucrose gradient centrifugation, the size of the cDNA was about 8 S, which would represent at least 80% of the hPL mRNA. Previously we showed that four to five times more hPL was synthesized in cell-free extracts derived from term as compared to first trimester placentas. Hybridization of the cDNA with RNA derived from placental tissue revealed that there was about four times more hPL mRNA sequences in total RNA from term placenta than in a comparable quantity of total first trimester RNA. Only background hybridization was observed when the cDNA was incubated with RNA prepared from human kidney. To test if this differential accumulation of hPL mRNA was the result of an amplification of hPL genes, we hybridized the labeled cDNA with cellular DNA from first trimester and term placentas and with DNA isolated from human brain. In all cases, the amount of hPL sequences was approximately two copies per haploid genome. Thus, the enhanced synthesis of hPL mRNA appears to result from a transcriptional activation rather than an amplification of the hPL gene. The increase likely reflects placental differentiation in which the proportion of syncytial trophoblast increases at term. Images PMID:66681

  16. Exome sequencing coupled with mRNA analysis identifies NDUFAF6 as a Leigh gene.

    PubMed

    Bianciardi, Laura; Imperatore, Valentina; Fernandez-Vizarra, Erika; Lopomo, Angela; Falabella, Micol; Furini, Simone; Galluzzi, Paolo; Grosso, Salvatore; Zeviani, Massimo; Renieri, Alessandra; Mari, Francesca; Frullanti, Elisa

    2016-11-01

    We report here the case of a young male who started to show verbal fluency disturbance, clumsiness and gait anomalies at the age of 3.5years and presented bilateral striatal necrosis. Clinically, the diagnosis was compatible with Leigh syndrome but the underlying molecular defect remained elusive even after exome analysis using autosomal/X-linked recessive or de novo models. Dosage of respiratory chain activity on fibroblasts, but not in muscle, underlined a deficit in complex I. Re-analysis of heterozygous probably pathogenic variants, inherited from one healthy parent, identified the p.Ala178Pro in NDUFAF6, a complex I assembly factor. RNA analysis showed an almost mono-allelic expression of the mutated allele in blood and fibroblasts and puromycin treatment on cultured fibroblasts did not lead to the rescue of the maternal allele expression, not supporting the involvement of nonsense-mediated RNA decay mechanism. Complementation assay underlined a recovery of complex I activity after transduction of the wild-type gene. Since the second mutation was not detected and promoter methylation analysis resulted normal, we hypothesized a non-exonic event in the maternal allele affecting a regulatory element that, in conjunction with the paternal mutation, leads to the autosomal recessive disorder and the different allele expression in various tissues. This paper confirms NDUFAF6 as a genuine morbid gene and proposes the coupling of exome sequencing with mRNA analysis as a method useful for enhancing the exome sequencing detection rate when the simple application of classical inheritance models fails.

  17. Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts.

    PubMed

    Dandoy-Dron, F; Guillo, F; Benboudjema, L; Deslys, J P; Lasmézas, C; Dormont, D; Tovey, M G; Dron, M

    1998-03-27

    To define genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies, we analyzed gene expression in scrapie-infected mouse brain using "mRNA differential display." The RNA transcripts of eight genes were increased 3-8-fold in the brains of scrapie-infected animals. Five of these genes have not previously been reported to exhibit increased expression in this disease: cathepsin S, the C1q B-chain of complement, apolipoprotein D, and two previously unidentified genes denominated scrapie-responsive gene (ScRG)-1 and ScRG-2, which are preferentially expressed in brain tissue. Increased expression of the three remaining genes, beta2 microglobulin, F4/80, and metallothionein II, has previously been reported to occur in experimental scrapie. Kinetic analysis revealed a concomitant increase in the levels of ScRG-1, cathepsin S, the C1q B-chain of complement, and beta2 microglobulin mRNA as well as glial fibrillary acidic protein and F4/80 transcripts, markers of astrocytosis and microglial activation, respectively. In contrast, the level of ScRG-2, apolipoprotein D, and metallothionein II mRNA was only increased at the terminal stage of the disease. ScRG-1 mRNA was found to be preferentially expressed in glial cells and to code for a short protein of 47 amino acids with a strong hydrophobic N-terminal region.

  18. Characterization of the ptr5{sup +} gene involved in nuclear mRNA export in fission yeast

    SciTech Connect

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka; Tani, Tokio

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We cloned the ptr5{sup +} gene involved in nuclear mRNA export in fission yeast. Black-Right-Pointing-Pointer The ptr5{sup +} gene was found to encode nucleoporin 85 (Nup85). Black-Right-Pointing-Pointer Seh1p and Mlo3p are multi-copy suppressors for the ptr5 mutation. Black-Right-Pointing-Pointer Ptr5p/Nup85p functions in nuclear mRNA export through the mRNA export factor Rae1p. Black-Right-Pointing-Pointer Ptr5p/Nup85p interacts genetically with pre-mRNA splicing factors. -- Abstract: To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A){sup +} RNA transport] 1 to 11, which accumulate poly(A){sup +} RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5-1 mutant shows dots- or a ring-like accumulation of poly(A){sup +} RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5{sup +} gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5-1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5-1 mutation. In addition, we found that the ptr5-1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5-1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  19. Pyruvate dehydrogenase complex: mRNA and protein expression patterns of E1α subunit genes in human spermatogenesis.

    PubMed

    Pinheiro, Ana; Silva, Maria João; Graça, Inês; Silva, Joaquina; Sá, Rosália; Sousa, Mário; Barros, Alberto; Tavares de Almeida, Isabel; Rivera, Isabel

    2012-09-10

    During spermatogenesis, germ cells undergo a complex process of cell differentiation and morphological restructuring, which depends on the coordinated expression of different genes. Some vital examples are those involved in cell energy metabolism, namely the genes encoding the E1α subunit of pyruvate dehydrogenase complex: the somatic PDHA1 (X-linked) and the testis-specific PDHA2 (autosomal). There are no data related to the study at the RNA and protein levels of PDHA genes during human spermatogenesis. The present study aimed to describe the mRNA and protein expression patterns of the human PDHA genes during spermatogenesis. Expression profiles of the PDHA1 and PDHA2 genes were characterized using different human tissues and cells. Diploid and haploid germ cells fractions were obtained from testis tissues. The mRNA profiles were analyzed by quantitative RT-PCR, whereas the protein profiles were evaluated by immunohistochemistry, western blotting and two-dimensional electrophoresis. Expression of the PDHA1 gene was found in all somatic cells, whereas expression of PDHA2 gene was restricted to germ cells. The switch from X-linked to autosomic gene expression occurred in spermatocytes. Data suggest the activation of PDHA2 gene expression is most probably a mechanism to ensure the continued expression of the protein, thus allowing germ cell viability and functionality.

  20. Sequence analysis of choriogenin H gene of medaka (Oryzias latipes) and mRNA expression.

    PubMed

    Lee, Chulwoo; Jeon, Seong Hwan; Na, Jin Gyun; Park, Kwangsik

    2002-08-01

    Zona radiata proteins of medaka (Oryzias latipes) consist of two major subunit groups, ZI-1,2 and ZI-3. The precursor of ZI-1,2, which is a glycoprotein with a molecular weight of 74,000 to 76,000 Da, is called choriogenin H, and the precursor of ZI-3, with a molecular weight of 49,000 Da, is called choriogenin L. The precursor proteins are synthesized in the liver in response to estrogen in sexually mature female medaka. However, they are also induced in the male medaka when fish are exposed to estrogenic chemicals. Therefore, choriogenin is known as a possible sensitive biomarker for endocrine disruption in fish. In this study, the choriogenin H cDNA sequence was reanalyzed and the genomic DNA sequence was newly analyzed. This was done for the selection of proper reverse transcription-polymerase chain reaction (RT-PCR) primers to measure the choriogenin mRNA induction by estrogenic chemicals. In the results, the full cDNA sequence was found to be 2,109 bp long and the size of the open reading frame (ORF) was found to be a total of 1,998 bp encoding 666 predicted amino acids, which was found to be different from previously reported cDNA sequence of medaka choriogenin. In the choriogenin H cDNA, a repetitive domain and a nonrepetitive domain were shown. Regarding the repetitive domain, seven complete repeats of the 45 bp of 5'-ccc cag tac cca tca aag cct cag ccc cct cag aat cct cag gtc-3' encoding PQYPSKPQPPQNPQV were found. Medaka choriogenin H gene was found to possess seven exons and six introns, and the total length was 2,643 bp long. The seven repetitive nucleotide residues described above existed in exon 1, which was found to be 1,033 bp long. Based on the full sequence information, proper primers were synthesized for RT-PCR to detect choriogenin H mRNA induction in male and juvenile medaka by 17alpha-ethinylestradiol, and this type of measurement system was found to be effective as a simple tool for the screening of endocrine-disrupting chemicals.

  1. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  2. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].

    PubMed

    Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V

    2014-06-01

    The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.

  3. Long-term treatment with moisturizers affects the mRNA levels of genes involved in keratinocyte differentiation and desquamation.

    PubMed

    Buraczewska, Izabela; Berne, Berit; Lindberg, Magnus; Lodén, Marie; Törmä, Hans

    2009-02-01

    In a recent study, we showed that long-term treatment with two different moisturizers affected TEWL in opposite directions. Therefore, we decided to examine the effect of these moisturizers on the cellular and molecular level. In a randomized controlled study on 20 volunteers, epidermal mRNA expression of genes essential for keratinocyte differentiation and desquamation after a 7-week treatment with two moisturizers was analyzed. Treatment with one test moisturizer increased gene expression of involucrin, transglutaminase 1, kallikrein 5, and kallikrein 7, while the other moisturizer affected only expression of cyclin-dependent kinase inhibitor 1A. Thus, moisturizers are able to modify the skin barrier function and change the mRNA expression of certain epidermal genes. Since the type of influence depends on the composition of the moisturizer, these should be tailored in accordance with the requirement of the barrier of each individual patient, which merits further investigations.

  4. mRNA Noise Reveals that Activators Induce a Biphasic Response in the Promoter Kinetics of Highly Regulated Genes

    NASA Astrophysics Data System (ADS)

    Quinn, Katie; To, Tsz-Leung; Maheshri, Narendra

    2012-02-01

    A dominant source of fluctuations in gene expression is thought to be the process of transcription. The statistics of these fluctuations arise from the kinetics of transcription. Multiple studies suggest the bulk of fluctuations can be understood by a simple process where genes are inactive for exponentially distributed times punctuated by geometric bursts of mRNA. Yet it's largely unknown how cis and trans factors affect the two lumped kinetic parameters, burst size and burst frequency, that describe this process. Importantly, how these parameters are regulated in a single gene can qualitatively affect the dynamical behavior of the network it is embedded within. Here, we ask whether transcriptional activators increase gene expression by increasing the burst size or burst frequency. We do so by deducing these parameters from steady-state mRNA distributions measured in individual yeast cells using single molecule mRNA FISH. We find that for both a synthetic and natural promoter, activators appear to first increase burst size, then burst frequency. We suggest this biphasic response may be common to all highly regulated genes and was previously unappreciated because of measurement techniques. Furthermore, its origins appear to relate to cis events at the promoter, and may arise from combinations of basal and activator-dependent bursts. Our measurements shed new light on transcriptional mechanisms and should assist in building synthetic promoters with tunable statistics.

  5. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  6. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli

    PubMed Central

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J.; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-01-01

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation. PMID:27112822

  7. mRNA export protein THOC5 as a tool for identification of target genes for cancer therapy.

    PubMed

    Tran, Doan Duy Hai; Saran, Shashank; Koch, Alexandra; Tamura, Teruko

    2016-04-10

    Recent evidence indicates that mRNA export is selective, giving priority to a subset of mRNAs that control diverse biological processes including cell proliferation, differentiation, stress response, and cell survival as well as tumor development. The depletion of a member of the mRNA export complex, the THO complex, impairs the expression of only a subset of genes, but causes dramatic changes in phenotype, such as cell cycle inhibition, abnormal differentiation, and importantly apoptosis of stem cells and cancer cells but not normal epithelial cells, hepatocytes, or fibroblasts. Recent exosome sequence data revealed that over 100 driver gene mutations with a number of signaling pathways are involved in human cancer formation, indicating that multiple signaling pathways will need to be inhibited for cancer therapy. In this review we firstly describe a basic feature and function of the mRNA export complex, THO, secondly, the biological alteration upon depletion of a member of the THO complex in normal and cancer cells, and thirdly, identification of its target genes. Finally we describe our recent data on selection of targeting candidates from THOC5 dependent genes for application in cancer therapy.

  8. Population density approach for discrete mRNA distributions in generalized switching models for stochastic gene expression.

    PubMed

    Stinchcombe, Adam R; Peskin, Charles S; Tranchina, Daniel

    2012-06-01

    We present a generalization of a population density approach for modeling and analysis of stochastic gene expression. In the model, the gene of interest fluctuates stochastically between an inactive state, in which transcription cannot occur, and an active state, in which discrete transcription events occur; and the individual mRNA molecules are degraded stochastically in an independent manner. This sort of model in simplest form with exponential dwell times has been used to explain experimental estimates of the discrete distribution of random mRNA copy number. In our generalization, the random dwell times in the inactive and active states, T_{0} and T_{1}, respectively, are independent random variables drawn from any specified distributions. Consequently, the probability per unit time of switching out of a state depends on the time since entering that state. Our method exploits a connection between the fully discrete random process and a related continuous process. We present numerical methods for computing steady-state mRNA distributions and an analytical derivation of the mRNA autocovariance function. We find that empirical estimates of the steady-state mRNA probability mass function from Monte Carlo simulations of laboratory data do not allow one to distinguish between underlying models with exponential and nonexponential dwell times in some relevant parameter regimes. However, in these parameter regimes and where the autocovariance function has negative lobes, the autocovariance function disambiguates the two types of models. Our results strongly suggest that temporal data beyond the autocovariance function is required in general to characterize gene switching.

  9. mRNA and protein expression levels of four candidate genes for ear size in Erhualian and Large White pigs.

    PubMed

    Zhang, L C; Liang, J; Pu, L; Zhang, Y B; Wang, L G; Liu, X; Yan, H; Wang, L X

    2017-04-13

    Porcine ear size is an important characteristic for distinguishing among pig breeds. In a previous genome-wide association study of porcine ear size, LEM domain-containing 3 (LEMD3), methionine sulfoxide reductase B3 (MSRB3), high mobility group AT-hook 2 (HMGA2), and Wnt inhibitory factor 1 (WIF1) were implicated as important candidate genes for ear size. This study investigated the expression levels of four candidate genes for ear size in Erhualian and Large White pigs. Ten Erhualian pigs with large ears and eight Large White pigs with small ears at 60 days of age were examined. The mRNA expression levels of the four candidate genes were quantified by real-time polymerase chain reaction. WIF1 mRNA expression was significantly higher in Large White than in Erhualian pigs (P < 0.05), whereas the expression levels of the other three genes were not significantly different between the two breeds. The protein expression levels of the four genes were analyzed using western blot. WIF1 protein expression was significantly higher in Large White than in Erhualian pigs (P < 0.01), whereas MSRB3 protein expression was significantly higher in Erhualian than in Large White pigs (P < 0.05). There were no significant differences between the two breeds in residual protein expression. These results suggest that WIF1 is the main causal gene for ear size in pigs.

  10. Global analysis of mRNA decay in Halobacterium salinarum NRC-1 at single-gene resolution using DNA microarrays.

    PubMed

    Hundt, Sonja; Zaigler, Alexander; Lange, Christian; Soppa, Jörg; Klug, Gabriele

    2007-10-01

    RNA degradation is an important factor in the regulation of gene expression. It allows organisms to quickly respond to changing environmental conditions by adapting the expression of individual genes. The stability of individual mRNAs within an organism varies considerably, contributing to differential amounts of proteins expressed. In this study we used DNA microarrays to analyze mRNA degradation in exponentially growing cultures of the extremely halophilic euryarchaeon Halobacterium salinarum NRC-1 on a global level. We determined mRNA half-lives for 1,717 open reading frames, 620 of which are part of known or predicted operons. Under the tested conditions transcript stabilities ranged from 5 min to more than 18 min, with 79% of the evaluated mRNAs showing half-lives between 8 and 12 min. The overall mean half-life was 10 min, which is considerably longer than the ones found in the other prokaryotes investigated thus far. As previously observed in Escherichia coli and Saccharomyces cerevisiae, we could not detect a significant correlation between transcript length and transcript stability, but there was a relationship between gene function and transcript stability. Genes that are known or predicted to be transcribed in operons exhibited similar mRNA half-lives. These results provide initial insights into mRNA turnover in a euryarchaeon. Moreover, our model organism, H. salinarum NRC-1, is one of just two archaea sequenced to date that are missing the core subunits of the archaeal exosome. This complex orthologous to the RNA degrading exosome of eukarya is found in all other archaeal genomes sequenced thus far.

  11. Induction of mRNA expression of osteogenesis-related genes by guaiacol in human dental pulp cells.

    PubMed

    Kato, Takashi; Shirayama, Kumiko; Tsutsui, Takeo W; Tsutsui, Takeki

    2010-07-01

    To investigate the stimulating effect of endodontic medications on the mRNA expression of some osteogenesis-related genes associated with reparative dentinogenesis and hard-tissue formation, human dental pulp cells (D824 cells) were treated with calcium hydroxide (Ca (OH)(2)), formocresol, or guaiacol. The effect on growth was determined by growth curves of D824 cells treated for 1-3 days with 0.03-0.3 mM Ca (OH)(2), 0.0007%-0.0014% formocresol, or 0.24-2.43 mM guaiacol. The mitotic activity of individual cells and the mRNA expression of the osteogenesis-related genes for alkaline phosphatase (ALP), type I collagen (COL-1), and bone sialoprotein (BSP) in the cells treated for 24 h with the same concentrations of the medications as described above were determined by colony-forming efficiency and by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis, respectively. Cellular growth and mitotic activity were scarcely affected by Ca (OH)(2), but were significantly reduced by formocresol or guaiacol. The mRNA expression of the osteogenesis-related genes was little affected by Ca (OH)(2) or formocresol, but was significantly enhanced by guaiacol. The results indicate that guaiacol may stimulate the mRNA expression of genes associated with reparative dentinogenesis and hard-tissue formation in human dental pulp cells, suggesting that the novel property of guaiacol provides new insights into the utilization of guaiacol in endodontic therapy.

  12. TSG101, a tumor susceptibility gene, bidirectionally modulates cell invasion through regulating MMP-9 mRNA expression.

    PubMed

    Sai, Xu Bin; Makiyama, Tomohiko; Sakane, Hiroshi; Horii, Yukimi; Hiraishi, Hideyuki; Shirataki, Hiromichi

    2015-11-25

    Tumor susceptibility gene 101 (TSG101) was initially identified in fibroblasts as a tumor suppressor gene but subsequent studies show that TSG101 also functions as a tumor-enhancing gene in some epithelial tumor cells. Although previous studies have unraveled diverse biological functions of TSG101, the precise mechanism by which TSG101 is involved in carcinogenesis and tumor progression in a bidirectional and multifaceted manner remains unclear. To reveal the mechanism underlying bidirectional modulation of cell invasion by TSG101, we used RNA interference to examine whether TSG101 depletion bidirectionally modulated matrix metalloproteinase (MMP)-9 expression in different cell types. TSG101 depletion promoted cell invasion of HT1080 cells but contrarily reduced cell invasion of HeLaS3 cells. In HT1080 cells, TSG101 depletion increased both baseline and phorbol 12-myristate 13-acetate (PMA)-induced MMP-9 secretion through enhancing MMP-9 mRNA expression, but did not affect the expression or activation of MMP-2. In contrast, TSG101 depletion decreased PMA-induced MMP-9 secretion through reducing MMP-9 mRNA expression in HeLaS3 cells. TSG101 depletion had little impact on the signaling pathways required for the activation of transcription of MMP-9 or MMP-9 mRNA stability in either cell line. TSG101 bidirectionally modulates cell invasion through regulating MMP-9 mRNA expression in different cell types. Our results provide a mechanistic context for the role of TSG101 in cell invasion as a multifaceted gene.

  13. Database for mRNA Half-Life of 19 977 Genes Obtained by DNA Microarray Analysis of Pluripotent and Differentiating Mouse Embryonic Stem Cells

    PubMed Central

    Sharova, Lioudmila V.; Sharov, Alexei A.; Nedorezov, Timur; Piao, Yulan; Shaik, Nabeebi; Ko, Minoru S.H.

    2009-01-01

    Degradation of mRNA is one of the key processes that control the steady-state level of gene expression. However, the rate of mRNA decay for the majority of genes is not known. We successfully obtained the rate of mRNA decay for 19 977 non-redundant genes by microarray analysis of RNA samples obtained from mouse embryonic stem (ES) cells. Median estimated half-life was 7.1 h and only <100 genes, including Prdm1, Myc, Gadd45 g, Foxa2, Hes5 and Trib1, showed half-life less than 1 h. In general, mRNA species with short half-life were enriched among genes with regulatory functions (transcription factors), whereas mRNA species with long half-life were enriched among genes related to metabolism and structure (extracellular matrix, cytoskeleton). The stability of mRNAs correlated more significantly with the structural features of genes than the function of genes: mRNA stability showed the most significant positive correlation with the number of exon junctions per open reading frame length, and negative correlation with the presence of PUF-binding motifs and AU-rich elements in 3′-untranslated region (UTR) and CpG di-nucleotides in the 5′-UTR. The mRNA decay rates presented in this report are the largest data set for mammals and the first for ES cells. PMID:19001483

  14. Structural and functional characterization of a Dictyostelium gene encoding a DIF inducible, prestalk-enriched mRNA sequence.

    PubMed Central

    Ceccarelli, A; McRobbie, S J; Jermyn, K A; Duffy, K; Early, A; Williams, J G

    1987-01-01

    The pDd56 mRNA sequence is highly enriched in prestalk over prespore cells and is inducible by DIF, the putative Dictyostelium stalk-specific morphogen. We show that the pDd56 gene is composed of forty one copies of a twenty four amino acid, cysteine rich repeat. This is highly homologus to a repeat which we have previously shown to compose the major fraction of the pDd63 mRNA, another DIF inducible, prestalk-enriched sequence. The predicted pDd56 protein contains a putative signal peptide but does not appear to contain a transmembrane segment. In combination these features suggest it to be an extrinsic protein and we confirm this elsewhere by showing that the pDd56 gene encodes a known, extracellular protein of the stalk. The pDd56 mRNA is dependent upon exogenous DIF for its accumulation. We show that this control is exerted at the transcriptional level and that a restriction fragment containing 1.7Kb of upstream sequence directs temporally-regulated expression of the gene. Images PMID:3658700

  15. Lab-on-a-chip mRNA purification and reverse transcription via a solid-phase gene extraction technique.

    PubMed

    Nestorova, Gergana G; Hasenstein, Karl; Nguyen, Nam; DeCoster, Mark A; Crews, Niel D

    2017-03-14

    Extraction and purification of high quality RNA is a crucial initial step required for a variety of genomic assays. We report a solid phase gene extraction (SPGE) method for automated extraction, purification and reverse transcription of mRNA in a microfluidic device. This is performed using a 130 μm diameter stainless steel needle that is amino-linked to dT(15) oligonucleotides for selective hybridization of mRNA. By inserting this probe into the biological sample for only 30 seconds, mRNA is captured with high selectivity and a yield greater than 10 pg per mm of probe length. The probe is then inserted into a lab-on-a-chip device, where the bound poly-adenylated RNA is thermally released and immediately reverse transcribed for subsequent PCR amplification. The insertion of the probe into the microfluidic device is straightforward: the microchannel is formed with an elastomer (PDMS) that, when punctured, will seal around the probe. The specificity and RNA loading capacity of the probes were evaluated using conventional qPCR. This procedure was successfully used to extract, purify, and transcribe mRNA from rat glioblastoma cell spheroids in less than seven minutes. Analysis of the product confirmed that the SPGE technique selectively captures and inherently purifies high-quality mRNA directly from biological material with no need for additional pre-processing steps. Integrating this elegant sample preparation method into a complete lab-on-a-chip system will substantially enhance the speed and automation of mRNA assays for research and clinical diagnostics.

  16. Selenium Deficiency Affects the mRNA Expression of Inflammatory Factors and Selenoprotein Genes in the Kidneys of Broiler Chicks.

    PubMed

    Zhang, Jiu-Li; Xu, Bo; Huang, Xiao-Dan; Gao, Yu-Hong; Chen, Yu; Shan, An-Shan

    2016-05-01

    The aim of this study was to investigate the influence of Se deficiency on the transcription of inflammatory factors and selenoprotein genes in the kidneys of broiler chicks. One hundred fifty 1-day-old broiler chicks were randomly assigned to two groups fed with either a low-Se diet (L group, 0.033 mg/kg Se) or an adequate Se diet (C group, 0.2 mg/kg Se). The levels of uric acid (UA) and creatinine (Cr) in the serum and the mRNA levels of 6 inflammatory factors and 25 selenoprotein genes in the kidneys were measured as the clinical signs of Se deficiency occurred at 20 days old. The results indicated that the contents of UA and Cr in the serum increased in L group (p < 0.05), and the mRNA levels of the inflammatory factors (NF-κB, iNOS, COX-2, and TNF-α) increased in L group (p < 0.05). Meanwhile, the mRNA levels of PTGEs and HO-1 were not changed. In addition, 25 selenoprotein transcripts displayed ubiquitous expression in the kidneys of the chicks. The mRNA levels of 14 selenoprotein genes (Dio1, Dio2, GPx3, Sepp1, SelH, SelI, SelK, Sepn1, SelO, SelW, Sep15, SelT, SelU, and SelS) decreased, and 9 selenoprotein genes (GPx1, GPx2, GPx4, SelPb, Txnrd1, Txnrd2, Txnrd3, SPS2, and SelM) increased in L group (p < 0.05), but the Dio3 and Sepx1 mRNA levels did not change. The results indicated that Se deficiency resulted in kidney dysfunction, activation of the NF-κB pathway, and a change in selenoprotein gene expression. The changes of inflammatory factor and selenoprotein gene expression levels were directly related to the abnormal renal functions induced by Se deficiency.

  17. Quantification and assessment of viability of Cryptococcus neoformans by LightCycler amplification of capsule gene mRNA.

    PubMed

    Amjad, Muhammad; Kfoury, Najla; Cha, Raymond; Mobarak, Reem

    2004-12-01

    Cryptococcus neoformans is an opportunistic fungal pathogen. It infects the central nervous system causing meningitis, which is fatal if untreated, especially in AIDS and immunosuppressed patients. In this study a method of quantification and assessment of viability of C. neoformans by LightCycler RT-PCR amplification of the capsule gene mRNA is established. The sequence of primers and probes were derived from C. neoformans capsular CAP10 gene mRNA (GenBank accession number AF144574), and were species specific. Agarose gel electrophoresis analysis of LightCycler RT-PCR product showed a single band of 223 bp in length. In order to develop an internal control a 223 bp exon fragment of capsule mRNA was cloned in the pCR2.1 plasmid vector and RNA was generated by in vitro transcription. To determine the sensitivity of the assay, serial dilutions of in vitro-transcribed RNA with known concentrations and copy numbers, and serially diluted cultures of viable and nonviable C. neoformans were used. Under optimal conditions as little as 0.472 fg of capsule mRNA could be detected, corresponding to 1-10 c.f.u. ml(-1) of the sample. No amplification was observed from up to 10(5) heat/UV radiation-killed yeast cells and RNA of other bacterial and fungal pathogens and human genomic DNA or RNA. The amplification of capsule mRNA represents a sensitive, specific and quantitative means of detection of viable C. neoformans in clinical specimens and can be useful in the evaluation of the therapeutic efficacy of antifungal drugs in the treatment of C. neoformans meningitis.

  18. Frameshift mutations in the v-src gene of avian sarcoma virus act in cis to specifically reduce v-src mRNA levels.

    PubMed Central

    Simpson, S B; Stoltzfus, C M

    1994-01-01

    A portion of the avian sarcoma virus (ASV) primary RNA transcripts is alternatively spliced in chicken embryo fibroblast cells to two different messages, the src and env mRNAs. Frameshift mutations of the viral genome causing premature translation termination within the src gene result in a decreased steady-state level of the src mRNA. In marked contrast, frameshift mutations at various positions of the env gene do not decrease the level of the env mRNA. We show that the src gene product is not required in trans for splicing and accumulation of src mRNA. Conversely, the truncated Src proteins do not act negatively in trans to decrease specifically the levels of src mRNA. Taken together, these results indicate that the frameshift mutations act in cis to reduce src mRNA levels. A double mutant with a lesion in the src initiator AUG and a frameshift within the src gene demonstrated wild-type RNA levels, indicating that the src mRNA must be recognized as a translatable mRNA for the effect on src mRNA levels to occur. Our results indicate that the reduced levels do not result from decreased cytoplasmic stability of the mature src mRNA. We also show that the src gene frameshift mutations affect src mRNA levels when expressed from intronless src cDNA clones. We conclude that the reduction of src mRNA levels triggered by the presence of frameshift mutations within the src gene occurs while it is associated with the nucleus. Our data also strongly suggest that this occurs at a step of RNA processing or transport independent of RNA splicing. Images PMID:8114716

  19. Promoter Methylation and Relative mRNA Expression of the p16 Gene in Cervical Cancer in North Indians.

    PubMed

    Gupta, Amita; Ahmad, Mohammad Kaleem; Mahndi, Abbas Ali; Singh, Renu; Pradeep, Yashodhara

    2016-01-01

    Cervical carcinoma is one of the main causes of mortality in women worldwide as well as in India. It occurs as a result of various molecular events that develop from the combined influences of an individual's genetic predisposition and external agents such as smoking and menstrual hygiene, for example. However, infection with human papillomavirus (HPV) is the established major risk factor. The aim of the current study was to investigate p16 CpG island methylation and establish any correlation with mRNA expression in a north Indian population. We analyzed 196 woman volunteers out of which 98 were cases and 98 healthy controls. For the analysis of methylation pattern, DNA extracted from blood samples was modified with a bisulfate kit and used as template for methylation specific PCR (MSP). Quantitative real-time PCR (QRT-PCR) was performed to check mRNA expression. Correlation between methylation status of p16 gene and poor menstrual hygiene was significant (p=0.006), high parity cases showed methylation of p16 gene (p=0.031) with increased risk up to 1.86 times for cervical cancer and smoking was a strong risk factor associated with cervical cancer. We analyzed methylation pattern and found 60.3% methylation in cases with low mRNA expression level (0.014) as compared to controls (1.24). It was also observed that promoter methylation of p16 gene was significantly greater in FIGO stage III. We conclude that p16 methylation plays an important role in cervical cancer in the north Indian population and its methylation decreases mRNA expression. It can be used as an important and consistent blood biomarker in cervical cancer patients.

  20. A Versatile Panel of Reference Gene Assays for the Measurement of Chicken mRNA by Quantitative PCR

    PubMed Central

    Maier, Helena J.; Van Borm, Steven; Young, John R.; Fife, Mark

    2016-01-01

    Quantitative real-time PCR assays are widely used for the quantification of mRNA within avian experimental samples. Multiple stably-expressed reference genes, selected for the lowest variation in representative samples, can be used to control random technical variation. Reference gene assays must be reliable, have high amplification specificity and efficiency, and not produce signals from contaminating DNA. Whilst recent research papers identify specific genes that are stable in particular tissues and experimental treatments, here we describe a panel of ten avian gene primer and probe sets that can be used to identify suitable reference genes in many experimental contexts. The panel was tested with TaqMan and SYBR Green systems in two experimental scenarios: a tissue collection and virus infection of cultured fibroblasts. GeNorm and NormFinder algorithms were able to select appropriate reference gene sets in each case. We show the effects of using the selected genes on the detection of statistically significant differences in expression. The results are compared with those obtained using 28s ribosomal RNA, the present most widely accepted reference gene in chicken work, identifying circumstances where its use might provide misleading results. Methods for eliminating DNA contamination of RNA reduced, but did not completely remove, detectable DNA. We therefore attached special importance to testing each qPCR assay for absence of signal using DNA template. The assays and analyses developed here provide a useful resource for selecting reference genes for investigations of avian biology. PMID:27537060

  1. A Versatile Panel of Reference Gene Assays for the Measurement of Chicken mRNA by Quantitative PCR.

    PubMed

    Staines, Karen; Batra, Ambalika; Mwangi, William; Maier, Helena J; Van Borm, Steven; Young, John R; Fife, Mark; Butter, Colin

    2016-01-01

    Quantitative real-time PCR assays are widely used for the quantification of mRNA within avian experimental samples. Multiple stably-expressed reference genes, selected for the lowest variation in representative samples, can be used to control random technical variation. Reference gene assays must be reliable, have high amplification specificity and efficiency, and not produce signals from contaminating DNA. Whilst recent research papers identify specific genes that are stable in particular tissues and experimental treatments, here we describe a panel of ten avian gene primer and probe sets that can be used to identify suitable reference genes in many experimental contexts. The panel was tested with TaqMan and SYBR Green systems in two experimental scenarios: a tissue collection and virus infection of cultured fibroblasts. GeNorm and NormFinder algorithms were able to select appropriate reference gene sets in each case. We show the effects of using the selected genes on the detection of statistically significant differences in expression. The results are compared with those obtained using 28s ribosomal RNA, the present most widely accepted reference gene in chicken work, identifying circumstances where its use might provide misleading results. Methods for eliminating DNA contamination of RNA reduced, but did not completely remove, detectable DNA. We therefore attached special importance to testing each qPCR assay for absence of signal using DNA template. The assays and analyses developed here provide a useful resource for selecting reference genes for investigations of avian biology.

  2. Correlation between mutations and mRNA expression of APC and MUTYH genes: new insight into hereditary colorectal polyposis predisposition.

    PubMed

    Aceto, Gitana Maria; Fantini, Fabiana; De Iure, Sabrina; Di Nicola, Marta; Palka, Giandomenico; Valanzano, Rosa; Di Gregorio, Patrizia; Stigliano, Vittoria; Genuardi, Maurizio; Battista, Pasquale; Cama, Alessandro; Curia, Maria Cristina

    2015-10-28

    Transcript dosage imbalance may influence the transcriptome. To gain insight into the role of altered gene expression in hereditary colorectal polyposis predisposition, in the present study we analyzed absolute and allele-specific expression (ASE) of adenomatous polyposis coli (APC) and mutY Homolog (MUTYH) genes. We analyzed DNA and RNA extracted from peripheral blood mononuclear cells (PBMC) of 49 familial polyposis patients and 42 healthy blood donors selected according similar gender and age. Patients were studied for germline alterations in both genes using dHPLC, MLPA and automated sequencing. APC and MUTYH mRNA expression levels were investigated by quantitative Real-Time PCR (qRT-PCR) analysis using TaqMan assay and by ASE assays using dHPLC-based primer extension. Twenty out of 49 patients showed germline mutations: 14 in APC gene and six in MUTYH gene. Twenty-nine patients did not show mutations in both genes. Results from qRT-PCR indicated that gene expression of both APC and MUTYH was reduced in patients analyzed. In particular, a significant reduction in APC expression was observed in patients without APC germline mutation vs control group (P < 0.05) while APC expression in the mutation carrier patients, although lower compared to control individuals, did not show statistical significance. On the other hand a significant reduced MUTYH expression was detected in patients with MUTYH mutations vs control group (P < 0.05). Altered ASE of APC was detected in four out of eight APC mutation carriers. In particular one case showed a complete loss of one allele. Among APC mutation negative cases, 4 out of 13 showed a moderate ASE. ASE of MUTYH did not show any altered expression in the cases analyzed. Spearman's Rho Test analysis showed a positive and significant correlation between APC and MUTYH genes both in cases and in controls (P = 0.020 and P < 0.001). APC and MUTYH showed a reduced germline expression, not always corresponding to gene

  3. Effects of seawater acclimation on mRNA levels of corticosteroid receptor genes in osmoregulatory and immune systems in trout

    USGS Publications Warehouse

    Yada, T.; Hyodo, S.; Schreck, C.B.

    2008-01-01

    Influence of environmental salinity on expression of distinct corticosteroid receptor (CR) genes, glucocorticoid receptor (GR)-1 and -2, and mineralcorticoid receptor (MR), was examined in osmoregulatory and hemopoietic organs and leucocytes of steelhead trout (Oncorhynchus mykiss). There was no significant difference in plasma cortisol levels between freshwater (FW)- or seawater (SW)-acclimated trout, whereas Na+, K+-ATPase was activated in gill of SW fish. Plasma lysozyme levels also showed a significant increase after acclimation to SW. In SW-acclimated fish, mRNA levels of GR-1, GR-2, and MR were significantly higher in gill and body kidney than those in FW. Head kidney and spleen showed no significant change in these CR mRNA levels after SW-acclimation. On the other hand, leucocytes isolated from head kidney and peripheral blood showed significant decreases in mRNA levels of CR in SW-acclimated fish. These results showed differential regulation of gene expression of CR between osmoregulatory and immune systems. ?? 2008 Elsevier Inc. All rights reserved.

  4. Negative and positive mRNA splicing elements act competitively to regulate human immunodeficiency virus type 1 vif gene expression.

    PubMed

    Exline, C M; Feng, Z; Stoltzfus, C M

    2008-04-01

    Over 40 different human immunodeficiency virus type 1 (HIV-1) mRNAs are produced by alternative splicing of the primary HIV-1 RNA transcripts. In addition, approximately half of the viral RNA remains unspliced and is used as genomic RNA and as mRNA for the Gag and Pol gene products. Regulation of splicing at the HIV-1 3' splice sites (3'ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation occurs through the binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3'ss A1, which produces single-spliced vif mRNA and promotes the inclusion of HIV exon 2 into both completely and incompletely spliced viral mRNAs, is increased by optimizing the 5' splice site (5'ss) downstream of exon 2 (5'ss D2). Here we show that the mutations within 5'ss D2 that are predicted to lower or increase the affinity of the 5'ss for U1 snRNP result in reduced or increased Vif expression, respectively. Splicing at 5'ss D2 was not necessary for the effect of 5'ss D2 on Vif expression. In addition, we have found that mutations of the GGGG motif proximal to the 5'ss D2 increase exon 2 inclusion and Vif expression. Finally, we report the presence of a novel exonic splicing enhancer (ESE) element within the 5'-proximal region of exon 2 that facilitates both exon inclusion and Vif expression. This ESE binds specifically to the cellular SR protein SRp75. Our results suggest that the 5'ss D2, the proximal GGGG silencer, and the ESE act competitively to determine the level of vif mRNA splicing and Vif expression. We propose that these positive and negative splicing elements act together to allow the accumulation of vif mRNA and unspliced HIV-1 mRNA, compatible with optimal virus replication.

  5. Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis.

    PubMed

    Eungwanichayapant, P D; Popluechai, S

    2009-02-01

    Catechins are a group of polyphenols found in tea (Camellia sinensis var. sinensis) at high levels. They are beneficial for health. From the study on accumulation of catechins in shoots and mature leaves of a tea cultivar, Oolong No. 17, using high-performance liquid chromatography (HPLC), it was found that the amounts of most catechins in the shoots were higher than those in the mature leaves, with an exception of catechins gallate (CG) that was found in trace amounts in both the shoots and mature leaves. mRNA accumulation of genes involved in catechin synthesis was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that the mRNA accumulation of the genes were higher in the shoots than in the mature leaves. These genes included genes of phenylalanine ammonia-lyase 1 (PAL1; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), dihydroflavonol 4-reductase (DFR; EC 1.1.1.219), leucoanthocyanidin reductase (LCR; EC 1.17.1.3), and flavanone 3-hydroxylase (F3H; EC 1.14.11.9).

  6. Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing

    SciTech Connect

    Grzybowska, Ewa A.

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Functional characteristics of intronless genes (IGs). Black-Right-Pointing-Pointer Diseases associated with IGs. Black-Right-Pointing-Pointer Origin and evolution of IGs. Black-Right-Pointing-Pointer mRNA processing without splicing. -- Abstract: Intronless genes (IGs) constitute approximately 3% of the human genome. Human IGs are essentially different in evolution and functionality from the IGs of unicellular eukaryotes, which represent the majority in their genomes. Functional analysis of IGs has revealed a massive over-representation of signal transduction genes and genes encoding regulatory proteins important for growth, proliferation, and development. IGs also often display tissue-specific expression, usually in the nervous system and testis. These characteristics translate into IG-associated diseases, mainly neuropathies, developmental disorders, and cancer. IGs represent recent additions to the genome, created mostly by retroposition of processed mRNAs with retained functionality. Processing, nuclear export, and translation of these mRNAs should be hampered dramatically by the lack of splice factors, which normally tightly cover mature transcripts and govern their fate. However, natural IGs manage to maintain satisfactory expression levels. Different mechanisms by which IGs solve the problem of mRNA processing and nuclear export are discussed here, along with their possible impact on reporter studies.

  7. Target and specificity of a nuclear gene product that participates in mRNA 3'-end formation in Chlamydomonas chloroplasts.

    PubMed

    Levy, H; Kindle, K L; Stern, D B

    1999-12-10

    Chloroplast mRNA maturation is catalyzed by nucleus-encoded processing enzymes. We previously described a recessive nuclear mutation (crp3) that affects 3'-end formation of several chloroplast mRNAs in Chlamydomonas reinhardtii (Levy, H., Kindle, K. L., and Stern, D. B. (1997) Plant Cell 9, 825-836). In the crp3 background, atpB mRNA lacking a 3'-inverted repeat normally required for stability accumulates as a discrete transcript. The mutation also affects the atpA gene cluster; polycistronic mRNAs with psbI or cemA 3'-ends accumulate to a lower level in the crp3 background. Here, we demonstrate that the crp3 mutation also alters 3'-end formation of psbI mRNA and cemA-containing mRNAs. A novel 3'-end is formed in monocistronic psbI transcripts, and this is the only terminus observed when the psbI 3'-untranslated region is fused to an aadA reporter gene. Accumulation of mRNAs with 3'-ends between cemA and atpH, which is immediately downstream, was reduced. However, this sequence was not recognized as a 3'-end formation element in chimeric genes. The crp3 mutation was able to confer stability to three different atpB 3'-stem-loop-disrupting mutations that lack sequence similarity, but are located at a similar distance from the translation termination codon. We propose that the wild-type CRP3 gene product is part of the general 3' --> 5' processing machinery.

  8. [CDS cloning and relationship between intramuscular fat content and mRNA expression of PID1 gene in pig].

    PubMed

    Qian, Yuan; Zeng, Yong-Qing; Du, Jin-Fang; Cui, Jing-Xiang; Li, Hua; Chen, Qi-Mei; Song, Yi-Ping; Chen, Wei

    2010-11-01

    To explore the relationship between the expression of PID1 gene and fat deposition, we cloned CDS of PID1 from porcine fat and muscle tissues by RT-PCR using degenerate primers, and investigated expression of this gene in various tissues (i.e., liver, backfat, and muscle tissues) of different breeds (i.e., Yorkshire, Laiwu, and Lulai Black) by real-time fluorescence quantitative PCR. The results showed that 654 bp CDS of porcine PID1 was obtained by sequencing and was 93.88%, 66.94% and 88.07% identical to those of the human, rat, and Bos taurus, respectively. The expression of PID1 mRNA in various tissues and breeds, on the whole, tended to be liver > fat > muscle and Laiwu > Lulai Black > Yorkshire, respectively. For different breeds, PID1 mRNA abundance in liver had significant difference (P < 0.05), but had no significant differences in fat and muscle tissues between Laiwu and Lulai Black (P > 0.05). For the three groups of Laiwu pigs with high (LWH), intermediate (LWI), and low IMF content (LWL), PID1 mRNA level was higher in liver tissue of LWH than that of LWL significantly (P < 0.05), and was higher in muscle tissue of LWH than that of LWI and LWL significantly (P < 0.05). PID1 mRNA abundance was not correlated with IMF in these three tissues of Laiwu breed, but it was positively correlated with IMF in the tissues of these three breeds (P < 0.05). These results implied that the expression of PID1 may be related to fat deposition.

  9. Gene expression profiling by mRNA array reveals different pattern in Chinese glioblastoma patients between Uygur and Han populations

    PubMed Central

    Liu, Liang; Xia, Haichen; Luan, Xinping; Dun, Zhiping; Zhu, Zhengquan; Dushan, Bieke; Li, Wenting

    2015-01-01

    Objective: To identify differentially expressed genes in Chinese glioblastoma patients of Uygur and Han populations, and investigate their potential clinical value for pathogenesis determination and progress prediction. Methods: Gene expression profiling was obtained from three patients of each Uygur and Han nationalities, respectively, by mRNA expression array. Data were processed by the GenomeStudio software and language R of the Lumi package, followed by GO (Gene Ontology) term and KEGG pathway annotation analysis by the Web Gestalt software. Results: The comparative analysis of genome-scale gene expression in glioblastomas revealed 1,475 differentially expressed genes, with 669 and 807 genes up-regulated and down-regulated, respectively. These included the STRC gene, which has two transcripts, one up-regulated and one down-regulated. GO term analysis suggested that 1,175 out of 1,475 key genes were involved in small GTPase mediated signal transduction, Ras protein signal transduction, bioprocess of neuronal response regulation, and central nervous system myelination. The KEGG pathway enrichment analysis showed that the differentially expressed genes were covered by 28 signaling pathways associated with tumorigenesis, including metabolic pathways, tumor suppressor pathways, MAP kinase signaling pathways, TGF-β signaling pathway, neurotrophin signaling pathways, and mTOR signaling pathway. Conclusion: The comparative study of gene expression profiling in glioblastomas between Uygur and Han nationalities revealed differentially expressed genes, whose functions and expression localization were analyzed by GO term analysis and KEGG pathway enrichment analysis. Different pathogenesis mechanisms were proposed for glioblastomas in Chinese patients of Uygur and Han nationalities from a molecular biology perspective. PMID:26309555

  10. Final report: FASEB Summer Research Conference on ''Post-transcriptional control of gene expression: Effectors of mRNA decay'' [agenda and attendees list

    SciTech Connect

    Maquat, Lynne

    2002-12-01

    The goal of this meeting was to provide an interactive forum for scientists working on prokaryotic and eukaryotic mRNA decay. A special seminar presented by a leader in the field of mRNA decay in S. cerevisiae focused on what is known and what needs to be determined, not only for yeast but for other organisms. The large attendance (110 participants) reflects the awareness that mRNA decay is a key player in gene regulation in a way that is affected by the many steps that precede mRNA formation. Sessions were held on the following topics: mRNA transport and mRNP; multicomponent eukaryotic nucleases; nonsense-mediated mRNA decay and nonsense-associated altered splicing; Cis-acting sequences/Trans-acting factors of mRNA decay; translational accuracy; multicomponent bacterial nucleases; interplay between mRNA polyadenylation, translation and decay in prokaryotes and prokaryotic organelles; and RNA interference and other RNA mediators of gene expression. In addition to the talks and two poster sessions, there were three round tables: (1) Does translation occur in the nucleus? (2) Differences and similarities in the mechanisms of mRNA decay in different eukaryotes, and (3) RNA surveillance in bacteria?

  11. Detection of Mutant NPM1 mRNA in Acute Myeloid Leukemia Using Custom Gene Expression Arrays

    PubMed Central

    van Vliet, Martin H.; Dumee, Belinda; Simons, Erik; Bullinger, Lars; Döhner, Konstanze; Döhner, Hartmut; Viëtor, Henk; Löwenberg, Bob; Valk, Peter J.M.

    2013-01-01

    Mutations in the gene encoding nucleophosmin (NPM1) carry a prognostic value for patients with acute myeloid leukemia (AML). Various techniques are currently being used to detect these mutations in routine molecular diagnostics. Incorporation of accurate NPM1 mutation detection on a gene expression platform would enable simultaneous detection with various other expression biomarkers. Here we present an array-based mutation detection using custom probes for NPM1 WT mRNA and NPM1 type A, B, and D mutant mRNA. This method was 100% accurate on a training cohort of 505 newly diagnosed unselected AML cases. Validation on an independent cohort of 143 normal-karyotype AML cases revealed no false-negative results, and one false positive (sensitivity 100.0% and specificity 98.7%). Based on this, we conclude that this method provides a reliable method for NPM1 mutation detection. The method can be applied to other genes/mutations as long as the mutant alleles are sufficiently highly expressed. PMID:23530539

  12. [Measurement of gene expression of CYP mRNA in liver of rats exposed to toluene and 1-butanol vapors].

    PubMed

    Ishidao, Toru; Ishimatsu, Sumiyo; Hirohashi, Masami; Morimoto, Yasuo; Hori, Hajime

    2006-12-01

    A reduction of the biological half life of toluene in blood in the simultaneous exposure to toluene and alcohol vapors has been reported. To clarify the cause of this reduction, gene expression of CYP mRNA in liver of rats exposed to bi-component organic vapors was investigated. Wistar male rats were repeatedly exposed to 500 ppm of toluene and 300 ppm of 1-butanol vapors individually and simultaneously by inhalation 6 hours a day, five days a week for 4 weeks. After the exposure, the rats were sacrificed and the livers were collected and homogenized. RNA was extracted from the livers, and gene expression of CYP mRNA was observed by reverse transcription-polymerase chain reaction (RT-PCR). The gene expression of CYP3A2 in the simultaneous exposure group was significantly higher than that in the toluene exposure group. However, there was no significant difference in that of CYP1A2, CYP2B1, CYP2C11, CYP2E1 and CYP4A1.

  13. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis

    SciTech Connect

    Johnston, C.J.; Piedboeuf, B.; Finkelstein, J.N.; Baggs, R.; Rubin, P.

    1995-05-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The purpose of this study was to determine if extracellular matrix protein and transforming growth factor {beta} mRNA expression are altered late in the course of pulmonary fibrosis after irradiation, and then to determine if these changes differ between two strains of mice which vary in their sensitivity to radiation. Radiation-sensitive (C57BL/6) and radiation-resistant (C3H/HeJ) mice were irradiated with a single dose of 5 or 12.5 Gy to the thorax. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabeled cDNA probes for collagens I, III and IV, fibronectin, and transforming growth factor {beta}{sub 1} and {beta}{sub 3}. Autoradiographic data were quantified by video densitometry and results normalized to a control probe encoding for glyceralde-hyde-3-phosphate dehydrogenase. Alterations in mRNA abundance were observed in the sensitive mice at all times, while levels in the resistant mice were unaffected until 26 weeks after irradiation. The relationship between extracellular matrix protein per se and increased mRNA abundance suggests that late matrix protein accumulation may be a function of gene expression. Differences in levels of transforming growth factor {beta}mRNA may lead to strain-dependent variation in fibrotic response and may also contribute to the radiation-induced component of pulmonary fibrosis. 32 refs., 5 figs.

  14. Effects of AFP gene silencing on Survivin mRNA expression inhibition in HepG2 cells.

    PubMed

    Fang, Z L; Fang, N; Han, X N; Huang, G; Fu, X J; Xie, G S; Wang, N R; Xiong, J P

    2015-04-10

    We investigated the effects of alpha-fetoprotein (AFP) gene silencing on Survivin expression in HepG2 cells. Small interfering RNA technology was used to downregulate AFP expression in HepG2 cells. An enzyme-linked immunosorbent assay was used to measure AFP concentration in the supernatant before and after transfection. An MTT assay was used to detect cell proliferation activity before and after transfection. We performed flow cytometric analysis to detect the cell apoptosis rate, and reverse transcription-polymerase chain reaction to detect Survivin mRNA levels before and after transfection. Forty-eight hours after transfection, AFP concentration in the supernatant of the experimental group significantly decreased, hepatocellular carcinoma cell growth was inhibited by 43.1%, and the apoptosis rate increased by 24.3%. Survivin mRNA expression was reduced by 78.0% in HepG2 cells. These indicators in the control group and in the blank group did not change significantly. Silencing of AFP expression in HepG2 cells can effectively inhibit the growth of hepatoma cells and promote apoptosis, which may be useful for reducing intracellular Survivin mRNA levels.

  15. Cloning, comparative sequence analysis and mRNA expression of calcium-transporting genes in horses.

    PubMed

    Rourke, K M; Coe, S; Kohn, C W; Rosol, T J; Mendoza, F J; Toribio, R E

    2010-05-15

    Epithelial calcium transport occurs by paracellular and transcellular mechanisms. Transcellular transport in intestinal and renal epithelia involves several transport proteins, including transient receptor potential vanilloid member 5 (TRPV5), member 6 (TRPV6), calbindin D9k (CB9), calbindin D28k (CB28), sodium calcium exchanger 1 (NCX1), plasma membrane calcium ATPase 1 (PMCA1), and the vitamin D receptor (VDR). We are interested in the horse because of its unique calcium physiology (high blood calcium, high intestinal calcium absorption, high renal excretion of calcium, low vitamin D concentrations), and because horses often have dysregulated calcium balance with various diseases. We cloned the mRNA for equine TRPV5, TRPV6, CB9, CB28, NCX1, PMCA1, and VDR, performed comparative mRNA and protein sequence analysis, and quantified their mRNA expression in the kidney and gastrointestinal tract. Sequence homology for the mRNAs and proteins was high among mammals (>75%), with fish having the lowest homology (<75%). TRPV5, TRPV6, and CB9 expression was higher in the duodenum and proximal jejunum and followed a similar expression pattern. CB28 expression was greatest in the kidney. PMCA1 and NCX1 expression was similar throughout the intestine, but in the kidney PMCA1 expression was higher. Based on our findings, the proximal small intestine is the main site for transcellular calcium transport, with TRPV6 and CB9 serving as the main transport proteins. In the kidney, TRPV6, CB28, and PMCA1 are likely more important. The low VDR expression in the equine small intestine and kidney relative to the large intestine, together with the reported high intestinal absorption and renal excretion of calcium, and low vitamin D concentrations suggests that epithelial calcium transport in horses is not as dependent on vitamin D as in other species. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis.

    PubMed

    Yang, Xiaozeng; Zhang, Huiyong; Li, Lei

    2012-05-01

    MicroRNAs (miRNAs) represent an important class of sequence-specific, trans-acting endogenous small RNA molecules that modulate gene expression at the post-transcriptional level. They function by binding to partial complementary cis-regulatory sites (miRNA binding sites) in their target mRNAs. Based on two recent observations from plant genome studies, namely that alternative splicing is a common phenomenon and that miRNA regulates a significant proportion of the transcriptome, we hypothesize that there may be a mechanism for gene regulation that involves both processes. In the present study, we performed a systemic search in the model plant Arabidopsis thaliana using annotated gene models as well as publically available high-throughput RNA sequencing data with a total of 570 million reads. Of the 354 high-confidence miRNA binding sites identified in Arabidopsis, at least 44 (12.4%) were affected by alternative splicing such that mRNA isoforms of the same miRNA target gene differ in the sequences encoding the miRNA binding sites. By simulation, we found that the frequency of alternative splicing at miRNA binding sites is significantly higher than at other regions. Comparative and functional analyses further indicated that the alternative splicing events are important for target gene expression and miRNA action. Together our results show that alternative splicing of miRNA binding sites is a plausible mechanism for attenuating miRNA-mediated gene regulation.

  17. A Viral microRNA Down-Regulates Multiple Cell Cycle Genes through mRNA 5′UTRs

    PubMed Central

    Grey, Finn; Wu, Guanming; McWeeney, Shannon; Hook, Lauren; Nelson, Jay A.

    2010-01-01

    Global gene expression data combined with bioinformatic analysis provides strong evidence that mammalian miRNAs mediate repression of gene expression primarily through binding sites within the 3′ untranslated region (UTR). Using RNA induced silencing complex immunoprecipitation (RISC-IP) techniques we have identified multiple cellular targets for a human cytomegalovirus (HCMV) miRNA, miR-US25-1. Strikingly, this miRNA binds target sites primarily within 5′UTRs, mediating significant reduction in gene expression. Intriguingly, many of the genes targeted by miR-US25-1 are associated with cell cycle control, including cyclin E2, BRCC3, EID1, MAPRE2, and CD147, suggesting that miR-US25-1 is targeting genes within a related pathway. Deletion of miR-US25-1 from HCMV results in over expression of cyclin E2 in the context of viral infection. Our studies demonstrate that a viral miRNA mediates translational repression of multiple cellular genes by targeting mRNA 5′UTRs. PMID:20585629

  18. Quantification of diatom gene expression in the sea by selecting uniformly transcribed mRNA as the basis for normalization.

    PubMed

    Kang, Lee-Kuo; Tsui, Feng-Hsiu; Chang, Jeng

    2012-09-01

    To quantify gene expressions by quantitative reverse transcription-PCR (Q-RT-PCR) in natural diatom assemblages, it is necessary to seek a biomass reference specific to the target species. Two housekeeping genes, TBP (encoding the TATA box-binding protein) and EFL (encoding the translation elongation factor-like protein), were evaluated as candidates for reference genes in Q-RT-PCR assays. Transcript levels of TBP and EFL were relatively stable under various test conditions including growth stages, light-dark cycle phases, and nutrient stresses in Skeletonema costatum and Chaetoceros affinis, and TBP expression was more stable than that of EFL. Next, the sequence diversity of diatom assemblages was evaluated by obtaining 32 EFL and 29 TBP homologous gene fragments from the East China Sea (ECS). Based on sequence alignments, EFL and TBP primer sets were designed for Chaetoceros and Skeletonema groups in the ECS. An evaluation of primer specificity and PCR efficiency indicated that the EFL primer sets performed better. To demonstrate the applicability of EFL primer sets in the ECS, they were employed to measure mRNA levels of the FcpB (fucoxanthin-chlorophyll protein) gene in diatoms. The results correctly revealed prominent diel variations in FcpB expression and confirmed EFL as a good reference gene.

  19. Control of gluconeogenic genes during intense/prolonged exercise: hormone-independent effect of muscle-derived IL-6 on hepatic tissue and PEPCK mRNA.

    PubMed

    Banzet, Sébastien; Koulmann, Nathalie; Simler, Nadine; Sanchez, Hervé; Chapot, Rachel; Serrurier, Bernard; Peinnequin, André; Bigard, Xavier

    2009-12-01

    Prolonged intense exercise is challenging for the liver to maintain plasma glucose levels. Hormonal changes cannot fully account for exercise-induced hepatic glucose production (HGP). Contracting skeletal muscles release interleukin-6 (IL-6), a cytokine able to increase endogenous glucose production during exercise. However, whether this is attributable to a direct effect of IL-6 on liver remains unknown. Here, we studied hepatic glycogen, gluconeogenic genes, and IL-6 signaling in response to one bout of exhaustive running exercise in rats. To determine whether IL-6 can modulate gluconeogenic gene mRNA independently of exercise, we injected resting rats with recombinant IL-6. Exhaustive exercise resulted in a profound decrease in liver glycogen and an increase in gluconeogenic gene mRNA levels, phosphoenolpyruvate-carboxykinase (PEPCK), glucose-6-phosphatase (G6P), and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha), suggesting a key role for gluconeogenesis in hepatic glucose production. This was associated to an active IL-6 signaling in liver tissue, as shown by signal transducer and activator of transcription and CAAT/enhancer binding protein-beta phosphorylation and IL-6-responsive gene mRNA levels at the end of exercise. Recombinant IL-6 injection resulted in an increase in IL-6-responsive gene mRNA levels in the liver. We found a dose-dependent increase in PEPCK gene mRNA strongly correlated with IL-6-induced gene mRNA levels. No changes in G6P and PGC-1alpha mRNA levels were found. Taken together, our results suggest that, during very demanding exercise, muscle-derived IL-6 could help increase HGP by directly upregulating PEPCK mRNA abundance.

  20. Posttranscriptional regulation of GAP-43 gene expression in PC12 cells through protein kinase C-dependent stabilization of the mRNA

    PubMed Central

    1993-01-01

    We have previously shown that nerve growth factor (NGF) selectively stabilizes the GAP-43 mRNA in PC12 cells. To study the cellular mechanisms for this post-transcriptional control and to determine the contribution of mRNA stability to GAP-43 gene expression, we examined the effects of several agents that affect PC12 cell differentiation on the level of induction and rate of degradation of the GAP-43 mRNA. The NGF-mediated increase in GAP-43 mRNA levels and neurite outgrowth was mimicked by the phorbol ester TPA, but not by dibutyryl cAMP or the calcium ionophore A12783. Downregulation of protein kinase C (PKC) by high doses of phorbol esters or selective PKC inhibitors prevented the induction of this mRNA by NGF, suggesting that NGF and TPA act through a common PKC-dependent pathway. In mRNA decay studies, phorbol esters caused a selective 6-fold increase in the half-life of the GAP-43 mRNA, which accounts for most of the induction of this mRNA by TPA. The phorbol ester-induced stabilization of GAP-43 mRNA was blocked by the protein kinase inhibitor polymyxin B and was partially inhibited by dexamethasone, an agent that blocks GAP-43 expression and neuronal differentiation in PC12 cells. In contrast, the rates of degradation and the levels of the GAP-43 mRNA in control and TPA-treated cells were not affected by cycloheximide treatment. Thus, changes in GAP-43 mRNA turnover do not appear to require continuous protein synthesis. In conclusion, these data suggest that PKC activity regulates the levels of the GAP-43 mRNA in PC12 cells through a novel, translation- independent mRNA stabilization mechanism. PMID:8436593

  1. Impact of estrogen receptor gene polymorphisms and mRNA levels on obesity and lipolysis – a cohort study

    PubMed Central

    Nilsson, Maria; Dahlman, Ingrid; Jiao, Hong; Gustafsson, Jan-Åke; Arner, Peter; Dahlman-Wright, Karin

    2007-01-01

    Background The estrogen receptors α and β (ESR1, ESR2) have been implicated in adiposity, lipid metabolism and feeding behaviour. In this report we analyse ESR1 and ESR2 gene single nucleotide polymorphisms (SNPs) for association with obesity. We also relate adipose tissue ESR1 mRNA levels and ESR1 SNPs to adipocyte lipolysis and lipogenesis phenotypes. Methods 23 ESR1 and 11 ESR2 tag-SNPs, covering most of the common haplotype variation in each gene according to HAPMAP data, were analysed by Chi2 for association with obesity in a cohort comprising 705 adults with severe obesity and 402 lean individuals. Results were replicated in a cohort comprising 837 obese and 613 lean subjects. About 80% of both cohorts comprised women and 20% men. Adipose tissue ESR1 mRNA was quantified in 122 women and related to lipolysis and lipogenesis by multiple regression. ESR1 SNPs were analysed for association with adipocyte lipolysis and lipogenesis phenotypes in 204 obese women by simple regression. Results No ESR1 SNP was associated with obesity. Five ESR2 SNPs displayed nominal significant allelic association with obesity in women and one in men. The two ESR2 SNPs associated with obesity with nominal P value < 0.01 were genotyped in a second cohort where no association with obesity was observed. There was an inverse correlation between ESR1 mRNA levels in abdominal subcutaneous (sc) adipose tissue and basal lipolysis, as well as responsiveness to adrenoceptor agonists independent of age and BMI (P value 0.009–0.045). ESR1 rs532010 was associated with lipolytic sensitivity to noradrenaline (nominal P value 0.012), and ESR1 rs1884051 with responsiveness to the non-selective beta-adrenoceptor agonist isoprenaline (nominal P value 0.05). These associations became non-significant after Bonferroni correction. Conclusion ESR1 gene alleles are unlikely to be a major cause of obesity in women. A minor importance of ESR2 on severe obesity cannot be excluded. The inverse correlation

  2. Role of post-transcriptional regulation of mRNA stability on the expression of cytokine-coding genes in renal inflammation.

