Leach, J E; White, F F
1996-01-01
Although more than 30 bacterial avirulence genes have been cloned and characterized, the function of the gene products in the elictitation of resistance is unknown in all cases but one. The product of avrD from Pseudomonas syringae pv. glycinea likely functions indirectly to elicit resistance in soybean, that is, evidence suggests the gene product is an enzyme involved in elicitor production. In most if not all cases, bacterial avirulence gene function is dependent on interactions with the hypersensitive response and pathogenicity (hrp) genes. Many hrp genes are similar to genes involved in delivery of pathogenicity factors in mammalian bacterial pathogens. Thus, analogies between mammalian and plant pathogens may provide needed clues to elucidate how virulence gene products control induction of resistance.
From Genomes to Protein Models and Back
NASA Astrophysics Data System (ADS)
Tramontano, Anna; Giorgetti, Alejandro; Orsini, Massimiliano; Raimondo, Domenico
2007-12-01
The alternative splicing mechanism allows genes to generate more than one product. When the splicing events occur within protein coding regions they can modify the biological function of the protein. Alternative splicing has been suggested as one way for explaining the discrepancy between the number of human genes and functional complexity. We analysed the putative structure of the alternatively spliced gene products annotated in the ENCODE pilot project and discovered that many of the potential alternative gene products will be unlikely to produce stable functional proteins.
A transversal approach to predict gene product networks from ontology-based similarity
Chabalier, Julie; Mosser, Jean; Burgun, Anita
2007-01-01
Background Interpretation of transcriptomic data is usually made through a "standard" approach which consists in clustering the genes according to their expression patterns and exploiting Gene Ontology (GO) annotations within each expression cluster. This approach makes it difficult to underline functional relationships between gene products that belong to different expression clusters. To address this issue, we propose a transversal analysis that aims to predict functional networks based on a combination of GO processes and data expression. Results The transversal approach presented in this paper consists in computing the semantic similarity between gene products in a Vector Space Model. Through a weighting scheme over the annotations, we take into account the representativity of the terms that annotate a gene product. Comparing annotation vectors results in a matrix of gene product similarities. Combined with expression data, the matrix is displayed as a set of functional gene networks. The transversal approach was applied to 186 genes related to the enterocyte differentiation stages. This approach resulted in 18 functional networks proved to be biologically relevant. These results were compared with those obtained through a standard approach and with an approach based on information content similarity. Conclusion Complementary to the standard approach, the transversal approach offers new insight into the cellular mechanisms and reveals new research hypotheses by combining gene product networks based on semantic similarity, and data expression. PMID:17605807
DynGO: a tool for visualizing and mining of Gene Ontology and its associations
Liu, Hongfang; Hu, Zhang-Zhi; Wu, Cathy H
2005-01-01
Background A large volume of data and information about genes and gene products has been stored in various molecular biology databases. A major challenge for knowledge discovery using these databases is to identify related genes and gene products in disparate databases. The development of Gene Ontology (GO) as a common vocabulary for annotation allows integrated queries across multiple databases and identification of semantically related genes and gene products (i.e., genes and gene products that have similar GO annotations). Meanwhile, dozens of tools have been developed for browsing, mining or editing GO terms, their hierarchical relationships, or their "associated" genes and gene products (i.e., genes and gene products annotated with GO terms). Tools that allow users to directly search and inspect relations among all GO terms and their associated genes and gene products from multiple databases are needed. Results We present a standalone package called DynGO, which provides several advanced functionalities in addition to the standard browsing capability of the official GO browsing tool (AmiGO). DynGO allows users to conduct batch retrieval of GO annotations for a list of genes and gene products, and semantic retrieval of genes and gene products sharing similar GO annotations. The result are shown in an association tree organized according to GO hierarchies and supported with many dynamic display options such as sorting tree nodes or changing orientation of the tree. For GO curators and frequent GO users, DynGO provides fast and convenient access to GO annotation data. DynGO is generally applicable to any data set where the records are annotated with GO terms, as illustrated by two examples. Conclusion We have presented a standalone package DynGO that provides functionalities to search and browse GO and its association databases as well as several additional functions such as batch retrieval and semantic retrieval. The complete documentation and software are freely available for download from the website . PMID:16091147
Database of cattle candidate genes and genetic markers for milk production and mastitis
Ogorevc, J; Kunej, T; Razpet, A; Dovc, P
2009-01-01
A cattle database of candidate genes and genetic markers for milk production and mastitis has been developed to provide an integrated research tool incorporating different types of information supporting a genomic approach to study lactation, udder development and health. The database contains 943 genes and genetic markers involved in mammary gland development and function, representing candidates for further functional studies. The candidate loci were drawn on a genetic map to reveal positional overlaps. For identification of candidate loci, data from seven different research approaches were exploited: (i) gene knockouts or transgenes in mice that result in specific phenotypes associated with mammary gland (143 loci); (ii) cattle QTL for milk production (344) and mastitis related traits (71); (iii) loci with sequence variations that show specific allele-phenotype interactions associated with milk production (24) or mastitis (10) in cattle; (iv) genes with expression profiles associated with milk production (207) or mastitis (107) in cattle or mouse; (v) cattle milk protein genes that exist in different genetic variants (9); (vi) miRNAs expressed in bovine mammary gland (32) and (vii) epigenetically regulated cattle genes associated with mammary gland function (1). Fourty-four genes found by multiple independent analyses were suggested as the most promising candidates and were further in silico analysed for expression levels in lactating mammary gland, genetic variability and top biological functions in functional networks. A miRNA target search for mammary gland expressed miRNAs identified 359 putative binding sites in 3′UTRs of candidate genes. PMID:19508288
Functions of the gene products of Escherichia coli.
Riley, M
1993-01-01
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome. PMID:7508076
Fuzzy measures on the Gene Ontology for gene product similarity.
Popescu, Mihail; Keller, James M; Mitchell, Joyce A
2006-01-01
One of the most important objects in bioinformatics is a gene product (protein or RNA). For many gene products, functional information is summarized in a set of Gene Ontology (GO) annotations. For these genes, it is reasonable to include similarity measures based on the terms found in the GO or other taxonomy. In this paper, we introduce several novel measures for computing the similarity of two gene products annotated with GO terms. The fuzzy measure similarity (FMS) has the advantage that it takes into consideration the context of both complete sets of annotation terms when computing the similarity between two gene products. When the two gene products are not annotated by common taxonomy terms, we propose a method that avoids a zero similarity result. To account for the variations in the annotation reliability, we propose a similarity measure based on the Choquet integral. These similarity measures provide extra tools for the biologist in search of functional information for gene products. The initial testing on a group of 194 sequences representing three proteins families shows a higher correlation of the FMS and Choquet similarities to the BLAST sequence similarities than the traditional similarity measures such as pairwise average or pairwise maximum.
GO(vis), a gene ontology visualization tool based on multi-dimensional values.
Ning, Zi; Jiang, Zhenran
2010-05-01
Most of gene product similarity measurements concentrate on the information content of Gene Ontology (GO) terms or use a path-based similarity between GO terms, which may ignore other important information contained in the structure of the ontology. In our study, we integrate different GO similarity measure approaches to analyze the functional relationship of genes and gene products with a new triangle-based visualization tool called GO(Vis). The purpose of this tool is to demonstrate the effect of three important information factors when measuring the similarity between gene products. One advantage of this tool is that its important ratio can be adjusted to meet different measuring requirements according to the biological knowledge of each factor. The experimental results demonstrate that GO(Vis) can display diagrams of the functional relationship for gene products effectively.
Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing.
Zhao, Yingwen; Fu, Guangyuan; Wang, Jun; Guo, Maozu; Yu, Guoxian
2018-02-23
Gene Ontology (GO) uses structured vocabularies (or terms) to describe the molecular functions, biological roles, and cellular locations of gene products in a hierarchical ontology. GO annotations associate genes with GO terms and indicate the given gene products carrying out the biological functions described by the relevant terms. However, predicting correct GO annotations for genes from a massive set of GO terms as defined by GO is a difficult challenge. To combat with this challenge, we introduce a Gene Ontology Hierarchy Preserving Hashing (HPHash) based semantic method for gene function prediction. HPHash firstly measures the taxonomic similarity between GO terms. It then uses a hierarchy preserving hashing technique to keep the hierarchical order between GO terms, and to optimize a series of hashing functions to encode massive GO terms via compact binary codes. After that, HPHash utilizes these hashing functions to project the gene-term association matrix into a low-dimensional one and performs semantic similarity based gene function prediction in the low-dimensional space. Experimental results on three model species (Homo sapiens, Mus musculus and Rattus norvegicus) for interspecies gene function prediction show that HPHash performs better than other related approaches and it is robust to the number of hash functions. In addition, we also take HPHash as a plugin for BLAST based gene function prediction. From the experimental results, HPHash again significantly improves the prediction performance. The codes of HPHash are available at: http://mlda.swu.edu.cn/codes.php?name=HPHash. Copyright © 2018 Elsevier Inc. All rights reserved.
Non-functional genes repaired at the RNA level.
Burger, Gertraud
2016-01-01
Genomes and genes continuously evolve. Gene sequences undergo substitutions, deletions or nucleotide insertions; mobile genetic elements invade genomes and interleave in genes; chromosomes break, even within genes, and pieces reseal in reshuffled order. To maintain functional gene products and assure an organism's survival, two principal strategies are used - either repair of the gene itself or of its product. I will introduce common types of gene aberrations and how gene function is restored secondarily, and then focus on systematically fragmented genes found in a poorly studied protist group, the diplonemids. Expression of their broken genes involves restitching of pieces at the RNA-level, and substantial RNA editing, to compensate for point mutations. I will conclude with thoughts on how such a grotesquely unorthodox system may have evolved, and why this group of organisms persists and thrives since tens of millions of years. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Zhang, Ximei; Johnston, Eric R; Barberán, Albert; Ren, Yi; Lü, Xiaotao; Han, Xingguo
2017-10-01
Anthropogenic environmental changes are accelerating the rate of biodiversity loss on Earth. Plant diversity loss is predicted to reduce soil microbial diversity primarily due to the decreased variety of carbon/energy resources. However, this intuitive hypothesis is supported by sparse empirical evidence, and most underlying mechanisms remain underexplored or obscure altogether. We constructed four diversity gradients (0-3) in a five-year plant functional group removal experiment in a steppe ecosystem in Inner Mongolia, China, and quantified microbial taxonomic and functional diversity with shotgun metagenome sequencing. The treatments had little effect on microbial taxonomic diversity, but were found to decrease functional gene diversity. However, the observed decrease in functional gene diversity was more attributable to a loss in plant productivity, rather than to the loss of any individual plant functional group per se. Reduced productivity limited fresh plant resources supplied to microorganisms, and thus, intensified the pressure of ecological filtering, favoring genes responsible for energy production/conversion, material transport/metabolism and amino acid recycling, and accordingly disfavored many genes with other functions. Furthermore, microbial respiration was correlated with the variation in functional composition but not taxonomic composition. Overall, the amount of carbon/energy resources driving microbial gene diversity was identified to be the critical linkage between above- and belowground communities, contrary to the traditional framework of linking plant clade/taxonomic diversity to microbial taxonomic diversity. © 2017 John Wiley & Sons Ltd.
2011-01-01
Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia), 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy), and 16wk (market age) from two genetic lines: a randombred control line (RBC2) maintained without selection pressure, and a line (F) selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR < 0.001) by overall effect of development, while 16 genes were differentially expressed (FDR < 0.10) by overall effect of genetic line. Ingenuity Pathways Analysis was used to group annotated genes into networks, functions, and canonical pathways. The expression of 28 genes involved in extracellular matrix regulation, cell death/apoptosis, and calcium signaling/muscle function, as well as genes with miscellaneous function was confirmed by qPCR. Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of their protein products. PMID:21385442
Cooperation and selfishness both occur during molecular evolution.
Penny, David
2014-11-26
Perhaps the 'selfish' aspect of evolution has been over-emphasised, and organisms considered as basically selfish. However, at the macromolecular level of genes and proteins the cooperative aspect of evolution is more obvious and balances this self-centred aspect. Thousands of proteins must function together in an integrated manner to use and to produce the many molecules necessary for a functioning cell. The macromolecules have no idea whether they are functioning cooperatively or competitively with other genes and gene products (such as proteins). The cell is a giant cooperative system of thousands of genes/proteins that function together, even if it has to simultaneously resist 'parasites'. There are extensive examples of cooperative behavior among genes and proteins in both functioning cells and in the origin of life, so this cooperative nature, along with selfishness, must be considered part of normal evolution. The principles also apply to very large numbers of examples of 'positive interactions' between organisms, including both eukaryotes and akaryotes (prokaryotes). This does not negate in any way the 'selfishness' of genes - but macromolecules have no idea when they are helping, or hindering, other groups of macromolecules. We need to assert more strongly that genes, and gene products, function together as a cooperative unit.
Kulmuni, J; Westram, A M
2017-06-01
The possibility of intrinsic barriers to gene flow is often neglected in empirical research on local adaptation and speciation with gene flow, for example when interpreting patterns observed in genome scans. However, we draw attention to the fact that, even with gene flow, divergent ecological selection may generate intrinsic barriers involving both ecologically selected and other interacting loci. Mechanistically, the link between the two types of barriers may be generated by genes that have multiple functions (i.e., pleiotropy), and/or by gene interaction networks. Because most genes function in complex networks, and their evolution is not independent of other genes, changes evolving in response to ecological selection can generate intrinsic barriers as a by-product. A crucial question is to what extent such by-product barriers contribute to divergence and speciation-that is whether they stably reduce gene flow. We discuss under which conditions by-product barriers may increase isolation. However, we also highlight that, depending on the conditions (e.g., the amount of gene flow and the strength of selection acting on the intrinsic vs. the ecological barrier component), the intrinsic incompatibility may actually destabilize barriers to gene flow. In practice, intrinsic barriers generated as a by-product of divergent ecological selection may generate peaks in genome scans that cannot easily be interpreted. We argue that empirical studies on divergence with gene flow should consider the possibility of both ecological and intrinsic barriers. Future progress will likely come from work combining population genomic studies, experiments quantifying fitness and molecular studies on protein function and interactions. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Eklöf, Jens M.; Shojania, Shaheen; Okon, Mark; McIntosh, Lawrence P.; Brumer, Harry
2013-01-01
The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/β-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.2.1.73), which specifically hydrolyze linear mixed linkage β(1→3)/β(1→4)-glucans. In addition to their specificity for the highly branched xyloglucan polysaccharide, XTH gene products are distinguished from the licheninases and other GH16 enzyme subfamilies by significant active site loop alterations and a large C-terminal extension. Given these differences, the molecular evolution of the XTH gene products in GH16 has remained enigmatic. Here, we present the biochemical and structural analysis of a unique, mixed function endoglucanase from black cottonwood (Populus trichocarpa), which reveals a small, newly recognized subfamily of GH16 members intermediate between the bacterial licheninases and plant XTH gene products. We postulate that this clade comprises an important link in the evolution of the large plant XTH gene families from a putative microbial ancestor. As such, this analysis provides new insights into the diversification of GH16 and further unites the apparently disparate members of this important family of proteins. PMID:23572521
Lin, Qiang; De Vrieze, Jo; He, Guihua; Li, Xiangzhen; Li, Jiabao
2016-09-01
Temperature is crucial for the performance of anaerobic digestion process. In this study of anaerobic digestion of swine manure, the relationship between the microbial gene expression and methane production at different temperatures (25-55°C) was revealed through metatranscriptomic analysis. Daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. The functional gene expression showed great variation at different temperatures. The function centralization (opposite to alpha-diversity), assessed by the least proportions of functional pathways contributing for at least 50% of total reads positively correlated to methane production. Temperature regulated methane production probably through reducing the diversity of functional pathways, but enhancing central functional pathways, so that most of cellular activities and resource were invested in methanogenesis and related pathways, enhancing the efficiency of conversion of substrates to methane. This research demonstrated the importance of function centralization for efficient system functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neisch, Amanda L.; Avery, Adam W.; Machame, James B.; Li, Min-gang; Hays, Thomas S.
2017-01-01
Proper neuronal function critically depends on efficient intracellular transport and disruption of transport leads to neurodegeneration. Molecular pathways that support or regulate neuronal transport are not fully understood. A greater understanding of these pathways will help reveal the pathological mechanisms underlying disease. Drosophila melanogaster is the premier model system for performing large-scale genetic functional screens. Here we describe methods to carry out primary and secondary genetic screens in Drosophila aimed at identifying novel gene products and pathways that impact neuronal intracellular transport. These screens are performed using whole animal or live cell imaging of intact neural tissue to ensure integrity of neurons and their cellular environment. The primary screen is used to identify gross defects in neuronal function indicative of a disruption in microtubule-based transport. The secondary screens, conducted in both motoneurons and dendritic arborization neurons, will confirm the function of candidate gene products in intracellular transport. Together, the methodologies described here will support labs interested in identifying and characterizing gene products that alter intracellular transport in Drosophila. PMID:26794520
Development of genome-based anti-virulence therapeutics to control HLB
USDA-ARS?s Scientific Manuscript database
Orthologous gene replacement technique has been developed to confirm functions of key virulence genes in 'Candidatus Liberibacters asiaticus'. These results facilitate the development of antivirulence drugs that specifically target functional domains of virulence gene products to disarm pathogenicit...
Mercan, Emin; İspirli, Hümeyra; Sert, Durmuş; Yılmaz, Mustafa Tahsin; Dertli, Enes
2015-11-01
The aim of this work was to characterize functional properties of Lactobacillus salivarius strains isolated from chicken feces. Detection of genes responsible for exopolysaccharide (EPS) production revealed that all strains harbored a dextransucrase gene, but p-gtf gene was only detected in strain E4. Analysis of EPS production levels showed significant alterations among strains tested. Biofilm formation was found to be medium composition dependant, and there was a negative correlation with biofilm formation and EPS production. Autoaggregation properties and coaggregation of L. salivarius strains with chicken pathogens were appeared to be specific at strain level. An increment in bacterial adhesion to chicken gut explants was observed in L. salivarius strains with the reduction in EPS production levels. This study showed that strain-specific properties can determine the functional properties of L. salivarius strains, and the interference of these properties might be crucial for final selection of these strains for technological purposes.
Gene function prediction with gene interaction networks: a context graph kernel approach.
Li, Xin; Chen, Hsinchun; Li, Jiexun; Zhang, Zhu
2010-01-01
Predicting gene functions is a challenge for biologists in the postgenomic era. Interactions among genes and their products compose networks that can be used to infer gene functions. Most previous studies adopt a linkage assumption, i.e., they assume that gene interactions indicate functional similarities between connected genes. In this study, we propose to use a gene's context graph, i.e., the gene interaction network associated with the focal gene, to infer its functions. In a kernel-based machine-learning framework, we design a context graph kernel to capture the information in context graphs. Our experimental study on a testbed of p53-related genes demonstrates the advantage of using indirect gene interactions and shows the empirical superiority of the proposed approach over linkage-assumption-based methods, such as the algorithm to minimize inconsistent connected genes and diffusion kernels.
Janevska, Slavica; Tudzynski, Bettina
2018-01-01
The fungus Fusarium fujikuroi causes bakanae disease of rice due to its ability to produce the plant hormones, the gibberellins. The fungus is also known for producing harmful mycotoxins (e.g., fusaric acid and fusarins) and pigments (e.g., bikaverin and fusarubins). However, for a long time, most of these well-known products could not be linked to biosynthetic gene clusters. Recent genome sequencing has revealed altogether 47 putative gene clusters. Most of them were orphan clusters for which the encoded natural product(s) were unknown. In this review, we describe the current status of our research on identification and functional characterizations of novel secondary metabolite gene clusters. We present several examples where linking known metabolites to the respective biosynthetic genes has been achieved and describe recent strategies and methods to access new natural products, e.g., by genetic manipulation of pathway-specific or global transcritption factors. In addition, we demonstrate that deletion and over-expression of histone-modifying genes is a powerful tool to activate silent gene clusters and to discover their products.
Sundström, Jens; Engström, Peter
2002-07-01
The Norway spruce MADS-box genes DAL11, DAL12 and DAL13 are phylogenetically related to the angiosperm B-function MADS-box genes: genes that act together with A-function genes in specifying petal identity and with C-function genes in specifying stamen identity to floral organs. In this report we present evidence to suggest that the B-gene function in the specification of identity of the pollen-bearing organs has been conserved between conifers and angiosperms. Expression of DAL11 or DAL12 in transgenic Arabidopsis causes phenotypic changes which partly resemble those caused by ectopic expression of the endogenous B-genes. In similar experiments, flowers of Arabidopsis plants expressing DAL13 showed a different homeotic change in that they formed ectopic anthers in whorls one, two or four. We also demonstrate the capacity of the spruce gene products to form homodimers, and that DAL11 and DAL13 may form heterodimers with each other and with the Arabidopsis B-protein AP3, but not with PI, the second B-gene product in Arabidopsis. In situ hybridization experiments show that the conifer B-like genes are expressed specifically in developing pollen cones, but differ in both temporal and spatial distribution patterns. These results suggest that the B-function in conifers is dual and is separated into a meristem identity and an organ identity function, the latter function possibly being independent of an interaction with the C-function. Thus, even though an ancestral B-function may have acted in combination with C to specify micro- and megasporangia, the B-function has evolved differently in conifers and angiosperms.
Peng, Huadong; Moghaddam, Lalehvash; Brinin, Anthony; Williams, Brett; Mundree, Sagadevan; Haritos, Victoria S
2018-03-01
As promising alternatives to fossil-derived oils, microbial lipids are important as industrial feedstocks for biofuels and oleochemicals. Our broad aim is to increase lipid content in oleaginous yeast through expression of lipid accumulation genes and use Saccharomyces cerevisiae to functionally assess genes obtained from oil-producing plants and microalgae. Lipid accumulation genes DGAT (diacylglycerol acyltransferase), PDAT (phospholipid: diacylglycerol acyltransferase), and ROD1 (phosphatidylcholine: diacylglycerol choline-phosphotransferase) were separately expressed in yeast and lipid production measured by fluorescence, solvent extraction, thin layer chromatography, and gas chromatography (GC) of fatty acid methyl esters. Expression of DGAT1 from Arabidopsis thaliana effectively increased total fatty acids by 1.81-fold above control, and ROD1 led to increased unsaturated fatty acid content of yeast lipid. The functional assessment approach enabled the fast selection of candidate genes for metabolic engineering of yeast for production of lipid feedstocks. © 2017 International Union of Biochemistry and Molecular Biology, Inc.
James M. Slavicek; Nancy Hayes-Plazolles
1991-01-01
Viral immediate early gene products are usually regulatory proteins that control expression of other viral genes at the transcriptional level or are proteins that are part of the viral DNA replication complex. The identification and functional characterization of the immediate early gene products of Lymantria dispar nuclear polyhedrosis virus (LdNPV...
Bodemann, Brian; Petersen, Sean; Aruri, Jayavani; Koshy, Shiney; Richardson, Zachary; Le, Lu Q.; Krasieva, Tatiana; Roth, Michael G.; Farmer, Pat; White, Michael A.
2008-01-01
Melanin protects the skin and eyes from the harmful effects of UV irradiation, protects neural cells from toxic insults, and is required for sound conduction in the inner ear. Aberrant regulation of melanogenesis underlies skin disorders (melasma and vitiligo), neurologic disorders (Parkinson's disease), auditory disorders (Waardenburg's syndrome), and opthalmologic disorders (age related macular degeneration). Much of the core synthetic machinery driving melanin production has been identified; however, the spectrum of gene products participating in melanogenesis in different physiological niches is poorly understood. Functional genomics based on RNA-mediated interference (RNAi) provides the opportunity to derive unbiased comprehensive collections of pharmaceutically tractable single gene targets supporting melanin production. In this study, we have combined a high-throughput, cell-based, one-well/one-gene screening platform with a genome-wide arrayed synthetic library of chemically synthesized, small interfering RNAs to identify novel biological pathways that govern melanin biogenesis in human melanocytes. Ninety-two novel genes that support pigment production were identified with a low false discovery rate. Secondary validation and preliminary mechanistic studies identified a large panel of targets that converge on tyrosinase expression and stability. Small molecule inhibition of a family of gene products in this class was sufficient to impair chronic tyrosinase expression in pigmented melanoma cells and UV-induced tyrosinase expression in primary melanocytes. Isolation of molecular machinery known to support autophagosome biosynthesis from this screen, together with in vitro and in vivo validation, exposed a close functional relationship between melanogenesis and autophagy. In summary, these studies illustrate the power of RNAi-based functional genomics to identify novel genes, pathways, and pharmacologic agents that impact a biological phenotype and operate outside of preconceived mechanistic relationships. PMID:19057677
Nieuwenhuizen, Niels J; Green, Sol A; Chen, Xiuyin; Bailleul, Estelle J D; Matich, Adam J; Wang, Mindy Y; Atkinson, Ross G
2013-02-01
Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple 'Royal Gala' expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies.
Nieuwenhuizen, Niels J.; Green, Sol A.; Chen, Xiuyin; Bailleul, Estelle J.D.; Matich, Adam J.; Wang, Mindy Y.; Atkinson, Ross G.
2013-01-01
Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple ‘Royal Gala’ expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150
MAISTAS: a tool for automatic structural evaluation of alternative splicing products.
Floris, Matteo; Raimondo, Domenico; Leoni, Guido; Orsini, Massimiliano; Marcatili, Paolo; Tramontano, Anna
2011-06-15
Analysis of the human genome revealed that the amount of transcribed sequence is an order of magnitude greater than the number of predicted and well-characterized genes. A sizeable fraction of these transcripts is related to alternatively spliced forms of known protein coding genes. Inspection of the alternatively spliced transcripts identified in the pilot phase of the ENCODE project has clearly shown that often their structure might substantially differ from that of other isoforms of the same gene, and therefore that they might perform unrelated functions, or that they might even not correspond to a functional protein. Identifying these cases is obviously relevant for the functional assignment of gene products and for the interpretation of the effect of variations in the corresponding proteins. Here we describe a publicly available tool that, given a gene or a protein, retrieves and analyses all its annotated isoforms, provides users with three-dimensional models of the isoform(s) of his/her interest whenever possible and automatically assesses whether homology derived structural models correspond to plausible structures. This information is clearly relevant. When the homology model of some isoforms of a gene does not seem structurally plausible, the implications are that either they assume a structure unrelated to that of the other isoforms of the same gene with presumably significant functional differences, or do not correspond to functional products. We provide indications that the second hypothesis is likely to be true for a substantial fraction of the cases. http://maistas.bioinformatica.crs4.it/.
Highlighting the Need for Systems-Level Experimental Characterization of Plant Metabolic Enzymes.
Engqvist, Martin K M
2016-01-01
The biology of living organisms is determined by the action and interaction of a large number of individual gene products, each with specific functions. Discovering and annotating the function of gene products is key to our understanding of these organisms. Controlled experiments and bioinformatic predictions both contribute to functional gene annotation. For most species it is difficult to gain an overview of what portion of gene annotations are based on experiments and what portion represent predictions. Here, I survey the current state of experimental knowledge of enzymes and metabolism in Arabidopsis thaliana as well as eleven economically important crops and forestry trees - with a particular focus on reactions involving organic acids in central metabolism. I illustrate the limited availability of experimental data for functional annotation of enzymes in most of these species. Many enzymes involved in metabolism of citrate, malate, fumarate, lactate, and glycolate in crops and forestry trees have not been characterized. Furthermore, enzymes involved in key biosynthetic pathways which shape important traits in crops and forestry trees have not been characterized. I argue for the development of novel high-throughput platforms with which limited functional characterization of gene products can be performed quickly and relatively cheaply. I refer to this approach as systems-level experimental characterization. The data collected from such platforms would form a layer intermediate between bioinformatic gene function predictions and in-depth experimental studies of these functions. Such a data layer would greatly aid in the pursuit of understanding a multiplicity of biological processes in living organisms.
Transient gene expression in epidermal cells of plant leaves by biolistic DNA delivery.
Ueki, Shoko; Magori, Shimpei; Lacroix, Benoît; Citovsky, Vitaly
2013-01-01
Transient gene expression is a useful approach for studying the functions of gene products. In the case of plants, Agrobacterium infiltration is a method of choice for transient introduction of genes for many species. However, this technique does not work efficiently in some species, such as Arabidopsis thaliana. Moreover, the infection of Agrobacterium is known to induce dynamic changes in gene expression patterns in the host plants, possibly affecting the function and localization of the proteins to be tested. These problems can be circumvented by biolistic delivery of the genes of interest. Here, we present an optimized protocol for biolistic delivery of plasmid DNA into epidermal cells of plant leaves, which can be easily performed using the Bio-Rad Helios gene gun system. This protocol allows efficient and reproducible transient expression of diverse genes in Arabidopsis, Nicotiana benthamiana and N. tabacum, and is suitable for studies of the biological function and subcellular localization of the gene products directly in planta. The protocol also can be easily adapted to other species by optimizing the delivery gas pressure.
Gene expression allelic imbalance in ovine brown adipose tissue impacts energy homeostasis
Ghazanfar, Shila; Vuocolo, Tony; Morrison, Janna L.; Nicholas, Lisa M.; McMillen, Isabella C.; Yang, Jean Y. H.; Buckley, Michael J.
2017-01-01
Heritable trait variation within a population of organisms is largely governed by DNA variations that impact gene transcription and protein function. Identifying genetic variants that affect complex functional traits is a primary aim of population genetics studies, especially in the context of human disease and agricultural production traits. The identification of alleles directly altering mRNA expression and thereby biological function is challenging due to difficulty in isolating direct effects of cis-acting genetic variations from indirect trans-acting genetic effects. Allele specific gene expression or allelic imbalance in gene expression (AI) occurring at heterozygous loci provides an opportunity to identify genes directly impacted by cis-acting genetic variants as indirect trans-acting effects equally impact the expression of both alleles. However, the identification of genes showing AI in the context of the expression of all genes remains a challenge due to a variety of technical and statistical issues. The current study focuses on the discovery of genes showing AI using single nucleotide polymorphisms as allelic reporters. By developing a computational and statistical process that addressed multiple analytical challenges, we ranked 5,809 genes for evidence of AI using RNA-Seq data derived from brown adipose tissue samples from a cohort of late gestation fetal lambs and then identified a conservative subgroup of 1,293 genes. Thus, AI was extensive, representing approximately 25% of the tested genes. Genes associated with AI were enriched for multiple Gene Ontology (GO) terms relating to lipid metabolism, mitochondrial function and the extracellular matrix. These functions suggest that cis-acting genetic variations causing AI in the population are preferentially impacting genes involved in energy homeostasis and tissue remodelling. These functions may contribute to production traits likely to be under genetic selection in the population. PMID:28665992
Analysis of hairpin RNA transgene-induced gene silencing in Fusarium oxysporum
2013-01-01
Background Hairpin RNA (hpRNA) transgenes can be effective at inducing RNA silencing and have been exploited as a powerful tool for gene function analysis in many organisms. However, in fungi, expression of hairpin RNA transcripts can induce post-transcriptional gene silencing, but in some species can also lead to transcriptional gene silencing, suggesting a more complex interplay of the two pathways at least in some fungi. Because many fungal species are important pathogens, RNA silencing is a powerful technique to understand gene function, particularly when gene knockouts are difficult to obtain. We investigated whether the plant pathogenic fungus Fusarium oxysporum possesses a functional gene silencing machinery and whether hairpin RNA transcripts can be employed to effectively induce gene silencing. Results Here we show that, in the phytopathogenic fungus F. oxysporum, hpRNA transgenes targeting either a β-glucuronidase (Gus) reporter transgene (hpGus) or the endogenous gene Frp1 (hpFrp) did not induce significant silencing of the target genes. Expression analysis suggested that the hpRNA transgenes are prone to transcriptional inactivation, resulting in low levels of hpRNA and siRNA production. However, the hpGus RNA can be efficiently transcribed by promoters acquired either by recombination with a pre-existing, actively transcribed Gus transgene or by fortuitous integration near an endogenous gene promoter allowing siRNA production. These siRNAs effectively induced silencing of a target Gus transgene, which in turn appeared to also induce secondary siRNA production. Furthermore, our results suggested that hpRNA transcripts without poly(A) tails are efficiently processed into siRNAs to induce gene silencing. A convergent promoter transgene, designed to express poly(A)-minus sense and antisense Gus RNAs, without an inverted-repeat DNA structure, induced consistent Gus silencing in F. oxysporum. Conclusions These results indicate that F. oxysporum possesses functional RNA silencing machineries for siRNA production and target mRNA cleavage, but hpRNA transgenes may induce transcriptional self-silencing due to its inverted-repeat structure. Our results suggest that F. oxysporum possesses a similar gene silencing pathway to other fungi like fission yeast, and indicate a need for developing more effective RNA silencing technology for gene function studies in this fungal pathogen. PMID:23819794
Pandey, Shashank K; Nookaraju, Akula; Fujino, Takeshi; Pattathil, Sivakumar; Joshi, Chandrashekhar P
2016-11-01
Functional characterization of two tobacco genes, one involved in xylan synthesis and the other, a positive regulator of secondary cell wall formation, is reported. Lignocellulosic secondary cell walls (SCW) provide essential plant materials for the production of second-generation bioethanol. Therefore, thorough understanding of the process of SCW formation in plants is beneficial for efficient bioethanol production. Recently, we provided the first proof-of-concept for using virus-induced gene silencing (VIGS) approach for rapid functional characterization of nine genes involved in cellulose, hemicellulose and lignin synthesis during SCW formation. Here, we report VIGS-mediated functional characterization of two tobacco genes involved in SCW formation. Stems of VIGS plants silenced for both selected genes showed increased amount of xylem formation but thinner cell walls than controls. These results were further confirmed by production of stable transgenic tobacco plants manipulated in expression of these genes. Stems of stable transgenic tobacco plants silenced for these two genes showed increased xylem proliferation with thinner walls, whereas transgenic tobacco plants overexpressing these two genes showed increased fiber cell wall thickness but no change in xylem proliferation. These two selected genes were later identified as possible members of DUF579 family involved in xylan synthesis and KNAT7 transcription factor family involved in positive regulation of SCW formation, respectively. Glycome analyses of cell walls showed increased polysaccharide extractability in 1 M KOH extracts of both VIGS-NbDUF579 and VIGS-NbKNAT7 lines suggestive of cell wall loosening. Also, VIGS-NbDUF579 and VIGS-NbKNAT7 lines showed increased saccharification rates (74.5 and 40 % higher than controls, respectively). All these properties are highly desirable for producing higher quantities of bioethanol from lignocellulosic materials of bioenergy plants.
[Construction of rAAV2-GPIIb/IIIa vector and test of its expression and function in vitro].
Wang, Kai; Peng, Jian-Qiang; Chen, Fang-Ping; Wu, Xiao-Bin
2006-04-01
This study was aimed to explore the possibility of rAAV2 vector-mediating gene therapy for Glanzmann' s thrombasthenia. The rAAV2-GPIIb/IIIa vector was constructed. The GPIIb/IIIa gene expression in mammal cell were examined by different methods, such as: detection of mRNA expression in BHK-21 cells after 24 hours of infection (MOI = 1 x 10(5) v.g/cell) was performed by RT-PCR; the relation between MOI and quantity of GPII6/IIIa gene expression was detected by FACS after 48 hours of infection; GPIIb/IIIa protein expression in BHK-21 cells after 48 hours of infection (MOI = 10(5) v x g/cell) was assayed by Western blot, GPIIb/IIIa protein expression on cell surface was detected by immunofluorescence, and the biological function of expressing product was determined by PAC-1 conjunct experiments. The results showed that GPIIb/IIIa gene expression in mRNA level could be detected in BHK-21 cells after 24 hours of infection at MOI = 1 x 10(5) v x g/cell and the GPIIb/IIIa gene expression in protein level could be detected in BHK-21 cells after 48 hours of infection at MOI = 1 x 10(5) v x g/cell. In certain range, quantity of GPIIb/IIIa gene expression increased with MOI, but overdose of MOI decreased quantity of GPIIb/IIIa gene expression. Activated product of GPIIb/IIIa gene expression could combined with PAC-I, and possesed normal biological function. In conclusion, rAAV2 vactor can effectively mediate GPIIb and GPIIIa gene expressing in mammal cells, and the products of these genes exhibit biological function. This result may provide a basis for application of rAAV2 vector in Glanzmann's thrombasthenia gene therapy in furture.