    PubMed

    Feigerlová, Eva; Battaglia-Hsu, Shyue-Fang

    2017-09-08

    Mechanisms that control mammalian gene expression, notably mRNA stability and translation, have major functions in the modulation of the cellular response to internal and external stimuli. Altered posttranscriptional regulation of gene expression has been associated with many diseases. Such types of deregulation have also recently been noted on the inflammatory cytokines pertinent to kidney inflammation. In this article, we summarize briefly the recent knowledge obtained from both human and experimental systems on the details of posttranscriptional regulation of gene expression related to the control of mRNA stability and discuss their relevance in regulating cytokine expression linked to the inflammatory processes in kidney. Despite the fact that not many such examples in human kidney diseases have been uncovered with great mechanistic details, studies in experimental models suggest that the mRNA stability control is more than meets the eye. Therapeutic potentials aiming at regulating cytokine expression via posttranscriptional modification of mRNA half-life are thus discussed.

  3. Quantification of mRNA stability of stress-responsive yeast genes following conditional excision of open reading frames.

    PubMed

    Talarek, Nicolas; Bontron, Séverine; De Virgilio, Claudio

    2013-08-01

    Eukaryotic cells rapidly adjust the levels of mRNAs in response to environmental stress primarily by controlling transcription and mRNA turnover. How different stress conditions influence the fate of stress-responsive mRNAs, however, is relatively poorly understood. This is largely due to the fact that mRNA half-life assays are traditionally based on interventions (e.g., temperature-shifts using temperature-sensitive RNA polymerase II alleles or treatment with general transcription inhibitory drugs), which, rather than blocking, specifically induce transcription of stress-responsive genes. To study the half-lives of the latter suite of mRNAs, we developed and describe here a minimally perturbing alternative method, coined CEO, which is based on discontinuance of transcription following the conditional excision of open reading frames. Using CEO, we confirm that the target of rapamycin complex I (TORC1), a nutrient-activated, central stimulator of eukaryotic cell growth, favors the decay of mRNAs that depend on the stress- and/or nutrient-regulated transcription factors Msn2/4 and Gis1 for their transcription. We further demonstrate that TORC1 controls the stability of these mRNAs via the Rim15-Igo1/2-PP2A(Cdc55) effector branch, which reportedly also controls Gis1 promoter recruitment. These data pinpoint PP2A(Cdc55) as a central node in homo-directional coordination of transcription and post-transcriptional mRNA stabilization of a specific array of nutrient-regulated genes.

  4. Influence of beta-blockers on the myocardial mRNA expressions of circadian clock- and metabolism-related genes.

    PubMed

    Ushijima, Kentarou; Maekawa, Tomohiro; Ishikawa-Kobayashi, Eiko; Ando, Hitoshi; Shiga, Tsuyoshi; Fujimura, Akio

    2013-01-01

    Daily rhythms are regulated by a master clock-system in the suprachiasmatic nucleus and by a peripheral clock-system in each organ. Because norepinephrine is one of the timekeepers for the myocardial circadian clock that influences cardiac metabolism, it is speculated that a beta-blocker may affect the circadian clock and metabolism in heart tissue. In this study, thirty mg/kg/day of propranolol (a lipophilic beta-blocker) or atenolol (a hydrophilic beta-blocker) was given orally to Wistar rats for 4 weeks. The mRNA expressions of Bmal1 and E4BP4 in heart tissue were suppressed by the beta-blockers. However, the mRNA expressions of these clock genes in the suprachiasmatic nucleus were unchanged. Myocardial mRNA expressions of lactate dehydrogenase a and pyruvate dehydrogenase kinase 4 were also suppressed by the beta-blockers. In addition, ATP content in heart tissue was significantly elevated by the beta-blockers throughout 24 hours. The effects of propranolol and atenolol did not differ significantly. This study showed for the first time that a beta-blocker affects myocardial clock gene expression. Propranolol and atenolol increased ATP content in heart tissue throughout 24 hours. The influences of beta-blockers may be negligible on the SCN, and may be independent of lipid solubility on heart tissue. It is well known that these drugs exert a protective effect against myocardial ischemia, which may be mediated by an increase in the preservation of myocardial ATP. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  5. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    PubMed

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy.

  6. Structure of the coding region and mRNA variants of the apyrase gene from pea (Pisum sativum)

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Abe, S.; Davies, E.

    2001-01-01

    Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3' untranslated regions (3'-UTR). There are some similarities between the 3'-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3'-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments.

  7. Correlation between ZBED6 Gene Upstream CpG Island methylation and mRNA expression in cattle.

    PubMed

    Huang, Yong-Zhen; Zhang, Zi-Jing; He, Hua; Cao, Xiu-Kai; Song, Cheng-Chuang; Liu, Kun-Peng; Lan, Xian-Yong; Lei, Chu-Zhao; Qi, Xing-Lei; Bai, Yue-Yu; Chen, Hong

    2017-04-03

    DNA methylation is essential for the regulation of gene expression and important roles in muscle development. To assess the extent of epigenetic modifications and gene expression on the differentially methylated region (DMR) in ZBED6, we simultaneously examined DNA methylation and expression in six tissues from two different developmental stages (fetal bovine and adult bovine). The DNA methylation pattern was compared using bisulfite sequencing polymerase chain reaction (BSP) and combined bisulfite restriction analysis (COBRA). The result of quantitative real-time PCR (qPCR) analysis showed that ZBED6 has a broad tissue distribution and is highly expressed in adult bovine (P < 0.05 or P < 0.01). The DNA methylation level was significantly different in liver, lung and spleen between the two cattle groups (P < 0.05 or P < 0.01). The adult bovine group exhibited a significantly higher mRNA level and lower DNA methylation level than the fetal bovine group in liver, lung, and spleen. No significant association was detected between DNA methylation level and muscle, heart, and kidney at two different stages. In this study, the statistical analyses indicated that DNA methylation patterns are associated with mRNA level in some tissues, these results may be a useful parameter to investigate muscle developmental in cattle and as a model for studies in other species, potentially contributing to an improvement of growth performance selection in beef cattle breeding program.

  8. Structure of the coding region and mRNA variants of the apyrase gene from pea (Pisum sativum)

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Abe, S.; Davies, E.

    2001-01-01

    Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3' untranslated regions (3'-UTR). There are some similarities between the 3'-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3'-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments.

  9. Acute physiological stress down-regulates mRNA expressions of growth-related genes in coho salmon.

    PubMed

    Nakano, Toshiki; Afonso, Luis O B; Beckman, Brian R; Iwama, George K; Devlin, Robert H

    2013-01-01

    Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish.

  10. Acute Physiological Stress Down-Regulates mRNA Expressions of Growth-Related Genes in Coho Salmon

    PubMed Central

    Nakano, Toshiki; Afonso, Luis O. B.; Beckman, Brian R.; Iwama, George K.; Devlin, Robert H.

    2013-01-01

    Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish. PMID:23990952

  11. Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels

    PubMed Central

    Buchanan, Fiona C; Fitzsimmons, Carolyn J; Van Kessel, Andrew G; Thue, Tracey D; Winkelman-Sim, Dianne C; Schmutz, Sheila M

    2002-01-01

    Previously, we have shown that alleles of the BM1500 microsatellite, located 3.6 kb downstream of the leptin gene in cattle, were associated with carcass fat measures in a population of 154 unrelated beef bulls. Subsequently, a cytosine (C) to thymine (T) transition that encoded an amino acid change of an arginine to a cysteine was identified in exon 2 of the leptin gene. A PCR-RFLP was designed and allele frequencies in four beef breeds were correlated with levels of carcass fat. The T allele was associated with fatter carcasses and the C allele with leaner carcasses. The frequencies of the SNP alleles among breeds indicated that British breeds have a higher frequency of the T allele whereas the continental breeds have a higher occurrence of the C allele. A ribonuclease protection assay was developed to quantify leptin mRNA in a separate group of animals selected by genotype. Animals homozygous for thymine expressed higher levels of leptin mRNA. This may suggest that the T allele, which adds an extra cysteine to the protein, imparts a partial loss of biological function and hence could be the causative mutation. PMID:11929627

  12. Profiles of mRNA expression of related genes in the duck hypothalamus-pituitary growth axis during embryonic and early post-hatch development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Song, Chi; Xu, Wenjuan; Ji, Gaige; Zhu, Chunhong; Shu, Jingting; Li, Huifang

    2015-03-15

    In this study, the ontogeny of body and liver weight and the pattern of related gene mRNA expression in the hypothalamus-pituitary growth axis (HPGA) of two different duck breeds (Anas platyrhynchos domestica) were compared during embryonic and post-hatch development. Duck hypothalamic growth hormone release hormone (GHRH), somatostatin (SS), pituitary growth hormone (GH), liver growth hormone receptor (GHR) and insulin-like growth factor-I (IGF-1) mRNA were first detected on the 13th embryonic day. During early duck development, SS maintained a lower expression status, whereas the other four genes exhibited highly significant variations in an age-specific manner. Highly significant breed specificity was observed with respect to hepatic IGF-1 mRNA expression, which showed a significant breed-age interaction effect. Compared with previous studies on chickens, significant species differences were observed regarding the mRNA expression of bird embryonic HPGA-related genes. During early development, highly significant breed and age specificity were observed with respect to developmental changes in body and liver weight, and varying degrees of significant linear correlation were found between these performances and the mRNA expression of HPGA-related genes in the duck HPGA. These results suggest that different genetic backgrounds may lead to differences in duck growth and HPGA-related gene mRNA expression, and the differential mRNA expression of related genes in the duck HPGA may be particularly important in the early growth of ducks. Furthermore, hepatic IGF-1 mRNA expression presented highly significant breed specificity, and evidence suggests the involvement of hepatic IGF-1 in mediating genetic effects on embryo and offspring growth in ducks.

  13. Effect of acidic ribosomal phosphoprotein mRNA 5'-untranslated region on gene expression and protein accumulation.

    PubMed

    Bermejo, B; Remacha, M; Ortiz-Reyes, B; Santos, C; Ballesta, J P

    1994-02-11

    Constructions were made from genes encoding ribosomal acidic phosphoproteins YP1 beta (L44') and YP2 beta (L45) from Saccharomyces cerevisiae in which different parts of the 5'-untranslated regions were included. The constructs were inserted into centromeric plasmids under the control of the GAL1 promoter and expressed in yeast strains in which the genes coding for each acidic protein family, P1 and P2, had been disrupted. Deletions in the 5' region of the two genes have been found to oppositely affect their expression. Deletion of most of this region strongly stimulates the expression of YP2 beta (L45), increasing the translation efficiency of the mRNA, and generating a 6-fold excess of protein in the cell. A similar deletion in the rpYP1 beta gene represses the expression of the protein, reducing drastically the amount of the mRNA in the cell. The overexpression of rpYP2 beta affects the cell growth by inhibiting protein synthesis at the level of initiation. Reduction of the YP2 beta(L45) overproduction by growing in controlled concentrations of glucose abolishes the inhibitory effect. The excess protein, probably as a high molecular weight complex, apparently interferes with the joining of the 60 S subunit to the initiation complex generating the accumulation of polysome half-mers. In addition, the results indicate the existence of a regulatory mechanism by which each one of the two acidic proteins controls the expression of the other polypeptide. YP1 beta(L44') represses the expression of YP2 beta(L45), while this protein stimulates the expression of YP1 beta(L44').

  14. Untranslated regions of mRNA and their role in regulation of gene expression in protozoan parasites.

    PubMed

    Rao, Shilpa J; Chatterjee, Sangeeta; Pal, Jayantapal K

    2017-03-01

    Protozoan parasites are one of the oldest living entities in this world that throughout their existence have shown excellent resilience to the odds of survival and have adapted beautifully to ever changing rigors of the environment. In view of the dynamic environment encountered by them throughout their life cycle, and in establishing pathogenesis, it is unsurprising that modulation of gene expression plays a fundamental role in their survival. In higher eukaryotes, untranslated regions (UTRs) of transcripts are one of the crucial regulators of gene expression (influencing mRNA stability and translation efficiency). Parasitic protozoan genome studies have led to the characterization (in silico, in vitro and in vivo) of a large number of their genes. Comparison of higher eukaryotic UTRs with parasitic protozoan UTRs reveals the existence of several similar and dissimilar facets of the UTRs. This review focuses on the elements of UTRs of medically important protozoan parasites and their regulatory role in gene expression. Such information may be useful to researchers in designing gene targeting strategies linked with perturbation of host-parasite relationships leading to control of specific parasites.

  15. Product of Saccharomyces cerevisiae nuclear gene PET494 activates translation of a specific mitochondrial mRNA.

    PubMed Central

    Costanzo, M C; Fox, T D

    1986-01-01

    The product of Saccharomyces cerevisiae nuclear gene PET494 is known to be required for a posttranscriptional step in the accumulation of one mitochondrial gene product, subunit III of cytochrome c oxidase (coxIII). Here we show that the PET494 protein probably acts in mitochondria by demonstrating that both a PET494-beta-galactosidase fusion protein and unmodified PET494 are specifically associated with mitochondria. To define the PET494 site of action, we isolated mutations that suppress a pet494 deletion. These mutations were rearrangements of the mitochondrial gene oxi2 that encodes coxIII. The suppressor oxi2 genes had acquired the 5'-flanking sequences of other mitochondrial genes and gave rise to oxi2 transcripts carrying the 5'-untranslated leaders of their mRNAs. These results demonstrate that in wild-type cells PET494 specifically promotes coxIII translation, probably by interacting with the 5'-untranslated leader of the oxi2 mRNA. Images PMID:3099165

  16. Integrated Analysis of DNA Methylation and mRNA Expression Profiles Data to Identify Key Genes in Lung Adenocarcinoma

    PubMed Central

    Jin, Xiang; Li, Xiaodan; Guan, Yinghui

    2016-01-01

    Introduction. Lung adenocarcinoma (LAC) is the most frequent type of lung cancer and has a high metastatic rate at an early stage. This study is aimed at identifying LAC-associated genes. Materials and Methods. GSE62950 downloaded from Gene Expression Omnibus included a DNA methylation dataset and an mRNA expression profiles dataset, both of which included 28 LAC tissue samples and 28 adjacent normal tissue samples. The differentially expressed genes (DEGs) were screened by Limma package in R, and their functions were predicted by enrichment analysis using TargetMine online tool. Then, protein-protein interaction (PPI) network was constructed using STRING and Cytoscape. Finally, LAC-associated methylation sites were identified by CpGassoc package in R and mapped to the DEGs to obtain LAC-associated DEGs. Results. Total 913 DEGs were identified in LAC tissues. In the PPI networks, MAD2L1, AURKB, CCNB2, CDC20, and WNT3A had higher degrees, and the first four genes might be involved in LAC through interaction. Total 8856 LAC-associated methylation sites were identified and mapped to the DEGs. And there were 29 LAC-associated methylation sites located in 27 DEGs (e.g., SH3GL2, BAI3, CDH13, JAM2, MT1A, LHX6, and IGFBP3). Conclusions. These key genes might play a role in pathogenesis of LAC. PMID:27610375

  17. Effects of mRNA amplification on gene expression ratios in cDNA experiments estimated by analysis of variance

    PubMed Central

    Nygaard, Vigdis; Løland, Anders; Holden, Marit; Langaas, Mette; Rue, Håvard; Liu, Fang; Myklebost, Ola; Fodstad, Øystein; Hovig, Eivind; Smith-Sørensen, Birgitte

    2003-01-01

    Background A limiting factor of cDNA microarray technology is the need for a substantial amount of RNA per labeling reaction. Thus, 20–200 micro-grams total RNA or 0.5–2 micro-grams poly (A) RNA is typically required for monitoring gene expression. In addition, gene expression profiles from large, heterogeneous cell populations provide complex patterns from which biological data for the target cells may be difficult to extract. In this study, we chose to investigate a widely used mRNA amplification protocol that allows gene expression studies to be performed on samples with limited starting material. We present a quantitative study of the variation and noise present in our data set obtained from experiments with either amplified or non-amplified material. Results Using analysis of variance (ANOVA) and multiple hypothesis testing, we estimated the impact of amplification on the preservation of gene expression ratios. Both methods showed that the gene expression ratios were not completely preserved between amplified and non-amplified material. We also compared the expression ratios between the two cell lines for the amplified material with expression ratios between the two cell lines for the non-amplified material for each gene. With the aid of multiple t-testing with a false discovery rate of 5%, we found that 10% of the genes investigated showed significantly different expression ratios. Conclusion Although the ratios were not fully preserved, amplification may prove to be extremely useful with respect to characterizing low expressing genes. PMID:12659661

  18. Expression of a mutant vasopressin gene: differential polyadenylation and read-through of the mRNA 3' end in a frame-shift mutant.

    PubMed Central

    Ivell, R; Schmale, H; Krisch, B; Nahke, P; Richter, D

    1986-01-01

    Sequence analysis of cDNA clones derived from hypothalamic mRNA of diabetes insipidus (Brattleboro) rats shows that the vasopressin gene transcript also includes the single base deletion demonstrated in the gene. This causes a frame-shift in the C terminus of the vasopressin precursor with a reading frame open through the 3' end of the mRNA including the poly(A) sequence. Antibodies raised against a synthetic tetradecapeptide (CP-14) corresponding to the frame-shifted C terminus identified a product of mol. wt approximately 26 000 in a reticulocyte lysate system programmed with Brattleboro hypothalamic mRNA. Immunohistochemical analysis indicated that a similar precursor is also present in vivo in neurones of the Brattleboro hypothalamus. Electrophoretic analysis of vasopressin mRNA from wild-type and mutant rat tissues revealed that (i) the hypothalamic mRNA from Brattleboro rats contains a longer stretch of poly(A) sequence than the wild-type strains; (ii) vasopressin mRNA is also present in the adrenal, ovary, testis and cerebellum, at very low levels; however, (iii) the extra-hypothalamic mRNA is considerably shorter than that in the hypothalamus because of a curtailed poly(A) sequence. Thus similar vasopressin gene transcripts are subject to a tissue-specific differential polyadenylation. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3755103

  19. Negative and Positive mRNA Splicing Elements Act Competitively To Regulate Human Immunodeficiency Virus Type 1 Vif Gene Expression▿

    PubMed Central

    Exline, C. M.; Feng, Z.; Stoltzfus, C. M.

    2008-01-01

    Over 40 different human immunodeficiency virus type 1 (HIV-1) mRNAs are produced by alternative splicing of the primary HIV-1 RNA transcripts. In addition, approximately half of the viral RNA remains unspliced and is used as genomic RNA and as mRNA for the Gag and Pol gene products. Regulation of splicing at the HIV-1 3′ splice sites (3′ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation occurs through the binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3′ss A1, which produces single-spliced vif mRNA and promotes the inclusion of HIV exon 2 into both completely and incompletely spliced viral mRNAs, is increased by optimizing the 5′ splice site (5′ss) downstream of exon 2 (5′ss D2). Here we show that the mutations within 5′ss D2 that are predicted to lower or increase the affinity of the 5′ss for U1 snRNP result in reduced or increased Vif expression, respectively. Splicing at 5′ss D2 was not necessary for the effect of 5′ss D2 on Vif expression. In addition, we have found that mutations of the GGGG motif proximal to the 5′ss D2 increase exon 2 inclusion and Vif expression. Finally, we report the presence of a novel exonic splicing enhancer (ESE) element within the 5′-proximal region of exon 2 that facilitates both exon inclusion and Vif expression. This ESE binds specifically to the cellular SR protein SRp75. Our results suggest that the 5′ss D2, the proximal GGGG silencer, and the ESE act competitively to determine the level of vif mRNA splicing and Vif expression. We propose that these positive and negative splicing elements act together to allow the accumulation of vif mRNA and unspliced HIV-1 mRNA, compatible with optimal virus replication. PMID:18272582

  20. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence

    PubMed Central

    Blevins, Tana; Aliev, Fazil; Adkins, Amy; Hack, Laura; Bigdeli, Tim; D. van der Vaart, Andrew; Web, Bradley Todd; Bacanu, Silviu-Alin; Kalsi, Gursharan; Kendler, Kenneth S.; Miles, Michael F.; Dick, Danielle; Riley, Brien P.; Dumur, Catherine; Vladimirov, Vladimir I.

    2015-01-01

    Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05). Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05). In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001). Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively) in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA). In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD. PMID:26381263

  1. Screening of genes involved in isooctane tolerance in Saccharomyces cerevisiae by using mRNA differential display.

    PubMed

    Miura, S; Zou, W; Ueda, M; Tanaka, A

    2000-11-01

    A Saccharomyces cerevisiae strain, KK-211, isolated by the long-term bioprocess of stereoselective reduction in isooctane, showed extremely high tolerance to the solvent, which is toxic to yeast cells, but, in comparison with its wild-type parent, DY-1, showed low tolerance to hydrophilic organic solvents, such as dimethyl sulfoxide and ethanol. In order to detect the isooctane tolerance-associated genes, mRNA differential display (DD) was employed using mRNAs isolated from strains DY-1 and KK-211 cultivated without isooctane, and from strain KK-211 cultivated with isooctane. Thirty genes were identified as being differentially expressed in these three types of cells and were classified into three groups according to their expression patterns. These patterns were further confirmed and quantified by Northern blot analysis. On the DD fingerprints, the expression of 14 genes, including MUQ1, PRY2, HAC1, AGT1, GAC1, and ICT1 (YLR099c) was induced, while the expression of the remaining 16 genes, including JEN1, PRY1, PRY3, and KRE1, was decreased, in strain KK-211 cultivated with isooctane. The genes represented by HAC1, PRY1, and ICT1 have been reported to be associated with cell stress, and AGT1 and GAC1 have been reported to be involved in the uptake of trehalose and the production of glycogen, respectively. MUQ1 and KRE1, encoding proteins associated with cell surface maintenance, were also detected. Based on these results, we concluded that alteration of expression levels of multiple genes, not of a single gene, might be the critical determinant for isooctane tolerance in strain KK-211.

  2. Screening of Genes Involved in Isooctane Tolerance in Saccharomyces cerevisiae by Using mRNA Differential Display

    PubMed Central

    Miura, Shigenori; Zou, Wen; Ueda, Mitsuyoshi; Tanaka, Atsuo

    2000-01-01

    A Saccharomyces cerevisiae strain, KK-211, isolated by the long-term bioprocess of stereoselective reduction in isooctane, showed extremely high tolerance to the solvent, which is toxic to yeast cells, but, in comparison with its wild-type parent, DY-1, showed low tolerance to hydrophilic organic solvents, such as dimethyl sulfoxide and ethanol. In order to detect the isooctane tolerance-associated genes, mRNA differential display (DD) was employed using mRNAs isolated from strains DY-1 and KK-211 cultivated without isooctane, and from strain KK-211 cultivated with isooctane. Thirty genes were identified as being differentially expressed in these three types of cells and were classified into three groups according to their expression patterns. These patterns were further confirmed and quantified by Northern blot analysis. On the DD fingerprints, the expression of 14 genes, including MUQ1, PRY2, HAC1, AGT1, GAC1, and ICT1 (YLR099c) was induced, while the expression of the remaining 16 genes, including JEN1, PRY1, PRY3, and KRE1, was decreased, in strain KK-211 cultivated with isooctane. The genes represented by HAC1, PRY1, and ICT1 have been reported to be associated with cell stress, and AGT1 and GAC1 have been reported to be involved in the uptake of trehalose and the production of glycogen, respectively. MUQ1 and KRE1, encoding proteins associated with cell surface maintenance, were also detected. Based on these results, we concluded that alteration of expression levels of multiple genes, not of a single gene, might be the critical determinant for isooctane tolerance in strain KK-211. PMID:11055939

  3. Nucleotide sequence of the human gamma cytoskeletal actin mRNA: anomalous evolution of vertebrate non-muscle actin genes.

    PubMed Central

    Erba, H P; Gunning, P; Kedes, L

    1986-01-01

    Two distinct, but iso-coding, gamma non-muscle actin cDNAs were isolated from an SV40-transformed human fibroblast library. The complete nucleotide sequence of the human gamma non-muscle actin cDNAs indicates that they may have arisen from polymorphic alleles. By using genomic DNA and cellular RNA transfer blots, we demonstrate that the 3' untranslated region (UTR) of the gamma actin mRNA consists of an evolutionarily conserved 5' and more divergent 3' segments. In fact, the conserved segment of the 3' UTR detects a single-copy sequence in the chicken genome and a 20S RNA transcript in chicken non-muscle tissues. The coding regions of these cDNAs were compared with those of other vertebrate non-muscle actin genes. Surprisingly, the percentage of silent base substitutions between the human beta and gamma actin coding regions is anomalously low and indicates greater sequence conservation than would be expected for a gene pair which arose during pre-avian evolution. We discuss gene conversion and recent selective pressure as possible explanations of the apparently anomalous evolution of the gamma non-muscle actin gene. Images PMID:3737401

  4. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    NASA Astrophysics Data System (ADS)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  5. Phase I Metabolic Genes and Risk of Lung Cancer: Multiple Polymorphisms and mRNA Expression

    PubMed Central

    Rotunno, Melissa; Yu, Kai; Lubin, Jay H.; Consonni, Dario; Pesatori, Angela C.; Goldstein, Alisa M.; Goldin, Lynn R.; Wacholder, Sholom; Burdette, Laurie; Chanock, Stephen J.; Bertazzi, Pier Alberto; Tucker, Margaret A.; Caporaso, Neil E.; Chatterjee, Nilanjan; Bergen, Andrew W.; Landi, Maria Teresa

    2009-01-01

    Polymorphisms in genes coding for enzymes that activate tobacco lung carcinogens may generate inter-individual differences in lung cancer risk. Previous studies had limited sample sizes, poor exposure characterization, and a few single nucleotide polymorphisms (SNPs) tested in candidate genes. We analyzed 25 SNPs (some previously untested) in 2101 primary lung cancer cases and 2120 population controls from the Environment And Genetics in Lung cancer Etiology (EAGLE) study from six phase I metabolic genes, including cytochrome P450s, microsomal epoxide hydrolase, and myeloperoxidase. We evaluated the main genotype effects and genotype-smoking interactions in lung cancer risk overall and in the major histology subtypes. We tested the combined effect of multiple SNPs on lung cancer risk and on gene expression. Findings were prioritized based on significance thresholds and consistency across different analyses, and accounted for multiple testing and prior knowledge. Two haplotypes in EPHX1 were significantly associated with lung cancer risk in the overall population. In addition, CYP1B1 and CYP2A6 polymorphisms were inversely associated with adenocarcinoma and squamous cell carcinoma risk, respectively. Moreover, the association between CYP1A1 rs2606345 genotype and lung cancer was significantly modified by intensity of cigarette smoking, suggesting an underling dose-response mechanism. Finally, increasing number of variants at CYP1A1/A2 genes revealed significant protection in never smokers and risk in ever smokers. Results were supported by differential gene expression in non-tumor lung tissue samples with down-regulation of CYP1A1 in never smokers and up-regulation in smokers from CYP1A1/A2 SNPs. The significant haplotype associations emphasize that the effect of multiple SNPs may be important despite null single SNP-associations, and warrants consideration in genome-wide association studies (GWAS). Our findings emphasize the necessity of post-GWAS fine mapping and

  6. Temperature-sensitive mutations in the Saccharomyces cerevisiae MRT4, GRC5, SLA2 and THS1 genes result in defects in mRNA turnover.

    PubMed Central

    Zuk, D; Belk, J P; Jacobson, A

    1999-01-01

    In a screen for factors involved in mRNA turnover, four temperature-sensitive yeast strains (ts1189, ts942, ts817, and ts1100) exhibited defects in the decay of several mRNAs. Complementation of the growth and mRNA decay defects, and genetic experiments, revealed that ts1189 is mutated in the previously unknown MRT4 gene, ts942 is mutated in GRC5 (encoding the L9 ribosomal protein), ts817 contains a mutation in SLA2 (encoding a membrane protein), and ts1100 contains a mutation in THS1 (encoding the threonyl-tRNA synthetase). Three of the four mutants (mrt4, grc5, and sla2) were not defective in protein synthesis, suggesting that these strains contain mutations in factors that may play a specific role in mRNA decay. The mRNA stabilization observed in the ths1 strain, however, could be due to the significant drop in translation observed in this mutant at 37 degrees. While the three interesting mutants appear to encode novel mRNA decay factors, at least one could be linked to a previously characterized mRNA decay pathway. The growth and mRNA decay defects of ts942 (grc5) cells were suppressed by overexpression of the NMD3 gene, encoding a protein shown to participate in a two-hybrid interaction with the nonsense-mediated decay protein Upf1p. PMID:10471698

  7. Activin Acts with Nerve Growth Factor to Regulate Calcitonin Gene-Related Peptide mRNA in Sensory Neurons

    PubMed Central

    Xu, Pin; Hall, Alison K.

    2009-01-01

    Calcitonin Gene-Related Peptide (CGRP) increases in sensory neurons after inflammation and plays an important role in abnormal pain responses, but how this neuropeptide is regulated is not well understood. Both activin A and Nerve Growth Factor (NGF) increase in skin after inflammation and induce CGRP in neurons in vivo and in vitro. This study was designed to understand how neurons integrate these two signals to regulate the neuropeptide important for inflammatory pain. In adult dorsal root ganglion neurons, NGF but not activin alone produced a dose-dependent increase in CGRP mRNA. When added together with NGF, activin synergistically increased CGRP mRNA, indicating that sensory neurons combine these signals. Studies were then designed to learn if that combination occurred at a common receptor or shared intracellular signals. Studies with Activin IB receptor or trkA inhibitors suggested that each ligand required its cognate receptor to stimulate the neuropeptide. Further, activin did not augment NGF-initiated intracellular MAPK signals but instead stimulated Smad phosphorylation, suggesting these ligands initiated parallel signals in the cytoplasm. Activin synergy required several NGF intracellular signals to be present. Because activin did not further stimulate, but did require NGF intracellular signals, it appears that activin and NGF converge not in receptor or cytoplasmic signals, but in transcriptional mechanisms to regulate CGRP in sensory neurons after inflammation. PMID:17964731

  8. mRNA stabilization controls the expression of a class of developmentally regulated genes in Dictyostelium discoideum

    PubMed Central

    Mangiarotti, Giorgio; Giorda, Roberto; Ceccarelli, Adriano; Perlo, Carla

    1985-01-01

    During the development of Dictyostelium discoideum, several thousand new mRNA species appear in the cytoplasm after the cells have formed stable aggregates. Here we show that six of these late mRNAs, corresponding to six clones randomly chosen from a genomic library, are synthesized from the very beginning of development at a rate comparable to that observed late in development but that transcripts do not accumulate until after aggregation. The early- and late-synthesized mRNAs are identical in size and compete with each other for hybridization to the genomic clones. The early-synthesized mRNAs do not accumulate in the cytoplasm in the preaggregation stage because they are very unstable. Their stability, estimated from the kinetics of incorporation during continuous labeling with 32P, increases by perhaps an order of magnitude in the postaggregation stage. We conclude that mRNA stabilization is the major controlling factor of the expression of these genes. Images PMID:16593597

  9. A selection of reference genes and early-warning mRNA biomarkers for environmental monitoring using Mytilus spp. as sentinel species.

    PubMed

    Lacroix, C; Coquillé, V; Guyomarch, J; Auffret, M; Moraga, D

    2014-09-15

    mRNA biomarkers are promising tools for environmental health assessment and reference genes are needed to perform relevant qPCR analyses in tissue samples of sentinel species. In the present study, potential reference genes and mRNA biomarkers were tested in the gills and digestive glands of native and caged mussels (Mytilus spp.) exposed to harbor pollution. Results highlighted the difficulty to find stable reference genes in wild, non-model species and suggested the use of normalization indices instead of single genes as they exhibit a higher stability. Several target genes were found differentially expressed between mussel groups, especially in gills where cyp32, π-gst and CuZn-sod mRNA levels could be biomarker candidates. Multivariate analyses confirmed the ability of mRNA levels to highlight site-effects and suggested the use of several combined markers instead of individual ones. These findings support the use of qPCR technology and mRNA levels as early-warning biomarkers in marine monitoring programs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Analysis of mutations and alternative splicing patterns in the CFTR gene using mRNA derived from nasal epithelial cells.

    PubMed

    Hull, J; Shackleton, S; Harris, A

    1994-07-01

    Ten to fifteen percent of CF chromosomes carry mutations which are not detected by routine screening of the CFTR gene for known mutations. Many techniques have been used to screen the CFTR gene for these remaining mutations. Most of the methods use genomic DNA, and since the CFTR gene contains 27 exons, are necessarily labour intensive. We have screened the entire coding region of CFTR, by chemical cleavage of 7 overlapping segments of amplified cDNA. Using this method we have identified 4 sequence changes which had not been detected by screening genomic DNA, and successfully detected 10 out of 13 known mutations. In addition, we have identified 8 alternatively spliced forms of CFTR mRNA, 4 of which have not been described previously. These include transcripts lacking a) exon 3, b) exons 2 + 3, c) exons 9 + 12, and d) the final 357 bp of exon 15 as a result of use of the cryptic splice donor site CA2863/GTTCGT).

  11. Early gene expression in bacteriophage T7. I. In vivo synthesis, inactivation, and translational utilization of early mRNA's.

    PubMed Central

    Hercules, K; Jovanovich, S; Sauerbrier, W

    1976-01-01

    In vivo decay rates for the individual T7 early mRNA species were determined. The physical half-lives, measured at 37 C, range from 1.1 min for gene 0.7 RNA to 4.5 min for gene 0.3 RNA. Physical half-lives, as observed after rifampin inhibition of RNA synthesis and polyacylamide electrophoresis of RNAs, are approximately 30% longer than functional half-lives, as observed by 14C-labeled amino acid uptake into individual T7 early proteins. The different RNA species are synthesized at grossly different rates, 0.3 RNA at four times the rate of 1.0 RNA, 0.7 RNA at twice the rate, and 1.1 and 1.3 RNAs at about the same or a slightly lower rate than 1.0 RNA. Rho-factor-mediated termination of transcription behind genes 0.3, 0.7, and perhaps behind 1.0 is inferred from these data. The in vivo translational utilization of the individual T7 early-message species was found to vary by not more than a factor of 2. Images PMID:1255850

  12. An international comparability study on quantification of mRNA gene expression ratios: CCQM-P103.1.

    PubMed

    Devonshire, Alison S; Sanders, Rebecca; Whale, Alexandra S; Nixon, Gavin J; Cowen, Simon; Ellison, Stephen L R; Parkes, Helen; Pine, P Scott; Salit, Marc; McDaniel, Jennifer; Munro, Sarah; Lund, Steve; Matsukura, Satoko; Sekiguchi, Yuji; Kawaharasaki, Mamoru; Granjeiro, José Mauro; Falagan-Lotsch, Priscila; Saraiva, Antonio Marcos; Couto, Paulo; Yang, Inchul; Kwon, Hyerim; Park, Sang-Ryoul; Demšar, Tina; Žel, Jana; Blejec, Andrej; Milavec, Mojca; Dong, Lianhua; Zhang, Ling; Sui, Zhiwei; Wang, Jing; Viroonudomphol, Duangkamol; Prawettongsopon, Chaiwat; Partis, Lina; Baoutina, Anna; Emslie, Kerry; Takatsu, Akiko; Akyurek, Sema; Akgoz, Muslum; Vonsky, Maxim; Konopelko, L A; Cundapi, Edna Matus; Urquiza, Melina Pérez; Huggett, Jim F; Foy, Carole A

    2016-06-01

    Measurement of RNA can be used to study and monitor a range of infectious and non-communicable diseases, with profiling of multiple gene expression mRNA transcripts being increasingly applied to cancer stratification and prognosis. An international comparison study (Consultative Committee for Amount of Substance (CCQM)-P103.1) was performed in order to evaluate the comparability of measurements of RNA copy number ratio for multiple gene targets between two samples. Six exogenous synthetic targets comprising of External RNA Control Consortium (ERCC) standards were measured alongside transcripts for three endogenous gene targets present in the background of human cell line RNA. The study was carried out under the auspices of the Nucleic Acids (formerly Bioanalysis) Working Group of the CCQM. It was coordinated by LGC (United Kingdom) with the support of National Institute of Standards and Technology (USA) and results were submitted from thirteen National Metrology Institutes and Designated Institutes. The majority of laboratories performed RNA measurements using RT-qPCR, with datasets also being submitted by two laboratories based on reverse transcription digital polymerase chain reaction and one laboratory using a next-generation sequencing method. In RT-qPCR analysis, the RNA copy number ratios between the two samples were quantified using either a standard curve or a relative quantification approach. In general, good agreement was observed between the reported results of ERCC RNA copy number ratio measurements. Measurements of the RNA copy number ratios for endogenous genes between the two samples were also consistent between the majority of laboratories. Some differences in the reported values and confidence intervals ('measurement uncertainties') were noted which may be attributable to choice of measurement method or quantification approach. This highlights the need for standardised practices for the calculation of fold change ratios and uncertainties in the

  13. Differential gene expression in liver and small intestine from lactating rats compared to age-matched virgin controls detects increased mRNA of cholesterol biosynthetic genes

    PubMed Central

    2011-01-01

    Background Lactation increases energy demands four- to five-fold, leading to a two- to three-fold increase in food consumption, requiring a proportional adjustment in the ability of the lactating dam to absorb nutrients and to synthesize critical biomolecules, such as cholesterol, to meet the dietary needs of both the offspring and the dam. The size and hydrophobicity of the bile acid pool increases during lactation, implying an increased absorption and disposition of lipids, sterols, nutrients, and xenobiotics. In order to investigate changes at the transcriptomics level, we utilized an exon array and calculated expression levels to investigate changes in gene expression in the liver, duodenum, jejunum, and ileum of lactating dams when compared against age-matched virgin controls. Results A two-way mixed models ANOVA was applied to detect differentially expressed genes. Significance calls were defined as a p < 0.05 for the overall physiologic state effect (lactation vs. control), and a within tissue pairwise comparison of p < 0.01. The proportion of false positives, an estimate of the ratio of false positives in the list of differentially expressed genes, was calculated for each tissue. The number of differentially expressed genes was 420 in the liver, 337 in the duodenum, 402 in the jejunum, and 523 in the ileum. The list of differentially expressed genes was in turn analyzed by Ingenuity Pathways Analysis (IPA) to detect biological pathways that were overrepresented. In all tissues, sterol regulatory element binding protein (Srebp)-regulated genes involved in cholesterol synthesis showed increased mRNA expression, with the fewest changes detected in the jejunum. We detected increased Scap mRNA in the liver only, suggesting an explanation for the difference in response to lactation between the liver and small intestine. Expression of Cyp7a1, which catalyzes the rate limiting step in the bile acid biosynthetic pathway, was also significantly increased in liver. In

  14. Structure and expression of the guinea pig preproenkephalin gene: site-specific cleavage in the 3' untranslated region yields truncated mRNA transcripts in specific brain regions.

    PubMed Central

    LaForge, K S; Unterwald, E M; Kreek, M J

    1995-01-01

    We isolated the guinea pig preproenkephalin gene from a genomic library by hybridization to a rat cDNA probe. The entire nucleotide sequence of the gene was determined. Genomic Southern blot hybridization demonstrated that the gene exists in a single copy within the genome. On the basis of RNase protection transcript mapping and homology comparisons with known preproenkephalin sequences from other species and assuming a poly(A) tail length of 100 residues, we predicted an mRNA transcript of approximately 1,400 nucleotides encoded by three exons. Northern (RNA) blot analysis of total RNA from several brain regions showed high levels of preproenkephalin mRNA in the caudate putamen, nucleus accumbens, and hypothalamus, with detectable levels in the amygdala, ventral tegmental area, and central gray and also in the pituitary. Unexpectedly, in several brain regions, the mRNA appeared not only in the 1,400-nucleotide length but also in a shorter length of approximately 1,130 bases. Significant amounts of the shorter mRNA were found in the caudate putamen, nucleus accumbens, and amygdala. The longer, but not the shorter, transcripts from the caudate putamen were found to be polyadenylated, but the difference in size was not due solely to the presence of poly(A) tails. Northern gel analysis of total RNA from the caudate putamen with probes from each exon, together with RNase protection mapping of the 3' end of the mRNA demonstrated that the 1,400-base preproenkephalin mRNA transcripts are cleaved in a site-specific manner in some brain regions, yielding a 1,130-base transcript and a 165-base polyadenylated fragment derived from the terminal end of the 3' untranslated region of the mRNA. This cleavage may serve as a preliminary step in RNA degradation and provide a mechanism for control of preproenkephalin mRNA abundance through selective degradation. PMID:7891703

  15. Integrative genomics analysis of genes with biallelic loss and its relation to the expression of mRNA and micro-RNA in esophageal squamous cell carcinoma.

    PubMed

    Hu, Nan; Wang, Chaoyu; Clifford, Robert J; Yang, Howard H; Su, Hua; Wang, Lemin; Wang, Yuan; Xu, Yi; Tang, Ze-Zhong; Ding, Ti; Zhang, Tongwu; Goldstein, Alisa M; Giffen, Carol; Lee, Maxwell P; Taylor, Philip R

    2015-09-26

    Genomic instability plays an important role in human cancers. We previously characterized genomic instability in esophageal squamous cell carcinomas (ESCC) in terms of loss of heterozygosity (LOH) and copy number (CN) changes in tumors. In the current study we focus on biallelic loss and its relation to expression of mRNA and miRNA in ESCC using results from 500 K SNP, mRNA, and miRNA arrays in 30 cases from a high-risk region of China. (i) Biallelic loss was uncommon but when it occurred it exhibited a consistent pattern: only 77 genes (<0.5%) showed biallelic loss in at least 10% of ESCC samples, but nearly all of these genes were concentrated on just four chromosomal arms (i.e., 42 genes on 3p, 14 genes on 9p, 10 genes on 5q, and seven genes on 4p). (ii) Biallelic loss was associated with lower mRNA expression: 52 of the 77 genes also had RNA expression data, and 41 (79%) showed lower expression levels in cases with biallelic loss compared to those without. (iii) The relation of biallelic loss to miRNA expression was less clear but appeared to favor higher miRNA levels: of 60 miRNA-target gene pairs, 34 pairs (57%) had higher miRNA expression with biallelic loss than without, while 26 pairs (43%) had lower miRNA expression. (iv) Finally, the effect of biallelic loss on the relation between miRNA and mRNA expression was complex. Biallelic loss was most commonly associated with a pattern of elevated miRNA and reduced mRNA (43%), but a pattern of both reduced miRNA and mRNA was also common (35%). Our results indicate that biallelic loss in ESCC is uncommon, but when it occurs it is localized to a few specific chromosome regions and is associated with reduced mRNA expression of affected genes. The effect of biallelic loss on miRNA expression and on the relation between miRNA and mRNA expressions was complex.

  16. Associations between genetic variants in mRNA splicing-related genes and risk of lung cancer: a pathway-based analysis from published GWASs

    PubMed Central

    Pan, Yongchu; Liu, Hongliang; Wang, Yanru; Kang, Xiaozheng; Liu, Zhensheng; Owzar, Kouros; Han, Younghun; Su, Li; Wei, Yongyue; Hung, Rayjean J.; Brhane, Yonathan; McLaughlin, John; Brennan, Paul; Bickeböller, Heike; Rosenberger, Albert; Houlston, Richard S.; Caporaso, Neil; Teresa Landi, Maria; Heinrich, Joachim; Risch, Angela; Wu, Xifeng; Ye, Yuanqing; Christiani, David C.; Amos, Christopher I.; Wei, Qingyi

    2017-01-01

    mRNA splicing is an important mechanism to regulate mRNA expression. Abnormal regulation of this process may lead to lung cancer. Here, we investigated the associations of 11,966 single-nucleotide polymorphisms (SNPs) in 206 mRNA splicing-related genes with lung cancer risk by using the summary data from six published genome-wide association studies (GWASs) of Transdisciplinary Research in Cancer of the Lung (TRICL) (12,160 cases and 16,838 controls) and another two lung cancer GWASs of Harvard University (984 cases and 970 controls) and deCODE (1,319 cases and 26,380 controls). We found that a total of 12 significant SNPs with false discovery rate (FDR) ≤0.05 were mapped to one novel gene PRPF6 and two previously reported genes (DHX16 and LSM2) that were also confirmed in this study. The six novel SNPs in PRPF6 were in high linkage disequilibrium and associated with PRPF6 mRNA expression in lymphoblastoid cells from 373 Europeans in the 1000 Genomes Project. Taken together, our studies shed new light on the role of mRNA splicing genes in the development of lung cancer. PMID:28304396

  17. The chicken ubiquitin gene contains a heat shock promoter and expresses an unstable mRNA in heat-shocked cells.

    PubMed Central

    Bond, U; Schlesinger, M J

    1986-01-01

    A chicken genomic library was screened to obtain genomic clones for ubiquitin genes. Two genes that differ in their genomic location and organization were identified. One gene, designated Ub I, contains four copies of the protein-coding sequence arranged in tandem, while the second gene, Ub II, contains three. The origin of the two major mRNAs that are induced after heat shock in chicken embryo fibroblasts was determined by generating DNA probes from the 5'-and 3'-noncoding regions of the two genes. Both mRNAs are transcribed from Ub I, the larger being the unspliced precursor of the smaller. A 674-base-pair intron was located within the 5'-noncoding region of Ub I. The second gene, Ub II, does not appear to code for an RNA species in normal or heat-shocked chicken embryo fibroblasts. The expression of ubiquitin mRNA during heat shock and recovery was examined. Addition of actinomycin D before heat shock completely abolished the response of ubiquitin mRNA to the stress. Analysis of the stability of the mRNA during recovery revealed that the mRNA accumulated during the heat shock is rapidly degraded with a half-life of approximately 1.5 h, suggesting a specialized but transient role for ubiquitin during heat shock. Images PMID:3025663

  18. The use of R-looping for structural gene identification and mRNA purification.

    PubMed Central

    Woolford, J L; Rosbash, M

    1979-01-01

    A method is presented for the purification of mRNAs and the identification of structural gene sequences in recombinant DNA molecules. RNA is hybridized to double-stranded linear DNA such that R-loops are formed between most DNAs and their complementary RNA sequences. These R-loops are purified from unhybridized RNAs by gel filtration chromatography in the presence of a high concentration of salt. The complementary RNAs are released from the R-loops by heating, and are assayed by gel electrophoresis or cell free translation to determine their purity and to identify the proteins for which they code. We have demonstrated that recombinant DNAs containing sequences for abundant or moderately abundant mRNAs of Saccharomyces cerevisiae can be identified by this means. Images PMID:379820

  19. Comparative analyses of gene copy number and mRNA expression in GBM tumors and GBM xenografts

    SciTech Connect

    Hodgson, J. Graeme; Yeh, Ru-Fang; Ray, Amrita; Wang, Nicholas J.; Smirnov, Ivan; Yu, Mamie; Hariono, Sujatmi; Silber, Joachim; Feiler, Heidi S.; Gray, Joe W.; Spellman, Paul T.; Vandenberg, Scott R.; Berger, Mitchel S.; James, C. David

    2009-04-03

    Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors, genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment.

  20. High Throughput Quantitative PCR Using Low-input Samples for mRNA and MicroRNA Gene Expression Analyses

    PubMed Central

    Jang, Jinsung; Kolbert, Christopher; Jen, Jin; Simon, Vernadette

    2013-01-01

    Technical advancements in quantitative PCR (qPCR) instrumentation have made it possible to perform gene expression measurements using small sample input to support both basic and clinical research studies. As part of the strategic goals to assess new technologies and identify protocols that best fit the needs of the Mayo Clinic, we compared the Fluidigm BioMark system with standard Applied Biosystems (AB) instrumentation for mRNA and miRNA gene expression measurements. We also examined the performance of the BioMark system when using very low-input RNA. We evaluated a set of control samples using the same TaqMan assays with both systems. We observed that the BioMark-generated data routinely yields Ct values approximately 10 cycles lower than those obtained with AB instrumentation. The correlations between the two platforms were high (r = 0.96) for both mRNA and miRNA expression experiments. For miRNA expression, a similarly high correlation was observed between fresh frozen and formalin-fixed paraffin embedded (FFPE) samples. In an effort to accommodate our customer needs, we also evaluated the performance of the BioMark for evaluating gene expression in very low-input samples. Using six standard TaqMan control assays (having high, medium and low expression levels), we observed that high quality RNA samples as low as 10pg achieved linear amplification across four different pre-amplification cycles (10, 14, 18 and 22). At 10pg total RNA input, low-expression control assay IPO8 demonstrated a correlation of r = .999 among the four pre-amplification cycles. This linearity was also observed at higher RNA input levels, up to 10ng. The only control assay that did not perform in a linear fashion across all input amounts and all pre-amplification cycles was 18S ribosomal RNA. The highest correlation observed for 18S was r = 0.801, and this supports the vendor suggestion that 18S is not the best control assay option.

  1. mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5.

    PubMed Central

    Slusher, L B; Gillman, E C; Martin, N C; Hopper, A K

    1991-01-01

    MOD5, a nuclear gene of Saccharomyces cerevisiae, encodes two isozymic forms of a tRNA-modification enzyme. These enzymes modify both cytoplasmic and mitochondrial tRNAs. Two inframe ATGs of the MOD5 gene are used for initiation of translation, and the form of the protein translated from the first AUG is imported into mitochondria. Protein translated from the second AUG functions in the cytoplasm. Since all transcripts contain both of these translational start sites and two proteins are made, the question arises as to the factors that influence the translation start-site choice. Extending the 5' ends of the MOD5 mRNA to include leader sequences of the ADH1 (alcohol dehydrogenase defective) transcript produces significant changes in the choice of AUGs. This suggests that for wild-type MOD5 transcripts, the length or structure of the leader sequence plays a role in AUG choice. The nucleotides surrounding the first ATG of MOD5 also have an effect on translation initiation. Altering these nucleotides changes initiation choice and suggests that ribosomal bypass of a suboptimal AUG is another mechanism controlling the alternate use of two initiation codons. Our data support the model that at least one MOD5 transcript is able to produce two proteins with different N-terminal sequences. Images PMID:1946403

  2. Neuronal function of the mRNA decapping complex determines survival of Caenorhabditis elegans at high temperature through temporal regulation of heterochronic gene expression.

    PubMed

    Borbolis, Fivos; Flessa, Christina-Maria; Roumelioti, Fani; Diallinas, George; Stravopodis, Dimitrios J; Syntichaki, Popi

    2017-03-01

    In response to adverse environmental cues, Caenorhabditis elegans larvae can temporarily arrest development at the second moult and form dauers, a diapause stage that allows for long-term survival. This process is largely regulated by certain evolutionarily conserved signal transduction pathways, but it is also affected by miRNA-mediated post-transcriptional control of gene expression. The 5'-3' mRNA decay mechanism contributes to miRNA-mediated silencing of target mRNAs in many organisms but how it affects developmental decisions during normal or stress conditions is largely unknown. Here, we show that loss of the mRNA decapping complex activity acting in the 5'-3' mRNA decay pathway inhibits dauer formation at the stressful high temperature of 27.5°C, and instead promotes early developmental arrest. Our genetic data suggest that this arrest phenotype correlates with dysregulation of heterochronic gene expression and an aberrant stabilization of lin-14 mRNA at early larval stages. Restoration of neuronal dcap-1 activity was sufficient to rescue growth phenotypes of dcap-1 mutants at both high and normal temperatures, implying the involvement of common developmental timing mechanisms. Our work unveils the crucial role of 5'-3' mRNA degradation in proper regulation of heterochronic gene expression programmes, which proved to be essential for survival under stressful conditions. © 2017 The Authors.

  3. Neuronal function of the mRNA decapping complex determines survival of Caenorhabditis elegans at high temperature through temporal regulation of heterochronic gene expression

    PubMed Central

    Borbolis, Fivos; Flessa, Christina-Maria; Roumelioti, Fani; Diallinas, George; Stravopodis, Dimitrios J.

    2017-01-01

    In response to adverse environmental cues, Caenorhabditis elegans larvae can temporarily arrest development at the second moult and form dauers, a diapause stage that allows for long-term survival. This process is largely regulated by certain evolutionarily conserved signal transduction pathways, but it is also affected by miRNA-mediated post-transcriptional control of gene expression. The 5′–3′ mRNA decay mechanism contributes to miRNA-mediated silencing of target mRNAs in many organisms but how it affects developmental decisions during normal or stress conditions is largely unknown. Here, we show that loss of the mRNA decapping complex activity acting in the 5′–3′ mRNA decay pathway inhibits dauer formation at the stressful high temperature of 27.5°C, and instead promotes early developmental arrest. Our genetic data suggest that this arrest phenotype correlates with dysregulation of heterochronic gene expression and an aberrant stabilization of lin-14 mRNA at early larval stages. Restoration of neuronal dcap-1 activity was sufficient to rescue growth phenotypes of dcap-1 mutants at both high and normal temperatures, implying the involvement of common developmental timing mechanisms. Our work unveils the crucial role of 5′–3′ mRNA degradation in proper regulation of heterochronic gene expression programmes, which proved to be essential for survival under stressful conditions. PMID:28250105

  4. Differential expression of arc mRNA and other plasticity-related genes induced by nicotine in adolescent rat forebrain.

    PubMed

    Schochet, T L; Kelley, A E; Landry, C F

    2005-01-01

    Relatively little attention has been focused on mechanisms related to neural plasticity and drug abuse in adolescence, compared with abundant research using adult animal models. As smoking is typically initiated in adolescence, an important question to address is whether the adolescent brain responds differently to nicotine compared with the adult. To investigate this question, we examined the expression of a number of early response genes (arc, c-fos and NGFI-B) that have been implicated in synaptic plasticity and addiction, following acute nicotine in adolescent and adult rats. Baseline expression of arc and c-fos was higher in adolescent brains compared with adults. Following acute nicotine treatment (0.1, 0.4mg/kg), we found a marked induction of arc mRNA in the prefrontal cortex of nicotine-treated adolescents compared with a less pronounced increase of arc in the adult. c-fos and NGFI-B were also upregulated by nicotine, but not in an age-related manner. In contrast, nicotine induced less arc, c-fos, and NGFI-B expression in the somatosensory cortex of adolescents compared with adults. A fourth gene, quinoid dihydropteridine reductase was expressed at lower levels in white matter of the adolescent forebrain compared with the adult, but was not affected by nicotine. These results suggest that in adolescence, the activity of specific early response genes is higher in brain regions critical for emotional regulation and decision-making. Further, nicotine affects key plasticity molecules in these areas in a manner different from the adult. Thus, adolescence may represent a neurobiologically vulnerable period with regard to nicotine exposure.

  5. Altered mRNA Expression of Telomere-Associated Genes in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma

    PubMed Central

    Panero, Julieta; Arbelbide, Jorge; Fantl, Dorotea Beatriz; Rivello, Hernán García; Kohan, Dana; Slavutsky, Irma

    2010-01-01

    In this study, we explored changes in the expression of the telomere maintenance genes, TRF1, TRF2 and TANK1 in patients with monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM). Results were correlated with human telomerase reverse transcriptase (hTERT ) expression, telomere length (TL) and clinicopathological characteristics. Bone marrow (BM) samples from 132 patients, 64 with MGUS and 68 with MM, were studied. Real-time quantitative reverse transcription–polymerase chain reaction was used to quantify gene expression. TL was evaluated by terminal restriction fragment length analysis. MGUS patients showed increased TRF1 levels (P = 0.006) and lower expression of TRF2 (P = 0.005) and TANK1 (P = 0.003) compared with MM patients. For hTERT analysis, patients were divided into three groups by use of receiver operating characteristics: low (group I [GI]), intermediate (group II [GII]) and high (group III [GIII]) expression. We observed increasing expression of TRF2 and TANK1 from GI to GIII in MGUS and MM, with differences for both genes in MM (P < 0.01) and for TRF2 in MGUS (P < 0.01). GIII patients with the highest telomerase expression had the shortest TL. In both entities, a positive association between TRF2-TANK1, TRF2-hTERT and TANK1-hTERT (P ≤ 0.01) was observed. In MM, the percentage of BM infiltration and Ki-67 index were positively associated with TRF2, TANK1 and hTERT expression (P ≤ 0.03) and negatively with TL (P = 0.02), whereas lactate dehydrogenase was significantly correlated with TRF2 mRNA (P = 0.008). Our findings provide the first evidence of a modification in the expression of telomeric proteins in plasma cell disorders, and suggest that mechanisms other than telomerase activation are involved in TL maintenance in these pathologies. PMID:20644899

  6. In Situ, Real-Time Catabolic Gene Expression: Extraction and Characterization of Naphthalene Dioxygenase mRNA Transcripts from Groundwater

    PubMed Central

    Wilson, Mark S.; Bakermans, Corien; Madsen, Eugene L.

    1999-01-01

    We developed procedures for isolating and characterizing in situ-transcribed mRNA from groundwater microorganisms catabolizing naphthalene at a coal tar waste-contaminated site. Groundwater was pumped through 0.22-μm-pore-size filters, which were then frozen in dry ice-ethanol. RNA was extracted from the frozen filters by boiling sodium dodecyl sulfate lysis and acidic phenol-chloroform extraction. Transcript characterization was performed with a series of PCR primers designed to amplify nahAc homologs. Several primer pairs were found to amplify nahAc homologs representing the entire diversity of the naphthalene-degrading genes. The environmental RNA extract was reverse transcribed, and the resultant mixture of cDNAs was amplified by PCR. A digoxigenin-labeled probe mixture was produced by PCR amplification of groundwater cDNA. This probe mixture hybridized under stringent conditions with the corresponding PCR products from naphthalene-degrading bacteria carrying a variety of nahAc homologs, indicating that diverse dioxygenase transcripts had been retrieved from groundwater. Diluted and undiluted cDNA preparations were independently amplified, and 28 of the resulting PCR products were cloned and sequenced. Sequence comparisons revealed two major groups related to the dioxygenase genes ndoB and dntAc, previously cloned from Pseudomonas putida NCIB 9816-4 and Burkholderia sp. strain DNT, respectively. A distinctive subgroup of sequences was found only in experiments performed with the undiluted cDNA preparation. To our knowledge, these results are the first to directly document in situ transcription of genes encoding naphthalene catabolism at a contaminated site by indigenous microorganisms. The retrieved sequences represent greater diversity than has been detected at the study site by culture-based approaches. PMID:9872763

  7. Determination of the henipavirus phosphoprotein gene mRNA editing frequencies and detection of the C, V and W proteins of Nipah virus in virus-infected cells.

    PubMed

    Lo, Michael K; Harcourt, Brian H; Mungall, Bruce A; Tamin, Azaibi; Peeples, Mark E; Bellini, William J; Rota, Paul A

    2009-02-01

    The henipaviruses, Nipah virus (NiV) and Hendra virus (HeV), are highly pathogenic zoonotic paramyxoviruses. Like many other paramyxoviruses, henipaviruses employ a process of co-transcriptional mRNA editing during transcription of the phosphoprotein (P) gene to generate additional mRNAs encoding the V and W proteins. The C protein is translated from the P mRNA, but in an alternate reading frame. Sequence analysis of multiple, cloned mRNAs showed that the mRNA editing frequencies of the P genes of the henipaviruses are higher than those reported for other paramyxoviruses. Antisera to synthetic peptides from the P, V, W and C proteins of NiV were generated to study their expression in infected cells. All proteins were detected in both infected cells and purified virions. In infected cells, the W protein was detected in the nucleus while P, V and C were found in the cytoplasm.

  8. Expression of multiple Bacillus subtilis genes is controlled by decay of slrA mRNA from Rho-dependent 3′ ends

    PubMed Central

    Liu, Bo; Kearns, Daniel B.; Bechhofer, David H.

    2016-01-01

    Timely turnover of RNA is an important element in the control of bacterial gene expression, but relatively few specific targets of RNA turnover regulation are known. Deletion of the Bacillus subtilis pnpA gene, encoding the major 3′ exonuclease turnover enzyme, polynucleotide phosphorylase (PNPase), was shown previously to cause a motility defect correlated with a reduced level of the 32-gene fla/che flagellar biosynthesis operon transcript. fla/che operon transcript abundance has been shown to be inhibited by an excess of the small regulatory protein, SlrA, and here we find that slrA mRNA accumulated in the pnpA-deletion mutant. Mutation of slrA was epistatic to mutation of pnpA for the motility-related phenotype. Further, Rho-dependent termination was required for PNPase turnover of slrA mRNA. When the slrA gene was provided with a Rho-independent transcription terminator, gene regulation was no longer PNPase-dependent. Thus we show that the slrA transcript is a direct target of PNPase and that regulation of RNA turnover is a major determinant of motility gene expression. The interplay of specific transcription termination and mRNA decay mechanisms suggests selection for fine-tuning of gene expression. PMID:26857544

  9. Down-regulation of flavonoid 3'-hydroxylase gene expression by virus-induced gene silencing in soybean reveals the presence of a threshold mRNA level associated with pigmentation in pubescence.

    PubMed

    Nagamatsu, Atsushi; Masuta, Chikara; Matsuura, Hideyuki; Kitamura, Keisuke; Abe, Jun; Kanazawa, Akira

    2009-01-01

    Changes in flavonoid content are often manifested as altered pigmentation in plant tissues. Two loci have been identified as controlling pigmentation in soybean pubescence. Of these, the T locus appears to encode flavonoid 3'-hydroxylase (F3'H) protein: the T and t alleles are associated with tawny and gray colors, respectively, in pubescence. We previously down-regulated F3'H gene expression by virus-induced gene silencing (VIGS) in soybean. Despite this successful VIGS, the tawny pubescence pigmentation proved to be unchanged in greenhouse-grown plants. We hypothesized that the reduced mRNA level of the F3'H gene resulting from VIGS remained high enough to induce pigmentation. To verify this hypothesis, in the present study, we performed F3'H VIGS on plants grown under controlled conditions, in which the steady-state mRNA level of the F3'H gene was reduced to approximately 5% of that of greenhouse-grown plants. This VIGS treatment resulted in the loss of tawny pigmentation in pubescence, suggesting that the sf3'h1 gene is involved in the control of pigmentation in pubescence. We detected a marked decrease in target mRNA, an accumulation of short interfering RNAs (siRNAs), and a decrease in quercetin content relative to kaempferol in leaf tissues, indicating that sequence-specific mRNA degradation of the F3'H gene was induced. These results suggest that leaf tissues have a threshold mRNA level of the F3'H gene, which is associated with the occurrence of tawny pigmentation in pubescence. The estimated threshold mRNA level for pigmentation in pubescence was approximately 3% of the steady-state mRNA level of the F3'H gene in greenhouse-grown plants.

  10. The BAX gene as a candidate for negative autophagy-related genes regulator on mRNA levels in colorectal cancer.

    PubMed

    Gil, Justyna; Ramsey, David; Szmida, Elzbieta; Leszczynski, Przemyslaw; Pawlowski, Pawel; Bebenek, Marek; Sasiadek, Maria M

    2017-02-01

    Autophagy is a catabolic process, which is involved in the maintenance of intracellular homeostasis by degrading redundant molecules and organelles. Autophagy begins with the formation of a double-membrane phagophore, followed by its enclosure, thus leading to the appearance of an autophagosome which fuses with lysosome. This process is highly conserved, precisely orchestrated and regulated by autophagy-related genes. Recently, autophagy has been widely studied in different types of cancers, including colorectal cancer. As it has been revealed, autophagy plays two opposite roles in tumorigenesis, as a tumor suppressor and a tumor enhancer/activator, and therefore is called a double-edge sword. Recently, interaction between autophagy and apoptosis has been found. Therefore, we aimed to study the mRNA levels of genes engaged in autophagy and apoptosis in colorectal cancer tissues. Colorectal cancer and adjacent healthy tissues were obtained from 73 patients diagnosed with primary colorectal cancer. Real-time PCR analysis employing Universal Probe Library was used to assess the expression of the seven following selected genes: BECN1, UVRAG, ULK1, ATG13, Bif-1, BCL2 and BAX. For all but one of the tested genes, a decrease in expression was observed. An increase in expression was observed for BAX. BAX expression decreases consistently from early to more advanced stages. High expression of BAX was strongly associated with negative UVRAG expression. The high expression of the BAX gene seems to be a negative regulator of autophagy in colorectal cancer cells. The relative downregulation of autophagy-related genes was observed in colorectal cancer samples.

  11. β-Glucuronidase is a suitable internal control gene for mRNA quantitation in pathophysiological and non-pathological livers.

    PubMed

    Yamaguchi, Hiromi; Matsumoto, Sawako; Ishibashi, Mariko; Hasegawa, Kiyoshi; Sugitani, Masahiko; Takayama, Tadatoshi; Esumi, Mariko

    2013-10-01

    The level of expression of housekeeping genes is in general considered stable, and a representative gene such as glyceraldehyde-3-phosphate dehydrogenase is commonly used as an internal control for quantitating mRNA. However, expression of housekeeping genes is not always constant under pathological conditions. To determine which genes would be most suitable as internal controls for quantitative gene expression studies in human liver diseases, we quantified 12 representative housekeeping genes in 27 non-cancerous liver tissues (normal, chronic hepatitis C with and without liver cirrhosis). We identified β-glucuronidase as the most suitable gene for studies on liver by rigorous statistical analysis of inter- and intra-group comparisons. We conclude that it is important to determine the most appropriate control gene for the particular condition to be analyzed. © 2013 Elsevier Inc. All rights reserved.

  12. Regulation of FAT/CD36 mRNA gene expression by long chain fatty acids in the differentiated 3T3-L1 cells.

    PubMed

    Yang, Yingkui; Chen, Min; Loux, Tara J; Harmon, Carroll M

    2007-07-01

    Defects in fatty acid translocase (FAT/CD36) have been identified as a major factor in insulin resistance and defective fatty acid and glucose metabolism. Therefore, understanding of the regulation of FAT/CD36 expression and function is important for a potential therapeutic target for type II diabetes. We differentiated 3T3-L1 preadipocytes into matured adipocytes and examined the roles of insulin and long chain fatty acids on FAT/CD36 expression and function. Our results indicate that FAT/CD36 mRNA expression was not detected at preadipocyte but was significantly increased at matured adipocyte. In fully differentiated 3T3-L1 adipocytes, insulin significantly increased FAT/CD36 mRNA and protein expression in a dose dependent manner. The free fatty acid stearic acid reduced FAT/CD36 mRNA expression while the non-metabolizable free fatty acid alpha-bromopalmitate (2-BP) significantly increased FAT/CD36 mRNA and protein expression. Isoproterenol, in contrast, dose-dependently reduced FAT/CD36 mRNA expression and increased free fatty acid release. Mechanism analysis indicated that the effect of insulin and 2-BP on the FAT/CD36 mRNA gene expression may be mediated through activation of PPAR-gamma, suggesting that FAT/CD36 may have important implications in the pathophysiology of defective fatty acid metabolism.

  13. The effect of ionizing radiation on mRNA levels of the DNA damage response genes rad9, rad1 and hus1 in various mouse tissues.

    PubMed

    Zhang, Zhenya; Cai, Zeyuan; Li, Kaiming; Fang, Yu; An, Lili; Hu, Zhishang; Wang, Shihua; Hang, Haiying

    2015-01-01

    Rad9, Rad1 and Hus1 are essential genes conserved from yeast to humans. They form a heterotrimer complex (9-1-1 complex) that participates in the cell cycle checkpoint activation and DNA damage repair in eukaryotic cells. Rad9, Rad1 and Hus1 deficient cells are hypersensitive to ionizing radiation and mouse cells deleted for anyone of the three genes are highly sensitive to the killing by gamma rays. We propose that ionizing radiation-induced transcription of these genes is a mechanism by which cells respond to radiation-induced damage. In this study we used quantitative real-time RT-PCR(qPCR) to analyze the mRNA levels of Rad9, Rad1 and Hus1 in various tissues isolated from mice that were either mock irradiated or exposed to 10 Gy gamma radiation. Our results indicated that the mRNA levels of Rad9, Rad1 and Hus1 genes were very different among these tissues, and we found high natural levels of mRNA in the spleen, lung, ovary and testis of mice before exposure to radiation. The mRNA levels of the three genes were well correlated across these tissues, being high, medium or low in each of the tissues simultaneously. The mRNA levels of the three genes were analyzed at 2, 6, 12, 24 and 48 h after irradiation. In most tissues Rad9 was strongly induced at 2 and 12 h time points and Hus1 was strongly induced at 2, 12 and 48 h time points, but Rad1 was minimally induced in most of the tissues with the exception of slightly higher levels in the heart and lung tissues at the 48 h time point. These results suggest that the regulation mechanisms for the mRNA levels of the three genes in response to ionizing radiation are complex and not well orchestrated. We also detected the induction of Rad9 and Hus1 proteins in the heart and liver of the animals after irradiation, and found that Rad9 protein levels were highly induced in both the heart and liver, while the Hus1 protein levels were significantly induced only in the liver, suggesting that Rad9 and Hus1 protein levels are not

  14. In vitro gene expression and mRNA translocation from transformed walnut (Juglans regia) rootstocks expressing DsRED fluorescent protein to wild-type scions.

    PubMed

    Liu, Xiaochen; Walawage, Sriema L; Leslie, Charles A; Dandekar, Abhaya M; Tricoli, David M; Hu, Hengkang; Huang, Youjun; Zhang, Jiaqi; Xv, Chuanmei; Huang, Jianqin; Zhang, Qixiang

    2017-06-01

    An in vitro grafting method was developed for examining gene translocation from rootstock to scion in walnut. Results showed the DsRED gene itself was not translocated but expressed mRNA was. Grafting is widely used in plants, especially in fruit and nut crops. Selected rootstocks can control scion growth and physiological traits, including shortening of the juvenile phase and controlling tree size. Rootstocks also can provide improved soil adaptation and pathogen resistance. Development of genetically modified (GM) fruit crops has progressed recently, but commercial cultivation is still limited due to the time required for evaluation and issues with deregulation. In this study, we evaluated the stability of DsRED marker gene expression in in vitro walnut shoots and examined translocation of the gene and its mRNA from transformed rootstock to wild-type scion. Results show that DsRED was expressed uniformly in transformed tissue-cultured shoots. When used as in vitro rootstocks, these had good graft affinity with wild-type control scion. PCR and qRT-PCR analysis showed that the DsRED gene was not transported from rootstock to scion, but the transcribed mRNA was translocated. This result provides further evidence of gene signal transport from rootstock to scion in fruit and nut crops.

  15. FGFR1 mRNA and protein expression, not gene copy number, predict FGFR TKI sensitivity across all lung cancer histologies.

    PubMed

    Wynes, Murry W; Hinz, Trista K; Gao, Dexiang; Martini, Michael; Marek, Lindsay A; Ware, Kathryn E; Edwards, Michael G; Böhm, Diana; Perner, Sven; Helfrich, Barbara A; Dziadziuszko, Rafal; Jassem, Jacek; Wojtylak, Szymon; Sejda, Aleksandra; Gozgit, Joseph M; Bunn, Paul A; Camidge, D Ross; Tan, Aik-Choon; Hirsch, Fred R; Heasley, Lynn E

    2014-06-15

    FGFR1 gene copy number (GCN) is being evaluated as a biomarker for FGFR tyrosine kinase inhibitor (TKI) response in squamous cell lung cancers (SCC). The exclusive use of FGFR1 GCN for predicting FGFR TKI sensitivity assumes increased GCN is the only mechanism for biologically relevant increases in FGFR1 signaling. Herein, we tested whether FGFR1 mRNA and protein expression may serve as better biomarkers of FGFR TKI sensitivity in lung cancer. Histologically diverse lung cancer cell lines were submitted to assays for ponatinib sensitivity, a potent FGFR TKI. A tissue microarray composed of resected lung tumors was submitted to FGFR1 GCN, and mRNA analyses and the results were validated with The Cancer Genome Atlas (TCGA) lung cancer data. Among 58 cell lines, 14 exhibited ponatinib sensitivity (IC50 values ≤ 50 nmol/L) that correlated with FGFR1 mRNA and protein expression, but not with FGFR1 GCN or histology. Moreover, ponatinib sensitivity associated with mRNA expression of the ligands, FGF2 and FGF9. In resected tumors, 22% of adenocarcinomas and 28% of SCCs expressed high FGFR1 mRNA. Importantly, only 46% of SCCs with increased FGFR1 GCN expressed high mRNA. Lung cancer TCGA data validated these findings and unveiled overlap of FGFR1 mRNA positivity with KRAS and PIK3CA mutations. FGFR1 dependency is frequent across various lung cancer histologies, and FGFR1 mRNA may serve as a better biomarker of FGFR TKI response in lung cancer than FGFR1 GCN. The study provides important and timely insight into clinical testing of FGFR TKIs in lung cancer and other solid tumor types. ©2014 American Association for Cancer Research.

  16. Leading the way: finding genes for neurologic disease in dogs using genome-wide mRNA sequencing.

    PubMed

    Ostrander, Elaine A; Beale, Holly C

    2012-07-10

    Because of dogs' unique population structure, human-like disease biology, and advantageous genomic features, the canine system has risen dramatically in popularity as a tool for discovering disease alleles that have been difficult to find by studying human families or populations. To date, disease studies in dogs have primarily employed either linkage analysis, leveraging the typically large family size, or genome-wide association, which requires only modest-sized case and control groups in dogs. Both have been successful but, like most techniques, each requires a specific combination of time and money, and there are inherent problems associated with each. Here we review the first report of mRNA-Seq in the dog, a study that provides insights into the potential value of applying high-throughput sequencing to the study of genetic diseases in dogs. Forman and colleagues apply high-throughput sequencing to a single case of canine neonatal cerebellar cortical degeneration. This implementation of whole genome mRNA sequencing, the first reported in dog, is additionally unusual due to the analysis: the data was used not to examine transcript levels or annotate genes, but as a form of target capture that revealed the sequence of transcripts of genes associated with ataxia in humans. This approach entails risks. It would fail if, for example, the relevant transcripts were not sufficiently expressed for genotyping or were not associated with ataxia in humans. But here it pays off handsomely, identifying a single frameshift mutation that segregates with the disease. This work sets the stage for similar studies that take advantage of recent advances in genomics while exploiting the historical background of dog breeds to identify disease-causing mutations.

  17. Cholesterol Side-Chain Cleavage Gene Expression in Theca Cells: Augmented Transcriptional Regulation and mRNA Stability in Polycystic Ovary Syndrome

    PubMed Central

    Nelson-DeGrave, Velen L.; Legro, Richard S.; Strauss, Jerome F.; McAllister, Jan M.

    2012-01-01

    Hyperandrogenism is characteristic of women with polycystic ovary syndrome (PCOS). Ovarian theca cells isolated from PCOS follicles and maintained in long-term culture produce elevated levels of progestins and androgens compared to normal theca cells. Augmented steroid production in PCOS theca cells is associated with changes in the expression of genes for several steroidogenic enzymes, including CYP11A1, which encodes cytochrome P450 cholesterol side-chain cleavage. Here, we further examined CYP11A1 gene expression, at both the transcriptional and post-transcriptional level in normal and PCOS theca cells propagated in long-term culture utilizing quantitative RT-PCR, functional promoter analyses, and mRNA degradation studies. The minimal element(s) that conferred increased basal and cAMP-dependent CYP11A1 promoter function were determined. CYP11A1 mRNA half-life in normal and PCOS theca cells was compared. Results of these cumulative studies showed that basal and forskolin stimulated steady state CYP11A1 mRNA abundance and CYP11A1 promoter activity were increased in PCOS theca cells. Deletion analysis of the CYP11A1 promoter demonstrated that augmented promoter function in PCOS theca cells results from increased basal regulation conferred by a minimal sequence between −160 and −90 bp of the transcriptional start site. The transcription factor, nuclear factor 1C2, was observed to regulate basal activity of this minimal CYP11A1 element. Examination of mRNA stability in normal and PCOS theca cells demonstrated that CYP11A1 mRNA half-life increased >2-fold, from approximately 9.22+/−1.62 h in normal cells, to 22.38+/−0.92 h in PCOS cells. Forskolin treatment did not prolong CYP11A1 mRNA stability in either normal or PCOS theca cells. The 5′-UTR of CYP11A1 mRNA confers increased basal mRNA stability in PCOS cells. In conclusion, these studies show that elevated steady state CYP11A1 mRNA abundance in PCOS cells results from increased transactivation of the CYP

  18. Activation of gene expression by herpes simplex virus type 1 ICP0 occurs at the level of mRNA synthesis.

    PubMed Central

    Jordan, R; Schaffer, P A

    1997-01-01

    ICP0 is a nuclear phosphoprotein involved in the activation of herpes simplex virus type 1 (HSV-1) gene expression during lytic infection and reactivation from viral latency. Although available evidence suggests that ICP0 acts at the level of transcription, definitive studies specifically addressing this issue have not been reported. In the present study we measured the ability of ICP0 to activate gene expression (i) from promoters representing the major kinetic classes of viral genes in transient expression assays and (ii) from the same promoters during viral infection at multiplicities of infection ranging from 0.1 to 5.0 PFU/cell. The levels of synthesis and steady-state accumulation of mRNA, mRNA stability, and levels of protein synthesis were compared in cells transfected with a reporter plasmid in the presence and absence of ICP0 and in cells infected with wild-type HSV-1 or an ICP0 null mutant, n212. In transient expression assays and during viral infection at all multiplicities tested, the levels of steady-state mRNA and protein were significantly lower in the absence of ICP0, indicating that ICP0 activates gene expression at the level of mRNA accumulation. In transient expression assays and during infection at low multiplicities (< 1 PFU/cell) in the presence or absence of ICP0, marked increases in the levels of viral mRNAs accompanied by proportional increases in the levels of protein synthesis were observed with increasing multiplicity. At a high multiplicity (5 PFU/cell) in the presence or absence of ICP0, mRNA levels did not increase as a function of multiplicity and changes in the levels of protein were no longer related to changes in the levels of mRNA. Collectively, these tests indicate that transcription of viral genes is rate limiting at low multiplicities and that translation is rate limiting at high multiplicities, independent of ICP0. Consistent with the lower levels of mRNA detected in the absence of ICP0, the rates of transcription initiation

  19. Expression of Caspase-1 Gene Transcript Variant mRNA in Peripheral Blood Mononuclear Cells of Patients with Primary Gout in Different TCM Syndromes

    PubMed Central

    Dang, Wan-Tai; Xu, Dan; Xie, Wen-Guang; Zhou, Jing-Guo

    2015-01-01

    A large number of studies have shown that cysteinyl aspartate specific protease-1 (CASP1) played an important role in the inflammatory response of primary gout, but the decreased expression of different CASP1 transcript variant could inhibit the activation of IL-1β. Our study mainly analyzed the expression level and function of CASP1 gene transcript variant mRNA in peripheral blood mononuclear cells of patients with gout in different TCM syndromes. The expression of CASP1 gene transcript variant and IL-1β mRNA in PBMCs were detected in patients with PG [acute phase (AP: 44 cases); nonacute phase (NAP: 52 cases)] and healthy controls (HC: 30 cases) by reverse transcription-polymerase chain reaction and/or real-time quantitative polymerase chain reaction. The expressions of plasma IL-1β in patients with PG and HC were detected by enzyme-linked immunosorbent assay. Dysregulated expression of the CASP1 gene and its transcript variant, plasma proinflammatory cytokines in all patients with primary gout in different TCM syndromes, correlation analysis showed that there was negative correlation between the expression of CASP1-gamma gene transcript variant mRNA and IL-1β protein in APPG group. The study suggested that CASP1 gene and its transcript variant may play a critical role in the inflammatory response of patients with PG in different phases and TCM syndromes. PMID:26557856

  20. Expression of Caspase-1 Gene Transcript Variant mRNA in Peripheral Blood Mononuclear Cells of Patients with Primary Gout in Different TCM Syndromes.

    PubMed

    Dang, Wan-Tai; Xu, Dan; Xie, Wen-Guang; Zhou, Jing-Guo

    2015-01-01

    A large number of studies have shown that cysteinyl aspartate specific protease-1 (CASP1) played an important role in the inflammatory response of primary gout, but the decreased expression of different CASP1 transcript variant could inhibit the activation of IL-1β. Our study mainly analyzed the expression level and function of CASP1 gene transcript variant mRNA in peripheral blood mononuclear cells of patients with gout in different TCM syndromes. The expression of CASP1 gene transcript variant and IL-1β mRNA in PBMCs were detected in patients with PG [acute phase (AP: 44 cases); nonacute phase (NAP: 52 cases)] and healthy controls (HC: 30 cases) by reverse transcription-polymerase chain reaction and/or real-time quantitative polymerase chain reaction. The expressions of plasma IL-1β in patients with PG and HC were detected by enzyme-linked immunosorbent assay. Dysregulated expression of the CASP1 gene and its transcript variant, plasma proinflammatory cytokines in all patients with primary gout in different TCM syndromes, correlation analysis showed that there was negative correlation between the expression of CASP1-gamma gene transcript variant mRNA and IL-1β protein in APPG group. The study suggested that CASP1 gene and its transcript variant may play a critical role in the inflammatory response of patients with PG in different phases and TCM syndromes.

  1. Correlated Levels of mRNA and Soma Size in Single Identified Neurons: Evidence for Compartment-specific Regulation of Gene Expression

    PubMed Central

    Ransdell, Joseph L.; Faust, Tyler B.; Schulz, David J.

    2010-01-01

    In addition to the overall complexity of transcriptional regulation, cells also must take into account the subcellular distribution of these gene products. This is particularly challenging for morphologically complex cells such as neurons. Yet the interaction between cellular morphology and gene expression is poorly understood. Here we provide some of the first evidence for a relationship between neuronal compartment size and maintenance of mRNA levels in neurons. We find that single-cell transcript levels of 18S rRNA, GAPDH, and EF1-alpha, all gene products with primary functions in the cell soma, are strongly correlated to soma size in multiple distinct neuronal types. Levels of mRNA for the K+ channel shal, which is localized exclusively to the soma, are negatively correlated with soma size, suggesting that gene expression does not simply track positively with compartment size. Conversely, levels of beta-actin and beta-tubulin mRNA, which are major cytoskeletal proteins of neuronal processes, do not correlate with soma size, but are strongly correlated with one another. Additionally, actin/tubulin expression levels correlate with voltage-gated ion channels that are uniquely localized to axons. These results suggest that steady-state transcript levels are differentially regulated based on the subcellular compartment within which a given gene product primarily acts. PMID:21119779

  2. Effects of malachite green on the mRNA expression of detoxification-related genes in Nile tilapia (Oreochromis niloticus) and other major Chinese freshwater fishes.

    PubMed

    Li, Guangyu; Shen, Dan; Liang, Xu-Fang; He, Yan; He, Shan

    2013-03-01

    The use of malachite green (MG) in fish farming is prohibited in China due to its potentially toxicological and carcinogenic nature, but it is still illegally used in some places. The aim of this study was to investigate the time and concentration-dependent responses of xenobiotic metabolizing and detoxification-related genes in diverse fishes exposed to MG both in vivo and in vitro. Experimental fish were administered to two exposure groups of malachite green (MG) (0.10 and 0.50 mg L⁻¹) for 8 h. The hepatocytes isolated from Nile tilapia were incubated with MG (0.5, 1.0, and 2.0 mg L⁻¹) for 8 and 24 h, respectively. In vivo, exposure to 0.10 and 0.50 mg L⁻¹ MG for 8 h caused significant changes of the detoxification-related genes on the mRNA expression levels. Low-concentration (0.10 mg L⁻¹) level of MG induced significant increase on the mRNA expression level of GSTR gene in Nile tilapia and other fishes. The mRNA expression of grass carp UCP2 was significantly induced when exposed to 0.5 mg L⁻¹ MG. However, the mRNA expression levels of GSTA, CYP1A, and GPX were inhibited significantly by 0.5 mg L⁻¹ MG in Nile tilapia, grass carp, and Taiwan snakehead. In vitro, the significant increase of mRNA expression of these genes was detected after exposure to 0.5 mg L⁻¹ MG (UCP2), and 1.0 mg L⁻¹ MG (CYP1A1, GSTA, GSTR, and UCP2). The induction of hepatic CYP1A1, GSTA, GSTR, and UCP2 in response to MG suggested a potential role of fish CYP1A1, GSTA, GSTR, and UCP2 in MG metabolism.

  3. Effects of decabromodiphenyl ether (BDE-209) on mRNA transcription of thyroid hormone pathway and spermatogenesis associated genes in Chinese rare minnow (Gobiocypris rarus).

    PubMed

    Li, Wei; Zhu, Lifei; Zha, Jinmiao; Wang, Zijian

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants, which are ubiquitous environmental contaminant found in both abiotic and biotic environmental samples. Deca-BDE (BDE-209) is the principal component, which is currently used worldwide. In this study, the effect of BDE-209 on the mRNA levels of thyroid hormone (TH) related genes and spermatogenesis associated genes were determined from larvae and adult rare minnow (Gobiocypris rarus) exposed to concentrations 0.01, 0.1, 1, and 10 μg/L for 21 days. The results showed that the type II deiodinase (dio2) and sodium iodide symporter (nis) mRNA levels were significantly up-regulated in the larvae at 10 μg/L treatment. In adult, histopathological observations showed that liver of female fish were degenerated at 10 μg/L treatment, and inhibition of spermatogenesis were observed in testis of male fish. In addition, the thyroid hormone receptor α (trα), dio2, and nis mRNA levels in the liver of male and female fish were significantly up-regulated, whereas dio2 and nis mRNA levels were significantly down-regulated in the brain. These results indicate that exposure to BDE-209 could result in tissue-specific alternations of TH-related genes expression in adults. Moreover, the mRNA levels of the testis-specific apoptosis genes, the spermatogenesis-associated 4 (spata4) and spermatogenesis-associated 17 (spata17), were down-regulated at 10 μg/L treatment in testis of male fish. Our results suggest that BDE-209 may pose threat to normal thyroid and reproductive function in fish.

  4. Evaluation of three reference genes of Escherichia coli for mRNA expression level normalization in view of salt and organic acid stress exposure in food.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-06-01

    Escherichia coli can adapt to various stress conditions encountered in food through induction of stress response genes encoding proteins that counteract the respective stresses. To understand the impact and the induction of these genes under food-associated stresses, changes in the levels of their mRNA expression in response to such stresses can be analysed. Relative quantification of mRNA levels by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) requires normalization to reference genes with stable expression under the experimental conditions being investigated. We examined the validity of three housekeeping genes (cysG, hcaT and rssA) among E. coli strains exposed to salt and organic acid stress. The rssA gene was shown to be the most stably expressed gene under such stress adaptation experimental models. The cysG gene was the least stable, whereas the hcaT gene showed similar interstrain variability as rssA but lower expression stability in the different stress adaptation models. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Glucocorticoid receptor 1B and 1C mRNA transcript alterations in schizophrenia and bipolar disorder, and their possible regulation by GR gene variants.

    PubMed

    Sinclair, Duncan; Fullerton, Janice M; Webster, Maree J; Shannon Weickert, Cynthia

    2012-01-01

    Abnormal patterns of HPA axis activation, under basal conditions and in response to stress, are found in individuals with schizophrenia and bipolar disorder. Altered glucocorticoid receptor (GR) mRNA and protein expression in the dorsolateral prefrontal cortex (DLPFC) in psychiatric illness have also been reported, but the cause of these abnormalities is not known. We quantified expression of GR mRNA transcript variants which employ different 5' promoters, in 35 schizophrenia cases, 31 bipolar disorder cases and 34 controls. We also explored whether sequence variation within the NR3C1 (GR) gene is related to GR mRNA variant expression. Total GR mRNA was decreased in the DLPFC in schizophrenia cases relative to controls (15.1%, p<0.0005) and also relative to bipolar disorder cases (8.9%, p<0.05). GR-1B mRNA was decreased in schizophrenia cases relative to controls (20.2%, p<0.05), while GR-1C mRNA was decreased in both schizophrenia and bipolar disorder cases relative to controls (16.1% and 17.2% respectively, both p<0.005). A dose-dependent effect of rs10052957 genotype on GR-1B mRNA expression was observed, where CC homozygotes displayed 18.4% lower expression than TC heterozygotes (p<0.05), and 31.8% lower expression than TT homozygotes (p<0.005). Similarly, a relationship between rs6190 (R23K) genotype and GR-1C expression was seen, with 24.8% lower expression in GG homozygotes than GA heterozygotes (p<0.01). We also observed an effect of rs41423247 (Bcl1) SNP on expression of 67 kDa GRα isoform, the most abundant GRα isoform in the DLPFC. These findings suggest possible roles for the GR-1B and GR-1C promoter regions in mediating GR gene expression changes in psychotic illness, and highlight the potential importance of sequence variation within the NR3C1 gene in modulating GR mRNA expression in the DLPFC.

  6. Intrahepatic mRNA Expression of FAS, FASL, and FOXP3 Genes Is Associated with the Pathophysiology of Chronic HCV Infection

    PubMed Central

    Amoras, Ednelza da Silva Graça; Gomes, Samara Tatielle Monteiro; Freitas, Felipe Bonfim; Santana, Bárbara Brasil; Ishak, Geraldo; Ferreira de Araújo, Marialva Tereza; Demachki, Sâmia; Conde, Simone Regina Souza da Silva; Ishak, Marluísa de Oliveira Guimarães; Ishak, Ricardo; Vallinoto, Antonio Carlos Rosário

    2016-01-01

    This study aimed to evaluate the relative mRNA expression of Fas receptor (FAS), Fas ligand (FASL), and forkhead box protein 3 (FOXP3) in liver biopsy specimens obtained from patients with viral and non-viral chronic hepatitis and correlate their expression with the fibrosis stage. A total of 51 liver biopsy specimens obtained from HBV (n = 6), HCV (n = 28), and non-viral hepatic disease (NVHD) (n = 9) patients and from individuals with normal liver histology (n = 8) (control—CT) were analyzed. Quantifications of the target genes were assessed using qPCR, and liver biopsies according to the METAVIR classification. The mRNA expression levels of FAS and FASL were lower in the CT group compared to the groups of patients. The increase in the mRNA expression of FAS and FASL was correlated with higher levels of inflammation and disease progression, followed by a decline in tissues with cirrhosis, and it was also associated with increased levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Higher mRNA expression of FOXP3 was observed in the HCV and NVHD groups, with the peak observed among patients with cirrhosis. The increased FOXP3 mRNA expression was positively correlated with increased FAS and FASL mRNA expression and the AST and ALT levels in all patients. Conclusions: These results suggest that regardless of the cause, the course of chronic liver disease may be modulated by the analyzed genes and correlated with an increase in regulatory T cells during the liver damage followed by hepatocyte destruction by Fas/FasL system and subsequent non specific lymphocytic infiltrate accumulation. PMID:27243827

  7. Gene expression analysis of Arc mRNA as a neuronal cell activity marker in the hippocampus and amygdala in two-way active avoidance test in rats.

    PubMed

    Yasuno, Kyohei; Takahashi, Erika; Igarashi, Isao; Iguchi, Takuma; Tsuchiya, Yoshimi; Kai, Kiyonori; Mori, Kazuhiko

    2017-09-27

    Immediate early genes are widely used as neuronal cell activity markers in neuroscience. The present study investigated the relationship between their expression and abnormality in context fear conditioning. The learning test (two-way active avoidance test) was conducted in male rats administered with nonselective muscarinic antagonist scopolamine or selective dopamine D1-like receptor antagonist SCH 23390 at a dose level of 2.0 or 0.1mg/kg, respectively, for 4days. Expression levels of Arc and Fos mRNA in the hippocampus and amygdala were also evaluated on the second day of dosing by fluorescent in situ hybridization (FISH) and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Scopolamine had no effect on avoidance rate, but decreased freezing in the two-way active avoidance test. SCH 23390 decreased avoidance rate and increased freezing. In FISH and RT-qPCR assays, scopolamine decreased Arc mRNA in the hippocampus and amygdala, whereas SCH 23390 increased Arc mRNA in the hippocampus. By contrast, scopolamine and SCH 23390 did not change Fos mRNA expression compared to Arc mRNA expression. The results of the learning test indicated that scopolamine or SCH 23390 respectively inhibited fear or context conditioning in rats. Furthermore, alteration of the expression of Arc mRNA but not of Fos mRNA in the hippocampus and amygdala of the brain was suggested to be a sensitive neuronal cell activity marker to detect behavioral abnormality in the two-way active avoidance test. Copyright © 2017. Published by Elsevier Inc.

  8. Associations of ACE Gene Insertion/Deletion Polymorphism, ACE Activity, and ACE mRNA Expression with Hypertension in a Chinese Population

    PubMed Central

    He, Qingfang; Fan, Chunhong; Yu, Min; Wallar, Gina; Zhang, Zuo-Feng; Wang, Lixin; Zhang, Xinwei; Hu, Ruying

    2013-01-01

    Background The present study was designed to explore the association of angiotensin converting enzyme (ACE) gene insertion/deletion (I/D, rs4646994) polymorphism, plasma ACE activity, and circulating ACE mRNA expression with essential hypertension (EH) in a Chinese population. In addition, a new detection method for circulating ACE mRNA expression was explored. Methods The research was approved by the ethics committee of Zhejiang Provincial Center for Disease Prevention and Control. Written informed consent was obtained prior to the investigation. 221 hypertensives (cases) and 221 normotensives (controls) were interviewed, subjected to a physical examination, and provided blood for biochemical and genetic tests. The ACE mRNA expression was analyzed by real time fluorescent quantitative Reverse Transcription PCR (FQ-RT-PCR). We performed logistic regression to assess associations of ACE I/D genotypes, ACE activity, and ACE mRNA expression levels with hypertension. Results The results of the multivariate logistic regression analysis showed that the additive model (ID, DD versus II) of the ACE genotype revealed an association with hypertension with adjusted OR of 1.43(95% CI: 1.04-1.97), and ACE ID genotype with adjusted OR of 1.72(95% CI: 1.01-2.92), DD genotype with adjusted OR of 1.94(95% CI: 1.01-3.73), respectively. In addition, our data also indicate that plasma ACE activity (adjusted OR was 1.13(95% CI: 1.08-1.18)) was significantly related to hypertension. However, the plasma ACE mRNA expressions were not different between the cases and controls. Conclusion ACE I/D polymorphism and ACE activity revealed significant influence on hypertension, while circulating ACE mRNA expression was not important factors associated with hypertension in this Chinese population. The detection of circulating ACE mRNA expression by FQ-RT-PCR might be a useful method for early screening and monitoring of EH. PMID:24098401

  9. Sequences throughout the basic beta-1,3-glucanase mRNA coding region are targets for homology dependent post-transcriptional gene silencing.

    PubMed

    Jacobs; Sanders; Bots; Andriessen; Van Eldik GJ; Litière; Van Montagu M; Cornelissen

    1999-10-01

    In the transgenic tobacco line T17, plants homozygous for the gn1 transgene display developmentally regulated post-transcriptional silencing of basic beta-1,3-glucanase genes. Previously, it has been shown that silencing involves a markedly increased turnover of silencing-target glucanase mRNAs. Using a two-component viral reporter system facilitated a comparison, in a quantitat- ive manner, of the relative silencing efficiencies of various sequences derived from the gn1 transgene. The results show that target sites for the silencing mechanism are present throughout the coding region of the gn1 mRNA. Similar-sized coding region sequences along the entire gn1 mRNA display a similar susceptibility to the silencing mechanism. The susceptibility to silencing increases as the coding region elements increase in size. Relative to internal sequences, the 5' and 3' terminal regions of the gn1 mRNA are inefficient targets for the silencing machinery. Importantly, sequences of the gn1 transgene that are not part of the mature gn1 mRNA are not recognized by the silencing machinery when expressed in chimeric viral RNAs. These results show that the glucanase silencing mechanism in T17 plants is primarily directed against gn1 mRNA-internal sequences and that terminal sequences of the gn1 mRNA are relatively unaffected by the silencing mechanism.

  10. Molecular cloning of the SMAD4 gene and its mRNA expression analysis in ovarian follicles of the Yangzhou goose (Anser cygnoides).

    PubMed

    Huang, Z; Yuan, X; Wang, M; Wu, N; Song, Y; Chen, Y; Zhang, Y; Xu, Q; Chen, G; Zhao, W

    2016-08-01

    Mothers against decapentaplegic homolog 4 (SMAD4) is an important protein in animal reproduction. It plays pivotal roles in cellular pathways, including apoptosis. The expression profile of the SMAD4 gene in goose ovarian follicles has not been reported. In this study, the SMAD4 coding sequence was cloned from the Yangzhou goose. A phylogenetic analysis was performed and mRNA expression was examined in various tissues using quantitative real-time PCR. An alternative splice form of SMAD4, SMAD4-b having 1656 bp, was identified. SMAD4-a mRNA was widely expressed in various healthy tissues, whereas SMAD4-b was very weakly expressed. SMAD4 mRNA in the ovary and oviduct was significantly higher than that in the pituitary and hypothalamus. SMAD4 mRNA expression analysis in hierarchical follicles showed that the level of SMAD4 mRNA was higher in large white follicles and post-ovulatory follicles than in the other follicles. The results indicate that SMAD4 might be involved in the recruitment of hierarchical follicles.

  11. tRNA regulation of gene expression: Interactions of an mRNA 5′-UTR with a regulatory tRNA

    PubMed Central

    Nelson, Audrey R.; Henkin, Tina M.; Agris, Paul F.

    2006-01-01

    Many genes encoding aminoacyl-tRNA synthetases and other amino acid–related products in Gram-positive bacteria, including important pathogens, are regulated through interaction of unacylated tRNA with the 5′-untranslated region (5′-UTR) of the mRNA. Each gene regulated by this mechanism responds specifically to the cognate tRNA, and specificity is determined by pairing of the anticodon of the tRNA with a codon sequence in the “Specifier Loop” of the 5′-UTR. For the 5′-UTR to function in gene regulation, the mRNA folding interactions must be sufficiently stable to present the codon sequence for productive binding to the anticodon of the matching tRNA. A model bimolecular system was developed in which the interaction between two half molecules (“Common” and “Specifier”) would reconstitute the Specifier Loop region of the 5′-UTR of the Bacillus subtilis glyQS gene, encoding GlyRS mRNA. Gel mobility shift analysis and fluorescence spectroscopy yielded experimental K ds of 27.6 ± 1.0 μM and 10.5 ± 0.7 μM, respectively, for complex formation between Common and Specifier half molecules. The reconstituted 5′-UTR of the glyQS mRNA bound the anticodon stem and loop of tRNAGly (ASLGlyGCC) specifically and with a significant affinity (K d = 20.2 ± 1.4 μM). Thus, the bimolecular 5′-UTR and ASLGlyGCC models mimic the RNA–RNA interaction required for T box gene regulation in vivo. PMID:16741230

  12. In Vivo mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles

    PubMed Central

    Bielecki, Piotr; Muthukumarasamy, Uthayakumar; Eckweiler, Denitsa; Bielecka, Agata; Pohl, Sarah; Schanz, Ansgar; Niemeyer, Ute; Oumeraci, Tonio; von Neuhoff, Nils; Ghigo, Jean-Marc

    2014-01-01

    ABSTRACT mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. PMID:25096872

  13. Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio).

    PubMed

    Tian, Juan; He, Gen; Mai, Kangsen; Liu, Chengdong

    2015-06-01

    The goal of this study was to systematically evaluate the molecular activities of endocrine-, amino acid and peptide transporters-, and metabolic enzyme-related genes in 35-day-old mixed-sex zebrafish (Danio rerio) after feeding . Zebrafish with initial body weights ranging from 9 to 11 mg were fasted for 384 h in a controlled indoor environment. Fish were sampled at 0, 3, 6, 12, 24, 48, 96, 192, and 384 h after fed. Overall, the present study results show that the regulatory mechanism that insulin-like growth factor I negative feedback regulated growth hormone is conserved in zebrafish, as it is in mammals, but that regulation of growth hormone receptors is highly intricate. Leptin and cholecystokinin are time-dependent negative feedback signals, and neuropeptide Y may be an important positive neuropeptide for food intake in zebrafish. The amino acid/carnitine transporters B(0,+) (ATB(0,+)) and broad neutral (0) amino acid transporter 1(B(0)AT1) mRNA levels measured in our study suggest that protein may be utilized during 24-96 h of fasting in zebrafish. Glutamine synthetase mRNA levels were downregulated, and glutamate dehydrogenase, alanine aminotransferase, aspartate transaminase, and trypsin mRNA levels were upregulated after longtime fasting in this study. The mRNA expression levels of fatty acid synthetase decreased significantly (P < 0.05), whereas those of lipoprotein lipase rapidly increased after 96 h of fasting. Fasting activated the expression of glucose synthesis genes when fasting for short periods of time; when fasting is prolonged, the mRNA levels of glucose breakdown enzymes and pentose phosphate shunt genes decreased.

  14. Alternative splicing and developmental and hormonal regulation of porcine comparative gene identification-58 (CGI-58) mRNA.

    PubMed

    Li, X; Suh, Y; Kim, E; Moeller, S J; Lee, K

    2012-12-01

    The process of lipolysis is essential for regulating the catabolism of cellular fat stores. Therefore, knowledge of lipolysis contributes to improving porcine production, such as reducing back fat, enhancing lean meat, and controlling marbling. Comparative gene identification-58 (CGI-58) plays an important role in the multi-enzyme-mediated process of lipolysis. It was identified as the co-activator of adipose triglyceride lipase (ATGL), which performs the first step in breaking down triacylglycerol and generating diacylglycerol and NEFA. We cloned and sequenced the CGI-58 cDNA and deduced the AA sequences in 3 breeds of swine (Duroc, Berkshire, and Landrace). Homologies were found with the human, mouse, and chicken for the lipid droplet binding domain, the α/β hydrolase domain, and the lysophosphatidic acid acyltransferase (LPAAT) domain, which demonstrates conservation of CGI-58 across species. An alternatively spliced isoform with an exon 3 deletion was identified. Interestingly, this unique isoform contains the lipid droplet-binding domain but lacks the LPAAT domain due to an open reading frame (ORF) shift that creates a premature stop codon. Furthermore, porcine CGI-58 is expressed in multiple organs and tissues but is most predominant in adipose tissue. Porcine adipose and stromal-vascular (SV) cell fractionation reveals that CGI-58 and ATGL are highly expressed (P < 0.01) in mature adipocytes. The expressions of both CGI-58 and ATGL mRNA were found to increase (P < 0.05) at d 6 of SV cell culture, confirming their upregulation during adipogenesis and differentiation. Also, the results from in vitro cell culture showed that insulin decreased (P < 0.05) the expressions of both CGI-58 and ATGL in a dose-dependent manner. Overall, these results report the cDNA and AA sequences of porcine CGI-58 with identification of its unique alternatively spliced variant. The results of the study also reveal the developmental and hormonal regulation of porcine CGI-58 gene

  15. Effects of dietary selenium deficiency on mRNA levels of twenty-one selenoprotein genes in the liver of layer chicken.

    PubMed

    Liu, C P; Fu, J; Lin, S L; Wang, X S; Li, S

    2014-06-01

    Selenium (Se) is an essential trace element in many life forms due to its occurrence as selenocysteine (Sec) residue in selenoproteins. However, little is known about the expression pattern of selenoproteins in the liver of layer chicken. To investigate the effects of Se deficiency on the mRNA expressions of selenoproteins in the liver tissue of layer chickens, 1-day-old layer chickens were randomly allocated into two groups (n=120/group). The Se-deficient group (-Se) was fed a Se-deficient corn-soy basal diet; the Se-adequate group as control (+Se) was fed the same basal diet supplemented with Se at 0.15 mg/kg (sodium selenite). The liver tissue was collected and examined for mRNA levels of 21 selenoprotein genes at 15, 25, 35, 45, 55, and 65 days old. The data indicated that the mRNA expressions of Gpx1, Gpx2, Gpx3, Gpx4, Sepn1, Sepp1, Selo, Sepx1, Selu, Txnrd1, Txnrd2, Txnrd3, Dio1, Dio2, SPS2, Selm, SelPb, Sep15, and Sels were decreased (p<0.05), but not the levels of Dio3 and Seli (p>0.05). The results showed that the mRNA levels of 19 selenoprotein (except Seli and Dio3) genes in the layer chicken liver were regulated by diet Se level. The present study provided some compensated data about the roles of Se in the regulation of selenoproteins.

  16. HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 Is Required for Circadian Periodicity through the Promotion of Nucleo-Cytoplasmic mRNA Export in Arabidopsis[W][OPEN

    PubMed Central

    MacGregor, Dana R.; Gould, Peter; Foreman, Julia; Griffiths, Jayne; Bird, Susannah; Page, Rhiannon; Stewart, Kelly; Steel, Gavin; Young, Jack; Paszkiewicz, Konrad; Millar, Andrew J.; Halliday, Karen J.; Hall, Anthony J.; Penfield, Steven

    2013-01-01

    Cold acclimation has been shown to be attenuated by the degradation of the INDUCER OF CBF EXPRESSION1 protein by the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1). However, recent work has suggested that HOS1 may have a wider range of roles in plants than previously appreciated. Here, we show that hos1 mutants are affected in circadian clock function, exhibiting a long-period phenotype in a wide range of temperature and light environments. We demonstrate that hos1 mutants accumulate polyadenylated mRNA in the nucleus and that the circadian defect in hos1 is shared by multiple mutants with aberrant mRNA export, but not in a mutant attenuated in nucleo-cytoplasmic transport of microRNAs. As revealed by RNA sequencing, hos1 exhibits gross changes to the transcriptome with genes in multiple functional categories being affected. In addition, we show that hos1 and other previously described mutants with altered mRNA export affect cold signaling in a similar manner. Our data support a model in which altered mRNA export is important for the manifestation of hos1 circadian clock defects and suggest that HOS1 may indirectly affect cold signaling through disruption of the circadian clock. PMID:24254125

  17. HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 is required for circadian periodicity through the promotion of nucleo-cytoplasmic mRNA export in Arabidopsis.

    PubMed

    MacGregor, Dana R; Gould, Peter; Foreman, Julia; Griffiths, Jayne; Bird, Susannah; Page, Rhiannon; Stewart, Kelly; Steel, Gavin; Young, Jack; Paszkiewicz, Konrad; Millar, Andrew J; Halliday, Karen J; Hall, Anthony J; Penfield, Steven

    2013-11-01

    Cold acclimation has been shown to be attenuated by the degradation of the INDUCER OF CBF EXPRESSION1 protein by the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1). However, recent work has suggested that HOS1 may have a wider range of roles in plants than previously appreciated. Here, we show that hos1 mutants are affected in circadian clock function, exhibiting a long-period phenotype in a wide range of temperature and light environments. We demonstrate that hos1 mutants accumulate polyadenylated mRNA in the nucleus and that the circadian defect in hos1 is shared by multiple mutants with aberrant mRNA export, but not in a mutant attenuated in nucleo-cytoplasmic transport of microRNAs. As revealed by RNA sequencing, hos1 exhibits gross changes to the transcriptome with genes in multiple functional categories being affected. In addition, we show that hos1 and other previously described mutants with altered mRNA export affect cold signaling in a similar manner. Our data support a model in which altered mRNA export is important for the manifestation of hos1 circadian clock defects and suggest that HOS1 may indirectly affect cold signaling through disruption of the circadian clock.

  18. An interaction type of genetic screen reveals a role of the Rab11 gene in oskar mRNA localization in the developing Drosophila melanogaster oocyte.

    PubMed Central

    Jankovics, F; Sinka, R; Erdélyi, M

    2001-01-01

    Abdomen and germ cell development of Drosophila melanogaster embryo requires proper localization of oskar mRNA to the posterior pole of the developing oocyte. oskar mRNA localization depends on complex cell biological events like cell-cell communication, dynamic rearrangement of the microtubule network, and function of the actin cytoskeleton of the oocyte. To investigate the cellular mechanisms involved, we developed a novel interaction type of genetic screen by which we isolated 14 dominant enhancers of a sensitized genetic background composed of mutations in oskar and in TropomyosinII, an actin binding protein. Here we describe the detailed analysis of two allelic modifiers that identify Drosophila Rab11, a gene encoding small monomeric GTPase. We demonstrate that mutation of the Rab11 gene, involved in various vesicle transport processes, results in ectopic localization of oskar mRNA, whereas localization of gurken and bicoid mRNAs and signaling between the oocyte and the somatic follicle cells are unaffected. We show that the ectopic oskar mRNA localization in the Rab11 mutants is a consequence of an abnormally polarized oocyte microtubule cytoskeleton. Our results indicate that the internal membranous structures play an important role in the microtubule organization in the Drosophila oocyte and, thus, in oskar RNA localization. PMID:11454766

  19. Detection of Gene Expression in Genetically Engineered Microorganisms and Natural Phytoplankton Populations in the Marine Environment by mRNA Analysis

    PubMed Central

    Pichard, Scott L.; Paul, John H.

    1991-01-01

    A simple method that combines guanidinium isothiocyanate RNA extraction and probing with antisense and sense RNA probes is described for analysis of microbial gene expression in planktonic populations. Probing of RNA sample extracts with sense-strand RNA probes was used as a control for nonspecific hybridization or contamination of mRNA with target DNA. This method enabled detection of expression of a plasmid-encoded neomycin phosphotransferase gene (nptII) in as few as 104Vibrio cells per ml in 100 ml of seawater. We have used this method to detect expression of the ribulose-1,5-bisphosphate carboxylase large-subunit gene (rbcL) in Synechococcus cultures and natural phytoplankton populations in the Dry Tortugas, Florida. During a 36-h diel study, rbcL expression of the indigenous phytoplankton was greatest in the day, least at night (1100, 0300, and 0100 h), and variable at dawn or dusk (0700 and 1900 h). These results are the first report of gene expression in natural populations by mRNA isolation and probing. This methodology should be useful for the study of gene expression in microorganisms released into the environment for agricultural or bioremediation purposes and indigenous populations containing highly conserved target gene sequences. Images PMID:16348507

  20. Detection of Gene Expression in Genetically Engineered Microorganisms and Natural Phytoplankton Populations in the Marine Environment by mRNA Analysis.

    PubMed

    Pichard, Scott L; Paul, John H

    1991-06-01

    A simple method that combines guanidinium isothiocyanate RNA extraction and probing with antisense and sense RNA probes is described for analysis of microbial gene expression in planktonic populations. Probing of RNA sample extracts with sense-strand RNA probes was used as a control for nonspecific hybridization or contamination of mRNA with target DNA. This method enabled detection of expression of a plasmid-encoded neomycin phosphotransferase gene (nptII) in as few as 10Vibrio cells per ml in 100 ml of seawater. We have used this method to detect expression of the ribulose-1,5-bisphosphate carboxylase large-subunit gene (rbcL) in Synechococcus cultures and natural phytoplankton populations in the Dry Tortugas, Florida. During a 36-h diel study, rbcL expression of the indigenous phytoplankton was greatest in the day, least at night (1100, 0300, and 0100 h), and variable at dawn or dusk (0700 and 1900 h). These results are the first report of gene expression in natural populations by mRNA isolation and probing. This methodology should be useful for the study of gene expression in microorganisms released into the environment for agricultural or bioremediation purposes and indigenous populations containing highly conserved target gene sequences.

  1. Identification of Cyclobutane Pyrimidine Dimer-Responsive Genes Using UVB-Irradiated Human Keratinocytes Transfected with In Vitro-Synthesized Photolyase mRNA.

    PubMed

    Boros, Gábor; Miko, Edit; Muramatsu, Hiromi; Weissman, Drew; Emri, Eszter; van der Horst, Gijsbertus T J; Szegedi, Andrea; Horkay, Irén; Emri, Gabriella; Karikó, Katalin; Remenyik, Éva

    2015-01-01

    Major biological effects of UVB are attributed to cyclobutane pyrimidine dimers (CPDs), the most common photolesions formed on DNA. To investigate the contribution of CPDs to UVB-induced changes of gene expression, a model system was established by transfecting keratinocytes with pseudouridine-modified mRNA (Ψ-mRNA) encoding CPD-photolyase. Microarray analyses of this model system demonstrated that more than 50% of the gene expression altered by UVB was mediated by CPD photolesions. Functional classification of the gene targets revealed strong effects of CPDs on the regulation of the cell cycle and transcriptional machineries. To confirm the microarray data, cell cycle-regulatory genes, CCNE1 and CDKN2B that were induced exclusively by CPDs were selected for further investigation. Following UVB irradiation, expression of these genes increased significantly at both mRNA and protein levels, but not in cells transfected with CPD-photolyase Ψ-mRNA and exposed to photoreactivating light. Treatment of cells with inhibitors of c-Jun N-terminal kinase (JNK) blocked the UVB-dependent upregulation of both genes suggesting a role for JNK in relaying the signal of UVB-induced CPDs into transcriptional responses. Thus, photolyase mRNA-based experimental platform demonstrates CPD-dependent and -independent events of UVB-induced cellular responses, and, as such, has the potential to identify novel molecular targets for treatment of UVB-mediated skin diseases.

  2. Effects of Perfluoroalkyl Compounds on mRNA Expression Levels of Thyroid Hormone-Responsive Genes in Primary Cultures of Avian Neuronal Cells

    PubMed Central

    Vongphachan, Viengtha; Cassone, Cristina G.; Wu, Dongmei; Chiu, Suzanne; Crump, Doug; Kennedy, Sean W.

    2011-01-01

    There is growing interest in assessing the neurotoxic and endocrine disrupting potential of perfluoroalkyl compounds (PFCs). Several studies have reported in vitro and in vivo effects related to neuronal development, neural cell differentiation, prenatal and postnatal development and behavior. PFC exposure altered hormone levels and the expression of hormone-responsive genes in mammalian and aquatic species. This study is the first to assess the effects of PFCs on messenger RNA (mRNA) expression in primary cultures of neuronal cells in two avian species: the domestic chicken (Gallus domesticus) and herring gull (Larus argentatus). The following thyroid hormone (TH)–responsive genes were examined using real-time reverse transcription-PCR: type II iodothyronine 5′-deiodinase (D2), D3, transthyretin (TTR), neurogranin (RC3), octamer motif–binding factor (Oct-1), and myelin basic protein. Several PFCs altered the mRNA expression levels of genes associated with the TH pathway in avian neuronal cells. Short-chained PFCs (less than eight carbons) altered the expression of TH-responsive genes (D2, D3, TTR, and RC3) in chicken embryonic neuronal cells to a greater extent than long-chained PFCs (more than or equal to eight carbons). Variable transcriptional changes were observed in herring gull embryonic neuronal cells exposed to short-chained PFCs; mRNA levels of Oct-1 and RC3 were upregulated. This is the first study to report that PFC exposure alters mRNA expression in primary cultures of avian neuronal cells and may provide insight into the possible mechanisms of action of PFCs in the avian brain. PMID:21212296

  3. Mamld1 Deficiency Significantly Reduces mRNA Expression Levels of Multiple Genes Expressed in Mouse Fetal Leydig Cells but Permits Normal Genital and Reproductive Development

    PubMed Central

    Miyado, Mami; Nakamura, Michiko; Miyado, Kenji; Morohashi, Ken-ichirou; Sano, Shinichiro; Nagata, Eiko; Fukami, Maki

    2012-01-01

    Although mastermind-like domain containing 1 (MAMLD1) (CXORF6) on human chromosome Xq28 has been shown to be a causative gene for 46,XY disorders of sex development with hypospadias, the biological function of MAMLD1/Mamld1 remains to be elucidated. In this study, we first showed gradual and steady increase of testicular Mamld1 mRNA expression levels in wild-type male mice from 12.5 to 18.5 d postcoitum. We then generated Mamld1 knockout (KO) male mice and revealed mildly but significantly reduced testicular mRNA levels (65–80%) of genes exclusively expressed in Leydig cells (Star, Cyp11a1, Cyp17a1, Hsd3b1, and Insl3) as well as grossly normal testicular mRNA levels of genes expressed in other cell types or in Leydig and other cell types. However, no demonstrable abnormality was identified for cytochrome P450 17A1 and 3β-hydroxysteroid dehydrogenase (HSD3B) protein expression levels, appearance of external and internal genitalia, anogenital distance, testis weight, Leydig cell number, intratesticular testosterone and other steroid metabolite concentrations, histological findings, in situ hybridization findings for sonic hedgehog (the key molecule for genital tubercle development), and immunohistochemical findings for anti-Müllerian hormone (Sertoli cell marker), HSD3B (Leydig cell marker), and DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (germ cell marker) in the KO male mice. Fertility was also normal. These findings imply that Mamld1 deficiency significantly reduces mRNA expression levels of multiple genes expressed in mouse fetal Leydig cells but permits normal genital and reproductive development. The contrastive phenotypic findings between Mamld1 KO male mice and MAMLD1 mutation positive patients would primarily be ascribed to species difference in the fetal sex development. PMID:23087174

  4. mRIN for direct assessment of genome-wide and gene-specific mRNA integrity from large-scale RNA-sequencing data

    PubMed Central

    Feng, Huijuan; Zhang, Xuegong; Zhang, Chaolin

    2015-01-01

    The volume of RNA-Seq data sets in public repositories has been expanding exponentially, providing unprecedented opportunities to study gene expression regulation. Because degraded RNA samples, such as those collected from post-mortem tissues, can result in distinct expression profiles with potential biases, a particularly important step in mining these data is quality control. Here we develop a method named mRIN to directly assess mRNA integrity from RNA-Seq data at the sample and individual gene level. We systematically analyse large-scale RNA-Seq data sets of the human brain transcriptome generated by different consortia. Our analysis demonstrates that 3′ bias resulting from partial RNA fragmentation in post-mortem tissues has a marked impact on global expression profiles, and that mRIN effectively identifies samples with different levels of mRNA degradation. Unexpectedly, this process has a reproducible and gene-specific component, and transcripts with different stabilities are associated with distinct functions and structural features reminiscent of mRNA decay in living cells. PMID:26234653

  5. A mutation within intron 3 of the Pax-3 gene produces aberrantly spliced mRNA transcripts in the splotch (Sp) mouse mutant.

    PubMed Central

    Epstein, D J; Vogan, K J; Trasler, D G; Gros, P

    1993-01-01

    The splotch (Sp) mouse mutant displays defects in neural tube closure in the form of exencephaly and spina bifida. Recently, mutations in the Pax-3 gene have been described in the radiation-induced Spr and Sp2H alleles. This led us to examine the integrity of the Pax-3 gene and its cellular mRNA transcript in the original, spontaneously arising Sp allele. A complex mutation in the Pax-3 gene including an A-->T transversion at the invariant 3' AG splice acceptor of intron 3 was identified in the Sp/Sp mutant. This genomic mutation abrogates the normal splicing of intron 3, resulting in the generation of four aberrantly spliced mRNA transcripts. Two of these Pax-3 transcripts make use of cryptic 3' splice sites within the downstream exon, generating small deletions which disrupt the reading frame of the transcripts. A third aberrant splicing event results in the deletion of exon 4, while a fourth retains intron 3. These aberrantly spliced mRNA transcripts are not expected to result in functional Pax-3 proteins and are thus responsible for the phenotype observed in the Sp mouse mutant. Images PMID:8421686

  6. Association of PTPN22 gene (rs2488457) polymorphism with ulcerative colitis and high levels of PTPN22 mRNA in ulcerative colitis.

    PubMed

    Chen, Zhitao; Zhang, Heng; Xia, Bing; Wang, Ping; Jiang, Ting; Song, Min; Wu, Jie

    2013-10-01

    Our aims were to evaluate protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene polymorphisms in ulcerative colitis (UC) and explore PTPN22 mRNA levels in colonic biopsies of UC patients in central China. A total of 165 Chinese UC patients and 300 healthy controls were enrolled in this study. PTPN22 -1123G/C, +1858C/T, and +788G/A polymorphisms were genotyped by PCR-restriction fragment length polymorphism method. PTPN22 mRNA expressions in colonic biopsies and serum C-reactive protein (CRP) levels were determined by quantitative PCR and immunonephelometry, respectively. The frequency of C carrier was higher in UC patients than in healthy controls (66.7 vs. 53.3%, P = 0.005, odds ratios = 1.75, 95% CI 1.18-2.60) and associated with extensive colitis (P = 0.029). PTPN22 mRNA levels were elevated in UC patients than in healthy controls (P < 0.001). Among UC patients, PTPN22 mRNA expression levels were higher in biopsies of inflamed colonic tissue compared with noninflamed tissue (P < 0.001) and were correlated with CRP levels (r = 0.578, P < 0.001). PTPN22 mRNA expression levels were elevated in extensive colitis compared to proctitis (P = 0.008) and to left-sided colitis (P = 0.029) and were higher in moderate and severe disease than in mild disease (P = 0.005). Our study showed the potential association between PTPN22 -1123G/C polymorphism and UC in central China. PTPN22 mRNA levels were highly expressed in UC, especially in active disease, and were correlated with CRP levels, disease location, and disease severity in UC patients.

  7. mRNA expression pattern of selected candidate genes differs in bovine oviductal epithelial cells in vitro compared with the in vivo state and during cell culture passages.

    PubMed

    Danesh Mesgaran, Sadjad; Sharbati, Jutta; Einspanier, Ralf; Gabler, Christoph

    2016-08-15

    The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation

  8. Haematopoietic cell lines capable of colonizing the thymus following in vivo transfer expressed T-cell receptor gamma-gene immature mRNA.

    PubMed Central

    Shimamura, M; Oku, M; Ohta, S; Yamagata, T

    1992-01-01

    To clarify the mechanism by which progenitor T (pro-T) cells recognize and enter the thymus, an attempt was made to produce haematopoietic cell lines by the fusion of BALB/c nude mouse bone marrow or foetal liver cells (gestation 14 and 15 days) with AKR thymoma BW5147, thereby immortalizing cells with potency to colonize the thymus, a characteristic of pro-T cells rarely found in adult bone marrow or foetal liver. The hybridomas thus produced were classified according to the phenotype of surface markers, T-cell receptor (TcR) gene configuration and expression. All hybridomas were negative in the surface expression of T-cell markers such as TcR alpha beta, TcR gamma delta, CD3, CD4 and CD8. They had TcR beta-, gamma- and delta-genes, each with a different status with respect to configuration and transcription. Some possessed partially rearranged TcR genes and others expressed immature TcR mRNA. The cell lines were examined for their capacity to colonize the thymus following intravenous injection into recipient mice. It was found that the cells with capacity of colonizing the thymus expressed immature TcR delta mRNA, while the cell lines lacking TcR delta-genes did not home to the thymus. These findings imply that the potency for migrating to thymus is closely associated with the particular stage of prethymic cell differentiation which could be estimated by the analysis of TcR genes, and that some cell lines with the expression of TcR delta-gene mRNA and the ability to colonize the thymus are derived from pro-T cells. Images Figure 2 Figure 3 PMID:1478683

  9. Translational regulation: identification of the site on bacteriophage T4 rIIB mRNA recognized by the regA gene function.

    PubMed Central

    Karam, J; Gold, L; Singer, B S; Dawson, M

    1981-01-01

    The bacteriophage T4 gene regA encodes a protein that diminishes the expression of many unlinked early T4 genes. Previous work demonstrated that regA-mediated repression occurs after transcription. We report here on the identification of the target site on one regA-sensitive mRNA, the message encoding the phage T4 rIIB protein. The target for regA-mediated action overlaps the translational initiation domain of the rIIB messenger. The regA protein may be a repressor that operates translationally on a significant and interesting set of early phage T4 mRNAs. Images PMID:7029523

  10. Hepatic mRNA expression for genes related to somatotropic axis, glucose and lipid metabolisms, and inflammatory response of periparturient dairy cows treated with recombinant bovine somatotropin.