Idiopathic Hypogonadotropic Hypogonadism Caused by Inactivating Mutations in SRA1
Kotan, Leman Damla; Cooper, Charlton; Darcan, Şükran; Carr, Ian M.; Özen, Samim; Yan, Yi; Hamedani, Mohammad K.; Gürbüz, Fatih; Mengen, Eda; Turan, İhsan; Ulubay, Ayça; Akkuş, Gamze; Yüksel, Bilgin; Topaloğlu, A. Kemal; Leygue, Etienne
2016-01-01
Objective: What initiates the pubertal process in humans and other mammals is still unknown. We hypothesized that gene(s) taking roles in triggering human puberty may be identified by studying a cohort of idiopathic hypogonadotropic hypogonadism (IHH). Methods: A cohort of IHH cases was studied based on autozygosity mapping coupled with whole exome sequencing. Results: Our studies revealed three independent families in which IHH/delayed puberty is associated with inactivating SRA1 variants. SRA1 was the first gene to be identified to function through its protein as well as noncoding functional ribonucleic acid products. These products act as co-regulators of nuclear receptors including sex steroid receptors as well as SF-1 and LRH-1, the master regulators of steroidogenesis. Functional studies with a mutant SRA1 construct showed a reduced co-activation of ligand-dependent activity of the estrogen receptor alpha, as assessed by luciferase reporter assay in HeLa cells. Conclusion: Our findings strongly suggest that SRA1 gene function is required for initiation of puberty in humans. Furthermore, SRA1 with its alternative products and functionality may provide a potential explanation for the versatility and complexity of the pubertal process. PMID:27086651
Li, Wan; Zhu, Lina; Huang, Hao; He, Yuehan; Lv, Junjie; Li, Weimin; Chen, Lina; He, Weiming
2017-10-01
Complex chronic diseases are caused by the effects of genetic and environmental factors. Single nucleotide polymorphisms (SNPs), one common type of genetic variations, played vital roles in diseases. We hypothesized that disease risk functional SNPs in coding regions and protein interaction network modules were more likely to contribute to the identification of disease susceptible genes for complex chronic diseases. This could help to further reveal the pathogenesis of complex chronic diseases. Disease risk SNPs were first recognized from public SNP data for coronary heart disease (CHD), hypertension (HT) and type 2 diabetes (T2D). SNPs in coding regions that were classified into nonsense and missense by integrating several SNP functional annotation databases were treated as functional SNPs. Then, regions significantly associated with each disease were screened using random permutations for disease risk functional SNPs. Corresponding to these regions, 155, 169 and 173 potential disease susceptible genes were identified for CHD, HT and T2D, respectively. A disease-related gene product interaction network in environmental context was constructed for interacting gene products of both disease genes and potential disease susceptible genes for these diseases. After functional enrichment analysis for disease associated modules, 5 CHD susceptible genes, 7 HT susceptible genes and 3 T2D susceptible genes were finally identified, some of which had pleiotropic effects. Most of these genes were verified to be related to these diseases in literature. This was similar for disease genes identified from another method proposed by Lee et al. from a different aspect. This research could provide novel perspectives for diagnosis and treatment of complex chronic diseases and susceptible genes identification for other diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Xun, Weibing; Zhao, Jun; Xue, Chao; Zhang, Guishan; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu
2016-06-01
Different fertilization managements of red soil, a kind of Ferralic Cambisol, strongly affected the soil properties and associated microbial communities. The association of the soil microbial community and functionality with long-term fertilization management in the unique low-productivity red soil ecosystem is important for both soil microbial ecology and agricultural production. Here, 454 pyrosequencing analysis of 16S recombinant ribonucleic acid genes and GeoChip4-NimbleGen-based functional gene analysis were used to study the soil bacterial community composition and functional genes involved in soil organic carbon degradation. Long-term nitrogen-containing chemical fertilization-induced soil acidification and fertility decline and significantly altered the soil bacterial community, whereas long-term organic fertilization and fallow management improved the soil quality and maintained the bacterial diversity. Short-term quicklime remediation of the acidified soils did not change the bacterial communities. Organic fertilization and fallow management supported eutrophic ecosystems, in which copiotrophic taxa increased in relative abundance and have a higher intensity of labile-C-degrading genes. However, long-term nitrogen-containing chemical fertilization treatments supported oligotrophic ecosystems, in which oligotrophic taxa increased in relative abundance and have a higher intensity of recalcitrant-C-degrading genes but a lower intensity of labile-C-degrading genes. Quicklime application increased the relative abundance of copiotrophic taxa and crop production, although these effects were utterly inadequate. This study provides insights into the interaction of soil bacterial communities, soil functionality and long-term fertilization management in the red soil ecosystem; these insights are important for improving the fertility of unique low-productivity red soil. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Li, P; Chen, X; Sun, F; Dong, H
2017-07-01
Recently we elucidated that tobacco TTG2 cooperates with ARF8 to regulate the vegetative growth and seed production. Here we show that TTG2 and ARF8 control flower colouring by regulating expression of ANS and DFR genes, which function in anthocyanin biosynthesis. Genetic modifications that substantially altered expression levels of the TTG2 gene and production quantities of TTG2 protein were correlated with flower development and colouring. Degrees of flower colour were increased by TTG2 overexpression but decreased through TTG2 silencing, in coincidence with high and low concentrations of anthocyanins in flowers. Of five genes involved in the anthocyanin biosynthesis pathway, only ANS and DFR were TTG2-regulated and displayed enhancement and diminution of expression with TTG2 overexpression and silencing, respectively. The floral expression of ANS and DFR also needed a functional ARF8 gene, as ANS and DFR expression were attenuated by ARF8 silencing, which concomitantly diminished the role of TTG2 in anthocyanin production. While ARF8 required TTG2 to be expressed by itself and to regulate ANS and DFR expression, the concurrent presence of normally functional TTG2 and ARF8 was critical for floral production of anthocyanins and also for flower colouration. Our data suggest that TTG2 functions concomitantly with ARF8 to control degrees of flower colour by regulating expression of ANS and DFR, which are involved in the anthocyanin biosynthesis pathway. ARF8 depends on TTG2 to regulate floral expression of ANS and DFR with positive effects on anthocyanin production and flower colour. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Diallinas, G; Gorfinkiel, L; Arst, H N; Cecchetto, G; Scazzocchio, C
1995-04-14
In Aspergillus nidulans, loss-of-function mutations in the uapA and azgA genes, encoding the major uric acid-xanthine and hypoxanthine-adenine-guanine permeases, respectively, result in impaired utilization of these purines as sole nitrogen sources. The residual growth of the mutant strains is due to the activity of a broad specificity purine permease. We have identified uapC, the gene coding for this third permease through the isolation of both gain-of-function and loss-of-function mutations. Uptake studies with wild-type and mutant strains confirmed the genetic analysis and showed that the UapC protein contributes 30% and 8-10% to uric acid and hypoxanthine transport rates, respectively. The uapC gene was cloned, its expression studied, its sequence and transcript map established, and the sequence of its putative product analyzed. uapC message accumulation is: (i) weakly induced by 2-thiouric acid; (ii) repressed by ammonium; (iii) dependent on functional uaY and areA regulatory gene products (mediating uric acid induction and nitrogen metabolite repression, respectively); (iv) increased by uapC gain-of-function mutations which specifically, but partially, suppress a leucine to valine mutation in the zinc finger of the protein coded by the areA gene. The putative uapC gene product is a highly hydrophobic protein of 580 amino acids (M(r) = 61,251) including 12-14 putative transmembrane segments. The UapC protein is highly similar (58% identity) to the UapA permease and significantly similar (23-34% identity) to a number of bacterial transporters. Comparisons of the sequences and hydropathy profiles of members of this novel family of transporters yield insights into their structure, functionally important residues, and possible evolutionary relationships.
Ando, Akira; Nakamura, Toshihide; Murata, Yoshinori; Takagi, Hiroshi; Shima, Jun
2007-03-01
Yeasts used in bread making are exposed to freeze-thaw stress during frozen-dough baking. To clarify the genes required for freeze-thaw tolerance, genome-wide screening was performed using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 58 gene deletions that conferred freeze-thaw sensitivity. These genes were then classified based on their cellular function and on the localization of their products. The results showed that the genes required for freeze-thaw tolerance were frequently involved in vacuole functions and cell wall biogenesis. The highest numbers of gene products were components of vacuolar H(+)-ATPase. Next, the cross-sensitivity of the freeze-thaw-sensitive mutants to oxidative stress and to cell wall stress was studied; both of these are environmental stresses closely related to freeze-thaw stress. The results showed that defects in the functions of vacuolar H(+)-ATPase conferred sensitivity to oxidative stress and to cell wall stress. In contrast, defects in gene products involved in cell wall assembly conferred sensitivity to cell wall stress but not to oxidative stress. Our results suggest the presence of at least two different mechanisms of freeze-thaw injury: oxidative stress generated during the freeze-thaw process, and defects in cell wall assembly.
Zhou, Bangjun; Zeng, Lirong
2017-01-01
Virus-induced gene silencing (VIGS) has been used in many plant species as an attractive post transcriptional gene silencing (PTGS) method for studying gene function either individually or at large-scale in a high-throughput manner. However, the specificity and efficiency for knocking down members of a highly homologous gene family have remained to date a significant challenge in VIGS due to silencing of off-targets. Here we present an improved method for the selection and evaluation of gene fragments used for VIGS to specifically and efficiently knock down members of a highly homologous gene family. Using this method, we knocked down twelve and four members, respectively of group III of the gene family encoding ubiquitin-conjugating enzymes (E2) in Nicotiana benthamiana . Assays using these VIGS-treated plants revealed that the group III E2s are essential for plant development, plant immunity-associated reactive oxygen species (ROS) production, expression of the gene NbRbohB that is required for ROS production, and suppression of immunity-associated programmed cell death (PCD) by AvrPtoB, an effector protein of the bacterial pathogen Pseudomons syringae . Moreover, functional redundancy for plant development and ROS production was found to exist among members of group III E2s. We have found that employment of a gene fragment as short as approximately 70 base pairs (bp) that contains at least three mismatched nucleotides to other genes within any 21-bp sequences prevents silencing of off-target(s) in VIGS. This improved approach in the selection and evaluation of gene fragments allows for specific and efficient knocking down of highly homologous members of a gene family. Using this approach, we implicated N. benthamiana group III E2s in plant development, immunity-associated ROS production, and suppression of multiple immunity-associated PCD by AvrPtoB. We also unraveled functional redundancy among group III members in their requirement for plant development and plant immunity-associated ROS production.
USDA-ARS?s Scientific Manuscript database
Such Biomedical vocabularies and ontologies aid in recapitulating biological knowledge. The annotation of gene products is mainly accelerated by Gene Ontology (GO) and more recently by Medical Subject Headings (MeSH). MeSH is the National Library of Medicine's controlled vocabulary and it is making ...
Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria
Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel W.; Gontang, Erin A.; McGlinchey, Ryan P.; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric E.; Moore, Bradley S.; Jensen, Paul R.
2009-01-01
Genomic islands have been shown to harbor functional traits that differentiate ecologically distinct populations of environmental bacteria. A comparative analysis of the complete genome sequences of the marine Actinobacteria Salinispora tropica and S. arenicola reveals that 75% of the species-specific genes are located in 21 genomic islands. These islands are enriched in genes associated with secondary metabolite biosynthesis providing evidence that secondary metabolism is linked to functional adaptation. Secondary metabolism accounts for 8.8% and 10.9% of the genes in the S. tropica and S. arenicola genomes, respectively, and represents the major functional category of annotated genes that differentiates the two species. Genomic islands harbor all 25 of the species-specific biosynthetic pathways, the majority of which occur in S. arenicola and may contribute to the cosmopolitan distribution of this species. Genome evolution is dominated by gene duplication and acquisition, which in the case of secondary metabolism provide immediate opportunities for the production of new bioactive products. Evidence that secondary metabolic pathways are exchanged horizontally, coupled with prior evidence for fixation among globally distributed populations, supports a functional role and suggests that the acquisition of natural product biosynthetic gene clusters represents a previously unrecognized force driving bacterial diversification. Species-specific differences observed in CRISPR (clustered regularly interspaced short palindromic repeat) sequences suggest that S. arenicola may possess a higher level of phage immunity, while a highly duplicated family of polymorphic membrane proteins provides evidence of a new mechanism of marine adaptation in Gram-positive bacteria. PMID:19474814
Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip
2011-08-01
The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.
Sakai, Kanae; Komaki, Hisayuki; Gonoi, Tohru
2015-01-01
Nocardithiocin is a thiopeptide compound isolated from the opportunistic pathogen Nocardia pseudobrasiliensis. It shows a strong activity against acid-fast bacteria and is also active against rifampicin-resistant Mycobacterium tuberculosis. Here, we report the identification of the nocardithiocin gene cluster in N. pseudobrasiliensis IFM 0761 based on conserved thiopeptide biosynthesis gene sequence and the whole genome sequence. The predicted gene cluster was confirmed by gene disruption and complementation. As expected, strains containing the disrupted gene did not produce nocardithiocin while gene complementation restored nocardithiocin production in these strains. The predicted cluster was further analyzed using RNA-seq which showed that the nocardithiocin gene cluster contains 12 genes within a 15.2-kb region. This finding will promote the improvement of nocardithiocin productivity and its derivatives production. PMID:26588225
Zhang, Yu; Xie, Jianping; Liu, Miaomiao; Tian, Zhe; He, Zhili; van Nostrand, Joy D; Ren, Liren; Zhou, Jizhong; Yang, Min
2013-10-15
It is widely demonstrated that antibiotics in the environment affect microbial community structure. However, direct evidence regarding the impacts of antibiotics on microbial functional structures in wastewater treatment systems is limited. Herein, a high-throughput functional gene array (GeoChip 3.0) in combination with quantitative PCR and clone libraries were used to evaluate the microbial functional structures in two biological wastewater treatment systems, which treat antibiotic production wastewater mainly containing oxytetracycline. Despite the bacteriostatic effects of antibiotics, the GeoChip detected almost all key functional gene categories, including carbon cycling, nitrogen cycling, etc., suggesting that these microbial communities were functionally diverse. Totally 749 carbon-degrading genes belonging to 40 groups (24 from bacteria and 16 from fungi) were detected. The abundance of several fungal carbon-degrading genes (e.g., glyoxal oxidase (glx), lignin peroxidase or ligninase (lip), manganese peroxidase (mnp), endochitinase, exoglucanase_genes) was significantly correlated with antibiotic concentrations (Mantel test; P < 0.05), showing that the fungal functional genes have been enhanced by the presence of antibiotics. However, from the fact that the majority of carbon-degrading genes were derived from bacteria and diverse antibiotic resistance genes were detected in bacteria, it was assumed that many bacteria could survive in the environment by acquiring antibiotic resistance and may have maintained the position as a main player in nutrient removal. Variance partitioning analysis showed that antibiotics could explain 24.4% of variations in microbial functional structure of the treatment systems. This study provides insights into the impacts of antibiotics on microbial functional structure of a unique system receiving antibiotic production wastewater, and reveals the potential importance of the cooperation between fungi and bacteria with antibiotic resistance in maintaining the stability and performance of the systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kenney, S; Kamine, J; Markovitz, D; Fenrick, R; Pagano, J
1988-03-01
Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, we demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.
Khosla, C; McDaniel, R; Ebert-Khosla, S; Torres, R; Sherman, D H; Bibb, M J; Hopwood, D A
1993-01-01
The gene that encodes the acyl carrier protein (ACP) of the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor A3(2) was replaced with homologs from the granaticin, oxytetracycline, tetracenomycin, and putative frenolicin polyketide synthase gene clusters. All of the replacements led to expression of functional synthases, and the recombinants synthesized aromatic polyketides similar in chromatographic properties to actinorhodin or to shunt products produced by mutants defective in the actinorhodin pathway. Some regions within the ACP were also shown to be interchangeable and allow production of a functional hybrid ACP. Structural analysis of the most abundant polyketide product of one of the recombinants by electrospray mass spectrometry suggested that it is identical to mutactin, a previously characterized shunt product of an actVII mutant (deficient in cyclase and dehydrase activities). Quantitative differences in the product profiles of strains that express the various hybrid synthases were observed. These can be explained, at least in part, by differences in ribosome-binding sites upstream of each ACP gene, implying either that the ACP concentration in some strains is rate limiting to overall PKS activity or that the level of ACP expression also influences the expression of another enzyme(s) encoded by a downstream gene(s) in the same operon as the actinorhodin ACP gene. These results reaffirm the idea that construction of hybrid polyketide synthases will be a useful approach for dissecting the molecular basis of the specificity of PKS-catalyzed reactions. However, they also point to the need for reducing the chemical complexity of the approach by minimizing the diversity of polyketide products synthesized in strains that produce recombinant polyketide synthases. Images PMID:8468280
USDA-ARS?s Scientific Manuscript database
The molecular biological techniques for plasmid-based assembly and cloning of synthetic assembled gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. These techniques involve the production of full-length cDNA libraries as a source of plasmid-bas...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tschaplinski, Timothy J; Tsai, Chung-Jui; Harding, Scott A
Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expandedmore » hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.« less
Mutations in nuclear genes alter post-transcriptional regulation of mitochondrial genes.
USDA-ARS?s Scientific Manuscript database
Nuclear gene products are required for the expression of mitochondrial genes and elaboration of functional mitochondrial protein complexes. To better understand the roles of these nuclear genes, we exploited the mitochondrial encoded S-type of cytoplasmic male sterility (CMS-S) and developed a nove...
Siméone, Roxane; Constant, Patricia; Guilhot, Christophe; Daffé, Mamadou; Chalut, Christian
2007-07-01
Phthiocerol dimycocerosates (DIM) and phenolglycolipids (PGL) are functionally important surface-exposed lipids of Mycobacterium tuberculosis. Their biosynthesis involves the products of several genes clustered in a 70-kb region of the M. tuberculosis chromosome. Among these products is PpsD, one of the modular type I polyketide synthases responsible for the synthesis of the lipid core common to DIM and PGL. Bioinformatic analyses have suggested that this protein lacks a functional enoyl reductase activity domain required for the synthesis of these lipids. We have identified a gene, Rv2953, that putatively encodes an enoyl reductase. Mutation in Rv2953 prevents conventional DIM formation and leads to the accumulation of a novel DIM-like product. This product is unsaturated between C-4 and C-5 of phthiocerol. Consistently, complementation of the mutant with a functional pks15/1 gene from Mycobacterium bovis BCG resulted in the accumulation of an unsaturated PGL-like substance. When an intact Rv2953 gene was reintroduced into the mutant strain, the phenotype reverted to the wild type. These findings indicate that Rv2953 encodes a trans-acting enoyl reductase that acts with PpsD in phthiocerol and phenolphthiocerol biosynthesis.
Eriksson, A R; Andersson, R A; Pirhonen, M; Palva, E T
1998-08-01
Production of extracellular, plant cell wall degrading enzymes, the main virulence determinants of the plant pathogen Erwinia carotovora subsp. carotovora, is coordinately controlled by a complex regulatory network. Insertion mutants in the exp (extracellular enzyme production) loci exhibit pleiotropic defects in virulence and the growth-phase-dependent transcriptional activation of genes encoding extracellular enzymes. Two new exp mutations, designated expA and expS, were characterized. Introduction of the corresponding wild-type alleles to the mutants complemented both the lack of virulence and the impaired production of plant cell wall degrading enzymes. The expA gene was shown to encode a 24-kDa polypeptide that is structurally and functionally related to the uvrY gene product of Escherichia coli and the GacA response regulator of Pseudomonas fluorescens. Functional similarity of expA and uvrY was demonstrated by genetic complementation. The expA gene is organized in an operon together with a uvrC-like gene, identical to the organization of uvrY and uvrC in E. coli. The unlinked expS gene encodes a putative sensor kinase that shows 92% identity to the recently described rpfA gene product from another E. carotovora subsp. carotovora strain. Our data suggest that ExpS and ExpA are members of two-component sensor kinase and response regulator families, respectively. These two proteins might interact in controlling virulence gene expression in E. carotovora subsp. carotovora.
Prior knowledge based mining functional modules from Yeast PPI networks with gene ontology
2010-01-01
Background In the literature, there are fruitful algorithmic approaches for identification functional modules in protein-protein interactions (PPI) networks. Because of accumulation of large-scale interaction data on multiple organisms and non-recording interaction data in the existing PPI database, it is still emergent to design novel computational techniques that can be able to correctly and scalably analyze interaction data sets. Indeed there are a number of large scale biological data sets providing indirect evidence for protein-protein interaction relationships. Results The main aim of this paper is to present a prior knowledge based mining strategy to identify functional modules from PPI networks with the aid of Gene Ontology. Higher similarity value in Gene Ontology means that two gene products are more functionally related to each other, so it is better to group such gene products into one functional module. We study (i) to encode the functional pairs into the existing PPI networks; and (ii) to use these functional pairs as pairwise constraints to supervise the existing functional module identification algorithms. Topology-based modularity metric and complex annotation in MIPs will be used to evaluate the identified functional modules by these two approaches. Conclusions The experimental results on Yeast PPI networks and GO have shown that the prior knowledge based learning methods perform better than the existing algorithms. PMID:21172053
Liu, Wenjun; Yu, Jie; Sun, Zhihong; Song, Yuqin; Wang, Xueni; Wang, Hongmei; Wuren, Tuoya; Zha, Musu; Menghe, Bilige; Heping, Zhang
2016-01-01
Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) is well known for its worldwide application in yogurt production. Flavor production and acid producing are considered as the most important characteristics for starter culture screening. To our knowledge this is the first study applying functional gene sequence multilocus sequence typing technology to predict the fermentation and flavor-producing characteristics of yogurt-producing bacteria. In the present study, phenotypic characteristics of 35 L. bulgaricus strains were quantified during the fermentation of milk to yogurt and during its subsequent storage; these included fermentation time, acidification rate, pH, titratable acidity, and flavor characteristics (acetaldehyde concentration). Furthermore, multilocus sequence typing analysis of 7 functional genes associated with fermentation time, acid production, and flavor formation was done to elucidate the phylogeny and genetic evolution of the same L. bulgaricus isolates. The results showed that strains significantly differed in fermentation time, acidification rate, and acetaldehyde production. Combining functional gene sequence analysis with phenotypic characteristics demonstrated that groups of strains established using genotype data were consistent with groups identified based on their phenotypic traits. This study has established an efficient and rapid molecular genotyping method to identify strains with good fermentation traits; this has the potential to replace time-consuming conventional methods based on direct measurement of phenotypic traits. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A putative regulatory genetic locus modulates virulence in the pathogen Leptospira interrogans.
Eshghi, Azad; Becam, Jérôme; Lambert, Ambroise; Sismeiro, Odile; Dillies, Marie-Agnès; Jagla, Bernd; Wunder, Elsio A; Ko, Albert I; Coppee, Jean-Yves; Goarant, Cyrille; Picardeau, Mathieu
2014-06-01
Limited research has been conducted on the role of transcriptional regulators in relation to virulence in Leptospira interrogans, the etiological agent of leptospirosis. Here, we identify an L. interrogans locus that encodes a sensor protein, an anti-sigma factor antagonist, and two genes encoding proteins of unknown function. Transposon insertion into the gene encoding the sensor protein led to dampened transcription of the other 3 genes in this locus. This lb139 insertion mutant (the lb139(-) mutant) displayed attenuated virulence in the hamster model of infection and reduced motility in vitro. Whole-transcriptome analyses using RNA sequencing revealed the downregulation of 115 genes and the upregulation of 28 genes, with an overrepresentation of gene products functioning in motility and signal transduction and numerous gene products with unknown functions, predicted to be localized to the extracellular space. Another significant finding encompassed suppressed expression of the majority of the genes previously demonstrated to be upregulated at physiological osmolarity, including the sphingomyelinase C precursor Sph2 and LigB. We provide insight into a possible requirement for transcriptional regulation as it relates to leptospiral virulence and suggest various biological processes that are affected due to the loss of native expression of this genetic locus.
Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B
2017-07-01
The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Identification of potentially hazardous human gene products in GMO risk assessment.
Bergmans, Hans; Logie, Colin; Van Maanen, Kees; Hermsen, Harm; Meredyth, Michelle; Van Der Vlugt, Cécile
2008-01-01
Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in their new context. Examples of such potentially hazardous gene products (PHGPs) are: protein toxins, products of dominant alleles that have a role in hereditary diseases, gene products and sequences involved in genome rearrangements, gene products involved in immunomodulation or with an endocrine function, gene products involved in apoptosis, activated proto-oncogenes. For contained use of a GMO that carries a construct encoding a PHGP, the precautionary principle dictates that safety measures should be applied on a "worst case" basis, until the risks of the specific case have been assessed. The potential hazard of cloned genes can be estimated before empirical data on the actual GMO become available. Preliminary data may be used to focus hazard identification and risk assessment. Both predictive and empirical data may also help to identify what further information is needed to assess the risk of the GMO. A two-step approach, whereby a PHGP is evaluated for its conceptual dangers, then checked by data bank searches, is delineated here.
Kenney, S; Kamine, J; Markovitz, D; Fenrick, R; Pagano, J
1988-01-01
Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, we demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBV gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses. Images PMID:2830625
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenney, S.; Kamine, J.; Markovitz, D.
Acquired immunodeficiency syndrome patients are frequently coinfected with Epstein-Barr virus (EBV). In this report, the authors demonstrate that an EBV immediate-early gene product, BamHI MLF1, stimulates expression of the bacterial chloramphenicol acetyltransferase (CAT) gene linked to the human immunodeficiency virus (HIV) promoter. The HIV promoter sequences necessary for trans-activation by EBV do not include the tat-responsive sequences. In addition, in contrast to the other herpesvirus trans-activators previously studied, the EBV BamHI MLF1 gene product appears to function in part by a posttranscriptional mechanism, since it increases pHIV-CAT protein activity more than it increases HIV-CAT mRNA. This ability of an EBVmore » gene product to activate HIV gene expression may have biologic consequences in persons coinfected with both viruses.« less
Jay, Chris; Nemunaitis, Gregory; Nemunaitis, John; Senzer, Neil; Hinderlich, Stephan; Darvish, Daniel; Ogden, Julie; Eager, John; Tong, Alex; Maples, Phillip B
2008-01-01
Hereditary Inclusion Body Myopathy (HIBM2) is a chronic progressive skeletal muscle wasting disorder which generally leads to complete disability before the age of 50 years. There is currently no effective therapeutic treatment for HIBM2. Development of this disease is related to expression in family members of an autosomal recessive mutation of the GNE gene, which encodes the bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE/MNK). This is the rate limiting bifunctional enzyme that catalyzes the first 2 steps of sialic acid biosynthesis. Decreased sialic acid production, consequently leads to decreased sialyation of a variety of glycoproteins including the critical muscle protein alpha-dystroglycan (α-DG). This in turn severely cripples muscle function and leads to the onset of the syndrome. We hypothesize that replacing the mutated GNE gene with the wildtype gene may restore functional capacity of GNE/MNK and therefore production of sialic acid, allowing for improvement in muscle function and/or delay in rate of muscle deterioration. We have constructed three GNE gene/CMV promoter plasmids (encoding the wildtype, HIBM2, and Sialuria forms of GNE) and demonstrated enhanced GNE gene activity following delivery to GNE-deficient CHO-Lec3 cells. GNE/MNK enzyme function was significantly increased and subsequent induction of sialic acid production was demonstrated after transfection into Lec3 cells with the wild type or R266Q mutant GNE vector. These data form the foundation for future preclinical and clinical studies for GNE gene transfer to treat HIBM2 patients. PMID:19787087
Green, Maurice; Thorburn, Andrew; Kern, Robert; Loewenstein, Paul M
2007-01-01
Microinjection of mammalian cells provides a powerful method for analyzing in vivo functions of viral genes and viral gene products. By microinjection, a controlled amount (ranging from several to many thousands of copies) of a viral or cellular gene, a protein product of a gene, a polypeptide fragment encoding a specific protein domain, or an RNA molecule can be delivered into a target cell and the functional consequences analyzed. Microinjection can be used to deliver antibody targeted to a specific protein domain in order to analyze the requirement of the protein for specific cell functions such as cell cycle progression, transcription of specific genes, or intracellular transport. This chapter describes examples of the successful use of microinjection to probe adenovirus E1A regulatory mechanisms. Detailed methods are provided for manual and semiautomatic microinjection of mammalian cells as well as bioassay protocols for microinjected cells including immunofluorescence, colorimetic, in situ hybridization, and autoradiography.
Functional expression of a cattle MHC class II DR-like antigen on mouse L cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraser, D.C.; Craigmile, S.; Campbell, J.D.M.
1996-09-01
Cattle DRA and DRB genes, cloned by reverse-transcription polymerase chain reaction, were transfected into mouse L cells. The cattle DR-expressing L-cell transfectant generated was analyzed serologically, biochemically, and functionally. Sequence analysis of the transfected DRB gene clearly showed showed that it was DRB3 allele DRB3*0101, which corresponds to the 1D-IEF-determined allele DRBF3. 1D-IEF analysis of the tranfectant confirmed that the expressed DR product was DRBF3. Functional integrity of the transfected gene products was demonstrated by the ability of the transfectant cell line to present two antigens (the foot-and-mouth disease virus-derived peptide FMDV15, and ovalbumin) to antigen-specific CD4{sup +} T cellsmore » from both the original animal used to obtain the genes, and also from an unrelated DRBF3{sup +} heterozygous animal. Such transfectants will be invaluable tools, allowing us to dissect the precise contributions each locus product makes to the overall immune response in heterozygous animals, information essential for rational vaccine design. 45 refs., 5 figs., 1 tab.« less
The goal of this project is to use an eight-gene expression profile to define functional signatures for small molecules and natural products with heretofore undefined mechanism of action. Two genes in the eight gene set are used as internal controls and do not vary across gene expression array data collected from the public domain. The remaining six genes are found to vary independently across a large collection of publically available gene expression array datasets. Read the abstract
Discovering functions of unannotated genes from a transcriptome survey of wild fungal isolates.
Ellison, Christopher E; Kowbel, David; Glass, N Louise; Taylor, John W; Brem, Rachel B
2014-04-01
Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. IMPORTANCE Some fungal species cause deadly infections in humans or crop plants, and other fungi are workhorses of industrial chemistry, including the production of biofuels. Advances in medical and industrial mycology require an understanding of the genes that control fungal traits. We developed a method to infer functions of uncharacterized genes by observing correlated expression of their mRNAs with those of known genes across wild fungal isolates. We applied this strategy to a filamentous fungus and predicted functions for thousands of unknown genes. In four cases, we experimentally validated the predictions from our method, discovering novel genes involved in the metabolism of nutrient sources relevant for biofuel production, as well as colony morphology and starvation resistance. Our strategy is straightforward, inexpensive, and applicable for predicting gene function in many fungal species.
Thuwajit, Chanitra; Thuwajit, Peti; Uchida, Kazuhiko; Daorueang, Daoyot; Kaewkes, Sasithorn; Wongkham, Sopit; Miwa, Masanao
2006-06-14
To investigate the mechanism of fibroblast cell proliferation stimulated by the Opisthorchis viverrini excretory/secretory (ES) product. NIH-3T3, mouse fibroblast cells were treated with O. viverrini ES product by non-contact co-cultured with the adult parasites. Total RNA from NIH-3T3 treated and untreated with O. viverrini was extracted, reverse transcribed and hybridized with the mouse 15K complementary DNA (cDNA) array. The result was analyzed by ArrayVision version 5 and GeneSpring version 5 softwares. After normalization, the ratios of gene expression of parasite treated to untreated NIH-3T3 cells of 2-and more-fold upregulated was defined as the differentially expressed genes. The expression levels of the signal transduction genes were validated by semi-quantitative SYBR-based real-time RT-PCR. Among a total of 15,000 genes/ESTs, 239 genes with established cell proliferation-related function were 2 fold-and more-up-regulated by O. viverrini ES product compared to those in cells without exposure to the parasitic product. These genes were classified into groups including energy and metabolism, signal transduction, protein synthesis and translation, matrix and structural protein, transcription control, cell cycle and DNA replication. Moreover, the expressions of serine-threonine kinase receptor, receptor tyrosine kinase and collagen production-related genes were up-regulated by O. viverrini ES product. The expression level of signal transduction genes; pkC, pdgfr alpha, jak 1, eps 8, tgf beta 1i4, strap and h ras measured by real-time RT-PCR confirmed their expression levels to those obtained from cDNA array. However, only the up-regulated expression of pkC, eps 8 and tgfbeta 1i4 which are the downstream signaling molecules of either epidermal growth factor (EGF) or transforming growth factor-beta (TGF-beta) showed statistical significance (P < 0.05). O. viverrini ES product stimulates the significant changes of gene expression in several functional categories and these mainly include transcripts related to cell proliferation. The TGF-beta and EGF signal transduction pathways are indicated as the possible pathways of O. viverrini-driven cell proliferation.
Polymerase Gamma Disease through the Ages
ERIC Educational Resources Information Center
Saneto, Russell P.; Naviaux, Robert K.
2010-01-01
The most common group of mitochondrial disease is due to mutations within the mitochondrial DNA polymerase, polymerase gamma 1 ("POLG"). This gene product is responsible for replication and repair of the small mitochondrial DNA genome. The structure-function relationship of this gene product produces a wide variety of diseases that at times, seems…
NASA Astrophysics Data System (ADS)
Petrie, K. L.; Meyer, J. R.
2017-07-01
A novel mechanism of innovation bridges fitness valleys by violating the one gene-one phenotype dogma. Protein products of a single gene partition into populations, some of which carry out a new function and some the old, avoiding tradeoffs.
USDA-ARS?s Scientific Manuscript database
Resistance against specific diseases is affecting profitability in fish production systems including rainbow trout. Limited information is known about functions and mechanisms of the immune gene pathways in teleosts. Immunogenomics are powerful tools to determine immune-related genes/gene pathways a...
75 FR 66381 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-28
...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide... Competent Retrovirus (RCR)/Lentivirus (RCL) in Retroviral and Lentiviral Vector Based Gene Therapy Products...
2016-01-01
Covering: 2003 to 2016 The last decade has seen the first major discoveries regarding the genomic basis of plant natural product biosynthetic pathways. Four key computationally driven strategies have been developed to identify such pathways, which make use of physical clustering, co-expression, evolutionary co-occurrence and epigenomic co-regulation of the genes involved in producing a plant natural product. Here, we discuss how these approaches can be used for the discovery of plant biosynthetic pathways encoded by both chromosomally clustered and non-clustered genes. Additionally, we will discuss opportunities to prioritize plant gene clusters for experimental characterization, and end with a forward-looking perspective on how synthetic biology technologies will allow effective functional reconstitution of candidate pathways using a variety of genetic systems. PMID:27321668
"Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...