    PubMed

    Silva, P R B; Weber, W J; Crooker, B A; Collier, R J; Thatcher, W W; Chebel, R C

    2017-05-01

    Objectives of this experiment were to evaluate the effects of recombinant bovine somatotropin (rbST) treatment of periparturient dairy cows on hepatic mRNA expression for genes related to the somatotropic axis, insulin, glucose, and lipid metabolism, inflammation, and oxidative stress. Holstein cows were enrolled in the experiment at 253 ± 3 d of gestation and assigned to 1 of 3 treatments: untreated control (n = 53), 87.5 mg of rbST (n = 56; rbST87.5), and 125 mg of rbST (n = 57; rbST125). Cows in the rbST87.5 and rbST125 treatments received weekly injections of rbST from -21 to 28 d relative to calving. A subsample of cows (control = 20, rbST87.5 = 20, rbST125 = 20) was randomly selected for collection of liver samples according to expected calving date, BCS, and previous lactation 305-d mature equivalent milk yield. Only cows that had liver sampled at -21 ± 3, -7 ± 3, and 7 ± 3 d relative to calving were used in the current experiment. Blood, sampled weekly from -28 to 21 d relative to calving, was used to determine the concentrations of growth hormone, insulin-like growth factor 1, insulin, cortisol, fatty acids, β-hydroxybutyrate, glucose, haptoglobin, and tumor necrosis factor-α. Liver samples were used to determine hepatic mRNA expression of 50 genes. Treatment with rbST increased growth hormone concentrations during the postpartum period (control = 9.0 ± 0.7, rbST87.5 = 15.3 ± 1.0, rbST125 = 18.5 ± 1.3 ng/mL) and increased insulin-like growth factor 1 concentrations during the prepartum period (control = 107.4 ± 7.2, rbST87.5 = 126.9 ± 6.6, rbST125 = 139.4 ± 6.9 ng/mL). Control cows had greater postpartum concentrations of β-hydroxybutyrate (control = 776.4 ± 64.0, rbST87.5 = 628.4 ± 59.7, rbST125 = 595.4 ± 60.9 µmol/L) than rbST cows. The rbST87.5 and rbST125 treatments upregulated the hepatic mRNA expression for somatotropic axis genes (GHR, GHR1A, IGF1, IGFBP3, and SOCS2) on d -7 relative to calving and upregulated the mRNA expression

  11. Identification of Suitable Reference Genes for mRNA Studies in Bone Marrow in a Mouse Model of Hematopoietic Stem Cell Transplantation.

    PubMed

    Li, H; Chen, C; Yao, H; Li, X; Yang, N; Qiao, J; Xu, K; Zeng, L

    2016-10-01

    Bone marrow micro-environment changes during hematopoietic stem cell transplantation (HSCT) with subsequent alteration of genes expression. Quantitative polymerase chain reaction (q-PCR) is a reliable and reproducible technique for the analysis of gene expression. To obtain more accurate results, it is essential to find a reference during HSCT. However, which gene is suitable during HSCT remains unclear. This study aimed to identify suitable reference genes for mRNA studies in bone marrow after HSCT. C57BL/6 mice were treated with either total body irradiation (group T) or busulfan/cyclophosphamide (BU/CY) (group B) followed by infusion of bone marrow cells. Normal mice without treatments were served as a control. All samples (group T + group B + control) were defined as group G. On days 7, 14, and 21 after transplantation, transcription levels of 7 candidate genes, ACTB, B2M, GAPDH, HMBS, HPRT, SDHA, and YWHAZ, in bone marrow cells were measured by use of real-time quantitative PCR. The expression stability of these 7 candidate reference genes were analyzed by 2 statistical software programs, GeNorm and NormFinder. Our results showed that ACTB displayed the highest expression in group G, with lowest expression of PSDHA in group T and HPRT in groups B and G. Analysis of expression stability by use of GeNorm or NormFinder demonstrated that expression of B2M in bone marrow were much more stable during HSCT, compared with other candidate genes including commonly used reference genes GAPDH and ACTB. ACTB could be used as a suitable reference gene for mRNA studies in bone marrow after HSCT. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Importance of cis determinants and nitrogenase activity in regulated stability of the Klebsiella pneumoniae nitrogenase structural gene mRNA.

    PubMed

    Simon, H M; Gosink, M M; Roberts, G P

    1999-06-01

    The Klebsiella pneumoniae nitrogen fixation (nif) mRNAs are unusually stable, with half-lives of 20 to 30 min under conditions favorable to nitrogen fixation (limiting nitrogen, anaerobiosis, temperatures of 30 degrees C). Addition of O2 or fixed nitrogen or temperature increases to 37 degrees C or more result in the dramatic destabilization of the nif mRNAs, decreasing the half-lives by a factor of 3 to 5. A plasmid expression system, independent of nif transcriptional regulation, was used to define cis determinants required for the regulated stability of the 5.2-kb nifHDKTY mRNA and to test the model suggested by earlier work that NifA is required in trans to stabilize nif mRNA under nif-derepressing conditions. O2 regulation of nifHDKTY mRNA stability is impaired in a plasmid containing a deletion of a 499-bp region of nifH, indicating that a site(s) required for the O2-regulated stability of the mRNA is located within this region. The simple model suggested from earlier work that NifA is required for stabilizing nif mRNA under conditions favorable for nitrogen fixation was disproved, and in its place, a more complicated model involving the sensing of nitrogenase activity as a component of the system regulating mRNA stability is proposed. Analysis of nifY mutants and overexpression suggests a possible involvement of the protein in this sensing process.

  13. Comparison of the Dictyostelium rasD and ecmA genes reveals two distinct mechanisms whereby an mRNA may become enriched in prestalk cells.

    PubMed

    Jermyn, K; Wiliams, J

    1995-04-01

    The Dictyostelium ras gene, rasD, encodes an mRNA that is more abundant in prestalk than prespore cells in the migratory slug. Its expression is inducible by extracellular cAMP but is not inducible by the prestalk and stalk cell morphogen differentiation inducing factor (DIF). We show that a rasD-lacZ fusion gene is first expressed in approximately one half of the cells in the aggregate, including some cells that also express a prespore-specific marker. The amount of rasD-lacZ fusion protein in prespore cells then diminishes as the slug is formed. Analysis of a rasD-lacZ fusion protein with an N terminal substitution that reduces protein stability within the cell provides strong confirmatory evidence that the ras gene product becomes enriched in prestalk cells by selective repression of gene expression in prespore cells. In contrast, the DIF-inducible ecmA gene is expressed only in those cells that will become prestalk cells in the migratory slug. These results show that there are two different ways in which an mRNA may become enriched in prestalk cells and support the view that DIF is the inducer of prestalk cell differentiation.

  14. Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate

    PubMed Central

    Pascal, Laura E; True, Lawrence D; Campbell, David S; Deutsch, Eric W; Risk, Michael; Coleman, Ilsa M; Eichner, Lillian J; Nelson, Peter S; Liu, Alvin Y

    2008-01-01

    Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD) genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63). Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50) but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers. PMID:18501003

  15. The Arabidopsis translatome cell-specific mRNA atlas: Mining suberin and cutin lipid monomer biosynthesis genes as an example for data application.

    PubMed

    Mustroph, Angelika; Bailey-Serres, Julia

    2010-03-01

    Plants consist of distinct cell types distinguished by position, morphological features and metabolic activities. We recently developed a method to extract cell-type specific mRNA populations by immunopurification of ribosome-associated mRNAs. Microarray profiles of 21 cell-specific mRNA populations from seedling roots and shoots comprise the Arabidopsis Translatome dataset. This gene expression atlas provides a new tool for the study of cell-specific processes. Here we provide an example of how genes involved in a pathway limited to one or few cell-types can be further characterized and new candidate genes can be predicted. Cells of the root endodermis produce suberin as an inner barrier between the cortex and stele, whereas the shoot epidermal cells form cutin as a barrier to the external environment. Both polymers consist of fatty acid derivates, and share biosynthetic origins. We use the Arabidopsis Translatome dataset to demonstrate the significant cell-specific expression patterns of genes involved in those biosynthetic processes and suggest new candidate genes in the biosynthesis of suberin and cutin.

  16. Chronic toxicity of pesticides to the mRNA expression levels of metallothioneins and cytochrome P450 1A genes in rainbow trout.

    PubMed

    Ceyhun, Saltuk Bugrahan; Aksakal, Ercüment; Kirim, Birsen; Atabeyoglu, Kübra; Erdogan, Orhan

    2012-03-01

    The hazardous effects of pesticides on various metabolic pathways are a great problem for environmental health and should be well determined. In the present study, the authors treated rainbow trout with 0.6 μg/L deltamethrin for 28 days and 1.6 mg/L 2,2-dichlorovinyl dimethyl phosphate for 21 days. After this time period, the authors observed alterations in mRNA expression levels of MT-A, MT-B and CYP-1A. Chronic exposure to low levels of pesticides may have a more significant effect on fish populations than acute poisoning. While both pesticides caused a significant increase on mRNA levels of MT-A and CYP-1A, MT-B mRNA levels were increased significantly only upon deltamethin administration. The significant increase in mRNA levels of the corresponding genes may be considered as a defence mechanism in addition to the antioxidants against oxidative stress, as well as a detoxification mechanism against adverse effects of pesticides.

  17. The Ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of Escherichia coli.

    PubMed Central

    Babitzke, P; Kushner, S R

    1991-01-01

    The in vitro and in vivo analysis of the ribonuclease E-deficient (rne-) and the altered mRNA stability protein-deficient (ams-) strains of Escherichia coli has demonstrated that they carry mutations in the same structural gene. Strains encoding either thermolabile RNase E (rne-3071) or Ams protein (ams-1) are defective in both rRNA processing and mRNA turnover. Immediately after a shift to the nonpermissive temperature, the chemical decay rate of bulk mRNA is slowed 2- to 3-fold, and within 70 min, precursors to 5S rRNA begin to accumulate. In addition, all of the phenotypes associated with either the rne-3071 or the ams-1 alleles were complemented by a recombinant plasmid carrying ams+. When taken together with previous genetic studies, these results suggest that the role of ribonuclease E in mRNA turnover involves endonucleolytic cleavages at the proposed ACAG(A/U)AUUUG consensus sequence. Images PMID:1846032

  18. Sublethal effects of chlorantraniliprole on juvenile hormone levels and mRNA expression of JHAMT and FPPS genes in the rice stem borer, Chilo suppressalis.

    PubMed

    Xu, Beibei; Qian, Kun; Zhang, Nan; Miao, Lijun; Cai, Jingxuan; Lu, Mingxing; Du, Yuzhou; Wang, Jianjun

    2017-10-01

    Juvenile hormone (JH) regulates the development and reproduction of insects. The sublethal effects of chlorantraniliprole on JH levels and mRNA expression of JH acid methyltransferase gene (CsJHAMT) and farnesyl diphosphate synthase genes (CsFPPS1 and CsFPPS2) in Chilo suppressalis (Walker) were investigated. Exposure of sublethal concentrations of chlorantraniliprole (LC10 and LC30 ) to the third instar larvae of C. suppressalis significantly increased the JH levels in all developmental stages investigated including larvae 72 h after treatment, the first, third and fifth day of female pupae, as well as newly emerged, 12-h-old and 24-h-old female adults. A general trend of increased mRNA expression levels of CsJHAMT, CsFPPS1and CsFPPS2 was also observed in LC10 and LC30 treatment groups. Notably, the mRNA expression level of CsJHAMT significantly increased by 7.46-fold in the larvae 72 h after LC30 treatment. A significant increase of the mRNA expression levels of CsFPPS2 was also observed in the fifth day female pupae of LC10 and LC30 treatment groups (2.60-fold and 2.62-fold, respectively) as well as in 12-h-old female adults of the LC30 treatment group (3.45-fold). Sublethal concentrations of chlorantraniliprole might upregulate the expression of JH biosynthesis genes and in turn result in an increase of JH level in C. suppressalis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Effects of Fibroblast Growth Factor 9 (FGF9) on Steroidogenesis and Gene Expression and Control of FGF9 mRNA in Bovine Granulosa Cells

    PubMed Central

    Schreiber, Nicole B.

    2012-01-01

    Gene expression of fibroblast growth factor-9 (FGF9) is decreased in granulosa cells (GC) of cystic follicles compared with normal dominant follicles in cattle. The objectives of this study were to investigate the effects of FGF9 on GC steroidogenesis, gene expression, and cell proliferation and to determine the hormonal control of GC FGF9 production. GC were collected from small (1–5 mm) and large (8–22 mm) bovine follicles and treated in vitro with various hormones in serum-free medium for 24 or 48 h. In small- and large-follicle GC, FGF9 inhibited (P < 0.05) IGF-I-, dibutyryl cAMP-, and forskolin-induced progesterone and estradiol production. In contrast, FGF9 increased (P < 0.05) GC numbers induced by IGF-I and 10% fetal calf serum. FGF9 inhibited (P < 0.05) FSHR and CYP11A1 mRNA abundance in small- and large-follicle GC but had no effect (P > 0.10) on CYP19A1 or StAR mRNA. In the presence of a 3β-hydroxysteroid dehydrogenase inhibitor, trilostane, FGF9 also decreased (P < 0.05) pregnenolone production. IGF-I inhibited (P < 0.05) whereas estradiol and FSH had no effect (P > 0.10) on FGF9 mRNA abundance. TNFα and wingless-type mouse mammary tumor virus integration site family member-3A decreased (P < 0.05) whereas T4 and sonic hedgehog increased (P < 0.05) FGF9 mRNA abundance in control and IGF-I-treated GC. Thus, GC FGF9 gene expression is hormonally regulated, and FGF9 may act as an autocrine regulator of ovarian function by slowing follicular differentiation via inhibiting IGF-I action, gonadotropin receptors, the cAMP signaling cascade, and steroid synthesis while stimulating GC proliferation in cattle. PMID:22798350

  20. The mRNA expression of cortisol axis related genes differs in Atlantic cod (Gadus morhua) categorized as high or low responders.

    PubMed

    Hori, Tiago S; Rise, Matthew L; Johnson, Stewart C; Afonso, Luis O B; Gamperl, A Kurt

    2012-01-15

    Cortisol is a major stress hormone in fish and is known, under normal or stressful conditions, to affect several physiological processes including growth and immunity. Thus, efforts have been made for several cultured finfish species, including the Atlantic cod, to determine whether fish with a high or low cortisol response to stress can be identified and selected. However, we have a limited understanding of the mechanisms that determine these two phenotypes. Thus, we measured total and free plasma cortisol levels in high and low responding cod when subjected to a 30 s handling stress, and the mRNA expression of four key genes in the glucocorticoid (i.e. cortisol) stress axis both pre- and post-stress. The cortisol data is consistent with our previous findings for cod, with high responding (HR) fish having ∼3-fold higher total and free plasma cortisol levels when compared to low responding (LR) fish. Three of the transcripts studied encode key proteins involved in steroidogenesis (StAR, P450scc and 3βHSD), and the constitutive mRNA expression of all three genes was significantly higher (∼2-fold) in the head kidney of HR fish when compared to LR cod. The other gene of interest was the glucocorticoid receptor (GR). We partly cloned and characterized a cDNA from Atlantic cod likely to be this fish's ortholog of the teleost GR1, and showed that while there was no difference in hepatic constitutive GR mRNA expression between groups, HR fish had liver GR mRNA levels that were significantly (1.8-fold) higher at 3 h post-stress as compared to LR fish. Our results suggest that the different magnitude of cortisol response between LR and HR fish is at least partially determined by the capacity of the interrenal tissue to produce steroids.

  1. In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles.

    PubMed

    Bielecki, Piotr; Muthukumarasamy, Uthayakumar; Eckweiler, Denitsa; Bielecka, Agata; Pohl, Sarah; Schanz, Ansgar; Niemeyer, Ute; Oumeraci, Tonio; von Neuhoff, Nils; Ghigo, Jean-Marc; Häussler, Susanne

    2014-08-05

    mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. Importance: Urinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenic Escherichia coli strains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenic E. coli gene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.

  2. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2.

    PubMed

    Rahgozar, Soheila; Moafi, Alireza; Abedi, Marjan; Entezar-E-Ghaem, Mansureh; Moshtaghian, Jamal; Ghaedi, Kamran; Esmaeili, Abolghasem; Montazeri, Fatemeh

    2014-01-01

    Multidrug resistance (MDR) is an important cause of treatment failure in acute lymphoblastic leukemia (ALL). The ABC family of membrane transporters is proposed, albeit with controversy, to be involved in this process. The present study aims to investigate the mRNA expression profile of several genes of this family, including ABCA2, ABCA3, ABCB1/MDR1, MRP1/ABCC1, MRP3/ABCC3, ABCG2/BCRP, and the intracellular transporter MVP/LRP, in childhood ALL, and to evaluate their association with response to therapy. Some genes in the present research are being studied for the first time in Iran. Using quantitative real-time PCR, we evaluated 27 children with ALL at diagnosis and 15 children with normal bone marrow. The status of response to therapy was assessed one year after the onset of therapy through investigating the IgH/TCRγ gene rearrangements. Our findings indicate a considerable and direct relationship between mRNA expression levels of ABCA2, ABCA3, MDR1, and MRP1 genes and positive minimal residual disease (MRD) measured after one year of treatment. Statistical analysis revealed that expression of these genes higher than the cutoff point will raise the risk of MRD by 15-, 6.25-, 12-, and 9-fold, respectively. No relationship was found between of MVP/LRP, MRP3 and ABCG2 genes expression and ALL prognoses. Considering the direct and significant relationship between the increased expression of ABCA2, ABCA3, MDR1, and MRP1 genes and positive risk of MRD in children with ALL, evaluating the expression profile of these genes on diagnosis may identify high risk individuals and help plan a more efficient treatment strategy.

  3. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2

    PubMed Central

    Rahgozar, Soheila; Moafi, Alireza; Abedi, Marjan; Entezar-e-ghaem, Mansureh; Moshtaghian, Jamal; Ghaedi, Kamran; Esmaeili, Abolghasem; Montazeri, Fatemeh

    2014-01-01

    Multidrug resistance (MDR) is an important cause of treatment failure in acute lymphoblastic leukemia (ALL). The ABC family of membrane transporters is proposed, albeit with controversy, to be involved in this process. The present study aims to investigate the mRNA expression profile of several genes of this family, including ABCA2, ABCA3, ABCB1/MDR1, MRP1/ABCC1, MRP3/ABCC3, ABCG2/BCRP, and the intracellular transporter MVP/LRP, in childhood ALL, and to evaluate their association with response to therapy. Some genes in the present research are being studied for the first time in Iran. Using quantitative real-time PCR, we evaluated 27 children with ALL at diagnosis and 15 children with normal bone marrow. The status of response to therapy was assessed one year after the onset of therapy through investigating the IgH/TCRγ gene rearrangements. Our findings indicate a considerable and direct relationship between mRNA expression levels of ABCA2, ABCA3, MDR1, and MRP1 genes and positive minimal residual disease (MRD) measured after one year of treatment. Statistical analysis revealed that expression of these genes higher than the cutoff point will raise the risk of MRD by 15-, 6.25-, 12-, and 9-fold, respectively. No relationship was found between of MVP/LRP, MRP3 and ABCG2 genes expression and ALL prognoses. Considering the direct and significant relationship between the increased expression of ABCA2, ABCA3, MDR1, and MRP1 genes and positive risk of MRD in children with ALL, evaluating the expression profile of these genes on diagnosis may identify high risk individuals and help plan a more efficient treatment strategy. PMID:24145140

  4. sRNA-mediated activation of gene expression by inhibition of 5'-3’ exonucleolytic mRNA degradation

    PubMed Central

    Durand, Sylvain; Braun, Frédérique; Helfer, Anne-Catherine; Romby, Pascale; Condon, Ciarán

    2017-01-01

    Post-transcriptional control by small regulatory RNA (sRNA) is critical for rapid adaptive processes. sRNAs can directly modulate mRNA degradation in Proteobacteria without interfering with translation. However, Firmicutes have a fundamentally different set of ribonucleases for mRNA degradation and whether sRNAs can regulate the activity of these enzymes is an open question. We show that Bacillus subtilis RoxS, a major trans-acting sRNA shared with Staphylococus aureus, prevents degradation of the yflS mRNA, encoding a malate transporter. In the presence of malate, RoxS transiently escapes from repression by the NADH-sensitive transcription factor Rex and binds to the extreme 5’-end of yflS mRNA. This impairs the 5’-3’ exoribonuclease activity of RNase J1, increasing the half-life of the primary transcript and concomitantly enhancing ribosome binding to increase expression of the transporter. Globally, the different targets regulated by RoxS suggest that it helps readjust the cellular NAD+/NADH balance when perturbed by different stimuli. DOI: http://dx.doi.org/10.7554/eLife.23602.001 PMID:28436820

  5. Evidence for genetic regulation of mRNA expression of the dosage-sensitive gene retinoic acid induced-1 (RAI1) in human brain

    PubMed Central

    Chen, Li; Tao, Yu; Song, Fan; Yuan, Xi; Wang, Jian; Saffen, David

    2016-01-01

    RAI1 (retinoic acid induced-1) is a dosage-sensitive gene that causes Smith-Magenis syndrome (SMS) when mutated or deleted and Potocki-Lupski Syndrome (PTLS) when duplicated, with psychiatric features commonly observed in both syndromes. How common genetic variants regulate this gene, however, is unknown. In this study, we found that RAI1 mRNA expression in Chinese prefrontal and temporal cortex correlate with genotypes of common single nucleotide polymorphisms (SNPs) located in the RAI1 5′-upstream region. Using genotype imputation, “R2-Δ2” analysis, and data from the RegulomeDB database, we identified SNPs rs4925102 and rs9907986 as possible regulatory variants, accounting for approximately 30–40% of the variance in RAI1 mRNA expression in both brain regions. Specifically, rs4925102 and rs9907986 are predicted to disrupt the binding of retinoic acid RXR-RAR receptors and the transcription factor DEAF1 (Deformed epidermal autoregulatory factor-1), respectively. Consistent with these predictions, we observed binding of RXRα and RARα to the predicted RAI1 target in chromatin immunoprecipitation assays. Retinoic acid is crucial for early development of the central neural system, and DEAF1 is associated with intellectual disability. The observation that a significant portion of RAI1 mRNA expression is genetically controlled raises the possibility that common RAI1 5′-region regulatory variants contribute more generally to psychiatric disorders. PMID:26743651

  6. Response of detoxification gene mRNA expression and selection of molecular biomarkers in the clam Ruditapes philippinarum exposed to benzo[a]pyrene.

    PubMed

    Liu, Dong; Pan, Luqing; Cai, Yuefeng; Li, Zhen; Miao, Jingjing

    2014-06-01

    Benzo[a]pyrene (B[a]P) has a high carcinogenic potential. B[a]P concentrations and molecular biomarkers (mRNA expressions of Pgp, AhR, CYP4, CYP414A1, GST-pi, GST-S2, Cu/Zn-SOD and Mn-SOD) were assayed in gills and digestive glands of the clam Ruditapes philippinarum exposed to 0.03, 0.3 and 3 μg/L B[a]P for 21 days and then exposed to natural seawater for 15 days. Results showed that B[a]P was rapidly accumulated in and then eliminated from tissues of the clams. All gene mRNA expressions in the treated groups were induced significantly with the exception of CYP414A1 and Cu/Zn-SOD in the 0.03 μg/L B[a]P group. According to correlation analysis, mRNA expressions of AhR, GST-pi and Mn-SOD in gills and GST-pi in digestive glands had good correlations with B[a]P concentrations and could be used as molecular biomarkers of B[a]P exposure. This study investigated the molecular response of the genes mentioned above and selected useful molecular biomarkers for B[a]P pollution monitoring.

  7. Quantitative analysis of the mRNA expression levels of BCL2 and BAX genes in human osteoarthritis and normal articular cartilage: An investigation into their differential expression.

    PubMed

    Karaliotas, Georgios I; Mavridis, Konstantinos; Scorilas, Andreas; Babis, George C

    2015-09-01

    Osteoarthritis (OA) is primarily characterized by articular cartilage degeneration and chondrocyte loss. Although the role of apoptosis in cartilage pathobiology remains to be elucidated, the apoptotic B‑cell CLL/lymphoma 2 (BCL2) gene family is considered to be involved in OA. The purpose of the present study was to quantitatively analyze the mRNA expression profiles of the BCL2‑associated X protein (BAX) and BCL2 genes in human OA and in normal cartilage. Cartilage tissue samples were obtained from 78 patients undergoing total knee arthroplasty for OA (OA group) and orthopedic interventions for causes other than OA (control group). Total RNA was isolated from the cartilage tissue specimens and reverse transcribed into cDNA. A highly sensitive and specific reverse transcription quantitative polymerase chain reaction assay was developed for quantification of the mRNA levels of BAX and BCL2, using beta‑2 microglobulin as an endogenous control for normalization purposes. Gene expression analysis was performed using the comparative Ct (2(‑ΔΔCt)) method. The mRNA expression of BAX presented an increasing trend in the OA group compared with the control group, although without statistically significace (P=0.099). By contrast, the expression ratio of BCL2/BAX was found to be significantly decreased (2.76‑fold) in the OA group compared with the normal cartilage control group (P=0.022). A notable 4.6‑fold overexpression of median mRNA levels of BAX was also observed in patients with stage III OA compared with the control (P=0.034), while the BCL2/BAX ratio was markedly (2.5‑fold) decreased (P=0.024). A marked positive correlation was observed between the mRNA levels of BAX and BCL2 in the control group (r(s)=0.728; P<0.001), which was also present in the OA group, although to a lesser degree (r(s)=0.532; P<0.001). These results further implicate apoptosis in the pathogenesis of OA, through molecular mechanisms, which include the aberrant expression of the

  8. Differential regulation by MK801 of immediate-early genes, brain-derived neurotrophic factor and trk receptor mRNA induced by a kindling after-discharge.

    PubMed

    Hughes, P E; Young, D; Preston, K M; Yan, Q; Dragunow, M

    1998-01-01

    Transient changes in immediate-early genes and neurotrophin expression produced by kindling stimulation may mediate secondary downstream events involved in kindling development. Recent experiments have demonstrated conclusively that both kindling progression and mossy fibre sprouting are significantly impaired by administration of the N-methyl-D-aspartate (NMDA) receptor antagonist MK801. To further examine the link between kindling, changes in gene expression and the NMDA receptor, we examined the effects of MK801 on neuronal induction of immediate-early genes, brain-derived neurotrophic factor (BDNF) and trk receptor mRNA expression produced by a single electrically induced hippocampal after-discharge in rats. The after-discharge produced a rapid (after 1 h) increase in Fos, Jun-B, c-Jun, Krox-24 mRNA and protein and Krox-20 protein in dentate granule neurons and a delayed, selective expression of Fos, Jun-D and Krox-24 in hilar interneurons. MK801 pretreatment produced a very strong inhibition of Fos, Jun-D and Krox-20 increases in dentate neurons but had a much smaller effect on Jun-B and c-Jun expression. MK801 did not inhibit Krox-24 expression in granule neurons or the delayed expression of Fos, Jun-D and Krox-24 in hilar interneurons. BDNF protein and trk B and trk C mRNA expression were also strongly induced in dentate granule cells 4 h following an after-discharge. MK801 abolished the increase in BDNF protein and trk B, but not trk C mRNA in granule cells at 4 h. These results demonstrate that MK801 differentially regulates the AD-increased expression of a group of genes previously identified as being likely candidates for an involvement in kindling. Because MK801 significantly retards the development of kindling and mossy fibre sprouting, it can be argued that those genes whose induction is not significantly attenuated by MK801 are unlikely to play an important role in the MK801-sensitive component of kindling and the changes in neural connectivity

  9. Bovine DNase I: gene organization, mRNA expression, and changes in the topological distribution of the protein during apoptosis in lens epithelial cells.

    PubMed

    De María, Alicia; Arruti, Cristina

    2003-12-19

    Genomic DNA sequencing and alignment with the known DNase I mRNA showed that the bovine gene consists of 9 exons and that only the last 8 encode the protein, since initial ATG was found at exon II. RT-PCR was used to identify DNase I mRNA in lens epithelium in vivo and in cultured epithelial cells. We found DNase I transcripts having the same nucleotide sequence as the pancreas form and others lacking almost all exon V. The lens protein presented a slightly higher relative molecular weight than the pancreatic enzyme. Lens DNase I was located in secretory pathway organelles and excluded from the nucleus. Nevertheless, in apoptotic lens epithelial cells in vitro, DNase I translocated to the nucleus and co-localized with TUNEL positive chromatin aggregates. These results indicate that cells in the lens epithelium constitutively express DNase I, and suggest a direct involvement of this nuclease in the final phases of chromatin degradation.

  10. Expression of the cercosporin toxin resistance gene ( CRG1) as a dicistronic mRNA in the filamentous fungus Cercospora nicotianae.

    PubMed

    Chung, Kuang-Ren; Daub, Margaret E; Ehrenshaft, Marilyn

    2003-09-01

    The CRG1 gene in Cercospora nicotianae encodes a transcription factor and is required for cercosporin toxin resistance and production. Cloning and sequencing of the downstream region of the CRG1 gene led to the discovery of an adjacent gene ( PUT1) encoding a putative uracil transporter. Expression of CRG1 and PUT1 as assessed by Northern analysis indicated that, in addition to the expected monocistronic mRNAs (2.6 kb and 2.0 kb, respectively), a common 4.5-kb mRNA could be identified, using either a CRG1 or a PUT1 gene probe. The 2.6-kb transcript identified only by the CRG1 probe was expressed constitutively, whereas the 2.0-kb transcript identified only by the PUT1 probe was differentially expressed in various media. Four cDNA clones containing CRG1, PUT1, and the CRG1- PUT1 intergenic region were identified as part of the products from the 4.5-kb transcript. Both the 4.5-kb and 2.6-kb transcripts were not detectable in three crg1-disrupted mutants, using the CRG1 probe. The 2.0-kb transcript, but not the 4.5-kb one was detected using the PUT1 probe in the three crg1-disrupted mutants. Taken together, we conclude that the 4.5-kb transcript is a dicistronic mRNA of both CRG1 and PUT1 in the fungus C. nicotianae. This is the first example of a dicistronic mRNA identified in filamentous fungi.

  11. Identification of a reference gene for the quantification of mRNA and miRNA expression during skin wound healing.

    PubMed

    Etich, Julia; Bergmeier, Vera; Pitzler, Lena; Brachvogel, Bent

    2017-03-01

    Wound healing is a coordinated process to restore tissue homeostasis and reestablish the protective barrier of the skin. miRNAs may modulate the expression of target genes to contribute to repair processes, but due to the complexity of the tissue it is challenging to quantify gene expression during the distinct phases of wound repair. Here, we aimed to identify a common reference gene to quantify changes in miRNA and mRNA expression during skin wound healing. Quantitative real-time PCR and bioinformatic analysis tools were used to identify suitable reference genes during skin repair and their reliability was tested by studying the expression of mRNAs and miRNAs. Morphological assessment of wounds showed that the injury model recapitulates the distinct phases of skin repair. Non-degraded RNA could be isolated from skin and wounds and used to study the expression of non-coding small nuclear RNAs during wound healing. Among those, RNU6B was most constantly expressed during skin repair. Using this reference gene we could confirm the transient upregulation of IL-1β and PTPRC/CD45 during the early phase as well as the increased expression of collagen type I at later stages of repair and validate the differential expression of miR-204, miR-205, and miR-31 in skin wounds. In contrast to Gapdh the normalization to multiple reference genes gave a similar outcome. RNU6B is an accurate alternative normalizer to quantify mRNA and miRNA expression during the distinct phases of skin wound healing when analysis of multiple reference genes is not feasible.

  12. Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken

    PubMed Central

    Wang, Yong; He, Jianzhong; Yang, Wenxuan; Muhantay, Gemenggul; Chen, Ying; Xing, Jinming; Liu, Jianzhu

    2015-01-01

    This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP) gene and their association with intramuscular fat (IMF) content in the breast and leg muscles of Baicheng oil chicken (BOC). A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC), 240 silky Baicheng oil chicken (SBOC), and 240 white Baicheng oil chicken (WBOC) were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176) and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145). The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035) was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time. PMID:26323394

  13. Vitamin-D dependent 9 kDa calcium-binding protein gene: cDNA cloning, mRNA distribution and regulation.

    PubMed

    Thomasset, M; Desplan, C; Warembourg, M; Perret, C

    1986-01-01

    Cholecalciferol (calcitriol) the active hormonal form of vitamin D induces the synthesis of at least two intracellular calcium-binding proteins (Ka = 10(6) M-1), the cholecalcins (CaBP) in mammals. We used the synthesis of these proteins to study the genomic steroid-like action of vitamin D. The 9 kDa CaBP is mainly concentrated in the duodenum while 28 kDa CaBP is located in the kidney and cerebellum. Complementary DNA copies of rat intestinal 9 kDa CaBP mRNA were cloned in E. coli. The deduced amino acid sequence for 9 kDa CaBP contains two 'EF hand' domains corresponding to calcium-binding sites I and II. The homology observed suggests, after comparison with the structures of other intracellular CaBPs, that rat 9 kDa CaBP mRNA contains the remains of an untranslated calcium-binding site III-like structure seen in 28 kDa CaBP from kidney and cerebellum of rat. Northern blots showed that the cDNA sequence hybridizes to a homogeneous 500-600 nucleotide mRNA species from rat duodenum. Larger mRNA species encoding 28 kDa CaBP were undetectable in rat kidney and cerebellum even under low stringency conditions. These findings demonstrate that there is no cross-hybridization between 9 kDa and 28 kDa CaBP mRNAs, and Southern analysis indicates that there are distinct genes coding for each rat cholecalcin. The cDNA probe was used to analyze the specific 9 kDa CaBP gene expression along the intestine of growing rats and during gestation and fetal development.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Dietary sunflower oil modulates milk fatty acid composition without major changes in adipose and mammary tissue fatty acid profile or related gene mRNA abundance in sheep.

    PubMed

    Castro-Carrera, T; Frutos, P; Leroux, C; Chilliard, Y; Hervás, G; Belenguer, A; Bernard, L; Toral, P G

    2015-04-01

    There are very few studies in ruminants characterizing mammary and adipose tissue (AT) expression of genes and gene networks for diets causing variations in milk fatty acid (FA) composition without altering milk fat secretion, and even less complementing this information with data on tissue FA profiles. This work was conducted in sheep in order to investigate the response of the mammary gland and the subcutaneous and perirenal AT, in terms of FA profile and mRNA abundance of genes involved in lipid metabolism, to a diet known to modify milk FA composition. Ten lactating Assaf ewes were randomly assigned to two treatments consisting of a total mixed ration based on alfalfa hay and a concentrate (60 : 40) supplemented with 0 (control diet) or 25 (SO diet) g of sunflower oil/kg of diet dry matter for 7 weeks. Milk composition, including FA profile, was analysed after 48 days on treatments. On day 49, the animals were euthanized and tissue samples were collected to analyse FA and mRNA abundance of 16 candidate genes. Feeding SO did not affect animal performance but modified milk FA composition. Major changes included decreases in the concentration of FA derived from de novo synthesis (e.g. 12:0, 14:0 and 16:0) and increases in that of long-chain FA (e.g. 18:0, c9-18:1, trans-18:1 isomers and c9,t11-CLA); however, they were not accompanied by significant variations in the mRNA abundance of the studied lipogenic genes (i.e. ACACA, FASN, LPL, CD36, FABP3, SCD1 and SCD5) and transcription factors (SREBF1 and PPARG), or in the constituent FA of mammary tissue. Regarding the FA composition of AT, the little influence of SO did not appear to be linked to changes in gene mRNA abundance (decreases of GPAM and SREBF1 in both tissues, and of PPARG in the subcutaneous depot). Similarly, the great variation between AT (higher contents of saturated FA and trans-18:1 isomers in the perirenal, and of cis-18:1, c9,t11-CLA and n-3 PUFA in the subcutaneous AT) could not be related to

  15. TATA boxes in gene transcription and poly (A) tails in mRNA stability: New perspective on the effects of berberine

    PubMed Central

    Yuan, Zhi-Yi; Lu, Xi; Lei, Fan; Chai, Yu-Shuang; Wang, Yu-Gang; Jiang, Jing-Fei; Feng, Tian-Shi; Wang, Xin-Pei; Yu, Xuan; Yan, Xiao-Jin; Xing, Dong-Ming; Du, Li-Jun

    2015-01-01

    Berberine (BBR) is a natural compound with variable pharmacological effects and a broad panel of target genes. We investigated berberine’s pharmacological activities from the perspective of its nucleotide-binding ability and discovered that BBR directly regulates gene expression by targeting TATA boxes in transcriptional regulatory regions as well as the poly adenine (poly (A)) tail at the mRNA terminus. BBR inhibits gene transcription by binding the TATA boxes in the transcriptional regulatory region, but it promotes higher levels of expression by targeting the poly (A) tails of mRNAs. The present study demonstrates that TATA boxes and poly (A) tails are the first and second primary targets by which BBR regulates gene expression. The final outcome of gene regulation by BBR depends on the structure of the individual gene. This is the first study to reveal that TATA boxes and poly (A) tails are direct targets for BBR in its regulation of gene expression. Our findings provide a novel explanation for the complex activities of a small molecule compound in a biological system and a novel horizon for small molecule-compound pharmacological studies. PMID:26671652

  16. Genomic organisation of the mouse gene encoding endothelin-converting enzyme-1 (ECE-1) and mRNA expression of ECE-1 isoforms in murine tissues.

    PubMed

    Lindenau, Steffi; von Langsdorff, Christian; Saxena, Amit; Paul, Martin; Orzechowski, Hans-Dieter

    2006-05-24

    Mouse knockout-models have previously revealed important biological functions of endothelin-converting enzyme-1 (ECE-1) in normal cardiac and craniofacial development. Since human ECE-1 is expressed in various isoforms, termed a, b, c, and d, expression of which is controlled by alternative promoters, we postulated that corresponding isoforms may also be transcribed from the murine Ece1 gene. By comparative sequence analysis using exon-specific sequences of human and rat ECE-1 we have resolved the complete exon-intron structure of the murine Ece1 locus on chromosome 4. The murine Ece1 gene comprises 23 exons distributed over 100 kb of genomic DNA and was found to be structurally highly conserved when compared to the human ECE1 gene. As with the human gene, the exons containing isoform-specific sequences were localised in the 5' terminal region of the murine Ece1 gene. Using specific sense primers, isoform-specific expression of murine ECE-1 mRNA in various mouse tissues was confirmed by RT-PCR. Using real-time PCR we demonstrated that ECE-1c was the most abundantly expressed isoform in most tissues, except for heart and aorta displaying a more even isoform distribution. We detected an additional isoform-specific exon, designated c2, which was apparently constitutively spliced and expressed only as minor fraction of ECE-1c transcripts. Our results provide evidence of structural conservation of mammalian genes encoding ECE-1 and will facilitate a more refined analysis of ECE-1 mRNA expression in the mouse model organism.

  17. Interaction of CCR4-NOT with EBF1 regulates gene-specific transcription and mRNA stability in B lymphopoiesis.

    PubMed

    Yang, Cheng-Yuan; Ramamoorthy, Senthilkumar; Boller, Sören; Rosenbaum, Marc; Rodriguez Gil, Alfonso; Mittler, Gerhard; Imai, Yumiko; Kuba, Keiji; Grosschedl, Rudolf

    2016-10-15

    Transcription factor EBF1 (early B-cell factor 1) regulates early B-cell differentiation by poising or activating lineage-specific genes and repressing genes associated with alternative cell fates. To identify proteins that regulate the diverse functions of EBF1, we used SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry of proteins associated with endogenous EBF1 in pro-B cells. This analysis identified most components of the multifunctional CCR4-NOT complex, which regulates transcription and mRNA degradation. CNOT3 interacts with EBF1, and we identified histidine 240 in EBF1 as a critical residue for this interaction. Complementation of Ebf1(-/-) progenitors with EBF1H240A revealed a partial block of pro-B-cell differentiation and altered expression of specific EBF1 target genes that show either reduced transcription or increased mRNA stability. Most deregulated EBF1 target genes show normal occupancy by EBF1H240A, but we also detected genes with altered occupancy, suggesting that the CCR4-NOT complex affects multiple activities of EBF1. Mice with conditional Cnot3 inactivation recapitulate the block of early B-cell differentiation, which we found to be associated with an impaired autoregulation of Ebf1 and reduced expression of pre-B-cell receptor components. Thus, the interaction of the CCR4-NOT complex with EBF1 diversifies the function of EBF1 in a context-dependent manner and may coordinate transcriptional and post-transcriptional gene regulation.

  18. m6A-Driver: Identifying Context-Specific mRNA m6A Methylation-Driven Gene Interaction Networks

    PubMed Central

    Zhang, Song-Yao; Zhang, Shao-Wu; Liu, Lian; Huang, Yufei

    2016-01-01

    As the most prevalent mammalian mRNA epigenetic modification, N6-methyladenosine (m6A) has been shown to possess important post-transcriptional regulatory functions. However, the regulatory mechanisms and functional circuits of m6A are still largely elusive. To help unveil the regulatory circuitry mediated by mRNA m6A methylation, we develop here m6A-Driver, an algorithm for predicting m6A-driven genes and associated networks, whose functional interactions are likely to be actively modulated by m6A methylation under a specific condition. Specifically, m6A-Driver integrates the PPI network and the predicted differential m6A methylation sites from methylated RNA immunoprecipitation sequencing (MeRIP-Seq) data using a Random Walk with Restart (RWR) algorithm and then builds a consensus m6A-driven network of m6A-driven genes. To evaluate the performance, we applied m6A-Driver to build the context-specific m6A-driven networks for 4 known m6A (de)methylases, i.e., FTO, METTL3, METTL14 and WTAP. Our results suggest that m6A-Driver can robustly and efficiently identify m6A-driven genes that are functionally more enriched and associated with higher degree of differential expression than differential m6A methylated genes. Pathway analysis of the constructed context-specific m6A-driven gene networks further revealed the regulatory circuitry underlying the dynamic interplays between the methyltransferases and demethylase at the epitranscriptomic layer of gene regulation. PMID:28027310

  19. Interaction of CCR4–NOT with EBF1 regulates gene-specific transcription and mRNA stability in B lymphopoiesis

    PubMed Central

    Yang, Cheng-Yuan; Ramamoorthy, Senthilkumar; Boller, Sören; Rosenbaum, Marc; Rodriguez Gil, Alfonso; Mittler, Gerhard; Imai, Yumiko; Kuba, Keiji; Grosschedl, Rudolf

    2016-01-01

    Transcription factor EBF1 (early B-cell factor 1) regulates early B-cell differentiation by poising or activating lineage-specific genes and repressing genes associated with alternative cell fates. To identify proteins that regulate the diverse functions of EBF1, we used SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry of proteins associated with endogenous EBF1 in pro-B cells. This analysis identified most components of the multifunctional CCR4–NOT complex, which regulates transcription and mRNA degradation. CNOT3 interacts with EBF1, and we identified histidine 240 in EBF1 as a critical residue for this interaction. Complementation of Ebf1−/− progenitors with EBF1H240A revealed a partial block of pro-B-cell differentiation and altered expression of specific EBF1 target genes that show either reduced transcription or increased mRNA stability. Most deregulated EBF1 target genes show normal occupancy by EBF1H240A, but we also detected genes with altered occupancy, suggesting that the CCR4–NOT complex affects multiple activities of EBF1. Mice with conditional Cnot3 inactivation recapitulate the block of early B-cell differentiation, which we found to be associated with an impaired autoregulation of Ebf1 and reduced expression of pre-B-cell receptor components. Thus, the interaction of the CCR4–NOT complex with EBF1 diversifies the function of EBF1 in a context-dependent manner and may coordinate transcriptional and post-transcriptional gene regulation. PMID:27807034

  20. Transcription organization and mRNA levels of the genes for all 12 subunits of the fission yeast RNA polymerase II.

    PubMed

    Sakurai, H; Ishihama, A

    2001-01-01

    The RNA polymerase II (Pol II) of eukaryotes is composed of 12 subunits, of which five are shared among Pol I, Pol II and Pol III. At present, however, little is known about the regulation of synthesis and assembly of the 12 Pol II subunits. To obtain an insight into the regulation of synthesis of these 12 Pol II subunits, Rpb1 to Rpb12, in the fission yeast Schizosaccharomyces pombe, we analysed the transcriptional organization of the rpb genes by use of the oligo capping method, and determined mRNA levels by quantitative competitive PCR assay. The intracellular concentrations of the 12 Rpb subunits in growing S. pombe cells are different, within a range of 15-fold difference between the least abundant Rpb3 and the most abundant Rpb12. The transcription of one group of genes including rpb3, rpb4, rpb5, rpb6, rpb7 and rpb10 is mainly initiated at a single site, while that of the other group of genes for rpb1, rpb2, rpb8, rpb9, rpb11 and rpb12 is initiated at multiple sites. The promoters of the first group of genes contain the TATA box sequence between -26 and -62, while the second group of genes carry TATA-less promoters. Several common sequence segments, tentatively designated 'Rpb motifs', were identified in the promoter regions of the rpb genes. Competitive PCR analysis indicated that mRNAs for Rpb1, Rpb3, Rpb7 and Rpb9 were among the group which had a low abundance, while the levels of Rpb6 and Rpb10 mRNAs were about fivefold, and that of Rpb2 mRNA was about 40-fold higher than the Rpb3 mRNA level. The levels of rpb mRNAs do not correlate with those of Rpb proteins. The protein-to-mRNA ratio or the translation efficiency is low for the rpb1, rpb2, rpb3 and rpb11 genes, encoding the homologues of subunits beta', beta, alpha and alpha, respectively, of the prokaryotic RNA polymerase core enzyme.

  1. Non-Viral, Lipid-Mediated DNA and mRNA Gene Therapy of the Central Nervous System (CNS): Chemical-Based Transfection.

    PubMed

    Hecker, James G

    2016-01-01

    Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Cationic lipid-mediated delivery is an alternative to viral vector-mediated gene delivery. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation. Lipid-mediated delivery of DNA or RNA is therefore preferable to viral DNA delivery in those clinical applications that do not require long-term expression for chronic conditions. Delivery of RNA may be preferable to non-viral DNA delivery in some clinical applications, because transit across the nuclear membrane is not necessary and onset of expression with RNA is therefore even faster than with DNA, although both are faster than most viral vectors. Here, we describe techniques for cationic lipid-mediated delivery of nucleic acids encoding reporter genes in a variety of cell lines. We describe optimized formulations and transfection procedures that we previously assessed by bioluminescence and flow cytometry. RNA transfection demonstrates increased efficiency relative to DNA transfection in non-dividing cells. Delivery of mRNA results in onset of expression within 1 h after transfection and a peak in expression 5-7 h after transfection. Duration of expression in eukaryotic cells after mRNA transcript delivery depends on multiple factors, including transcript stability, protein turnover, and cell type. Delivery of DNA results in onset of expression within 5 h after transfection, a peak in expression 24-48 h after transfection, and a return to baseline that can be as long as several weeks after transfection. In vitro results are consistent with our in vivo delivery results, techniques for which are described as well. RNA delivery is suitable for short-term transient gene expression due to its rapid onset, short duration of expression and greater efficiency, particularly in non-dividing cells, while the longer duration and

  2. Silent exonic mutations in the low-density lipoprotein receptor gene that cause familial hypercholesterolemia by affecting mRNA splicing.

    PubMed

    Defesche, J C; Schuurman, E J M; Klaaijsen, L N; Khoo, K L; Wiegman, A; Stalenhoef, A F H

    2008-06-01

    In a large group of patients with the clinical phenotype of familial hypercholesterolemia, such as elevated low-density lipoprotein (LDL) cholesterol and premature atherosclerosis, but without functional mutations in the genes coding for the LDL receptor and apolipoprotein B, we examined the effect of 128 seemingly neutral exonic and intronic DNA variants, discovered by routine sequencing of these genes. Two variants, G186G and R385R, were found to be associated with altered splicing. The nucleotide change leading to G186G resulted in the generation of new 3'-splice donor site in exon 4 and R385R was associated with a new 5'-splice acceptor site in exon 9 of the LDL receptor gene. Splicing of these alternate splice sites leads to an in-frame 75-base pair deletion in a stable mRNA of exon 4 in case of G186G and R385R resulted in a 31-base pair frame-shift deletion in exon 9 and non-sense-mediated mRNA decay.

  3. DNA hypomethylation of the COX-2 gene promoter is associated with up-regulation of its mRNA expression in eutopic endometrium of endometriosis.

    PubMed

    Wang, DanBo; Chen, Qi; Zhang, Chiyuan; Ren, Fang; Li, Tong

    2012-05-18

    Accumulated evidence reveals that cyclooxygenase-2 (COX-2) was overexpressed in eutopic endometrium of endometriosis, which may play a critical role in the pathogenesis of endometriosis. However, few studies have been performed to explore the molecular mechanisms underlying the abnormal high expression of COX-2 in endometriosis. Considering the fact that a number of recent studies have shown DNA methylation affecting some genes in endometriosis, the present study was therefore aimed to determine whether the observed high expression COX-2 in endometriosis is caused by the hypomethylation of CpG island within the promoter of this gene. The endometrial tissues were collected from 60 women with endometriosis (endometriosis group) and 20 women without endometriosis (control group). The methylation status of COX-2 was examined by methylation specific PCR. Quantitative real-time RT-PCR was performed to measure COX-2 mRNA level in endometrial tissues. The frequency of promoter hypermethylation of COX-2 was lower in eutopic endometrium of the endometriosis group (41.7%) than that in the control group (75.0%), P < 0.05. COX-2 mRNA level in the eutopic endometrium of the endometriosis group was 2.61-fold higher than that in the control group (P < 0.01). COX-2 mRNA level in unmethylated endometrium of the endometriosis group or the control group was 2.39-fold and 2.66-fold, respectively, higher than that in the methylated endometrium of the same group (P < 0.01). The hypomethylation within the promoter of COX-2 may be responsible for the elevated gene expression in eutopic endometrium of endometriosis.

  4. DNA hypomethylation of the COX-2 gene promoter is associated with up-regulation of its mRNA expression in eutopic endometrium of endometriosis

    PubMed Central

    2012-01-01

    Background Accumulated evidence reveals that cyclooxygenase-2 (COX-2) was overexpressed in eutopic endometrium of endometriosis, which may play a critical role in the pathogenesis of endometriosis. However, few studies have been performed to explore the molecular mechanisms underlying the abnormal high expression of COX-2 in endometriosis. Considering the fact that a number of recent studies have shown DNA methylation affecting some genes in endometriosis, the present study was therefore aimed to determine whether the observed high expression COX-2 in endometriosis is caused by the hypomethylation of CpG island within the promoter of this gene. Methods The endometrial tissues were collected from 60 women with endometriosis (endometriosis group) and 20 women without endometriosis (control group). The methylation status of COX-2 was examined by methylation specific PCR. Quantitative real-time RT-PCR was performed to measure COX-2 mRNA level in endometrial tissues. Results The frequency of promoter hypermethylation of COX-2 was lower in eutopic endometrium of the endometriosis group (41.7%) than that in the control group (75.0%), P < 0.05. COX-2 mRNA level in the eutopic endometrium of the endometriosis group was 2.61-fold higher than that in the control group (P < 0.01). COX-2 mRNA level in unmethylated endometrium of the endometriosis group or the control group was 2.39-fold and 2.66-fold, respectively, higher than that in the methylated endometrium of the same group (P < 0.01). Conclusions The hypomethylation within the promoter of COX-2 may be responsible for the elevated gene expression in eutopic endometrium of endometriosis. PMID:22608095

  5. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5′ UTRs and its implications for eukaryotic gene translation regulation

    PubMed Central

    Pánek, Josef; Kolář, Michal; Vohradský, Jiří; Shivaya Valášek, Leoš

    2013-01-01

    There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA–rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5′ untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5′ UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5′ UTRs of mRNAs. PMID:23804757

  6. An evolutionary conserved pattern of 18S rRNA sequence complementarity to mRNA 5' UTRs and its implications for eukaryotic gene translation regulation.

    PubMed

    Pánek, Josef; Kolár, Michal; Vohradský, Jirí; Shivaya Valásek, Leos

    2013-09-01

    There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA-rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5' untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5' UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5' UTRs of mRNAs.

  7. Pulsed low-level infrared laser alters mRNA levels from muscle repair genes dependent on power output in Wistar rats

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Trajano, E. T. L.; Thomé, A. M. C.; Sergio, L. P. S.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2017-10-01

    Satellite cells are present in skeletal muscle functioning in the repair and regeneration of muscle injury. Activation of these cells depends on the expression of myogenic factor 5 (Myf5), myogenic determination factor 1(MyoD), myogenic regulatory factor 4 (MRF4), myogenin (MyoG), paired box transcription factors 3 (Pax3), and 7 (Pax7). Low-level laser irradiation accelerates the repair of muscle injuries. However, data from the expression of myogenic factors have been controversial. Furthermore, the effects of different laser beam powers on the repair of muscle injuries have been not evaluated. The aim of this study was to evaluate the effects of low-level infrared laser at different powers and in pulsed emission mode on the expression of myogenic regulatory factors and on Pax3 and Pax7 in injured skeletal muscle from Wistar rats. Animals that underwent cryoinjury were divided into three groups: injury, injury laser 25 Mw, and injury laser 75 mW. Low-level infrared laser irradiation (904 nm, 3 J cm‑2, 5 kHz) was carried out at 25 and 75 mW. After euthanasia, skeletal muscle samples were withdrawn and the total RNA was extracted for the evaluation of mRNA levels from the MyoD, MyoG, MRF4, Myf5, Pax3, and Pax7 gene. Pax 7 mRNA levels did not alter, but Pax3 mRNA levels increased in the injured and laser-irradiated group at 25 mW. MyoD, MyoG, and MYf5 mRNA levels increased in the injured and laser-irradiated animals at both powers, and MRF4 mRNA levels decreased in the injured and laser-irradiated group at 75 mW. In conclusion, exposure to pulsed low-level infrared laser, by power-dependent effect, could accelerate the muscle repair process altering mRNA levels from paired box transcription factors and myogenic regulatory factors.

  8. Small, synthetic, GC-rich mRNA stem-loop modules 5′ proximal to the AUG start-codon predictably tune gene expression in yeast

    PubMed Central

    2013-01-01

    Background A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5′ UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Results Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5′ UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = −15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (

  9. Small, synthetic, GC-rich mRNA stem-loop modules 5' proximal to the AUG start-codon predictably tune gene expression in yeast.

    PubMed

    Lamping, Erwin; Niimi, Masakazu; Cannon, Richard D

    2013-07-29

    A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5' UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5' UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = -15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = -4.4 kcal/mol) inhibited

  10. Effects of nitrite stress on mRNA expression of antioxidant enzymes, immune-related genes and apoptosis-related proteins in Marsupenaeus japonicus.

    PubMed

    Zheng, Jinbin; Mao, Yong; Su, Yongquan; Wang, Jun

    2016-11-01

    Nitrite accumulation in aquaculture systems is a potential risk factor that may trigger stress responses in aquatic organisms. However, the mechanisms regulating the responses of shrimp to nitrite stress remain unclear. In this study, full-length cDNA sequences of two apoptosis-related genes, caspase-3 and defender against apoptotic death (DAD-1), were cloned from Marsupenaeus japonicus for the first time, and their expression levels and tissue distribution were analyzed by quantitative real-time PCR (qRT-PCR). The full lengths of Mjcaspase-3 and MjDAD-1 were 1203 bp and 640 bp respectively, with deduced amino acid (AA) sequences of 321 and 114 AA. Mjcaspase-3 was predominantly expressed in haemocytes and weakly expressed in the seven other tissues tested. MjDAD-1 was mainly expressed in the defense and digestive tissues, especially in the hepatopancreas and hemocytes. To explore the influence of nitrite stress on the genetic response of antioxidant enzymes, immune-related genes and apoptosis-related proteins, the mRNA expression profiles of MjCAT, MjMnSOD, Mj-ilys, Mj-sty, Mjcaspase-3 and MjDAD-1 in response to nitrite stress were analyzed by qRT-PCR. The mRNA levels of MjCAT, MjMnSOD, Mj-ilys, Mj-sty, Mjcaspase-3 and MjDAD-1 show both time- and dose-dependent changes in response to nitrite stress. The mRNA expression levels of MjCAT and MjSOD peaked at 6 h for all nitrite concentrations tested (p < 0.05) and the up-regulated of MjCAT and MjSOD exhibited a positive correlation with the nitrite concentration. The mRNA expression levels of Mj-ilys and Mj-sty gradually decreased during the experiment period. Mjcaspase-3 mRNA level reached a maximum at 6 h (p < 0.05), and MjDAD-1 reached its peak at 12 h and 48 h in 10 mg/L and 20 mg/L nitrite, respectively. In addition, CAT and SOD activity showed changes in response to nitrite stress that mirrored the induced expression of MjCAT and MjMnSOD, and prolonged nitrite exposure reduced the activity of CAT. This

  11. The association of SNPs in Hsp90β gene 5' flanking region with thermo tolerance traits and tissue mRNA expression in two chicken breeds.

    PubMed

    Chen, Zhuo-Yu; Gan, Jian-Kang; Xiao, Xiong; Jiang, Li-Yan; Zhang, Xi-Quan; Luo, Qing-Bin

    2013-09-01

    Thermo stress induces heat shock proteins (HSPs) expression and HSP90 family is one of them that has been reported to involve in cellular protection against heat stress. But whether there is any association of genetic variation in the Hsp90β gene in chicken with thermo tolerance is still unknown. Direct sequencing was used to detect possible SNPs in Hsp90β gene 5' flanking region in 3 chicken breeds (n = 663). Six mutations, among which 2 SNPs were chosen and genotypes were analyzed with PCR-RFLP method, were found in Hsp90β gene in these 3 chicken breeds. Association analysis indicated that SNP of C.-141G>A in the 5' flanking region of the Hsp90β gene in chicken had some effect on thermo tolerance traits, which may be a potential molecular marker of thermo tolerance, and the genotype GG was the thermo tolerance genotype. Hsp90β gene mRNA expression in different tissues detected by quantitative real-time PCR assay were demonstrated to be tissue dependent, implying that different tissues have distinct sensibilities to thermo stress. Besides, it was shown time specific and varieties differences. The expression of Hsp90β mRNA in Lingshan chickens in some tissues including heart, liver, brain and spleen were significantly higher or lower than that of White Recessive Rock (WRR). In this study, we presume that these mutations could be used in marker assisted selection for anti-heat stress chickens in our breeding program, and WRR were vulnerable to tropical thermo stress whereas Lingshan chickens were well adapted.

  12. Correlation of the A-FABP Gene Polymorphism and mRNA Expression with Intramuscular Fat Content in Three-Yellow Chicken and Hetian-Black Chicken.

    PubMed

    Wang, Yong; Chen, Hongwei; Han, Diangang; Chen, Ying; Muhatai, Gemingguli; Kurban, Tursunjan; Xing, Jinming; He, Jianzhong

    2017-01-02

    The adipocyte-type fatty acid-binding protein (A-FABP) is considered a candidate gene for fat metabolism; thus, it affects fat deposition in chickens. The present study was designed to examine the polymorphism and mRNA abundance of the A-FABP gene with intramuscular fat (IMF) in the pectoralis muscles (PM) and leg muscles (LM) of Three-yellow Chicken (TYC) and Hetian-black Chicken (HTBC). In total, 60 TYCs and 60 HTBCs were sacrificed using exsanguination at market age. The IMF contents of the PM and LM in the HTBC were significantly higher than those in the TYC. Three genotypes of the A-FABP gene first exon, AA, AB, and BB, were examined by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP), and a C51 T mutational site, which is a silent substitution mutation, was revealed. The IMF contents of the AA genotype in the PM of the HTBC were significantly higher than those in the AB genotype; thus, the C51 T mutable site is a gene marker for selecting a higher IMF content in the PM of the HTBC. The relative expression of the A-FABP mRNA in the LM of the HTBC, which was measured by quantitative real-time PCR, was significantly higher than in the TYC. A significantly positive association was detected between A-FABP expression with the IMF contents of the PM and LM of both the TYC and the HTBC. These results provide basic data that might be helpful to further research the role of the A-FABP gene in fat deposition and fatty acid metabolism in chickens.

  13. Association analysis between SNPs in the 5'-flanking region of the chicken GRP78 gene, thermotolerance parameters, and tissue mRNA expression.

    PubMed

    Kong, L N; Zhang, D X; Ji, C L; Zhang, X Q; Luo, Q B

    2015-06-10

    Glucose-regulated protein 78 (GRP78) is a molecular chaperone in the endoplasmic reticulum and can be induced by different kinds of environmental and physiological stress. Thus far, the role of the GRP78 gene in thermotolerance in chickens has not been investigated. In the present study, we detected sequence variations in the 5ꞌ-flanking region of the GRP78 gene and evaluated several thermotolerance parameters, such as T3, corticosterone, H/L ratio, and levels of CD3(+), CD4(+), and CD8(+) T cells, to further determine its associations at 35° and 15°C. The sequencing results revealed 10 SNPs in the 5'-flanking region of the GRP78 gene, and seven mutations were chosen for further genotyping in a White Recessive Rock (WRR) chicken population. The SNP C.-744C>G in WRR chickens was significantly correlated with heat tolerance parameters under both conditions; it may therefore exert a potential hereditary effect on heat tolerance, and the genotype GG may be advantageous for thermotolerance. The heart, liver, brain, and leg muscle tissues of 8-day-old WRR chickens were sampled from heat stress groups, which were defined by exposure to 1, 2, 3, and 6 h of persistent thermal stress, and a control group, which was not exposed to thermal stress. Quantitative real-time polymerase chain reaction assay indicated that the mRNA expression level of the GRP78 gene increased gradually under heat stress, peaked at 3 h, and then decreased. We conclude that the mRNA expression of the GRP78 gene is time- and tissue-dependent.

  14. [Differential expression of genes related to photoperiod-temperature sensitive genic male sterility in wheat, revealed by mRNA differential display using G-box family primer].

    PubMed

    Cao, Shuang-He; Liu, Dong-Cheng; Liu, Li-Ke; Guo, Xiao-Li; Zhang, Ai-Min

    2003-01-01

    mRNA differential display with G-box family primer was used to analyze the differential expression of genes of the photoperiod-temperature sensitive genic male sterile(PTSGMS) line of wheat, BAU3338, between the sterile and fertile conditions. The result indicated that gene expression was significantly different between the two types of condition during the fertility transformation phase. The twelve qualitatively different DNA bands were identified with reverse Northern blot hybridization and five positive clones, HT1-G10, HT1-G3, HT2-G2, HT1-G4 and HT2-G5 were sequenced. The homology search indicated that HT1-G10 was highly homological (96%) to the partial sequences of Triticum aestivum chloroplast genes, rbcL and atpB, HT1-G3 was also homological (88%) to Triticum aestivum histone H2A gene and the other three gene fragments were new sequences in Gen-Bank. The analysis of the candidate gene fragments supplied some effective evidences to reveal the developmental mechanism of PTSGMS.

  15. Altered hepatic mRNA expression of immune response and apoptosis-associated genes after acute and chronic psychological stress in mice.

    PubMed

    Depke, Maren; Steil, Leif; Domanska, Grazyna; Völker, Uwe; Schütt, Christine; Kiank, Cornelia

    2009-09-01

    Using a combination of transcriptional profiling and Ingenuity Pathway Analysis (IPA, www.ingenuity.com) we investigated acute and chronic psychological stress induced alterations of hepatic gene expression of BALB/c mice. Already after a 2-h single stress session, up-regulation of several LPS and glucocorticoid-sensitive immune response genes and markers related to oxidative stress and apoptotic processes were observed. Support for the existence of oxidative stress was gained by measuring increased protein carbonylation, but no alterations of immune responsiveness or cell death were measured in mice after acute stress compared to the control group. When animals were repeatedly stressed during 4.5-days, we found reduced transcription of antigen presentation molecules, altered mRNA levels of immune cell signaling mediators and persisting high expression of apoptosis-related genes. These alterations were associated with a measurable immune suppression characterized by a reduced ability to clear experimental Salmonella typhimurium infection from the liver and a heightened hepatocyte apoptosis. Moreover, genes associated with anti-oxidative functions and regenerative processes were induced in the hepatic tissue of chronically stressed mice. These findings indicate that modulation of the immune response and of apoptosis-related genes is initiated already during a single acute stress exposure. However, immune suppression will only manifest in repeatedly stressed mice which additionally show induction of protective and liver regenerative genes to prevent further hepatocyte damage.

  16. Estrogenic environmental contaminants alter the mRNA abundance profiles of genes involved in gonadal differentiation of the American bullfrog

    PubMed Central

    Wolff, Stephanie E.; Veldhoen, Nik; Helbing, Caren C.; Ramirez, Claire A.; Malpas, Janae M.; Propper, Catherine R.

    2015-01-01

    Wildlife and human populations are exposed to anthropogenic mixtures of chemicals in the environment that may adversely influence normal reproductive function and development. We determined the effects of exposure to estrogenic chemicals and wastewater effluent (WWE) on developing gonads of the American bullfrog, Rana (Lithobates) catesbeiana, a species whose widespread distribution make it an ideal model for environmental monitoring for endocrine effects of chemical contaminants. Premetamorphic bullfrog tadpoles were exposed to treatment vehicle, 17β-estradiol (E2; 10−9 M) or 4-tert-octylphenol (OP; 10−9 M, 10−8 M, and 10−7 M). Additionally, gonadal differentiation was evaluated in bullfrog tadpoles from a WWE-containing site versus those from a reference location receiving no WWE. In both studies, phenotypic sex, steroidogenic factor-1 (nr5a1), and aromatase (cyp19a1) mRNA levels using quantitative real-time PCR were determined. Exposure to E2 or OP did not alter sex ratios. In controls, both nr5a1 and cyp19a1 transcript levels exhibited sexual dimorphism, with males demonstrating higher levels of nr5a1 and females greater abundance of cyp19a1. However, E2 exposure increased cyp19a1 mRNA abundance in testes and decreased levels in ovaries, eliminating the sexual dimorphism observed in controls. E2-exposed males exhibited increased nr5a1 transcript levels in the testes compared to controls, while females demonstrated no E2 effect. OP treatment had no effect on female cyp19a1 mRNA abundance, but exposure to 10−7 M OP increased testicular transcript levels. Treatment with 10−9 and 10−8 M OP, but not 10−7 M, resulted in decreased abundance of nr5a1 transcript in both ovaries and testes. Animals from the field had sexually dimorphic gonadal levels of cyp19a1, but both sexes from the WWE site exhibited elevated cyp19a1 transcript abundance compared to the reference location. Individual chemical compounds and anthropogenic wastewater effluent dispersed

  17. Estrogenic environmental contaminants alter the mRNA abundance profiles of genes involved in gonadal differentiation of the American bullfrog.

    PubMed

    Wolff, Stephanie E; Veldhoen, Nik; Helbing, Caren C; Ramirez, Claire A; Malpas, Janae M; Propper, Catherine R

    2015-07-15

    Wildlife and human populations are exposed to anthropogenic mixtures of chemicals in the environment that may adversely influence normal reproductive function and development. We determined the effects of exposure to estrogenic chemicals and wastewater effluent (WWE) on developing gonads of the American bullfrog, Rana (Lithobates) catesbeiana, a species whose widespread distribution make it an ideal model for environmental monitoring of endocrine effects of chemical contaminants. Premetamorphic bullfrog tadpoles were exposed to treatment vehicle, 17β-estradiol (E2; 10(-9)M) or 4-tert-octylphenol (OP; 10(-9)M, 10(-8)M, and 10(-7)M). Additionally, gonadal differentiation was evaluated in bullfrog tadpoles from a WWE-containing site versus those from a reference location receiving no WWE. In both studies, phenotypic sex, steroidogenic factor-1 (nr5a1), and aromatase (cyp19a1) mRNA levels using quantitative real-time PCR were determined. Exposure to E2 or OP did not alter sex ratios. In controls, both nr5a1 and cyp19a1 transcript levels exhibited sexual dimorphism, with males demonstrating higher levels of nr5a1 and females greater abundance of cyp19a1. However, E2 exposure increased cyp19a1 mRNA abundance in testes and decreased levels in ovaries, eliminating the sexual dimorphism observed in controls. E2-exposed males exhibited increased nr5a1 transcript levels in the testes compared to controls, while females demonstrated no E2 effect. OP treatment had no effect on female cyp19a1 mRNA abundance, but exposure to 10(-7)M OP increased testicular transcript levels. Treatment with 10(-9) and 10(-8)M OP, but not 10(-7)M, resulted in decreased abundance of nr5a1 transcript in both ovaries and testes. Animals from the field had sexually dimorphic gonadal levels of cyp19a1, but both sexes from the WWE site exhibited elevated cyp19a1 transcript abundance compared to the reference location. Individual chemical compounds and anthropogenic wastewater effluent dispersed within

  18. Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression patterns of lipid regulatory genes in gilthead sea bream (Sparus aurata).

    PubMed

    Benedito-Palos, Laura; Calduch-Giner, Josep A; Ballester-Lozano, Gabriel F; Pérez-Sánchez, Jaume

    2013-04-14

    The effect of ration size on muscle fatty acid (FA) composition and mRNA expression levels of key regulatory enzymes of lipid and lipoprotein metabolism have been addressed in juveniles of gilthead sea bream fed a practical diet over the course of an 11-week trial. The experimental setup included three feeding levels: (i) full ration until visual satiety, (ii) 70 % of satiation and (iii) 70 % of satiation with the last 2 weeks at the maintenance ration. Feed restriction reduced lipid content of whole body by 30 % and that of fillet by 50 %. In this scenario, the FA composition of fillet TAG was not altered by ration size, whereas that of phospholipids was largely modified with a higher retention of arachidonic acid and DHA. The mRNA transcript levels of lysophosphatidylcholine acyltransferases, phosphatidylethanolamine N-methyltransferase and FA desaturase 2 were not regulated by ration size in the present experimental model. In contrast, mRNA levels of stearoyl-CoA desaturases were markedly down-regulated by feed restriction. An opposite trend was found for a muscle-specific lipoprotein lipase, which is exclusive of fish lineage. Several upstream regulatory transcriptions were also assessed, although nutritionally mediated changes in mRNA transcripts were almost reduced to PPARα and β, which might act in a counter-regulatory way on lipolysis and lipogenic pathways. This gene expression pattern contributes to the construction of a panel of biomarkers to direct marine fish production towards muscle lean phenotypes with increased retentions of long-chain PUFA.

  19. Effects of Saturated Long-chain Fatty Acid on mRNA Expression of Genes Associated with Milk Fat and Protein Biosynthesis in Bovine Mammary Epithelial Cells.

    PubMed

    Qi, Lizhi; Yan, Sumei; Sheng, Ran; Zhao, Yanli; Guo, Xiaoyu

    2014-03-01

    This study was conducted to determine the effects of saturated long-chain fatty acids (LCFA) on cell proliferation and triacylglycerol (TAG) content, as well as mRNA expression of αs1-casein (CSN1S1) and genes associated with lipid and protein synthesis in bovine mammary epithelial cells (BMECs). Primary cells were isolated from the mammary glands of Holstein dairy cows, and were passaged twice. Then cells were cultured with different levels of palmitate or stearate (0, 200, 300, 400, 500, and 600 μM) for 48 h and fetal bovine serum in the culture solution was replaced with fatty acid-free BSA (1 g/L). The results showed that cell proliferation tended to be increased quadratically with increasing addition of stearate. Treatments with palmitate or stearate induced an increase in TAG contents at 0 to 600 μM in a concentration-dependent manner, and the addition of 600 μM was less effective in improving TAG accumulation. The expression of acetyl-coenzyme A carboxylase alpha, fatty acid synthase and fatty acid-binding protein 3 was inhibited when palmitate or stearate were added in culture medium, whereas cluster of differentiation 36 and CSN1S1 mRNA abundance was increased in a concentration-dependent manner. The mRNA expressions of peroxisome proliferator-activated receptor gamma, mammalian target of rapamycin and signal transducer and activator of transcription 5 with palmitate or stearate had no significant differences relative to the control. These results implied that certain concentrations of saturated LCFA could stimulate cell proliferation and the accumulation of TAG, whereas a reduction may occur with the addition of an overdose of saturated LCFA. Saturated LCFA could up-regulate CSN1S1 mRNA abundance, but further studies are necessary to elucidate the mechanism for regulating milk fat and protein synthesis.

  20. Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers

    SciTech Connect

    Hanova, Monika; Stetina, Rudolf; Vodickova, Ludmila; Vaclavikova, Radka; Hlavac, Pavel; Smerhovsky, Zdenek; Naccarati, Alessio; Polakova, Veronika; Soucek, Pavel; Kuricova, Miroslava; Manini, Paola; Kumar, Rajiv; Hemminki, Kari; Vodicka, Pavel

    2010-11-01

    Decreased levels of single-strand breaks in DNA (SSBs), reflecting DNA damage, have previously been observed with increased styrene exposure in contrast to a dose-dependent increase in the base-excision repair capacity. To clarify further the above aspects, we have investigated the associations between SSBs, micronuclei, DNA repair capacity and mRNA expression in XRCC1, hOGG1 and XPC genes on 71 styrene-exposed and 51 control individuals. Styrene concentrations at workplace and in blood characterized occupational exposure. The workers were divided into low (below 50 mg/m{sup 3}) and high (above 50 mg/m{sup 3}) styrene exposure groups. DNA damage and DNA repair capacity were analyzed in peripheral blood lymphocytes by Comet assay. The mRNA expression levels were determined by qPCR. A significant negative correlation was observed between SSBs and styrene concentration at workplace (R = - 0.38, p = 0.001); SSBs were also significantly higher in men (p = 0.001). The capacity to repair irradiation-induced DNA damage was the highest in the low exposure group (1.34 {+-} 1.00 SSB/10{sup 9} Da), followed by high exposure group (0.72 {+-} 0.81 SSB/10{sup 9} Da) and controls (0.65 {+-} 0.82 SSB/10{sup 9} Da). The mRNA expression levels of XRCC1, hOGG1 and XPC negatively correlated with styrene concentrations in blood and at workplace (p < 0.001) and positively with SSBs (p < 0.001). Micronuclei were not affected by styrene exposure, but were higher in older persons and in women (p < 0.001). In this study, we did not confirm previous findings on an increased DNA repair response to styrene-induced genotoxicity. However, negative correlations of SSBs and mRNA expression levels of XRCC1, hOGG1 and XPC with styrene exposure warrant further highly-targeted study.

  1. Methods of RNA preparation affect mRNA abundance quantification of reference genes in pig maturing oocytes.

    PubMed

    Wang, Y-K; Li, X; Song, Z-Q; Yang, C-X

    2017-10-01

    To ensure accurate normalization and quantification of target RNA transcripts using reverse transcription quantitative polymerase chain reaction (RT-qPCR), most studies focus on the identification of stably expressed gene(s) as internal reference. However, RNA preparation methods could also be an important factor, especially for test samples of limited quantity (e.g. oocytes). In this study, we aimed to select appropriate reference gene(s), and evaluate the effect of RNA preparation methods on gene expression quantification in porcine oocytes and cumulus cells during in vitro maturation. Expression profiles of seven genes (GAPDH, 18S, YWHAG, BACT, RPL4, HPRT1 and PPIA) were examined, on RNA samples extracted from cumulus cells (RNeasy Kit) and oocytes (RNeasy Kit and Lysis Kit) during in vitro maturation, respectively. Interestingly, different RNA preparation methods were found to potentially affect the quantification of reference gene expression in pig oocytes cultured in vitro. After geNorm analyses, the most suitable genes for normalization were identified, GAPDH/18S for cumulus cells and YWHAG/BACT for oocytes, respectively. Thus, our results provide useful data and information on the selection of better reference genes and RNA preparation method for related functional studies. © 2017 Blackwell Verlag GmbH.

  2. Zona pellucida gene mRNA expression in human oocytes is related to oocyte maturity, zona inner layer retardance and fertilization competence.

    PubMed

    Canosa, S; Adriaenssens, T; Coucke, W; Dalmasso, P; Revelli, A; Benedetto, C; Smitz, J

    2017-05-01

    Do the mRNA expression levels of zona pellucida (ZP) genes, ZP1, 2, 3 and 4 in oocyte and cumulus cells (CC) reveal relevant information on the oocyte? The ZP mRNA expression in human oocytes is related to oocyte maturity, zona inner layer (IL) retardance and fertilization capacity. ZP structure and birefringence provide useful information on oocyte cytoplasmic maturation, developmental competence for embryonic growth, blastocyst formation and pregnancy. In order to understand the molecular basis of morphological changes in the ZP, in the current study, the polarized light microscopy (PLM) approach was combined with analysis of the expression of the genes encoding ZP1, 2, 3 and 4, both in the oocytes and in the surrounding CC. This is a retrospective study comprising 98 supernumerary human cumulus oocyte complexes (COC) [80 Metaphase II (MII), 10 Metaphase I (MI) and 8 germinal vesicle (GV)] obtained from 39 patients (median age 33.4 years, range 22-42) after controlled ovarian stimulation. Single oocytes and their corresponding CC were analysed. Oocytes were examined using PLM, and quantitative RT-PCR was performed for ZP1, 2, 3 and 4 in these individual oocytes and their CC. Ephrin-B2 (EFNB2) mRNA was measured in CC as a control. Presence of ZP3 protein in CC and oocytes was investigated using immunocytochemistry. Data were analysed using one-parametric and multivariate analysis and were corrected for the potential impact of patient and cycle characteristics. Oocytes contained ZP1/2/3 and 4 mRNA while in CC only ZP3 was quantifiable. Also ZP3 protein was detected in human CC. When comparing mature (MII) and immature oocytes (MI/GV) or their corresponding CC, ZP1/2 and 4 expression was lower in mature oocytes compared to the expression in immature oocytes (all P < 0.05) and ZP3 expression was lower in the CC of mature oocytes compared to the expression in CC of immature oocytes (P < 0.05). This coincided with a significantly smaller IL-ZP area and thickness in

  3. Zinc-bearing zeolite clinoptilolite improves tissue zinc accumulation in laying hens by enhancing zinc transporter gene mRNA abundance.

    PubMed

    Li, Linfeng; Li, Ping; Chen, Yueping; Wen, Chao; Zhuang, Su; Zhou, Yanmin

    2015-08-01

    A study was conducted to investigate effects of zinc-bearing zeolite clinoptilolite (ZnCP), as an alternative for zinc sulfate (ZnSO4), on laying performance, tissue Zn accumulation and Zn transporter genes expression in laying hens. Hy-Line Brown laying hens were allocated to three treatments, each of which had six replicates with 15 hens per replicate, receiving basal diet supplemented with ZnSO4 (control, 80 mg Zn/kg diet), 0.23% ZnCP (40.25 mg Zn/kg diet) and 0.46% ZnCP (80.50 mg Zn/kg diet) for 8 weeks, respectively. Compared with control, hens fed diet containing 0.23% ZnCP had similar Zn content in measured tissues (P > 0.05). A higher ZnCP inclusion (0.46%) enhanced Zn accumulation in liver (P < 0.05) and pancreas (P < 0.05). In addition, ZnCP inclusion increased blood iron (Fe) content (P < 0.05). ZnCP supplementation enhanced jejunal metallothionein-4 (MT-4) messenger RNA (mRNA) abundance (P < 0.05). ZnCP inclusion at a higher level (0.46%) increased mRNA expression of MT-4 in pancreas (P < 0.05) and zinc transporter-1 (ZnT-1) in jejunum (P < 0.05). The highest ZnT-2 mRNA abundance in jejunum was found in hens fed 0.23% ZnCP inclusion diet (P < 0.05). The results indicated that ZnCP reached a higher bioavailability as compared with ZnSO4 as evidenced by enhanced tissue Zn accumulation and Zn transporter genes expression. © 2015 Japanese Society of Animal Science.

  4. Effects of Dietary Selenium Against Lead Toxicity on mRNA Levels of 25 Selenoprotein Genes in the Cartilage Tissue of Broiler Chicken.

    PubMed

    Gao, H; Liu, C P; Song, S Q; Fu, J

    2016-07-01

    The interactions between the essential element selenium (Se) and the toxic element lead (Pb) have been reported extensively; however, little is known about the effect of Se on Pb toxicity and the expression pattern of selenoproteins in the cartilage of chicken. To investigate the effects of Se on Pb toxicity and the messenger RNA (mRNA) expressions of selenoproteins in cartilage tissue, an in vitro study was performed on 1-day-old broiler chickens (randomly allocated into four groups) with diet of different concentration of Se and Pb. After 90 days, the meniscus cartilage and sword cartilage tissue were examined for the mRNA levels of 25 selenoprotein genes. The results showed that Se and Pb influenced the expression of selenoprotein genes in the chicken cartilage tissue. In detail, Se could alleviate the downtrend of the expression of Gpx1, Gpx2, Gpx4, Txnrd2, Txnrd3, Dio1, Dio2, Seli, Selu, Sepx1, Selk, Selw, Selo, Selm, Sep15, Sepnn1, Sels, and Selt induced by Pb exposure in the meniscus cartilage. In the sword cartilage, Se alleviated the downtrend of the expression of Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Dio2, Dio3, Seli, Selh, SPS2, Sepx1, Selk, Selw, Selo, Selm, Sep15, Selpb, Sepn1, and Selt induced by Pb exposure. The present study provided some compensated data about the roles of Se against Pb toxicity in the regulation of selenoprotein expression.

  5. Familial retinoblastoma due to intronic LINE-1 insertion causes aberrant and noncanonical mRNA splicing of the RB1 gene.

    PubMed

    Rodríguez-Martín, Carlos; Cidre, Florencia; Fernández-Teijeiro, Ana; Gómez-Mariano, Gema; de la Vega, Leticia; Ramos, Patricia; Zaballos, Ángel; Monzón, Sara; Alonso, Javier

    2016-05-01

    Retinoblastoma (RB, MIM 180200) is the paradigm of hereditary cancer. Individuals harboring a constitutional mutation in one allele of the RB1 gene have a high predisposition to develop RB. Here, we present the first case of familial RB caused by a de novo insertion of a full-length long interspersed element-1 (LINE-1) into intron 14 of the RB1 gene that caused a highly heterogeneous splicing pattern of RB1 mRNA. LINE-1 insertion was inferred by mRNA studies and full-length sequenced by massive parallel sequencing. Some of the aberrant mRNAs were produced by noncanonical acceptor splice sites, a new finding that up to date has not been described to occur upon LINE-1 retrotransposition. Our results clearly show that RNA-based strategies have the potential to detect disease-causing transposon insertions. It also confirms that the incorporation of new genetic approaches, such as massive parallel sequencing, contributes to characterize at the sequence level these unique and exceptional genetic alterations.

  6. Resistance to antidepressant treatment is associated with polymorphisms in the leptin gene, decreased leptin mRNA expression, and decreased leptin serum levels.

    PubMed

    Kloiber, Stefan; Ripke, Stephan; Kohli, Martin A; Reppermund, Simone; Salyakina, Daria; Uher, Rudolf; McGuffin, Peter; Perlis, Roy H; Hamilton, Steven P; Pütz, Benno; Hennings, Johannes; Brückl, Tanja; Klengel, Torsten; Bettecken, Thomas; Ising, Marcus; Uhr, Manfred; Dose, Tatjana; Unschuld, Paul G; Zihl, Josef; Binder, Elisabeth; Müller-Myhsok, Bertram; Holsboer, Florian; Lucae, Susanne

    2013-07-01

    Leptin, a peptide hormone from adipose tissue and key player in weight regulation, has been suggested to be involved in sleep and cognition and to exert antidepressant-like effects, presumably via its action on the HPA-axis and hippocampal function. This led us to investigate whether genetic variants in the leptin gene, the level of leptin mRNA-expression and leptin serum concentrations are associated with response to antidepressant treatment. Our sample consisted of inpatients from the Munich Antidepressant Response Signature (MARS) project with weekly Hamilton Depression ratings, divided into two subsamples. In the exploratory sample (n=251) 17 single nucleotide polymorphisms (SNPs) covering the leptin gene region were genotyped. We found significant associations of several SNPs with impaired antidepressant treatment outcome and impaired cognitive performance after correction for multiple testing. The SNP (rs10487506) showing the highest association with treatment response (p=3.9×10(-5)) was analyzed in the replication sample (n=358) and the association could be verified (p=0.021) with response to tricyclic antidepressants. In an additional meta-analysis combining results from the MARS study with data from the Genome-based Therapeutic Drugs for Depression (GENDEP) and the Sequenced Treatment Alternatives to Relieve Depression (STAR(⁎)D) studies, nominal associations of several polymorphisms in the upstream vicinity of rs10487506 with treatment outcome were detected (p=0.001). In addition, we determined leptin mRNA expression in lymphocytes and leptin serum levels in subsamples of the MARS study. Unfavorable treatment outcome was accompanied with decreased leptin mRNA and leptin serum levels. Our results suggest an involvement of leptin in antidepressant action and cognitive function in depression with genetic polymorphisms in the leptin gene, decreased leptin gene expression and leptin deficiency in serum being risk factors for resistance to antidepressant

  7. Relative abundance of tissue mRNA and association of the single nucleotide polymorphism of the goat NGF gene with prolificacy.

    PubMed

    Naicy, Thomas; Venkatachalapathy, R Thirupathy; Aravindakshan, T V; Raghavan, K C; Mini, M; Shyama, K

    2016-10-01

    Nerve Growth Factor (NGF) promotes the development of pre-antral ovarian follicles through ovarian innervations and regulation of ovarian response to gonadotropins. The present study was conducted to study the tissue gene expression profile, to characterize the genetic variants, find associations of the NGF gene with prolificacy in the prolific Malabari and less prolific Attappady Black goats because NGF has an important role in reproduction by augmenting ovarian folliculogenesis. Relative abundance of NGF mRNA was greatest in reproductive tissues signifying its role in reproduction. The PCR-SSCP analysis of a 251bp fragment of Exon 3 of the NGF gene from the 277 goats revealed four diplotypes (EE, EF, FF and EG) with respective frequencies of 0.76, 0.22, 0.01 and 0.01. Sequencing of the representative samples revealed one synonymous and one novel non synonymous mutations (g.705G>A and g.715C>T). Statistical analysis indicated that the SNP g.705G>A was associated with litter size in Attappady Black goats (P<0.05) and a PCR-RFLP was designed using the restriction enzyme, BpiI, for rapid screening of the SNP. The results of the present study suggest that the NGF gene is a primary candidate gene affecting prolificacy in goats and may be used for Marker Assisted Selection (MAS) in goats, especially in lowly prolific Attappady Black goats.

  8. Effects of anti-IgM suppression on polyclonally activated murine B cells: analysis of immunoglobulin mRNA, gene specific nuclear factors and cell cycle distribution.

    PubMed Central

    Marcuzzi, A; Van Ness, B; Rouse, T; Lafrenz, D

    1989-01-01

    Polyclonal activation of murine B cells with bacterial lipopolysaccharide (LPS) and dextran sulfate (DxS) results in cell proliferation as well as increased immunoglobulin gene transcription and antibody secretion. When added to B cell cultures during mitogen activation, anti-mu antibody suppresses the rate of proliferation and immunoglobulin gene expression. Using this model system we show that co-cultures of B cells with LPS/DxS and anti-mu resulted in a decrease of both mu and kappa chain mRNA. Suppression did not prevent B cell entry into cycle nor a significant alteration in the distribution of cells in phases of cell cycle, although it did prolong the cycle transit time in a dose dependent fashion as determined by bromodeoxyuridine pulse labelling. Analysis of B cell specific nuclear binding factors, which previously have been shown to be important in regulating immunoglobulin gene transcription were examined. Results show that the kappa-specific enhancer binding activity of NF-kappa B was induced in activated as well as suppressed cultures. The lymphoid specific factor NF-A2, which recognizes the octamer sequence motif in the promoters of immunoglobulin genes, was induced by the polyclonal activation but was selectively lost in extracts from suppressed cells. Thus, specific regulation of the nuclear factor which plays a critical role in both heavy and light chain immunoglobulin gene expression may contribute to the transcriptional suppression observed in anti-mu treated B cells. Images PMID:2481271

  9. Gene microarray analysis of lncRNA and mRNA expression profiles in patients with hypopharyngeal squamous cell carcinoma

    PubMed Central

    Zhou, Jieyu; Li, Wenming; Jin, Tong; Xiang, Xuan; Li, Maocai; Wang, Juan; Li, Guojun; Pan, Xinliang; Lei, Dapeng

    2015-01-01

    Background: Studies have shown that long noncoding RNAs (lncRNAs) are involved in the development and progression of many types of cancer. However, the mechanisms by which lncRNAs influence development and progression of hypopharyngeal squamous cell carcinoma (HSCC) are unclear. Method: We investigated differences in lncRNA and mRNA expression profiles between 3 pairs of HSCC tissues and adjacent nontumor tissues by microarray analysis. Results: In HSCC tissues, 1299 lncRNAs were significantly upregulated (n=669) or downregulated (n=630) compared to levels in adjacent nontumor tissues. Moreover, 1432 mRNAs were significantly upregulated (n=684) or downregulated (n=748) in HSCC tissues. We randomly selected 2 differentially expressed lncRNAs (AB209630, AB019562) and 2 differentially expressed mRNAs (SPP1, TJP2) for confirmation of microarray results using qRT-PCR. The qRT-PCR results matched well with the microarray data. The differentially expressed lncRNAs and mRNAs were distributed on each of the chromosomes, including the X and Y chromosomes. Pathway analysis indicated that the biological functions of differentially expressed mRNAs were related to 48 cellular pathways that may be associated with HSCC development. GO analysis revealed that 593 mRNAs involved in biological processes, 50 mRNAs involved in cellular components, and 46 mRNAs involved in molecular functions were upregulated in the carcinomas; 280 mRNAs involved in biological processes, 58 mRNAs involved in cellular components, and 71 mRNAs involved in molecular functions were downregulated in the carcinomas. In addition, 8 enhancer-like lncRNAs and 21 intergenic lncRNAs with their adjacent mRNA pairs were identified as coregulated transcripts. Conclusion: These findings provide insight into the mechanisms underlying HSCC tumorigenesis and will facilitate identification of new therapeutic targets and diagnostic biomarkers for this disease. PMID:26131061

  10. [Expression of mRNA and protein of Klotho gene in placental tissue of macrosomia and its relationship with birth weight of neonates].

    PubMed

    Shao, W J; Wang, D X; Wan, Q Y; Zhang, M M; Chen, M M; Song, W W

    2016-06-25

    To explore the the expression of Klotho mRNA and protein in placenta of macrosomia and its relationship with the birth weight of neonates. The cases were from November 2014 to March 2015 in Shengjing Hospital of China Medical University, divided into 4 groups: the gestational diabetes with macrosomia group (GM), the gestational diabetes with normal birth weight group (GN), the normal pregnancy with macrosomia group (NM) and the normal pregnancy with normal birth weight group (NN). Klotho mRNA and protein expression in the placenta were detected by immunohistochemistry SP method, real-time fluorescent quantitative PCR and western blot, respectively, and were compared among the 4 groups. (1) Immunohistochemical detection showed the positive rate of Klotho protein was significantly higher in the placenta of GM (93%,28/30) than in the GN (73%,22/30; P<0.05). The positive rate was significantly higher in the placenta of NM (97%,29/30) than in the NN (80%,24/30; P<0.05). (2) Real-time fluorescent quantitative PCR showed the Klotho mRNA expression was significantly higher in the placenta of GM (4.3 ± 3.1) than in the GN (2.1 ± 2.4; P<0.05). The Klotho mRNA expression was also significantly higher in the placenta of NM (4.8± 3.4) than in the NN (2.6± 3.3; P<0.05). (3) Western blot showed the Klotho protein expression was significantly higher in the placenta of GM (1.27±0.90) than in the GN (0.64±0.24; P<0.05). It was also significantly higher in the placenta of NM (2.51±3.52) than in the NN (0.77±0.37; P<0.05). (4) There were no significant differences in the expression of Klotho mRNA and protein between GM and NM, GN and NN (P>0.05). The up-regulation of Klotho gene may be associated with macrosomia. The relationship is not affected by the complication of gestational diabetes.

  11. Dual bidirectional promoters at the mouse dhfr locus: cloning and characterization of two mRNA classes of the divergently transcribed Rep-1 gene.

    PubMed Central

    Linton, J P; Yen, J Y; Selby, E; Chen, Z; Chinsky, J M; Liu, K; Kellems, R E; Crouse, G F

    1989-01-01

    The mouse dihydrofolate reductase gene (dhfr) is a housekeeping gene expressed under the control of a promoter region embedded in a CpG island--a region rich in unmethylated CpG dinucleotides. A divergent transcription unit exists immediately upstream of the dhfr gene which is coamplified with dhfr in some but not all methotrexate-resistant cell lines. We show that the promoter region for this gene pair consists of two bidirectional promoters, a major and minor promoter, which are situated within a 660-base-pair region upstream of the dhfr ATG translation initiation codon. The major promoter controls over 90% of dhfr transcription, while the minor promoter directs the transcription of the remaining dhfr mRNAs. The major promoter functions bidirectionally, transcribing a divergent 4.0-kilobase poly(A) mRNA (class A) in the direction opposite that of dhfr transcription. The predicted protein product of this mRNA is 105 kilodaltons. The minor promoter also functions bidirectionally, directing the transcription of at least two divergent RNAs (class B). These RNAs, present in quantities approximately 1/10 to 1/50 that of the class A mRNAs, are 4.4- and 1.6-kilobase poly(A) mRNAs. cDNAs representing both class A and class B mRNAs have been cloned from a mouse fibroblast cell line which has amplified the dhfr locus (3T3R500). DNA sequence analysis of these cDNAs reveals that the class A and class B mRNAs share, for the most part, the same exons. On the basis of S1 nuclease protection analysis of RNA preparations from several mouse tissues, both dhfr and divergent genes showed similar levels of expression but did show some specificity in start site utilization. Computer homology searches have revealed sequence similarity of the divergent transcripts with bacterial genes involved in DNA mismatch repair, and we therefore have named the divergently transcribed gene Rep-1. Images PMID:2674679

  12. Cyp1B1 mRNA expression in correlation to cotinine levels with respect to the Cyp1B1 L432V gene polymorphism.

    PubMed

    Helmig, Simone; Seelinger, Jens Udo; Philipp-Gehlhaar, Monika; Döhrel, Juliane; Schneider, Joachim

    2010-12-01

    Cytochrome P450 1B1 (CYP1B1) is involved in the activation of a broad spectrum of procarcinogens. An association of the Cyp1B1 Leu432Val polymorphism with cancer as well as an impact on the enzyme activity has been described. To study gene-environmental interactions we investigated the quantitative Cyp1B1 mRNA expression in smokers (N = 102) and non-smokers (N = 192) with regards to the Cyp1B1 L432V gene polymorphism. Tobacco smoke exposure was assessed by serum cotinine levels. Genotypes were analysed by melting curve analysis and quantification of Cyp1B1 mRNA by real-time PCR. In comparing Cyp1B1 expression, significant differences between the two homozygote genotypes *1/*1 and *3/*3 (0.105 ± 0.019; n = 26 vs. 0.051 ± 0.017; n = 14; P = 0.039) and between the heterozygote genotype *1/*3 and *3/*3 (0.121 ± 0.029; n = 55 vs. 0.051 ± 0.017; n = 14; P = 0.039) of smokers were revealed. According to the serum cotinine levels, three subgroups (low; medium; high) were build. The group "high" (0.248 ± 0.089; n = 32) showed proportionally high Cyp1B1 mRNA expression compared to "medium" (0.101 ± 0.024; n = 33), "low" (0.086 ± 0.015; n = 32) and non-smokers (0.084 ± 0.007; n = 176). This result was reflected in the homozygote *1/*1 and the heterozygote *1/*3 genotypes. In contrast the homozygote *3/*3 genotype was missing the high Cyp1B1 mRNA expression in the cotinine subgroup "high". Our results suggest that genotypes carrying the C-allele (*1/*1 and *1/*3) at Cyp1B1 Leu432Val polymorphism show a higher response to environmental factors, such as tobacco smoke than homozygote *3/*3 genotypes.

  13. mRNA Levels of Placental Iron and Zinc Transporter Genes Are Upregulated in Gambian Women with Low Iron and Zinc Status.

    PubMed

    Jobarteh, Modou Lamin; McArdle, Harry J; Holtrop, Grietje; Sise, Ebrima A; Prentice, Andrew M; Moore, Sophie E

    2017-07-01

    Background: The role of the placenta in regulating micronutrient transport in response to maternal status is poorly understood.Objective: We investigated the effect of prenatal nutritional supplementation on the regulation of placental iron and zinc transport.Methods: In a randomized trial in rural Gambia [ENID (Early Nutrition and Immune Development)], pregnant women were allocated to 1 of 4 nutritional intervention arms: 1) iron and folic acid (FeFol) tablets (FeFol group); 2) multiple micronutrient (MMN) tablets (MMN group); 3) protein energy (PE) as a lipid-based nutrient supplement (LNS; PE group); and 4) PE and MMN (PE+MMN group) as LNS. All arms included iron (60 mg/d) and folic acid (400 μg/d). The MMN and PE+MMN arms included 30 mg supplemental Zn/d. In a subgroup of ∼300 mother-infant pairs, we measured maternal iron status, mRNA levels of genes encoding for placental iron and zinc transport proteins, and cord blood iron levels.Results: Maternal plasma iron concentration in late pregnancy was 45% and 78% lower in the PE and PE+MMN groups compared to the FeFol and MMN groups, respectively (P < 0.001). The mRNA levels of the placental iron uptake protein transferrin receptor 1 were 30-49% higher in the PE and PE+MMN arms than in the FeFol arm (P < 0.031), and also higher in the PE+MMN arm (29%; P = 0.042) than in the MMN arm. Ferritin in infant cord blood was 18-22% lower in the LNS groups (P < 0.024). Zinc supplementation in the MMN arm was associated with higher maternal plasma zinc concentrations (10% increase; P < 0.001) than in other intervention arms. mRNA levels for intracellular zinc-uptake proteins, in this case zrt, irt-like protein (ZIP) 4 and ZIP8, were 96-205% lower in the PE+MMN arm than in the intervention arms without added zinc (P < 0.025). Furthermore, mRNA expression of ZIP1 was 85% lower in the PE+MMN group than in the PE group (P = 0.003).Conclusion: In conditions of low maternal iron and in the absence of supplemental zinc, the

  14. Quantitative mRNA expression analysis of selected genes in patients with early-stage hypothyroidism induced by treatment with iodine-131.

    PubMed

    Guo, Kun; Gao, Rui; Yu, Yan; Zhang, Weixiao; Yang, Yuxuan; Yang, Aimin

    2015-11-01

    The present study aimed to investigate the molecular markers indicative of early-stage hypothyroidism induced by treatment with iodine-131, in order to assist in further investigations of radio iodine‑induced hypothyroidism. A total of 59 patients diagnosed with hyperthyroidism (male/female, 16/43; median age, 46.4 years) and 27 healthy subjects (male/female, 7/21; median age, 44.6 years) were included in the present study. All patients were treated with appropriate doses of iodine‑131 and, three months following treatment, the patients were subdivided into two groups: A group with early‑stage hypothyroidism symptoms, and a group with non‑early‑stage hypothyroidism, including euthyroid patients and patients remaining with hyperthyroidism. Tissue samples from the patients and healthy subjects were collected by fine needle biopsies, and the mRNA expression levels of B-cell lymphoma 2 (Bcl‑2), nuclear factor (NF)‑κB, Ku70, epidermal growth factor receptor (EGFR), early growth response 1 (Egr‑1), TP53 and ataxia telangiectasia mutated were analyzed using reverse transcription‑quantitative polymerase chain reaction prior to iodine‑131 treatment. The association of the variation of target genes with susceptibility to early‑stage hypothyroidism was analyzed. Compared with normal subjects, the mRNA expression levels of Ku70 (0.768, vs. 3.304, respectively; P<0.001) and EGFR (0.859, vs. 1.752, respectively; P<0.05) were significantly higher, whereas those of NF‑κB (0.884, vs. 0.578, respectively; P<0.05) and Bcl‑2 (1.235, vs. 0.834, respectively; P<0.05) were lower in the hyperthyroid patients. Following treatment with iodine‑131, 30 of the 59 (50.8%) patients with hyperthyroidism were diagnosed with early‑stage hypothyroidism, and in the early‑stage hypothyroidism group, the mRNA expression levels of Bcl‑2 were significantly decreased (P<0.05), whereas those of Egr‑1 (P<0.05) were significantly increased, compared with the non

  15. Proteomic approach to the identification of novel delta-lactoferrin target genes: Characterization of DcpS, an mRNA scavenger decapping enzyme.

    PubMed

    Mariller, Christophe; Hardivillé, Stephan; Hoedt, Esthelle; Benaïssa, Monique; Mazurier, Joël; Pierce, Annick

    2009-01-01

    The expression of the transcription factor DeltaLf is deregulated in cancer cells. Its overexpression provokes cell cycle arrest along with antiproliferative effects and we recently showed that the Skp1 gene promoter was a target of DeltaLf. Skp1 belongs to the Skp1/Cullin-1/F-box ubiquitin ligase complex responsible for the ubiquitination and the proteosomal degradation of numerous cellular regulators. The transcriptional activity of DeltaLf is highly controlled and negatively regulated by O-GlcNAc, a dynamic post-translational modification known to regulate the functions of many intracellular proteins. We, therefore, constructed a DeltaLf-M4 mutant corresponding to a constitutively active DeltaLf isoform in which all the glycosylation sites were mutated. In order to discover novel targets of DeltaLf transcriptional activity and to investigate the impact of the O-GlcNAc regulation on this activity in situ we compared the proteome profiles of DeltaLf- and DeltaLf-M4-expressing HEK293 cells versus null plasmid transfected cells. A total of 14 differentially expressed proteins were visualized by 2D electrophoresis and silver staining and eight proteins were identified by mass spectrometry analyses (MALDI-TOF; LC-MS/MS), all of which were upregulated. The identified proteins are involved in several processes such as mRNA maturation and stability, cell viability, proteasomal degradation, protein and mRNA quality control. Among these proteins, only DcpS and TCPB were also upregulated at the mRNA level. Analysis of their respective promoters led to the detection of a cis-regulating element in the DcpS promoter. The S1(DcpS) is 80% identical to the S1 sequence previously described by He and Furmanski [Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA, Nature 373 (1995) 721-724]. Reporter gene analyses and ChIP assays demonstrated that DeltaLf interacts specifically with the DcpS promoter in vivo. These data established that DcpS, a

  16. Sequence polymorphism of GroEL gene in natural population of Bacillus and Brevibacillus spp. that showed variation in thermal tolerance capacity and mRNA expression.

    PubMed

    Sen, R; Tripathy, S; Padhi, S K; Mohanty, S; Maiti, N K

    2014-10-01

    GroEL, a class I chaperonin, plays an important role in the thermal adaptation of the cell and helps to maintain the viability of the cell under heat shock condition. Function of groEL in vivo depends on the maintenance of proper structure of the protein which in turn depends on the nucleotide and amino acid sequence of the gene. In this study, we investigated the changes in nucleotide and amino acid sequences of the partial groEL gene that may affect the thermotolerance capacity as well as mRNA expression of bacterial isolates. Sequences among the same species having differences in the amino acid level were identified as different alleles. The effect of allelic variation on the groEL gene expression was analyzed by comparison and relative quantification in each allele under thermal shock condition by RT-PCR. Evaluation of K a/K s ratio among the strains of same species showed that the groEL gene of all the species had undergone similar functional constrain during evolution. The strains showing similar thermotolerance capacity was found to carry same allele of groEL gene. The isolates carrying allele having amino acid substitution inside the highly ATP/ADP or Mg(2+)-binding region could not tolerate thermal stress and showed lower expression of the groEL gene. Our results indicate that during evolution of these bacterial species the groEL gene has undergone the process of natural selection, and the isolates have evolved with the groEL allelic sequences that help them to withstand the thermal stress during their interaction with the environment.

  17. Divergently expressed gene identification and interaction prediction of long noncoding RNA and mRNA involved in duck reproduction.

    PubMed

    Ren, Jindong; Du, Xue; Zeng, Tao; Chen, Li; Shen, Junda; Lu, Lizhi; Hu, Jianhong

    2017-10-01

    Long noncoding RNAs (lncRNAs) and divergently expressed genes exist widely in different tissues of mammals and birds, in which they are involved in various biological processes. However, there is limited information on their role in the regulation of normal biological processes during differentiation, development, and reproduction in birds. In this study, whole transcriptome strand-specific RNA sequencing of the ovary from young ducks (60days), first-laying ducks (160days), and old ducks, i.e., ducks that stopped laying eggs (490days) was performed. The lncRNAs and mRNAs from these ducks were systematically analyzed and identified by duck genome sequencing in the three study groups. The transcriptome from the duck ovary comprised 15,011 protein-coding genes and 2905 lncRNAs; all the lncRNAs were identified as novel long noncoding transcripts. The comparison of transcriptome data from different study groups identified 2240 divergent transcription genes and 135 divergently expressed lncRNAs, which differed among the groups; most of them were significantly downregulated with age. Among the divergent genes, 38 genes were related to the reproductive process and 6 genes were upregulated. Further prediction analysis revealed that 52 lncRNAs were closely correlated with divergent reproductive mRNAs. More importantly, 6 remarkable lncRNAs were correlated significantly with the conversion of the ovary in different phases. Our results aid in the understanding of the divergent transcriptome of duck ovary in different phases and the underlying mechanisms that drive the specificity of protein-coding genes and lncRNAs in duck ovary. Copyright © 2017. Published by Elsevier B.V.

  18. Novel mutations causing biotinidase deficiency in individuals identified by newborn screening in Michigan including an unique intronic mutation that alters mRNA expression of the biotinidase gene.

    PubMed

    Li, H; Spencer, L; Nahhas, F; Miller, J; Fribley, A; Feldman, G; Conway, R; Wolf, B

    2014-07-01

    Biotinidase deficiency (BD) is an autosomal recessive disorder resulting in the inability to recycle the vitamin biotin. Individuals with biotinidase deficiency can develop neurological and cutaneous symptoms if they are not treated with biotin. To date, more than 165 mutations in the biotinidase gene (BTD) have been reported. Essentially all the mutations result in enzymatic activities with less than 10% of mean normal serum enzyme activity (profound biotinidase deficiency) with the exception of the c.1330G>C (p.D444H) mutation, which results in an enzyme having 50% of mean normal serum activity and causes partial biotinidase deficiency (10-30% of mean normal serum biotinidase activity) if there is a mutation for profound biotinidase deficiency on the second allele. We now reported eight novel mutations in ten children identified by newborn screening in Michigan from 1988 to the end of 2012. Interestingly, one intronic mutation, c.310-15delT, results in an approximately two-fold down-regulation of BTD mRNA expression by Quantitative real-time reverse-transcription PCR (qRT-PCR). This is the first report of an intronic mutation in the BTD gene with demonstration of its effect on enzymatic activity by altering mRNA expression. This study identified three other mutations likely to cause partial biotinidase deficiency. These results emphasize the importance of full gene sequencing of BTD on patients with biotinidase deficiency to better understand the genotype and phenotype correlation in the future. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Bone health nutraceuticals alter microarray mRNA gene expression: A randomized, parallel, open-label clinical study.

    PubMed

    Lin, Yumei; Kazlova, Valentina; Ramakrishnan, Shyam; Murray, Mary A; Fast, David; Chandra, Amitabh; Gellenbeck, Kevin W

    2016-01-15

    Dietary intake of fruits and vegetables has been suggested to have a role in promoting bone health. More specifically, the polyphenols they contain have been linked to physiological effects related to bone mineral density and bone metabolism. In this research, we use standard microarray analyses of peripheral whole blood from post-menopausal women treated with two fixed combinations of plant extracts standardized to polyphenol content to identify differentially expressed genes relevant to bone health. In this 28-day open-label study, healthy post-menopausal women were randomized into three groups, each receiving one of three investigational fixed combinations of plant extracts: an anti-resorptive (AR) combination of pomegranate fruit (Punica granatum L.) and grape seed (Vitis vinifera L.) extracts; a bone formation (BF) combination of quercetin (Dimorphandra mollis Benth) and licorice (Glycyrrhiza glabra L.) extracts; and a fixed combination of all four plant extracts (AR plus BF). Standard microarray analysis was performed on peripheral whole blood samples taken before and after each treatment. Annotated genes were analyzed for their association to bone health by comparison to a gene library. The AR combination down-regulated a number of genes involved in reduction of bone resorption including cathepsin G (CTSG) and tachykinin receptor 1 (TACR1). The AR combination also up-regulated genes associated with formation of extracellular matrix including heparan sulfate proteoglycan 2 (HSPG2) and hyaluronoglucosaminidase 1 (HYAL1). In contrast, treatment with the BF combination resulted in up-regulation of bone morphogenetic protein 2 (BMP-2) and COL1A1 (collagen type I α1) genes which are linked to bone and collagen formation while down-regulating genes linked to osteoclastogenesis. Treatment with a combination of all four plant extracts had a distinctly different effect on gene expression than the results of the AR and BF combinations individually. These results could

  20. Detection of three nonsense mutations and one missense mutation in the interleukin-2 receptor [gamma] chain gene in SCIDX1 that differently affect the mRNA processing

    SciTech Connect

    Markiewicz, S.; Fischer, A.; Saint Basile, G. de ); Subtil, A.; Dautry-Varsat, A. )

    1994-05-01

    The interleukin-2 receptor [gamma] (IL-2R[gamma]) chain gene encodes a 64-kDa protein that not only composes the high-affinity form of the IL-2 binding receptor in association with the 2R [alpha] and [beta] chains, but also participates in at least the IL-4 and IL-7 receptor complexes. Mutations in this gene have recently been shown to cause X-linked severe combined immunodeficiency (SCIDX1). This disease of the immune system results from an early block of T lymphocyte and natural killer (NK) cell differentiation, which leads to a severe cellular and humoral immune defect that is lethal unless treated by bone marrow transplantation. Analysis of the IL-2R[gamma] gene in SCIDX1 patients has revealed the presence of heterogeneous mutations principally located in the extracellular domain of the molecule. We report here three intraexonic mutations and one deletion in the IL-2R[gamma] gene in four SCIDX1 patients. These mutations appear to differentially affect RNA processing, either by decreasing IL-2R[gamma] mRNA level or by the skipping of a constitutive exon. 16 refs., 1 fig.

  1. Association between mRNA expression of chemotherapy-related genes and clinicopathological features in colorectal cancer: A large-scale population analysis.

    PubMed

    Shimamoto, Yuji; Nukatsuka, Mamoru; Takechi, Teiji; Fukushima, Masakazu

    2016-02-01

    To establish the individualized treatment of patients with colorectal cancer, factors associated with chemotherapeutic effects should be identified. However, to the best of our knowledge, few studies are available on this topic, although it is known that the prognosis of patients and sensitivity to chemotherapy depend on the location of the tumor and that the tumor location is important for individualized treatment. In this study, primary tumors obtained from 1,129 patients with colorectal cancer were used to measure the mRNA expression levels of the following genes associated with the effects of standard chemotherapy for colorectal cancer: 5-fluorouracil (5-FU)-related thymidylate synthase (TYMS), dihydropyrimidine dehydrogenase (DPYD) and thymidine phosphorylase (TYMP); folate-related dihydrofolate reductase (DHFR), folylpolyglutamate synthase (FPGS) and gamma-glutamyl hydrolase (GGH); irinotecan-related topoisomerase I (TOP1); oxaliplatin-related excision repair cross-complementing 1 (ERCC1); biologic agent-related vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR). Large-scale population analysis was performed to determine the association of gene expression with the clinicopathological features, in particular, the location of the colorectal cancer. From the results of our analysis of the mRNA expression of these 10 genes, we noted the strongest correlation between DPYD and TYMP, followed by TYMS and DHFR. The location of the colorectal cancer was classified into 4 regions (the right‑ and left-sided colon, rectosigmoid and rectum) and was compared with gene expression. A significant difference in all genes, apart from VEGF, was noted. Of the remaining 9 genes, the highest expression of TYMS and DPYD was observed in the right‑sided colon; the highest expression of GGH and EGFR was noted in the left-sided colon; the highest expression of DHFR, FPGS, TOP1 and ERCC1 was noted in the rectosigmoid, whereas TYMP expression was

  2. Association between mRNA expression of chemotherapy-related genes and clinicopathological features in colorectal cancer: A large-scale population analysis

    PubMed Central

    SHIMAMOTO, YUJI; NUKATSUKA, MAMORU; TAKECHI, TEIJI; FUKUSHIMA, MASAKAZU

    2016-01-01

    To establish the individualized treatment of patients with colorectal cancer, factors associated with chemotherapeutic effects should be identified. However, to the best of our knowledge, few studies are available on this topic, although it is known that the prognosis of patients and sensitivity to chemotherapy depend on the location of the tumor and that the tumor location is important for individualized treatment. In this study, primary tumors obtained from 1,129 patients with colorectal cancer were used to measure the mRNA expression levels of the following genes associated with the effects of standard chemotherapy for colorectal cancer: 5-fluorouracil (5-FU)-related thymidylate synthase (TYMS), dihydropyrimidine dehydrogenase (DPYD) and thymidine phosphorylase (TYMP); folate-related dihydrofolate reductase (DHFR), folylpolyglutamate synthase (FPGS) and gamma-glutamyl hydrolase (GGH); irinotecan-related topoisomerase I (TOP1); oxaliplatin-related excision repair cross-complementing 1 (ERCC1); biologic agent-related vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR). Large-scale population analysis was performed to determine the association of gene expression with the clinicopathological features, in particular, the location of the colorectal cancer. From the results of our analysis of the mRNA expression of these 10 genes, we noted the strongest correlation between DPYD and TYMP, followed by TYMS and DHFR. The location of the colorectal cancer was classified into 4 regions (the right- and left-sided colon, rectosigmoid and rectum) and was compared with gene expression. A significant difference in all genes, apart from VEGF, was noted. Of the remaining 9 genes, the highest expression of TYMS and DPYD was observed in the right-sided colon; the highest expression of GGH and EGFR was noted in the left-sided colon; the highest expression of DHFR, FPGS, TOP1 and ERCC1 was noted in the rectosigmoid, whereas TYMP expression was

  3. Expression of retinoblastoma gene product (pRb) in mantle cell lymphomas. Correlation with cyclin D1 (PRAD1/CCND1) mRNA levels and proliferative activity.

    PubMed Central

    Jares, P.; Campo, E.; Pinyol, M.; Bosch, F.; Miquel, R.; Fernandez, P. L.; Sanchez-Beato, M.; Soler, F.; Perez-Losada, A.; Nayach, I.; Mallofré, C.; Piris, M. A.; Montserrat, E.; Cardesa, A.

    1996-01-01

    Mantle cell lymphomas (MCLs) are molecularly characterized by bcl-1 rearrangement and constant cyclin D1 (PRAD-1/CCND1) gene overexpression. Cyclin D1 is a G1 cyclin that participates in the control of the cell cycle progression by interacting with the retinoblastoma gene product (pRb). Inactivation of the Rb tumor suppressor gene has been implicated in the development of different types of human tumors including some high grade non-Hodgkin's lymphomas. To determine the role of the retinoblastoma gene in the pathogenesis of MCLs and its possible interaction with cyclin D1, pRb expression was examined in 23 MCLs including 17 typical and 6 blastic variants by immunohistochemistry and Western blot. Rb gene structure was studied in 13 cases by Southern blot. Cytogenetic analysis was performed in 5 cases. The results were compared with the cyclin D1 mRNA levels examined by Northern analysis, and the proliferative activity of the tumors was measured by Ki-67 growth fraction and flow cytometry. pRb was expressed in all MCLs. The expression varied from case to case (mean, 14.1% of positive cells; range, 1.3 to 42%) with a significant correlation with the proliferative activity of the tumors (mitotic index r = 0.85; Ki-67 r = 0.7; S phase = 0.73). Blastic variants showed higher numbers of pRb-positive cells (mean, 29%) than the typical cases (10%; P < 0.005) by immunohistochemistry and, concordantly, higher levels of expression by Western blot. In addition, the blastic cases also had an increased expression of the phosphorylated protein. No alterations in Rb gene structure were observed by Southern blot analysis. Cyclin D1 mRNA levels were independent of pRb expression and the proliferative activity of the tumors. These findings suggest that pRb in MCLs is normally regulated in relation to the proliferative activity of the tumors. Cyclin D1 overexpression may play a role in the maintenance of cell proliferation by overcoming the suppressive growth control of pRb. Images

  4. Methylation of the tryptophan hydroxylase‑2 gene is associated with mRNA expression in patients with major depression with suicide attempts.

    PubMed

    Zhang, Yuqi; Chang, Zaohuo; Chen, Jionghua; Ling, Yang; Liu, Xiaowei; Feng, Zhang; Chen, Caixia; Xia, Minghua; Zhao, Xingfu; Ying, Wang; Qing, Xu; Li, Guilin; Zhang, Changsong

    2015-08-01

    Tryptophan hydroxylase-2 (TPH2) contributes to alterations in the function of neuronal serotonin (5-HT), which are associated with various psychopathologies, including major depressive disorder (MDD) or suicidal behavior. The methylation of a single CpG site in the promoter region of TPH2 affects gene expression. Suicide and MDD are strongly associated and genetic factors are at least partially responsible for the variability in suicide risk. The aim of the present study was to investigate whether variations in TPH2 methylation in peripheral blood samples may predispose patients with MDD to suicide attempts. TPH2 mRNA expression levels differed significantly between 50 patients with MDD who had attempted suicide (MDD + suicide group) and 75 control patients with MDD (MDD group); TPH2 expression levels were significantly decreased (P=0.0005) in the patients who had attempted suicide. Furthermore, the frequency of TPH2 methylation was 36.0% in the MDD + suicide group, while it was 13.0% in the MDD group. The results of the present study demonstrated that methylation in the promoter region of TPH2 significantly affected the mRNA expression levels of TPH2, thus suggesting that methylation of the TPH2 promoter may silence TPH2 mRNA expression in MDD patients with or without suicidal behavior. In addition, there was a significant correlation between the methylation status of the TPH2 promoter and depression, hopelessness and cognitive impairment in the MDD + suicide group. In conclusion, the present study demonstrated that TPH2 expression was regulated by DNA methylation of the TPH2 promoter region in patients with MDD.

  5. One Gene and Two Proteins: a Leaderless mRNA Supports the Translation of a Shorter Form of the Shigella VirF Regulator

    PubMed Central

    Di Martino, Maria Letizia; Romilly, Cédric; Colonna, Bianca

    2016-01-01

    ABSTRACT VirF, an AraC-like activator, is required to trigger a regulatory cascade that initiates the invasive program of Shigella spp., the etiological agents of bacillary dysentery in humans. VirF expression is activated upon entry into the host and depends on many environmental signals. Here, we show that the virF mRNA is translated into two proteins, the major form, VirF30 (30 kDa), and the shorter VirF21 (21 kDa), lacking the N-terminal segment. By site-specific mutagenesis and toeprint analysis, we identified the translation start sites of VirF30 and VirF21 and showed that the two different forms of VirF arise from differential translation. Interestingly, in vitro and in vivo translation experiments showed that VirF21 is also translated from a leaderless mRNA (llmRNA) whose 5′ end is at position +309/+310, only 1 or 2 nucleotides upstream of the ATG84 start codon of VirF21. The llmRNA is transcribed from a gene-internal promoter, which we identified here. Functional analysis revealed that while VirF30 is responsible for activation of the virulence system, VirF21 negatively autoregulates virF expression itself. Since VirF21 modulates the intracellular VirF levels, this suggests that transcription of the llmRNA might occur when the onset of the virulence program is not required. We speculate that environmental cues, like stress conditions, may promote changes in virF mRNA transcription and preferential translation of llmRNA. PMID:27834204

  6. Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic gene expression

    NASA Astrophysics Data System (ADS)

    Bobrowski, Adam; Lipniacki, Tomasz; Pichór, Katarzyna; Rudnicki, Ryszard

    2007-09-01

    The paper is devoted to a stochastic process introduced in the recent paper by Lipniacki et al. [T. Lipniacki, P. Paszek, A. Marciniak-Czochra, A.RE Brasier, M. Kimmel, Transcriptional stochasticity in gene expression, JE Theor. Biol. 238 (2006) 348-367] in modelling gene expression in eukaryotes. Starting from the full generator of the process we show that its distributions satisfy a (Fokker-Planck-type) system of partial differential equations. Then, we construct a c0 Markov semigroup in L1 space corresponding to this system. The main result of the paper is asymptotic stability of the involved semigroup in the set of densities.

  7. Noncoding 3' sequences of the transferrin receptor gene are required for mRNA regulation by iron.

    PubMed Central

    Owen, D; Kühn, L C

    1987-01-01

    The cell-surface receptor for transferrin mediates cellular uptake of iron from serum. Transferrin receptor protein and mRNA levels are increased in cells treated with iron chelating agents, and are decreased by treatment with iron salts or hemin. Here we report that expression of human transferrin receptor cDNA constructions in stably transfected mouse fibroblasts is regulated both by the iron chelator, desferrioxamine, and by hemin. We found that sequences within the 3' noncoding region are required for the iron-dependent feed-back regulation of receptor expression, whereas the presence of the transferrin receptor promoter region is not necessary. Regulation by iron is observed when transcription is initiated at either the SV-40 early promoter or the transferrin receptor promoter, but deletion of a 2.3 kb fragment within the 2.6 kb 3' noncoding region of the cDNA abolishes regulation and increases the constitutive level of receptor expression. Furthermore, the 3' deletion does not affect the decrease in receptors which is observed in response to growth arrest, indicating that transferrin receptor expression is controlled by at least two distinct mechanisms. Images Fig. 3. Fig. 6. Fig. 8. PMID:3608980

  8. Trinucleotide Repeat Expansion in the Transcription Factor 4 (TCF4) Gene Leads to Widespread mRNA Splicing Changes in Fuchs' Endothelial Corneal Dystrophy

    PubMed Central

    Wieben, Eric D.; Aleff, Ross A.; Tang, Xiaojia; Butz, Malinda L.; Kalari, Krishna R.; Highsmith, Edward W.; Jen, Jin; Vasmatzis, George; Patel, Sanjay V.; Maguire, Leo J.; Baratz, Keith H.; Fautsch, Michael P.

    2017-01-01

    Purpose To identify RNA missplicing events in human corneal endothelial tissue isolated from Fuchs' endothelial corneal dystrophy (FECD). Methods Total RNA was isolated and sequenced from corneal endothelial tissue obtained during keratoplasty from 12 patients with FECD and 4 patients undergoing keratoplasty or enucleation for other indications. The length of the trinucleotide repeat (TNR) CTG in the transcription factor 4 (TCF4) gene was determined using leukocyte-derived DNA analyzed by a combination of Southern blotting and Genescan analysis. Commercial statistical software was used to quantify expression of alternatively spliced genes. Validation of selected alternative splicing events was performed by using RT-PCR. Gene sets identified were analyzed for overrepresentation using Web-based analysis system. Results Corneal endothelial tissue from FECD patients containing a CTG TNR expansion sequence in the TCF4 gene revealed widespread changes in mRNA splicing, including a novel splicing event involving FGFR2. Differential splicing of NUMA1, PPFIBP1, MBNL1, and MBNL2 transcripts were identified in all FECD samples containing a TNR expansion. The differentially spliced genes were enriched for products that localize to the cell cortex and bind cytoskeletal and cell adhesion proteins. Conclusions Corneal endothelium from FECD patients harbors a unique signature of mis-splicing events due to CTG TNR expansion in the TCF4 gene, consistent with the hypothesis that RNA toxicity contributes to the pathogenesis of FECD. Changes to the endothelial barrier function, a known event in the development of FECD, was identified as a key biological process influenced by the missplicing events. PMID:28118661

  9. Gene expression as a circular process: cross-talk between transcription and mRNA degradation in eukaryotes; International University of Andalusia (UNIA) Baeza, Spain.