Trachsel, Julian; Bayles, Darrell O; Looft, Torey; Levine, Uri Y; Allen, Heather K
2016-11-15
Studying the host-associated butyrate-producing bacterial community is important, because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl coenzyme A (CoA):acetate-CoA transferase (EC 2.3.8.3) as a gene of primary importance for butyrate production in intestinal ecosystems; however, this gene family (but) remains poorly defined. We developed tools for the analysis of butyrate-producing bacteria based on 12 putative but genes identified in the genomes of nine butyrate-producing bacteria obtained from the swine intestinal tract. Functional analyses revealed that eight of these genes had strong But enzyme activity. When but paralogues were found within a genome, only one gene per genome encoded strong activity, with the exception of one strain in which no gene encoded strong But activity. Degenerate primers were designed to amplify the functional but genes and were tested by amplifying environmental but sequences from DNA and RNA extracted from swine colonic contents. The results show diverse but sequences from swine-associated butyrate-producing bacteria, most of which clustered near functionally confirmed sequences. Here, we describe tools and a framework that allow the bacterial butyrate-producing community to be profiled in the context of animal health and disease. Butyrate is a compound produced by the microbiota in the intestinal tracts of animals. This compound is of critical importance for intestinal health, and yet studying its production by diverse intestinal bacteria is technically challenging. Here, we present an additional way to study the butyrate-producing community of bacteria using one degenerate primer set that selectively targets genes experimentally demonstrated to encode butyrate production. This work will enable researchers to more easily study this very important bacterial function that has implications for host health and resistance to disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Zhang, Weipeng; Lu, Liang; Lai, Qiliang; Zhu, Beika; Li, Zhongrui; Xu, Ying; Shao, Zongze; Herrup, Karl; Moore, Bradley S.; Ross, Avena C.; Qian, Pei-Yuan
2016-01-01
The thalassospiramide lipopeptides have great potential for therapeutic applications; however, their structural and functional diversity and biosynthesis are poorly understood. Here, by cultivating 130 Rhodospirillaceae strains sampled from oceans worldwide, we discovered 21 new thalassospiramide analogues and demonstrated their neuroprotective effects. To investigate the diversity of biosynthetic gene cluster (BGC) architectures, we sequenced the draft genomes of 28 Rhodospirillaceae strains. Our family-wide genomic analysis revealed three types of dysfunctional BGCs and four functional BGCs whose architectures correspond to four production patterns. This correlation allowed us to reassess the “diversity-oriented biosynthesis” proposed for the microbial production of thalassospiramides, which involves iteration of several key modules. Preliminary evolutionary investigation suggested that the functional BGCs could have arisen through module/domain loss, whereas the dysfunctional BGCs arose through horizontal gene transfer. Further comparative genomics indicated that thalassospiramide production is likely to be attendant on particular genes/pathways for amino acid metabolism, signaling transduction, and compound efflux. Our findings provide a systematic understanding of thalassospiramide production and new insights into the underlying mechanism. PMID:27875306
Valkonen, Mari; Ward, Michael; Wang, Huaming; Penttilä, Merja; Saloheimo, Markku
2003-12-01
Unfolded-protein response (UPR) denotes the upregulation of endoplasmic reticulum (ER)-resident chaperone and foldase genes and numerous other genes involved in secretory functions during the accumulation of unfolded proteins into the ER. Overexpression of individual foldases and chaperones has been used in attempts to improve protein production in different production systems. We describe here a novel strategy to improve foreign-protein production. We show that the constitutive induction of the UPR pathway in Aspergillus niger var. awamori can be achieved by expressing the activated form of the transcription factor hacA. This induction enhances the production of Trametes versicolor laccase by up to sevenfold and of bovine preprochymosin by up to 2.8-fold in this biotechnically important fungus. The regulatory range of UPR was studied by analyzing the mRNA levels of novel A. niger var. awamori genes involved in different secretory functions. This revealed both similarities and differences to corresponding studies in Saccharomyces cerevisiae.
76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-21
...] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide... June 29, 2011, the committee will discuss cellular and gene therapy products for the treatment of...
Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis.
Lee, M M; Schiefelbein, J
2001-05-01
The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.
From data to function: functional modeling of poultry genomics data.
McCarthy, F M; Lyons, E
2013-09-01
One of the challenges of functional genomics is to create a better understanding of the biological system being studied so that the data produced are leveraged to provide gains for agriculture, human health, and the environment. Functional modeling enables researchers to make sense of these data as it reframes a long list of genes or gene products (mRNA, ncRNA, and proteins) by grouping based upon function, be it individual molecular functions or interactions between these molecules or broader biological processes, including metabolic and signaling pathways. However, poultry researchers have been hampered by a lack of functional annotation data, tools, and training to use these data and tools. Moreover, this lack is becoming more critical as new sequencing technologies enable us to generate data not only for an increasingly diverse range of species but also individual genomes and populations of individuals. We discuss the impact of these new sequencing technologies on poultry research, with a specific focus on what functional modeling resources are available for poultry researchers. We also describe key strategies for researchers who wish to functionally model their own data, providing background information about functional modeling approaches, the data and tools to support these approaches, and the strengths and limitations of each. Specifically, we describe methods for functional analysis using Gene Ontology (GO) functional summaries, functional enrichment analysis, and pathways and network modeling. As annotation efforts begin to provide the fundamental data that underpin poultry functional modeling (such as improved gene identification, standardized gene nomenclature, temporal and spatial expression data and gene product function), tool developers are incorporating these data into new and existing tools that are used for functional modeling, and cyberinfrastructure is being developed to provide the necessary extendibility and scalability for storing and analyzing these data. This process will support the efforts of poultry researchers to make sense of their functional genomics data sets, and we provide here a starting point for researchers who wish to take advantage of these tools.
Rapid Hypothesis Testing with Candida albicans through Gene Disruption with Short Homology Regions
Wilson, R. Bryce; Davis, Dana; Mitchell, Aaron P.
1999-01-01
Disruption of newly identified genes in the pathogen Candida albicans is a vital step in determination of gene function. Several gene disruption methods described previously employ long regions of homology flanking a selectable marker. Here, we describe disruption of C. albicans genes with PCR products that have 50 to 60 bp of homology to a genomic sequence on each end of a selectable marker. We used the method to disrupt two known genes, ARG5 and ADE2, and two sequences newly identified through the Candida genome project, HRM101 and ENX3. HRM101 and ENX3 are homologous to genes in the conserved RIM101 (previously called RIM1) and PacC pathways of Saccharomyces cerevisiae and Aspergillus nidulans. We show that three independent hrm101/hrm101 mutants and two independent enx3/enx3 mutants are defective in filamentation on Spider medium. These observations argue that HRM101 and ENX3 sequences are indeed portions of genes and that the respective gene products have related functions. PMID:10074081
NF-E2 p45 Is Important for Establishing Normal Function of Platelets
Fujita, Rie; Takayama-Tsujimoto, Mariko; Satoh, Hironori; Gutiérrez, Laura; Aburatani, Hiroyuki; Fujii, Satoshi; Sarai, Akinori; Bresnick, Emery H.
2013-01-01
NF-E2 is a heterodimeric transcription factor consisting of p45 and small Maf subunits. Since p45−/− mice display severe thrombocytopenia, p45 is recognized as a critical regulator of platelet production from megakaryocytes. To identify direct p45 target genes in megakaryocytes, we used chromatin immunoprecipitation (ChIP) sequencing to analyze the genome-wide chromatin occupancy of p45 in primary megakaryocytes. p45 target gene candidates obtained from the analysis are implicated in the production and function of platelets. Two of these genes, Selp and Myl9, were verified as direct p45 targets through multiple approaches. Since P-selectin, encoded by Selp, plays a critical role in platelet function during thrombogenesis, we tested whether p45 determines the intrinsic reactivity and potency of platelets generated from megakaryocytes. Mice expressing a hypomorphic p45 mutant instead of wild-type p45 in megakaryocytes (p45−/−:ΔNTD-Tg mice) displayed platelet hypofunction accompanied by mild thrombocytopenia. Furthermore, lung metastasis of melanoma cells, which requires platelet activation, was repressed in p45−/−:ΔNTD-Tg mice compared to control mice, validating the impaired function of platelets produced from p45−/−:ΔNTD-Tg megakaryocytes. By activating genes in megakaryocytes that mediate platelet production and function, p45 determines the quantity and quality of platelets. PMID:23648484
USDA-ARS?s Scientific Manuscript database
Disease susceptibility affects production efficiency and profitability in rainbow trout aquaculture. There is limited information available regarding the functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful approaches to identify disease resistance genes/gene pathway...
Production of indole antibiotics induced by exogenous gene derived from sponge metagenomes.
Takeshige, Yuya; Egami, Yoko; Wakimoto, Toshiyuki; Abe, Ikuro
2015-05-01
Sponge metagenomes are accessible genetic sources containing genes and gene clusters responsible for the biosynthesis of sponge-derived bioactive natural products. In this study, we obtained the clone pDC112, producing turbomycin A and 2,2-di(3-indolyl)-3-indolone, based on the functional screening of the metagenome library derived from the marine sponge Discodermia calyx. The subcloning experiment identified ORF 25, which is homologous to inosine 5'-monophosphate dehydrogenase and required for the production of 2,2-di(3-indolyl)-3-indolone in Escherichia coli.
Ethanol production by recombinant hosts
Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie
1996-01-01
Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.
Ethanol production by recombinant hosts
Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.
1995-01-01
Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.
Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes
Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.
2014-01-01
Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960
USDA-ARS?s Scientific Manuscript database
Precise deletion of gene(s) of interest, while leaving the rest of the genome unchanged, provides the ideal product to determine that particular gene’s function in the living organism. In this protocol we describe the OSCAR method of precise and rapid deletion plasmid construction. OSCAR relies on t...
The goal of this project is to use an eight-gene expression profile to define functional signatures for small molecules and natural products with heretofore undefined mechanism of action. Two genes in the eight gene set are used as internal controls and do not vary across gene expression array data collected from the public domain. The remaining six genes are found to vary independently across a large collection of publically available gene expression array datasets. Read the abstract
Functional relevance of intestinal epithelial cells in inflammatory bowel disease.
Okamoto, Ryuichi; Watanabe, Mamoru
2016-01-01
The intestinal epithelium constitutes a physical barrier between inner and outer side of our body. It also functions as a "hub" which connects factors that determine the development of inflammatory bowel disease, such as microbiota, susceptibility genes, and host immune response. Accordingly, recent studies have implicated and further featured the role of intestinal epithelial cell dysfunction in the pathophysiology of inflammatory bowel disease. For example, mucin producing goblet cells are usually "depleted" in ulcerative colitis patients. Studies have shown that those goblet cells exhibit various immune-regulatory functions in addition to mucin production, such as antigen presentation or cytokine production. Paneth cells are another key cell lineage that has been deeply implicated in the pathophysiology of Crohn's disease. Several susceptibility genes for Crohn's disease may lead to impairment of anti-bacterial peptide production and secretion by Paneth cells. Also, other susceptibility genes may determine the survival of Paneth cells, which leads to reduced Paneth cell function in the patient small intestinal mucosa. Further studies may reveal other unexpected roles of the intestinal epithelium in the pathophysiology of inflammatory bowel disease, and may help to develop alternative therapies targeted to intestinal epithelial cell functions.
The ergot alkaloid gene cluster: functional analyses and evolutionary aspects.
Lorenz, Nicole; Haarmann, Thomas; Pazoutová, Sylvie; Jung, Manfred; Tudzynski, Paul
2009-01-01
Ergot alkaloids and their derivatives have been traditionally used as therapeutic agents in migraine, blood pressure regulation and help in childbirth and abortion. Their production in submerse culture is a long established biotechnological process. Ergot alkaloids are produced mainly by members of the genus Claviceps, with Claviceps purpurea as best investigated species concerning the biochemistry of ergot alkaloid synthesis (EAS). Genes encoding enzymes involved in EAS have been shown to be clustered; functional analyses of EAS cluster genes have allowed to assign specific functions to several gene products. Various Claviceps species differ with respect to their host specificity and their alkaloid content; comparison of the ergot alkaloid clusters in these species (and of clavine alkaloid clusters in other genera) yields interesting insights into the evolution of cluster structure. This review focuses on recently published and also yet unpublished data on the structure and evolution of the EAS gene cluster and on the function and regulation of cluster genes. These analyses have also significant biotechnological implications: the characterization of non-ribosomal peptide synthetases (NRPS) involved in the synthesis of the peptide moiety of ergopeptines opened interesting perspectives for the synthesis of ergot alkaloids; on the other hand, defined mutants could be generated producing interesting intermediates or only single peptide alkaloids (instead of the alkaloid mixtures usually produced by industrial strains).
Reverse Genetics and High Throughput Sequencing Methodologies for Plant Functional Genomics
Ben-Amar, Anis; Daldoul, Samia; Reustle, Götz M.; Krczal, Gabriele; Mliki, Ahmed
2016-01-01
In the post-genomic era, increasingly sophisticated genetic tools are being developed with the long-term goal of understanding how the coordinated activity of genes gives rise to a complex organism. With the advent of the next generation sequencing associated with effective computational approaches, wide variety of plant species have been fully sequenced giving a wealth of data sequence information on structure and organization of plant genomes. Since thousands of gene sequences are already known, recently developed functional genomics approaches provide powerful tools to analyze plant gene functions through various gene manipulation technologies. Integration of different omics platforms along with gene annotation and computational analysis may elucidate a complete view in a system biology level. Extensive investigations on reverse genetics methodologies were deployed for assigning biological function to a specific gene or gene product. We provide here an updated overview of these high throughout strategies highlighting recent advances in the knowledge of functional genomics in plants. PMID:28217003
Network Hubs Buffer Environmental Variation in Saccharomyces cerevisiae
Levy, Sasha F; Siegal, Mark L
2008-01-01
Regulatory and developmental systems produce phenotypes that are robust to environmental and genetic variation. A gene product that normally contributes to this robustness is termed a phenotypic capacitor. When a phenotypic capacitor fails, for example when challenged by a harsh environment or mutation, the system becomes less robust and thus produces greater phenotypic variation. A functional phenotypic capacitor provides a mechanism by which hidden polymorphism can accumulate, whereas its failure provides a mechanism by which evolutionary change might be promoted. The primary example to date of a phenotypic capacitor is Hsp90, a molecular chaperone that targets a large set of signal transduction proteins. In both Drosophila and Arabidopsis, compromised Hsp90 function results in pleiotropic phenotypic effects dependent on the underlying genotype. For some traits, Hsp90 also appears to buffer stochastic variation, yet the relationship between environmental and genetic buffering remains an important unresolved question. We previously used simulations of knockout mutations in transcriptional networks to predict that many gene products would act as phenotypic capacitors. To test this prediction, we use high-throughput morphological phenotyping of individual yeast cells from single-gene deletion strains to identify gene products that buffer environmental variation in Saccharomyces cerevisiae. We find more than 300 gene products that, when absent, increase morphological variation. Overrepresented among these capacitors are gene products that control chromosome organization and DNA integrity, RNA elongation, protein modification, cell cycle, and response to stimuli such as stress. Capacitors have a high number of synthetic-lethal interactions but knockouts of these genes do not tend to cause severe decreases in growth rate. Each capacitor can be classified based on whether or not it is encoded by a gene with a paralog in the genome. Capacitors with a duplicate are highly connected in the protein–protein interaction network and show considerable divergence in expression from their paralogs. In contrast, capacitors encoded by singleton genes are part of highly interconnected protein clusters whose other members also tend to affect phenotypic variability or fitness. These results suggest that buffering and release of variation is a widespread phenomenon that is caused by incomplete functional redundancy at multiple levels in the genetic architecture. PMID:18986213
Ceapa, Corina; Davids, Mark; Ritari, Jarmo; Lambert, Jolanda; Wels, Michiel; Douillard, François P.; Smokvina, Tamara; de Vos, Willem M.; Knol, Jan; Kleerebezem, Michiel
2016-01-01
Lactobacillus rhamnosus is a diverse Gram-positive species with strains isolated from different ecological niches. Here, we report the genome sequence analysis of 40 diverse strains of L. rhamnosus and their genomic comparison, with a focus on the variable genome. Genomic comparison of 40 L. rhamnosus strains discriminated the conserved genes (core genome) and regions of plasticity involving frequent rearrangements and horizontal transfer (variome). The L. rhamnosus core genome encompasses 2,164 genes, out of 4,711 genes in total (the pan-genome). The accessory genome is dominated by genes encoding carbohydrate transport and metabolism, extracellular polysaccharides (EPS) biosynthesis, bacteriocin production, pili production, the cas system, and the associated clustered regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements like phages, plasmid genes, and transposons. A clade distribution based on amino acid differences between core (shared) proteins matched with the clade distribution obtained from the presence–absence of variable genes. The phylogenetic and variome tree overlap indicated that frequent events of gene acquisition and loss dominated the evolutionary segregation of the strains within this species, which is paralleled by evolutionary diversification of core gene functions. The CRISPR-Cas system could have contributed to this evolutionary segregation. Lactobacillus rhamnosus strains contain the genetic and metabolic machinery with strain-specific gene functions required to adapt to a large range of environments. A remarkable congruency of the evolutionary relatedness of the strains’ core and variome functions, possibly favoring interspecies genetic exchanges, underlines the importance of gene-acquisition and loss within the L. rhamnosus strain diversification. PMID:27358423
Early zebrafish development: It’s in the maternal genes
Abrams, Elliott W.; Mullins, Mary C.
2009-01-01
Summary The earliest stages of embryonic development in all animals examined rely on maternal gene products that are generated during oogenesis and supplied to the egg. The period of maternal control of embryonic development varies among animals according to the onset of zygotic transcription and the persistence of maternal gene products. This maternal regulation has been little studied in vertebrates, due to the difficulty in manipulating maternal gene function and lack of basic molecular information. However, recent maternal-effect screens in the zebrafish have generated more than 40 unique mutants that are providing new molecular entry points to the maternal control of early vertebrate development. Here we discuss recent studies of 12 zebrafish mutant genes that illuminate the maternal molecular controls on embryonic development, including advances in the regulation of animal-vegetal polarity, egg activation, cleavage development, body plan formation, tissue morphogenesis, microRNA function and germ cell development. PMID:19608405
Wada, Ryuta; Maruyama, Jun-ichi; Yamaguchi, Haruka; Yamamoto, Nanase; Wagu, Yutaka; Paoletti, Mathieu; Archer, David B.; Dyer, Paul S.
2012-01-01
The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed. PMID:22327593
NASA Astrophysics Data System (ADS)
Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean
2018-05-01
Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.
Fu, Lixia; Lu, Chengping
2013-06-01
Bacterial ghost is a novel vaccine platform, and its safe and efficient production depends largely upon a suitable and functional vector. In this study, a series of temperature-inducible plasmids, carrying Phix174 lysis gene E and/or staphylococcal nuclease A (SNA) gene, were constructed and evaluated in Escherichia coli. The results showed that the direct product of SNA (pBV220-SNA) could degrade the plasmid and genomic DNA of E. coli while the fusion product of gene E and partial Cro gene (pKF396M-2) lost the ability to lyse the host strain. The insertion of enhancer T7g10 elements and Shine-Dalgarno box (ESD) between them (pKF396M-3) could resume the function of gene E. Using plasmid pKF396M-4 with gene E and SNA, respectively, under the immediate control of promoter pR and pL, the remnant plasmids and genomic DNA of E. coli were eliminated, and the rates of inactivation increased by two orders of magnitude over that obtained with the exclusive use of E-mediated lysis plasmid. By substituting these two genes with customized multiple cloning sites sequences, the plasmid could be modified to a dual expression vector (pKF396M-5).
Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages.
Shulse, Christine N; Allen, Eric E
2011-01-01
Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as "Pfa synthases". In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of "secondary lipids" to describe these biosynthetic pathways and products, a proposition consistent with the "secondary metabolite" vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages.
A guide to best practices for Gene Ontology (GO) manual annotation
Balakrishnan, Rama; Harris, Midori A.; Huntley, Rachael; Van Auken, Kimberly; Cherry, J. Michael
2013-01-01
The Gene Ontology Consortium (GOC) is a community-based bioinformatics project that classifies gene product function through the use of structured controlled vocabularies. A fundamental application of the Gene Ontology (GO) is in the creation of gene product annotations, evidence-based associations between GO definitions and experimental or sequence-based analysis. Currently, the GOC disseminates 126 million annotations covering >374 000 species including all the kingdoms of life. This number includes two classes of GO annotations: those created manually by experienced biocurators reviewing the literature or by examination of biological data (1.1 million annotations covering 2226 species) and those generated computationally via automated methods. As manual annotations are often used to propagate functional predictions between related proteins within and between genomes, it is critical to provide accurate consistent manual annotations. Toward this goal, we present here the conventions defined by the GOC for the creation of manual annotation. This guide represents the best practices for manual annotation as established by the GOC project over the past 12 years. We hope this guide will encourage research communities to annotate gene products of their interest to enhance the corpus of GO annotations available to all. Database URL: http://www.geneontology.org PMID:23842463
PPDB - A tool for investigation of plants physiology based on gene ontology.
Sharma, Ajay Shiv; Gupta, Hari Om; Prasad, Rajendra
2014-09-02
Representing the way forward, from functional genomics and its ontology to functional understanding and physiological model, in a computationally tractable fashion is one of the ongoing challenges faced by computational biology. To tackle the standpoint, we herein feature the applications of contemporary database management to the development of PPDB, a searching and browsing tool for the Plants Physiology Database that is based upon the mining of a large amount of gene ontology data currently available. The working principles and search options associated with the PPDB are publicly available and freely accessible on-line ( http://www.iitr.ernet.in/ajayshiv/ ) through a user friendly environment generated by means of Drupal-6.24. By knowing that genes are expressed in temporally and spatially characteristic patterns and that their functionally distinct products often reside in specific cellular compartments and may be part of one or more multi-component complexes, this sort of work is intended to be relevant for investigating the functional relationships of gene products at a system level and, thus, helps us approach to the full physiology.
PPDB: A Tool for Investigation of Plants Physiology Based on Gene Ontology.
Sharma, Ajay Shiv; Gupta, Hari Om; Prasad, Rajendra
2015-09-01
Representing the way forward, from functional genomics and its ontology to functional understanding and physiological model, in a computationally tractable fashion is one of the ongoing challenges faced by computational biology. To tackle the standpoint, we herein feature the applications of contemporary database management to the development of PPDB, a searching and browsing tool for the Plants Physiology Database that is based upon the mining of a large amount of gene ontology data currently available. The working principles and search options associated with the PPDB are publicly available and freely accessible online ( http://www.iitr.ac.in/ajayshiv/ ) through a user-friendly environment generated by means of Drupal-6.24. By knowing that genes are expressed in temporally and spatially characteristic patterns and that their functionally distinct products often reside in specific cellular compartments and may be part of one or more multicomponent complexes, this sort of work is intended to be relevant for investigating the functional relationships of gene products at a system level and, thus, helps us approach to the full physiology.
Genomic hardwiring and phenotypic plasticity of terpenoid-based defenses in conifers.
Huber, Dezene P W; Ralph, Steven; Bohlmann, Jörg
2004-12-01
Over evolutionary history, conifers have faced a myriad of threats from phloem- and xylem-feeding insects, defoliating insects, and fungal pathogens. Among the trees' defenses, terpenoids appear to play a major role by harming, disabling, deterring, repelling, or otherwise reducing the fitness of potential invaders. Each of the three classes of terpenoids in conifers, monoterpenes, sesquiterpenes, and diterpenes, are composed of a large number of representative compounds. In most cases, the presence of a particular terpenoid compound in the oleoresin or volatile emissions from a specific conifer can be accounted for by the expression of one of many committed terpene synthase (TPS) genes. However, while each TPS may produce one or a few major products, many produce a variety of minor products with relatively constant component ratios in the product blends. TPS genes exist in conifers in large and functionally diverse, yet monophyletic, gene families. Within these gene families, new biochemical functions of TPS appear to have evolved by gene duplication and changes in the amino acid sequence of the enzyme's active site. In addition, TPS genes may be differentially expressed prior to, during, and following attack by insects or pathogens. Thus, while the production of any particular terpenoid is hardwired into a conifer's genome, these trees have the capacity to change the mixture of terpenoids in oleoresin secretions and volatile emissions. Anatomical changes may also accompany induced terpenoid production, supplementing the plasticity of the molecular and biochemical events.
Hatada, Yuji; Mizuno, Masahiro; Li, Zhijun; Ohta, Yukari
2011-06-01
A gene of unknown function from the genome of the agar-degrading deep-sea bacterium Microbulbifer thermotolerans JAMB-A94(T) was functionally identified as a ι-carrageenase gene. This gene, designated as cgiA, is located together with two β-agarase genes, agaA and agaO in a cluster. The cgiA gene product is 569 amino acids and shares 29% identity over 185 amino acids with the ι-carrageenase from Zobellia galactanivorans Dsij DSM 12802. Recombinant, cgiA-encoded ι-carrageenase (55 kDa) was hyper-produced in Bacillus subtilis. The recombinant enzyme shows maximal activity at 50°C, the highest reported optimal temperature for a carrageenase. It cleaved β-1,4 linkages in ι-carrageenan to produce a high ratio of ι-carrageenan tetramer, more than 75% of the total product, and did not cleave the β-1,4 linkages in κ- or λ-carrageenan. Therefore, this enzyme may be useful for industrial production of ι-carrageenan oligosaccharides, which have demonstrated antiviral potential against diverse viruses. Furthermore, we performed site-directed mutagenesis on the gene to identify the catalytic amino acid residues. We demonstrated that a conserved Glu351 was essential for catalysis; however, this enzyme lacked a catalytic Asp residue, which is generally critical for the catalytic activity of most glycoside hydrolases.
Breeding and Genetics Symposium: networks and pathways to guide genomic selection.
Snelling, W M; Cushman, R A; Keele, J W; Maltecca, C; Thomas, M G; Fortes, M R S; Reverter, A
2013-02-01
Many traits affecting profitability and sustainability of meat, milk, and fiber production are polygenic, with no single gene having an overwhelming influence on observed variation. No knowledge of the specific genes controlling these traits has been needed to make substantial improvement through selection. Significant gains have been made through phenotypic selection enhanced by pedigree relationships and continually improving statistical methodology. Genomic selection, recently enabled by assays for dense SNP located throughout the genome, promises to increase selection accuracy and accelerate genetic improvement by emphasizing the SNP most strongly correlated to phenotype although the genes and sequence variants affecting phenotype remain largely unknown. These genomic predictions theoretically rely on linkage disequilibrium (LD) between genotyped SNP and unknown functional variants, but familial linkage may increase effectiveness when predicting individuals related to those in the training data. Genomic selection with functional SNP genotypes should be less reliant on LD patterns shared by training and target populations, possibly allowing robust prediction across unrelated populations. Although the specific variants causing polygenic variation may never be known with certainty, a number of tools and resources can be used to identify those most likely to affect phenotype. Associations of dense SNP genotypes with phenotype provide a 1-dimensional approach for identifying genes affecting specific traits; in contrast, associations with multiple traits allow defining networks of genes interacting to affect correlated traits. Such networks are especially compelling when corroborated by existing functional annotation and established molecular pathways. The SNP occurring within network genes, obtained from public databases or derived from genome and transcriptome sequences, may be classified according to expected effects on gene products. As illustrated by functionally informed genomic predictions being more accurate than naive whole-genome predictions of beef tenderness, coupling evidence from livestock genotypes, phenotypes, gene expression, and genomic variants with existing knowledge of gene functions and interactions may provide greater insight into the genes and genomic mechanisms affecting polygenic traits and facilitate functional genomic selection for economically important traits.
Normal Genetic Variation, Cognition, and Aging
Greenwood, P. M.; Parasuraman, Raja
2005-01-01
This article reviews the modulation of cognitive function by normal genetic variation. Although the heritability of “g” is well established, the genes that modulate specific cognitive functions are largely unidentified. Application of the allelic association approach to individual differences in cognition has begun to reveal the effects of single nucleotide polymorphisms on specific and general cognitive functions. This article proposes a framework for relating genotype to cognitive phenotype by considering the effect of genetic variation on the protein product of specific genes within the context of the neural basis of particular cognitive domains. Specificity of effects is considered, from genes controlling part of one receptor type to genes controlling agents of neuronal repair, and evidence is reviewed of cognitive modulation by polymorphisms in dopaminergic and cholinergic receptor genes, dopaminergic enzyme genes, and neurotrophic genes. Although allelic variation in certain genes can be reliably linked to cognition—specifically to components of attention, working memory, and executive function in healthy adults—the specificity, generality, and replicability of the effects are not fully known. PMID:15006290
Johnson, Jeremiah G.; Clegg, Steven
2010-01-01
Klebsiella pneumoniae is an opportunistic pathogen that has been shown to adhere to human extracellular matrices using the type 3 fimbriae. Introduction of plasmids carrying genes known to alter intracellular cyclic-di-GMP pools in Vibrio parahaemolyticus revealed that these genes also altered type 3 fimbrial surface expression in K. pneumoniae. Immediately adjacent to the type 3 fimbrial gene cluster is a gene, mrkJ, that is related to a family of bacterial genes encoding phosphodiesterases. We identify here a role for MrkJ, a functional phosphodiesterase exhibiting homology to EAL domain-containing proteins, in controlling type 3 fimbria production and biofilm formation in K. pneumoniae. Deletion of mrkJ resulted in an increase in type 3 fimbria production and biofilm formation as a result of the accumulation of intracellular cyclic-di-GMP. This gene was shown to encode a functional phosphodiesterase via restoration of motility in a V. parahaemolyticus strain previously shown to accumulate cyclic-di-GMP and in vitro using phosphodiesterase activity assays. The effect of the mrkJ mutation on type 3 fimbrial expression was shown to be at the level of mrkA gene transcription by using quantitative reverse transcription-PCR. These results reveal a previously unknown role for cyclic-di-GMP in type 3 fimbrial production. PMID:20511505
Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.
Pentland, Ieisha; Parish, Joanna L
2015-07-06
All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.
Biosynthesis and Function of Polyacetylenes and Allied Natural Products
Minto, Robert E.; Blacklock, Brenda J.
2008-01-01
Polyacetylenic natural products are a substantial class of often unstable compounds containing a unique carbon-carbon triple bond functionality, that are intriguing for their wide variety of biochemical and ecological functions, economic potential, and surprising mode of biosynthesis. Isotopic tracer experiments between 1960 and 1990 demonstrated that the majority of these compounds are derived from fatty acid and polyketide precursors. During the past decade, research into the metabolism of polyacetylenes has swiftly advanced, driven by the cloning of the first genes responsible for polyacetylene biosynthesis in plants, moss, fungi, and actinomycetes, and the initial characterization of the gene products. The current state of knowledge of the biochemistry and molecular genetics of polyacetylenic secondary metabolic pathways will be presented together with an up-to-date survey of new terrestrial and marine natural products, their known biological activities, and a discussion of their likely metabolic origins. PMID:18387369
Restoring Dystrophin Expression in Duchenne Muscular Dystrophy Muscle
Hoffman, Eric P.; Bronson, Abby; Levin, Arthur A.; Takeda, Shin'ichi; Yokota, Toshifumi; Baudy, Andreas R.; Connor, Edward M.
2011-01-01
The identification of the Duchenne muscular dystrophy gene and protein in the late 1980s led to high hopes of rapid translation to molecular therapeutics. These hopes were fueled by early reports of delivering new functional genes to dystrophic muscle in mouse models using gene therapy and stem cell transplantation. However, significant barriers have thwarted translation of these approaches to true therapies, including insufficient therapeutic material (eg, cells and viral vectors), challenges in systemic delivery, and immunological hurdles. An alternative approach is to repair the patient's own gene. Two innovative small-molecule approaches have emerged as front-line molecular therapeutics: exon skipping and stop codon read through. Both approaches are in human clinical trials and aim to coax dystrophin protein production from otherwise inactive mutant genes. In the clinically severe dog model of Duchenne muscular dystrophy, the exon-skipping approach recently improved multiple functional outcomes. We discuss the status of these two methods aimed at inducing de novo dystrophin production from mutant genes and review implications for other disorders. PMID:21703390
Schrank, Bertold; Götz, Rudolf; Gunnersen, Jennifer M.; Ure, Janice M.; Toyka, Klaus V.; Smith, Austin G.; Sendtner, Michael
1997-01-01
Proximal spinal muscular atrophy is an autosomal recessive human disease of spinal motor neurons leading to muscular weakness with onset predominantly in infancy and childhood. With an estimated heterozygote frequency of 1/40 it is the most common monogenic disorder lethal to infants; milder forms represent the second most common pediatric neuromuscular disorder. Two candidate genes—survival motor neuron (SMN) and neuronal apoptosis inhibitory protein have been identified on chromosome 5q13 by positional cloning. However, the functional impact of these genes and the mechanism leading to a degeneration of motor neurons remain to be defined. To analyze the role of the SMN gene product in vivo we generated SMN-deficient mice. In contrast to the human genome, which contains two copies, the mouse genome contains only one SMN gene. Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function. PMID:9275227
A functional genomic analysis of Arabidopsis thaliana PP2C clade D
USDA-ARS?s Scientific Manuscript database
In the reference dicot plant Arabidopsis thaliana, the PP2C family of P-protein phosphatases includes the products of 80 genes that have been separated into 10 multi-protein clades plus six singletons. Clade D includes the products of nine genes distributed among 3 chromosomes (PPD1, At3g12620; PPD2...
Gerald, W. L.; Karam, J. D.
1984-01-01
The results of this study bear on the relationship between genetic linkage and control of interactions between the protein products of different cistrons. In T4 bacteriophage, genes 45 and 44 encode essential components of the phage DNA replication multiprotein complex. T4 gene 45 maps directly upstream of gene 44 relative to the overall direction of reading of this region of the phage chromosome, but it is not known whether these two genes are cotranscribed. It has been shown that a nonsense lesion of T4 gene 45 exerts a cis-dominant inhibitory effect on growth of a missense mutant of gene 44 but not on growth of phage carrying the wild-type gene 44 allele. In previous work, we confirmed these observations on polarity of the gene 45 mutation but detected no polar effects by this lesion on synthesis of either mutant or wild-type gene 44 protein. In the present study, we demonstrate that mRNA for gene 44 protein is separable by gel electrophoresis from gene 45-protein-encoding mRNA. That is, the two proteins are not synthesized from one polycistronic message, and the cis-dominant inhibitory effect of the gene 45 mutation on gene 44 function is probably expressed at a posttranslational stage. We propose that close genetic linkage, whether or not it provides shared transcriptional and translational regulatory signals for certain clusters of functionally related cistrons, may determine the intracellular compartmentalization for synthesis of proteins encoded by these clusters. In prokaryotes, such linkage-dependent compartmentation may minimize the diffusion distances between gene products that are synthesized at low levels and are destined to interact. PMID:6745641
Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.
Panwar, Vinay; Bakkeren, Guus
2017-01-01
Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.
Yu, Zhiqian; Ono, Chiaki; Aiba, Setsuya; Kikuchi, Yoshie; Sora, Ichiro; Matsuoka, Hiroo; Tomita, Hiroaki
2015-02-01
Evidence indicates that widely prescribed mood stabilizer, lithium (Li), mediates cellular functions of differentiated monocytic cells, including microglial migration, monocyte-derived dendritic cell (MoDC) differentiation, and amelioration of monocytic malfunctions observed in neuropsychiatric diseases. Here, we surveyed molecules which take major roles in regulating these monocytic cellular functions. MoDCs treated with 1 and 5 mM Li, and microglia separated from Li-treated mice were subjected to microarray-based comprehensive gene expression analyses. Findings were validated using multiple experiments, including quantitative PCR, ELISA and immunostaining studies. Differing effects of Li on the two cell types were observed. Inflammation- and chemotaxis-relevant genes were significantly over-represented among Li-induced genes in MoDCs, whereas no specific category of genes was over-represented in microglia. The third component of complement (C3) was the only gene which was significantly induced by a therapeutic concentration of Li in both MoDCs and microglia. C3 production was increased by Li via GSK-3 inhibition. Li-induced C3 production was seen only in differentiated monocytic cells, but not in circulating monocytes. Our findings highlight a link between Li treatment and C3 production in differentiated monocytic cells, and reveal a regulatory role of GSK-3 in C3 production. Induction of microglial C3 production might be a novel neuroprotective mechanism of Li via regulating interactions between microglia and neurons. GLIA 2015;63:257-270. © 2014 Wiley Periodicals, Inc.