    PubMed

    Collart, Martine A; Reese, Joseph C

    2014-01-01

    Studies on the regulation of gene expression in eukaryotes in the past 20 years have consistently revealed increasing levels of complexity. Thirty years ago it seemed that we had understood the basic principles of gene regulation in eukaryotes. It was thought that regulation of transcription was the first and most important stage at which gene expression was regulated, and transcriptional regulation was considered to be very simple, with DNA-binding activators and repressors talking to the basic transcription machinery. This simple model was overthrown when it became clear that other stages of gene expression are also highly regulated. More recently, other dogmas have started to collapse. In particular, the idea that a linkage between the different steps in gene expression is restricted to processes ongoing in the same compartment has fallen out of favor. It is now evident that functional and physical linkage occurs in eukaryotes. We know that factors contributing to transcription in the nucleus can be found in the cytoplasm, and that RNA binding proteins that contribute to RNA decay in the cytoplasm are present in the nucleus. However, shuttling of such factors between nucleus and cytoplasm has traditionally been thought to serve a simple regulatory purpose, for instance, to avoid untimely activation of a transcription factor in the nucleus. Alternatively, it was thought to be necessary to recruit RNA binding proteins to the relevant RNAs. The notion that is now emerging is that factors thought to have evolved to specialize in regulating a single step of gene regulation in one cellular compartment may be contributing to the regulation of mRNAs at multiple steps along the lifecycle of an mRNA.

  10. The arabidopsis polyamine transporter LHRI/AtPUT3 modulates heat responsive gene expression by regulating mRNA stability

    USDA-ARS?s Scientific Manuscript database

    Polyamines (PA) involve in the gene regulation by interacting with various anionic macromolecules such as DNA, RNA and proteins and modulating their structure and function. Previous studies have showed that changing in polyamine biosynthesis alters plant response to different abiotic stresses. Here,...

  11. Calmodulin Gene Family in Potato: Developmental and Touch-Induced Expression of the mRNA Encoding a Novel Isoform

    NASA Technical Reports Server (NTRS)

    Takezawa, D.; Liu, Z. H.; An, G.; Poovaiah, B. W.

    1995-01-01

    Eight genomic clones of potato calmodulin (PCM1 to 8) were isolated and characterized. Sequence comparisons of different genes revealed that the deduced amino acid sequence of PCM1 had several unique substitutions, especially in the fourth Ca(2+)-binding area. The expression patterns of different genes were studied by northern analysis using the 3'-untranslated regions as probes. The expression of PCM1, 5, and 8 was highest in the stolon tip and it decreased during tuber development. The expression of PCM6 did not vary much in the tissues tested, except in the leaves, where the expression was lower; whereas, the expression of PCM4 was very low in all the tissues. The expression of PCM2 and PCM3 was not detected in any of the tissues tested. Among these genes, only PCM1 showed increased expression following touch stimulation. To study the regulation of PCM1, transgenic potato plants carrying the PCM1 promoter fused to the beta-glucuronidase (GUS) reporter gene were produced. GUS expression was found to be developmentally regulated and touch-responsive, indicating a positive correlation between the expression of PCM1 and GUS mRNAs. These results suggest that the 5'-flanking region of PCM1 controls developmental and touch-induced expression. X-Gluc staining patterns revealed that GUS localization is high in meristematic tissues such as the stem apex, stolon tip, and vascular regions.

  12. Sodium fluoride affects zebrafish behaviour and alters mRNA expressions of biomarker genes in the brain: Role of Nrf2/Keap1.

    PubMed

    Mukhopadhyay, Debdip; Priya, Pooja; Chattopadhyay, Ansuman

    2015-09-01

    Sodium fluoride (NaF), used as pesticides and for industrial purposes are deposited in the water bodies and therefore affects its biota. Zebrafish exposed to NaF in laboratory condition showed hyperactivity and frequent surfacing activity, somersaulting and vertical swimming pattern as compared to the control group. Reactive oxygen species level was elevated and glutathione level was depleted along with increased malondialdehyde content in the brain. Levels of glutathione-s-transferase (GST), catalase (CAT) and superoxide dismutase were also elevated in the treatment groups. Expression of mRNA of nuclear factor erythroid 2 related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) during stress condition were observed along with Gst, Cat, NADPH: quinone oxidoreductase 1(Nqo1) and p38. Except Keap1, all other genes exhibited elevated expression. Nrf2/Keap1 proteins had similar expression pattern as their corresponding mRNA. The findings in this study might help to understand the molecular mechanism of fluoride induced neurotoxicity in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Lesions in the mRNA cap-binding gene ABA HYPERSENSITIVE 1 suppress FRIGIDA-mediated delayed flowering in Arabidopsis.

    PubMed

    Bezerra, Isabel C; Michaels, Scott D; Schomburg, Fritz M; Amasino, Richard M

    2004-10-01

    Recessive mutations that suppress the late-flowering phenotype conferred by FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) and which also result in serrated leaf morphology were identified in T-DNA and fast-neutron mutant populations. Molecular analysis showed that the mutations are caused by lesions in the gene encoding the large subunit of the nuclear mRNA cap-binding protein, ABH1 (ABA hypersensitive1). The suppression of late flowering is caused by the inability of FRI to increase FLC mRNA levels in the abh1 mutant background. The serrated leaf morphology of abh1 is similar to the serrate (se) mutant and, like abh1, se is also a suppressor of FRI-mediated late flowering although it is a weaker suppressor than abh1. Unlike se, in abh1 the rate of leaf production and the number of juvenile leaves are not altered. The abh1 lesion affects several developmental processes, perhaps because the processing of certain mRNAs in these pathways is more sensitive to loss of cap-binding activity than the majority of cellular mRNAs.

  14. mRNA abundance of genes involved in mammary lipogenesis during fish oil- or trans-10,cis-12 CLA-induced milk fat depression in dairy ewes.

    PubMed

    Toral, P G; Hervás, G; Belenguer, A; Carreño, D; Frutos, P

    2017-04-01

    Milk fat depression (MFD) caused by trans-10,cis-12 18:2 is known to be mediated in cows and ewes by downregulation of mammary lipogenic genes. However, transcriptional mechanisms underlying marine lipid-induced MFD have not been well defined yet and the few available studies in ovine are not consistent. This trial was conducted to directly compare changes in animal performance, milk fatty acid composition, and particularly mammary mRNA abundance of candidate lipogenic genes and transcription factors in response to the inclusion of fish oil or trans-10,cis-12 18:2 in the dairy sheep diet. To meet this objective, 12 lactating Assaf ewes (on average, 64 days in milk, producing 1.72 kg of milk/d with 5.17% of fat) were divided into 3 groups and offered a total mixed ration without supplementation (control) or supplemented with 2.4% dry matter of fish oil (FO treatment) or 1% dry matter of a commercial product rich in trans-10,cis-12 18:2 (CLA treatment) for 39 d. Measurements and samplings were conducted before starting the treatments and at the end of the trial. Milk samples were used for RNA extraction from somatic cells. Feed intake was not affected by lipid supplements, and as designed, reductions in milk fat concentration (-31%) were similar in the 2 treatments, although the unpredicted increase in milk production with FO counteracted the anticipated reduction in milk fat yield. Nevertheless, this did not preclude the detection of FO-induced decreases in the mRNA abundance of candidate lipogenic genes [e.g., acyl-CoA synthetase short-chain family member 2 (ACSS2), fatty acid synthase (FASN), and lipin 1 (LPIN1)], thus supporting the hypothesis that transcriptional regulation would be a relevant component of this type of MFD in sheep. Expected CLA-induced downregulation of some genes, such as FASN or sterol regulatory element binding transcription factor 1 (SREBF1), could not be detected in our samples, which might be related, at least in part, to high inter

  15. Beyond the known functions of the CCR4-NOT complex in gene expression regulatory mechanisms: New structural insights to unravel CCR4-NOT mRNA processing machinery.

    PubMed

    Ukleja, Marta; Valpuesta, José María; Dziembowski, Andrzej; Cuellar, Jorge

    2016-10-01

    Large protein assemblies are usually the effectors of major cellular processes. The intricate cell homeostasis network is divided into numerous interconnected pathways, each controlled by a set of protein machines. One of these master regulators is the CCR4-NOT complex, which ultimately controls protein expression levels. This multisubunit complex assembles around a scaffold platform, which enables a wide variety of well-studied functions from mRNA synthesis to transcript decay, as well as other tasks still being identified. Solving the structure of the entire CCR4-NOT complex will help to define the distribution of its functions. The recently published three-dimensional reconstruction of the complex, in combination with the known crystal structures of some of the components, has begun to address this. Methodological improvements in structural biology, especially in cryoelectron microscopy, encourage further structural and protein-protein interaction studies, which will advance our comprehension of the gene expression machinery.

  16. Sequence and mRNA expression of nonclassical SLA class I genes SLA-7 and SLA-8.

    PubMed

    Crew, Mark D; Phanavanh, Bounleut; Garcia-Borges, Carmen N

    2004-05-01

    Given the prominent position of pig endothelial cells in pig-to-human xenotransplantation and the role of classical and nonclassical MHC class I proteins in T and NK cell recognition, the expression of pig MHC (SLA) class I genes in a pig aortic endothelial cell line (AOC cells) was examined. Using a primer corresponding to a highly conserved region of exon 4, RT-PCR analysis of SLA class I expression in AOC cells revealed not only expression of the classical SLA class I ( SLA-1, -2, and -3) genes, but also SLA class I transcripts corresponding to SLA nonclassical class I (class Ib) genes SLA-6 and SLA-8. Further analysis of SLA class Ib expression in porcine aortic endothelial cells using SLA class I gene-specific primers confirmed SLA-6 and SLA-8 expression and also demonstrated expression of SLA-7. While SLA-6 has been relatively well characterized, no data regarding bona fide SLA-7 and SLA-8 transcripts have been reported. Therefore, cDNAs containing the complete open reading frames of SLA-6, -7, and -8 were obtained. Compared to an SLA-1 protein sequence, the predicted SLA-7 and -8 protein sequences exhibited most sequence divergence in alpha1, alpha2, and cytoplasmic domains. Expression of SLA-6, -7, and -8 was examined by RT-PCR using RNA prepared from a variety of tissues. SLA-6 transcripts were detected in every tissue examined. Except for brain, SLA-8 transcripts were similarly widespread. SLA-7 exhibited more limited tissue distribution.

  17. Coordination of m6A mRNA methylation and gene transcription by ZFP217 regulates pluripotency and reprogramming

    PubMed Central

    Aguilo, Francesca; Zhang, Fan; Sancho, Ana; Fidalgo, Miguel; Di Cecilia, Serena; Vashisht, Ajay; Lee, Dung-Fang; Chen, Chih-Hung; Rengasamy, Madhumitha; Andino, Blanca; Jahouh, Farid; Roman, Angel; Krig, Sheryl R.; Wang, Rong; Zhang, Weijia; Wohlschlegel, James A.; Wang, Jianlong; Walsh, Martin J.

    2015-01-01

    SUMMARY Epigenetic and epitranscriptomic networks have important functions in maintaining pluripotency of embryonic stem cells (ESCs) and somatic cell reprogramming. However the mechanisms integrating the actions of these distinct networks are only partially understood. Here, we show that the chromatin-associated zinc finger protein 217 (ZFP217) coordinates epigenetic and epitranscriptomic regulation. ZFP217 interacts with several epigenetic regulators, activates transcription of key pluripotency genes, and modulates N6-methyladenosine (m6A) deposition on their transcripts by sequestering the enzyme m6A methyltransferase-like 3 (METTL3). Consistently, Zfp217 depletion compromises ESC self-renewal and somatic cell reprogramming, globally increases m6A RNA levels, and enhances m6A modification of Nanog, Sox2, Klf4, and c-Myc mRNAs, promoting their degradation. ZFP217 binds its own target gene mRNAs, which are also METTL3-associated, and is enriched at promoters of m6A-modified transcripts. Collectively, these findings shed light on how a transcription factor can tightly couple gene transcription to m6A RNA modification to insure ESC identity. PMID:26526723

  18. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  19. Novel missense mutation c.2685G>C (p.Q895H) in VWF gene associated with very low levels of VWF mRNA.

    PubMed

    Cabrera, Noelia; Casaña, Pilar; Cid, Ana Rosa; Haya, Saturnino; Moret, Andrés; Aznar, Jose Antonio

    2009-03-01

    Homozygous patients for null alleles in VWF gene show a severe von Willebrand phenotype, whereas compound heterozygous patients only show the phenotype of the expressed allele. Five members of the same family were studied. The two patients showed borderline VWF levels, a mild factor VIII (FVIII) deficiency and a decrease of the binding of VWF to exogenous FVIII. The genetic analyses of the VWF gene confirmed that the patients were compound heterozygous for c.2561G>A (R854Q) and c.2685G>C (p.Q895H) mutations. The latter, is located in the 3' extreme of exon 20, and it has not been previously described. Studies of the cDNA from platelet mRNA were performed to investigate the expression of p.H895 allele. The loss of heterozygosity at the cDNA level suggests a lack of expression of the p.H895 allele. The overall studies can explain the type 2N phenotype of the two patients, since the allele carrying the new missense mutation p.Q895H has shown a low expression of VWF gene.

  20. Ozone, sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L.

    SciTech Connect

    Willekens, H.; Van Camp, W.; Van Montagu, M.; Inze, D.; Langebartels, C.; Sandermann, H. Jr. |

    1994-11-01

    We have studied the expression of antioxidant genes in response to near ambient conditions of O{sub 3}, SO{sub 2}, and ultraviolet B (UV-B) in Nicotiana plumbaginifolia L. The genes analyzed encode four different superoxide dismutases (SODs), three catalases (Cat1, Cat2, and Cat3), the cytosolic ascorbate peroxidase (cyt APx), and glutathione peroxidase (GPx). The experimental setup for each treatment was essentially the same and caused no visible damage, thus allowing direct comparison of the different stress responses. Our data showed that the effects of O{sub 3}, SO{sub 2}, and UV-B on the antioxidant genes are very similar, although the response to SO{sub 2} is generally less pronounced and delayed. The effects of the different stresses are characterized by a decline in Cat1, a moderate increase in Cat3, and a strong increase in Cat2 and GPx. Remarkably, SODs and cyt APx were not affected. Analysis of SOD and APx expression in the ozone-sensitive Nicotiana tabacum L. cv PBD6 revealed that induction of the cytosolic copper/zinc SOD and cyt APx occurs only with the onset of visible damage. It is proposed that alterations in mRNA levels of catalases and GPx, but not of SODs and cyt APx, form part of the initial antioxidant response to O{sub 3}, SO{sub 2}, and UV-B in Nicotiana. 57 refs., 4 figs.

  1. Polymorphisms of the Steroid Sulfatase [STS] Gene are Associated With Attention Deficit Hyperactivity Disorder and Influence Brain Tissue mRNA Expression

    PubMed Central

    Brookes, KJ; Hawi, Z; Park, J; Scott, S; Gill, M; Kent, L

    2010-01-01

    Previous studies in animals and humans have implicated the X-chromosome STS gene in the etiology of attentional difficulties and attention deficit hyperactivity disorder (ADHD). This family based association study has fine mapped a region of the STS gene across intron 1 and 2 previously associated with ADHD, in an extended sample of 450 ADHD probands and their parents. Significant association across this region is demonstrated individually with 7 of the 12 genotyped SNPs, as well as an allele specific haplotype of the 12 SNPs. The over transmitted risk allele of rs12861247 was also associated with reduced STS mRNA expression in normal human post-mortem frontal cortex brain tissue compared to the non-risk allele (P = 0.01). These results are consistent with the hypothesis arising from previous literature demonstrating that boys with deletions of the STS gene, and hence no STS protein are at a significantly increased risk of developing ADHD. Furthermore, this study has established the brain tissue transcript of STS, which except from adipose tissue, differs from that seen in all other tissues investigated. © 2010 Wiley-Liss, Inc. PMID:20862695

  2. Zearalenone activates pregnane X receptor, constitutive androstane receptor and aryl hydrocarbon receptor and corresponding phase I target genes mRNA in primary cultures of human hepatocytes.

    PubMed

    Ayed-Boussema, Imen; Pascussi, Jean Marc; Maurel, Patrick; Bacha, Hassen; Hassen, Wafa

    2011-01-01

    The mycotoxin zearalenone (ZEN) is found worldwide as a contaminant in cereals and grains. ZEN subchronic and chronic toxicities are dominated by reproductive disorders in different mammalian species which have made ZEN established mammalian endocrine disrupter. Over the last 30 years of ZEN biotransformation study, the toxin was thought to undergo reductive metabolism only, with the generation in several species of α- and β-isomers of zearalenol. However, recent investigations have noticed that the mycoestrogen is prone to oxidative metabolism leading to hydroxylation of ZEN though the involvement of different cytochromes P450 (CYPs) isoforms. The aim of the present study was to further explore the effect of ZEN on regulation of some CYPs using primary cultures of human hepatocytes. For this aim, using real time RT-PCR, we monitored in a first time, the effect of ZEN on mRNA levels of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and aryl hydrocarbon receptor (AhR), nuclear receptors known to be involved in the regulation of some CYPs. In a second time, we looked for ZEN effect on expression of PXR, CAR and AhR corresponding phase I target genes (CYP3A4, CYP3A5, CYP2B6, CYP2C9, CYP1A1 and CYP1A2). Finally, we realised the luciferase assay in HepG2 treated with the toxin and transiently transfected with p-CYP3A4-Luc in the presence of a hPXR vector or transfected with p-CYPA1-Luc.Our results clearly showed that ZEN activated human PXR, CAR and AhR mRNA levels in addition to some of their phase I target genes mainly CYP3A4, CYP2B6 and CYP1A1 and at lesser extent CYP3A5 and CYP2C9 at ZEN concentrations as low as 0.1 μM.

  3. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    PubMed Central

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  4. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior

    PubMed Central

    Fernández-Gonzalez, Raúl; Moreira, Pedro; Bilbao, Ainhoa; Jiménez, Adela; Pérez-Crespo, Miriam; Ramírez, Miguel Angel; De Fonseca, Fernando Rodríguez; Pintado, Belén; Gutiérrez-Adán, Alfonso

    2004-01-01

    The long-term developmental and behavioral consequences of mammalian embryo culture are unknown. By altering the culture medium with the addition of FCS, we wanted to determine whether mouse embryos cultured under suboptimal conditions develop aberrant mRNA expression of imprinting genes at the blastocyst stage and whether fetal development, growth, and behavior of adult mice are affected. One-cell embryos obtained from superovulated female B6CBAF1 mice were cultured for 4 days in K+-modified simplex optimized medium in the presence of either 10% FCS or 1 g/liter BSA. After embryo transfer, born animals were submitted to several developmental and behavior tests. The mRNA expression of some imprinting genes was significantly affected in blastocysts cultured in the presence of FCS. Two of the eight measures of preweaning development and some specific measures of neuromotor development, such as the walking activity, were delayed in the group originated with FCS. After 34 weeks, the weight of female mice cultured in vitro in the presence of FCS was significantly higher than controls. In addition, the locomotion activity of mice was altered at 5 and 15 months. Anatomopathological and histological analysis of animals at 20 months of age showed some large organs and an increase in pathologies. We have found that mice derived from embryos cultured with FCS exhibited specific behavioral alterations in anxiety and displayed deficiencies in implicit memories. Our data indicate that long-term programming of postnatal development, growth, and physiology can be affected irreversibly during the preimplantation period of embryo development by suboptimal in vitro culture. PMID:15079084

  5. Effect of insoluble fibre on intestinal morphology and mRNA expression pattern of inflammatory, cell cycle and growth marker genes in a piglet model.

    PubMed

    Schedle, Karl; Pfaffl, Michael W; Plitzner, Christian; Meyer, Heinrich H D; Windisch, Wilhelm

    2008-12-01

    The effects of insoluble dietary fibre differing in lignin content on intestinal morphology and mRNA expression was tested in an animal model of 48 weaned piglets. Engaged fibre sources were wheat bran (rich in cellulose and hemicellulose) and pollen from Chinese Masson pine (Pinus massoniana) (rich in lignin), respectively. The fibre sources were added to a basal diet as follows: no addition (control), 3.0% wheat bran, 1.27% pine pollen, and 2.55% pine pollen. The 12 animals of each feeding group were fed four experimental diets ad libitum for 37 days and were then slaughtered for retrieving tissue samples from stomach, jejunum, ileum, colon and mesenterial lymph nodes. Both fibre sources increased villus height of mucosa in jejunum (+10% on average) and ileum (+16% on average). Results of mRNA expression rates of inflammatory, cell cycle and growth marker genes (NFkappaB, TNFalpha, TGFbeta, Caspase3, CDK4, IGF1) were specific to fibre source and tissue: wheat bran induced an up-regulation of NFkappaB in stomach and jejunum, as well as TNFalpha and TGFbeta, and Caspase3 in jejunum. Pine pollen induced down regulation of NFkappaB, TNFalpha, TGFbeta, Caspase3, CDK4 and IGF1 in the colon as well as up-regulation of NFkappaB and TGFbeta in mesenterial lymph nodes. Finally, an overall data comparison based on a hierarchical cluster analysis showed a close relation between gene regulation in different gut sections and organs, as well as between small intestine morphology and zootechnical performance.

  6. Two single nucleotide polymorphisms in the human nescient helix-loop-helix 2 (NHLH2) gene reduce mRNA stability and DNA binding.

    PubMed

    Al Rayyan, Numan; Wankhade, Umesh D; Bush, Korie; Good, Deborah J

    2013-01-01

    Nescient helix-loop-helix-2 (NHLH2) is a basic helix-loop-helix transcription factor, which has been implicated, using mouse knockouts, in adult body weight regulation and fertility. A scan of the known single nucleotide polymorphisms (SNPs) in the NHLH2 gene revealed one in the 3' untranslated region (3'UTR), which lies within an AUUUA RNA stability motif. A second SNP is nonsynonymous within the coding region of NHLH2, and was found in a genome-wide association study for obesity. Both of these SNPs were examined for their effect on NLHL2 by creating mouse mimics and examining mRNA stability, and protein function in mouse hypothalamic cell lines. The 3'UTR SNP causes increased instability and, when the SNP-containing Nhlh2 3'UTR is attached to luciferase mRNA, reduced protein levels in cells. The nonsynonymous SNP at position 83 in the protein changes an alanine residue, conserved in NHLH2 orthologs through the Drosophila sp. to a proline residue. This change affects migration of the protein on an SDS-PAGE gel, and appears to alter secondary structure of the protein, as predicted using in silico methods. These results provide functional information on two rare human SNPs in the NHLH2 gene. One of these has been linked to human obese phenotypes, while the other is present in a relatively high proportion of individuals. Given their effects on NHLH2 protein levels, both SNPs deserve further analysis in whether they are causative and/or additive for human body weight and fertility phenotypes. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Increased readthrough transcription across the simian virus 5 M-F gene junction leads to growth defects and a global inhibition of viral mRNA synthesis.

    PubMed

    Parks, G D; Ward, K R; Rassa, J C

    2001-03-01

    Recombinant simian virus 5 (rSV5) mutants containing substitutions in the M-F intergenic region were generated to determine the effect of increased readthrough transcription on the paramyxovirus growth cycle. We have previously shown, using an SV5 dicistronic minigenome, that replacement of the 22-base M-F intergenic region with a foreign sequence results in a template (Rep22) that directs very high levels of M-F readthrough transcription. An rSV5 containing the Rep22 substitution grew slower and to final titers that were 50- to 80-fold lower than those of wild-type (WT) rSV5. Cells infected with the Rep22 virus produced very low levels of monocistronic M and F mRNA, consistent with the M-F readthrough phenotype. Surprisingly, Rep22 virus-infected cells also displayed a global decrease in the accumulation of viral mRNA from genes located upstream and downstream of the M-F junction, and overall viral protein synthesis was reduced. Second-site revertants of the Rep22 virus that had regained WT transcription and growth properties contained a single base substitution that increased the M gene end U tract from four to eight residues, suggesting that the growth defects originated from higher-than-normal M-F readthrough transcription. Thus, the primary growth defect for the Rep22 virus appears to be in viral RNA synthesis and not in morphogenesis. A second rSV5 virus (G14), which contained a different foreign M-F intergenic sequence, grew to similar or slightly higher titers than WT rSV5 in some cell types and produced ~1.5- to 2-fold more mRNA and viral protein. The data support the hypothesis that inhibition of Rep22 virus growth is due to increased access by the polymerase to the 5' end of the genome and to the resulting overexpression of L protein. We propose that the elevated naturally occurring M-F readthrough which is characteristic of many paramyxoviruses serves as a mechanism to fine-tune the level of polymerase that is optimal for virus growth.

  8. Influence of functional polymorphisms in TNF-α, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer.

    PubMed

    de Oliveira, Juliana Garcia; Rossi, Ana Flávia Teixeira; Nizato, Daniela Manchini; Cadamuro, Aline Cristina Targa; Jorge, Yvana Cristina; Valsechi, Marina Curado; Venâncio, Larissa Paola Rodrigues; Rahal, Paula; Pavarino, Érika Cristina; Goloni-Bertollo, Eny Maria; Silva, Ana Elizabete

    2015-12-01

    Functional polymorphisms in promoter regions can produce changes in the affinity of transcription factors, thus altering the messenger ribonucleic acid (mRNA) expression levels of inflammatory cytokines associated with the risk of cancer development. The goal of this study was to evaluate the influence that polymorphisms in the cytokine genes known as TNF-α-308 G/A (rs1800629), TNF-α-857 C/T (rs1799724), IL-8-251 T/A (rs4073), IL-8-845 T/C (rs2227532), and IL-10-592 C/A (rs1800872) have on changes to mRNA expression levels and on the risks of chronic gastritis (CG) and gastric cancer (GC). A sample of 723 individuals was genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Relative mRNA expression levels were measured using quantitative real-time PCR (qPCR). Polymorphisms TNF-α-308 G/A and IL-8-251 A/T were not associated with risks of these gastric lesions. However, TNF-α-857 C/T, IL-8-845 T/C, and IL-10-592 C/A were found to be associated with a higher risk of GC, and IL-10-592 C/A was found to be associated with a higher risk of CG. The relative mRNA expression levels (RQ) of TNF-α, IL-8, and IL-10 were markedly downregulated in the CG group (median RQs = 0.128, 0.247, and 0.614, respectively), while the RQ levels of TNF-α in the GC group were upregulated (RQ = 2.749), but were basal for IL-8 (RQ = 1.053) and downregulated for IL-10 (RQ = 0.179). When the groups were stratified according to wild-type and polymorphic alleles, only for IL-8-845 T/C the polymorphic allele was found to influence the expression levels of this cytokine. IL-8-845 C allele carriers were significantly upregulated in both groups (GC and CG; RQ = 3.138 and 2.181, respectively) when compared to TT homozygotes (RQ = -0.407 and 0.165, respectively). In silico analysis in the IL-8 promoter region revealed that the presence of the variant C allele in position -845 is responsible for the presence of the binding

  9. The imprinted SNRPN gene is associated with a polycistronic mRNA and an imprinting control element

    SciTech Connect

    Saitoh, S.; Nicholls, R.D.; Seip, J.

    1994-09-01

    The small nuclear ribonucleoprotein-associated protein SmN (SNRPN) gene is located in the Prader-Willi syndrome (PWS) critical region in chromosome 15q11-q13. We have previously shown that it is functionally imprinted in humans, being only expressed from the paternal allele and differentially methylated on parental alleles. Therefore, SNRPN may have a role in PWS, although genetic studies suggest that at least two genes may be necessary for the classical PWS phenotype. We have characterized the SNRPN genomic structure, and shown that it comprises ten exons. Surprisingly, we identified an open reading frame (ORF) in the first three exons, 190-bp 5{prime} to the SmN ORF. Notably, the majority of base substitutions bewteen human and rodents in the upstream ORF occurred in the wobble position of codons, suggesting selection for a protein coding function. This ORF, which we name SNURF (SNRPN upstream reading frame) encodes a putative polypeptide of 71 amino acids. By analogy to prokaryotic operons that encode proteins with related functions, it is possible that SNURF may have a role in pre-mRNA splicing.

  10. LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes.

    PubMed

    Singh, Parmit Kumar; Plumb, Matthew R; Ferris, Andrea L; Iben, James R; Wu, Xiaolin; Fadel, Hind J; Luke, Brian T; Esnault, Caroline; Poeschla, Eric M; Hughes, Stephen H; Kvaratskhelia, Mamuka; Levin, Henry L

    2015-11-01

    The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced.

  11. LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes

    PubMed Central

    Singh, Parmit Kumar; Plumb, Matthew R.; Ferris, Andrea L.; Iben, James R.; Wu, Xiaolin; Fadel, Hind J.; Luke, Brian T.; Esnault, Caroline; Poeschla, Eric M.; Hughes, Stephen H.; Kvaratskhelia, Mamuka; Levin, Henry L.

    2015-01-01

    The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced. PMID:26545813

  12. Gene expression profile of IGF1 and MSTN mRNA and their correlation with carcass traits in different breeds of geese at 70 d of age.

    PubMed

    Tang, Q; Song, C; Zhang, S; Hu, Y; Zhao, D; Zou, J

    2014-02-01

    1. The expression of insulin-like growth factor-1 (IGF1) and myostatin (MSTN) mRNA in breast and leg muscle was quantified in 70-d-old Taihu and Wanxi geese by using a Multiplex Competitive Fluorescent-PCR method and the correlations between mRNA levels and carcass traits were analysed. 2. IGF1 mRNA expression in breast muscle in Taihu geese was significantly higher than that in Wanxi geese and the MSTN mRNA level in leg muscle in Taihu geese was significantly higher than that in Wanxi geese. 3. There was no significant difference in breast muscle MSTN or leg muscle IGF1 mRNA expression between the two breeds. 4. Within the same breed, the IGF1 mRNA expression in leg muscle of male geese was significantly higher than that in female geese, and MSTN mRNA expression in leg muscle was significantly higher than that in breast muscle. 5. There was no difference in the IGF1 mRNA expression between tissues. 6. There was a positive correlation between IGF1 mRNA and MSTN mRNA and a negative correlation between IGF1 mRNA expression of breast muscle and leg muscle ratio. 7. In Wanxi geese, MSTN mRNA expression in leg muscle was negatively associated with body weight and leg muscle weight.

  13. Gene transcript accumulation and in situ mRNA hybridization of two putative glutamate dehydrogenase genes in etiolated Glycine max seedlings.

    PubMed

    Dimou, M; Tsaniklidis, G; Aivalakis, G; Katinakis, P

    2015-01-01

    Glutamate dehydrogenase (EC 1.4.1.2) is a multimeric enzyme that catalyzes the reversible amination of α-ketoglutarate to form glutamate. We characterized cDNA clones of two Glycine max sequences, GmGDH1 and GmGDH2, that code for putative α- and β-subunits, respectively, of the NADH dependent enzyme. Temporal and spatial gene transcript accumulation studies using semiquantitative RT-PCR and in situ hybridization have shown an overlapping gene transcript accumulation pattern with differences in relative gene transcript accumulation in the organs examined. Detection of NADH-dependent glutamate dehydrogenase activity in situ using a histochemical method showed concordance with the spatial gene transcript accumulation patterns. Our findings suggest that although the two gene transcripts are co-localized in roots of etiolated soybean seedlings, the ratio of the two subunits of the active holoenzyme may vary among tissues.

  14. Using gene expression from urine sediment to diagnose prostate cancer: development of a new multiplex mRNA urine test and validation of current biomarkers.

    PubMed

    Mengual, Lourdes; Lozano, Juan José; Ingelmo-Torres, Mercedes; Izquierdo, Laura; Musquera, Mireia; Ribal, María José; Alcaraz, Antonio

    2016-02-09

    Additional accurate non-invasive biomarkers are needed in the clinical setting to improve prostate cancer (PCa) diagnosis. Here we have developed a new and improved multiplex mRNA urine test to detect prostate cancer (PCa). Furthermore, we have validated the PCA3 urinary transcript and some panels of urinary transcripts previously reported as useful diagnostic biomarkers for PCa in our cohort. Post-prostatic massage urine samples were prospectively collected from PCa patients and controls. Expression levels of 42 target genes selected from our previous studies and from the literature were studied in 224 post-prostatic massage urine sediments by quantitative PCR. Univariate logistic regression was used to identify individual PCa predictors. A variable selection method was used to develop a multiplex biomarker model. Discrimination was measured by ROC curve AUC for both, our model and the previously published biomarkers. Seven of the 42 genes evaluated (PCA3, ELF3, HIST1H2BG, MYO6, GALNT3, PHF12 and GDF15) were found to be independent predictors for discriminating patients with PCa from controls. We developed a four-gene expression signature (HIST1H2BG, SPP1, ELF3 and PCA3) with a sensitivity of 77% and a specificity of 67% (AUC = 0.763) for discriminating between tumor and control urines. The accuracy of PCA3 and previously reported panels of biomarkers is roughly maintained in our cohort. Our four-gene expression signature outperforms PCA3 as well as previously reported panels of biomarkers to predict PCa risk. This study suggests that a urinary biomarker panel could improve PCa detection. However, the accuracy of the panels of urinary transcripts developed to date, including our signature, is not high enough to warrant using them routinely in a clinical setting.

  15. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications.

    PubMed

    Curran, Kathleen A; Karim, Ashty S; Gupta, Akash; Alper, Hal S

    2013-09-01

    Control of gene and protein expression of both endogenous and heterologous genes is a key component of metabolic engineering. While a large amount of work has been published characterizing promoters for this purpose, less effort has been exerted to elucidate the role of terminators in yeast. In this study, we characterize over 30 terminators for use in metabolic engineering applications in Saccharomyces cerevisiae and determine mRNA half-life changes to be the major cause of the varied protein and transcript expression level. We demonstrate that the difference in transcript level can be over 6.5-fold even for high strength promoters. The influence of terminator selection is magnified when coupled with a low-expression promoter, with a maximum difference in protein expression of 11-fold between an expression-enhancing terminator and the parent plasmid terminator and over 35-fold difference when compared with a no-terminator baseline. This is the first time that terminators have been investigated in the context of multiple promoters spanning orders of magnitude in activity. Finally, we demonstrate the utility of terminator selection for metabolic engineering by using a mutant xylose isomerase gene as a proof-of-concept. Through pairing an expression-enhancing terminator with a low-expression promoter, we were able to achieve the same phenotypic result as with a promoter considerably higher in strength. Moreover, we can further boost the phenotype of the high-strength promoter by pairing it with an expression-enhancing terminator. This work highlights how terminator elements can be used to control metabolic pathways in the same way that promoters are traditionally used in yeast. Together, this work demonstrates that terminators will be an important part of heterologous gene expression and metabolic engineering for yeast in the future.

  16. Deep mRNA Sequencing of the Tritonia diomedea Brain Transcriptome Provides Access to Gene Homologues for Neuronal Excitability, Synaptic Transmission and Peptidergic Signalling

    PubMed Central

    Senatore, Adriano; Edirisinghe, Neranjan; Katz, Paul S.

    2015-01-01

    Background The sea slug Tritonia diomedea (Mollusca, Gastropoda, Nudibranchia), has a simple and highly accessible nervous system, making it useful for studying neuronal and synaptic mechanisms underlying behavior. Although many important contributions have been made using Tritonia, until now, a lack of genetic information has impeded exploration at the molecular level. Results We performed Illumina sequencing of central nervous system mRNAs from Tritonia, generating 133.1 million 100 base pair, paired-end reads. De novo reconstruction of the RNA-Seq data yielded a total of 185,546 contigs, which partitioned into 123,154 non-redundant gene clusters (unigenes). BLAST comparison with RefSeq and Swiss-Prot protein databases, as well as mRNA data from other invertebrates (gastropod molluscs: Aplysia californica, Lymnaea stagnalis and Biomphalaria glabrata; cnidarian: Nematostella vectensis) revealed that up to 76,292 unigenes in the Tritonia transcriptome have putative homologues in other databases, 18,246 of which are below a more stringent E-value cut-off of 1x10-6. In silico prediction of secreted proteins from the Tritonia transcriptome shotgun assembly (TSA) produced a database of 579 unique sequences of secreted proteins, which also exhibited markedly higher expression levels compared to other genes in the TSA. Conclusions Our efforts greatly expand the availability of gene sequences available for Tritonia diomedea. We were able to extract full length protein sequences for most queried genes, including those involved in electrical excitability, synaptic vesicle release and neurotransmission, thus confirming that the transcriptome will serve as a useful tool for probing the molecular correlates of behavior in this species. We also generated a neurosecretome database that will serve as a useful tool for probing peptidergic signalling systems in the Tritonia brain. PMID:25719197

  17. Effect of leptin during in vitro maturation of prepubertal calf oocytes: embryonic development and relative mRNA abundances of genes involved in apoptosis and oocyte competence.

    PubMed

    Córdova, Bladimir; Morató, Roser; de Frutos, Celia; Bermejo-Álvarez, Pablo; Paramio, Teresa; Gutiérrez-Adán, Alfonso; Mogas, Teresa

    2011-12-01

    During the in vitro maturation of adult bovine oocytes, leptin has beneficial effects on blastocyst development, apoptosis and transcription levels of developmentally important genes. The present study analyzes the differential effects of leptin on prepubertal bovine oocytes and cumulus cells. Effects were determined of leptin treatment during oocyte maturation on their developmental capacity after fertilization (Exp. 1), incidence of apoptosis in cumulus oocyte complexes (COCs) (Exp. 2) or on relative mRNA abundances of genes in cumulus cells and oocytes (Exp. 3). COCs were matured in serum-free medium containing 1 mg/mL polyvinyl alcohol and 0, 10, 100, or 1000 ng/mL leptin (L0, L10, L100, and L1000, respectively), or in medium supplemented with 10% fetal calf serum (FCS) as a positive control. Addition of leptin during oocyte maturation had no effect on cleavage rates after fertilization (FCS, 68.6%; L0, 62.9%; L10, 66.9%; L100, 63.4%; L1000, 60.9%). Similarly, no significant differences in blastocyst rates were observed when oocytes were matured in the presence of L0 (8.4%), L10 (9.3%), L100 (6.7%), L1000 (8.2%), compared to control FCS (9.4%). In Experiment 2, maturation in the presence of 1000 ng/mL of leptin increased the proportion of TUNEL-positive cumulus cell (6.9%) with respect to those matured in the presence of FCS (4.96%), but not at the lower leptin doses. When relative mRNA abundances were examined for seven genes by qRT-PCR, five (TP53, BAX, DNMT3A, PGTS2 and LEPR) showed differences among groups. LEPR expression was significantly higher in the oocytes matured with FCS compared with the other groups and in those matured with PVA (L0) without leptin compared with the three groups of oocytes matured in the presence of leptin. In conclusion, the addition of leptin to the in vitro maturation medium used for prepubertal bovine oocytes does not increase the development potential of the oocytes or reduce the percentage of apoptosis in cumulus cells

  18. Polyamine-responsive ribosomal arrest at the stop codon of an upstream open reading frame of the AdoMetDC1 gene triggers nonsense-mediated mRNA decay in Arabidopsis thaliana.

    PubMed

    Uchiyama-Kadokura, Naoko; Murakami, Karin; Takemoto, Mariko; Koyanagi, Naoto; Murota, Katsunori; Naito, Satoshi; Onouchi, Hitoshi

    2014-09-01

    During mRNA translation, nascent peptides with certain specific sequences cause arrest of ribosomes that have synthesized themselves. In some cases, such ribosomal arrest is coupled with mRNA decay. In yeast, mRNA quality control systems have been shown to be involved in mRNA decay associated with ribosomal arrest. However, a link between ribosomal arrest and mRNA quality control systems has not been found in multicellular organisms. In this study, we aimed to explore the relationship between ribosomal arrest and mRNA decay in plants. For this purpose, we used an upstream open reading frame (uORF) of the Arabidopsis thaliana AdoMetDC1 gene, in which the uORF-encoded peptide is involved in polyamine-responsive translational repression of the main coding sequence. Our in vitro analyses revealed that the AdoMetDC1 uORF-encoded peptide caused ribosomal arrest at the uORF stop codon in response to polyamine. Using transgenic calli harboring an AdoMetDC1 uORF-containing reporter gene, we showed that polyamine promoted mRNA decay in a uORF sequence-dependent manner. These results suggest that the polyamine-responsive ribosomal arrest mediated by the uORF-encoded peptide is coupled with mRNA decay. Our results also showed that the polyamine-responsive acceleration of mRNA decay was compromised by defects in factors that are essential for nonsense-mediated mRNA decay (NMD), an mRNA quality control system that degrades mRNAs with premature stop codons, suggesting that NMD is involved in AdoMetDC1 uORF peptide-mediated mRNA decay. Collectively, these findings suggest that AdoMetDC1 uORF peptide-mediated ribosomal arrest at the uORF stop codon induces NMD. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Altered mRNA Splicing, Chondrocyte Gene Expression and Abnormal Skeletal Development due to SF3B4 Mutations in Rodriguez Acrofacial Dysostosis

    PubMed Central

    Nevarez, Lisette; Pogue, Robert; Krakow, Deborah; Cohn, Daniel H.

    2016-01-01

    The acrofacial dysostoses (AFD) are a genetically heterogeneous group of inherited disorders with craniofacial and limb abnormalities. Rodriguez syndrome is a severe, usually perinatal lethal AFD, characterized by severe retrognathia, oligodactyly and lower limb abnormalities. Rodriguez syndrome has been proposed to be a severe form of Nager syndrome, a non-lethal AFD that results from mutations in SF3B4, a component of the U2 small nuclear ribonucleoprotein particle (U2 snRNP). Furthermore, a case with a phenotype intermediate between Rodriguez and Nager syndromes has been shown to have an SF3B4 mutation. We identified heterozygosity for SF3B4 mutations in Rodriguez syndrome, confirming that the phenotype is a dominant disorder that is allelic with Nager syndrome. The mutations led to reduced SF3B4 synthesis and defects in mRNA splicing, primarily exon skipping. The mutations also led to reduced expression in growth plate chondrocytes of target genes, including the DLX5, DLX6, SOX9, and SOX6 transcription factor genes, which are known to be important for skeletal development. These data provide mechanistic insight toward understanding how SF3B4 mutations lead to the skeletal abnormalities observed in the acrofacial dysostoses. PMID:27622494

  20. Generation of Interleukin-2 Receptor Gamma Gene Knockout Pigs from Somatic Cells Genetically Modified by Zinc Finger Nuclease-Encoding mRNA

    PubMed Central

    Watanabe, Masahito; Nakano, Kazuaki; Matsunari, Hitomi; Matsuda, Taisuke; Maehara, Miki; Kanai, Takahiro; Kobayashi, Mirina; Matsumura, Yukina; Sakai, Rieko; Kuramoto, Momoko; Hayashida, Gota; Asano, Yoshinori; Takayanagi, Shuko; Arai, Yoshikazu; Umeyama, Kazuhiro; Nagaya, Masaki; Hanazono, Yutaka; Nagashima, Hiroshi

    2013-01-01

    Zinc finger nuclease (ZFN) is a powerful tool for genome editing. ZFN-encoding plasmid DNA expression systems have been recently employed for the generation of gene knockout (KO) pigs, although one major limitation of this technology is the use of potentially harmful genome-integrating plasmid DNAs. Here we describe a simple, non-integrating strategy for generating KO pigs using ZFN-encoding mRNA. The interleukin-2 receptor gamma (IL2RG) gene was knocked out in porcine fetal fibroblasts using ZFN-encoding mRNAs, and IL2RG KO pigs were subsequently generated using these KO cells through somatic cell nuclear transfer (SCNT). The resulting IL2RG KO pigs completely lacked a thymus and were deficient in T and NK cells, similar to human X-linked SCID patients. Our findings demonstrate that the combination of ZFN-encoding mRNAs and SCNT provides a simple robust method for producing KO pigs without genomic integration. PMID:24130776

  1. Expression of homothorax and extradenticle mRNA in the legs of the crustacean Parhyale hawaiensis: evidence for a reversal of gene expression regulation in the pancrustacean lineage.

    PubMed

    Prpic, Nikola-Michael; Telford, Maximilian J

    2008-06-01

    In Drosophila leg development, the extradenticle (exd) gene is expressed ubiquitously and its co-factor homothorax (hth) is restricted to the proximal leg portion. This condition is conserved in other insect species but is reversed in chelicerates and myriapods. As the region of co-expression does not differ in the two groups and transcripts from both are necessary for function, this difference in expression is likely to be functionally neutral. Here, we report the expression patterns of exd and hth in a crustacean, the amphipod shrimp Parhyale hawaiensis. The patterns in P. hawaiensis are similar to the insect patterns, supporting the close relationship between crustaceans and insects in the taxon Tetraconata. However, mRNA expression of exd in P. hawaiensis is weak in the distal leg parts, thus being intermediate between the complete lack of distal exd expression in chelicerates and myriapods and the strong distal exd expression in insects. Our data suggest that the reversal of the gene expression regulation of hth and exd occurred in the pancrustacean lineage.

  2. Concordant Association of Insulin Degrading Enzyme Gene (IDE) Variants with IDE mRNA, Aß, and Alzheimer's Disease

    PubMed Central

    Ertekin-Taner, Nilufer; Ansari, Morad; Wilcox, Samantha L.; Kashino, Mariah R.; Ma, Li; Younkin, Linda H.; Younkin, Samuel G.; Younkin, Curtis S.; Dincman, Toros A.; Howard, Melissa E.; Howell, Chanley C.; Stanton, Chloe M.; Watson, Christopher M.; Crump, Michael; Vitart, Veronique; Hayward, Caroline; Hastie, Nicholas D.; Rudan, Igor; Campbell, Harry; Polasek, Ozren; Brown, Kristelle; Passmore, Peter; Craig, David; McGuinness, Bernadette; Todd, Stephen; Kehoe, Patrick G.; Mann, David M.; Smith, A. David; Beaumont, Helen; Warden, Donald; Holmes, Clive; Heun, Reinhard; Kölsch, Heike; Kalsheker, Noor; Pankratz, V. Shane; Dickson, Dennis W.; Graff-Radford, Neill R.; Petersen, Ronald C.; Wright, Alan F.; Younkin, Steven G.; Morgan, Kevin

    2010-01-01

    Background The insulin-degrading enzyme gene (IDE) is a strong functional and positional candidate for late onset Alzheimer's disease (LOAD). Methodology/Principal Findings We examined conserved regions of IDE and its 10 kb flanks in 269 AD cases and 252 controls thereby identifying 17 putative functional polymorphisms. These variants formed eleven haplotypes that were tagged with ten variants. Four of these showed significant association with IDE transcript levels in samples from 194 LOAD cerebella. The strongest, rs6583817, which has not previously been reported, showed unequivocal association (p = 1.5×10−8, fold-increase = 2.12,); the eleven haplotypes were also significantly associated with transcript levels (global p = 0.003). Using an in vitro dual luciferase reporter assay, we found that rs6583817 increases reporter gene expression in Be(2)-C (p = 0.006) and HepG2 (p = 0.02) cell lines. Furthermore, using data from a recent genome-wide association study of two Croatian isolated populations (n = 1,879), we identified a proxy for rs6583817 that associated significantly with decreased plasma Aβ40 levels (ß = −0.124, p = 0.011) and total measured plasma Aβ levels (b = −0.130, p = 0.009). Finally, rs6583817 was associated with decreased risk of LOAD in 3,891 AD cases and 3,605 controls. (OR = 0.87, p = 0.03), and the eleven IDE haplotypes (global p = 0.02) also showed significant association. Conclusions Thus, a previously unreported variant unequivocally associated with increased IDE expression was also associated with reduced plasma Aß40 and decreased LOAD susceptibility. Genetic association between LOAD and IDE has been difficult to replicate. Our findings suggest that targeted testing of expression SNPs (eSNPs) strongly associated with altered transcript levels in autopsy brain samples may be a powerful way to identify genetic associations with LOAD that would otherwise be difficult to detect

  3. Cytosolic mRNA Target and Bioavailability of Nanoparticulate siRNA delivery systems for gene silencing.

    PubMed

    Leucuta, Sorin Emilian

    2017-03-22

    Recent research in medical and pharmaceutical sciences has benefited from advances in molecular biology and genetics, which made possible a diagnosis at the molecular level in more and more diseases. This implies the drug treatment at the molecular level. The interest in Ribonucleic acid interference (RNAi) is based on the mechanism operates by eliminating the messenger RNAs (mRNAs) coding for multiple proteins, which open solutions for treating many types of diseases. Small (short) interfering RNA (siRNA) has quickly been established as an effective gene-silencing strategy in animal models, and more recently in human clinical trials, as a potential therapeutic approach. Various nanoparticulate drug delivery systems for siRNA delivery have been explored extensively. However, there are many more barriers and challenges that need to be addressed and overcome to achieve the ideal formulation in terms of selectivity, efficacy and safety. One of the major causes of the drawback of these treatments is the difficulty to transport the nucleic acids in the cytosol and organelles. These delivery systems will favorably alter the pharmacokinetics and biodistribution of siRNAs, should be biocompatible and genocompatible to avoid immune stimulation and off-target gene effects. These properties are essential for systemic use, as they prolong siRNA half-lives in blood and increase intracellular bioavailability of siRNA. Future research needs drug delivery systems with more effective design, enhanced biological stability, subcellular bioavailability, and efficient targeted delivery in vivo for improved targeting and specificity of siRNA molecules for any given clinical condition. The paper shows how to overcome physiological barriers to achieve the target, and examples in which significant results were obtained in therapeutic in vitro and in vivo research including nanoparticulate systems.To day, only a few nanoparticle-based siRNA delivery systems have been approved by the Food

  4. Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice

    PubMed Central

    So, Jae-Seon; Hur, Kyu Yeon; Tarrio, Margarite; Ruda, Vera; Frank-Kamenetsky, Maria; Fitzgerald, Kevin; Koteliansky, Victor; Lichtman, Andrew H.; Iwawaki, Takao; Glimcher, Laurie H.; Lee, Ann-Hwee

    2012-01-01

    XBP1 is a key regulator of the unfolded protein response (UPR), which is involved in a wide range of physiological and pathological processes. XBP1 ablation in liver causes profound hypolipidemia in mice, highlighting its critical role in lipid metabolism. XBP1 deficiency triggers feedback activation of its upstream enzyme IRE1α, instigating regulated IRE1-dependent decay (RIDD) of cytosolic mRNAs. Here, we identify RIDD as a crucial control mechanism of lipid homeostasis. Suppression of RIDD by RNA interference or genetic ablation of IRE1α reversed hypolipidemia in XBP1 deficient mice. Comprehensive microarray analysis of XBP1 and/or IRE1α deficient liver identified genes involved in lipogenesis and lipoprotein metabolism as RIDD substrates, which might contribute to the suppression of plasma lipid levels by activated IRE1α. Ablation of XBP1 ameliorated hepatosteatosis, liver damage and hypercholesterolemia in dyslipidemic animal models, suggesting that direct targeting of either IRE1α or XBP1 might be a feasible strategy to treat dyslipidemias. PMID:23040070

  5. Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice.

    PubMed

    So, Jae-Seon; Hur, Kyu Yeon; Tarrio, Margarite; Ruda, Vera; Frank-Kamenetsky, Maria; Fitzgerald, Kevin; Koteliansky, Victor; Lichtman, Andrew H; Iwawaki, Takao; Glimcher, Laurie H; Lee, Ann-Hwee

    2012-10-03

    XBP1 is a key regulator of the unfolded protein response (UPR), which is involved in a wide range of physiological and pathological processes. XBP1 ablation in liver causes profound hypolipidemia in mice, highlighting its critical role in lipid metabolism. XBP1 deficiency triggers feedback activation of its upstream enzyme IRE1α, instigating regulated IRE1-dependent decay (RIDD) of cytosolic mRNAs. Here, we identify RIDD as a crucial control mechanism of lipid homeostasis. Suppression of RIDD by RNA interference or genetic ablation of IRE1α reversed hypolipidemia in XBP1-deficient mice. Comprehensive microarray analysis of XBP1 and/or IRE1α-deficient liver identified genes involved in lipogenesis and lipoprotein metabolism as RIDD substrates, which might contribute to the suppression of plasma lipid levels by activated IRE1α. Ablation of XBP1 ameliorated hepatosteatosis, liver damage, and hypercholesterolemia in dyslipidemic animal models, suggesting that direct targeting of either IRE1α or XBP1 might be a feasible strategy to treat dyslipidemias.

  6. Case-control study and mRNA expression analysis reveal the MyD88 gene is associated with digestive disorders in rabbit.

    PubMed

    Chen, Shi-Yi; Zhang, Wen-Xiu; Zhang, Gong-Wei; Peng, Jin; Zhao, Xiao-Bing; Lai, Song-Jia

    2013-12-01

    As in humans, significant associations between Toll-like receptor 4 (TLR4) and digestive disorders have been identified in rabbit and dog. However, as an essential adaptor downstream of TLR4, the genetic variation of myeloid differentiating factor 88 (MyD88) and its association with digestive disorders have remained unknown. In this study, we detected 10 single nucleotide polymorphisms (SNPs) in the entire genomic region of rabbit MyD88. The genetic variation in susceptibility to digestive disorders for the only coding SNP (synonymous c.699T>C) was studied in Yaan (183 cases and 142 controls) and Chengdu populations (145 cases and 140 controls). A case-control association study revealed that individuals with the C allele had significant protection against digestive disorders in the Yaan population (OR = 0.71; 95% CI, 0.51-0.99; P < 0.05), the Chengdu population (OR = 0.55; 95% CI, 0.39-0.78; P < 0.01) and for joint analysis (OR = 0.62; 95% CI, 0.49-0.79; P < 0.01). We also experimentally induced digestive disorders by feeding a fiber-deficient diet and found that increased susceptibility was significantly associated with higher MyD88 mRNA expression (P < 0.05). The lowest MyD88 mRNA expression was observed in individuals carrying the protective CC genotype. These results suggest that MyD88 is one of the most plausible candidate genes in relation to digestive disorders in rabbit. Further studies are required to explore the biological implications of MyD88 in the pathogenesis of digestive disorders.

  7. Changes of Antioxidant Function and the mRNA Expression Levels of Apoptosis Genes in Duck Ovaries Caused by Molybdenum or/and Cadmium.

    PubMed

    Cao, Huabin; Xia, Bing; Zhang, Mengmeng; Liao, Yilin; Yang, Zhi; Hu, Guoliang; Zhang, Caiying

    2016-06-01

    To investigate the effects of molybdenum (Mo) combined with cadmium (Cd) on the antioxidant function and the mRNA expression levels of apoptosis-related genes in duck ovaries, 60 healthy 11-old-day female ducks were treated with hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) or/and cadmium sulfate (3CdSO4·8H2O) at different doses on a daily basis for 120 days. On the 120th day, ten female birds in each group were euthanized, and the ovaries and blood were collected to determine the antioxidant indexes and the mRNA expression levels of Bak-1, Bcl-2, and caspase-3 in ovaries. In addition, ovary tissues were subjected to histopathological analysis with optical microscope. The total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity decreased significantly (P < 0.01) in treated groups comparing with control while the nitric oxide synthase (NOS) activity increased (P < 0.01) both in ovary tissue and serum. The Bak-1 and caspase-3 expressions were upregulated while the Bcl-2 was downgraded by Mo or/and Cd. Biomolecules were affected in all metal-treated groups, whereas combined-treated animals showed greater effects. What is more, pathological damage in Mo and Cd combination treated groups was more severe. The results from the present study indicated that Mo or/and Cd caused oxidative stress and apoptosis in duck ovaries. Combination of Mo and Cd showed additive or synergistic effect leading to apoptosis and oxidative stress, and the pathway might be the mitochondrial pathway.

  8. Molecular cloning and mRNA expression of a hepcidin gene from the spinyhead croaker, Collichthys lucidus.

    PubMed

    Sang, C; Lin, Y; Jiang, K; Zhang, F; Song, W

    2015-12-07

    Antimicrobial peptides are important components that participate in host innate immune activities and play crucial roles in host defense against microbial invasion. Hepcidin is an antimicrobial peptide and iron-regulatory molecule that primarily functions in the liver. In the present study, we first obtained a full-length cDNA sequence of hepcidin and its corresponding genomic DNA sequence from Collichthys lucidus using RT-PCR and rapid amplification of cDNA ends (RACE), and then analyzed these sequences using bioinformatics software. The results showed that C. lucidus hepcidin (CL-hepc) possesses two introns and three exons in the genomic DNA, with a length of 816 bp. The open reading frame was 264 bp, encoding an 87 amino acid peptide, and with high similarity (88.89%) to 83416593 Larimichthys crocea (ABC18307) and relatively low similarity (47.73%) to 158358729 L. crocea (ABY84845.1). The pre-peptide contained a signal peptide (28 amino acids), a prodomain (34 amino acids), and a mature peptide (25 amino acids). The predicted 25 amino acid hepcidin mature peptide included 8 conserved cysteine residues. Quantitative real-time reverse transcription-PCR analysis revealed specific expression patterns of CL-hepc, with the highest expression observed in the liver, relatively low expression observed in the gill and spleen, and almost no expression detected in other tissues analyzed. In conclusion, we identified a hepcidin from C. lucidus that has common expression patterns with other hepcidins. However, as this hepcidin is inconsistent with two other hepcidins from L. crocea in terms of the phylogenetic tree, the presence of another hepcidin gene warrants further investigation.

  9. A Genome-Wide mRNA Screen and Functional Analysis Reveal FOXO3 as a Candidate Gene for Chicken Growth

    PubMed Central

    Chen, Biao; Xu, Jiguo; He, Xiaomei; Xu, Haiping; Li, Guihuan; Du, Hongli; Nie, Qinghua; Zhang, Xiquan

    2015-01-01

    Chicken growth performance provides direct economic benefits to the poultry industry. However, the underlying genetic mechanisms are unclear. The objective of this study was to identify candidate genes associated with chicken growth and investigate their potential mechanisms. We used RNA-Seq to study the breast muscle transcriptome in high and low tails of Recessive White Rock (WRRh, WRRl) and Xinghua chickens (XHh, XHl). A total of 60, 23, 153 and 359 differentially expressed genes were detected in WRRh vs. WRRl, XHh vs. XHl, WRRh vs. XHh and WRRl vs. XHl, respectively. GO, KEGG pathway and gene network analyses showed that CEBPB, FBXO32, FOXO3 and MYOD1 played key roles in growth. The functions of FBXO32 and FOXO3 were validated. FBXO32 was predominantly expressed in leg muscle, heart and breast muscle. After decreased FBXO32 expression, growth-related genes such as PDK4, IGF2R and IGF2BP3 were significantly down-regulated (P < 0.05). FBXO32 was significantly (P < 0.05) associated with carcass and meat quality traits, but not growth traits. FOXO3 was predominantly expressed in breast and leg muscle. In both of these tissues, the FOXO3 mRNA level in XH was significantly higher than that in WRR chickens with normal body weight (P < 0.05). In DF-1 cells, siRNA knockdown of FOXO3 significantly (P < 0.01) inhibited the MYOD expression and significantly up-regulated (P < 0.01 or P < 0.05) the expression of growth-related genes including CEBPB, FBXO32, GH, GHR, IGF1R, IGF2R, IGF2BP1, IGF2BP3, INSR, PDK1 and PDK4. Moreover, 18 SNPs were identified in FOXO3. G66716193A was significantly (P < 0.05) associated with growth traits. The sites C66716002T, C66716195T and A66716179G were significantly (P < 0.05) associated with growth or carcass traits. These results demonstrated that FOXO3 is a candidate gene influencing chicken growth. Our observations provide new clues to understand the molecular basis of chicken growth. PMID:26366565

  10. A Genome-Wide mRNA Screen and Functional Analysis Reveal FOXO3 as a Candidate Gene for Chicken Growth.

    PubMed

    Chen, Biao; Xu, Jiguo; He, Xiaomei; Xu, Haiping; Li, Guihuan; Du, Hongli; Nie, Qinghua; Zhang, Xiquan

    2015-01-01

    Chicken growth performance provides direct economic benefits to the poultry industry. However, the underlying genetic mechanisms are unclear. The objective of this study was to identify candidate genes associated with chicken growth and investigate their potential mechanisms. We used RNA-Seq to study the breast muscle transcriptome in high and low tails of Recessive White Rock (WRRh, WRRl) and Xinghua chickens (XHh, XHl). A total of 60, 23, 153 and 359 differentially expressed genes were detected in WRRh vs. WRRl, XHh vs. XHl, WRRh vs. XHh and WRRl vs. XHl, respectively. GO, KEGG pathway and gene network analyses showed that CEBPB, FBXO32, FOXO3 and MYOD1 played key roles in growth. The functions of FBXO32 and FOXO3 were validated. FBXO32 was predominantly expressed in leg muscle, heart and breast muscle. After decreased FBXO32 expression, growth-related genes such as PDK4, IGF2R and IGF2BP3 were significantly down-regulated (P < 0.05). FBXO32 was significantly (P < 0.05) associated with carcass and meat quality traits, but not growth traits. FOXO3 was predominantly expressed in breast and leg muscle. In both of these tissues, the FOXO3 mRNA level in XH was significantly higher than that in WRR chickens with normal body weight (P < 0.05). In DF-1 cells, siRNA knockdown of FOXO3 significantly (P < 0.01) inhibited the MYOD expression and significantly up-regulated (P < 0.01 or P < 0.05) the expression of growth-related genes including CEBPB, FBXO32, GH, GHR, IGF1R, IGF2R, IGF2BP1, IGF2BP3, INSR, PDK1 and PDK4. Moreover, 18 SNPs were identified in FOXO3. G66716193A was significantly (P < 0.05) associated with growth traits. The sites C66716002T, C66716195T and A66716179G were significantly (P < 0.05) associated with growth or carcass traits. These results demonstrated that FOXO3 is a candidate gene influencing chicken growth. Our observations provide new clues to understand the molecular basis of chicken growth.

  11. Two Δ6-desaturase-like genes in common carp (Cyprinus carpio var. Jian): structure characterization, mRNA expression, temperature and nutritional regulation.