Identification of giant Mimivirus protein functions using RNA interference
Sobhy, Haitham; Scola, Bernard La; Pagnier, Isabelle; Raoult, Didier; Colson, Philippe
2015-01-01
Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases. PMID:25972846
A human functional protein interaction network and its application to cancer data analysis
2010-01-01
Background One challenge facing biologists is to tease out useful information from massive data sets for further analysis. A pathway-based analysis may shed light by projecting candidate genes onto protein functional relationship networks. We are building such a pathway-based analysis system. Results We have constructed a protein functional interaction network by extending curated pathways with non-curated sources of information, including protein-protein interactions, gene coexpression, protein domain interaction, Gene Ontology (GO) annotations and text-mined protein interactions, which cover close to 50% of the human proteome. By applying this network to two glioblastoma multiforme (GBM) data sets and projecting cancer candidate genes onto the network, we found that the majority of GBM candidate genes form a cluster and are closer than expected by chance, and the majority of GBM samples have sequence-altered genes in two network modules, one mainly comprising genes whose products are localized in the cytoplasm and plasma membrane, and another comprising gene products in the nucleus. Both modules are highly enriched in known oncogenes, tumor suppressors and genes involved in signal transduction. Similar network patterns were also found in breast, colorectal and pancreatic cancers. Conclusions We have built a highly reliable functional interaction network upon expert-curated pathways and applied this network to the analysis of two genome-wide GBM and several other cancer data sets. The network patterns revealed from our results suggest common mechanisms in the cancer biology. Our system should provide a foundation for a network or pathway-based analysis platform for cancer and other diseases. PMID:20482850
Stevenson, G; Andrianopoulos, K; Hobbs, M; Reeves, P R
1996-01-01
Colanic acid (CA) is an extracellular polysaccharide produced by most Escherichia coli strains as well as by other species of the family Enterobacteriaceae. We have determined the sequence of a 23-kb segment of the E. coli K-12 chromosome which includes the cluster of genes necessary for production of CA. The CA cluster comprises 19 genes. Two other sequenced genes (orf1.3 and galF), which are situated between the CA cluster and the O-antigen cluster, were shown to be unnecessary for CA production. The CA cluster includes genes for synthesis of GDP-L-fucose, one of the precursors of CA, and the gene for one of the enzymes in this pathway (GDP-D-mannose 4,6-dehydratase) was identified by biochemical assay. Six of the inferred proteins show sequence similarity to glycosyl transferases, and two others have sequence similarity to acetyl transferases. Another gene (wzx) is predicted to encode a protein with multiple transmembrane segments and may function in export of the CA repeat unit from the cytoplasm into the periplasm in a process analogous to O-unit export. The first three genes of the cluster are predicted to encode an outer membrane lipoprotein, a phosphatase, and an inner membrane protein with an ATP-binding domain. Since homologs of these genes are found in other extracellular polysaccharide gene clusters, they may have a common function, such as export of polysaccharide from the cell. PMID:8759852
Xia, Rui; Xu, Jing; Arikit, Siwaret; Meyers, Blake C.
2015-01-01
In eudicot plants, the miR482/miR2118 superfamily regulates and instigates the production of phased secondary small interfering RNAs (siRNAs) from NB-LRR (nucleotide binding leucine-rich repeat) genes that encode disease resistance proteins. In grasses, this miRNA family triggers siRNA production specifically in reproductive tissues from long noncoding RNAs. To understand this functional divergence, we examined the small RNA population in the ancient gymnosperm Norway spruce (Picea abies). As many as 41 miRNA families in spruce were found to trigger phasiRNA (phased, secondary siRNAs) production from diverse PHAS loci, with a remarkable 19 miRNA families capable of targeting over 750 NB-LRR genes to generate phasiRNAs. miR482/miR2118, encoded in spruce by at least 24 precursor loci, targets not only NB-LRR genes to trigger phasiRNA production (as in eudicots) but also noncoding PHAS loci, generating phasiRNAs preferentially in male or female cones, reminiscent of its role in the grasses. These data suggest a dual function of miR482/miR2118 present in gymnosperms that was selectively yet divergently retained in flowering plants. A few MIR482/MIR2118 precursors possess an extremely long stem-loop structure, one arm of which shows significant sequence similarity to spruce NB-LRR genes, suggestive of an evolutionary origin from NB-LRR genes through gene duplication. We also characterized an expanded miR390-TAS3 (TRANS-ACTING SIRNA GENE 3)-ARF (AUXIN RESPONSIVE FACTOR) pathway, comprising 18 TAS3 genes of diverse features. Finally, we annotated spruce miRNAs and their targets. Taken together, these data expand our understanding of phasiRNA network in plants and the evolution of plant miRNAs, particularly miR482/miR2118 and its functional diversification. PMID:26318183
Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.
Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi
2015-11-17
Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids.
Shen, Yang; Huang, He; Zhu, Li; Luo, Minyu; Chen, Daijie
2012-11-01
ECO-orf27 associated with the cluster of ECO-0501 (LW01) from Amycolatopsis orientalis is deduced to encode a type II thioesterase. Disruption of ECO-orf27 reduced LW01 production by 95 %. Complementation of the disrupted mutant with intact ECO-orf27 restored the production of LW01 suggesting that ECO-orf27 is crucial for LW01 biosynthesis. ECO-TE I, the gene encoding type I thioesterase from LW01 polyketide synthases, cannot complement ECO-orf27 deficient mutant distinguishing ECO-orf27 from type I thioesterase gene. Type II thioesterase gene pikAV from Streptomyces venezuelae could complement ECO-orf27 in A. orientalis indicating that the two genes are equivalent in their function. Overexpression of ECO-orf27 resulted in a 20 % increase in LW01 production providing an alternative approach for yield improvement.
Genetics Home Reference: Stormorken syndrome
... Genetic Changes Stormorken syndrome is caused by a mutation in the STIM1 gene. The protein produced from ... and division, and immune function. The STIM1 gene mutation involved in Stormorken syndrome leads to production of ...
Landscape genetics of high mountain frog metapopulations
Murphy, M.A.; Dezzani, R.; Pilliod, D.S.; Storfer, A.
2010-01-01
Explaining functional connectivity among occupied habitats is crucial for understanding metapopulation dynamics and species ecology. Landscape genetics has primarily focused on elucidating how ecological features between observations influence gene flow. Functional connectivity, however, may be the result of both these between-site (landscape resistance) landscape characteristics and at-site (patch quality) landscape processes that can be captured using network based models. We test hypotheses of functional connectivity that include both between-site and at-site landscape processes in metapopulations of Columbia spotted frogs (Rana luteiventris) by employing a novel justification of gravity models for landscape genetics (eight microsatellite loci, 37 sites, n = 441). Primarily used in transportation and economic geography, gravity models are a unique approach as flow (e.g. gene flow) is explained as a function of three basic components: distance between sites, production/attraction (e.g. at-site landscape process) and resistance (e.g. between-site landscape process). The study system contains a network of nutrient poor high mountain lakes where we hypothesized a short growing season and complex topography between sites limit R. luteiventris gene flow. In addition, we hypothesized production of offspring is limited by breeding site characteristics such as the introduction of predatory fish and inherent site productivity. We found that R. luteiventris connectivity was negatively correlated with distance between sites, presence of predatory fish (at-site) and topographic complexity (between-site). Conversely, site productivity (as measured by heat load index, at-site) and growing season (as measured by frost-free period between-sites) were positively correlated with gene flow. The negative effect of predation and positive effect of site productivity, in concert with bottleneck tests, support the presence of source-sink dynamics. In conclusion, gravity models provide a powerful new modelling approach for examining a wide range of both basic and applied questions in landscape genetics.
Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides
Geiselman, Gina M; Ito, Masakazu; Mondo, Stephen J; Reilly, Morgann C; Cheng, Ya-Fang; Bauer, Stefan; Grigoriev, Igor V; Gladden, John M; Simmons, Blake A; Brem, Rachel B
2018-01-01
The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi. PMID:29521624
An intronic microRNA silences genes that are functionally antagonistic to its host gene.
Barik, Sailen
2008-09-01
MicroRNAs (miRNAs) are short noncoding RNAs that down-regulate gene expression by silencing specific target mRNAs. While many miRNAs are transcribed from their own genes, nearly half map within introns of 'host' genes, the significance of which remains unclear. We report that transcriptional activation of apoptosis-associated tyrosine kinase (AATK), essential for neuronal differentiation, also generates miR-338 from an AATK gene intron that silences a family of mRNAs whose protein products are negative regulators of neuronal differentiation. We conclude that an intronic miRNA, transcribed together with the host gene mRNA, may serve the interest of its host gene by silencing a cohort of genes that are functionally antagonistic to the host gene itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfleger, Brian F.; Youngquist, Tyler J.
Recombinant cells and methods for improved yield of fatty alcohols. The recombinant cells harbor a recombinant thioesterase gene, a recombinant acyl-CoA synthetase gene, and a recombinant acyl-CoA reductase gene. In addition, a gene product from one or more of an acyl-CoA dehydrogenase gene, an enoyl-CoA hydratase gene, a 3-hydroxyacyl-CoA dehydrogenase gene, and a 3-ketoacyl-CoA thiolase gene in the recombinant cells is functionally deleted. Culturing the recombinant cells produces fatty alcohols at high yields.
Gene Concepts in Higher Education Cell and Molecular Biology Textbooks
ERIC Educational Resources Information Center
Albuquerque, Pitombo Maiana; de Almeida, Ana Maria Rocha; El-Hani, Nino Charbel
2008-01-01
Despite being a landmark of 20th century biology, the "classical molecular gene concept," according to which a gene is a stretch of DNA encoding a functional product, which may be a single polypeptide or RNA molecule, has been recently challenged by a series of findings (e.g., split genes, alternative splicing, overlapping and nested…
Use of genetically engineered swine to elucidate testis function in the boar
USDA-ARS?s Scientific Manuscript database
The second mammalian GnRH isoform (GnRH-II) and its specific receptor (GnRHR-II) are abundant within the testis, suggesting a critical role. Gene coding errors prevent their production in many species, but both genes are functional in swine. We have demonstrated that GnRHR-II localizes to porcine Le...
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri.
Cornish, Adam J; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L
2015-01-01
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri
Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.
2015-01-01
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes. PMID:25927230
Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri
Cornish, Adam J.; Green, Robin; Gärtner, Katrin; ...
2015-04-30
Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H 2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate undermore » anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.« less
A Shigella flexneri Virulence Plasmid Encoded Factor Controls Production of Outer Membrane Vesicles
Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R.
2014-01-01
Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474
[Strategies of elucidation of biosynthetic pathways of natural products].
Zou, Li-Qiu; Kuang, Xue-Jun; Sun, Chao; Chen, Shi-Lin
2016-11-01
Elucidation of the biosynthetic pathways of natural products is not only the major goal of herb genomics, but also the solid foundation of synthetic biology of natural products. Here, this paper reviewed recent advance in this field and put forward strategies to elucidate the biosynthetic pathway of natural products. Firstly, a proposed biosynthetic pathway should be set up based on well-known knowledge about chemical reactions and information on the identified compounds, as well as studies with isotope tracer. Secondly, candidate genes possibly involved in the biosynthetic pathway were screened out by co-expression analysis and/or gene cluster mining. Lastly, all the candidate genes were heterologously expressed in the host and then the enzyme involved in the biosynthetic pathway was characterized by activity assay. Sometimes, the function of the enzyme in the original plant could be further studied by RNAi or VIGS technology. Understanding the biosynthetic pathways of natural products will contribute to supply of new leading compounds by synthetic biology and provide "functional marker" for herbal molecular breeding, thus but boosting the development of traditional Chinese medicine agriculture. Copyright© by the Chinese Pharmaceutical Association.
2013-01-01
Background Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low-heritability traits. Semen from 550 Holstein bulls of high (≥ 1.7; n = 288) or low (≤ −2; n = 262) daughter pregnancy rate (DPR) was genotyped for 434 candidate SNPs using the Sequenom MassARRAY® system. Three types of SNPs were evaluated: SNPs previously reported to be associated with reproductive traits or physically close to genetic markers for reproduction, SNPs in genes that are well known to be involved in reproductive processes, and SNPs in genes that are differentially expressed between physiological conditions in a variety of tissues associated in reproductive function. Eleven reproduction and production traits were analyzed. Results A total of 40 SNPs were associated (P < 0.05) with DPR. Among these were genes involved in the endocrine system, cell signaling, immune function and inhibition of apoptosis. A total of 10 genes were regulated by estradiol. In addition, 22 SNPs were associated with heifer conception rate, 33 with cow conception rate, 36 with productive life, 34 with net merit, 23 with milk yield, 19 with fat yield, 13 with fat percent, 19 with protein yield, 22 with protein percent, and 13 with somatic cell score. The allele substitution effect for SNPs associated with heifer conception rate, cow conception rate, productive life and net merit were in the same direction as for DPR. Allele substitution effects for several SNPs associated with production traits were in the opposite direction as DPR. Nonetheless, there were 29 SNPs associated with DPR that were not negatively associated with production traits. Conclusion SNPs in a total of 40 genes associated with DPR were identified as well as SNPs for other traits. It might be feasible to include these SNPs into genomic tests of reproduction and other traits. The genes associated with DPR are likely to be important for understanding the physiology of reproduction. Given the large number of SNPs associated with DPR that were not negatively associated with production traits, it should be possible to select for DPR without compromising production. PMID:23759029
Functional Annotation of the Arabidopsis Genome Using Controlled Vocabularies1
Berardini, Tanya Z.; Mundodi, Suparna; Reiser, Leonore; Huala, Eva; Garcia-Hernandez, Margarita; Zhang, Peifen; Mueller, Lukas A.; Yoon, Jungwoon; Doyle, Aisling; Lander, Gabriel; Moseyko, Nick; Yoo, Danny; Xu, Iris; Zoeckler, Brandon; Montoya, Mary; Miller, Neil; Weems, Dan; Rhee, Seung Y.
2004-01-01
Controlled vocabularies are increasingly used by databases to describe genes and gene products because they facilitate identification of similar genes within an organism or among different organisms. One of The Arabidopsis Information Resource's goals is to associate all Arabidopsis genes with terms developed by the Gene Ontology Consortium that describe the molecular function, biological process, and subcellular location of a gene product. We have also developed terms describing Arabidopsis anatomy and developmental stages and use these to annotate published gene expression data. As of March 2004, we used computational and manual annotation methods to make 85,666 annotations representing 26,624 unique loci. We focus on associating genes to controlled vocabulary terms based on experimental data from the literature and use The Arabidopsis Information Resource-developed PubSearch software to facilitate this process. Each annotation is tagged with a combination of evidence codes, evidence descriptions, and references that provide a robust means to assess data quality. Annotation of all Arabidopsis genes will allow quantitative comparisons between sets of genes derived from sources such as microarray experiments. The Arabidopsis annotation data will also facilitate annotation of newly sequenced plant genomes by using sequence similarity to transfer annotations to homologous genes. In addition, complete and up-to-date annotations will make unknown genes easy to identify and target for experimentation. Here, we describe the process of Arabidopsis functional annotation using a variety of data sources and illustrate several ways in which this information can be accessed and used to infer knowledge about Arabidopsis and other plant species. PMID:15173566
Wanjin, Xing; Morigen, Morigen
2015-01-01
In Mendellian genetics, the dominance and recessiveness are used to describe the functional relationship between two alleles of one gene in a heterozygote. The allele which constitutes a phenotypical character over the other is named dominant and the one functionally masked is called recessive. The definitions thereby led to the creation of Mendel's laws on segregation and independent assortment and subsequent classic genetics. The discrimination of dominance and recessiveness originally is a requirement for Mendel's logical reasoning, but now it should be explained by cellular and molecular principles in the modern genetics. To answer the question raised by students of how the dominance and recessiveness are controlled, we reviewed the recent articles and tried to summarize the cellular and molecular basis of dominant and recessive inheritance. Clearly, understanding the essences of dominant and recessive inheritance requires us to know the dissimilarity of the alleles and their products (RNA and/or proteins), and the way of their function in cells. The alleles spatio-temporally play different roles on offering cells, tissues or organs with discernible phenotypes, namely dominant or recessive. Here, we discuss the changes of allele dominance and recessiveness at the cellular and molecular levels based on the variation of gene structure, gene regulation, function and types of gene products, in order to make students understand gene mutation and function more comprehensively and concretely.
De Novo Protein Structure Prediction
NASA Astrophysics Data System (ADS)
Hung, Ling-Hong; Ngan, Shing-Chung; Samudrala, Ram
An unparalleled amount of sequence data is being made available from large-scale genome sequencing efforts. The data provide a shortcut to the determination of the function of a gene of interest, as long as there is an existing sequenced gene with similar sequence and of known function. This has spurred structural genomic initiatives with the goal of determining as many protein folds as possible (Brenner and Levitt, 2000; Burley, 2000; Brenner, 2001; Heinemann et al., 2001). The purpose of this is twofold: First, the structure of a gene product can often lead to direct inference of its function. Second, since the function of a protein is dependent on its structure, direct comparison of the structures of gene products can be more sensitive than the comparison of sequences of genes for detecting homology. Presently, structural determination by crystallography and NMR techniques is still slow and expensive in terms of manpower and resources, despite attempts to automate the processes. Computer structure prediction algorithms, while not providing the accuracy of the traditional techniques, are extremely quick and inexpensive and can provide useful low-resolution data for structure comparisons (Bonneau and Baker, 2001). Given the immense number of structures which the structural genomic projects are attempting to solve, there would be a considerable gain even if the computer structure prediction approach were applicable to a subset of proteins.
Escherichia coli K-12: a cooperatively developed annotation snapshot—2005
Riley, Monica; Abe, Takashi; Arnaud, Martha B.; Berlyn, Mary K.B.; Blattner, Frederick R.; Chaudhuri, Roy R.; Glasner, Jeremy D.; Horiuchi, Takashi; Keseler, Ingrid M.; Kosuge, Takehide; Mori, Hirotada; Perna, Nicole T.; Plunkett, Guy; Rudd, Kenneth E.; Serres, Margrethe H.; Thomas, Gavin H.; Thomson, Nicholas R.; Wishart, David; Wanner, Barry L.
2006-01-01
The goal of this group project has been to coordinate and bring up-to-date information on all genes of Escherichia coli K-12. Annotation of the genome of an organism entails identification of genes, the boundaries of genes in terms of precise start and end sites, and description of the gene products. Known and predicted functions were assigned to each gene product on the basis of experimental evidence or sequence analysis. Since both kinds of evidence are constantly expanding, no annotation is complete at any moment in time. This is a snapshot analysis based on the most recent genome sequences of two E.coli K-12 bacteria. An accurate and up-to-date description of E.coli K-12 genes is of particular importance to the scientific community because experimentally determined properties of its gene products provide fundamental information for annotation of innumerable genes of other organisms. Availability of the complete genome sequence of two K-12 strains allows comparison of their genotypes and mutant status of alleles. PMID:16397293
Palanichelvam, Karuppaiah; Schoelz, James E
2002-02-15
The primary function associated at present with the gene VI product of Cauliflower mosaic virus (CaMV) is that of a translational transactivator (TAV). In this capacity, it alters the host translational machinery to allow reinitiation of translation of other CaMV genes on the polycistronic 35S RNA of CaMV. In addition, the gene VI protein can elicit a specific type of plant defense response called the hypersensitive response (HR) in Nicotiana edwardsonii. In this study, we have adapted the agroinfiltration technique to compare the sequences of CaMV gene VI required for TAV function and elicitation of HR. To measure the activity of the TAV, we coagroinfiltrated gene VI of CaMV strain W260 with a bicistronic GUS reporter plasmid. TAV function could be assayed 4 days postinfiltration, before the onset of HR in N. edwardsonii. Through the use of the TAV and HR assays, we could show that the TAV functions of gene VI of CaMV strains W260 and D4 were equivalent, but only W260 gene VI elicited HR. A mutational analysis of W260 gene VI showed that the structural requirements for elicitation of HR were much more stringent than those for TAV function. Small deletions from either the 5' or 3' end of W260 gene VI abolished its ability to elicit HR, although the TAV function was retained in the mutant. The TAV function could also tolerate a small insertion within gene VI; this insertion abolished the elicitor function. This study provides direct evidence that the TAV function of gene VI is separate from its role as an elicitor of HR.
Bacteriophage P2 ogr and P4 delta genes act independently and are essential for P4 multiplication.
Halling, C; Calendar, R
1990-01-01
Satellite bacteriophage P4 requires the products of the late genes of a helper phage such as P2 for lytic growth. Expression of the P2 late genes is positively regulated by the P2 ogr gene in a process requiring P2 DNA replication. Transactivation of P2 late gene expression by P4 requires the P4 delta gene product and works even in the absence of P2 DNA replication. We have made null mutants of the P2 ogr and P4 delta genes. In the absence of the P4 delta gene product, P4 multiplication required both the P2 ogr protein and P2 DNA replication. In the absence of the P2 ogr gene product, P4 multiplication required the P4 delta protein. In complementation experiments, we found that the P2 ogr protein was made in the absence of P2 DNA replication but could not function unless P2 DNA replicated. We produced P4 delta protein from a plasmid and found that it complemented the null P4 delta and P2 ogr mutants. Images PMID:2193911
Neurobiology of autism gene products: towards pathogenesis and drug targets.
Kleijer, Kristel T E; Schmeisser, Michael J; Krueger, Dilja D; Boeckers, Tobias M; Scheiffele, Peter; Bourgeron, Thomas; Brose, Nils; Burbach, J Peter H
2014-03-01
The genetic heterogeneity of autism spectrum disorders (ASDs) is enormous, and the neurobiology of proteins encoded by genes associated with ASD is very diverse. Revealing the mechanisms on which different neurobiological pathways in ASD pathogenesis converge may lead to the identification of drug targets. The main objective is firstly to outline the main molecular networks and neuronal mechanisms in which ASD gene products participate and secondly to answer the question how these converge. Finally, we aim to pinpoint drug targets within these mechanisms. Literature review of the neurobiological properties of ASD gene products with a special focus on the developmental consequences of genetic defects and the possibility to reverse these by genetic or pharmacological interventions. The regulation of activity-dependent protein synthesis appears central in the pathogenesis of ASD. Through sequential consequences for axodendritic function, neuronal disabilities arise expressed as behavioral abnormalities and autistic symptoms in ASD patients. Several known ASD gene products have their effect on this central process by affecting protein synthesis intrinsically, e.g., through enhancing the mammalian target of rapamycin (mTOR) signal transduction pathway or through impairing synaptic function in general. These are interrelated processes and can be targeted by compounds from various directions: inhibition of protein synthesis through Lovastatin, mTOR inhibition using rapamycin, or mGluR-related modulation of synaptic activity. ASD gene products may all feed into a central process of translational control that is important for adequate glutamatergic regulation of dendritic properties. This process can be modulated by available compounds but may also be targeted by yet unexplored routes.
Both mechanism and age of duplications contribute to biased gene retention patterns in plants.
Rody, Hugo V S; Baute, Gregory J; Rieseberg, Loren H; Oliveira, Luiz O
2017-01-06
All extant seed plants are successful paleopolyploids, whose genomes carry duplicate genes that have survived repeated episodes of diploidization. However, the survival of gene duplicates is biased with respect to gene function and mechanism of duplication. Transcription factors, in particular, are reported to be preferentially retained following whole-genome duplications (WGDs), but disproportionately lost when duplicated by tandem events. An explanation for this pattern is provided by the Gene Balance Hypothesis (GBH), which posits that duplicates of highly connected genes are retained following WGDs to maintain optimal stoichiometry among gene products; but such connected gene duplicates are disfavored following tandem duplications. We used genomic data from 25 taxonomically diverse plant species to investigate the roles of duplication mechanism, gene function, and age of duplication in the retention of duplicate genes. Enrichment analyses were conducted to identify Gene Ontology (GO) functional categories that were overrepresented in either WGD or tandem duplications, or across ranges of divergence times. Tandem paralogs were much younger, on average, than WGD paralogs and the most frequently overrepresented GO categories were not shared between tandem and WGD paralogs. Transcription factors were overrepresented among ancient paralogs regardless of mechanism of origin or presence of a WGD. Also, in many cases, there was no bias toward transcription factor retention following recent WGDs. Both the fixation and the retention of duplicated genes in plant genomes are context-dependent events. The strong bias toward ancient transcription factor duplicates can be reconciled with the GBH if selection for optimal stoichiometry among gene products is strongest following the earliest polyploidization events and becomes increasingly relaxed as gene families expand.
Technological advances and genomics in metazoan parasites.
Knox, D P
2004-02-01
Molecular biology has provided the means to identify parasite proteins, to define their function, patterns of expression and the means to produce them in quantity for subsequent functional analyses. Whole genome and expressed sequence tag programmes, and the parallel development of powerful bioinformatics tools, allow the execution of genome-wide between stage or species comparisons and meaningful gene-expression profiling. The latter can be undertaken with several new technologies such as DNA microarray and serial analysis of gene expression. Proteome analysis has come to the fore in recent years providing a crucial link between the gene and its protein product. RNA interference and ballistic gene transfer are exciting developments which can provide the means to precisely define the function of individual genes and, of importance in devising novel parasite control strategies, the effect that gene knockdown will have on parasite survival.
Extremozymes from metagenome: Potential applications in food processing.
Khan, Mahejibin; Sathya, T A
2017-06-12
The long-established use of enzymes for food processing and product formulation has resulted in an increased enzyme market compounding to 7.0% annual growth rate. Advancements in molecular biology and recognition that enzymes with specific properties have application for industrial production of infant, baby and functional foods boosted research toward sourcing the genes of microorganisms for enzymes with distinctive properties. In this regard, functional metagenomics for extremozymes has gained attention on the premise that such enzymes can catalyze specific reactions. Hence, metagenomics that can isolate functional genes of unculturable extremophilic microorganisms has expanded attention as a promising tool. Developments in this field of research in relation to food sector are reviewed.
Devitt, Luke C.; Fanning, Kent; Dietzgen, Ralf G.; Holton, Timothy A.
2010-01-01
The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to β-carotene (yellow) is catalysed by lycopene β-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene β-cyclases (lcy-β1 and lcy-β2) from red (Tainung) and yellow (Hybrid 1B) papaya cultivars. A mutation in the lcy-β2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-β1 and lcy-β2 genes is similar and low in leaves, but lcy-β2 expression increases markedly in ripe fruit. Isolation of the lcy-β2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties. PMID:19887502
Devitt, Luke C; Fanning, Kent; Dietzgen, Ralf G; Holton, Timothy A
2010-01-01
The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to beta-carotene (yellow) is catalysed by lycopene beta-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene beta-cyclases (lcy-beta1 and lcy-beta2) from red (Tainung) and yellow (Hybrid 1B) papaya cultivars. A mutation in the lcy-beta2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-beta1 and lcy-beta2 genes is similar and low in leaves, but lcy-beta2 expression increases markedly in ripe fruit. Isolation of the lcy-beta2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties.
Sargent, D J; Rys, A; Nier, S; Simpson, D W; Tobutt, K R
2007-01-01
We have developed 46 primer pairs from exon sequences flanking polymorphic introns of 23 Fragaria gene sequences and one Malus sequence deposited in the EMBL database. Sequencing of a set of the PCR products amplified with the novel primer pairs in diploid Fragaria showed the products to be homologous to the sequences from which the primers were originally designed. By scoring the segregation of the 24 genes in two diploid Fragaria progenies FV x FN (F. vesca x F. nubicola F(2)) and 815 x 903BC (F. vesca x F. viridis BC(1)) 29 genetic loci at discrete positions on the seven linkage groups previously characterised could be mapped, bringing to 35 the total number of known function genes mapped in Fragaria. Twenty primer pairs, representing 14 genes, amplified a product of the expected size in both Malus and Prunus. To demonstrate the applicability of these gene-specific loci to comparative mapping in Rosaceae, five markers that displayed clear polymorphism between the parents of a Malus and a Prunus mapping population were selected. The markers were then scored and mapped in at least one of the two additional progenies.
CaiT of Escherichia coli, a new transporter catalyzing L-carnitine/gamma -butyrobetaine exchange.
Jung, Heinrich; Buchholz, Marion; Clausen, Jurgen; Nietschke, Monika; Revermann, Anne; Schmid, Roland; Jung, Kirsten
2002-10-18
l-Carnitine is essential for beta-oxidation of fatty acids in mitochondria. Bacterial metabolic pathways are used for the production of this medically important compound. Here, we report the first detailed functional characterization of the caiT gene product, a putative transport protein whose function is required for l-carnitine conversion in Escherichia coli. The caiT gene was overexpressed in E. coli, and the gene product was purified by affinity chromatography and reconstituted into proteoliposomes. Functional analyses with intact cells and proteoliposomes demonstrated that CaiT is able to catalyze the exchange of l-carnitine for gamma-butyrobetaine, the excreted end product of l-carnitine conversion in E. coli, and related betaines. Electrochemical ion gradients did not significantly stimulate l-carnitine uptake. Analysis of l-carnitine counterflow yielded an apparent external K(m) of 105 microm and a turnover number of 5.5 s(-1). Contrary to related proteins, CaiT activity was not modulated by osmotic stress. l-Carnitine binding to CaiT increased the protein fluorescence and caused a red shift in the emission maximum, an observation explained by ligand-induced conformational alterations. The fluorescence effect was specific for betaine structures, for which the distance between trimethylammonium and carboxyl groups proved to be crucial for affinity. Taken together, the results suggest that CaiT functions as an exchanger (antiporter) for l-carnitine and gamma-butyrobetaine according to the substrate/product antiport principle.
Molecular Basis for Mycophenolic Acid Biosynthesis in Penicillium brevicompactum▿†
Regueira, Torsten Bak; Kildegaard, Kanchana Rueksomtawin; Hansen, Bjarne Gram; Mortensen, Uffe H.; Hertweck, Christian; Nielsen, Jens
2011-01-01
Mycophenolic acid (MPA) is the active ingredient in the increasingly important immunosuppressive pharmaceuticals CellCept (Roche) and Myfortic (Novartis). Despite the long history of MPA, the molecular basis for its biosynthesis has remained enigmatic. Here we report the discovery of a polyketide synthase (PKS), MpaC, which we successfully characterized and identified as responsible for MPA production in Penicillium brevicompactum. mpaC resides in what most likely is a 25-kb gene cluster in the genome of Penicillium brevicompactum. The gene cluster was successfully localized by targeting putative resistance genes, in this case an additional copy of the gene encoding IMP dehydrogenase (IMPDH). We report the cloning, sequencing, and the functional characterization of the MPA biosynthesis gene cluster by deletion of the polyketide synthase gene mpaC of P. brevicompactum and bioinformatic analyses. As expected, the gene deletion completely abolished MPA production as well as production of several other metabolites derived from the MPA biosynthesis pathway of P. brevicompactum. Our work sets the stage for engineering the production of MPA and analogues through metabolic engineering. PMID:21398490
The normal function of a speciation gene, Odysseus, and its hybrid sterility effect.
Sun, Sha; Ting, Chau-Ti; Wu, Chung-I
2004-07-02
To understand how postmating isolation is connected to the normal process of species divergence and why hybrid male sterility is often the first sign of speciation, we analyzed the Odysseus (OdsH) gene of hybrid male sterility in Drosophila. We carried out expression analysis, transgenic study, and gene knockout. The combined evidence suggests that the sterility phenotype represents a novel manifestation of the gene function rather than the reduction or loss of the normal one. The gene knockout experiment identified the normal function of OdsH as a modest enhancement of sperm production in young males. The implication of a weak effect of OdsH on the normal phenotype but a strong influence on hybrid male sterility is discussed in light of Haldane's rule of postmating isolation.
Negoro, Hiroaki; Kotaka, Atsushi; Matsumura, Kengo; Tsutsumi, Hiroko; Hata, Yoji
2016-06-01
Malate in sake (a Japanese alcoholic beverage) is an important component for taste that is produced by yeasts during alcoholic fermentation. To date, many researchers have developed methods for breeding high-malate-producing yeasts; however, genes responsible for the high-acidity phenotype are not known. We determined the mutated gene involved in high malate production in yeast, isolated as a sensitive mutant to dimethyl succinate. In the comparative whole genome analysis between high-malate-producing strain and its parent strain, one of the non-synonymous substitutions was identified in the VID24 gene. The mutation of VID24 resulted in enhancement of malate-productivity and sensitivity to dimethyl succinate. The mutation appeared to lead to a deficiency in Vid24p function. Furthermore, disruption of cytoplasmic malate dehydrogenase (Mdh2p) gene in the VID24 mutant inhibited the high-malate-producing phenotype. Vid24p is known as a component of the multisubunit ubiquitin ligase and participates in the degradation of gluconeogenic enzymes such as Mdh2p. We suggest that the enhancement of malate-productivity results from an accumulation of Mdh2p due to the loss of Vid24p function. These findings propose a novel mechanism for the regulation of organic acid production in yeast cells by the component of ubiquitin ligase, Vid24p. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Clifford, Jennifer C; Buchanan, Alex; Vining, Oliver; Kidarsa, Teresa A; Chang, Jeff H; McPhail, Kerry L; Loper, Joyce E
2016-10-01
Bacteria can be both highly communicative and highly competitive in natural habitats and antibiotics are thought to play a role in both of these processes. The soil bacterium Pseudomonas protegens Pf-5 produces a spectrum of antibiotics, two of which, pyoluteorin and 2,4-diacetylphloroglucinol (DAPG), function in intracellular and intercellular communication, both as autoinducers of their own production. Here, we demonstrate that phloroglucinol, an intermediate in DAPG biosynthesis, can serve as an intercellular signal influencing the expression of pyoluteorin biosynthesis genes, the production of pyoluteorin, and inhibition of Pythium ultimum, a phytopathogenic oomycete sensitive to pyoluteorin. Through analysis of RNAseq data sets, we show that phloroglucinol had broad effects on the transcriptome of Pf-5, significantly altering the transcription of more than two hundred genes. The effects of nanomolar versus micromolar concentrations of phloroglucinol differed both quantitatively and qualitatively, influencing the expression of distinct sets of genes or having opposite effects on transcript abundance of certain genes. Therefore, our results support the concept of hormesis, a phenomenon associated with signalling molecules that elicit distinct responses at different concentrations. Phloroglucinol is the first example of an intermediate of antibiotic biosynthesis that functions as a chemical messenger influencing gene expression in P. protegens. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalska, Karolina; Brown, Roslyn N.; Li, Hui
Phage viruses that infect prokaryotes integrate their genome into the host chromosome; thus, microbial genomes typically contain genetic remnants of both recent and ancient phage infections. Often phage genes occur in clusters of atypical G+C content that reflect integration of the foreign DNA. However, some phage genes occur in isolation without other phage gene neighbors, probably resulting from horizontal gene transfer. In these cases, the phage gene product is unlikely to function as a component of a mature phage particle, and instead may have been co-opted by the host for its own benefit. The product of one such gene frommore » Salmonella enterica serovar Typhimurium, STM3605, encodes a protein with modest sequence similarity to phage-like lysozyme (N-acetylmuramidase) but appears to lack essential catalytic residues that are strictly conserved in all lysozymes. Close homologs in other bacteria share this characteristic. The structure of the STM3605 protein was characterized by X-ray crystallography, and functional assays showed that it is a stable, folded protein whose structure closely resembles lysozyme. However, this protein is unlikely to hydrolyze peptidoglycan. Instead, STM3605 is presumed to have evolved an alternative function because it shows some lytic activity and partitions to micelles.« less
Borchert, S; Stachelhaus, T; Marahiel, M A
1994-01-01
The deduced amino acid sequence of the gsp gene, located upstream of the 5' end of the gramicidin S operon (grs operon) in Bacillus brevis, showed a high degree of similarity to the sfp gene product, which is located downstream of the srfA operon in B. subtilis. The gsp gene complemented in trans a defect in the sfp gene (sfpO) and promoted production of the lipopeptide antibiotic surfactin. The functional homology of Gsp and Sfp and the sequence similarity of these two proteins to EntD suggest that the three proteins represent a new class of proteins involved in peptide secretion, in support of a hypothesis published previously (T. H. Grossman, M. Tuckman, S. Ellestad, and M. S. Osburne, J. Bacteriol. 175:6203-6211, 1993). Images PMID:7512553
Thomas, Paul D; Kejariwal, Anish; Campbell, Michael J; Mi, Huaiyu; Diemer, Karen; Guo, Nan; Ladunga, Istvan; Ulitsky-Lazareva, Betty; Muruganujan, Anushya; Rabkin, Steven; Vandergriff, Jody A; Doremieux, Olivier
2003-01-01
The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. The ontology terms and protein families and subfamilies, as well as Drosophila gene c;assifications, can be browsed and searched for free. Due to outstanding contractual obligations, access to human gene classifications and to protein family trees and multiple sequence alignments will temporarily require a nominal registration fee. PANTHER is publicly available on the web at http://panther.celera.com.
Huang, Ting-Kuo; Falk, Bryce W; Dandekar, Abhaya M; McDonald, Karen A
2018-05-24
We have previously demonstrated that the inducible plant viral vector (CMViva) in transgenic plant cell cultures can significantly improve the productivity of extracellular functional recombinant human alpha-1-antiryspin (rAAT) compared with either a common plant constitutive promoter ( Cauliflower mosaic virus (CaMV) 35S) or a chemically inducible promoter (estrogen receptor-based XVE) system. For a transgenic plant host system, however, viral or transgene-induced post-transcriptional gene silencing (PTGS) has been identified as a host response mechanism that may dramatically reduce the expression of a foreign gene. Previous studies have suggested that viral gene silencing suppressors encoded by a virus can block or interfere with the pathways of transgene-induced PTGS in plant cells. In this study, the capability of nine different viral gene silencing suppressors were evaluated for improving the production of rAAT protein in transgenic plant cell cultures (CMViva, XVE or 35S system) using an Agrobacterium -mediated transient expression co-cultivation process in which transgenic plant cells and recombinant Agrobacterium carrying the viral gene silencing suppressor were grown together in suspension cultures. Through the co-cultivation process, the impacts of gene silencing suppressors on the rAAT production were elucidated, and promising gene silencing suppressors were identified. Furthermore, the combinations of gene silencing suppressors were optimized using design of experiments methodology. The results have shown that in transgenic CMViva cell cultures, the functional rAAT as a percentage of total soluble protein is increased 5.7 fold with the expression of P19, and 17.2 fold with the co-expression of CP, P19 and P24.
Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production.
Kannuchamy, Saranyah; Mukund, Nisha; Saleena, Lilly M
2016-05-11
The twin problem of shortage in fossil fuel and increase in environmental pollution can be partly addressed by blending of ethanol with transport fuel. Increasing the ethanol production for this purpose without affecting the food security of the countries would require the use of cellulosic plant materials as substrate. Clostridium thermocellum is an anaerobic thermophilic bacterium with cellulolytic property and the ability to produce ethanol. But its application as biocatalyst for ethanol production is limited because pyruvate ferredoxin oxidoreductase, which diverts pyruvate to ethanol production pathway, has low affinity to the substrate. Therefore, the present study was undertaken to genetically modify C. thermocellum for enhancing its ethanol production capacity by transferring pyruvate carboxylase (pdc) and alcohol dehydrogenase (adh) genes of the homoethanol pathway from Zymomonas mobilis. The pdc and adh genes from Z. mobilis were cloned in pNW33N, and transformed to Clostridium thermocellum DSM 1313 by electroporation to generate recombinant CTH-pdc, CTH-adh and CTH-pdc-adh strains that carried heterologous pdc, adh, and both genes, respectively. The plasmids were stably maintained in the recombinant strains. Though both pdc and adh were functional in C. thermocellum, the presence of adh severely limited the growth of the recombinant strains, irrespective of the presence or absence of the pdc gene. The recombinant CTH-pdc strain showed two-fold increase in pyruvate carboxylase activity and ethanol production when compared with the wild type strain. Pyruvate decarboxylase gene of the homoethanol pathway from Z mobilis was functional in recombinant C. thermocellum strain and enhanced its ability to produced ethanol. Strain improvement and bioprocess optimizations may further increase the ethanol production from this recombinant strain.
Functional and Evolutionary Characterization of a Gene Transfer Agent’s Multilocus “Genome”
Hynes, Alexander P.; Shakya, Migun; Mercer, Ryan G.; Grüll, Marc P.; Bown, Luke; Davidson, Fraser; Steffen, Ekaterina; Matchem, Heidi; Peach, Mandy E.; Berger, Tim; Grebe, Katherine; Zhaxybayeva, Olga; Lang, Andrew S.
2016-01-01
Gene transfer agents (GTAs) are phage-like particles that can package and transfer a random piece of the producing cell’s genome, but are unable to transfer all the genes required for their own production. As such, GTAs represent an evolutionary conundrum: are they selfish genetic elements propagating through an unknown mechanism, defective viruses, or viral structures “repurposed” by cells for gene exchange, as their name implies? In Rhodobacter capsulatus, production of the R. capsulatus GTA (RcGTA) particles is associated with a cluster of genes resembling a small prophage. Utilizing transcriptomic, genetic and biochemical approaches, we report that the RcGTA “genome” consists of at least 24 genes distributed across five distinct loci. We demonstrate that, of these additional loci, two are involved in cell recognition and binding and one in the production and maturation of RcGTA particles. The five RcGTA “genome” loci are widespread within Rhodobacterales, but not all loci have the same evolutionary histories. Specifically, two of the loci have been subject to frequent, probably virus-mediated, gene transfer events. We argue that it is unlikely that RcGTA is a selfish genetic element. Instead, our findings are compatible with the scenario that RcGTA is a virus-derived element maintained by the producing organism due to a selective advantage of within-population gene exchange. The modularity of the RcGTA “genome” is presumably a result of selection on the host organism to retain GTA functionality. PMID:27343288
Akao, Takeshi; Gomi, Katsuya; Goto, Kuniyasu; Okazaki, Naoto; Akita, Osamu
2002-07-01
In solid-state cultures (SC), Aspergillus oryzae shows characteristics such as high-level production and secretion of enzymes and hyphal differentiation with asexual development which are absent in liquid (submerged) culture (LC). It was predicted that many of the genes involved in the characteristics of A. oryzae in SC are differentially expressed between SC and LC. We generated two subtracted cDNA libraries with bi-directional cDNA subtractive hybridizations to isolate and identify such genes. Among them, we identified genes upregulated in or specific to SC, such as the AOS ( A. oryzae SC-specific gene) series, and those downregulated or not expressed in SC, such as the AOL ( A. oryzae LC-specific) series. Sequencing analyses revealed that the AOS series and the AOL series contain genes encoding extra- and intracellular enzymes and transport proteins. However, half were functionally unclassified by nucleotide sequences. Also, by expression profile, the AOS series comprised two groups. These gene products' molecular functions and physiological roles in SC await further investigation.
Andersen, Mikael Rørdam
2014-11-01
Primary metabolism affects all phenotypical traits of filamentous fungi. Particular examples include reacting to extracellular stimuli, producing precursor molecules required for cell division and morphological changes as well as providing monomer building blocks for production of secondary metabolites and extracellular enzymes. In this review, all annotated genes from four Aspergillus species have been examined. In this process, it becomes evident that 80-96% of the genes (depending on the species) are still without verified function. A significant proportion of the genes with verified metabolic functions are assigned to secondary or extracellular metabolism, leaving only 2-4% of the annotated genes within primary metabolism. It is clear that primary metabolism has not received the same attention in the post-genomic area as many other research areas--despite its role at the very centre of cellular function. However, several methods can be employed to use the metabolic networks in tandem with comparative genomics to accelerate functional assignment of genes in primary metabolism. In particular, gaps in metabolic pathways can be used to assign functions to orphan genes. In this review, applications of this from the Aspergillus genes will be examined, and it is proposed that, where feasible, this should be a standard part of functional annotation of fungal genomes. © The Author 2014. Published by Oxford University Press.
Hamilton, Joshua J; Reed, Jennifer L
2012-01-01
Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here.
Hamilton, Joshua J.; Reed, Jennifer L.
2012-01-01
Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-consuming and do not identify the effect network differences have on the functional states of the network. We have developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical production differences between the two models. We also use this approach to aid in the development of a genome-scale model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models and biological systems beyond those presented here. PMID:22666308
Popov, B V; Shilo, P S; Zhidkova, O V; Zaichik, A M; Petrov, N S
2015-06-01
Using stable constitutive expression of retinoblastoma gene product (pRb) in polypotent mesenchymal 10T1/2 cells we obtained stable cell lines hyperexpressing functionally active or inactive mutant pRb. The cells producing active exogenous pRb demonstrated high sensitivity to adipocyte differentiation inductors, whereas production of inactive form of the exogenous protein suppressed adipocyte differentiation. The obtained lines can serve as the experimental model for studying the role of pRb in determination of adipocyte differentiation.
Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coradetti, Samuel T.; Pinel, Dominic; Geiselman, Gina M.
The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted functionmore » in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. Lastly, these results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.« less
Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides
Coradetti, Samuel T.; Pinel, Dominic; Geiselman, Gina M.; ...
2018-03-09
The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted functionmore » in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. Lastly, these results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi.« less
A Genome-Wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells
Zhang, Eric E.; Liu, Andrew C.; Hirota, Tsuyoshi; Miraglia, Loren J.; Welch, Genevieve; Pongsawakul, Pagkapol Y.; Liu, Xianzhong; Atwood, Ann; Huss, Jon W.; Janes, Jeff; Su, Andrew I.; Hogenesch, John B.; Kay, Steve A.
2009-01-01
Summary Two decades of research identified more than a dozen clock genes and defined a biochemical feedback mechanism of circadian oscillator function. To identify additional clock genes and modifiers, we conducted a genome-wide siRNA screen in a human cellular clock model. Knockdown of nearly a thousand genes reduced rhythm amplitude. Potent effects on period length or increased amplitude were less frequent; we found hundreds of these and confirmed them in secondary screens. Characterization of a subset of these genes demonstrated a dosage-dependent effect on oscillator function. Protein interaction network analysis showed that dozens of gene products directly or indirectly associate with known clock components. Pathway analysis revealed these genes are overrepresented for components of insulin and hedgehog signaling, the cell cycle, and the folate metabolism. Coupled with data showing many of these pathways are clock-regulated, we conclude the clock is interconnected with many aspects of cellular function. PMID:19765810
Virgin, Herbert W; Levine, Beth
2009-01-01
In its classical form, autophagy is a pathway by which cytoplasmic constituents, including intracellular pathogens, are sequestered in a double-membrane–bound autophagosome and delivered to the lysosome for degradation. This pathway has been linked to diverse aspects of innate and adaptive immunity, including pathogen resistance, production of type I interferon, antigen presentation, tolerance and lymphocyte development, as well as the negative regulation of cytokine signaling and inflammation. Most of these links have emerged from studies in which genes encoding molecules involved in autophagy are inactivated in immune effector cells. However, it is not yet known whether all of the critical functions of such genes in immunity represent ‘classical autophagy’ or possible as-yet-undefined autophagolysosome-independent functions of these genes. This review summarizes phenotypes that result from the inactivation of autophagy genes in the immune system and discusses the pleiotropic functions of autophagy genes in immunity. PMID:19381141
Transgenic rescue demonstrates involvement of the Ian5 gene in T cell development in the rat.
Michalkiewicz, Mieczyslaw; Michalkiewicz, Teresa; Ettinger, Ruth A; Rutledge, Elizabeth A; Fuller, Jessica M; Moralejo, Daniel H; Van Yserloo, Brian; MacMurray, Armand J; Kwitek, Anne E; Jacob, Howard J; Lander, Eric S; Lernmark, Ake
2004-10-04
A single point mutation in a novel immune-associated nucleotide gene 5 (Ian5) coincides with severe T cell lymphopenia in BB rats. We used a transgenic rescue approach in lymphopenic BB-derived congenic F344.lyp/lyp rats to determine whether this mutation is responsible for lymphopenia and to establish the functional importance of this novel gene. A 150-kb P1 artificial chromosome (PAC) transgene harboring a wild-type allele of the rat Ian5 gene restored Ian5 transcript and protein levels, completely rescuing the T cell lymphopenia in the F344.lyp/lyp rats. This successful complementation provides direct functional evidence that the Ian5 gene product is essential for maintaining normal T cell levels. It also demonstrates that transgenic rescue in the rat is a practical and definitive method for revealing the function of a novel gene.
Ayuso, Miriam; Fernández, Almudena; Núñez, Yolanda; Benítez, Rita; Isabel, Beatriz; Barragán, Carmen; Fernández, Ana Isabel; Rey, Ana Isabel; Medrano, Juan F.; Cánovas, Ángela; González-Bulnes, Antonio; López-Bote, Clemente; Ovilo, Cristina
2015-01-01
Iberian ham production includes both purebred (IB) and Duroc-crossbred (IBxDU) Iberian pigs, which show important differences in meat quality and production traits, such as muscle growth and fatness. This experiment was conducted to investigate gene expression differences, transcriptional regulation and genetic polymorphisms that could be associated with the observed phenotypic differences between IB and IBxDU pigs. Nine IB and 10 IBxDU pigs were slaughtered at birth. Morphometric measures and blood samples were obtained and samples from Biceps femoris muscle were employed for compositional and transcriptome analysis by RNA-Seq technology. Phenotypic differences were evident at this early age, including greater body size and weight in IBxDU and greater Biceps femoris intramuscular fat and plasma cholesterol content in IB newborns. We detected 149 differentially expressed genes between IB and IBxDU neonates (p < 0.01 and Fold-Change > 1. 5). Several were related to adipose and muscle tissues development (DLK1, FGF21 or UBC). The functional interpretation of the transcriptomic differences revealed enrichment of functions and pathways related to lipid metabolism in IB and to cellular and muscle growth in IBxDU pigs. Protein catabolism, cholesterol biosynthesis and immune system were functions enriched in both genotypes. We identified transcription factors potentially affecting the observed gene expression differences. Some of them have known functions on adipogenesis (CEBPA, EGRs), lipid metabolism (PPARGC1B) and myogenesis (FOXOs, MEF2D, MYOD1), which suggest a key role in the meat quality differences existing between IB and IBxDU hams. We also identified several polymorphisms showing differential segregation between IB and IBxDU pigs. Among them, non-synonymous variants were detected in several transcription factors as PPARGC1B and TRIM63 genes, which could be associated to altered gene function. Taken together, these results provide information about candidate genes, metabolic pathways and genetic polymorphisms potentially involved in phenotypic differences between IB and IBxDU pigs associated to meat quality and production traits. PMID:26695515
InteGO2: A web tool for measuring and visualizing gene semantic similarities using Gene Ontology
Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang; ...
2016-08-31
Here, the Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. As a result, we present InteGO2, a web toolmore » that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. In conclusion, InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface.« less
InteGO2: a web tool for measuring and visualizing gene semantic similarities using Gene Ontology.
Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang; Juan, Liran; Jiang, Qinghua; Wang, Yadong; Chen, Jin
2016-08-31
The Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. We present InteGO2, a web tool that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface. InteGO2 can be accessed via http://mlg.hit.edu.cn:8089/ .
InteGO2: A web tool for measuring and visualizing gene semantic similarities using Gene Ontology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang
Here, the Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. As a result, we present InteGO2, a web toolmore » that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. In conclusion, InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface.« less
Pasture-feeding of Charolais steers influences skeletal muscle metabolism and gene expression.
Cassar-Malek, I; Jurie, C; Bernard, C; Barnola, I; Micol, D; Hocquette, J-F
2009-10-01
Extensive beef production systems on pasture are promoted to improve animal welfare and beef quality. This study aimed to compare the influence on muscle characteristics of two management approaches representative of intensive and extensive production systems. One group of 6 Charolais steers was fed maize-silage indoors and another group of 6 Charolais steers grazed on pasture. Activities of enzymes representative of glycolytic and oxidative (Isocitrate dehydrogenase [ICDH], citrate synthase [CS], hydroxyacyl-CoA dehydrogenase [HAD]) muscle metabolism were assessed in Rectus abdominis (RA) and Semitendinosus (ST) muscles. Activities of oxidative enzymes ICDH, CS and HAD were higher in muscles from grazing animals demonstrating a plasticity of muscle metabolism according to the production and feeding system. Gene expression profiling in RA and ST muscles was performed on both production groups using a multi-tissue bovine cDNA repertoire. Variance analysis showed an effect of the muscle type and of the production system on gene expression (P<0.001). A list of the 212 most variable genes according to the production system was established, of which 149 genes corresponded to identified genes. They were classified according to their gene function annotation mainly in the "protein metabolism and modification", "signal transduction", "cell cycle", "developmental processes" and "muscle contraction" biological processes. Selenoprotein W was found to be underexpressed in pasture-fed animals and could be proposed as a putative gene marker of the grass-based system. In conclusion, enzyme-specific adaptations and gene expression modifications were observed in response to the production system and some of them could be candidates for grazing or grass-feeding traceability.
Liu, Jing; Hua, Wei; Yang, Hong-Li; Zhan, Gao-Miao; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong
2012-01-01
Seed yield and oil content are two important agricultural characteristics in oil crop breeding, and a lot of functional gene research is being concentrated on increasing these factors. In this study, by differential gene expression analyses between rapeseed lines (zy036 and 51070) which exhibit different levels of seed oil production, BnGRF2 (Brassica napus growth-regulating factor 2-like gene) was identified in the high oil-producing line zy036. To elucidate the possible roles of BnGRF2 in seed oil production, the cDNA sequences of the rapeseed GRF2 gene were isolated. The Blastn result showed that rapeseed contained BnGRF2a/2b which were located in the A genome (A1 and A3) and C genome (C1 and C6), respectively, and the dominantly expressed gene BnGRF2a was chosen for transgenic research. Analysis of 35S-BnGRF2a transgenic Arabidopsis showed that overexpressed BnGRF2a resulted in an increase in seed oil production of >50%. Moreover, BnGRF2a also induced a >20% enlargement in extended leaves and >40% improvement in photosynthetic efficiency because of an increase in the chlorophyll content. Furthermore, transcriptome analyses indicated that some genes associated with cell proliferation, photosynthesis, and oil synthesis were up-regulated, which revealed that cell number and plant photosynthesis contributed to the increased seed weight and oil content. Because of less efficient self-fertilization induced by the longer pistil in the 35S-BnGRF2a transgenic line, Napin-BnGRF2a transgenic lines were further used to identify the function of BnGRF2, and the results showed that seed oil production also could increase >40% compared with the wild-type control. The results suggest that improvement to economically important characteristics in oil crops may be achieved by manipulation of the GRF2 expression level. PMID:22442419
Liu, Jing; Hua, Wei; Yang, Hong-Li; Zhan, Gao-Miao; Li, Rong-Jun; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Wang, Han-Zhong
2012-06-01
Seed yield and oil content are two important agricultural characteristics in oil crop breeding, and a lot of functional gene research is being concentrated on increasing these factors. In this study, by differential gene expression analyses between rapeseed lines (zy036 and 51070) which exhibit different levels of seed oil production, BnGRF2 (Brassica napus growth-regulating factor 2-like gene) was identified in the high oil-producing line zy036. To elucidate the possible roles of BnGRF2 in seed oil production, the cDNA sequences of the rapeseed GRF2 gene were isolated. The Blastn result showed that rapeseed contained BnGRF2a/2b which were located in the A genome (A1 and A3) and C genome (C1 and C6), respectively, and the dominantly expressed gene BnGRF2a was chosen for transgenic research. Analysis of 35S-BnGRF2a transgenic Arabidopsis showed that overexpressed BnGRF2a resulted in an increase in seed oil production of >50%. Moreover, BnGRF2a also induced a >20% enlargement in extended leaves and >40% improvement in photosynthetic efficiency because of an increase in the chlorophyll content. Furthermore, transcriptome analyses indicated that some genes associated with cell proliferation, photosynthesis, and oil synthesis were up-regulated, which revealed that cell number and plant photosynthesis contributed to the increased seed weight and oil content. Because of less efficient self-fertilization induced by the longer pistil in the 35S-BnGRF2a transgenic line, Napin-BnGRF2a transgenic lines were further used to identify the function of BnGRF2, and the results showed that seed oil production also could increase >40% compared with the wild-type control. The results suggest that improvement to economically important characteristics in oil crops may be achieved by manipulation of the GRF2 expression level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Ma, Zihao; Carr, Steven A.
Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC).more » Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. Molecular & Cellular Proteomics 16: 10.1074/mcp.M116.060301, 121–134, 2017.« less
Komers, Radko; Xu, Bei; Fu, Yi; McClelland, Aaron; Kantharidis, Phillip; Mittal, Amit; Cohen, Herbert T.; Cohen, David M.
2014-01-01
Diabetes is among the most common causes of end-stage renal disease, although its pathophysiology is incompletely understood. We performed next-generation sequencing-based transcriptome analysis of renal gene expression changes in the OVE26 murine model of diabetes (age 15 weeks), relative to non-diabetic control, in the presence and absence of short-term (seven-day) treatment with the angiotensin receptor blocker, losartan (n = 3–6 biological replicates per condition). We detected 1438 statistically significant changes in gene expression across conditions. Of the 638 genes dysregulated in diabetes relative to the non-diabetic state, >70% were downregulation events. Unbiased functional annotation of genes up- and down-regulated by diabetes strongly associated (p<1×10−8) with terms for oxidative stress and for endoplasmic reticulum stress/protein folding. Most of the individual gene products up- or down-regulated with diabetes were unaffected by losartan treatment; however, of the gene products dysregulated in diabetes and influenced by losartan treatment, the vast majority of changes were in the direction of amelioration rather than exacerbation of the diabetic dysregulation. This group of losartan-protected genes associated strongly with annotation terms for endoplasmic reticulum stress, heat shock proteins, and chaperone function, but not oxidative stress; therefore, the losartan-unaffected genes suggest avenues for additional therapeutic opportunity in diabetes. Interestingly, the gene product most highly upregulated by diabetes (>52-fold), encoded by the cationic amino acid transporter Slc7a12, and the gene product most highly downregulated by diabetes (>99%) – encoded by the “pseudogene” Gm6300 – are adjacent in the murine genome, are members of the SLC7 gene family, and are likely paralogous. Therefore, diabetes activates a near-total genetic switch between these two paralogs. Other individual-level changes in gene expression are potentially relevant to diabetic pathophysiology, and novel pathways are suggested. Genes unaffected by diabetes alone but exhibiting increased renal expression with losartan produced a signature consistent with malignant potential. PMID:24827579
Tanaka, T; Kawata, M
1988-08-01
We have isolated a DNA fragment from Bacillus subtilis 168 which, when present in a high-copy plasmid, inhibited production of extracellular alkaline and neutral proteases. The gene responsible for this activity was referred to as iep. The open reading frame of iep was found to be incomplete in the cloned DNA fragment. When the intact iep gene was reconstructed after the missing part of the iep gene had been cloned, it showed an enhancing effect on the production of the extracellular proteases. The open reading frame encodes a polypeptide of 229 amino acids with a molecular weight of ca. 25,866. Deletion of two amino acids from the N-terminal half of the putative iep protein resulted in dual effects, i.e., a decrease in the inhibitory activity shown by the incomplete iep gene and a slight increase in the enhancing activity shown by the complete iep gene. These results show that the iep gene product is a bifunctional protein, containing inhibitory and enhancing activities for the exoprotease production in the N-terminal and C-terminal regions, respectively. It was found by genetic and functional analyses that iep lies very close to sacU.
Gene expression during different periods of the handling-stress response in Pampus argenteus
NASA Astrophysics Data System (ADS)
Sun, Peng; Tang, Baojun; Yin, Fei
2017-11-01
Common aquaculture practices subject fish to a variety of acute and chronic stressors. Such stressors are inherent in aquaculture production but can adversely affect survival, growth, immune response, reproductive capacity, and behavior. Understanding the biological mechanisms underlying stress responses helps with methods to alleviate the negative effects through better aquaculture practices, resulting in improved animal welfare and production efficiency. In the present study, transcriptome sequencing of liver and kidney was performed in silver pomfret (Pampus argenteus) subjected to handling stress versus controls. A total of 162.19 million clean reads were assembled to 30 339 unigenes. The quality of the assembly was high, with an N50 length of 2 472 bases. For function classification and pathway assignment, the unigenes were categorized into three GO (gene ontology) categories, twenty-six clusters of eggNOG (evolutionary genealogy of genes: non-supervised orthologous groups) function categories, and thirty-eight KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Stress affected different functional groups of genes in the tissues studied. Differentially expressed genes were mainly involved in metabolic pathways (carbohydrate metabolism, lipid metabolism, amino-acid metabolism, uptake of cofactors and vitamins, and biosynthesis of other secondary metabolites), environmental information processing (signaling molecules and their interactions), organismal systems (endocrine system, digestive system), and disease (immune, neurodegenerative, endocrine and metabolic diseases). This is the first reported analysis of genome-wide transcriptome in P. argenteus, and the findings expand our understanding of the silver pomfret genome and gene expression in association with stress. The results will be useful to future analyses of functional genes and studies of healthy artificial breeding in P. argenteus and other related fish species.
Pirhonen, M; Flego, D; Heikinheimo, R; Palva, E T
1993-01-01
Virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a complex arsenal of plant cell wall-degrading enzymes. Production of these exoenzymes is controlled by a global regulatory mechanism. A virulent mutants in one of the regulatory loci, expI, show a pleiotropic defect in the growth phase-dependent transcriptional activation of exoenzyme gene expression. The expI gene encodes a 26 kDa polypeptide that is structurally and functionally related to the luxI gene product of Vibrio fischeri. Functional similarity of expI and luxI has been demonstrated by reciprocal genetic complementation experiments. LuxI controls bioluminescence in V.fischeri in a growth phase-dependent manner by directing the synthesis of the diffusible autoinducer, N-(3-oxohexanoyl) homoserine lactone. E.c. subsp. carotovora expI+ strains or Escherichia coli harboring the cloned expI gene excrete a small diffusible signal molecule that complements the expI mutation of Erwinia as well as a luxI mutation of V.fischeri. This extracellular complementation can also be achieved by E.coli harboring the luxI gene from V.fischeri or by adding the synthetic V.fischeri autoinducer. Both the production of the plant tissue-macerating exoenzymes and the ability of the bacteria to propagate in planta are restored in expI mutants by autoinducer addition. These data suggest that the same signal molecule is employed in control of such diverse processes as virulence in a plant pathogen and bioluminescence in a marine bacterium, and may represent a general mechanism by which bacteria modulate gene expression in response to changing environmental conditions. Images PMID:8508772
Pirhonen, M; Flego, D; Heikinheimo, R; Palva, E T
1993-06-01
Virulence of the plant pathogen Erwinia carotovora subsp. carotovora is dependent on the production and secretion of a complex arsenal of plant cell wall-degrading enzymes. Production of these exoenzymes is controlled by a global regulatory mechanism. A virulent mutants in one of the regulatory loci, expI, show a pleiotropic defect in the growth phase-dependent transcriptional activation of exoenzyme gene expression. The expI gene encodes a 26 kDa polypeptide that is structurally and functionally related to the luxI gene product of Vibrio fischeri. Functional similarity of expI and luxI has been demonstrated by reciprocal genetic complementation experiments. LuxI controls bioluminescence in V.fischeri in a growth phase-dependent manner by directing the synthesis of the diffusible autoinducer, N-(3-oxohexanoyl) homoserine lactone. E.c. subsp. carotovora expI+ strains or Escherichia coli harboring the cloned expI gene excrete a small diffusible signal molecule that complements the expI mutation of Erwinia as well as a luxI mutation of V.fischeri. This extracellular complementation can also be achieved by E.coli harboring the luxI gene from V.fischeri or by adding the synthetic V.fischeri autoinducer. Both the production of the plant tissue-macerating exoenzymes and the ability of the bacteria to propagate in planta are restored in expI mutants by autoinducer addition. These data suggest that the same signal molecule is employed in control of such diverse processes as virulence in a plant pathogen and bioluminescence in a marine bacterium, and may represent a general mechanism by which bacteria modulate gene expression in response to changing environmental conditions.
ERIC Educational Resources Information Center
Flannery, Maura C.
1999-01-01
Argues that biologists' understanding of the cell has become richer over the past 30 years. Describes how genetic engineering and sophisticated computer technology have provided an increased knowledge of genes, gene products, components of cells, and the structure and function of proteins. (CCM)
Guidelines for the functional annotation of microRNAs using the Gene Ontology
D'Eustachio, Peter; Smith, Jennifer R.; Zampetaki, Anna
2016-01-01
MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual). PMID:26917558
Wang, Peipei; Li, Jing; Gao, Xiaoyang; Zhang, Di; Li, Anlin; Liu, Changning
2018-05-29
Physic nut ( Jatropha curcas L.) is a species of flowering plant with great potential for biofuel production and as an emerging model organism for functional genomic analysis, particularly in the Euphorbiaceae family. DNA binding with one finger (Dof) transcription factors play critical roles in numerous biological processes in plants. Nevertheless, the knowledge about members, and the evolutionary and functional characteristics of the Dof gene family in physic nut is insufficient. Therefore, we performed a genome-wide screening and characterization of the Dof gene family within the physic nut draft genome. In total, 24 JcDof genes (encoding 33 JcDof proteins) were identified. All the JcDof genes were divided into three major groups based on phylogenetic inference, which was further validated by the subsequent gene structure and motif analysis. Genome comparison revealed that segmental duplication may have played crucial roles in the expansion of the JcDof gene family, and gene expansion was mainly subjected to positive selection. The expression profile demonstrated the broad involvement of JcDof genes in response to various abiotic stresses, hormonal treatments and functional divergence. This study provides valuable information for better understanding the evolution of JcDof genes, and lays a foundation for future functional exploration of JcDof genes.
Functional characterization of the triple gene block 1 (TGB1) gene of Pepino mosaic virus in tomato
USDA-ARS?s Scientific Manuscript database
Pepino mosaic virus (PepMV) has caused serious economic losses to many greenhouse tomato productions around the world. This potexvirus genome contains five major open reading frames (ORFs) encoding for a 164-kDa RNA-dependent RNA polymerase (RdRp), three triple gene block (TGB) proteins of 26, 14 an...
Development of a Gene Cloning System in Methanogens.
1987-03-27
Genetic transfer via DNA-dependent natural transformation was achieved for two markers, 5-fluorouracil-resistance, and 6- mercaptopurine resistance...resistance genes, and genes coding for enzymes that produce colored products will be tested as markers for plasmid transformation. A functional plasmid...clones, which include resistances to mercaptopurine , azahypoxanthine, diazauracil, kanamycin, mitomycin C, and fluorouracil- mercaptopurine and
A method for CRISPR/Cas9 mutation of genes in fathead minnow
Product Description: CRISPR/Cas9 is a system that can be used to disrupt a gene of interest in any animal. It allows us to study each gene’s role by observing changes in the animal when the gene isn’t functional. We worked out a method to use this technology in the f...
How to Understand the Gene in the Twenty-First Century?
ERIC Educational Resources Information Center
Meyer, Lia Midori Nascimento; Bomfim, Gilberto Cafezeiro; El-Hani, Charbel Nino
2013-01-01
It is widely acknowledged in the literature on philosophy of biology and, more recently, among biologists themselves that the gene concept is currently in crisis. This crisis concerns the so-called "classical molecular concept", according to which a gene is a DNA segment encoding one functional product, which can be either a RNA molecule or a…
Gattiker, Alexandre; Niederhauser-Wiederkehr, Christa; Moore, James; Hermida, Leandro; Primig, Michael
2007-01-01
We report a novel release of the GermOnline knowledgebase covering genes relevant for the cell cycle, gametogenesis and fertility. GermOnline was extended into a cross-species systems browser including information on DNA sequence annotation, gene expression and the function of gene products. The database covers eight model organisms and Homo sapiens, for which complete genome annotation data are available. The database is now built around a sophisticated genome browser (Ensembl), our own microarray information management and annotation system (MIMAS) used to extensively describe experimental data obtained with high-density oligonucleotide microarrays (GeneChips) and a comprehensive system for online editing of database entries (MediaWiki). The RNA data include results from classical microarrays as well as tiling arrays that yield information on RNA expression levels, transcript start sites and lengths as well as exon composition. Members of the research community are solicited to help GermOnline curators keep database entries on genes and gene products complete and accurate. The database is accessible at http://www.germonline.org/.
Status of therapeutic gene transfer to treat cardiovascular disease in dogs and cats.
Sleeper, Meg; Bish, Lawrence T; Haskins, Mark; Ponder, Katherine P; Sweeney, H Lee
2011-06-01
Gene therapy is a procedure resulting in the transfer of a gene(s) into an individual's cells to treat a disease, which is designed to produce a protein or functional RNA (the gene product). Although most current gene therapy clinical trials focus on cancer and inherited diseases, multiple studies have evaluated the efficacy of gene therapy to abrogate various forms of heart disease. Indeed, human clinical trials are currently underway. One goal of gene transfer may be to express a functional gene when the endogenous gene is inactive. Alternatively, complex diseases such as end stage heart failure are characterized by a number of abnormalities at the cellular level, many of which can be targeted using gene delivery to alter myocardial protein levels. This review will discuss issues related to gene vector systems, gene delivery strategies and two cardiovascular diseases in dogs successfully treated with therapeutic gene delivery. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhang, Zongying; Jiang, Shenghui; Wang, Nan; Li, Min; Ji, Xiaohao; Sun, Shasha; Liu, Jingxuan; Wang, Deyun; Xu, Haifeng; Qi, Sumin; Wu, Shujing; Fei, Zhangjun; Feng, Shouqian; Chen, Xuesen
2015-01-01
Apple is one of the most economically important horticultural fruit crops worldwide. It is critical to gain insights into fruit ripening and softening to improve apple fruit quality and extend shelf life. In this study, forward and reverse suppression subtractive hybridization libraries were generated from ‘Taishanzaoxia’ apple fruits sampled around the ethylene climacteric to isolate ripening- and softening-related genes. A set of 648 unigenes were derived from sequence alignment and cluster assembly of 918 expressed sequence tags. According to gene ontology functional classification, 390 out of 443 unigenes (88%) were assigned to the biological process category, 356 unigenes (80%) were classified in the molecular function category, and 381 unigenes (86%) were allocated to the cellular component category. A total of 26 unigenes differentially expressed during fruit development period were analyzed by quantitative RT-PCR. These genes were involved in cell wall modification, anthocyanin biosynthesis, aroma production, stress response, metabolism, transcription, or were non-annotated. Some genes associated with cell wall modification, anthocyanin biosynthesis and aroma production were up-regulated and significantly correlated with ethylene production, suggesting that fruit texture, coloration and aroma may be regulated by ethylene in ‘Taishanzaoxia’. Some of the identified unigenes associated with fruit ripening and softening have not been characterized in public databases. The results contribute to an improved characterization of changes in gene expression during apple fruit ripening and softening. PMID:26719904
Nicholson, Matthew J.; Eaton, Carla J.; Stärkel, Cornelia; Tapper, Brian A.; Cox, Murray P.; Scott, Barry
2015-01-01
The penitremane and janthitremane families of indole-diterpenes are abundant natural products synthesized by Penicillium crustosum and P. janthinellum. Using a combination of PCR, cosmid library screening, and Illumina sequencing we have identified gene clusters encoding enzymes for the synthesis of these compounds. Targeted deletion of penP in P. crustosum abolished the synthesis of penitrems A, B, D, E, and F, and led to accumulation of paspaline, a key intermediate for paxilline biosynthesis in P. paxilli. Similarly, deletion of janP and janD in P. janthinellum abolished the synthesis of prenyl-elaborated indole-diterpenes, and led to accumulation in the latter of 13-desoxypaxilline, a key intermediate for the synthesis of the structurally related aflatremanes synthesized by Aspergillus flavus. This study helps resolve the genetic basis for the complexity of indole-diterpene natural products found within the Penicillium and Aspergillus species. All indole-diterpene gene clusters identified to date have a core set of genes for the synthesis of paspaline and a suite of genes encoding multi-functional cytochrome P450 monooxygenases, FAD dependent monooxygenases, and prenyl transferases that catalyse various regio- and stereo- specific oxidations that give rise to the diversity of indole-diterpene products synthesized by this group of fungi. PMID:26213965
Cho, Jung-Hee; Yoon, Joo-Mi; Lee, Sang-Won; Noh, Young-Hee; Cha, Jae-Soon
2013-01-01
It has been known that most regulation of pathogenicity factor (rpf) genes in xanthomonads regulates virulence in response to the diffusible signal factor, DSF. Although many rpf genes have been functionally characterized, the function of rpfE is still unknown. We cloned the rpfE gene from a Xanthomonas oryzae pv. oryzae (Xoo) Korean race KACC10859 and generated mutant strains to elucidate the role of RpfE with respect to the rpf system. Through experiments using the rpfE-deficient mutant strain, we found that mutation in rpfE gene in Xoo reduced virulence, swarm motility, and production of virulence factors such as cellulase and extracellular polysaccharide. Disease progress by the rpfE-deficient mutant strain was significantly slowed compared to disease progress by the wild type and the number of the rpfE-deficient mutant strain was lower than that of the wild type in the early phase of infection in the inoculated rice leaf. The rpfE mutant strain was unable to utilize sucrose or xylose as carbon sources efficiently in culture. The mutation in rpfE, however, did not affect DSF synthesis. Our results suggest that the rpfE gene regulates the virulence of Xoo under different nutrient conditions without change of DSF production. PMID:25288965
Preston, Jill C.; Kellogg, Elizabeth A.