    PubMed

    Ren, Hong-tao; Zhang, Guang-qin; Li, Jian-lin; Tang, Yong-kai; Li, Hong-xia; Yu, Ju-hua; Xu, Pao

    2013-08-01

    Δ6-Desaturase is the rate-limiting enzyme involved in highly unsaturated fatty acid (HUFA) biosynthesis. There is very little information on the evolution and functional characterization of Δ6Fad-a and Δ6Fad-b in common carp (Cyprinus carpio var. Jian). In the present study, the genomic sequences and structures of two putative Δ6-desaturase-like genes in common carp genome were obtained. We investigated the mRNA expression patterns of Δ6Fad-a and Δ6Fad-b in tissue, hatching carp embryos, larvae by temperature shock and juveniles under nutritional regulation. Our results showed that the two Δ6Fad genes had identical coding exon structures, being comprised of 12 coding exons, and with introns of distinct size and sequence composition. They were not allelic variants of a single gene. Both Δ6Fad genes were highly expressed in liver, intestine (pyloric caeca) and brain. The Δ6Fad-a and Δ6Fad-b mRNAs showed an increase in expression from newly hatched to 25 days after hatching. The expression levels of Δ6Fad-a were obviously regulated by temperature, whereas Δ6Fad-b was not affected by temperature. The regulation of Δ6Fad-a and Δ6Fad-b in response to dietary fatty acid composition was determined in liver, brain and intestine (pyloric caeca) of common carp fed with diets: diet1with fish oil (FO) rich in n-3 HUFA, diet2 with corn oil (CO, 18:2n-6) and diet3 with linseed oil (LO, 18:3n-3). The differential expression of Δ6Fad-a and Δ6Fad-b genes in liver, brain and intestine in common carps was fed with different oil sources, respectively. Further work is in progress to determine the mechanism of differential expression of the Δ6Fad-a and Δ6Fad-b genes in different tissues and the roles of transcription factors in regulating HUFA synthesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer.

    PubMed

    Foster, Helen; Sharp, Paul S; Athanasopoulos, Takis; Trollet, Capucine; Graham, Ian R; Foster, Keith; Wells, Dominic J; Dickson, George

    2008-11-01

    Duchenne muscular dystrophy is a fatal muscle-wasting disorder. Lack of dystrophin compromises the integrity of the sarcolemma and results in myofibers that are highly prone to contraction-induced injury. Recombinant adeno-associated virus (rAAV)-mediated dystrophin gene transfer strategies to muscle for the treatment of Duchenne muscular dystrophy (DMD) have been limited by the small cloning capacity of rAAV vectors and high titers necessary to achieve efficient systemic gene transfer. In this study, we assess the impact of codon optimization on microdystrophin (DeltaAB/R3-R18/DeltaCT) expression and function in the mdx mouse and compare the function of two different configurations of codon-optimized microdystrophin genes (DeltaAB/R3-R18/DeltaCT and DeltaR4-R23/DeltaCT) under the control of a muscle-restrictive promoter (Spc5-12). Codon optimization of microdystrophin significantly increases levels of microdystrophin mRNA and protein after intramuscular and systemic administration of plasmid DNA or rAAV2/8. Physiological assessment demonstrates that codon optimization of DeltaAB/R3-R18/DeltaCT results in significant improvement in specific force, but does not improve resistance to eccentric contractions compared with noncodon-optimized DeltaAB/R3-R18/DeltaCT. However, codon-optimized microdystrophin DeltaR4-R23/DeltaCT completely restored specific force generation and provided substantial protection from contraction-induced injury. These results demonstrate that codon optimization of microdystrophin under the control of a muscle-specific promoter can significantly improve expression levels such that reduced titers of rAAV vectors will be required for efficient systemic administration.

  13. Quantifying Temporal Autocorrelations for the Expression of Geobacter species mRNA Gene Transcripts at Variable Ammonium Levels during in situ U(VI) Bioremediation

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.

    2010-12-01

    In order to develop decision-making tools for the prediction and optimization of subsurface bioremediation strategies, we must be able to link the molecular-scale activity of microorganisms involved in remediation processes with biogeochemical processes observed at the field-scale. This requires the ability to quantify changes in the in situ metabolic condition of dominant microbes and associate these changes to fluctuations in nutrient levels throughout the bioremediation process. It also necessitates a need to understand the spatiotemporal variability of the molecular-scale information to develop meaningful parameters and constraint ranges in complex bio-physio-chemical models. The expression of three Geobacter species genes (ammonium transporter (amtB), nitrogen fixation (nifD), and a housekeeping gene (recA)) were tracked at two monitoring locations that differed significantly in ammonium (NH4+) concentrations during a field-scale experiment where acetate was injected into the subsurface to simulate Geobacteraceae in a uranium-contaminated aquifer. Analysis of amtB and nifD mRNA transcript levels indicated that NH4+ was the primary form of fixed nitrogen during bioremediation. Overall expression levels of amtB were on average 8-fold higher at NH4+ concentrations of 300 μM or more than at lower NH4+ levels (average 60 μM). The degree of temporal correlation in Geobacter species mRNA expression levels was calculated at both locations using autocorrelation methods that describe the relationship between sample semi-variance and time lag. At the monitoring location with lower NH4+, a temporal correlation lag of 8 days was observed for both amtB and nifD transcript patterns. At the location where higher NH4+ levels were observed, no discernable temporal correlation lag above the sampling frequency (approximately every 2 days) was observed for amtB or nifD transcript fluctuations. Autocorrelation trends in recA expression levels at both locations indicated that

  14. Gene expression and mRNA editing of serotonin receptor 2C in brains of HPRT gene knock-out mice, an animal model of Lesch-Nyhan disease

    PubMed Central

    Bertelli, Matteo; Alushi, Brunilda; Veicsteinas, Arsenio; Jinnah, H.A.; Micheli, Vanna

    2016-01-01

    Lesch-Nyhan disease (LND), a genetic disorder associated with motor and psychiatric disturbance and self-injurious behaviour (SIB) is caused by a complete deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT). The connection between enzyme deficiency and neurological involvement is still unclear. Evidence exists for a role of basal ganglia dysfunction with decreased dopamine and excess serotonin striatal content. In this study, we investigate the role of serotonin receptor 2C (HTR2C) in the brains of HPRT gene knock-out mice, a model of LND. HTR2C expression is analyzed by real-time polymerase chain reaction (PCR) using SYBR-green detection methods. The percentage of edited HTR2C mRNA was determined by direct sequencing of amplification products of the region containing the editing sites. We found a 55% increase in the expression of HTR2C gene but no significant difference in mRNA editing levels between knock-out and control mice. The above alteration found in HPRT-deficient mice is similar to those found in other animal models used to study aggressive and self-injurious behaviour. PMID:19473847

  15. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia

    PubMed Central

    Hwang, Y; Kim, J; Shin, J-Y; Kim, J-II; Seo, J-S; Webster, M J; Lee, D; Kim, S

    2013-01-01

    Whole-genome expression profiling in postmortem brain tissue has recently provided insight into the pathophysiology of schizophrenia. Previous microarray and RNA-Seq studies identified several biological processes including synaptic function, mitochondrial function and immune/inflammation response as altered in the cortex of subjects with schizophrenia. Now using RNA-Seq data from the hippocampus, we have identified 144 differentially expressed genes in schizophrenia cases as compared with unaffected controls. Immune/inflammation response was the main biological process over-represented in these genes. The upregulation of several of these genes, IFITM1, IFITM2, IFITM3, APOL1 (Apolipoprotein L1), ADORA2A (adenosine receptor 2A), IGFBP4 and CD163 were validated in the schizophrenia subjects using data from the SNCID database and with quantitative RT-PCR. We identified a co-expression module associated with schizophrenia that includes the majority of differentially expressed genes related to immune/inflammation response as well as with the density of parvalbumin-containing neurons in the hippocampus. The results indicate that abnormal immune/inflammation response in the hippocampus may underlie the pathophysiology of schizophrenia and may be associated with abnormalities in the parvalbumin-containing neurons that lead to the cognitive deficits of the disease. PMID:24169640

  16. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia.

    PubMed

    Hwang, Y; Kim, J; Shin, J Y; Kim, J Ii; Seo, J S; Webster, M J; Lee, D; Kim, S

    2013-10-29

    Whole-genome expression profiling in postmortem brain tissue has recently provided insight into the pathophysiology of schizophrenia. Previous microarray and RNA-Seq studies identified several biological processes including synaptic function, mitochondrial function and immune/inflammation response as altered in the cortex of subjects with schizophrenia. Now using RNA-Seq data from the hippocampus, we have identified 144 differentially expressed genes in schizophrenia cases as compared with unaffected controls. Immune/inflammation response was the main biological process over-represented in these genes. The upregulation of several of these genes, IFITM1, IFITM2, IFITM3, APOL1 (Apolipoprotein L1), ADORA2A (adenosine receptor 2A), IGFBP4 and CD163 were validated in the schizophrenia subjects using data from the SNCID database and with quantitative RT-PCR. We identified a co-expression module associated with schizophrenia that includes the majority of differentially expressed genes related to immune/inflammation response as well as with the density of parvalbumin-containing neurons in the hippocampus. The results indicate that abnormal immune/inflammation response in the hippocampus may underlie the pathophysiology of schizophrenia and may be associated with abnormalities in the parvalbumin-containing neurons that lead to the cognitive deficits of the disease.

  17. Detection of aberrant transcription of major histocompatibility complex class II antigen presentation genes in chronic lymphocytic leukaemia identifies HLA-DOA mRNA as a prognostic factor for survival.

    PubMed

    Souwer, Yuri; Chamuleau, Martine E D; van de Loosdrecht, Arjan A; Tolosa, Eva; Jorritsma, Tineke; Muris, Jettie J F; Dinnissen-van Poppel, Marion J; Snel, Sander N; van de Corput, Lisette; Ossenkoppele, Gert J; Meijer, Chris J L M; Neefjes, Jacques J; Marieke van Ham, S

    2009-05-01

    In human B cells, effective major histocompatibility complex (MHC) class II-antigen presentation depends not only on MHC class II, but also on the invariant chain (CD74 or Ii), HLA-DM (DM) and HLA-DO (DO), the chaperones regulating the antigen loading process of MHC class II molecules. We analysed immediate ex vivo expression of HLA-DR (DR), CD74, DM and DO in B cell chronic lymphocytic leukaemia (B-CLL). Real-time reverse transcription polymerase chain reaction demonstrated a highly significant upregulation of DRA, CD74, DMB, DOA and DOB mRNA in purified malignant cells compared to B cells from healthy donors. The increased mRNA levels were not translated into enhanced protein levels but could reflect aberrant transcriptional regulation. Indeed, upregulation of DRA, DMB, DOA and DOB mRNA correlated with enhanced expression of class II transactivator (CIITA). In-depth analysis of the various CIITA transcripts demonstrated a significant increased activity of the interferon-gamma-inducible promoter CIITA-PIV in B-CLL. Comparison of the aberrant mRNA levels with clinical outcome identified DOA mRNA as a prognostic indicator for survival. Multivariate analysis revealed that the prognostic value of DOA mRNA was independent of the mutational status of the IGHV genes. Thus, aberrant transcription of DOA forms a novel and additional prognostic indicator for survival in B-CLL.

  18. Expression at mRNA level of cytokines and A238L gene in porcine blood-derived macrophages infected in vitro with African swine fever virus (ASFV) isolates of different virulence.

    PubMed

    Gil, S; Spagnuolo-Weaver, M; Canals, A; Sepúlveda, N; Oliveira, J; Aleixo, A; Allan, G; Leitão, A; Martins, C L V

    2003-11-01

    Porcine macrophage cultures were infected with two ASFV isolates of variable virulence and mRNA levels of several relevant macrophage-derived cytokines were quantified by real time PCR. At six hours post infection, a clear enhancement of mRNA expression of TNFalpha, IL6, IL12 and IL15 was observed in macrophages infected with the low virulent ASFV/NH/P68 (NHV) when compared to those infected with the highly virulent ASFV/L60 (L60). The sequence of the A238L gene homologue to the cellular IkappaB was found identical in both viral isolates and its expression at mRNA level was higher in macrophages infected with NHV when compared to macrophages infected with L60. Furthermore our results suggest a negative correlation between the mRNA expression of A238L gene and the mRNA expression of the above mentioned cytokines (with the exception of IL10) in L60 infected macrophages in opposition to the positive correlation (with exception of the IL1) suggested in NHV infection. Overall, our data strongly emphasize that virulence of ASFV isolates may depend on their capacity to regulate the expression of macrophage-derived cytokines relevant for the development of host protective responses by yet unknown mechanisms triggered by the virus at early stages of the cellular infection.

  19. Molecular characterization and expression of buffalo (Bubalus bubalis) DEAD-box family VASA gene and mRNA transcript variants isolated from testis tissue.

    PubMed

    Kaushik, Ramakant; Singh, Karn Pratap; Bahuguna, Vivek; Rameshbabu, K; Singh, Manoj Kumar; Manik, Radhey Shyam; Palta, Prabhat; Singla, Suresh Kumar; Chauhan, Manmohan Singh

    2015-11-01

    VASA is a member of the DEAD-box protein family that plays an indispensable role in mammalian spermatogenesis, particularly during meiosis. In the present study, we isolated, sequenced, and characterized VASA gene in buffalo testis. Here, we demonstrated that VASA mRNA is expressed as multiple isoforms and uses four alternative transcriptional start sites (TSSs) and four different polyadenylation sites. The TSSs identified by 5'-RNA ligase-mediated rapid amplification of cDNA ends (RLM-5'-RACE) were positioned at 48, 53, 85, and 88 nucleotides upstream relative to the translation initiation codon. 3'-RACE experiment revealed the presence of tandem polyadenylation signals, which lead to the expression of at least four different 3'-untranslated regions (209, 233, 239 and 605 nucleotides). The full-length coding region of VASA was 2190 bp, which encodes a 729 amino acid (aa) protein containing nine consensus regions of the DEAD box protein family. VASA variants are highly expressed in testis of adult buffalo. We found five variants, one full length VASA (729 aa) and four splice variants VASA 2, 4, 5, 6 (683, 685, 679, 703 aa). The expression level of VASA 1 was significantly higher than rest of all (P < 0.05) except VASA 6. The relative ratio for VASA 1:2:4:5:6 was 100:1.0:1.6:0.9:48.

  20. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  1. SAC3B, a central component of the mRNA export complex TREX-2, is required for prevention of epigenetic gene silencing in Arabidopsis.

    PubMed

    Yang, Yu; La, Honggui; Tang, Kai; Miki, Daisuke; Yang, Lan; Wang, Bangshing; Duan, Cheng-Guo; Nie, Wenfeng; Wang, Xingang; Wang, Siwen; Pan, Yufeng; Tran, Elizabeth J; An, Lizhe; Zhang, Huiming; Zhu, Jian-Kang

    2017-01-09

    Epigenetic regulation is important for organismal development and response to the environment. Alteration in epigenetic status has been known mostly from the perspective of enzymatic actions of DNA methylation and/or histone modifications. In a genetic screen for cellular factors involved in preventing epigenetic silencing, we isolated an Arabidopsis mutant defective in SAC3B, a component of the conserved TREX-2 complex that couples mRNA transcription with nuleo-cytoplasmic export. Arabidopsis SAC3B dysfunction causes gene silencing at transgenic and endogenous loci, accompanied by elevation in the repressive histone mark H3K9me2 and by reduction in RNA polymerase Pol II occupancy. SAC3B dysfunction does not alter promoter DNA methylation level of the transgene d35S::LUC, although the DNA demethylase ROS1 is also required for d35S::LUC anti-silencing. THP1 and NUA were identified as SAC3B-associated proteins whose mutations also caused d35S::LUC silencing. RNA-DNA hybrid exists at the repressed loci but is unrelated to gene suppression by the sac3b mutation. Genome-wide analyses demonstrated minor but clear involvement of SAC3B in regulating siRNAs and DNA methylation, particularly at a group of TAS and TAS-like loci. Together our results revealed not only a critical role of mRNA-export factors in transcriptional anti-silencing but also the contribution of SAC3B in shaping plant epigenetic landscapes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. SAC3B, a central component of the mRNA export complex TREX-2, is required for prevention of epigenetic gene silencing in Arabidopsis

    PubMed Central

    Yang, Yu; La, Honggui; Tang, Kai; Miki, Daisuke; Yang, Lan; Wang, Bangshing; Duan, Cheng-Guo; Nie, Wenfeng; Wang, Xingang; Wang, Siwen; Pan, Yufeng; Tran, Elizabeth J.; An, Lizhe; Zhang, Huiming; Zhu, Jian-Kang

    2017-01-01

    Epigenetic regulation is important for organismal development and response to the environment. Alteration in epigenetic status has been known mostly from the perspective of enzymatic actions of DNA methylation and/or histone modifications. In a genetic screen for cellular factors involved in preventing epigenetic silencing, we isolated an Arabidopsis mutant defective in SAC3B, a component of the conserved TREX-2 complex that couples mRNA transcription with nuleo-cytoplasmic export. Arabidopsis SAC3B dysfunction causes gene silencing at transgenic and endogenous loci, accompanied by elevation in the repressive histone mark H3K9me2 and by reduction in RNA polymerase Pol II occupancy. SAC3B dysfunction does not alter promoter DNA methylation level of the transgene d35S::LUC, although the DNA demethylase ROS1 is also required for d35S::LUC anti-silencing. THP1 and NUA were identified as SAC3B-associated proteins whose mutations also caused d35S::LUC silencing. RNA-DNA hybrid exists at the repressed loci but is unrelated to gene suppression by the sac3b mutation. Genome-wide analyses demonstrated minor but clear involvement of SAC3B in regulating siRNAs and DNA methylation, particularly at a group of TAS and TAS-like loci. Together our results revealed not only a critical role of mRNA-export factors in transcriptional anti-silencing but also the contribution of SAC3B in shaping plant epigenetic landscapes. PMID:27672037

  3. Myeloperoxidase activity and its corresponding mRNA expression as well as gene polymorphism in the population living in the coal-burning endemic fluorosis area in Guizhou of China.

    PubMed

    Zhang, Ting; Shan, Ke-Ren; Tu, Xi; He, Yan; Pei, Jin-Jing; Guan, Zhi-Zhong

    2013-06-01

    The myeloperoxidase (MPO) activity and its corresponding mRNA expression as well as gene polymorphism were investigated in the population who live in the endemic fluorosis area. In the study, 150 people were selected from the coal-burning endemic fluorosis area and 150 normal persons from the non-fluorosis area in Guizhou province of China. The blood samples were collected from these people. The activity of MPO in the plasma was determined by spectrophotometer; the expression of MPO mRNA was measured by employing real-time polymerase chain reaction; DNAs were extracted from the leucocytes in blood and five SNP genotypes of MPO promoter gene detected by a multiplex genotyping method, adapter-ligation-mediated allele-specific amplification. The results showed that the MPO activity and its corresponding mRNA in blood were significantly increased in the population living in the area of fluorosis. The different genotype frequencies of MPO, including -1228G/A, -585T/C, -463G/A, and -163C/T, and the three haplotypes with higher frequencies, including -163C-463G-585T-1228G-1276T, -163C-463G-585T-1228G-1276C, and -163C-463G-585T-1228A-1276T, were significantly associated with fluorosis. The results indicated that the elevated activity of MPO induced by endemic fluorosis may be connected in mechanism to the stimulated expression of MPO mRNA and the changed gene polymorphism.

  4. Molecular characterization, tissue distribution, and mRNA expression profiles of two Kiss genes in the adult male and female chub mackerel (Scomber japonicus) during different gonadal stages.

    PubMed

    Selvaraj, Sethu; Kitano, Hajime; Fujinaga, Yoichiro; Ohga, Hirofumi; Yoneda, Michio; Yamaguchi, Akihiko; Shimizu, Akio; Matsuyama, Michiya

    2010-10-01

    Kisspeptins, encoded by the Kiss1 gene, have emerged as key modulators of reproduction in mammals. In contrast to the placental mammals, some teleosts express two Kiss genes, Kiss1 and Kiss2. In the present study, full-length cDNAs of Kiss1 and Kiss2 in the chub mackerel were cloned and sequenced. Chub mackerel Kiss1 and Kiss2 cDNAs encode 105 and 123 amino acids, respectively. A comparison of the deduced amino acid sequences of chub mackerel Kiss1 and Kiss2 with those of other vertebrate species showed a high degree of conservation only in the kisspeptin-10 region (Kp-10). The Kp-10 of chub mackerel Kiss1 (YNFNSFGLRY) and Kiss2 (FNFNPFGLRF) showed variations at three amino acids. Tissue distribution analysis using quantitative real-time PCR (qRT-PCR) revealed that the Kiss1 and Kiss2 transcripts were expressed in different tissues of adult chub mackerel. In addition, their levels in the adipose tissue exhibited sexually dimorphic expression. Further, to have a basic understanding on the involvement of Kiss1 and Kiss2 in the seasonal gonadal development, their relative mRNA expression profiles in the brain, pituitary, and gonads at different gonadal stages were analyzed using qRT-PCR. Kiss1 and Kiss2 levels in the brain showed a differential expression profile between male and female fish. In males, Kiss1 and Kiss2 levels gradually decreased from the immature stage to spermiation and reached a minimal level during the post-spawning period. In contrast, Kiss1 levels in the brain of females did not vary significantly among the different gonadal stages. However, Kiss2 levels fluctuated as that of males, gradually declining from the immature stage to the post-spawning period. The pituitary Kiss1 levels did not show significant fluctuations. However, Kiss1 levels in the gonads were highly elevated during spermiation and late vitellogenesis compared to the immature and post-spawning period. These results suggest the possible involvement of two Kiss genes in the brain and

  5. Maternal separation enhances conditioned fear and decreases the mRNA levels of the neurotensin receptor 1 gene with hypermethylation of this gene in the rat amygdala.

    PubMed

    Toda, Hiroyuki; Boku, Shuken; Nakagawa, Shin; Inoue, Takeshi; Kato, Akiko; Takamura, Naoki; Song, Ning; Nibuya, Masashi; Koyama, Tsukasa; Kusumi, Ichiro

    2014-01-01

    Stress during postnatal development is associated with an increased risk for depression, anxiety disorders, and substance abuse later in life, almost as if mental illness is able to be programed by early life stressors. Recent studies suggest that such "programmed" effects can be caused by epigenetic regulation. With respect to conditioned fear, previous studies have indicated that early life stress influences its development in adulthood, whereas no potential role of epigenetic regulation has been reported. Neurotensin (NTS) is an endogenous neuropeptide that has receptors densely located in the amygdala and hippocampus. Recently, NTS systems have constituted an emerging target for the treatment of anxiety. The aim of the present work is to clarify whether the NTS system is involved in the disturbance of conditioned fear in rats stressed by maternal separation (MS). The results showed that MS enhanced freezing behaviors in fear-conditioned stress and reduced the gene expression of NTS receptor (NTSR) 1 but not of NTS or NTSR2 in the amygdalas of adult rats. The microinjection of a NTSR1 antagonist into the amygdala increased the percentage of freezing in conditioned fear, whereas the microinjection of NTSR1 agonist decreased freezing. These results suggest that NTSR1 in the amygdala may play a role in the effects of MS on conditioned fear stress in adult rats. Moreover, MS increased DNA methylation in the promoter region of NTSR1 in the amygdala. Taken together, MS may leave epigenetic marks in the NTSR1 gene in the amygdala, which may enhance conditioned fear in adulthood. The MS-induced alternations of DNA methylation in the promoter region of NTSR1 in the amygdala may be associated with vulnerability to the development of anxiety disorders and depression in adulthood.

  6. Molecular cloning, mRNA expression and nutritional regulation of a Δ6 fatty acyl desaturase-like gene of mud crab, Scylla paramamosain.

    PubMed

    Lin, Zhideng; Hao, Meilin; Zhu, Dashi; Li, Shengkang; Wen, Xiaobo

    2017-06-01

    Fatty acyl desaturases (Fads) are critical enzymes in the pathways for the biosynthesis of the highly unsaturated fatty acids (HUFA). Here we report on the molecular cloning, tissue expression and nutritional regulation of a Δ6 fatty acyl desaturase-like (Δ6 Fad-like) gene from mud crab, Scylla paramamosain. The full-length cDNA was 1973bp, with a 201bp of 5'-UTR, a 443bp of 3'-UTR, and an ORF of 1329bp that encoded a protein of 442 amino acids. Bioinformatics analysis showed that the deduced peptide sequence possessed the typical features of the microsomal Fads, including N-terminal cytochrome b5 domain containing the heme-binding motif (H-P-G-G), three histidine-rich boxes and three membrane-spanning regions. Sequence comparison revealed that the predicted protein had a high percentage identity (>53%) with Δ6 Fads from other crustacean species. The tissue distribution of mud crab Δ6 Fad-like mRNA was found predominantly in hepatopancreas, with lower expression levels in all other tissues. Quantitative real-time PCR showed that the Δ6 Fad-like transcriptional levels in hepatopancreas gradually increased with the increased replacement of dietary fish oil (FO) by soybean oil (SO). The replacement ratio of FO by SO up to 60%, 80%, and 100% were significantly up-regulated by about 2.40-fold, 2.99-fold and 3.02-fold compared with that in the control group (100% FO) respectively (P<0.05). These results may contribute to better understanding the HUFA biosynthetic pathway and regulation mechanism in this species. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Quantitative analysis of mRNA transcripts of Hox, SHH, PTCH, Wnt, and Fzd genes in canine hematopoietic progenitor cells and various in vitro colonies differentiated from the cells.

    PubMed

    Ide, Kaori; Goto-Koshino, Yuko; Momoi, Yasuyuki; Fujino, Yasuhito; Ohno, Koichi; Tsujimoto, Hajime

    2009-01-01

    Homeobox (Hox), Sonic hedgehog (SHH), and Wingless-type MMTV integration site family (Wnt) are known to modulate the self-renewal and expansion of hematopoietic progenitor/stem cells in humans and mice. Frizzled (Fzd) and Patched1 (PTCH1) represent the receptors of Wnt and SHH, respectively. In this study, the amounts of mRNA transcripts of the genes associated with the self-renewal of hematopoietic stem cells, HoxB3, HoxB4, HoxA10, Wnt5a, Wnt2b, Fzd1, Fzd6, SHH, and PTCH1, were measured in canine unfractionated bone marrow cells, CD34-enriched cells, and various colony-forming units in culture (CFU-C). Partial cDNA sequences of these 9 canine genes were determined in this study. Quantitative real-time polymerase chain reaction was employed to indicate their relative amounts of mRNA transcripts. Amounts of mRNA transcripts of HoxB3, HoxA10, PTCH1, and Wnt5a genes in canine CD34-enriched cell fraction were significantly larger than those in the CD34-depleted cell fraction. Amounts of mRNA transcripts of HoxB3, HoxA10, PTCH1, Wnt5a, and Wnt2b genes in various CFU-C cells were significantly smaller than those in the seeded CD34-enriched cell fraction. These results suggested important roles of the products of these genes in self-renewal, expansion, and survival of hematopoietic progenitor cells in dogs as shown in humans and rodents.

  8. Two duplicated chicken-type lysozyme genes in disc abalone Haliotis discus discus: molecular aspects in relevance to structure, genomic organization, mRNA expression and bacteriolytic function.

    PubMed

    Umasuthan, Navaneethaiyer; Bathige, S D N K; Kasthuri, Saranya Revathy; Wan, Qiang; Whang, Ilson; Lee, Jehee

    2013-08-01

    Lysozymes are crucial antibacterial proteins that are associated with catalytic cleavage of peptidoglycan and subsequent bacteriolysis. The present study describes the identification of two lysozyme genes from disc abalone Haliotis discus discus and their characterization at sequence-, genomic-, transcriptional- and functional-levels. Two cDNAs and BAC clones bearing lysozyme genes were isolated from abalone transcriptome and BAC genomic libraries, respectively and sequences were determined. Corresponding deduced amino acid sequences harbored a chicken-type lysozyme (LysC) family profile and exhibited conserved characteristics of LysC family members including active residues (Glu and Asp) and GS(S/T)DYGIFQINS motif suggested that they are LysC counterparts in disc abalone and designated as abLysC1 and abLysC2. While abLysC1 represented the homolog recently reported in Ezo abalone [1], abLysC2 shared significant identity with LysC homologs. Unlike other vertebrate LysCs, coding sequence of abLysCs were distributed within five exons interrupted by four introns. Both abLysCs revealed a broader mRNA distribution with highest levels in mantle (abLysC1) and hepatopancreas (abLysC2) suggesting their likely main role in defense and digestion, respectively. Investigation of temporal transcriptional profiles post-LPS and -pathogen challenges revealed induced-responses of abLysCs in gills and hemocytes. The in vitro muramidase activity of purified recombinant (r) abLysCs proteins was evaluated, and findings indicated that they are active in acidic pH range (3.5-6.5) and over a broad temperature range (20-60 °C) and influenced by ionic strength. When the antibacterial spectra of (r)abLysCs were examined, they displayed differential activities against both Gram positive and Gram negative strains providing evidence for their involvement in bacteriolytic function in abalone physiology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. 3-Nitropropionic acid modifies neurotrophin mRNA expression in the mouse striatum: 18S-rRNA is a reliable control gene for studies of the striatum.

    PubMed

    Espíndola, S; Vilches-Flores, A; Hernández-Echeagaray, E

    2012-10-01

    The aim of the present study was to determine the changes in the mRNA levels of neurotrophins and their receptors in the striatal tissue of mice treated with 3-nitropropionic acid (3-NP). At 1 and 48 h after the last drug administration, the mRNA expression of nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 as well as their receptors p75, TrkA, TrkB and TrkC, was evaluated using semi-quantitative (semi-Q) and real-time RT-PCR. β-actin mRNA and ribosomal 18S (18S rRNA) were tested as internal controls. 3-NP treatment did not affect mRNA expression of all neurotrophins and their respective receptors equally. Also, differences in neurotrophin and receptor mRNA expression were observed between semi-Q and real-time RT-PCR. Real-time RT-PCR was more accurate in evaluating the mRNA expression of the neurotrophins than semi-Q, and 18S rRNA was more reliable than β-actin as an internal control. Neurotrophins and their receptors expression is differentially affected by neuronal damage produced by inhibition of mitochondrial respiration with 3-NP treatment in low, sub-chronic doses in vivo.

  10. Comparison of the QuantiGene 2.0 Assay and Real-Time RT-PCR in the Detection of p53 Isoform mRNA Expression in Formalin-Fixed Paraffin-Embedded Tissues- A Preliminary Study

    PubMed Central

    Morten, Brianna C.; Scott, Rodney J.; Avery-Kiejda, Kelly A.

    2016-01-01

    p53 is expressed as multiple smaller isoforms whose functions in cancer are not well understood. The p53 isoforms demonstrate abnormal expression in different cancers, suggesting they are important in modulating the function of full-length p53 (FLp53). The quantification of relative mRNA expression has routinely been performed using real-time PCR (qPCR). However, there are serious limitations when detecting p53 isoforms using this method, particularly for formalin-fixed paraffin-embedded (FFPE) tissues. The use of FFPE tumours would be advantageous to correlate expression of p53 isoforms with important clinical features of cancer. One alternative method of RNA detection is the hybridization-based QuantiGene 2.0 Assay, which has been shown to be advantageous for the detection of RNA from FFPE tissues. In this pilot study, we compared the QuantiGene 2.0 Assay to qPCR for the detection of FLp53 and its isoform Δ40p53 in matched fresh frozen (FF) and FFPE breast tumours. FLp53 mRNA expression was detected using qPCR in FF and FFPE tissues, but Δ40p53 mRNA was only detectable in FF tissues. Similar results were obtained for the QuantiGene 2.0 Assay. FLp53 relative mRNA expression was shown to be strongly correlated between the two methods (R2 = 0.9927, p = 0.0031) in FF tissues, however Δ40p53 was not (R2 = 0.4429, p = 0.3345). When comparing the different methods for the detection of FLp53 mRNA from FFPE and FF samples, no correlation (R2 = 0.0002, p = 0.9863) was shown using the QuantiGene 2.0 Assay, and in contrast, the level of expression was highly correlated between the two tissues using qPCR (R2 = 0.8753, p = 0.0644). These results suggest that both the QuantiGene 2.0 Assay and qPCR methods are inadequate for the quantification of Δ40p53 mRNA in FFPE tissues. Therefore, alternative methods of RNA detection and quantification are required to study the relative expression of Δ40p53 in FFPE samples. PMID:27832134

  11. Effects of environmental stress on mRNA expression levels of seven genes related to oxidative stress and growth in Atlantic salmon Salmo salar L. of farmed, hybrid and wild origin

    PubMed Central

    2012-01-01

    Background Ten generations of domestication selection has caused farmed Atlantic salmon Salmo salar L. to deviate from wild salmon in a range of traits. Each year hundreds of thousands of farmed salmon escape into the wild. Thus, interbreeding between farmed escapees and wild conspecifics represents a significant threat to the genetic integrity of wild salmon populations. In a previous study we demonstrated how domestication has inadvertently selected for reduced responsiveness to stress in farmed salmon. To complement that study, we have evaluated the expression of seven stress-related genes in head kidney of salmon of farmed, hybrid and wild origin exposed to environmentally induced stress. Results In general, the crowding stressor used to induce environmental stress did not have a strong impact on mRNA expression levels of the seven genes, except for insulin-like growth factor-1 (IGF-1) that was downregulated in the stress treatment relative to the control treatment. mRNA expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (Cu/Zn SOD), Mn superoxide dismutase (Mn SOD), glutathione peroxidase (GP) and IGF-1 were affected by genetic origin, thus expressed significantly different between the salmon of farmed, hybrid or wild origin. A positive relationship was detected between body size of wild salmon and mRNA expression level of the IGF-1 gene, in both environments. No such relationship was observed for the hybrid or farmed salmon. Conclusion Farmed salmon in this study displayed significantly elevated mRNA levels of the IGF-1 gene relative to the wild salmon, in both treatments, while hybrids displayed a non additive pattern of inheritance. As IGF-1 mRNA levels are positively correlated to growth rate, the observed positive relationship between body size and IGF-1 mRNA levels detected in the wild but neither in the farmed nor the hybrid salmon, could indicate that growth selection has increased IGF-1 levels in farmed salmon to the extent

  12. The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501.

    PubMed

    Zhan, Yuhua; Yan, Yongliang; Deng, Zhiping; Chen, Ming; Lu, Wei; Lu, Chao; Shang, Liguo; Yang, Zhimin; Zhang, Wei; Wang, Wei; Li, Yun; Ke, Qi; Lu, Jiasi; Xu, Yuquan; Zhang, Liwen; Xie, Zhihong; Cheng, Qi; Elmerich, Claudine; Lin, Min

    2016-07-26

    Unlike most Pseudomonas, the root-associated bacterium Pseudomonas stutzeri A1501 fixes nitrogen after the horizontal acquisition of a nitrogen-fixing (nif) island. A genome-wide search for small noncoding RNAs (ncRNAs) in P. stutzeri A1501 identified the novel P. stutzeri-specific ncRNA NfiS in the core genome, whose synthesis was significantly induced under nitrogen fixation or sorbitol stress conditions. The expression of NfiS was RNA chaperone Hfq-dependent and activated by the sigma factor RpoN/global nitrogen activator NtrC/nif-specific activator NifA regulatory cascade. The nfiS-deficient mutant displayed reduced nitrogenase activity, as well as increased sensitivity to multiple stresses, such as osmotic and oxidative stresses. Secondary structure prediction and complementation studies confirmed that a stem-loop structure was essential for NfiS to regulate the nitrogenase gene nifK mRNA synthesis and thus nitrogenase activity. Microscale thermophoresis and physiological analysis showed that NfiS directly pairs with nifK mRNA and ultimately enhances nitrogenase activity by increasing the translation efficiency and the half-life of nifK mRNA. Our data also suggest structural and functional divergence of NfiS evolution in diazotrophic and nondiazotrophic backgrounds. It is proposed that NfiS was recruited by nifK mRNA as a novel regulator to integrate the horizontally acquired nif island into host global networks.

  13. The ultraspiracle gene of the spruce budworm, Choristoneura fumiferana: cloning of cDNA and developmental expression of mRNA.

    PubMed

    Perera, S C; Palli, S R; Ladd, T R; Krell, P J; Retnakaran, A

    1998-01-01

    Cloning and characterization of a Choristoneura fumiferana ultraspiracle (Cfusp) cDNA are described. First, a PCR fragment and then a cDNA clone (4.4 kb) were isolated from spruce budworm cDNA libraries. Comparison of the deduced amino acid sequence of this cDNA with the sequences in Genbank showed that this sequence had high homology with the ultraspiracle cDNAs cloned from Drosophila melanogaster (Dmusp), Bombyx mori (Bmusp), Manduca sexta (Msusp), and Aedes aegypti (Aausp). The Cfusp cDNA contained all the regions that are typical for a steroid/thyroid hormone receptor superfamily member. The DNA binding domain or C region was the most conserved sequence among all the usps. The A/B, D, and E regions also showed high amino acid identity with the amino acid sequences of Dmusp, Msusp, Bmusp, and Aausp. The Cfusp 4.5-kb mRNA was present in the embryos, in all larval stages, and in the pupae. The Cfusp mRNA levels in the midgut increased during the sixth-instar larval development and reached peak levels during the ecdysteroid raises for the pupal molt. However, Cfusp mRNA levels remained unchanged in the midgut of fifth-instar larvae, and in the epidermis and fat body of sixth-instar larvae indicating both a tissue- and stage-specific regulation of Cfusp mRNA expression.

  14. Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA.

    PubMed

    Miller, Jason B; Zhang, Shuyuan; Kos, Petra; Xiong, Hu; Zhou, Kejin; Perelman, Sofya S; Zhu, Hao; Siegwart, Daniel J

    2017-01-19

    CRISPR/Cas is a revolutionary gene editing technology with wide-ranging utility. The safe, non-viral delivery of CRISPR/Cas components would greatly improve future therapeutic utility. We report the synthesis and development of zwitterionic amino lipids (ZALs) that are uniquely able to (co)deliver long RNAs including Cas9 mRNA and sgRNAs. ZAL nanoparticle (ZNP) delivery of low sgRNA doses (15 nm) reduces protein expression by >90 % in cells. In contrast to transient therapies (such as RNAi), we show that ZNP delivery of sgRNA enables permanent DNA editing with an indefinitely sustained 95 % decrease in protein expression. ZNP delivery of mRNA results in high protein expression at low doses in vitro (<600 pM) and in vivo (1 mg kg(-1) ). Intravenous co-delivery of Cas9 mRNA and sgLoxP induced expression of floxed tdTomato in the liver, kidneys, and lungs of engineered mice. ZNPs provide a chemical guide for rational design of long RNA carriers, and represent a promising step towards improving the safety and utility of gene editing.

  15. Numerical solution of the chemical master equation uniqueness and stability of the stationary distribution for chemical networks, and mRNA bursting in a gene network with negative feedback regulation.

    PubMed

    Zeron, E S; Santillán, M

    2011-01-01

    In this work, we introduce a couple of algorithms to compute the stationary probability distribution for the chemical master equation (CME) of arbitrary chemical networks. We further find the conditions guaranteeing the algorithms' convergence and the unity and stability of the stationary distribution. Next, we employ these algorithms to study the mRNA and protein probability distributions in a gene regulatory network subject to negative feedback regulation. In particular, we analyze the influence of the promoter activation/deactivation speed on the shape of such distributions. We find that a reduction of the promoter activation/deactivation speed modifies the shape of those distributions in a way consistent with the phenomenon known as mRNA (or transcription) bursting.

  16. Effects of PCB 126 and PCB 153 on secretion of steroid hormones and mRNA expression of steroidogenic genes (STAR, HSD3B, CYP19A1) and estrogen receptors (ERα, ERβ) in prehierarchical chicken ovarian follicles.

    PubMed

    Sechman, Andrzej; Batoryna, Marta; Antos, Piotr A; Hrabia, Anna

    2016-12-15

    The objective of this study was to assess the in vitro effects of dioxin-like PCB 126 and non-dioxin-like PCB 153 on basal and ovine LH (oLH)-stimulated testosterone (T) and estradiol (E2) secretion and expression of steroidogenic genes (STAR, HSD3B and CYP19A1) and estrogen receptors α (ERα) and β (ERβ) in white (WF) and yellowish (YF) prehierarchical follicles of the hen ovary. Steroid concentrations in a medium and gene expression in follicles following 6h of exposition were determined by RIA and real-time qPCR, respectively. Both PCBs increased basal and oLH-stimulated T secretion by the WF follicles. PCB 126 reduced basal E2 secretion by the WF follicles. PCB 153 elevated but PCB 126 reduced oLH-stimulated E2 secretion by the prehierarchical follicles. PCB 126 increased basal STAR and HSD3B and reduced CYP19A1 mRNA expression in these follicles. PCB 153 increased basal expression of STAR and HSD3B in YF follicles, but diminished HSD3B mRNA levels in the WF. The studied PCBs had an opposite effect on basal and oLH-stimulated CYP19A1 mRNA expression in prehierarchical follicles. Both PCBs modulated basal and inhibited oLH-stimulated ERα and ERβ gene expression in the prehierarchical follicles. In conclusion, data of the current study demonstrate the congener-specific effects of PCBs on sex steroid secretion by prehierarchical follicles of the chicken ovary, which are at least partly related to STAR, HSD3B and CYP19A1 gene expression. It is suggested that PCBs, by influencing follicular steroidogenesis and expression of estrogen receptors, may impair development and selection of yellowish follicles to the preovulatory hierarchy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Translational feedback regulation of the gene for L35 in Escherichia coli requires binding of ribosomal protein L20 to two sites in its leader mRNA: a possible case of ribosomal RNA-messenger RNA molecular mimicry.

    PubMed Central

    Guillier, Maude; Allemand, Frédéric; Raibaud, Sophie; Dardel, Frédéric; Springer, Mathias; Chiaruttini, Claude

    2002-01-01

    In addition to being a component of the large ribosomal subunit, ribosomal protein L20 of Escherichia coli also acts as a translational repressor. L20 is synthesized from the IF3 operon that contains three cistrons coding for IF3, and ribosomal proteins L35 and L20. L20 directly represses the expression of the gene encoding L35 and the expression of its own gene by translational coupling. All of the cis-acting sequences required for repression by L20, called the operator, are found on an mRNA segment extending from the middle of the IF3 gene to the start of the L35 gene. L20-mediated repression requires a long-range base-pairing interaction between nucleotide residues within the IF3 gene and residues just upstream of the L35 gene. This interaction results in the formation of a pseudoknot. Here we show that L20 causes protection of nucleotide residues in two regions of the operator in vitro. The first region is the pseudoknot itself and the second lies in an irregular stem located upstream of the L35 gene. By primer extension analysis, we show that L20 specifically induces reverse transcriptase stops in both regions. Therefore, these two regions define two L20-binding sites in the operator. Using mutations and deletions of rpml'-'lacZ fusions, we show that both sites are essential for repression in vivo. However L20 can bind to each site independently in vitro. One site is similar to the L20-binding site on 23S rRNA. Here we propose that L20 recognizes its mRNA and its rRNA in similar way. PMID:12166643

  18. Influence of the Cyp1B1 L432V gene polymorphism and exposure to tobacco smoke on Cyp1B1 mRNA expression in human leukocytes.

    PubMed

    Helmig, Simone; Hadzaad, Bahar; Döhrel, Juliane; Schneider, Joachim

    2009-07-01

    Cytochrome P450 1B1 (CYP1B1), a phase I enzyme, is involved in the activation of a broad spectrum of procarcinogens. An association of the Cyp1B1 L432V polymorphism with diverse types of cancer, as well as an impact on the catalytic activity of the enzyme, has been described. To show the functional impact of the allelic variant Cyp1B1*3, we investigated the quantitative Cyp1B1 mRNA expression in a population of smokers, nonsmokers, and ex-smokers and determined their genotypes. Detection of the L432V polymorphism in exon 3 of the Cyp1B1 gene was performed by rapid capillary polymerase chain reaction (PCR) with melting curve analysis. For quantitative comparison of Cyp1B1 mRNA levels, real-time PCR was performed using SYBR Green fluorescence in a LightCycler system. Calculations of expression were made with the 2(-DeltaDeltaCT) method. In comparing relative Cyp1B1 mRNA expression, highly significant differences between the two homozygote genotypes *1/*1 and *3/*3 (0.185 +/- 0.027, n = 118 versus 0.071 +/- 0.013, n = 56; p = 0.000), as well as between the heterozygote genotype *1/*3 and the homozygote genotype *3/*3 (0.178 +/- 0.025, n = 171 versus 0.071 +/- 0.013, n = 56; p = 0.000), were revealed. Significant differences between the genotypes were also detected within the subgroups of smokers, nonsmokers, and ex-smokers. No significant differences were determined in comparing the relative Cyp1B1 mRNA expression with regard to tobacco smoke exposure. Our results suggest that genotypes carrying the C allele (*1/*1 and *1/*3) at Cyp1B1 L432V polymorphism have a significantly higher Cyp1B1 mRNA expression compared with the genotype without the C allele (*3/*3). Gene expression of Cyp1B1 mRNA cannot be used as a biomarker for exposure of tobacco smoke.

  19. Changes in brain ribonuclease (BRB) mRNA in granulosa cells (GC) of dominant versus subordinate ovarian follicles of cattle and the regulation of BRB gene expression in bovine GC

    PubMed Central

    Dentis, J. L.; Schreiber, N. B.; Gilliam, J. N.; Schutz, L. F.; Spicer, L. J.

    2015-01-01

    Brain ribonuclease (BRB) is a member of the ribonuclease A superfamily that is constitutively expressed in a range of tissues, and is the functional homolog of human ribonuclease 1. This study was designed to characterize BRB gene expression in granulosa cells (GC) during development of bovine dominant ovarian follicles, and to determine the hormonal regulation of BRB in GC. Estrous cycles of Holstein cows (n = 18) were synchronized and cows were ovariectomized on either day 3 to 4 or day 5 to 6 post-ovulation during dominant follicle growth and selection. Ovaries were collected, follicular fluid (FFL) was aspirated, and GC were collected for RNA isolation and quantitative PCR. Follicles were categorized as small (1 to 5 mm; pooled per ovary), medium (5 to 8 mm; individually collected) or large (8.1 to 17 mm; individually collected) based on surface diameter. Estradiol (E2) and progesterone (P4) levels were measured by RIA in FFL. Abundance of BRB mRNA in GC was 8.6- to 11.8-fold greater (P < 0.05) in small (n = 31), medium (n = 66) and large (n = 33) subordinate E2-inactive (FFL E2 < P4) follicles than in large (n = 16) dominant E2-active (FFL E2 > P4) follicles. In the largest 4 follicles, GC BRB mRNA abundance was negatively correlated (P < 0.01) with FFL E2 (r = −0.65) and E2/P4 ratio (r = −0.46). In Exp. 2, GC from large (8 to 22 mm diameter) and small (1 to 5 mm diameter) follicles were treated with IGF1 (0 or 30 ng/mL), and/or tumor necrosis factor α (TNFα) (0 or 30 ng/mL); IGF1 increased (P < 0.05) BRB mRNA abundance and TNFα decreased (P < 0.001) the IGF1-induced BRB mRNA abundance in large-follicle GC. In Exp. 3 to 6, E2, FSH, fibroblast growth factor 9 (FGF9), cortisol, wingless 3A (WNT3A), or Sonic hedgehog (SHH) did not affect (P > 0.10) abundance of BRB mRNA in GC; thyroxine and LH increased (P < 0.05) whereas prostaglandin E2 (PGE2) decreased (P < 0.05) BRB mRNA abundance in small-follicle GC. Treatment of small-follicle GC with recombinant

  20. Analysis of mRNA expression for genes associated with regulatory T lymphocytes (CD25, FoxP3, CTLA4, and IDO) after experimental infection with bovine viral diarrhea virus of low or high virulence in beef calves.

    PubMed

    Palomares, Roberto A; Hurley, David J; Woolums, Amelia R; Parrish, Jacqueline E; Brock, Kenny V

    2014-12-01

    Immunosuppression caused by bovine viral diarrhea virus (BVDV) has been associated with lymphocyte depletion, leukopenia and impairment of leukocyte function; however, no work has been done on the relationship between BVDV and regulatory T lymphocytes (Tregs). The objective of this study was to compare the mRNA expression of genes associated with Tregs (CD25, FoxP3, CTLA4, and IDO), after experimental infection of beef calves with low (LV) or high (HV) virulence BVDV. Thirty BVDV-naïve calves were randomly assigned to three groups. Calves were intra-nasally inoculated with LV (n=10, strain SD-1) or HV (n=10, strain 1373) BVDV or BVDV-free cell culture medium (control, n=10). Quantitative RT-PCR was used to determine the expression of target genes in tracheo-bronchial lymph nodes and spleen on day 5 post-infection. The mRNA expression of CD25 was up-regulated in tracheo-bronchial lymph nodes of LV (P<0.05), but not in HV compared to the control group. The expression of FoxP3 and CTLA4 was not increased in tracheo-bronchial lymph nodes of either of the BVDV-inoculated groups. A dramatic up-regulation of IDO mRNA was observed in tracheo-bronchial lymph nodes of LV (P<0.05), but not HV compared to the control calves. In conclusion, experimental infection with BVDV did not provide evidence of Treg activation based on expression of FoxP3 and CTL4. Differential expression of CD25 and IDO mRNA on day 5 post-infection with HV or LV BVDV might reflect temporal differences in transcription occurring during the immune response elicited by these viral strains, or differences in viral infectivity of the host cells.

  1. Evolution of the Antisense Overlap between Genes for Thyroid Hormone Receptor and Rev-erbα and Characterization of an Exonic G-Rich Element That Regulates Splicing of TRα2 mRNA

    PubMed Central

    Munroe, Stephen H.; Morales, Christopher H.; Duyck, Tessa H.; Waters, Paul D.

    2015-01-01

    The α-thyroid hormone receptor gene (TRα) codes for two functionally distinct proteins: TRα1, the α-thyroid hormone receptor; and TRα2, a non-hormone-binding variant. The final exon of TRα2 mRNA overlaps the 3’ end of Rev-erbα mRNA, which encodes another nuclear receptor on the opposite strand of DNA. To understand the evolution of this antisense overlap, we sequenced these genes and mRNAs in the platypus Orthorhynchus anatinus. Despite its strong homology with other mammals, the platypus TRα/Rev-erbα locus lacks elements essential for expression of TRα2. Comparative analysis suggests that alternative splicing of TRα2 mRNA expression evolved in a stepwise fashion before the divergence of eutherian and marsupial mammals. A short G-rich element (G30) located downstream of the alternative 3’splice site of TRα2 mRNA and antisense to the 3’UTR of Rev-erbα plays an important role in regulating TRα2 splicing. G30 is tightly conserved in eutherian mammals, but is absent in marsupials and monotremes. Systematic deletions and substitutions within G30 have dramatically different effects on TRα2 splicing, leading to either its inhibition or its enhancement. Mutations that disrupt one or more clusters of G residues enhance splicing two- to three-fold. These results suggest the G30 sequence can adopt a highly structured conformation, possibly a G-quadruplex, and that it is part of a complex splicing regulatory element which exerts both positive and negative effects on TRα2 expression. Since mutations that strongly enhance splicing in vivo have no effect on splicing in vitro, it is likely that the regulatory role of G30 is mediated through linkage of transcription and splicing. PMID:26368571

  2. Identification of Novel Tumor Suppressor Genes in Human Breast Cancer Using Nonsense-Mediated mRNA Decay Inhibition (NMDI)-Microarray Analysis

    DTIC Science & Technology

    2007-08-01

    polymorphism array, deletion, allelic imbalance, p53, peroxisome proliferator activated receptor gamma, caffeine , Actinomycin D, emetine. 16... effects on the overall fitness of the organism. One such mechanism is nonsense-mediated mRNA decay (NMD), a pathway conserved from yeasts to humans...using caffeine (10 mM), rather than employing a global inhibition of translation with emetine (11). As a result of these protocol modifications

  3. The Minor Allele of rs7574865 in the STAT4 Gene Is Associated with Increased mRNA and Protein Expression

    PubMed Central

    Lamana, Amalia; López-Santalla, Mercedes; Castillo-González, Raquel; Ortiz, Ana María; Martín, Javier; García-Vicuña, Rosario; González-Álvaro, Isidoro

    2015-01-01

    Objective The T allele of rs7574865 in STAT4 confers risk of developing autoimmune disorders. However, its functional significance remains unclear. Here we analyze how rs7574865 affects the transcription of STAT4 and its protein expression. Methods We studied 201 patients (80% female; median age, 54 years; median disease duration, 5.4 months) from PEARL study. Demographic, clinical, laboratory and therapeutic data were collected at each visit. IL-6 serum levels were measured by enzyme immune assay. The rs7574865 was genotyped using TaqMan probes. The expression levels of STAT4 mRNA were determined at 182 visits from 69 patients using quantitative real-time polymerase chain reaction. STAT4 protein was assessed by western blot in 62 samples from 34 patients. To determine the effect of different variables on the expression of STAT4 mRNA and protein, we performed multivariate longitudinal analyses using generalized linear models. Results After adjustment for age, disease activity and glucocorticoid dose as confounders, the presence of at least one copy of the T allele of rs7574865 was significantly associated with higher levels of STAT4 mRNA. Similarly, TT patients showed significantly higher levels of STAT4 protein than GG patients. IL-6 induced STAT4 and STAT5 phosphorylation in peripheral blood lymphocytes. Patients carrying at least one T allele of rs7574865 displayed lower levels of serum IL-6 compared to GG homozygous; by contrast the production of C-reactive protein was similar in both populations. Conclusion Our data suggest that the presence of the rs7574865 T allele enhances STAT4 mRNA transcription and protein expression. It may enhance the signaling of molecules depending on the STAT4 pathway. PMID:26569609

  4. Nucleotide sequencing of an apparent proviral copy of env mRNA defines determinants of expression of the mouse mammary tumor virus env gene.

    PubMed Central

    Majors, J E; Varmus, H E

    1983-01-01

    To extend our understanding of the organization and expression of the mouse mammary tumor virus genome, we determined the nucleotide sequence of large regions of a cloned mouse mammary tumor virus strain C3H provirus that appears to be a DNA copy of env mRNA. In conjunction with analysis of several additional clones of integrated and unintegrated mouse mammary tumor virus DNAs, we came to the following conclusions: (i) the mRNA for env is generated by splicing mechanisms that recognize conventional eucaryotic signals at donor and acceptor sites with a leader of at least 289 bases in length; (ii) the first of three possible initiation codons for translation of env follows the splice junction by a single nucleotide and produces a signal peptide of 98 amino acids; (iii) the amino terminal sequence of the major virion glycoprotein gp52env is confirmed by nucleotide sequencing and is encoded by a sequence beginning 584 nucleotides from the 5' end of env mRNA; (iv) the final 17 amino acids at the carboxyl terminus of the primary product of env are encoded within the long terminal repeat by the 51 bases at the 5' end of the U3 domain; and (v) bases 2 through 4 at the 5' end of the long terminal repeat constitute an initiation codon that commences an open reading frame capable of directing the synthesis of a 36-kilodalton protein. PMID:6312081

  5. High throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry

    PubMed Central

    Porichis, Filippos; Hart, Meghan G.; Griesbeck, Morgane; Everett, Holly L.; Hassan, Muska; Baxter, Amy E.; Lindqvist, Madelene; Miller, Sara M.; Soghoian, Damien Z.; Kavanagh, Daniel G.; Reynolds, Susan; Norris, Brett; Mordecai, Scott K.; Nguyen, Quan; Lai, Chunfai; Kaufmann, Daniel E.

    2014-01-01

    Fluorescent in situ hybridization (FISH) is a method that uses fluorescent probes to detect specific nucleic acid sequences at the single cell level. Here we describe optimized protocols that exploit a highly sensitive FISH method based on branched DNA technology to detect mRNA and miRNA in human leukocytes. This technique can be multiplexed and combined with fluorescent antibody protein staining to addressa variety of questions in heterogeneous cell populations. We demonstrate antigen-specific upregulation of IFNγ and IL-2 mRNAs in HIV- and CMV-specific T cells. We show simultaneous detection of cytokine mRNA and corresponding protein in single cells. We apply this method to detect mRNAs for which flow antibodies against the corresponding proteins are poor or are not available. We use this technique to show modulation of a microRNA critical for T cell function, miR-155. We adapt this assay for simultaneous detection of mRNA and proteins by Image Stream technology. PMID:25472703

  6. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA.

    PubMed Central

    von Lindern, M; Fornerod, M; van Baal, S; Jaegle, M; de Wit, T; Buijs, A; Grosveld, G

    1992-01-01

    The translocation (6;9) is associated with a specific subtype of acute myeloid leukemia (AML). Previously, it was found that breakpoints on chromosome 9 are clustered in one of the introns of a large gene named Cain (can). cDNA probes derived from the 3' part of can detect an aberrant, leukemia-specific 5.5-kb transcript in bone marrow cells from t(6;9) AML patients. cDNA cloning of this mRNA revealed that it is a fusion of sequences encoded on chromosome 6 and 3' can. A novel gene on chromosome 6 which was named dek was isolated. In dek the t(6;9) breakpoints also occur in one intron. As a result the dek-can fusion gene, present in t(6;9) AML, encodes an invariable dek-can transcript. Sequence analysis of the dek-can cDNA showed that dek and can are merged without disruption of the original open reading frames and therefore the fusion mRNA encodes a chimeric DEK-CAN protein of 165 kDa. The predicted DEK and CAN proteins have molecular masses of 43 and 220 kDa, respectively. Sequence comparison with the EMBL data base failed to show consistent homology with any known protein sequences. Images PMID:1549122

  7. Cyclin-Dependent Kinase 7 Controls mRNA Synthesis by Affecting Stability of Preinitiation Complexes, Leading to Altered Gene Expression, Cell Cycle Progression, and Survival of Tumor Cells

    PubMed Central

    Kelso, Timothy W. R.; Baumgart, Karen; Eickhoff, Jan; Albert, Thomas; Antrecht, Claudia; Lemcke, Sarah; Klebl, Bert

    2014-01-01

    Cyclin-dependent kinase 7 (CDK7) activates cell cycle CDKs and is a member of the general transcription factor TFIIH. Although there is substantial evidence for an active role of CDK7 in mRNA synthesis and associated processes, the degree of its influence on global and gene-specific transcription in mammalian species is unclear. In the current study, we utilize two novel inhibitors with high specificity for CDK7 to demonstrate a restricted but robust impact of CDK7 on gene transcription in vivo and in in vitro-reconstituted reactions. We distinguish between relative low- and high-dose responses and relate them to distinct molecular mechanisms and altered physiological responses. Low inhibitor doses cause rapid clearance of paused RNA polymerase II (RNAPII) molecules and sufficed to cause genome-wide alterations in gene expression, delays in cell cycle progression at both the G1/S and G2/M checkpoints, and diminished survival of human tumor cells. Higher doses and prolonged inhibition led to strong reductions in RNAPII carboxyl-terminal domain (CTD) phosphorylation, eventual activation of the p53 program, and increased cell death. Together, our data reason for a quantitative contribution of CDK7 to mRNA synthesis, which is critical for cellular homeostasis. PMID:25047832

  8. The translocation (6; 9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA

    SciTech Connect

    Von Lindern, M.; Fornerod, M.; Van Baal, S.; Jaegle, M.; De Wit, T.; Buijs, A.; Grosveld, G. )

    1992-04-01

    The translocation (6;9) is associated with a specific subtype of acute myeloid leukemia (AML). Previously, it was found that breakpoints on chromosome 9 are clustered in one of the introns of a large gene named Cain (can). cDNA probes derived from the 3' part of can detect an aberrant, leukemia-specific 5.5-kb transcript in bone marrow cells from t(6;9) AML patients. cDNA cloning of this mRNA revealed that it is a fusion of sequences encoded on chromosome 6 and 3' can. A novel gene on chromosome 6 which was named dek was isolated. In dek the t(6;9) breakpoints also occur in one intron. As a result the dek-can fusion gene, present in t(6;9) AML, encodes an invariable dek-can transcript. Sequence analysis of the dek-can cDNA showed that dek and can are merged without disruption of the original open reading frames and therefore the fusion mRNA encodes a chimeric DEK-CAN protein of 165 kDa. The predicted DEK and CAN proteins have molecular masses of 43 and 220 kDa, respectively. Sequence comparison with the EMBL data base failed to show consistent homology with any known protein sequences. 50 refs., 8 figs.

  9. Genes involved in fatty acid metabolism: molecular characterization and hypothalamic mRNA response to energy status and neuropeptide Y treatment in the orange-spotted grouper Epinephelus coioides.

    PubMed

    Tang, Zhiguo; Sun, Caiyun; Yan, Aifen; Wu, Shuge; Qin, Chaobin; Zhang, Yanhong; Li, Wensheng

    2013-08-25

    As in mammals, fatty acid (FA) metabolism plays diverse and vital roles in regulating food intake in fish. Multiple lines of evidence suggest that the effect of FA metabolism on food intake is linked to changes in the level of neuropeptide Y (NPY) in the hypothalamus of the rainbow trout. In mammals, the evidence suggests that FA metabolism regulates feeding via hypothalamic NPY. NPY is therefore considered an important factor that mediates the modulation of food intake by FA metabolism in vertebrates. The stimulatory effect of NPY on food intake is well known. However, to the best of our knowledge, the effect of NPY on FA metabolism in the hypothalamus has not been examined. In this study, we cloned the cDNA of four key enzymes involved in FA metabolism and assessed the effect of energy status and NPY on their mRNA expression in the hypothalamus of grouper. The full-length cDNAs of UCP2 and CPT1a and the partial coding sequence (CDS) of ACC1 and FAS were isolated from the grouper hypothalamus. These genes are expressed in the hypothalamus and during the organogenetic stage of embryogenesis. A feeding rhythm study showed that the hypothalamic expression level of NPY and CPT1a was highly correlated with feeding rhythm. Long-term fasting was found to significantly induce the hypothalamic mRNA expression of NPY, CPT1a and UCP2. An in vitro study demonstrated that NPY strongly stimulated CPT1a and UCP2 mRNA expression in a time- and dose-dependent manner. Collectively, these results suggest that these four genes related to FA metabolism may play a role in regulating food intake in grouper and, that NPY modulates FA metabolism in the grouper hypothalamus. This study showed, for the first time in vertebrates, the effect of NPY on the gene expression of FA metabolism-related enzymes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Analysis of methylation and mRNA expression status ofFADD andFAS genes in patients with oral squamous cell carcinoma

    PubMed Central

    Saberi, Eshaghali; Jamali, Sara; Rigi-Ladez, Mohammad A.; Augend, Arsalan

    2014-01-01

    Background: Apoptosis is an important mechanism that is responsible for the physiological deletion of harmful, damaged, or unwanted cells. Changed expression of apoptosis-related genes may lead to abnormal cell proliferation and finally to tumorigenesis. Our aims were to analyze the promoter methylation and gene expression profiles of FADD and FAS genes in risk of OSCC. Material and Methods: we analyze the promoter methylation status of FADD and FAS genes using Methylation - Specific PCR (MSP) in 86 OSCC tissues were kept in paraffin and 68 normal oral tissues applied as control. Also, FADD and FAS genes expression were analyzed in 19 cases and 20 normal specimens by Real-Time Reverse-Transcripts PCR. Results: Aberrant promoter methylation of FADD and FAS genes were detected in 12.79 % (11 of 86) and 60.46 % (52 of 86) of the OSCC cases, respectively, with a significant difference between cases and healthy controls for both FADD and FAS genes (P<0.001). The gene expression analysis showed statistically significant difference between cases and healthy controls for both FADD (p<0.02) and FAS (p<0.007) genes. Conclusions: To the best our knowledge, the data of this study are the first report regarding, the effect of promoter hypermethylation of the FADD and FAS genes in development of OSCC. To confirm the data, it is recommended doing further study in large sample sizes in various genetic populations. Key words:OSCC, FADD, FAS, DNA methylation, gene expression. PMID:25129245

  11. The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles.

    PubMed

    Alharby, Hesham F; Metwali, Ehab M R; Fuller, Michael P; Aldhebiani, Amal Y

    2016-11-01

    Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L(-1)) and ZnO-NPs (0, 15 and 30 mg L(-1)). Treatments with NaCl at both 3 and 6 g L(-1) suppressed the mRNA levels of superoxide dismutase (SOD) and glutathione peroxidase (GPX) genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS-PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa.