2006-01-01
Gene duplication is an important mechanism for the generation of evolutionary novelty. Paralogous genes that are not silenced may evolve new functions (neofunctionalization) that will alter the developmental outcome of preexisting genetic pathways, partition ancestral functions (subfunctionalization) into divergent developmental modules, or function redundantly. Functional divergence can occur by changes in the spatio-temporal patterns of gene expression and/or by changes in the activities of their protein products. We reconstructed the evolutionary history of two paralogous monocot MADS-box transcription factors, FUL1 and FUL2, and determined the evolution of sequence and gene expression in grass AP1/FUL-like genes. Monocot AP1/FUL-like genes duplicated at the base of Poaceae and codon substitutions occurred under relaxed selection mostly along the branch leading to FUL2. Following the duplication, FUL1 was apparently lost from early diverging taxa, a pattern consistent with major changes in grass floral morphology. Overlapping gene expression patterns in leaves and spikelets indicate that FUL1 and FUL2 probably share some redundant functions, but that FUL2 may have become temporally restricted under partial subfunctionalization to particular stages of floret development. These data have allowed us to reconstruct the history of AP1/FUL-like genes in Poaceae and to hypothesize a role for this gene duplication in the evolution of the grass spikelet. PMID:16816429
2013-01-01
Background Genetic engineering of industrial microorganisms often suffers from undesirable side effects on essential functions. Reverse engineering is an alternative strategy to improve multifactorial traits like low glycerol/high ethanol yield in yeast fermentation. Previous rational engineering of this trait always affected essential functions like growth and stress tolerance. We have screened Saccharomyces cerevisiae biodiversity for specific alleles causing lower glycerol/higher ethanol yield, assuming higher compatibility with normal cellular functionality. Previous work identified ssk1E330N…K356N as causative allele in strain CBS6412, which displayed the lowest glycerol/ethanol ratio. Results We have now identified a unique segregant, 26B, that shows similar low glycerol/high ethanol production as the superior parent, but lacks the ssk1E330N…K356N allele. Using segregants from the backcross of 26B with the inferior parent strain, we applied pooled-segregant whole-genome sequence analysis and identified three minor quantitative trait loci (QTLs) linked to low glycerol/high ethanol production. Within these QTLs, we identified three novel alleles of known regulatory and structural genes of glycerol metabolism, smp1R110Q,P269Q, hot1P107S,H274Y and gpd1L164P as causative genes. All three genes separately caused a significant drop in the glycerol/ethanol production ratio, while gpd1L164P appeared to be epistatically suppressed by other alleles in the superior parent. The order of potency in reducing the glycerol/ethanol ratio of the three alleles was: gpd1L164P > hot1P107S,H274Y ≥ smp1R110Q,P269Q. Conclusions Our results show that natural yeast strains harbor multiple specific alleles of genes controlling essential functions, that are apparently compatible with survival in the natural environment. These newly identified alleles can be used as gene tools for engineering industrial yeast strains with multiple subtle changes, minimizing the risk of negatively affecting other essential functions. The gene tools act at the transcriptional, regulatory or structural gene level, distributing the impact over multiple targets and thus further minimizing possible side-effects. In addition, the results suggest polygenic analysis of complex traits as a promising new avenue to identify novel components involved in cellular functions, including those important in industrial applications. PMID:23759206
Milne, N; Luttik, M A H; Cueto Rojas, H F; Wahl, A; van Maris, A J A; Pronk, J T; Daran, J M
2015-07-01
In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential platform for production of nitrogen-containing chemicals, uptake and assimilation of ammonium requires 1 ATP per incorporated NH3. Urea assimilation by this yeast is more energy efficient but still requires 0.5 ATP per NH3 produced. To decrease ATP costs for nitrogen assimilation, the S. cerevisiae gene encoding ATP-dependent urease (DUR1,2) was replaced by a Schizosaccharomyces pombe gene encoding ATP-independent urease (ure2), along with its accessory genes ureD, ureF and ureG. Since S. pombe ure2 is a Ni(2+)-dependent enzyme and Saccharomyces cerevisiae does not express native Ni(2+)-dependent enzymes, the S. pombe high-affinity nickel-transporter gene (nic1) was also expressed. Expression of the S. pombe genes into dur1,2Δ S. cerevisiae yielded an in vitro ATP-independent urease activity of 0.44±0.01 µmol min(-1) mg protein(-1) and restored growth on urea as sole nitrogen source. Functional expression of the Nic1 transporter was essential for growth on urea at low Ni(2+) concentrations. The maximum specific growth rates of the engineered strain on urea and ammonium were lower than those of a DUR1,2 reference strain. In glucose-limited chemostat cultures with urea as nitrogen source, the engineered strain exhibited an increased release of ammonia and reduced nitrogen content of the biomass. Our results indicate a new strategy for improving yeast-based production of nitrogen-containing chemicals and demonstrate that Ni(2+)-dependent enzymes can be functionally expressed in S. cerevisiae. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Jeong, Hyeri; Kim, Jongwoon; Kim, Youngjun
2017-09-30
Approximately 1000 chemicals have been reported to possibly have endocrine disrupting effects, some of which are used in consumer products, such as personal care products (PCPs) and cosmetics. We conducted data integration combined with gene network analysis to: (i) identify causal molecular mechanisms between endocrine disrupting chemicals (EDCs) used in PCPs and breast cancer; and (ii) screen candidate EDCs associated with breast cancer. Among EDCs used in PCPs, four EDCs having correlation with breast cancer were selected, and we curated 27 common interacting genes between those EDCs and breast cancer to perform the gene network analysis. Based on the gene network analysis, ESR1, TP53, NCOA1, AKT1, and BCL6 were found to be key genes to demonstrate the molecular mechanisms of EDCs in the development of breast cancer. Using GeneMANIA, we additionally predicted 20 genes which could interact with the 27 common genes. In total, 47 genes combining the common and predicted genes were functionally grouped with the gene ontology and KEGG pathway terms. With those genes, we finally screened candidate EDCs for their potential to increase breast cancer risk. This study highlights that our approach can provide insights to understand mechanisms of breast cancer and identify potential EDCs which are in association with breast cancer.
Welch, Andreanna J; Bedoya-Reina, Oscar C; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D; Lindqvist, Charlotte
2014-02-01
Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis).
Welch, Andreanna J.; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D.; Lindqvist, Charlotte
2014-01-01
Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis). PMID:24504087
Welch, Andreanna J.; Bedoya-Reina, Oscar C.; Carretero-Paulet, Lorenzo; Miller, Webb; Rode, Karyn D.; Lindqvist, Charlotte
2014-01-01
Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate if polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex, and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide, which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of nitric oxide as an adaptive response to control trade-offs between energy production in the form of ATP versus generation of heat (thermogenesis).
Circular RNAs: analysis, expression and potential functions
Salzman, Julia
2016-01-01
Just a few years ago, it had been assumed that the dominant RNA isoforms produced from eukaryotic genes were variants of messenger RNA, functioning as intermediates in gene expression. In early 2012, however, a surprising discovery was made: circular RNA (circRNA) was shown to be a transcriptional product in thousands of human and mouse genes and in hundreds of cases constituted the dominant RNA isoform. Subsequent studies revealed that the expression of circRNAs is developmentally regulated, tissue and cell-type specific, and shared across the eukaryotic tree of life. These features suggest important functions for these molecules. Here, we describe major advances in the field of circRNA biology, focusing on the regulation of and functional roles played by these molecules. PMID:27246710
Salinas, Eduardo; Sifford, Jeffrey M.; Oldenburg, Darby G.
2018-01-01
Gammaherpesvirus (GHV) pathogenesis is a complex process that involves productive viral replication, dissemination to tissues that harbor lifelong latent infection, and reactivation from latency back into a productive replication cycle. Traditional loss-of-function mutagenesis approaches in mice using murine gammaherpesvirus 68 (MHV68), a model that allows for examination of GHV pathogenesis in vivo, have been invaluable for defining requirements for specific viral gene products in GHV infection. But these approaches are insufficient to fully reveal how viral gene products contribute when the encoded protein facilitates multiple processes in the infectious cycle and when these functions vary over time and from one host tissue to another. To address this complexity, we developed an MHV68 genetic platform that enables cell-type-specific and inducible viral gene deletion in vivo. We employed this system to re-evaluate functions of the MHV68 latency-associated nuclear antigen (mLANA), a protein with roles in both viral replication and latency. Cre-mediated deletion in mice of loxP-flanked ORF73 demonstrated the necessity of mLANA in B cells for MHV68 latency establishment. Impaired latency during the transition from draining lymph nodes to blood following mLANA deletion also was observed, supporting the hypothesis that B cells are a major conduit for viral dissemination. Ablation of mLANA in infected germinal center (GC) B cells severely impaired viral latency, indicating the importance of viral passage through the GC for latency establishment. Finally, induced ablation of mLANA during latency resulted in complete loss of affected viral genomes, indicating that mLANA is critically important for maintenance of viral genomes during stable latency. Collectively, these experiments provide new insights into LANA homolog functions in GHV colonization of the host and highlight the potential of a new MHV68 genetic platform to foster a more complete understanding of viral gene functions at discrete stages of GHV pathogenesis. PMID:29364981
Gene Editing Vectors for Studying Nicotinic Acetylcholine Receptors in Cholinergic Transmission.
Peng, Can; Yan, Yijin; Kim, Veronica J; Engle, Staci E; Berry, Jennifer N; McIntosh, J Michael; Neve, Rachael L; Drenan, Ryan M
2018-05-19
Nicotinic acetylcholine receptors (nAChRs), prototype members of the cys-loop ligand gated ion channel family, are key mediators of cholinergic transmission in the central nervous system. Despite their importance, technical gaps exist in our ability to dissect the function of individual subunits in the brain. To overcome these barriers, we designed CRISPR/Cas9 small guide RNA sequences (sgRNAs) for production of loss-of-function alleles in mouse nAChR genes. These sgRNAs were validated in vitro via deep sequencing. We subsequently targeted candidate nAChR genes in vivo by creating herpes simplex virus (HSV) vectors delivering sgRNAs and Cas9 expression to mouse brain. Production of loss-of-function insertions or deletions (indels) by these "all-in-one" HSV vectors was confirmed using brain slice patch clamp electrophysiology coupled with pharmacological analysis. Next, we developed a scheme for cell type-specific gene editing in mouse brain. Knockin mice expressing Cas9 in a Cre-dependent manner were validated using viral microinjections and genetic crosses to common Cre-driver mouse lines. We subsequently confirmed functional Cas9 activity by targeting the ubiquitous neuronal protein, NeuN, using adeno associated virus (AAV) delivery of sgRNAs. Finally, the mouse β2 nAChR gene was successfully targeted in dopamine transporter (DAT) positive neurons via CRISPR/Cas9. The sgRNA sequences and viral vectors, including our scheme for Cre-dependent gene editing, should be generally useful to the scientific research community. These tools could lead to new discoveries related to the function of nAChRs in neurotransmission and behavioral processes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Functional annotation of the vlinc class of non-coding RNAs using systems biology approach
Laurent, Georges St.; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J.L.; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R.R.; Nicolas, Estelle; McCaffrey, Timothy A.; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp
2016-01-01
Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlincRNAs genes likely function in cis to activate nearby genes. This effect while most pronounced in closely spaced vlincRNA–gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlincRNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. PMID:27001520
Juranic Lisnic, Vanda; Babic Cac, Marina; Lisnic, Berislav; Trsan, Tihana; Mefferd, Adam; Das Mukhopadhyay, Chitrangada; Cook, Charles H.; Jonjic, Stipan; Trgovcich, Joanne
2013-01-01
Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq). We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus-associated diseases. PMID:24086132
Improving Microbial Biogasoline Production in Escherichia coli Using Tolerance Engineering
Foo, Jee Loon; Jensen, Heather M.; Dahl, Robert H.; George, Kevin; Keasling, Jay D.; Lee, Taek Soon; Leong, Susanna
2014-01-01
ABSTRACT Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E. coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerance phenotypes belonged to diverse functional groups, such as oxidative stress response (soxS, fpr, and nrdH), general stress response (metR, yqhD, and gidB), heat shock-related response (ibpA), and transport (mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E. coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production. PMID:25370492
2014-01-01
Background The chicken eggshell is a natural mechanical barrier to protect egg components from physical damage and microbial penetration. Its integrity and strength is critical for the development of the embryo or to ensure for consumers a table egg free of pathogens. This study compared global gene expression in laying hen uterus in the presence or absence of shell calcification in order to characterize gene products involved in the supply of minerals and / or the shell biomineralization process. Results Microarrays were used to identify a repertoire of 302 over-expressed genes during shell calcification. GO terms enrichment was performed to provide a global interpretation of the functions of the over-expressed genes, and revealed that the most over-represented proteins are related to reproductive functions. Our analysis identified 16 gene products encoding proteins involved in mineral supply, and allowed updating of the general model describing uterine ion transporters during eggshell calcification. A list of 57 proteins potentially secreted into the uterine fluid to be active in the mineralization process was also established. They were classified according to their potential functions (biomineralization, proteoglycans, molecular chaperone, antimicrobials and proteases/antiproteases). Conclusions Our study provides detailed descriptions of genes and corresponding proteins over-expressed when the shell is mineralizing. Some of these proteins involved in the supply of minerals and influencing the shell fabric to protect the egg contents are potentially useful biological markers for the genetic improvement of eggshell quality. PMID:24649854
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, R.S.
In the past several years researchers have identified at least 20 genes whose products were required for the oxidation of methanol to formaldehyde in three different facultative methylotrophic bacteria. These genes include structural genes for a cytochrome c{sub L} (mox G) and is a specific electron acceptor for methanol dehydrogenase (MDH), and the two structural genes that encode the large subunit (mox F) and smaller subunit (mox I) of MDH. Other genes are required for the synthesis of the prosthetic group of MDH, Pyrroloquinoline quinone (PQQ), and proteins required for assembly of the active MDH in the periplasm. Three genesmore » are believed to be required for incorporation of calcium into the MDH tetramer. The principal investigator`s group has studied the regulation of methanol oxidation in the pink-pigmented-facultative methylotroph Methylobacterium organophilum XX. The authors have mapped several genes and have sequenced the mox F gene and sequences upstream of mox F. The authors had tentatively identified several genes required for the transcription of the MDH structural genes in three methylotrophs. In the previous proposal, the P.I. proposed to establish an in-vitro transcription/translation system to study the function of the regulatory gene products. Further studies demonstrated that the regulation of transcription of these genes was far more complex than imagined at that time and the research plan was modified to determine the number and function of the regulatory genes using genetic approaches.« less
Ethical reasons for narrowing the scope of biotech patents.
Andreassen, Tom
2015-11-01
Patents on biotech products have a scope that goes well beyond what is covered by the most widely applied ethical justifications of intellectual property. Neither natural rights theory from Locke, nor public interest theory of IP rights justifies the wide scope of legal protection. The article takes human genes as an example, focusing on the component that is not invented but persists as unaltered gene information even in the synthetically produced complementary DNA, the cDNA. It is argued that patent on cDNA holds this information captive, or illegitimately appropriates it in limiting other researchers and inventors' opportunity to explore new functions and uses based on this non-invented information. A tighter connection between legal IP protection and the use description stated in the patent claim is suggested. By binding protection to the product's foreseeable functions and use, instead of the product itself and all future uses of it, legitimacy of biotech product patents is restored.
A graph-based semantic similarity measure for the gene ontology.
Alvarez, Marco A; Yan, Changhui
2011-12-01
Existing methods for calculating semantic similarities between pairs of Gene Ontology (GO) terms and gene products often rely on external databases like Gene Ontology Annotation (GOA) that annotate gene products using the GO terms. This dependency leads to some limitations in real applications. Here, we present a semantic similarity algorithm (SSA), that relies exclusively on the GO. When calculating the semantic similarity between a pair of input GO terms, SSA takes into account the shortest path between them, the depth of their nearest common ancestor, and a novel similarity score calculated between the definitions of the involved GO terms. In our work, we use SSA to calculate semantic similarities between pairs of proteins by combining pairwise semantic similarities between the GO terms that annotate the involved proteins. The reliability of SSA was evaluated by comparing the resulting semantic similarities between proteins with the functional similarities between proteins derived from expert annotations or sequence similarity. Comparisons with existing state-of-the-art methods showed that SSA is highly competitive with the other methods. SSA provides a reliable measure for semantics similarity independent of external databases of functional-annotation observations.
Teng, Chang Ying; Dang, Yunkun; Danne, Jillian C; Waller, Ross F; Green, Beverley R
2013-01-01
Dinoflagellates are a large group of algae that contribute significantly to marine productivity and are essential photosynthetic symbionts of corals. Although these algae have fully-functioning mitochondria and chloroplasts, both their organelle genomes have been highly reduced and the genes fragmented and rearranged, with many aberrant transcripts. However, nothing is known about their RNA polymerases. We cloned and sequenced the gene for the nuclear-encoded mitochondrial polymerase (RpoTm) of the dinoflagellate Heterocapsa triquetra and showed that the protein presequence targeted a GFP construct into yeast mitochondria. The gene belongs to a small gene family, which includes a variety of 3'-truncated copies that may have originated by retroposition. The catalytic C-terminal domain of the protein shares nine conserved sequence blocks with other single-subunit polymerases and is predicted to have the same fold as the human enzyme. However, the N-terminal (promoter binding/transcription initiation) domain is not well-conserved. In conjunction with the degenerate nature of the mitochondrial genome, this suggests a requirement for novel accessory factors to ensure the accurate production of functional mRNAs.
Congenital Cytomegalovirus Infection: Molecular Mechanisms Mediating Viral Pathogenesis
Schleiss, Mark R.
2013-01-01
Human cytomegalovirus (CMV) is responsible for approximately 40,000 congenital infections in the United States each year. Congenital CMV disease frequently produces serious neurodevelopmental disability, as well as vision impairment and sensorineural hearing loss. Development of a CMV vaccine is therefore considered to be a major public health priority. The mechanisms by which CMV injures the fetus are complex and likely include a combination of direct fetal injury induced by pathologic virally-encoded gene products, an inability of the maternal immune response to control infection, and the direct impact of infection on placental function. CMV encodes gene products that function, both at the RNA and the protein level, to interfere with many cellular processes. These include gene products that modify the cell cycle; interfere with apoptosis; induce an inflammatory response; mediate vascular injury; induce site-specific breakage of chromosomes; promote oncogenesis; dysregulate cellular proliferation; and facilitate evasion of host immune responses. This minireview summarizes current concepts regarding these aspects of the molecular virology of CMV and the potential pathogenic impact of viral gene expression on the developing fetus. Areas for potential development of novel therapeutic intervention are suggested for improving the outcome of this disabling congenital infection. PMID:21827434
Nemoto, Keiichirou; Hara, Masamitsu; Suzuki, Masashi; Seki, Hikaru; Muranaka, Toshiya; Mano, Yoshihiro
2009-01-22
Tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells can be grown in medium containing indole-3-acetamide (IAM). Based on this finding, the NtAMI1 gene, whose product is functionally equivalent to the AtAMI1 gene of Arabidopsis thaliana and the aux2 gene of Agrobacterium rhizogenes, was isolated from BY-2 cells. Overexpression of the NtAMI1 gene allowed BY-2 cells to proliferate at lower concentrations of IAM, whereas suppression of the NtAMI1 gene by RNA interference (RNAi) caused severe growth inhibition in the medium containing IAM. These results suggest that IAM is incorporated into plant cells and converted to the auxin, indole-3-acetic acid, by NtAMI1.
Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles.
Giordano, Daniela; Coppola, Daniela; Russo, Roberta; Denaro, Renata; Giuliano, Laura; Lauro, Federico M; di Prisco, Guido; Verde, Cinzia
2015-01-01
Microbes produce a huge array of secondary metabolites endowed with important ecological functions. These molecules, which can be catalogued as natural products, have long been exploited in medical fields as antibiotics, anticancer and anti-infective agents. Recent years have seen considerable advances in elucidating natural-product biosynthesis and many drugs used today are natural products or natural-product derivatives. The major contribution to recent knowledge came from application of genomics to secondary metabolism and was facilitated by all relevant genes being organised in a contiguous DNA segment known as gene cluster. Clustering of genes regulating biosynthesis in bacteria is virtually universal. Modular gene clusters can be mixed and matched during evolution to generate structural diversity in natural products. Biosynthesis of many natural products requires the participation of complex molecular machines known as polyketide synthases and non-ribosomal peptide synthetases. Discovery of new evolutionary links between the polyketide synthase and fatty acid synthase pathways may help to understand the selective advantages that led to evolution of secondary-metabolite biosynthesis within bacteria. Secondary metabolites confer selective advantages, either as antibiotics or by providing a chemical language that allows communication among species, with other organisms and their environment. Herewith, we discuss these aspects focusing on the most clinically relevant bioactive molecules, the thiotemplated modular systems that include polyketide synthases, non-ribosomal peptide synthetases and fatty acid synthases. We begin by describing the evolutionary and physiological role of marine natural products, their structural/functional features, mechanisms of action and biosynthesis, then turn to genomic and metagenomic approaches, highlighting how the growing body of information on microbial natural products can be used to address fundamental problems in environmental evolution and biotechnology. © 2015 Elsevier Ltd. All rights reserved.
Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K
2001-04-01
Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta.
Liu, Jin-Feng; Sun, Xiao-Bo; Yang, Guang-Chao; Mbadinga, Serge M.; Gu, Ji-Dong; Mu, Bo-Zhong
2015-01-01
Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase, and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium, and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs. PMID:25873911
Vilmos, Péter; Bujna, Ágnes; Szuperák, Milán; Havelda, Zoltán; Várallyay, Éva; Szabad, János; Kucerova, Lucie; Somogyi, Kálmán; Kristó, Ildikó; Lukácsovich, Tamás; Jankovics, Ferenc; Henn, László; Erdélyi, Miklós
2013-01-01
The first microRNAs were discovered some 20 years ago, but only a small fraction of the microRNA-encoding genes have been described in detail yet. Here we report the molecular analysis of a computationally predicted Drosophila melanogaster microRNA gene, mir-282. We show that the mir-282 gene is the source of a 4.9-kb-long primary transcript with a 5′ cap and a 3′-poly(A) sequence and a mature microRNA of ∼25 bp. Our data strongly suggest the existence of an independent mir-282 gene conserved in holometabolic insects. We give evidence that the mir-282 locus encodes a functional transcript that influences viability, longevity, and egg production in Drosophila. We identify the nervous system-specific adenylate cyclase (rutabaga) as a target of miR-282 and assume that one of the main functions of mir-282 is the regulation of adenylate cyclase activity in the nervous system during metamorphosis. PMID:23852386
Versatile types of polysaccharide-based supramolecular polycation/pDNA nanoplexes for gene delivery
NASA Astrophysics Data System (ADS)
Hu, Yang; Zhao, Nana; Yu, Bingran; Liu, Fusheng; Xu, Fu-Jian
2014-06-01
Different polysaccharide-based supramolecular polycations were readily synthesized by assembling multiple β-cyclodextrin-cored star polycations with an adamantane-functionalized dextran via host-guest interaction in the absence or presence of bioreducible linkages. Compared with nanoplexes of the starting star polycation and pDNA, the supramolecular polycation/pDNA nanoplexes exhibited similarly low cytotoxicity, improved cellular internalization and significantly higher gene transfection efficiencies. The incorporation of disulfide linkages imparted the supramolecular polycation/pDNA nanoplexes with the advantage of intracellular bioreducibility, resulting in better gene delivery properties. In addition, the antitumor properties of supramolecular polycation/pDNA nanoplexes were also investigated using a suicide gene therapy system. The present study demonstrates that the proper assembly of cyclodextrin-cored polycations with adamantane-functionalized polysaccharides is an effective strategy for the production of new nanoplex delivery systems.Different polysaccharide-based supramolecular polycations were readily synthesized by assembling multiple β-cyclodextrin-cored star polycations with an adamantane-functionalized dextran via host-guest interaction in the absence or presence of bioreducible linkages. Compared with nanoplexes of the starting star polycation and pDNA, the supramolecular polycation/pDNA nanoplexes exhibited similarly low cytotoxicity, improved cellular internalization and significantly higher gene transfection efficiencies. The incorporation of disulfide linkages imparted the supramolecular polycation/pDNA nanoplexes with the advantage of intracellular bioreducibility, resulting in better gene delivery properties. In addition, the antitumor properties of supramolecular polycation/pDNA nanoplexes were also investigated using a suicide gene therapy system. The present study demonstrates that the proper assembly of cyclodextrin-cored polycations with adamantane-functionalized polysaccharides is an effective strategy for the production of new nanoplex delivery systems. Electronic supplementary information (ESI) available: 1H NMR assay and synthetic route of Dex-Ad and Dex-SS-Ad. See DOI: 10.1039/c4nr01590h
Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.
2015-01-01
Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346
An RNA Origami Octahedron with Intrinsic siRNAs for Potent Gene Knockdown.
Høiberg, Hans Christian; Sparvath, Steffen M; Andersen, Veronica L; Kjems, Jørgen; Andersen, Ebbe S
2018-05-26
The fields of DNA and RNA nanotechnology have established nucleic acids as valuable building blocks for functional nanodevices with applications in nanomedicine. Here, a simple method for designing and assembling a 3D scaffolded RNA origami wireframe structure with intrinsic functioning small interfering RNAs (siRNAs) embedded is introduced. Uniquely, the method uses an mRNA fragment as scaffold strand, which is folded by sequence-complementarity of nine shorter synthetic strands. High-yield production of the intended 3D structure is verified by transmission electron microscopy (TEM). Production of functional siRNAs is facilitated by incorporating recognition sites for Dicer at selected locations in the structure, and efficient silencing of a target reporter gene is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Production of functional proteins: balance of shear stress and gravity
NASA Technical Reports Server (NTRS)
Kaysen, James Howard (Inventor); Hammond, Timothy Grant (Inventor); Goodwin, Thomas John (Inventor)
2011-01-01
A method for the production of functional proteins including hormones by renal cells in a three dimensional culturing process responsive to shear stress uses a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-.alpha.-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D.sub.3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating an in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.
Joslin, A C; Green, R; German, J B; Lange, M C
2014-09-01
Advances in the development of bioinformatic tools continue to improve investigators' ability to interrogate, organize, and derive knowledge from large amounts of heterogeneous information. These tools often require advanced technical skills not possessed by life scientists. User-friendly, low-barrier-to-entry methods of visualizing nutrigenomics information are yet to be developed. We utilized concept mapping software from the Institute for Human and Machine Cognition to create a conceptual model of diet and health-related data that provides a foundation for future nutrigenomics ontologies describing published nutrient-gene/polymorphism-phenotype data. In this model, maps containing phenotype, nutrient, gene product, and genetic polymorphism interactions are visualized as triples of two concepts linked together by a linking phrase. These triples, or "knowledge propositions," contextualize aggregated data and information into easy-to-read knowledge maps. Maps of these triples enable visualization of genes spanning the One-Carbon Metabolism (OCM) pathway, their sequence variants, and multiple literature-mined associations including concepts relevant to nutrition, phenotypes, and health. The concept map development process documents the incongruity of information derived from pathway databases versus literature resources. This conceptual model highlights the importance of incorporating information about genes in upstream pathways that provide substrates, as well as downstream pathways that utilize products of the pathway under investigation, in this case OCM. Other genes and their polymorphisms, such as TCN2 and FUT2, although not directly involved in OCM, potentially alter OCM pathway functionality. These upstream gene products regulate substrates such as B12. Constellations of polymorphisms affecting the functionality of genes along OCM, together with substrate and cofactor availability, may impact resultant phenotypes. These conceptual maps provide a foundational framework for development of nutrient-gene/polymorphism-phenotype ontologies and systems visualization.
Genetic modification of stem cells for transplantation.
Phillips, M Ian; Tang, Yao Liang
2008-01-14
Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.
Genetic Modification of Stem Cells for Transplantation
Phillips, M. Ian; Tang, Yao Liang
2009-01-01
Gene modification of cells for prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene modified cell has to gain entrance inside the host’s walls and survive and deliver its transgene products Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene modified stem cells in cardiovascular disease, diabetes, neurological diseases,( including Parkinson’s, Alzheimer’s and spinal cord injury repair), bone defects, hemophilia, and cancer. PMID:18031863
Mitu, Shahida Akter; Bose, Utpal; Suwansa-Ard, Saowaros; Turner, Luke H; Zhao, Min; Elizur, Abigail; Ogbourne, Steven M; Shaw, Paul Nicholas; Cummins, Scott F
2017-11-07
The sea cucumber (phylum Echinodermata) body wall is the first line of defense and is well known for its production of secondary metabolites; including vitamins and triterpenoid glycoside saponins that have important ecological functions and potential benefits to human health. The genes involved in the various biosynthetic pathways are unknown. To gain insight into these pathways in an echinoderm, we performed a comparative transcriptome analysis and functional annotation of the body wall and the radial nerve of the sea cucumber Holothuria scabra ; to define genes associated with body wall metabolic functioning and secondary metabolite biosynthesis. We show that genes related to signal transduction mechanisms were more highly represented in the H. scabra body wall, including genes encoding enzymes involved in energy production. Eight of the core triterpenoid biosynthesis enzymes were found, however, the identity of the saponin specific biosynthetic pathway enzymes remains unknown. We confirm the body wall release of at least three different triterpenoid saponins using solid phase extraction followed by ultra-high-pressure liquid chromatography-quadrupole time of flight-mass spectrometry. The resource we have established will help to guide future research to explore secondary metabolite biosynthesis in the sea cucumber.
Kuzmina, U Sh; Zainullina, L F; Sadovnikov, S V; Vakhitov, V A; Vakhitova, Yu V
2018-06-19
To determine the role of NMDA receptors in the functional regulation of immunocompetent cells, comparative assay was carried out for genes expressed in the mononuclears in peripheral blood of healthy persons under normal conditions and after blockade of these receptors. The genes, whose expression changed in response to blockade of NMDA receptors in mononuclears, encode the products involved in regulation of the major functions of immune cells, such as proliferation (IL4, VCAM1, and CDKN2A), apoptosis (BAX, MYC, CDKN2A, HSPB1, and CADD45A), activation (IL4R, IL4, VCAM1, and CDKN2A), and differentiation (IL4, VCAM1, and BAX).
Emerging functions of alternative splicing coupled with nonsense-mediated decay.
Hamid, Fursham M; Makeyev, Eugene V
2014-08-01
Higher eukaryotes rely on AS (alternative splicing) of pre-mRNAs (mRNA precursors) to generate more than one protein product from a single gene and to regulate mRNA stability and translational activity. An important example of the latter function involves an interplay between AS and NMD (nonsense-mediated decay), a cytoplasmic quality control mechanism eliminating mRNAs containing PTCs (premature translation termination codons). Although originally identified as an error surveillance process, AS-NMD additionally provides an efficient strategy for deterministic regulation of gene expression outputs. In this review, we discuss recently published examples of AS-NMD and delineate functional contexts where recurrent use of this mechanism orchestrates expression of important genes.
Ecological engineering helps maximize function in algal oil production.
Jackrel, Sara L; Narwani, Anita; Bentlage, Bastian; Levine, Robert B; Hietala, David C; Savage, Phillip E; Oakley, Todd H; Denef, Vincent J; Cardinale, Bradley J
2018-05-18
Algal biofuels have the potential to curb emissions of greenhouse gases from fossil fuels, but current growing methods fail to produce fuels that meet the multiple standards necessary for economical industrial use. For example, algae grown as monocultures for biofuel production have not simultaneously and economically achieved high yields of the high-quality, lipid-rich biomass desired for the industrial-scale production of bio-oil. Decades of study in the field of ecology have demonstrated that simultaneous increases in multiple functions, such as the quantity and quality of biomass, can occur in natural ecosystems by increasing biological diversity. Here we show that species consortia of algae can improve the production of bio-oil, which benefits from both high biomass yield and high quality of biomass rich in fatty acids. We explain the underlying causes of increased quantity and quality of algal biomass among species consortia by showing that, relative to monocultures, species consortia can differentially regulate lipid metabolism genes while growing to higher levels of biomass, in part due to greater utilization of nutrient resources. We identify multiple genes involved in lipid biosynthesis that are frequently upregulated in bicultures, and further show that these elevated levels of gene expression are highly predictive of the elevated levels in biculture relative to monoculture of multiple quality metrics of algal biomass. These results show that interactions between species can alter the expression of lipid metabolism genes, and further demonstrate that our understanding of diversity-function relationships from natural ecosystems can be harnessed to improve production of bio-oil. Importance section: Algal biofuels are one of the more promising forms of renewable energy. In our study, we investigate whether ecological interactions between species of microalgae regulate two important factors in cultivation - the biomass of the crop produced and quality of the biomass that is produced. We find that species interactions often improved production yields, especially the fatty acid content of the algal biomass, and that differentially expressed genes involved in fatty acid metabolism are predictive of improved quality metrics of bio-oil. Other studies have found that diversity often improves productivity and stability in agricultural and natural ecosystems. Our results provide further evidence that growing multi-species crops of microalgae may improve the production of high-quality biomass for bio-oil. Copyright © 2018 American Society for Microbiology.
Tanaka, T; Kawata, M
1988-01-01
We have isolated a DNA fragment from Bacillus subtilis 168 which, when present in a high-copy plasmid, inhibited production of extracellular alkaline and neutral proteases. The gene responsible for this activity was referred to as iep. The open reading frame of iep was found to be incomplete in the cloned DNA fragment. When the intact iep gene was reconstructed after the missing part of the iep gene had been cloned, it showed an enhancing effect on the production of the extracellular proteases. The open reading frame encodes a polypeptide of 229 amino acids with a molecular weight of ca. 25,866. Deletion of two amino acids from the N-terminal half of the putative iep protein resulted in dual effects, i.e., a decrease in the inhibitory activity shown by the incomplete iep gene and a slight increase in the enhancing activity shown by the complete iep gene. These results show that the iep gene product is a bifunctional protein, containing inhibitory and enhancing activities for the exoprotease production in the N-terminal and C-terminal regions, respectively. It was found by genetic and functional analyses that iep lies very close to sacU. Images PMID:3136143
Nonsense-Mediated Decay in Genetic Disease: Friend or Foe?
Miller, Jake N.; Pearce, David A.