  12. Effects of the PPARα agonist WY-14,643 on plasma lipids, enzymatic activities and mRNA expression of lipid metabolism genes in a marine flatfish, Scophthalmus maximus.

    PubMed

    Urbatzka, R; Galante-Oliveira, S; Rocha, E; Lobo-da-Cunha, A; Castro, L F C; Cunha, I

    2015-07-01

    Fibrates and other lipid regulator drugs are widespread in the aquatic environment including estuaries and coastal zones, but little is known on their chronic effects on non-target organisms as marine fish. In the present study, turbot juveniles were exposed to the PPARα model agonist WY-14,643 for 21 days by repeated injections at the concentrations of 5mg/kg (lo-WY) and 50mg/kg (hi-WY), and samples taken after 7 and 21 days. Enzyme activity and mRNA expression of palmitoyl-CoA oxidase and catalase in the liver were analyzed as first response, which validated the experiment by demonstrating interactions with the peroxisomal fatty acid oxidation and oxidative stress pathways in the hi-WY treatment. In order to get mechanistic insights, alterations of plasma lipids (free cholesterol, FC; HDL associated cholesterol, C-HDL; triglycerides, TG; non-esterified fatty acids, NEFA) and hepatic mRNA expression of 17 genes involved in fatty acid and lipid metabolism were studied. The exposure to hi-WY reduced the quantity of plasma FC, C-HDL, and NEFA. Microsomal triglyceride transfer protein and apolipoprotein E mRNA expression were higher in hi-WY, and indicated an increased formation of VLDL particles and energy mobilization from liver. It is speculated that energy depletion by PPARα agonists may contribute to a higher susceptibility to environmental stressors.

  13. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana.

    PubMed

    Howles, Paul A; Gebbie, Leigh K; Collings, David A; Varsani, Arvind; Broad, Ronan C; Ohms, Stephen; Birch, Rosemary J; Cork, Ann H; Arioli, Tony; Williamson, Richard E

    2016-05-01

    The putative RNA helicase encoded by the Arabidopsis gene At1g32490 is a homolog of the yeast splicing RNA helicases Prp2 and Prp22. We isolated a temperature-sensitive allele (rsw12) of the gene in a screen for root radial swelling mutants. Plants containing this allele grown at the restrictive temperature showed weak radial swelling, were stunted with reduced root elongation, and contained reduced levels of cellulose. The role of the protein was further explored by microarray analysis. By using both fold change cutoffs and a weighted gene coexpression network analysis (WGCNA) to investigate coexpression of genes, we found that the radial swelling phenotype was not linked to genes usually associated with primary cell wall biosynthesis. Instead, the mutation has strong effects on expression of secondary cell wall related genes. Many genes potentially associated with secondary walls were present in the most significant WGCNA module, as were genes coding for arabinogalactans and proteins with GPI anchors. The proportion of up-regulated genes that possess introns in rsw12 was above that expected if splicing was unrelated to the activity of the RNA helicase, suggesting that the helicase does indeed play a role in splicing in Arabidopsis. The phenotype may be due to a change in the expression of one or more genes coding for cell wall proteins.

  14. Yersinia enterocolitica Type III Secretion: yscM1 and yscM2 Regulate yop Gene Expression by a Posttranscriptional Mechanism That Targets the 5′ Untranslated Region of yop mRNA

    PubMed Central

    Cambronne, Eric D.; Schneewind, Olaf

    2002-01-01

    Pathogenic Yersinia spp. secrete Yops (Yersinia outer proteins) via the type III pathway. The expression of yop genes is regulated in response to environmental cues, which results in a cascade of type III secretion reactions. yscM1 and yscM2 negatively regulate the expression of Yersinia enterocolitica yop genes. It is demonstrated that yopD and lcrH are required for yscM1 and yscM2 function and that all four genes act synergistically at the same regulatory step. Further, SycH binding to the protein products of yscM1 and yscM2 can activate yop gene expression even without promoting type III transport of YscM1 and YscM2. Reverse transcription-PCR analysis of yopQ mRNA as well as yopQ and yopE gene fusion experiments with the npt (neomycin phosphotransferase) reporter suggest that yscM1 and yscM2 regulate expression at a posttranscriptional step. The 178-nucleotide 5′ untranslated region (UTR) of yopQ mRNA was sufficient to confer yscM1 and yscM2-mediated regulation on the fused reporter, as was the 28-nucleotide UTR of yopE. The sequence 5′-AUAAA-3′ is located in the 5′ yop UTRs, and mutations that alter the sequence motif either reduced or abolished yscM1- and yscM2-mediated regulation. A model is proposed whereby YopD, LcrH, YscM1, YscM2, and SycH regulate yop expression in response to specific environmental cues and by a mechanism that may involve binding of some of these factors to a specific target sequence within the UTR of yop mRNAs. PMID:12374821

  15. Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein.

    PubMed Central

    Minvielle-Sebastia, L; Winsor, B; Bonneaud, N; Lacroute, F

    1991-01-01

    In Saccharomyces cerevisiae, temperature-sensitive mutations in the genes RNA14 and RNA15 correlate with a reduction of mRNA stability and poly(A) tail length. Although mRNA transcription is not abolished in these mutants, the transcripts are rapidly deadenylated as in a strain carrying an RNA polymerase B(II) temperature-sensitive mutation. This suggests that the primary defect could be in the control of the poly(A) status of the mRNAs and that the fast decay rate may be due to the loss of this control. By complementation of their temperature-sensitive phenotype, we have cloned the wild-type genes. They are essential for cell viability and are unique in the haploid genome. The RNA14 gene, located on chromosome H, is transcribed as three mRNAs, one major and two minor, which are 2.2, 1.5, and 1.1 kb in length. The RNA15 gene gives rise to a single 1.2-kb transcript and maps to chromosome XVI. Sequence analysis indicates that RNA14 encodes a 636-amino-acid protein with a calculated molecular weight of 75,295. No homology was found between RNA14 and RNA15 or between RNA14 and other proteins contained in data banks. The RNA15 DNA sequence predicts a protein of 296 amino acids with a molecular weight of 32,770. Sequence comparison reveals an N-terminal putative RNA-binding domain in the RNA15-encoded protein, followed by a glutamine and asparagine stretch similar to the opa sequences. Both RNA14 and RNA15 wild-type genes, when cloned on a multicopy plasmid, are able to suppress the temperature-sensitive phenotype of strains bearing either the rna14 or the rna15 mutation, suggesting that the encoded proteins could interact with each other. Images PMID:1674817

  16. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation.

    PubMed

    Sihto, Henna-Maria; Tasara, Taurai; Stephan, Roger; Johler, Sophia

    2014-07-01

    Staphylococcus aureus represents the most prevalent cause of food-borne intoxications worldwide. While being repressed by competing bacteria in most matrices, this pathogen exhibits crucial competitive advantages during growth at high salt concentrations or low pH, conditions frequently encountered in food production and preservation. We aimed to identify reference genes that could be used to normalize qPCR mRNA expression levels during growth of S. aureus in food-related osmotic (NaCl) and acidic (lactic acid) stress adaptation models. Expression stability of nine housekeeping genes was evaluated in full (LB) and nutrient-deficient (CYGP w/o glucose) medium under conditions of osmotic (4.5% NaCl) and acidic stress (lactic acid, pH 6.0) after 2-h exposure. Among the set of candidate reference genes investigated, rplD, rpoB,gyrB, and rho were most stably expressed in LB and thus represent the most suitable reference genes for normalization of qPCR data in osmotic or lactic acid stress models in a rich medium. Under nutrient-deficient conditions, expression of rho and rpoB was highly stable across all tested conditions. The presented comprehensive data on changes in expression of various S. aureus housekeeping genes under conditions of osmotic and lactic acid stress facilitate selection of reference genes for qPCR-based stress response models. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Collagen V-induced nasal tolerance downregulates pulmonary collagen mRNA gene and TGF-beta expression in experimental systemic sclerosis

    PubMed Central

    2010-01-01

    Background The purpose of this study was to evaluate collagen deposition, mRNA collagen synthesis and TGF-beta expression in the lung tissue in an experimental model of scleroderma after collagen V-induced nasal tolerance. Methods Female New Zealand rabbits (N = 12) were immunized with 1 mg/ml of collagen V in Freund's adjuvant (IM). After 150 days, six immunized animals were tolerated by nasal administration of collagen V (25 μg/day) (IM-TOL) daily for 60 days. The collagen content was determined by morphometry, and mRNA expressions of types I, III and V collagen were determined by Real-time PCR. The TGF-beta expression was evaluated by immunostaining and quantified by point counting methods. To statistic analysis ANOVA with Bonferroni test were employed for multiple comparison when appropriate and the level of significance was determined to be p < 0.05. Results IM-TOL, when compared to IM, showed significant reduction in total collagen content around the vessels (0.371 ± 0.118 vs. 0.874 ± 0.282, p < 0.001), bronchioles (0.294 ± 0.139 vs. 0.646 ± 0.172, p < 0.001) and in the septal interstitium (0.027 ± 0.014 vs. 0.067 ± 0.039, p = 0.026). The lung tissue of IM-TOL, when compared to IM, showed decreased immunostaining of types I, III and V collagen, reduced mRNA expression of types I (0.10 ± 0.07 vs. 1.0 ± 0.528, p = 0.002) and V (1.12 ± 0.42 vs. 4.74 ± 2.25, p = 0.009) collagen, in addition to decreased TGF-beta expression (p < 0.0001). Conclusions Collagen V-induced nasal tolerance in the experimental model of SSc regulated the pulmonary remodeling process, inhibiting collagen deposition and collagen I and V mRNA synthesis. Additionally, it decreased TGF-beta expression, suggesting a promising therapeutic option for scleroderma treatment. PMID:20047687

  18. The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501

    PubMed Central

    Zhan, Yuhua; Yan, Yongliang; Deng, Zhiping; Chen, Ming; Lu, Wei; Lu, Chao; Shang, Liguo; Yang, Zhimin; Zhang, Wei; Wang, Wei; Li, Yun; Ke, Qi; Lu, Jiasi; Xu, Yuquan; Zhang, Liwen; Xie, Zhihong; Cheng, Qi; Elmerich, Claudine; Lin, Min

    2016-01-01

    Unlike most Pseudomonas, the root-associated bacterium Pseudomonas stutzeri A1501 fixes nitrogen after the horizontal acquisition of a nitrogen-fixing (nif) island. A genome-wide search for small noncoding RNAs (ncRNAs) in P. stutzeri A1501 identified the novel P. stutzeri-specific ncRNA NfiS in the core genome, whose synthesis was significantly induced under nitrogen fixation or sorbitol stress conditions. The expression of NfiS was RNA chaperone Hfq-dependent and activated by the sigma factor RpoN/global nitrogen activator NtrC/nif-specific activator NifA regulatory cascade. The nfiS-deficient mutant displayed reduced nitrogenase activity, as well as increased sensitivity to multiple stresses, such as osmotic and oxidative stresses. Secondary structure prediction and complementation studies confirmed that a stem-loop structure was essential for NfiS to regulate the nitrogenase gene nifK mRNA synthesis and thus nitrogenase activity. Microscale thermophoresis and physiological analysis showed that NfiS directly pairs with nifK mRNA and ultimately enhances nitrogenase activity by increasing the translation efficiency and the half-life of nifK mRNA. Our data also suggest structural and functional divergence of NfiS evolution in diazotrophic and nondiazotrophic backgrounds. It is proposed that NfiS was recruited by nifK mRNA as a novel regulator to integrate the horizontally acquired nif island into host global networks. PMID:27407147

  19. Identification of sexually dimorphic gene expression in brain tissue of the fish Leporinus macrocephalus through mRNA differential display and real time PCR analyses.

    PubMed

    Alves-Costa, Fernanda A; Wasko, A P

    2010-03-01

    Differentially expressed genes in males and females of vertebrate species generally have been investigated in gonads and, to a lesser extent, in other tissues. Therefore, we attempted to identify sexually dimorphic gene expression in the brains of adult males and females of Leporinus macrocephalus, a gonochoristic fish species that presents a ZZ/ZW sex determination system, throughout a comparative analysis using differential display reverse transcriptase-PCR and real-time PCR. Four cDNA fragments were characterized, representing candidate genes with differential expression between the samples. Two of these fragments presented no significant identity with previously reported gene sequences. The other two fragments, isolated from male specimens, were associated to the gene that codes for the protein APBA2 (amyloid beta (A4) precursor protein-binding, family A, member 2) and to the Rab 37 gene, a member of the Ras oncogene family. The overexpression of these genes has been associated to a greater production of the beta-amyloid protein which, in turns, is the major factor that leads to Alzheimer's disease, and to the development of brain-tumors, respectively. Quantitative RT-PCR analyses revealed a higher Apba2 gene expression in males, thus validating the previous data on differential display. L. macrocephalus may represent an interesting animal model to the understanding of the function of several vertebrate genes, including those involved in neurodegenerative and cancer diseases.

  20. Wild bitter gourd extract up-regulates mRNA expression of PPARα, PPARγ and their target genes in C57BL/6J mice.

    PubMed

    Chao, Che-Yi; Yin, Mei-Chin; Huang, Ching-Jang

    2011-04-26

    Wild bitter gourd (Momordica charantia Linn. var. abbreviata ser.) was commonly used as a medicinal herb in Asia, Africa, and South America because of its anti-diabetic, antibacterial, anti-viral, and chemopreventive functions. C57BL/6J mice were orally administered with 250, 500 or 1000mg/kg BW of WBGE in 0.2mL/mouse of olive oil daily for 2 weeks. Compared to control (vehicle treated) mice, mice receiving WBGE showed significantly higher PPARα, ACO (acyl-CoA oxidase) and L-FABP (liver-fatty acid binding protein) mRNA expression, ACO activity and protein in the liver (P<0.05), as clofibrate-treated mice. WBGE treatment also resulted in significantly higher PPARγ and LPL (lipoprotein lipase) mRNA (P<0.05) in the epididymal adipose tissue. Liver triglyceride and non-esterified fatty acid concentration in WBGE treated mice were significantly lower than those of control mice (P<0.05). Plasma adiponectin level was significantly higher in mice receiving WBGE than in control mice (P<0.05), as the rosiglitazone treated mice. Results of this study demonstrated that WBGE also activates PPARα and PPARγ signaling pathway in vivo. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Deep sequencing reveals different compositions of mRNA transcribed from the F8 gene in a panel of FVIII-producing CHO cell lines.

    PubMed

    Kaas, Christian S; Bolt, Gert; Hansen, Jens J; Andersen, Mikael R; Kristensen, Claus

    2015-07-01

    Coagulation factor VIII (FVIII) is one of the most complex biopharmaceuticals due to the large size, poor protein stability and extensive post-translational modifications. As a consequence, efficient production of FVIII in mammalian cells poses a major challenge, with typical yields two to three orders of magnitude lower than for antibodies. In the present study we investigated CHO DXB11 cells transfected with a plasmid encoding human coagulation factor VIII. Single cell clones were isolated from the pool of transfectants and a panel of 14 clones representing a dynamic range of FVIII productivities was selected for RNA sequencing analysis. The analysis showed distinct differences in F8 RNA composition between the clones. The exogenous F8-dhfr transcript was found to make up the most abundant transcript in the present clones. No correlation was seen between F8 mRNA levels and the measured FVIII productivity. It was found that three MTX resistant, nonproducing clones had different truncations of the F8 transcripts. We find that by using deep sequencing, in contrast to microarray technology, for determining the transcriptome from CHO transfectants, we are able to accurately deduce the mature mRNA composition of the transgene and identify significant truncations that would probably otherwise have remained undetected.

  2. The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA

    PubMed Central

    2004-01-01

    Leigh syndrome French Canadian (LSFC) is a variant of cytochrome oxidase deficiency found in Québec and caused by mutations in the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene. Northern blots showed that the LRPPRC mRNA levels seen in skeletal muscle>heart>placenta>kidney>liver>lung=brain were proportionally almost opposite in strength to the severity of the enzymic cytochrome oxidase defect. The levels of COX (cytochrome c oxidase) I and COX III mRNA visible on Northern blots were reduced in LSFC patients due to the common (A354V, Ala354→Val) founder mutation. The amount of LRPPRC protein found in both fibroblast and liver mitochondria from LSFC patients was consistently reduced to <30% of control levels. Import of [35S]methionine LRPPRC into rat liver mitochondria was slower for the mutant (A354V) protein. A titre of LRPPRC protein was also found in nuclear fractions that could not be easily accounted for by mitochondrial contamination. [35S]Methionine labelling of mitochondrial translation products showed that the translation of COX I, and perhaps COX III, was specifically reduced in the presence of the mutation. These results suggest that the gene product of LRPPRC, like PET 309p, has a role in the translation or stability of the mRNA for mitochondrially encoded COX subunits. A more diffuse distribution of LRPPRC in LSFC cells compared with controls was evident when viewed by immunofluorescence microscopy, with less LRPPRC present in peripheral mitochondria. PMID:15139850

  3. Abundance of IFN-alpha and IFN-gamma mRNA in blood of resistant and susceptible chickens infected with Marek's disease virus (MDV) or vaccinated with turkey herpesvirus; and MDV inhibition of subsequent induction of IFN gene transcription.

    PubMed

    Quéré, P; Rivas, C; Ester, K; Novak, R; Ragland, W L

    2005-03-01

    The effects of the very virulent RB-1B strain of Marek's disease virus (MDV) and turkey herpesvirus (HVT), a vaccinal strain, on abundance of IFN mRNA in the blood were investigated. MDV and HVT infection did not change the circulating level of IFN-gamma mRNA 1 and 7 days p.i., but they increased IFN-alpha mRNA levels slightly in genetically susceptible (to tumour development) B(13)/B(13) chickens. The total number of circulating leukocytes was unchanged and increase in message was accompanied by an increase in circulating CD8alpha(+) and MHC Class II(+) cells. On the contrary, both viruses slightly increased IFN-gamma transcripts and decreased IFN-alpha transcripts in genetically resistant B(21)/B(21) chickens. Further, oncogenic MDV was able to block the response to inactivated Newcastle disease virus, a potent inducer of IFN, in both chicken lines. The inhibiting effect on transcription was present for both IFN at days 1 and 7 p.i. in susceptible B(13)/B(13) chickens, but only at day 7 p.i. in resistant B(21)/B(21) chickens. By contrast, non-oncogenic HVT did not interfere with induction of either message at one day p.i. and MDV had a more suppressive effect than HVT on IFN gene transcription 7 days p.i. in B(21)/B(21) chickens. Thus, the strong ability of MDV to block induction of IFN gene transcription detected in the blood as soon as one day after infection in susceptible chickens, as opposed to resistant chickens, not only causes immunosuppression but also may be related to the virus's oncogenicity.

  4. Identification of novel mRNA transcripts of the nm23-M1 gene that are modulated during mouse embryo development and are differently expressed in adult murine tissues.

    PubMed

    Gervasi, F; Capozza, F; Bruno, T; Fanciulli, M; Lombardi, D

    1998-12-01

    The nm23-M1, a putative metastasis-suppressor gene, and its homologs are involved in development and differentiation. We have shown previously that in vitro neuronal cell proliferation and differentiation can be modulated by nm23-M1 expression levels. In the present study, by the yeast two-hybrid system, we have shown that, at the onset of mouse tissue differentiation, the Nm23-M1 protein forms either homodimers, or heterodimers with Nm23-M2. Furthermore, we have isolated two cDNA variants of the nm23-M1 gene in the 3'-untranslated region (UTR). The two variants related to novel mRNA transcripts that are modulated in mouse embryo and are differently expressed in adult murine tissues.

  5. Contrasted survival under field or controlled conditions displays associations between mRNA levels of candidate genes and response to OsHV-1 infection in the Pacific oyster Crassostrea gigas.

    PubMed

    Normand, Julien; Li, Ronghua; Quillien, Virgile; Nicolas, Jean-Louis; Boudry, Pierre; Pernet, Fabrice; Huvet, Arnaud

    2014-06-01

    Pacific oyster Crassostrea gigas suffers from chronic or sporadic mortality outbreaks worldwide, resulting from infectious diseases and/or physiological disorders triggered by environmental factors. Since 2008, ostreid herpesvirus OsHV-1 μVar has been identified as the main agent responsible for mass mortality of juvenile oysters in Europe. Previous studies of genome-wide expression profiling have provided candidate genes that potentially contribute to genetically-based resistance to summer mortality. To assess their value in determining resistance to the juvenile mass mortality that has occurred in France since 2008, we analyzed the expression of 17 candidate genes in an experimental infection by OsHV-1 μVar, and in an in vivo field experiment. Individual quantification of mRNA levels of 10 out of the 17 targeted genes revealed significant variation, of which 7 genes were showed differences between conditions that created significant differences in mortality, and 6 depended on the number of OsHV-1 genome copies individually quantified in mantle tissue. Complex SOD metalloenzymes known to be part of the antioxidant defense strategies may at least partly determine susceptibility or resistance to OsHV-1-associated mortality. Furthermore, inhibitor 2 of NF-κB, termed CgIκB2, exhibited highly significant variation of mRNA levels depending on OsHV-1 load in both experiments, suggesting its implication in the antiviral immune response of C. gigas. Our results suggest that CgIκB2 expression would make a good starting point for further functional research and that it could be used in marker-assisted selection.

  6. Promoter region hypermethylation and mRNA expression of MGMT and p16 genes in tissue and blood samples of human premalignant oral lesions and oral squamous cell carcinoma.

    PubMed

    Bhatia, Vikram; Goel, Madhu Mati; Makker, Annu; Tewari, Shikha; Yadu, Alka; Shilpi, Priyanka; Kumar, Sandeep; Agarwal, S P; Goel, Sudhir K

    2014-01-01

    Promoter methylation and relative gene expression of O(6)-methyguanine-DNA-methyltransferase (MGMT) and p16 genes were examined in tissue and blood samples of patients with premalignant oral lesions (PMOLs) and oral squamous cell carcinoma (OSCC). Methylation-specific PCR and reverse transcriptase PCR were performed in 146 tissue and blood samples from controls and patients with PMOLs and OSCC. In PMOL group, significant promoter methylation of MGMT and p16 genes was observed in 59% (P = 0.0010) and 57% (P = 0.0016) of tissue samples, respectively, and 39% (P = 0.0135) and 33% (P = 0.0074) of blood samples, respectively. Promoter methylation of both genes was more frequent in patients with OSCC, that is, 76% (P = 0.0001) and 82% (P = 0.0001) in tissue and 57% (P = 0.0002) and 70% (P = 0.0001) in blood, respectively. Significant downregulation of MGMT and p16 mRNA expression was observed in both tissue and blood samples from patients with PMOLs and OSCC. Hypermethylation-induced transcriptional silencing of MGMT and p16 genes in both precancer and cancer suggests important role of these changes in progression of premalignant state to malignancy. Results support use of blood as potential surrogate to tissue samples for screening or diagnosing PMOLs and early OSCC.

  7. Promoter Region Hypermethylation and mRNA Expression of MGMT and p16 Genes in Tissue and Blood Samples of Human Premalignant Oral Lesions and Oral Squamous Cell Carcinoma

    PubMed Central

    Bhatia, Vikram; Makker, Annu; Tewari, Shikha; Yadu, Alka; Shilpi, Priyanka; Kumar, Sandeep; Agarwal, S. P.; Goel, Sudhir K.

    2014-01-01

    Promoter methylation and relative gene expression of O6-methyguanine-DNA-methyltransferase (MGMT) and p16 genes were examined in tissue and blood samples of patients with premalignant oral lesions (PMOLs) and oral squamous cell carcinoma (OSCC). Methylation-specific PCR and reverse transcriptase PCR were performed in 146 tissue and blood samples from controls and patients with PMOLs and OSCC. In PMOL group, significant promoter methylation of MGMT and p16 genes was observed in 59% (P = 0.0010) and 57% (P = 0.0016) of tissue samples, respectively, and 39% (P = 0.0135) and 33% (P = 0.0074) of blood samples, respectively. Promoter methylation of both genes was more frequent in patients with OSCC, that is, 76% (P = 0.0001) and 82% (P = 0.0001) in tissue and 57% (P = 0.0002) and 70% (P = 0.0001) in blood, respectively. Significant downregulation of MGMT and p16 mRNA expression was observed in both tissue and blood samples from patients with PMOLs and OSCC. Hypermethylation-induced transcriptional silencing of MGMT and p16 genes in both precancer and cancer suggests important role of these changes in progression of premalignant state to malignancy. Results support use of blood as potential surrogate to tissue samples for screening or diagnosing PMOLs and early OSCC. PMID:24991542

  8. Sequences of the 5' portion of the human c-sis gene: characterization of the transcriptional promoter and regulation of expression of the protein product by 5' untranslated mRNA sequences.

    PubMed Central

    Ratner, L; Thielan, B; Collins, T

    1987-01-01

    The c-sis gene encodes the B polypeptide chain of platelet-derived growth factor (PDGF), and is expressed in a number of normal and pathological conditions. In order to study the control of synthesis of the human c-sis product, we have initiated a study of two regions of this genetic locus which regulate transcription and translation. A clone of the 5' portion of the gene was obtained which included 1361 nucleotides upstream of the RNA initiation site. Transcriptional promoter activity of this region was demonstrated in normal and transformed cells using a plasmid with the sequences upstream of the c-sis RNA initiation site fused to an indicator gene, chloramphenicol acetyl transferase. Experiments were also performed to identify other possible regulatory regions of the c-sis gene. These data demonstrated that a portion of the c-sis first exon encoding the 5' untranslated region of the c-sis mRNA inhibited synthesis of the PDGF B product in vitro. These results define regions of the c-sis gene whose activity may be important in the regulation of transcription and translation under normal conditions and in the pathogenesis several human diseases. Images PMID:3627977

  9. CYP1B1 mRNA inducibility due to benzo(a)pyrene is modified by the CYP1B1 L432V gene polymorphism.

    PubMed

    Helmig, Simone; Wenzel, Sibylle; Maxeiner, Hagen; Schneider, Joachim

    2014-07-01

    Benzo(a)pyrene (BaP), a primary component of tobacco smoke, is activated by cytochrome P450 1B1 (CYP1B1). Smokers homozygous for the C-allele (*1/*1) at the CYP1B1 Leu432Val polymorphism have shown increased CYP1B1 expression, compared to smokers homozygous for the G-allele *3/*3. Since no difference has been shown in CYP1B1 expression between both genotypes in non-smokers, we assumed that the genetic impact is produced in combination with an exogenous induction (e.g. BaP). To confirm this theory and to quantify the effect, we induced human leucocytes with increasing BaP concentrations and determined CYP1B1 mRNA expression with real-time polymerase chain reaction (PCR). We incubated human leucocytes from 27 healthy donors with BaP concentrations ranging from 2.5 to 250 µM. We identified the CYP1B1 genotypes by melting curve analysis and assessed relative CYP1B1 mRNA expression using real-time PCR. Expression was related to β-2-microglobulin with the 2(-ΔΔCT) method. Inducibility of CYP1B1 mRNA by BaP was higher in leucocytes carrying the CYP1B1*1/*1 genotype than in leucocytes carrying the CYP1B1*3/*3 genotype (P = 0.012). We revealed significant differences, with BaP concentrations of 2.5 µM (P = 0.0094), 5 µM (P = 0.027), 10 µM (P = 0.0006), 25 µM (P = 0.0007) and 50 µM (P = 0.017). Homozygous carriers of the C-allele (*1/*1) at the CYP1B1 Leu432Val polymorphism show a higher response to environmental factors, such as carcinogenic BaP, than homozygous carriers of the G-allele *3/*3.

  10. Gene-Specific Effects of Inflammatory Cytokines on Cytochrome P4502C, 2B6 and 3A4 mRNA Levels in Human Hepatocytes

    PubMed Central

    Aitken, Alison E.; Morgan, Edward T.

    2007-01-01

    Cytochromes P450 (CYP) are down regulated in hepatocytes in response to inflammation and infection. This effect has been extensively studied in animal models but significantly less is known about responses in humans and even less about responses in the absence of inducing agents. This paper focuses on the effects of bacterial lipopolysaccaride (LPS), interleukin-6 (IL-6), tumor necrosis factor α (TNF), interferon γ (IFN), transforming growth factor β (TGF) and interleukin-1 β (IL-1) on expression of CYP2B6 and the CYP2C mRNAs in human hepatocytes. These effects were compared to responses of the better-studied and more abundant CYP3A4. CYP3A4 and 2C8 were down regulated by all cytokine treatments. CYP2C18, which is expressed at very low levels in liver, was unaffected by cytokine treatments. The other CYP2Cs and CYP2B6 showed cytokine-specific effects. CYP2C9 and 19 showed almost identical response patterns, being down regulated by IL-6 and TGF but not significantly affected by LPS, TNF, IFN, or IL-1. CYP2B6 mRNA responded only to IL-6 and IFN. IL-6 down-regulated the mRNAs of all CYPs studied. Western blot analysis of CYP protein expression supported the mRNA data to a large extent, although some inconsistencies were observed. Our results show that human CYP2C8, 2C9, 2C18, 2C19, 2B6 and 3A4 responses to inflammation are independently regulated, and indicate that this fine control may have a critical effect on human drug responses in disease states. PMID:17576808

  11. Increased apolipoprotein E and c-fms gene expression without elevated interleukin 1 or 6 mRNA levels indicates selective activation of macrophage functions in advanced human atheroma.

    PubMed Central

    Salomon, R N; Underwood, R; Doyle, M V; Wang, A; Libby, P

    1992-01-01

    Cells found within atherosclerotic lesions can produce in culture protein mediators that may participate in atherogenesis. To test whether human atheromata actually contain transcripts for certain of these genes, we compared levels of mRNAs in carotid or coronary atheromata and in nonatherosclerotic human vessels by polymerase chain reaction (PCR) amplification of cDNAs reverse-transcribed from RNA. We measured PCR products (generated during exponential amplification) by incorporation of 32P-labeled primers. Levels of interleukin 1 alpha, 1 beta, or 6 mRNAs in plaques and controls did not differ. Compared to uninvolved vessels, plaques did contain higher levels of mRNA encoding platelet-derived growth factor A chain (42 +/- 24 vs. 12 +/- 10 fmol of product; mean +/- SD; n = 8 and 8, respectively; P = 0.007) and B chain (41 +/- 36 vs. 4 +/- 3 fmol of product, n = 14 and 6, respectively; P = 0.024). Atherosclerotic lesions consistently had much higher levels of apolipoprotein E (apoE) mRNA than did control vessels (131 +/- 71 vs. 5 +/- 3 fmol of product; n = 12 and 10, respectively; P less than 0.001). Direct RNA blot analyses confirmed elevated levels of apoE mRNA in plaque extracts. To test whether mononuclear phagocytes might be a source of the apoE mRNA, we studied a selective marker for cells of the monocytic lineage, the c-fms protooncogene, which encodes the receptor for macrophage colony-stimulating factor. Plaques also contained elevated levels of c-fms mRNA (30 +/- 17 vs. 5 +/- 3 fmol of product; n = 10 and 7, respectively; P = 0.002). Immunohistochemical colocalization demonstrated apoE protein in association with macrophages in plaques, whereas nonatherosclerotic vessels showed no immunoreactive apoE. ApoE produced locally in atheroma might modulate the functions of lesional T cells or promote "reverse cholesterol transport" by associating with high density lipoprotein particles, thus targeting them for peripheral uptake. Macrophages within the advanced

  12. Cytoplasmic mRNA turnover and ageing

    PubMed Central

    Borbolis, Fivos; Syntichaki, Popi

    2015-01-01

    Messenger RNA (mRNA) turnover that determines the lifetime of cytoplasmic mRNAs is a means to control gene expression under both normal and stress conditions, whereas its impact on ageing and age-related disorders has just become evident. Gene expression control is achieved at the level of the mRNA clearance as well as mRNA stability and accessibility to other molecules. All these processes are regulated by cis-acting motifs and trans-acting factors that determine the rates of translation and degradation of transcripts. Specific messenger RNA granules that harbor the mRNA decay machinery or various factors, involved in translational repression and transient storage of mRNAs, are also part of the mRNA fate regulation. Their assembly and function can be modulated to promote stress resistance to adverse conditions and over time affect the ageing process and the lifespan of the organism. Here, we provide insights into the complex relationships of ageing modulators and mRNA turnover mechanisms. PMID:26432921

  13. Analysis of mRNA With Microsomal Fractionation Using a SAGE-Based DNA Microarray System Facilitates Identification of the Genes Encoding Secretory Proteins

    PubMed Central

    Toyoda , Nobuaki; Nagai, Shigenori; Terashima, Yuya; Motomura, Kazushi; Haino, Makoto; Hashimoto, Shin-ichi; Takizawa, Hajime; Matsushima, Kouji

    2003-01-01

    In the regulation of host defense responses such as inflammation and immunity, the secretory proteins, including membrane proteins, play central roles. Although many secretory proteins have been identified by using methods such as differential display, random screening, or the signal sequence trap method, each method suffers from poor reproducibility, low sensitivity, or time-consuming or laborious work. Therefore, the strategy for facilitating the selection of the genes encoding the secretory proteins is desired. In this paper, we describe a system for isolating the genes encoding secretory proteins by analyzing mRNAs with microsomal fractionation on serial analysis of gene expression (SAGE)–based DNA microarray system. This system succeeded in discriminating the genes encoding secretory proteins from ones encoding nonsecretory proteins with 80% accuracy. We applied this system to human T lymphocytes. As a result, we were able to identify the genes that are not only encoding secretory proteins but also expressing selectively in a specific subset of T lymphocytes. The SAGE-based DNA microarray system is a promising system to identify the genes encoding specific secretory proteins. PMID:12805275

  14. Regulation of cytoplasmic mRNA decay

    PubMed Central

    Schoenberg, Daniel R.; Maquat, Lynne E.

    2012-01-01

    Discoveries made over the past 20 years highlight the importance of mRNA decay as a means to modulate gene expression and thereby protein production. Up until recently, studies focused largely on identifying cis-acting sequences that serve as mRNA stability or instability elements, the proteins that bind these elements, how the process of translation influences mRNA decay, and the ribonucleases that catalyze decay. Now, current studies have begun to elucidate how the decay process is regulated. This review examines our current understanding of how mammalian-cell mRNA decay is controlled by different signaling pathways and lays out a framework for future research. PMID:22392217

  15. A targeted gene expression platform allows for rapid analysis of chemical-induced antioxidant mRNA expression in zebrafish larvae.

    PubMed

    Mills, Margaret G; Gallagher, Evan P

    2017-01-01

    Chemical-induced oxidative stress and the biochemical pathways that protect against oxidative damage are of particular interest in the field of toxicology. To rapidly identify oxidative stress-responsive gene expression changes in zebrafish, we developed a targeted panel of antioxidant genes using the Affymetrix QuantiGene Plex (QGP) platform. The genes contained in our panel include eight putative Nrf2 (Nfe2l2a)-dependent antioxidant genes (hmox1a, gstp1, gclc, nqo1, prdx1, gpx1a, sod1, sod2), a stress response gene (hsp70), an inducible DNA damage repair gene (gadd45bb), and three reference genes (actb1, gapdh, hprt1). We tested this platform on larval zebrafish exposed to tert-butyl hydroperoxide (tBHP) and cadmium (Cd), two model oxidative stressors with different modes of action, and compared our results with those obtained using the more common quantitative PCR (qPCR) method. Both methods showed that exposure to tBHP and Cd induced expression of prdx1, gstp1, and hmox1a (2- to 12-fold increase via QGP), indicative of an activated Nrf2 response in larval zebrafish. Both compounds also elicited a general stress response as reflected by elevation of hsp70 and gadd45bb, with Cd being the more potent inducer. Transient changes were observed in sod2 and gpx1a expression, whereas nqo1, an Nrf2-responsive gene in mammalian cells, was minimally affected by either tBHP or Cd chemical exposures. Developmental expression analysis of the target genes by QGP revealed marked upregulation of sod2 between 0-96hpf, and to a lesser extent, of sod1 and gstp1. Once optimized, QGP analysis of these experiments was accomplished more rapidly, using far less tissue, and at lower total costs than qPCR analysis. In summary, the QGP platform as applied to higher-throughput zebrafish studies provides a reasonable cost-effective alternative to qPCR or more comprehensive transcriptomics approaches to rapidly assess the potential for chemicals to elicit oxidative stress as a mechanism of

  16. A targeted gene expression platform allows for rapid analysis of chemical-induced antioxidant mRNA expression in zebrafish larvae

    PubMed Central

    Mills, Margaret G.; Gallagher, Evan P.

    2017-01-01

    Chemical-induced oxidative stress and the biochemical pathways that protect against oxidative damage are of particular interest in the field of toxicology. To rapidly identify oxidative stress-responsive gene expression changes in zebrafish, we developed a targeted panel of antioxidant genes using the Affymetrix QuantiGene Plex (QGP) platform. The genes contained in our panel include eight putative Nrf2 (Nfe2l2a)-dependent antioxidant genes (hmox1a, gstp1, gclc, nqo1, prdx1, gpx1a, sod1, sod2), a stress response gene (hsp70), an inducible DNA damage repair gene (gadd45bb), and three reference genes (actb1, gapdh, hprt1). We tested this platform on larval zebrafish exposed to tert-butyl hydroperoxide (tBHP) and cadmium (Cd), two model oxidative stressors with different modes of action, and compared our results with those obtained using the more common quantitative PCR (qPCR) method. Both methods showed that exposure to tBHP and Cd induced expression of prdx1, gstp1, and hmox1a (2- to 12-fold increase via QGP), indicative of an activated Nrf2 response in larval zebrafish. Both compounds also elicited a general stress response as reflected by elevation of hsp70 and gadd45bb, with Cd being the more potent inducer. Transient changes were observed in sod2 and gpx1a expression, whereas nqo1, an Nrf2-responsive gene in mammalian cells, was minimally affected by either tBHP or Cd chemical exposures. Developmental expression analysis of the target genes by QGP revealed marked upregulation of sod2 between 0-96hpf, and to a lesser extent, of sod1 and gstp1. Once optimized, QGP analysis of these experiments was accomplished more rapidly, using far less tissue, and at lower total costs than qPCR analysis. In summary, the QGP platform as applied to higher-throughput zebrafish studies provides a reasonable cost-effective alternative to qPCR or more comprehensive transcriptomics approaches to rapidly assess the potential for chemicals to elicit oxidative stress as a mechanism of

  17. Heritable variation of mRNA decay rates in yeast.

    PubMed

    Andrie, Jennifer M; Wakefield, Jon; Akey, Joshua M

    2014-12-01

    Gene expression levels are determined by the balance between rates of mRNA transcription and decay, and genetic variation in either of these processes can result in heritable differences in transcript abundance. Although the genetics of gene expression has been a subject of intense interest, the contribution of heritable variation in mRNA decay rates to gene expression variation has received far less attention. To this end, we developed a novel statistical framework and measured allele-specific differences in mRNA decay rates in a diploid yeast hybrid created by mating two genetically diverse parental strains. We estimate that 31% of genes exhibit allelic differences in mRNA decay rates, of which 350 can be identified at a false discovery rate of 10%. Genes with significant allele-specific differences in mRNA decay rates have higher levels of polymorphism compared to other genes, with all gene regions contributing to allelic differences in mRNA decay rates. Strikingly, we find widespread evidence for compensatory evolution, such that variants influencing transcriptional initiation and decay have opposite effects, suggesting that steady-state gene expression levels are subject to pervasive stabilizing selection. Our results demonstrate that heritable differences in mRNA decay rates are widespread and are an important target for natural selection to maintain or fine-tune steady-state gene expression levels. © 2014 Andrie et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Heritable variation of mRNA decay rates in yeast

    PubMed Central

    Andrie, Jennifer M.; Wakefield, Jon

    2014-01-01

    Gene expression levels are determined by the balance between rates of mRNA transcription and decay, and genetic variation in either of these processes can result in heritable differences in transcript abundance. Although the genetics of gene expression has been a subject of intense interest, the contribution of heritable variation in mRNA decay rates to gene expression variation has received far less attention. To this end, we developed a novel statistical framework and measured allele-specific differences in mRNA decay rates in a diploid yeast hybrid created by mating two genetically diverse parental strains. We estimate that 31% of genes exhibit allelic differences in mRNA decay rates, of which 350 can be identified at a false discovery rate of 10%. Genes with significant allele-specific differences in mRNA decay rates have higher levels of polymorphism compared to other genes, with all gene regions contributing to allelic differences in mRNA decay rates. Strikingly, we find widespread evidence for compensatory evolution, such that variants influencing transcriptional initiation and decay have opposite effects, suggesting that steady-state gene expression levels are subject to pervasive stabilizing selection. Our results demonstrate that heritable differences in mRNA decay rates are widespread and are an important target for natural selection to maintain or fine-tune steady-state gene expression levels. PMID:25258386

  19. Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire).

    PubMed

    Oliveira, Ernna H; Macedo, Claudia; Donate, Paula B; Almeida, Renata S; Pezzi, Nicole; Nguyen, Catherine; Rossi, Marcos A; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2013-01-01

    In the thymus of non-obese diabetic (NOD) mice, the expression of the autoimmune regulator (Aire) gene varies with age, and its down-regulation in young mice precedes the later emergence of type 1 diabetes mellitus (T1D). In addition, the insulin (Ins2) peripheral tissue antigen (PTA) gene, which is Aire-dependent, is also deregulated in these mice. Based in these findings, we hypothesized that the imbalance in PTA gene expression in the thymus can be associated with slight variations in Aire transcript levels. To test this, we used siRNA to knockdown Aire by in vivo electro-transfection of the thymus of BALB/c mice. The efficiency of the electro-transfection was monitored by assessing the presence of irrelevant Cy3-labeled siRNA in the thymic stroma. Importantly, Aire-siRNA reached medullary thymic epithelial cells (mTECs) down-regulating Aire. As expected, the in vivo Aire knockdown was partial and transient; the maximum 59% inhibition occurred in 48 h. The Aire knockdown was sufficient to down-regulate PTA genes; however, surprisingly, several others, including Ins2, were up-regulated. The modulation of these genes after in vivo Aire knockdown was comparable to that observed in NOD mice before the emergence of T1D. The in vitro transfections of 3.10 mTEC cells with Aire siRNA resulted in samples featuring partial (69%) and complete (100%) Aire knockdown. In these Aire siRNA-transfected 3.10 mTECs, the expression of PTA genes, including Ins2, was down-regulated. This suggests that the expression profile of PTA genes in mTECs is affected by fine changes in the transcription level of Aire. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Simulated microgravity reduces mRNA levels of multidrug resistance genes 4 and 5 in non-metastatic human melanoma cells

    NASA Astrophysics Data System (ADS)

    Eiermann, Peter; Tsiockas, Wasiliki; Hauslage, Jens; Hemmersbach, Ruth; Gerzer, Rupert; Ivanova, Krassimira

    Multidrug resistance proteins (MRP) are members of the ATP-binding cassette transporter superfamily that are able to export a large variety of substances into the extracellular space in-cluding nucleoside and nucleotide base analogs used in antiviral and anticancer therapy. MRP4 and 5 (MRP4/5) particularly transport cyclic nucleotides, e.g. guanosine 3',5'-cyclic monophos-phate (cGMP). The second messenger cGMP, which is synthesized by the catalytic activity of the guanylyl cyclase (GC), plays an import role in vasodilatation, smooth muscle relaxation, and nitric oxide (NO)-induced perturbation of melanocyte-extracellular matrix interactions. In previous studies we have reported that different GC isoforms are responsible for cGMP synthe-sis in melanocytic cells. Normal human melanocytes and non-metastatic melanoma cell lines predominantly express the NO-sensitive soluble GC isoform (sGC), a heterodimeric protein consisting of α and β subunits. Metastatic melanoma cells lack the expression of the β sub-unit and show up-regulated activities of the particulate isoforms. We have further found that long-term exposure to hypergravity (5 g for 24 h) induced an increased cGMP export in normal human melanocytes, and non-metastatic, but not in metastatic human melanoma cells as a re-sult of up-regulated MRP4/5 expression. The aim of the present study is to investigate whether simulated microgravity may also alter the expression of MRP4/5 in non-metastatic melanoma cells. Experiments were performed using a fast-rotating clinostat (60 rpm) with one rotation axis. The non-metastatic 1F6 melanoma cells were exposed to simulated microgravity (up to 1.21x10-2 g) for 24 h. The mRNA analyses were performed by a relative calibrator-normalized and efficiency corrected quantitative polymerase chain reaction (Light Cycler R , Roche). Our data show a reduced expression of approximately 35% for MRP4 and of 50% for MRP5 in simulated microgravity in comparison to 1 g controls. Also, the

  1. Identification of adaptation-specific differences in mRNA expression of sessile and pedunculate oak based on osmotic-stress-induced genes.

    PubMed

    Porth, Ilga; Koch, Margit; Berenyi, Maria; Burg, Agnes; Burg, Kornel

    2005-10-01

    Quercus petraea (Matt.) Liebl. and Q. robur L. hybridize frequently and occupy similar, though distinct, ecological niches. So far, genetic discrimination between these species at the molecular level has been based mainly on neutral markers. Because such markers often exhibit low species differentiation because of high genetic compatibility and exchange between Q. robur and Q. petraea at these loci, we used adaptation-related expressed genes as markers. Accordingly, we identified osmotic-stress-induced genes in a Q. petraea cell line grown under moderate osmotic stress conditions. Two subtraction libraries were established from callus cells cultured under hyperosmotic stress for 1 or 48 h. Thirty-three differentially expressed sequence tags (ESTs) (from 70 originally isolated) were classified according to their putative functions. At least five of these gene products may contribute to osmotic-stress tolerance in oak: betaine aldehyde dehydrogenase, two trans-acting transcription factors (one abscsic acid (ABA)-responsive, the other ABA-independent), a glutathione-S- transferase and a heat-shock cognate protein. Seven genes were selected based on their putative function and their expression monitored in vivo. Leaf tissue from Q. petraea and Q. robur plantlets grown hydroponically under hyperosmotic conditions was harvested after 0, 1, 6, 24 or 72 h and analyzed by real-time polymerase chain reaction (PCR). We found indications of osmotic stress adaptation in Q. petraea based on up-regulation of genes related to protective functions, whereas down-regulation of these genes was evident in Q. robur. Thus, genetic markers related to adaptive traits may be useful for differentiating Q. petraea and Q. robur genotypes.

  2. Maternal dietary vitamin D carry-over alters offspring growth, skeletal mineralisation and tissue mRNA expressions of genes related to vitamin D, calcium and phosphorus homoeostasis in swine.

    PubMed

    Amundson, Laura A; Hernandez, Laura L; Laporta, Jimena; Crenshaw, Thomas D

    2016-09-01

    Maternal dietary vitamin D carry-over effects were assessed in young pigs to characterise skeletal abnormalities in a diet-induced model of kyphosis. Bone abnormalities were previously induced and bone mineral density (BMD) reduced in offspring from sows fed diets with inadequate vitamin D3. In a nested design, pigs from sows (n 23) fed diets with 0 (-D), 8·125 (+D) or 43·750 (++D) µg D3/kg from breeding through lactation were weaned and, within litter, fed nursery diets arranged as a 2×2 factorial design with 0 (-D) or 7·0 (+D) µg D3/kg, each with 95 % (95P) or 120 % (120P) of P requirements. Selected pigs were euthanised before colostrum consumption at birth (0 weeks, n 23), weaning (3 weeks, n 22) and after a growth period (8 weeks, n 185) for BMD, bone mechanical tests and tissue mRNA analysis. Pigs produced by +D or ++D sows had increased gain at 3 weeks (P<0·05), and at 8 weeks had increased BMD and improved femur mechanical properties. However, responses to nursery diets depended on maternal diets (P<0·05). Relative mRNA expressions of genes revealed a maternal dietary influence at birth in bone osteocalcin and at weaning in kidney 24-hydroxylase (P<0·05). Nursery treatments affected mRNA expressions at 8 weeks. Detection of a maternal and nursery diet interaction (P<0·05) provided insights into the long-term effects of maternal nutritional inputs. Characterising early stages of bone abnormalities provided inferences for humans and animals about maternal dietary influence on offspring skeletal health.

  3. Two NF-κB inhibitor-alpha (IκBα) genes from rock bream (Oplegnathus fasciatus): molecular characterization, genomic organization and mRNA expression analysis after immune stimulation.

    PubMed

    Lee, Youngdeuk; Umasuthan, Navaneethaiyer; Whang, Ilson; Revathy, Kasthuri Saranya; Lee, Sukkyoung; De Zoysa, Mahanama; Oh, Chulhong; Kang, Do-Hyung; Noh, Jae Koo; Lee, Jehee

    2014-12-01

    IkBa is a member of IkB family, which sequesters NF-kB in an inactivate form in the cytoplasm and blocks the translocation of NF-kB to nucleus. The IkBa paralogs of rock bream (OfIkBa-A and OfIkBa-B) encoded IkBa proteins with typical features including, highly conserved IkB degradation motif, six ankyrin repeats and a PEST sequence. However, their amino acid identity and similarity were only 55.6 and 69.7%, respectively suggesting that these two genes could be the two different isoforms of IkBa. The number and size of the exons of OfIkBa-A and OfIkBa-B were conserved well with all the compared vertebrate species, although they have significantly different genomic sizes. Phylogenetic analysis revealed that OfIkBa-A and OfIkBa-B proteins cluster with IkBa family members; however, they were grouped with different subclades in IkBa family. Tissue specific expression of OfIkBa mRNA was constitutively detected in all the tested tissues, and they showed the higher transcription level in heart, liver, gill and peripheral blood cells, respectively. The injection of flagellin stimulated the mRNA expression of OfIkBa paralogs in head kidney and intestine. Moreover, the OfIkBa mRNA expression in gill and liver was significantly upregulated by LPS, poly I:C and Edwardsiella tarda challenges. The transcription of OfIkBa was up-regulated in early-phase of injection and then rapidly restored. These results suggest that the OfIkBa paralogs might be involved in rapid immune responsive reactions in rock bream against bacterial and viral pathogens.

  4. Critical evaluation of KCNJ3 gene product detection in human breast cancer: mRNA in situ hybridisation is superior to immunohistochemistry

    PubMed Central

    Kammerer, Sarah; Jahn, Stephan Wenzel; Winter, Elke; Eidenhammer, Sylvia; Rezania, Simin; Regitnig, Peter; Pichler, Martin; Schreibmayer, Wolfgang; Bauernhofer, Thomas

    2016-01-01

    Increased expression levels of KCNJ3 have been correlated with lymph node metastases and poor prognosis in patients with breast cancer, suggesting a prognostic role of KCNJ3. We aimed to establish protocols for the detection of KCNJ3 in formalin-fixed, paraffin-embedded (FFPE) breast cancer tissue. Several antibodies were tested for sensitivity and specificity by western blot, followed by optimisation of the immunohistochemistry (IHC) procedure and establishment of KCNJ3 mRNA in situ hybridisation (ISH). Methods were validated by processing 15 FFPE breast cancer samples for which microarray data were available. Spearman's rank correlation analysis resulted in borderline significant correlation for IHC versus ISH (rS: 0.625; p<0.05) and IHC versus microarray (rS: 0.668; p<0.01), but in significant correlation for ISH versus microarray (rS: 0.861; p<0.001). The ISH method was superior to IHC, regarding robustness, sensitivity and specificity and will aid to further study expression levels of KCNJ3 in both malignant and physiological conditions. PMID:27698251

  5. Critical evaluation of KCNJ3 gene product detection in human breast cancer: mRNA in situ hybridisation is superior to immunohistochemistry.

    PubMed

    Kammerer, Sarah; Jahn, Stephan Wenzel; Winter, Elke; Eidenhammer, Sylvia; Rezania, Simin; Regitnig, Peter; Pichler, Martin; Schreibmayer, Wolfgang; Bauernhofer, Thomas

    2016-12-01

    Increased expression levels of KCNJ3 have been correlated with lymph node metastases and poor prognosis in patients with breast cancer, suggesting a prognostic role of KCNJ3 We aimed to establish protocols for the detection of KCNJ3 in formalin-fixed, paraffin-embedded (FFPE) breast cancer tissue. Several antibodies were tested for sensitivity and specificity by western blot, followed by optimisation of the immunohistochemistry (IHC) procedure and establishment of KCNJ3 mRNA in situ hybridisation (ISH). Methods were validated by processing 15 FFPE breast cancer samples for which microarray data were available. Spearman's rank correlation analysis resulted in borderline significant correlation for IHC versus ISH (rS: 0.625; p<0.05) and IHC versus microarray (rS: 0.668; p<0.01), but in significant correlation for ISH versus microarray (rS: 0.861; p<0.001). The ISH method was superior to IHC, regarding robustness, sensitivity and specificity and will aid to further study expression levels of KCNJ3 in both malignant and physiological conditions.

  6. mRNA levels of imprinted genes in bovine in vivo oocytes, embryos and cross species comparisons in humans, mice and pigs

    USDA-ARS?s Scientific Manuscript database

    Twenty-six confirmed imprinted genes in the bovine were quantified in in vivo produced oocytes and embryos. Eighteen were detectable and their transcriptional abundance were categorized into five patterns: largely decreased (MEST and PLAGL1); first decreased and then increased (CDKN1C and IGF2R); p...

  7. An mRNA capping enzyme targets FACT to the active gene to enhance the engagement of RNA polymerase II into transcriptional elongation.

    PubMed

    Sen, Rwik; Kaja, Amala; Ferdoush, Jannatul; Lahudkar, Shweta; Barman, Priyanka; Bhaumik, Sukesh R

    2017-04-10

    We have recently demonstrated that an mRNA-capping enzyme, Cet1, impairs promoter proximal accumulation/pausing of RNA polymerase II (pol-II) independently of its capping activity in Saccharomyces cerevisiae to control transcription. However, it is yet unknown how pol-II pausing is regulated by Cet1. Here, we show that Cet1's N-terminal domain (NTD) promotes the recruitment of FACT (FAcilitates Chromatin Transcription that enhances engagement of pol-II into transcriptional elongation) to the coding sequence of an active gene, ADH1, independently of mRNA-capping activity. Absence of Cet1's NTD decreases FACT targeting to ADH1, and consequently, reduces the engagement of pol-II into transcriptional elongation, hence leading to promoter proximal accumulation of pol-II. Similar results are also observed at other genes. Consistently, Cet1 interacts with FACT. Collectively, our results support that Cet1's NTD promotes FACT targeting to the active gene independently of mRNA-capping activity in facilitating pol-II to engage into transcriptional elongation, thus deciphering a novel regulatory pathway of gene expression.

  8. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    PubMed Central

    Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo

    2016-01-01

    The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries. PMID:27886048

  9. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries.

    PubMed

    Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo

    2016-11-23

    The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N⁶-methyladenosine (m⁶A), allowing the recruitment of YTH N⁶-methyladenosine RNA binding protein 2 (YTHDF2), an m⁶A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  10. Molecular Characterization, mRNA Expression and Alternative Splicing of Ryanodine Receptor Gene in the Brown Citrus Aphid, Toxoptera citricida (Kirkaldy)

    PubMed Central

    Wang, Ke-Yi; Jiang, Xuan-Zhao; Yuan, Guo-Rui; Shang, Feng; Wang, Jin-Jun

    2015-01-01

    Ryanodine receptors (RyRs) play a critical role in regulating the release of intracellular calcium, which enables them to be effectively targeted by the two novel classes of insecticides, phthalic acid diamides and anthranilic diamides. However, less information is available about this target site in insects, although the sequence and structure information of target molecules are essential for designing new control agents of high selectivity and efficiency, as well as low non-target toxicity. Here, we provided sufficient information about the coding sequence and molecular structures of RyR in T. citricida (TciRyR), an economically important pest. The full-length TciRyR cDNA was characterized with an open reading frame of 15,306 nucleotides, encoding 5101 amino acid residues. TciRyR was predicted to embrace all the hallmarks of ryanodine receptor, typically as the conserved C-terminal domain with consensus calcium-biding EF-hands (calcium-binding motif) and six transmembrane domains, as well as a large N-terminal domain. qPCR analysis revealed that the highest mRNA expression levels of TciRyR were observed in the adults, especially in the heads. Alternative splicing in TciRyR was evidenced by an alternatively spliced exon, resulting from intron retention, which was different from the case of RyR in Myzus persicae characterized with no alternative splicing events. Diagnostic PCR analysis indicated that the splicing of this exon was not only regulated in a body-specific manner but also in a stage-dependent manner. Taken together, these results provide useful information for new insecticide design and further insights into the molecular basis of insecticide action. PMID:26154764

  11. Understanding of altered N-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting.

    PubMed

    Ha, Tae Kwang; Kim, Yeon-Gu; Lee, Gyun Min

    2015-08-01

    To understand the effects of ammonium on N-glycosylation, recombinant Chinese hamster ovary (rCHO) cells that produce the Fc-fusion protein were cultivated in serum-free suspension cultures with 10 mM ammonium addition. The addition of ammonium to the cultures reduced the relative proportion of acidic isoforms and sialic acid content of an Fc-fusion protein. Fifty two N-glycosylation-related gene expressions were assessed by the NanoString nCounter system, which provides a digital readout using custom-designed color-coded probes. Among these queried genes, thirteen genes (gale, nans, gpi, man2a1, b4galt5, b4galt7, st3gal2, st3gal5, glb1, hexa, hexb, neu1, and neu3) were up-regulated over 1.5 times in the culture with ammonium addition after 5 days of culture; however, none of the 54 genes were significantly different after 3 days of culture. In particular, the expression level of neu1 (sialidase-1) and neu3 (sialidase-3), which play a role in reduction of sialylation, increased over 2 times. Likewise, the protein expression levels of sialidase-1 and sialidase-3 determined by Western blot analysis were also increased significantly in the culture with ammonium addition. Transient transfection of neu-1 or neu3-targeted siRNAs significantly improved the sialic acid content of the Fc-fusion protein in the culture with ammonium addition, indicating that the decreased sialic acid content was in part due to the increased expression level of sialidase. Taken together, the results obtained in this study provide a better understanding of the detrimental effect of ammonium on N-glycosylation, especially sialylation, in rCHO cells.

  12. The effect of two endogenous retinoids on the mRNA expression profile in human primary keratinocytes, focusing on genes causing autosomal recessive congenital ichthyosis.

    PubMed

    Törmä, H; Bergström, A; Ghiasifarahani, G; Berne, B

    2014-10-01

    Retinoids (natural forms and synthetic derivatives of vitamin A) are used as therapeutic agents for numerous skin diseases such as keratinization disorders (e.g. ichthyoses) and psoriasis. Two endogenous ligands for retinoic acid receptors exist, retinoic acid (atRA) and 3,4-didehydroretinoic acid (ddRA). In primary human epidermal keratinocytes many transcriptional targets for atRA are known, whereas the targets for ddRA are unknown. In an attempt to determine the targets, we compared the effect of atRA and ddRA on transcriptional profiles in undifferentiated and differentiating human primary keratinocytes. First, as expected, many genes were induced or suppressed in response to keratinocyte differentiation. Furthermore, the two retinoids affected substantially more genes in differentiated keratinocytes (>350) than in proliferating keratinocytes (≈20). In differentiating keratinocytes markers of cornification were suppressed suggesting a de-differentiating effect by the two retinoids. When comparing the expression profile of atRA to that of ddRA, no differently regulated genes were found. The array analysis also found that a minor number of miRNAs and a large number of non-coding transcripts were changed during differentiation and in response to the two retinoids. Furthermore, the expression of all, except one, genes known to cause autosomal recessive congenital ichthyosis (ARCI) were found to be induced by differentiation. These results comprehensively document that atRA and ddRA exert similar transcriptional changes in keratinocytes and also add new insights into the molecular mechanism influenced by retinoids in the epidermis. Furthermore, it suggests which ARCI patients could benefit from therapy with retinoids.

  13. Digital mRNA profiling of N-glycosylation gene expression in recombinant Chinese hamster ovary cells treated with sodium butyrate.

    PubMed

    Lee, Sang Min; Kim, Yeon-Gu; Lee, Eun Gyo; Lee, Gyun Min

    2014-02-10

    To understand the effects of sodium butyrate (NaBu) on protein glycosylation, recombinant Chinese hamster ovary (rCHO) cells producing Fc-fusion glycoprotein were subjected to 3mM NaBu. The addition of NaBu to the cultures reduced the relative proportion of acidic isoforms and sialic acid content of the glycoprotein. Fifty-two N-glycosylation-related gene expressions were also assessed by the NanoS