2014-01-01
Eukaryotic cells utilize various RNA quality control mechanisms to ensure high fidelity of gene expression, thus protecting against the accumulation of nonfunctional RNA and the subsequent production of abnormal peptides. Messenger RNAs (mRNAs) are largely responsible for protein production, and mRNA quality control is particularly important for protecting the cell against the downstream effects of genetic mutations. Nonsense-mediated decay (NMD) is an evolutionarily conserved mRNA quality control system in all eukaryotes that degrades transcripts containing premature termination codons (PTCs). By degrading these aberrant transcripts, NMD acts to prevent the production of truncated proteins that could otherwise harm the cell through various insults, such as dominant negative effects or the ER stress response. Although NMD functions to protect the cell against the deleterious effects of aberrant mRNA, there is a growing body of evidence that mutation-, codon-, gene-, cell-, and tissue-specific differences in NMD efficiency can alter the underlying pathology of genetic disease. In addition, the protective role that NMD plays in genetic disease can undermine current therapeutic strategies aimed at increasing the production of full-length functional protein from genes harboring nonsense mutations. Here, we review the normal function of this RNA surveillance pathway and how it is regulated, provide current evidence for the role that it plays in modulating genetic disease phenotypes, and how NMD can be used as a therapeutic target. PMID:25485595
Huang, Lin; Lange, Miles D.; Zhang, Zhixin
2014-01-01
VH replacement occurs through RAG-mediated secondary recombination between a rearranged VH gene and an upstream unrearranged VH gene. Due to the location of the cryptic recombination signal sequence (cRSS, TACTGTG) at the 3′ end of VH gene coding region, a short stretch of nucleotides from the previous rearranged VH gene can be retained in the newly formed VH–DH junction as a “footprint” of VH replacement. Such footprints can be used as markers to identify Ig heavy chain (IgH) genes potentially generated through VH replacement. To explore the contribution of VH replacement products to the antibody repertoire, we developed a Java-based computer program, VH replacement footprint analyzer-I (VHRFA-I), to analyze published or newly obtained IgH genes from human or mouse. The VHRFA-1 program has multiple functional modules: it first uses service provided by the IMGT/V-QUEST program to assign potential VH, DH, and JH germline genes; then, it searches for VH replacement footprint motifs within the VH–DH junction (N1) regions of IgH gene sequences to identify potential VH replacement products; it can also analyze the frequencies of VH replacement products in correlation with publications, keywords, or VH, DH, and JH gene usages, and mutation status; it can further analyze the amino acid usages encoded by the identified VH replacement footprints. In summary, this program provides a useful computation tool for exploring the biological significance of VH replacement products in human and mouse. PMID:24575092
Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki
2013-01-01
Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer reactivity mediated by CD8+ T cells double gene-modified to express WT1-specific TCR and CCR2 not only via CCL2-tropic tumor trafficking, but also CCL2-enhanced WT1-responsiveness. PMID:23441216
Kemperman, Robèr; Jonker, Marnix; Nauta, Arjen; Kuipers, Oscar P.; Kok, Jan
2003-01-01
A region of 12 kb flanking the structural gene of the cyclic antibacterial peptide circularin A of Clostridium beijerinckii ATCC 25752 was sequenced, and the putative proteins involved in the production and secretion of circularin A were identified. The genes are tightly organized in overlapping open reading frames. Heterologous expression of circularin A in Enterococcus faecalis was achieved, and five genes were identified as minimally required for bacteriocin production and secretion. Two of the putative proteins, CirB and CirC, are predicted to contain membrane-spanning domains, while CirD contains a highly conserved ATP-binding domain. Together with CirB and CirC, this ATP-binding protein is involved in the production of circularin A. The fifth gene, cirE, confers immunity towards circularin A when expressed in either Lactococcus lactis or E. faecalis and is needed in order to allow the bacteria to produce bacteriocin. Additional resistance against circularin A is conferred by the activity of the putative transporter consisting of CirB and CirD. PMID:14532033
Elena, Claudia; Ravasi, Pablo; Castelli, María E.; Peirú, Salvador; Menzella, Hugo G.
2014-01-01
The efficient production of functional proteins in heterologous hosts is one of the major bases of modern biotechnology. Unfortunately, many genes are difficult to express outside their original context. Due to their apparent “silent” nature, synonymous codon substitutions have long been thought to be trivial. In recent years, this dogma has been refuted by evidence that codon replacement can have a significant impact on gene expression levels and protein folding. In the past decade, considerable advances in the speed and cost of gene synthesis have facilitated the complete redesign of entire gene sequences, dramatically improving the likelihood of high protein expression. This technology significantly impacts the economic feasibility of microbial-based biotechnological processes by, for example, increasing the volumetric productivities of recombinant proteins or facilitating the redesign of novel biosynthetic routes for the production of metabolites. This review discusses the current applications of this technology, particularly those regarding the production of small molecules and industrially relevant recombinant enzymes. Suggestions for future research and potential uses are provided as well. PMID:24550894
Ding, Long-Jun; Su, Jian-Qiang; Sun, Guo-Xin; Wu, Jin-Shui; Wei, Wen-Xue
2018-02-01
Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community and functional genes to long-term integrated fertilization (chemical combined with organic fertilization) remain unclear. Here, we used pyrosequencing and a microarray-based GeoChip to explore the shifts of microbial community and functional genes in a paddy soil which received over 21-year fertilization with various regimes, including control (no fertilizer), rice straw (R), rice straw plus chemical fertilizer nitrogen (NR), N and phosphorus (NPR), NP and potassium (NPKR), and reduced rice straw plus reduced NPK (L-NPKR). Significant shifts of the overall soil bacterial composition only occurred in the NPKR and L-NPKR treatments, with enrichment of certain groups including Bradyrhizobiaceae and Rhodospirillaceae families that benefit higher productivity. All fertilization treatments significantly altered the soil microbial functional structure with increased diversity and abundances of genes for carbon and nitrogen cycling, in which NPKR and L-NPKR exhibited the strongest effect, while R exhibited the least. Functional gene structure and abundance were significantly correlated with corresponding soil enzymatic activities and rice yield, respectively, suggesting that the structural shift of the microbial functional community under fertilization might promote soil nutrient turnover and thereby affect yield. Overall, this study indicates that the combined application of rice straw and balanced chemical fertilizers was more pronounced in shifting the bacterial composition and improving the functional diversity toward higher productivity, providing a microbial point of view on applying a cost-effective integrated fertilization regime with rice straw plus reduced chemical fertilizers for sustainable nutrient management.
Marty, I; Bureau, S; Sarkissian, G; Gouble, B; Audergon, J M; Albagnac, G
2005-07-01
In order to elucidate the regulation mechanisms of carotenoid biosynthesis in apricot fruit (Prunus armeniaca), carotenoid content and carotenogenic gene expression were analysed as a function of ethylene production in two colour-contrasted apricot varieties. Fruits from Goldrich (GO) were orange, while Moniqui (MO) fruits were white. Biochemical analysis showed that GO accumulated precursors of the uncoloured carotenoids, phytoene and phytofluene, and the coloured carotenoid, beta-carotene, while Moniqui (MO) fruits only accumulated phytoene and phytofluene but no beta-carotene. Physiological analysis showed that ethylene production was clearly weaker in GO than in MO. Carotenogenic gene expression (Psy-1, Pds, and Zds) and carotenoid accumulation were measured with respect to ethylene production which is initiated in mature green fruits at the onset of the climacteric stage or following exo-ethylene or ethylene-receptor inhibitor (1-MCP) treatments. Results showed (i) systematically stronger expression of carotenogenic genes in white than in orange fruits, even for the Zds gene involved in beta-carotene synthesis that is undetectable in MO fruits, (ii) ethylene-induction of Psy-1 and Pds gene expression and the corresponding product accumulation, (iii) Zds gene expression and beta-carotene production independent of ethylene. The different results obtained at physiological, biochemical, and molecular levels revealed the complex regulation of carotenoid biosynthesis in apricots and led to suggestions regarding some possible ways to regulate it.
NoGOA: predicting noisy GO annotations using evidences and sparse representation.
Yu, Guoxian; Lu, Chang; Wang, Jun
2017-07-21
Gene Ontology (GO) is a community effort to represent functional features of gene products. GO annotations (GOA) provide functional associations between GO terms and gene products. Due to resources limitation, only a small portion of annotations are manually checked by curators, and the others are electronically inferred. Although quality control techniques have been applied to ensure the quality of annotations, the community consistently report that there are still considerable noisy (or incorrect) annotations. Given the wide application of annotations, however, how to identify noisy annotations is an important but yet seldom studied open problem. We introduce a novel approach called NoGOA to predict noisy annotations. NoGOA applies sparse representation on the gene-term association matrix to reduce the impact of noisy annotations, and takes advantage of sparse representation coefficients to measure the semantic similarity between genes. Secondly, it preliminarily predicts noisy annotations of a gene based on aggregated votes from semantic neighborhood genes of that gene. Next, NoGOA estimates the ratio of noisy annotations for each evidence code based on direct annotations in GOA files archived on different periods, and then weights entries of the association matrix via estimated ratios and propagates weights to ancestors of direct annotations using GO hierarchy. Finally, it integrates evidence-weighted association matrix and aggregated votes to predict noisy annotations. Experiments on archived GOA files of six model species (H. sapiens, A. thaliana, S. cerevisiae, G. gallus, B. Taurus and M. musculus) demonstrate that NoGOA achieves significantly better results than other related methods and removing noisy annotations improves the performance of gene function prediction. The comparative study justifies the effectiveness of integrating evidence codes with sparse representation for predicting noisy GO annotations. Codes and datasets are available at http://mlda.swu.edu.cn/codes.php?name=NoGOA .
Capomaccio, Stefano; Milanesi, Marco; Bomba, Lorenzo; Cappelli, Katia; Nicolazzi, Ezequiel L; Williams, John L; Ajmone-Marsan, Paolo; Stefanon, Bruno
2015-08-01
Genome-wide association studies (GWAS) have been widely applied to disentangle the genetic basis of complex traits. In cattle breeds, classical GWAS approaches with medium-density marker panels are far from conclusive, especially for complex traits. This is due to the intrinsic limitations of GWAS and the assumptions that are made to step from the association signals to the functional variations. Here, we applied a gene-based strategy to prioritize genotype-phenotype associations found for milk production and quality traits with classical approaches in three Italian dairy cattle breeds with different sample sizes (Italian Brown n = 745; Italian Holstein n = 2058; Italian Simmental n = 477). Although classical regression on single markers revealed only a single genome-wide significant genotype-phenotype association, for Italian Holstein, the gene-based approach identified specific genes in each breed that are associated with milk physiology and mammary gland development. As no standard method has yet been established to step from variation to functional units (i.e., genes), the strategy proposed here may contribute to revealing new genes that play significant roles in complex traits, such as those investigated here, amplifying low association signals using a gene-centric approach. © 2015 Stichting International Foundation for Animal Genetics.
Lee, Wing-Sham; Rudd, Jason J; Kanyuka, Kostya
2015-06-01
Virus-induced gene silencing (VIGS) has emerged as a powerful reverse genetic technology in plants supplementary to stable transgenic RNAi and, in certain species, as a viable alternative approach for gene functional analysis. The RNA virus Barley stripe mosaic virus (BSMV) was developed as a VIGS vector in the early 2000s and since then it has been used to study the function of wheat genes. Several variants of BSMV vectors are available, with some requiring in vitro transcription of infectious viral RNA, while others rely on in planta production of viral RNA from DNA-based vectors delivered to plant cells either by particle bombardment or Agrobacterium tumefaciens. We adapted the latest generation of binary BSMV VIGS vectors for the identification and study of wheat genes of interest involved in interactions with Zymoseptoria tritici and here present detailed and the most up-to-date protocols. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Yang, Laurence; Tan, Justin; O'Brien, Edward J; Monk, Jonathan M; Kim, Donghyuk; Li, Howard J; Charusanti, Pep; Ebrahim, Ali; Lloyd, Colton J; Yurkovich, James T; Du, Bin; Dräger, Andreas; Thomas, Alex; Sun, Yuekai; Saunders, Michael A; Palsson, Bernhard O
2015-08-25
Finding the minimal set of gene functions needed to sustain life is of both fundamental and practical importance. Minimal gene lists have been proposed by using comparative genomics-based core proteome definitions. A definition of a core proteome that is supported by empirical data, is understood at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar across genetic backgrounds (two times higher Spearman rank correlation) and exhibit significantly more complex transcriptional and posttranscriptional regulatory features (40% more transcription start sites per gene, 22% longer 5'UTR). Thus, genome-scale systems biology approaches rigorously identify a functional core proteome needed to support growth. This framework, validated by using high-throughput datasets, facilitates a mechanistic understanding of systems-level core proteome function through in silico models; it de facto defines a paleome.
Qi, Qi; Zhao, Mengxin; Wang, Shiping; Ma, Xingyu; Wang, Yuxuan; Gao, Ying; Lin, Qiaoyan; Li, Xiangzhen; Gu, Baohua; Li, Guoxue; Zhou, Jizhong; Yang, Yunfeng
2017-01-01
As the highest place of the world, the Tibetan plateau is a fragile ecosystem. Given the importance of microbial communities in driving soil nutrient cycling, it is of interest to document the microbial biogeographic pattern here. We adopted a microarray-based tool named GeoChip 4.0 to investigate grassland microbial functional genes along an elevation gradient from 3200 to 3800 m above sea level open to free grazing by local herdsmen and wild animals. Interestingly, microbial functional diversities increase with elevation, so does the relative abundances of genes associated with carbon degradation, nitrogen cycling, methane production, cold shock and oxygen limitation. The range of Shannon diversities (10.27–10.58) showed considerably smaller variation than what was previously observed at ungrazed sites nearby (9.95–10.65), suggesting the important role of livestock grazing on microbial diversities. Closer examination showed that the dissimilarity of microbial community at our study sites increased with elevations, revealing an elevation-decay relationship of microbial functional genes. Both microbial functional diversity and the number of unique genes increased with elevations. Furthermore, we detected a tight linkage of greenhouse gas (CO2) and relative abundances of carbon cycling genes. Our biogeographic study provides insights on microbial functional diversity and soil biogeochemical cycling in Tibetan pastures. PMID:28659870
Functional Reconstitution of a Fungal Natural Product Gene Cluster by Advanced Genome Editing.
Weber, Jakob; Valiante, Vito; Nødvig, Christina S; Mattern, Derek J; Slotkowski, Rebecca A; Mortensen, Uffe H; Brakhage, Axel A
2017-01-20
Filamentous fungi produce varieties of natural products even in a strain dependent manner. However, the genetic basis of chemical speciation between strains is still widely unknown. One example is trypacidin, a natural product of the opportunistic human pathogen Aspergillus fumigatus, which is not produced among different isolates. Combining computational analysis with targeted gene editing, we could link a single nucleotide insertion in the polyketide synthase of the trypacidin biosynthetic pathway and reconstitute its production in a nonproducing strain. Thus, we present a CRISPR/Cas9-based tool for advanced molecular genetic studies in filamentous fungi, exploiting selectable markers separated from the edited locus.
Genetic resources for advanced biofuel production described with the Gene Ontology.
Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, João C; Mukhopadhyay, Biswarup; Tyler, Brett M
2014-01-01
Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.
Genetic resources for advanced biofuel production described with the Gene Ontology
Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; Setubal, João C.; Mukhopadhyay, Biswarup; Tyler, Brett M.
2014-01-01
Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way. PMID:25346727
Genetic resources for advanced biofuel production described with the Gene Ontology
Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane; ...
2014-10-10
Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less
Genetic resources for advanced biofuel production described with the Gene Ontology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torto-Alalibo, Trudy; Purwantini, Endang; Lomax, Jane
Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary.The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology (http://www.mengo.biochem.vt.edu) project is extending the GO to include new terms to describe microbial processes of interest to bioenergymore » production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. We review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.« less
Crude oil as a microbial seed bank with unexpected functional potentials
Cai, Man; Nie, Yong; Chi, Chang-Qiao; Tang, Yue-Qin; Li, Yan; Wang, Xing-Biao; Liu, Ze-Shen; Yang, Yunfeng; Zhou, Jizhong; Wu, Xiao-Lei
2015-01-01
It was widely believed that oil is a harsh habitat for microbes because of its high toxicity and hydrophobicity. However, accumulating evidence has revealed the presence of live microbes in crude oil. Therefore, it’s of value to conduct an in-depth investigation on microbial communities in crude oil. To this end, microorganisms in oil and water phases were collected from four oil-well production mixtures in Qinghai Oilfield, China, and analyzed for their taxonomic and functional compositions via pyrosequencing and GeoChip, respectively. Hierarchical clustering of 16S rRNA gene sequences and functional genes clearly separated crude oil and water phases, suggestive of distinct taxonomic and functional gene compositions between crude oil and water phases. Unexpectedly, Pseudomonas dominated oil phase where diverse functional gene groups were identified, which significantly differed from those in the corresponding water phases. Meanwhile, most functional genes were significantly more abundant in oil phase, which was consistent with their important roles in facilitating survival of their host organisms in crude oil. These findings provide strong evidence that crude oil could be a “seed bank” of functional microorganisms with rich functional potentials. This offers novel insights for industrial applications of microbial-enhanced oil recovery and bioremediation of petroleum-polluted environments. PMID:26525361
Combining functional genomics and chemical biology to identify targets of bioactive compounds.
Ho, Cheuk Hei; Piotrowski, Jeff; Dixon, Scott J; Baryshnikova, Anastasia; Costanzo, Michael; Boone, Charles
2011-02-01
Genome sequencing projects have revealed thousands of suspected genes, challenging researchers to develop efficient large-scale functional analysis methodologies. Determining the function of a gene product generally requires a means to alter its function. Genetically tractable model organisms have been widely exploited for the isolation and characterization of activating and inactivating mutations in genes encoding proteins of interest. Chemical genetics represents a complementary approach involving the use of small molecules capable of either inactivating or activating their targets. Saccharomyces cerevisiae has been an important test bed for the development and application of chemical genomic assays aimed at identifying targets and modes of action of known and uncharacterized compounds. Here we review yeast chemical genomic assays strategies for drug target identification. Copyright © 2010 Elsevier Ltd. All rights reserved.
Regulation of ROS Production and Vascular Function by Carbon Monoxide
Choi, Yoon Kyung; Por, Elaine D.; Kwon, Young-Guen; Kim, Young-Myeong
2012-01-01
Carbon monoxide (CO) is a gaseous molecule produced from heme by heme oxygenase (HO). CO interacts with reduced iron of heme-containing proteins, leading to its involvement in various cellular events via its production of mitochondrial reactive oxygen species (ROS). CO-mediated ROS production initiates intracellular signal events, which regulate the expression of adaptive genes implicated in oxidative stress and functions as signaling molecule for promoting vascular functions, including angiogenesis and mitochondrial biogenesis. Therefore, CO generated either by exogenous delivery or by HO activity can be fundamentally involved in regulating mitochondria-mediated redox cascades for adaptive gene expression and improving blood circulation (i.e., O2 delivery) via neovascularization, leading to the regulation of mitochondrial energy metabolism. This paper will highlight the biological effects of CO on ROS generation and cellular redox changes involved in mitochondrial metabolism and angiogenesis. Moreover, cellular mechanisms by which CO is exploited for disease prevention and therapeutic applications will also be discussed. PMID:22928087
Kim, Jongwoon
2017-01-01
Approximately 1000 chemicals have been reported to possibly have endocrine disrupting effects, some of which are used in consumer products, such as personal care products (PCPs) and cosmetics. We conducted data integration combined with gene network analysis to: (i) identify causal molecular mechanisms between endocrine disrupting chemicals (EDCs) used in PCPs and breast cancer; and (ii) screen candidate EDCs associated with breast cancer. Among EDCs used in PCPs, four EDCs having correlation with breast cancer were selected, and we curated 27 common interacting genes between those EDCs and breast cancer to perform the gene network analysis. Based on the gene network analysis, ESR1, TP53, NCOA1, AKT1, and BCL6 were found to be key genes to demonstrate the molecular mechanisms of EDCs in the development of breast cancer. Using GeneMANIA, we additionally predicted 20 genes which could interact with the 27 common genes. In total, 47 genes combining the common and predicted genes were functionally grouped with the gene ontology and KEGG pathway terms. With those genes, we finally screened candidate EDCs for their potential to increase breast cancer risk. This study highlights that our approach can provide insights to understand mechanisms of breast cancer and identify potential EDCs which are in association with breast cancer. PMID:28973975
A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.
Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru
2014-04-01
Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Mayrhofer, Severine; Pöggeler, Stefanie
2005-04-01
The homothallic filamentous ascomycete Sordaria macrospora possesses genes which are thought to encode two pheromone precursors and two seven-transmembrane pheromone receptors. The pheromone precursor genes are termed ppg1 and ppg2. The putative products derived from the gene sequence show structural similarity to the alpha-factor precursors and a-factor precursors of the yeast Saccharomyces cerevisiae. Likewise, sequence similarity has been found between the putative products of the pheromone receptor genes pre2 and pre1 and the S. cerevisiae Ste2p alpha-factor receptor and Ste3p a-factor receptor, respectively. To investigate whether the alpha-factor-like pheromone-receptor pair of S. macrospora is functional, a heterologous yeast assay was used. Our results show that the S. macrospora alpha-factor-like pheromone precursor PPG1 is processed into an active pheromone by yeast MATalpha cells. The S. macrospora PRE2 protein was demonstrated to be a peptide pheromone receptor. In yeast MATa cells lacking the endogenous Ste2p receptor, the S. macrospora PRE2 receptor facilitated all aspects of the pheromone response. Using a synthetic peptide, we can now predict the sequence of one active form of the S. macrospora peptide pheromone. We proved that S. macrospora wild-type strains secrete an active pheromone into the culture medium and that disruption of the ppg1 gene in S. macrospora prevents pheromone production. However, loss of the ppg1 gene does not affect vegetative growth or fertility. Finally, we established the yeast assay as an easy and useful system for analyzing pheromone production in developmental mutants of S. macrospora.
Rousseau-Gueutin, Mathieu; Huang, Xun; Higginson, Emily; Ayliffe, Michael; Day, Anil; Timmis, Jeremy N.
2013-01-01
Eukaryotic cells originated when an ancestor of the nucleated cell engulfed bacterial endosymbionts that gradually evolved into the mitochondrion and the chloroplast. Soon after these endosymbiotic events, thousands of ancestral prokaryotic genes were functionally transferred from the endosymbionts to the nucleus. This process of functional gene relocation, now rare in eukaryotes, continues in angiosperms. In this article, we show that the chloroplastic acetyl-CoA carboxylase subunit (accD) gene that is present in the plastome of most angiosperms has been functionally relocated to the nucleus in the Campanulaceae. Surprisingly, the nucleus-encoded accD transcript is considerably smaller than the plastidic version, consisting of little more than the carboxylase domain of the plastidic accD gene fused to a coding region encoding a plastid targeting peptide. We verified experimentally the presence of a chloroplastic transit peptide by showing that the product of the nuclear accD fused to green fluorescent protein was imported in the chloroplasts. The nuclear gene regulatory elements that enabled the erstwhile plastidic gene to become functional in the nuclear genome were identified, and the evolution of the intronic and exonic sequences in the nucleus is described. Relocation and truncation of the accD gene is a remarkable example of the processes underpinning endosymbiotic evolution. PMID:23435694
Mugford, Sam T.; Louveau, Thomas; Melton, Rachel; Qi, Xiaoquan; Bakht, Saleha; Hill, Lionel; Tsurushima, Tetsu; Honkanen, Suvi; Rosser, Susan J.; Lomonossoff, George P.; Osbourn, Anne
2013-01-01
Operon-like gene clusters are an emerging phenomenon in the field of plant natural products. The genes encoding some of the best-characterized plant secondary metabolite biosynthetic pathways are scattered across plant genomes. However, an increasing number of gene clusters encoding the synthesis of diverse natural products have recently been reported in plant genomes. These clusters have arisen through the neo-functionalization and relocation of existing genes within the genome, and not by horizontal gene transfer from microbes. The reasons for clustering are not yet clear, although this form of gene organization is likely to facilitate co-inheritance and co-regulation. Oats (Avena spp) synthesize antimicrobial triterpenoids (avenacins) that provide protection against disease. The synthesis of these compounds is encoded by a gene cluster. Here we show that a module of three adjacent genes within the wider biosynthetic gene cluster is required for avenacin acylation. Through the characterization of these genes and their encoded proteins we present a model of the subcellular organization of triterpenoid biosynthesis. PMID:23532069
Protein Multifunctionality: Principles and Mechanisms
Zaretsky, Joseph Z.; Wreschner, Daniel H.
2008-01-01
In the review, the nature of protein multifunctionality is analyzed. In the first part of the review the principles of structural/functional organization of protein are discussed. In the second part, the main mechanisms involved in development of multiple functions on a single gene product(s) are analyzed. The last part represents a number of examples showing that multifunctionality is a basic feature of biologically active proteins. PMID:21566747
Dynamic Adaptive Binning: An Improved Quantification Technique for NMR Spectroscopic Data
2010-01-01
Reo 2002). Unlike proteomics and genomics that assess inter- mediate products, metabolomics assesses the end product of cellular function, metabolites...other proteomic , genomic , and metabolomic analyses, NMR spectroscopy is Electronic supplementary material The online version of this article (doi...Changes occurring at the level of genes and proteins (assessed by genomics and proteomics ) may or may not influence a variety of cellular functions
Seinen, Erwin; Burgerhof, Johannes G. M.; Jansen, Ritsert C.; Sibon, Ody C. M.
2010-01-01
Background RNAi technology is widely used to downregulate specific gene products. Investigating the phenotype induced by downregulation of gene products provides essential information about the function of the specific gene of interest. When RNAi is applied in Drosophila melanogaster or Caenorhabditis elegans, often large dsRNAs are used. One of the drawbacks of RNAi technology is that unwanted gene products with sequence similarity to the gene of interest can be down regulated too. To verify the outcome of an RNAi experiment and to avoid these unwanted off-target effects, an additional non-overlapping dsRNA can be used to down-regulate the same gene. However it has never been tested whether this approach is sufficient to reduce the risk of off-targets. Methodology We created a novel tool to analyse the occurance of off-target effects in Drosophila and we analyzed 99 randomly chosen genes. Principal Findings Here we show that nearly all genes contain non-overlapping internal sequences that do show overlap in a common off-target gene. Conclusion Based on our in silico findings, off-target effects should not be ignored and our presented on-line tool enables the identification of two RNA interference constructs, free of overlapping off-targets, from any gene of interest. PMID:20957038
Capturing novel mouse genes encoding chromosomal and other nuclear proteins.
Tate, P; Lee, M; Tweedie, S; Skarnes, W C; Bickmore, W A
1998-09-01
The burgeoning wealth of gene sequences contrasts with our ignorance of gene function. One route to assigning function is by determining the sub-cellular location of proteins. We describe the identification of mouse genes encoding proteins that are confined to nuclear compartments by splicing endogeneous gene sequences to a promoterless betageo reporter, using a gene trap approach. Mouse ES (embryonic stem) cell lines were identified that express betageo fusions located within sub-nuclear compartments, including chromosomes, the nucleolus and foci containing splicing factors. The sequences of 11 trapped genes were ascertained, and characterisation of endogenous protein distribution in two cases confirmed the validity of the approach. Three novel proteins concentrated within distinct chromosomal domains were identified, one of which appears to be a serine/threonine kinase. The sequence of a gene whose product co-localises with splicesome components suggests that this protein may be an E3 ubiquitin-protein ligase. The majority of the other genes isolated represent novel genes. This approach is shown to be a powerful tool for identifying genes encoding novel proteins with specific sub-nuclear localisations and exposes our ignorance of the protein composition of the nucleus. Motifs in two of the isolated genes suggest new links between cellular regulatory mechanisms (ubiquitination and phosphorylation) and mRNA splicing and chromosome structure/function.
Molecular Genetic Study of Human Esophageal Carcinoma
1991-07-16
chromosome 13q (Friend, et al. 1986; Lee, et al. 1987). The biochemical functions of the tumor suppressor gene products are not clearly elucidated...et al. 1990). In contrast to the dominant oncogenes, two genetic lesions are required for the manifestation of tumor suppressor gene , one each to...multiple genetic mutations. Oncogenes and tumor suppressor genes are frequently involved in the pathogenesis of human cancers. The transformation
Genome Engineering of the 2,3-Butanediol Biosynthetic Pathway for Tight Regulation in Cyanobacteria.
Nozzi, Nicole E; Atsumi, Shota
2015-11-20
Cyanobacteria have gained popularity among the metabolic engineering community as a tractable photosynthetic host for renewable chemical production. However, though a number of successfully engineered production systems have been reported, long-term genetic stability remains an issue for cyanobacterial systems. The genetic engineering toolbox for cyanobacteria is largely lacking inducible systems for expression control. The characterization of tight regulation systems for use in cyanobacteria may help to alleviate this problem. In this work we explore the function of the IPTG inducible promoter P(L)lacO1 in the model cyanobacterium Synechococcus elongatus PCC 7942 as well as the effect of gene order within an operon on pathway expression. According to our experiments, P(L)lacO1 functions well as an inducible promoter in S. elongatus. Additionally, we found that gene order within an operon can strongly influence control of expression of each gene.
An Eye on Trafficking Genes: Identification of Four Eye Color Mutations in Drosophila
Grant, Paaqua; Maga, Tara; Loshakov, Anna; Singhal, Rishi; Wali, Aminah; Nwankwo, Jennifer; Baron, Kaitlin; Johnson, Diana
2016-01-01
Genes that code for proteins involved in organelle biogenesis and intracellular trafficking produce products that are critical in normal cell function . Conserved orthologs of these are present in most or all eukaryotes, including Drosophila melanogaster. Some of these genes were originally identified as eye color mutants with decreases in both types of pigments found in the fly eye. These criteria were used for identification of such genes, four eye color mutations that are not annotated in the genome sequence: chocolate, maroon, mahogany, and red Malpighian tubules were molecularly mapped and their genome sequences have been evaluated. Mapping was performed using deletion analysis and complementation tests. chocolate is an allele of the VhaAC39-1 gene, which is an ortholog of the Vacuolar H+ ATPase AC39 subunit 1. maroon corresponds to the Vps16A gene and its product is part of the HOPS complex, which participates in transport and organelle fusion. red Malpighian tubule is the CG12207 gene, which encodes a protein of unknown function that includes a LysM domain. mahogany is the CG13646 gene, which is predicted to be an amino acid transporter. The strategy of identifying eye color genes based on perturbations in quantities of both types of eye color pigments has proven useful in identifying proteins involved in trafficking and biogenesis of lysosome-related organelles. Mutants of these genes can form the basis of valuable in vivo models to understand these processes. PMID:27558665
Wang, Zhao-Xin; Li, Shu-Ming; Heide, Lutz
2000-01-01
The biosynthetic gene cluster of the aminocoumarin antibiotic coumermycin A1 was cloned by screening of a cosmid library of Streptomyces rishiriensis DSM 40489 with heterologous probes from a dTDP-glucose 4,6-dehydratase gene, involved in deoxysugar biosynthesis, and from the aminocoumarin resistance gyrase gene gyrBr. Sequence analysis of a 30.8-kb region upstream of gyrBr revealed the presence of 28 complete open reading frames (ORFs). Fifteen of the identified ORFs showed, on average, 84% identity to corresponding ORFs in the biosynthetic gene cluster of novobiocin, another aminocoumarin antibiotic. Possible functions of 17 ORFs in the biosynthesis of coumermycin A1 could be assigned by comparison with sequences in GenBank. Experimental proof for the function of the identified gene cluster was provided by an insertional gene inactivation experiment, which resulted in an abolishment of coumermycin A1 production. PMID:11036020
Boulnois, G J; Roberts, I S; Hodge, R; Hardy, K R; Jann, K B; Timmis, K N
1987-06-01
Transposon and deletion analysis of the cloned K1 capsule biosynthesis genes of Escherichia coli revealed that approximately 17 kb of DNA, split into three functional regions, is required for capsule production. One block (region 1) is required for translocation of polysaccharide to the cell surface and mutations in this region result in the intracellular appearance of polymer indistinguishable on immunoelectrophoresis to that found on the surface of K1 encapsulated bacteria. This material was released from the cell by osmotic shock indicating that the polysaccharide was probably present in the periplasmic space. Insertions in a second block (region 2) completely abolished polymer production and this second region is believed to encode the enzymes for the biosynthesis and polymerisation of the K1 antigen. Addition of exogenous N-acetylneuraminic acid to one insertion mutant in this region restored its ability to express surface polymer as judged by K1 phage sensitivity. This insertion probably defines genes involved in biosynthesis of N-acetylneuraminic acid. Insertions in a third block (region 3) result in the intracellular appearance of polysaccharide with a very low electrophoretic mobility. The presence of the cloned K1 capsule biosynthesis genes on a multicopy plasmid in an E. coli K-12 strain did not increase the yields of capsular polysaccharide produced compared to the K1+ isolate from which the genes were cloned.
Pollen tube germination in maize does not require transcriptomic changes
One objective for our group is to better understand the molecular and genetic basis of pollen and pollen tube function, given its critical role in seed production and its importance as a means of gene flow between plant populations. We compared gene expression levels in seedlings...
An insertion mutation in ABCB4 is associated with gallbladder mucocele formation in dogs
USDA-ARS?s Scientific Manuscript database
The only known physiologic function of the ABCB4 gene product is translocation of phosphatidylcholine (PC) across the hepatocyte plasma membrane into biliary canaliculi. In people, mutations of the ABCB4 gene produce several disease syndromes involving the biliary system including intrahepatic chol...
Surprises in the maize pollen transcriptome: Inbred differences and developmental similarities
Pollen is the primary means of gene flow between plants and plant populations and plays a critical role in seed production. Our overall objective is to better understand the molecular and genetic basis of the pollen function. We compared gene expression levels in seedlings, mat...
Zhang, Huajian; Zhao, Tongyao; Zhuang, Peitong; Song, Zhiqiang; Du, Hui; Tang, Zhaozhao; Gao, Zhimou
2016-12-01
SsCut, which functions as an elicitor, can induce plant immunity. In this study, we utilized Nicotiana benthamiana and virus-induced gene silencing to decrease the expression of > 2,500 genes individually. Using this forward genetics approach, several genes were identified that, when silenced, compromised SsCut-triggered cell death based on a cell death assay. A C 2 H 2 -type zinc finger gene was isolated from N. benthamiana Sequence analysis indicated that the gene encodes a 27 kDa protein with 253 amino acids containing two typical C 2 H 2 -type zinc finger domains; this gene was named NbCZF1 We found that SsCut-induced cell death could be inhibited by virus-induced gene silencing of NbCZF1 in N. benthamiana In addition, SsCut induces stomatal closure, accompanied by reactive oxygen species (ROS) production by NADPH oxidases and nitric oxide (NO) production. NbCZF1-silenced plants showed impaired SsCut-induced stomatal closure, decreased SsCut-induced production of ROS and NO in guard cells and reduced SsCut-induced resistance against Phytophthora nicotianae Taken together, these results demonstrate that the NbCZF1-ROS-NO pathway mediates multiple SsCut-triggered responses, including stomatal closure, hypersensitive responses and defense-related gene expression. This is the first report describing the function of a C 2 H 2 -type zinc finger protein in N. benthamiana. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Sun, Di; Wang, Qian; Chen, Zhi; Li, Jilun; Wen, Ying
2017-01-01
Alternative σ factors in bacteria redirect RNA polymerase to recognize alternative promoters, thereby facilitating coordinated gene expression necessary for adaptive responses. The gene sig8 ( sav_741 ) in Streptomyces avermitilis encodes an alternative σ factor, σ 8 , highly homologous to σ B in Streptomyces coelicolor . Studies reported here demonstrate that σ 8 is an important regulator of both avermectin production and stress responses in S. avermitilis . σ 8 inhibited avermectin production by indirectly repressing expression of cluster-situated activator gene aveR , and by directly initiating transcription of its downstream gene sav_742 , which encodes a direct repressor of ave structural genes. σ 8 had no effect on cell growth or morphological differentiation under normal growth conditions. Growth of a sig8- deletion mutant was less than that of wild-type strain on YMS plates following treatment with heat, H 2 O 2 , diamide, NaCl, or KCl. sig8 transcription was strongly induced by these environmental stresses, indicating response by σ 8 itself. A series of σ 8 -dependent genes responsive to heat, oxidative and osmotic stress were identified by EMSAs, qRT-PCR and in vitro transcription experiments. These findings indicate that σ 8 plays an important role in mediating protective responses to various stress conditions by activating transcription of its target genes. Six σ 8 -binding promoter sequences were determined and consensus binding sequence BGVNVH-N 15 -GSNNHH (B: C, T or G, V: A, C or G, S: C or G, H: A, C or T, N: any nucleotide) was identified, leading to prediction of the σ 8 regulon. The list consists of 940 putative σ 8 target genes, assignable to 17 functional groups, suggesting the wide range of cellular functions controlled by σ 8 in S. avermitilis .
Silverman, Andrew M; Qiao, Kangjian; Xu, Peng; Stephanopoulos, Gregory
2016-04-01
Single cell oil (SCO) is an attractive energy source due to scalability, utilization of low-cost renewable feedstocks, and type of product(s) made. Engineering strains capable of producing high lipid titers and yields is crucial to the economic viability of these processes. However, lipid synthesis in cells is a complex phenomenon subject to multiple layers of regulation, making gene target identification a challenging task. In this study, we aimed to identify genes in the oleaginous yeast Yarrowia lipolytica whose overexpression enhances lipid production by this organism. To this end, we examined the effect of the overexpression of a set of 44 native genes on lipid production in Y. lipolytica, including those involved in glycerolipid synthesis, fatty acid synthesis, central carbon metabolism, NADPH generation, regulation, and metabolite transport and characterized each resulting strain's ability to produce lipids growing on both glucose and acetate as a sole carbon source. Our results suggest that a diverse subset of genes was effective at individually influencing lipid production in Y. lipolytica, sometimes in a substrate-dependent manner. The most productive strain on glucose overexpressed the diacylglycerol acyltransferase DGA2 gene, increasing lipid titer, cellular content, and yield by 236, 165, and 246 %, respectively, over our control strain. On acetate, our most productive strain overexpressed the acylglycerol-phosphate acyltransferase SLC1 gene, with a lipid titer, cellular content, and yield increase of 99, 91, and 151 %, respectively, over the control strain. Aside from genes encoding enzymes that directly catalyze the reactions of lipid synthesis, other ways by which lipogenesis was increased in these cells include overexpressing the glycerol-3-phosphate dehydrogenase (GPD1) gene to increase production of glycerol head groups and overexpressing the 6-phosphogluconolactonase (SOL3) gene from the oxidative pentose phosphate pathway to increase NADPH availability for fatty acid synthesis. Taken together, our study demonstrates that the overall kinetics of microbial lipid synthesis is sensitive to a wide variety of factors. Fully optimizing a strain for single cell oil processes could involve manipulating and balancing many of these factors, and, due to mechanistic differences by which each gene product investigated here impacts lipid synthesis, there is a high likelihood that many of these genes will work synergistically to further increase lipid production when simultaneously overexpressed.
Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets.
Muller, Laurent; Mitsuhashi, Masato; Simms, Patricia; Gooding, William E; Whiteside, Theresa L
2016-02-04
Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4(+) Tconv, CD8(+) T or CD4(+) CD39(+) Treg were isolated from normal donors' peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24-27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4(+) Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes.
Sucrose metabolism gene families and their biological functions
Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan
2015-01-01
Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions. PMID:26616172
Functional annotation of the vlinc class of non-coding RNAs using systems biology approach.
St Laurent, Georges; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J L; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Nicolas, Estelle; McCaffrey, Timothy A; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp
2016-04-20
Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Export of extracellular polysaccharides modulates adherence of the Cyanobacterium synechocystis.
Fisher, Michael L; Allen, Rebecca; Luo, Yingqin; Curtiss, Roy
2013-01-01
The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter), slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.
Zhao, Yao; Kang, Lin; Gao, Shan; Zhou, Yang; Su, Libo; Xin, Wenwen; Su, Yuxin; Wang, Jinglin
2011-06-01
The alpha and epsilon toxins are 2 of the 4 major lethal toxins of the pathogen Clostridium perfringens. In this study, the expression of the epsilon toxin (etx) gene of C. perfringens was optimized by replacing rare codons with high-frequency codons, and the optimized gene was synthesized using overlapping PCR. Then, the etx gene or the alpha-toxin gene (cpa) was individually inserted into the pTIG-Trx expression vector with a hexahistidine tag and a thioredoxin (Trx) to facilitate their purification and induce the expression of soluble proteins. The recombinant alpha toxin (rCPA) and epsilon toxin (rETX) were highly expressed as soluble forms in the recipient Escherichia coli BL21 strain, respectively. The rCPA and rETX were purified using Ni(2+)-chelating chromatography and size-exclusion chromatography. And the entire purification process recovered about 40% of each target protein from the starting materials. The purified target toxins formed single band at about 42kDa (rCPA) or 31kDa (rETX) in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their functional activity was confirmed by bioactivity assays. We have shown that the production of large amounts of soluble and functional proteins by using the pTIG-Trx vector in E. coli is a good alternative for the production of native alpha and epsilon toxins and could also be useful for the production of other toxic proteins with soluble forms. Copyright © 2011 Elsevier Inc. All rights reserved.
Samson, Marie-Laure
2008-01-01
Background The Drosophila gene embryonic lethal abnormal visual system (elav) is the prototype of a gene family present in all metazoans. Its members encode structurally conserved neuronal proteins with three RNA Recognition Motifs (RRM) but they paradoxically act at diverse levels of post-transcriptional regulation. In an attempt to understand the history of this family, we searched for orthologs in eleven completely sequenced genomes, including those of humans, D. melanogaster and C. elegans, for which cDNAs are available. Results We analyzed 23 orthologs/paralogs of elav, and found evidence of gain/loss of gene copy number. For one set of genes, including elav itself, the coding sequences are free of introns and their products most resemble ELAV. The remaining genes show remarkable conservation of their exon organization, and their products most resemble FNE and RBP9, proteins encoded by the two elav paralogs of Drosophila. Remarkably, three of the conserved exon junctions are both close to structural elements, involved respectively in protein-RNA interactions and in the regulation of sub-cellular localization, and in the vicinity of diverse sequence variations. Conclusion The data indicate that the essential elav gene of Drosophila is newly emerged, restricted to dipterans and of retrotransposed origin. We propose that the conserved exon junctions constitute potential sites for sequence/function modifications, and that RRM binding proteins, whose function relies upon plastic RNA-protein interactions, may have played an important role in brain evolution. PMID:18715504
DIA1R is an X-linked gene related to Deleted In Autism-1.
Aziz, Azhari; Harrop, Sean P; Bishop, Naomi E
2011-01-17
Autism spectrum disorders (ASDS) are frequently occurring disorders diagnosed by deficits in three core functional areas: social skills, communication, and behaviours and/or interests. Mental retardation frequently accompanies the most severe forms of ASDs, while overall ASDs are more commonly diagnosed in males. Most ASDs have a genetic origin and one gene recently implicated in the etiology of autism is the Deleted-In-Autism-1 (DIA1) gene. Using a bioinformatics-based approach, we have identified a human gene closely related to DIA1, we term DIA1R (DIA1-Related). While DIA1 is autosomal (chromosome 3, position 3q24), DIA1R localizes to the X chromosome at position Xp11.3 and is known to escape X-inactivation. The gene products are of similar size, with DIA1 encoding 430, and DIA1R 433, residues. At the amino acid level, DIA1 and DIA1R are 62% similar overall (28% identical), and both encode signal peptides for targeting to the secretory pathway. Both genes are ubiquitously expressed, including in fetal and adult brain tissue. Examination of published literature revealed point mutations in DIA1R are associated with X-linked mental retardation (XLMR) and DIA1R deletion is associated with syndromes with ASD-like traits and/or XLMR. Together, these results support a model where the DIA1 and DIA1R gene products regulate molecular traffic through the cellular secretory pathway or affect the function of secreted factors, and functional deficits cause disorders with ASD-like symptoms and/or mental retardation.
Terrasso, Ana Paula; Pinto, Catarina; Serra, Margarida; Filipe, Augusto; Almeida, Susana; Ferreira, Ana Lúcia; Pedroso, Pedro; Brito, Catarina; Alves, Paula Marques
2015-07-10
There is an urgent need for new in vitro strategies to identify neurotoxic agents with speed, reliability and respect for animal welfare. Cell models should include distinct brain cell types and represent brain microenvironment to attain higher relevance. The main goal of this study was to develop and validate a human 3D neural model containing both neurons and glial cells, applicable for toxicity testing in high-throughput platforms. To achieve this, a scalable bioprocess for neural differentiation of human NTera2/cl.D1 cells in stirred culture systems was developed. Endpoints based on neuronal- and astrocytic-specific gene expression and functionality in 3D were implemented in multi-well format and used for toxicity assessment. The prototypical neurotoxicant acrylamide affected primarily neurons, impairing synaptic function; our results suggest that gene expression of the presynaptic marker synaptophysin can be used as sensitive endpoint. Chloramphenicol, described as neurotoxicant affected both cell types, with cytoskeleton markers' expression significantly reduced, particularly in astrocytes. In conclusion, a scalable and reproducible process for production of differentiated neurospheres enriched in mature neurons and functional astrocytes was obtained. This 3D approach allowed efficient production of large numbers of human differentiated neurospheres, which in combination with gene expression and functional endpoints are a powerful cell model to evaluate human neuronal and astrocytic toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.
Jo, Suah; Yoon, Jinkyung; Lee, Sun-Mi; Um, Youngsoon; Han, Sung Ok; Woo, Han Min
2017-09-20
Xylose-negative Corynebacterium glutamicum has been engineered to utilize xylose as the sole carbon source via either the xylose isomerase (XI) pathway or the Weimberg pathway. Heterologous expression of xylose isomerase and overexpression of a gene encoding for xylulose kinase enabled efficient xylose utilization. In this study, we show that two functionally-redundant transcriptional regulators (GntR1 and GntR2) present on xylose repress the pentose phosphate pathway genes. For efficient xylose utilization, pentose phosphate pathway genes and a phosphoketolase gene were overexpressed with the XI pathway in C. glutamicum. Overexpression of the genes encoding for transaldolase (Tal), 6-phosphogluconate dehydrogenase (Gnd), or phosphoketolase (XpkA) enhanced the growth and xylose consumption rates compared to the wild-type with the XI pathway alone. However, co-expression of these genes did not have a synergetic effect on xylose utilization. For the succinate production from xylose, overexpression of the tal gene with the XI pathway in a succinate-producing strain improved xylose utilization and increased the specific succinate production rate by 2.5-fold compared to wild-type with the XI pathway alone. Thus, overexpression of the tal, gnd, or xpkA gene could be helpful for engineering C. glutamicum toward production of value-added chemicals with efficient xylose utilization. Copyright © 2017 Elsevier B.V. All rights reserved.
Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20.
Crocker, Fiona H; Indest, Karl J; Fredrickson, Herbert L
2006-11-01
Cyclic nitramine explosives are synthesized globally mainly as military munitions, and their use has resulted in environmental contamination. Several biodegradation pathways have been proposed, and these are based mainly on end-product characterization because many of the metabolic intermediates are hypothetical and unstable in water. Biodegradation mechanisms for cyclic nitramines include (a) formation of a nitramine free radical and loss of nitro functional groups, (b) reduction of nitro functional groups, (c) direct enzymatic cleavage, (d) alpha-hydroxylation, or (e) hydride ion transfer. Pathway intermediates spontaneously decompose in water producing nitrite, nitrous oxide, formaldehyde, or formic acid as common end-products. In vitro enzyme and functional gene expression studies have implicated a limited number of enzymes/genes involved in cyclic nitramine catabolism. Advances in molecular biology methods such as high-throughput DNA sequencing, microarray analysis, and nucleic acid sample preparation are providing access to biochemical and genetic information on cultivable and uncultivable microorganisms. This information can provide the knowledge base for rational engineering of bioremediation strategies, biosensor development, environmental monitoring, and green biosynthesis of explosives. This paper reviews recent developments on the biodegradation of cyclic nitramines and the potential of genomics to identify novel functional genes of explosive metabolism.
Conserved noncoding sequences (CNSs) in higher plants.
Freeling, Michael; Subramaniam, Shabarinath
2009-04-01
Plant conserved noncoding sequences (CNSs)--a specific category of phylogenetic footprint--have been shown experimentally to function. No plant CNS is conserved to the extent that ultraconserved noncoding sequences are conserved in vertebrates. Plant CNSs are enriched in known transcription factor or other cis-acting binding sites, and are usually clustered around genes. Genes that encode transcription factors and/or those that respond to stimuli are particularly CNS-rich. Only rarely could this function involve small RNA binding. Some transcribed CNSs encode short translation products as a form of negative control. Approximately 4% of Arabidopsis gene content is estimated to be both CNS-rich and occupies a relatively long stretch of chromosome: Bigfoot genes (long phylogenetic footprints). We discuss a 'DNA-templated protein assembly' idea that might help explain Bigfoot gene CNSs.
Production of functional proteins: balance of shear stress and gravity
NASA Technical Reports Server (NTRS)
Kaysen, James Howard (Inventor); Hammond, Timothy Grant (Inventor); Goodwin, Thomas John (Inventor)
2004-01-01
The present invention provides a method for production of functional proteins including hormones by renal cells in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-a-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.
Production of functional proteins: balance of shear stress and gravity
NASA Technical Reports Server (NTRS)
Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor); Goodwin, Thomas John (Inventor)
2007-01-01
The present invention provides a method for production of functional proteins including hormones by renal cells in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-a-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.
Gillespie, Meagan J.; Stanley, Dragana; Chen, Honglei; Donald, John A.; Nicholas, Kevin R.; Moore, Robert J.; Crowley, Tamsyn M.
2012-01-01
Pigeon ‘milk’ and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon ‘milk’. Therefore, using a chicken model, we investigated the effect of pigeon ‘milk’ on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of the caecal microbiota. Chickens fed pigeon ‘milk’ had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon ‘milk’-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon ‘milk’-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon ‘milk’, as well as being directly seeded by bacteria present in pigeon ‘milk’. Our results demonstrate that pigeon ‘milk’ has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon ‘lactation’ and mammalian lactation evolved independently but resulted in similarly functional products. PMID:23110233
Biased immunoglobulin light chain gene usage in the shark1
Iacoangeli, Anna; Lui, Anita; Naik, Ushma; Ohta, Yuko; Flajnik, Martin; Hsu, Ellen
2015-01-01
This study of a large family of kappa light (L) chain clusters in nurse shark completes the characterization of its classical immunoglobulin (Ig) gene content (two heavy chain classes, mu and omega, and four L chain isotopes, kappa, lambda, sigma, and sigma-2). The shark kappa clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over a ~500 bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ca. 39 kappa clusters are pre-rearranged in the germline (GL-joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, non-productive, and sterile transcripts of the kappa clusters compared to the other three L chain isotypes. Kappa cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and non-productive rearrangements. These results show that the individual activation of the spatially distant kappa clusters is non-random. Although both split and GL-joined kappa genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing. PMID:26342033
Sugita, Chieko; Ogata, Koretsugu; Shikata, Masamitsu; Jikuya, Hiroyuki; Takano, Jun; Furumichi, Miho; Kanehisa, Minoru; Omata, Tatsuo; Sugiura, Masahiro; Sugita, Mamoru
2007-01-01
The entire genome of the unicellular cyanobacterium Synechococcus elongatus PCC 6301 (formerly Anacystis nidulans Berkeley strain 6301) was sequenced. The genome consisted of a circular chromosome 2,696,255 bp long. A total of 2,525 potential protein-coding genes, two sets of rRNA genes, 45 tRNA genes representing 42 tRNA species, and several genes for small stable RNAs were assigned to the chromosome by similarity searches and computer predictions. The translated products of 56% of the potential protein-coding genes showed sequence similarities to experimentally identified and predicted proteins of known function, and the products of 35% of the genes showed sequence similarities to the translated products of hypothetical genes. The remaining 9% of genes lacked significant similarities to genes for predicted proteins in the public DNA databases. Some 139 genes coding for photosynthesis-related components were identified. Thirty-seven genes for two-component signal transduction systems were also identified. This is the smallest number of such genes identified in cyanobacteria, except for marine cyanobacteria, suggesting that only simple signal transduction systems are found in this strain. The gene arrangement and nucleotide sequence of Synechococcus elongatus PCC 6301 were nearly identical to those of a closely related strain Synechococcus elongatus PCC 7942, except for the presence of a 188.6 kb inversion. The sequences as well as the gene information shown in this paper are available in the Web database, CYORF (http://www.cyano.genome.jp/).
Bhawna; Bonthala, V.S.; Gajula, MNV Prasad
2016-01-01
The common bean [Phaseolus vulgaris (L.)] is one of the essential proteinaceous vegetables grown in developing countries. However, its production is challenged by low yields caused by numerous biotic and abiotic stress conditions. Regulatory transcription factors (TFs) symbolize a key component of the genome and are the most significant targets for producing stress tolerant crop and hence functional genomic studies of these TFs are important. Therefore, here we have constructed a web-accessible TFs database for P. vulgaris, called PvTFDB, which contains 2370 putative TF gene models in 49 TF families. This database provides a comprehensive information for each of the identified TF that includes sequence data, functional annotation, SSRs with their primer sets, protein physical properties, chromosomal location, phylogeny, tissue-specific gene expression data, orthologues, cis-regulatory elements and gene ontology (GO) assignment. Altogether, this information would be used in expediting the functional genomic studies of a specific TF(s) of interest. The objectives of this database are to understand functional genomics study of common bean TFs and recognize the regulatory mechanisms underlying various stress responses to ease breeding strategy for variety production through a couple of search interfaces including gene ID, functional annotation and browsing interfaces including by family and by chromosome. This database will also serve as a promising central repository for researchers as well as breeders who are working towards crop improvement of legume crops. In addition, this database provide the user unrestricted public access and the user can download entire data present in the database freely. Database URL: http://www.multiomics.in/PvTFDB/ PMID:27465131
Shima, Jun; Ando, Akira; Takagi, Hiroshi
2008-03-01
Yeasts used in bread making are exposed to air-drying stress during dried yeast production processes. To clarify the genes required for air-drying tolerance, we performed genome-wide screening using the complete deletion strain collection of diploid Saccharomyces cerevisiae. The screening identified 278 gene deletions responsible for air-drying sensitivity. These genes were classified based on their cellular function and on the localization of their gene products. The results showed that the genes required for air-drying tolerance were frequently involved in mitochondrial functions and in connection with vacuolar H(+)-ATPase, which plays a role in vacuolar acidification. To determine the role of vacuolar acidification in air-drying stress tolerance, we monitored intracellular pH. The results showed that intracellular acidification was induced during air-drying and that this acidification was amplified in a deletion mutant of the VMA2 gene encoding a component of vacuolar H(+)-ATPase, suggesting that vacuolar H(+)-ATPase helps maintain intracellular pH homeostasis, which is affected by air-drying stress. To determine the effects of air-drying stress on mitochondria, we analysed the mitochondrial membrane potential under air-drying stress conditions using MitoTracker. The results showed that mitochondria were extremely sensitive to air-drying stress, suggesting that a mitochondrial function is required for tolerance to air-drying stress. We also analysed the correlation between oxidative-stress sensitivity and air-drying-stress sensitivity. The results suggested that oxidative stress is a critical determinant of sensitivity to air-drying stress, although ROS-scavenging systems are not necessary for air-drying stress tolerance. (c) 2008 John Wiley & Sons, Ltd.
Cation-Coupled Bicarbonate Transporters
Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung
2016-01-01
Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na+-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na+-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3− transporters of the SLC4-family. PMID:25428855
Characterization of a Bombyx mori nucleopolyhedrovirus with Bmvp80 disruption.
Tang, Xu-Dong; Xu, Yi-Peng; Yu, Lin-Lin; Lang, Guo-Jun; Tian, Cai-Hong; Zhao, Jin-Fang; Zhang, Chuan-Xi
2008-12-01
A BmNPV Bacmid with the Bmvp80 gene disrupted was constructed using the ET-recombination system in Escherichia coli to investigate the role of Bmvp80 during the baculovirus life cycle. Disruption of Bmvp80 resulted in single cell infection phenotype, whereas a rescue BmBacmid restored budded virus titers to wild type levels; however, the homologous gene Ac104 (Acvp80) from AcMNPV could not complement the BmBacmid lacking a functional Bmvp80 gene. Electron microscopy of cells transfected with BmNPV lacking functional Bmvp80 revealed that the number of nucleocapsids was markedly lower. These results suggest that Bmvp80 is essential for normal budded virus production and nucleocapsid maturation, and is functionally divergent between baculovirus species.
The Product of the fimI Gene Is Necessary for Escherichia coli Type 1 Pilus Biosynthesis
Valenski, Mary L.; Harris, Sandra L.; Spears, Patricia A.; Horton, John R.; Orndorff, Paul E.
2003-01-01
Site-directed mutagenesis was employed to create lesions in fimI, a gene of uncertain function located in the chromosomal gene cluster (fim) involved in Escherichia coli type 1 pilus biosynthesis. Chromosomal fimI mutations produced a piliation-negative phenotype. Complementation analysis indicated that a fimI′-kan insertion mutation and a fimI frameshift mutation produced polarity-like effects not seen with an in-frame fimI deletion mutation. Minicell analysis associated fimI with a 16.4-kDa noncytoplasmic protein product (FimI). We conclude that FimI has a required role in normal pilus biosynthesis. PMID:12897022
Strobel, Tina; Schmidt, Yvonne; Linnenbrink, Anton; Luzhetskyy, Andriy; Luzhetska, Marta; Taguchi, Takaaki; Brötz, Elke; Paululat, Thomas; Stasevych, Maryna; Stanko, Oleg; Novikov, Volodymyr
2013-01-01
Saccharothrix espanaensis is a member of the order Actinomycetales. The genome of the strain has been sequenced recently, revealing 106 glycosyltransferase genes. In this paper, we report the detection of a glycosyltransferase from Saccharothrix espanaensis which is able to rhamnosylate different phenolic compounds targeting different positions of the molecules. The gene encoding the flexible glycosyltransferase is not located close to a natural product biosynthetic gene cluster. Therefore, the native function of this enzyme might be not the biosynthesis of a secondary metabolite but the glycosylation of internal and external natural products as part of a defense mechanism. PMID:23793643
Genomics studies on musical aptitude, music perception, and practice.
Järvelä, Irma
2018-03-23
When searching for genetic markers inherited together with musical aptitude, genes affecting inner ear development and brain function were identified. The alpha-synuclein gene (SNCA), located in the most significant linkage region of musical aptitude, was overexpressed when listening and performing music. The GATA-binding protein 2 gene (GATA2) was located in the best associated region of musical aptitude and regulates SNCA in dopaminergic neurons, thus linking DNA- and RNA-based studies of music-related traits together. In addition to SNCA, several other genes were linked to dopamine metabolism. Mutations in SNCA predispose to Lewy-body dementia and cause Parkinson disease in humans and affect song production in songbirds. Several other birdsong genes were found in transcriptome analysis, suggesting a common evolutionary background of sound perception and production in humans and songbirds. Regions of positive selection with musical aptitude contained genes affecting auditory perception, cognitive performance, memory, human language development, and song perception and production of songbirds. The data support the role of dopaminergic pathway and their link to the reward mechanism as a molecular determinant in positive selection of music. Integration of gene-level data from the literature across multiple species prioritized activity-dependent immediate early genes as candidate genes in musical aptitude and listening to and performing music. © 2018 New York Academy of Sciences.
Functional Expression of Enterobacterial O-Polysaccharide Biosynthesis Enzymes in Bacillus subtilis
Schäffer, Christina; Wugeditsch, Thomas; Messner, Paul; Whitfield, Chris
2002-01-01
The expression of heterologous bacterial glycosyltransferases is of interest for potential application in the emerging field of carbohydrate engineering in gram-positive organisms. To assess the feasibility of using enzymes from gram-negative bacteria, the functional expression of the genes wbaP (formerly rfbP), wecA (formerly rfe), and wbbO (formerly rfbF) from enterobacterial lipopolysaccharide O-polysaccharide biosynthesis pathways was examined in Bacillus subtilis. WbaP and WecA are initiation enzymes for O-polysaccharide formation, catalyzing the transfer of galactosyl 1-phosphate from UDP-galactose and N-acetylglucosaminyl 1-phosphate from UDP-N-acetylglucosamine, respectively, to undecaprenylphosphate. The WecA product (undecaprenylpyrophosphoryl GlcNAc) is used as an acceptor to which the bifunctional wbbO gene product sequentially adds a galactopyranose and a galactofuranose residue from the corresponding UDP sugars to form a lipid-linked trisaccharide. Genes were cloned into the shuttle vectors pRB374 and pAW10. In B. subtilis hosts, the genes were effectively transcribed under the vegII promoter control of pRB374, but the plasmids were susceptible to rearrangements and deletion. In contrast, pAW10-based constructs, in which genes were cloned downstream of the tet resistance cassette, were stable but yielded lower levels of enzyme activity. In vitro glycosyltransferase assays were performed in Escherichia coli and B. subtilis, using membrane preparations as sources of enzymes and endogenous undecaprenylphosphate as an acceptor. Incorporation of radioactivity from UDP-α-d-14C-sugar into reaction products verified the functionality of WbaP, WecA, and WbbO in either host. Enzyme activities in B. subtilis varied between 20 and 75% of those measured in E. coli. PMID:12324313
Yuan, Mengting M; Zhang, Jin; Xue, Kai; Wu, Liyou; Deng, Ye; Deng, Jie; Hale, Lauren; Zhou, Xishu; He, Zhili; Yang, Yunfeng; Van Nostrand, Joy D; Schuur, Edward A G; Konstantinidis, Konstantinos T; Penton, Christopher R; Cole, James R; Tiedje, James M; Luo, Yiqi; Zhou, Jizhong
2018-01-01
Permafrost soil in high latitude tundra is one of the largest terrestrial carbon (C) stocks and is highly sensitive to climate warming. Understanding microbial responses to warming-induced environmental changes is critical to evaluating their influences on soil biogeochemical cycles. In this study, a functional gene array (i.e., geochip 4.2) was used to analyze the functional capacities of soil microbial communities collected from a naturally degrading permafrost region in Central Alaska. Varied thaw history was reported to be the main driver of soil and plant differences across a gradient of minimally, moderately, and extensively thawed sites. Compared with the minimally thawed site, the number of detected functional gene probes across the 15-65 cm depth profile at the moderately and extensively thawed sites decreased by 25% and 5%, while the community functional gene β-diversity increased by 34% and 45%, respectively, revealing decreased functional gene richness but increased community heterogeneity along the thaw progression. Particularly, the moderately thawed site contained microbial communities with the highest abundances of many genes involved in prokaryotic C degradation, ammonification, and nitrification processes, but lower abundances of fungal C decomposition and anaerobic-related genes. Significant correlations were observed between functional gene abundance and vascular plant primary productivity, suggesting that plant growth and species composition could be co-evolving traits together with microbial community composition. Altogether, this study reveals the complex responses of microbial functional potentials to thaw-related soil and plant changes and provides information on potential microbially mediated biogeochemical cycles in tundra ecosystems. © 2017 John Wiley & Sons Ltd.
Noncoding RNA Shows Context-Dependent Function | Center for Cancer Research
In addition to well-studied protein coding sequences, it is known that the genomes of higher organisms produce numerous noncoding RNAs (ncRNAs). Important roles for some ncRNAs in cell function have been demonstrated, though usually on a case-by-case basis, leading some scientists to argue that the majority of ncRNA production is just “noise” that results from the imperfect transcription machinery. The fact that many ncRNAs overlap with coding genes has hampered studies of their activities. Thus, a general understanding of whether ncRNA production is functional or not is lacking. To address this issue, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues developed a new approach using single-molecule imaging in living cells. The researchers specifically labeled coding and ncRNAs from the GAL locus in yeast, which regulates the galactose response. Glucose is the preferred source of carbon for yeast, but when it is scarce, genes within the GAL locus, including GAL10 and GAL1, are activated to allow the metabolism of galactose.
Updated regulation curation model at the Saccharomyces Genome Database
Engel, Stacia R; Skrzypek, Marek S; Hellerstedt, Sage T; Wong, Edith D; Nash, Robert S; Weng, Shuai; Binkley, Gail; Sheppard, Travis K; Karra, Kalpana; Cherry, J Michael
2018-01-01
Abstract The Saccharomyces Genome Database (SGD) provides comprehensive, integrated biological information for the budding yeast Saccharomyces cerevisiae, along with search and analysis tools to explore these data, enabling the discovery of functional relationships between sequence and gene products in fungi and higher organisms. We have recently expanded our data model for regulation curation to address regulation at the protein level in addition to transcription, and are presenting the expanded data on the ‘Regulation’ pages at SGD. These pages include a summary describing the context under which the regulator acts, manually curated and high-throughput annotations showing the regulatory relationships for that gene and a graphical visualization of its regulatory network and connected networks. For genes whose products regulate other genes or proteins, the Regulation page includes Gene Ontology enrichment analysis of the biological processes in which those targets participate. For DNA-binding transcription factors, we also provide other information relevant to their regulatory function, such as DNA binding site motifs and protein domains. As with other data types at SGD, all regulatory relationships and accompanying data are available through YeastMine, SGD’s data warehouse based on InterMine. Database URL: http://www.yeastgenome.org PMID:29688362
The GATA transcription factor gene gtaG is required for terminal differentiation in Dictyostelium.
Katoh-Kurasawa, Mariko; Santhanam, Balaji; Shaulsky, Gad
2016-03-09
The GATA transcription factor GtaG is conserved in Dictyostelids and essential for terminal differentiation in Dictyostelium discoideum, but its function is not well understood. Here we show that gtaG is expressed in prestalk cells at the anterior region of fingers and in the extending stalk during culmination. The gtaG - phenotype is cell-autonomous in prestalk cells and non-cell-autonomous in prespore cells. Transcriptome analyses reveal that GtaG regulates prestalk gene expression during cell differentiation before culmination and is required for progression into culmination. GtaG-dependent genes include genetic suppressors of the Dd-STATa-defective phenotype as well as Dd-STATa target-genes, including extra cellular matrix genes. We show that GtaG may be involved in the production of two culmination-signaling molecules, cyclic di-GMP and the spore differentiation factor SDF-1 and that addition of c-di-GMP rescues the gtaG - culmination and spore formation deficiencies. We propose that GtaG is a regulator of terminal differentiation that functions in concert with Dd-STATa and controls culmination through regulating c-di-GMP and SDF-1 production in prestalk cells. © 2016. Published by The Company of Biologists Ltd.
Primer in Genetics and Genomics, Article 6: Basics of Epigenetic Control.
Fessele, Kristen L; Wright, Fay
2018-01-01
The epigenome is a collection of chemical compounds that attach to and overlay the DNA sequence to direct gene expression. Epigenetic marks do not alter DNA sequence but instead allow or silence gene activity and the subsequent production of proteins that guide the growth and development of an organism, direct and maintain cell identity, and allow for the production of primordial germ cells (PGCs; ova and spermatozoa). The three main epigenetic marks are (1) histone modification, (2) DNA methylation, and (3) noncoding RNA, and each works in a different way to regulate gene expression. This article reviews these concepts and discusses their role in normal functions such as X-chromosome inactivation, epigenetic reprogramming during embryonic development and PGC production, and the clinical example of the imprinting disorders Angelman and Prader-Willi syndromes.
Inaba, Tomohiro; Tokumoto, Yuta; Miyazaki, Yusuke; Inoue, Naoyuki; Maseda, Hideaki; Nakajima-Kambe, Toshiaki; Uchiyama, Hiroo
2013-01-01
Succinoyl trehalose lipids (STLs) are promising glycolipid biosurfactants produced from n-alkanes that are secreted by Rhodococcus species bacteria. These compounds not only exhibit unique interfacial properties but also demonstrate versatile biochemical actions. In this study, three novel types of genes involved in the biosynthesis of STLs, including a putative acyl coenzyme A (acyl-CoA) transferase (tlsA), fructose-bisphosphate aldolase (fda), and alkane monooxygenase (alkB), were identified. The predicted functions of these genes indicate that alkane metabolism, sugar synthesis, and the addition of acyl groups are important for the biosynthesis of STLs. Based on these results, we propose a biosynthesis pathway for STLs from alkanes in Rhodococcus sp. strain SD-74. By overexpressing tlsA, we achieved a 2-fold increase in the production of STLs. This study advances our understanding of bacterial glycolipid production in Rhodococcus species. PMID:24038682
Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; ...
2014-10-24
Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less
Feuermann, Marc; Gaudet, Pascale; Mi, Huaiyu; Lewis, Suzanna E; Thomas, Paul D
2016-01-01
We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This 'GO Phylogenetic Annotation' approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied. Here, we report our results from applying this paradigm to two well-characterized cellular processes, apoptosis and autophagy. This revealed several important observations with respect to GO annotations and how they can be used for function inference. Notably, we applied only a small fraction of the experimentally supported GO annotations to infer function in other family members. The majority of other annotations describe indirect effects, phenotypes or results from high throughput experiments. In addition, we show here how feedback from phylogenetic annotation leads to significant improvements in the PANTHER trees, the GO annotations and GO itself. Thus GO phylogenetic annotation both increases the quantity and improves the accuracy of the GO annotations provided to the research community. We expect these phylogenetically based annotations to be of broad use in gene enrichment analysis as well as other applications of GO annotations.Database URL: http://amigo.geneontology.org/amigo. © The Author(s) 2016. Published by Oxford University Press.
Kim, Hong-Il; Kim, Jong-Hyeon; Park, Young-Jin
2016-03-09
Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.
Bragalini, Claudia; Ribière, Céline; Parisot, Nicolas; Vallon, Laurent; Prudent, Elsa; Peyretaillade, Eric; Girlanda, Mariangela; Peyret, Pierre; Marmeisse, Roland; Luis, Patricia
2014-01-01
Eukaryotic microbial communities play key functional roles in soil biology and potentially represent a rich source of natural products including biocatalysts. Culture-independent molecular methods are powerful tools to isolate functional genes from uncultured microorganisms. However, none of the methods used in environmental genomics allow for a rapid isolation of numerous functional genes from eukaryotic microbial communities. We developed an original adaptation of the solution hybrid selection (SHS) for an efficient recovery of functional complementary DNAs (cDNAs) synthesized from soil-extracted polyadenylated mRNAs. This protocol was tested on the Glycoside Hydrolase 11 gene family encoding endo-xylanases for which we designed 35 explorative 31-mers capture probes. SHS was implemented on four soil eukaryotic cDNA pools. After two successive rounds of capture, >90% of the resulting cDNAs were GH11 sequences, of which 70% (38 among 53 sequenced genes) were full length. Between 1.5 and 25% of the cloned captured sequences were expressed in Saccharomyces cerevisiae. Sequencing of polymerase chain reaction-amplified GH11 gene fragments from the captured sequences highlighted hundreds of phylogenetically diverse sequences that were not yet described, in public databases. This protocol offers the possibility of performing exhaustive exploration of eukaryotic gene families within microbial communities thriving in any type of environment. PMID:25281543
Neill, Meaghan Anne; Aschner, Judy; Barr, Frederick; Summar, Marshall L.
2009-01-01
The urea cycle and nitric oxide cycle play significant roles in complex biochemical and physiologic reactions. These cycles have distinct biochemical goals including the clearance of waste nitrogen; the production of the intermediates ornithine, citrulline, and arginine for the urea cycle; and the production of nitric oxide for the nitric oxide pathway. Despite their disparate functions, the two pathways share two enzymes, argininosuccinic acid synthase and argininosuccinic acid lyase, and a transporter, citrin. Studying the gene expression of these enzymes is paramount in understanding these complex biochemical pathways. Here, we examine the expression of genes involved in the urea cycle and the nitric oxide cycle in a panel of eleven different tissue samples obtained from individual adults without known inborn errors of metabolism. In this study, the pattern of co-expressed enzymes provides a global view of the metabolic activity of the urea and nitric oxide cycles in human tissues. Our results show that these transcripts are differentially expressed in different tissues. The pattern of co-expressed enzymes provides a global view of the metabolic activity of the urea and nitric oxide cycles in human tissues. Using the co-expression profiles, we discovered that the combination of expression of enzyme transcripts as detected in our study, might serve to fulfill specific physiologic function(s) in tissue including urea production/nitrogen removal, arginine/citrulline production, nitric oxide production, and ornithine production. Our study reveals the importance of studying not only the expression profile of an enzyme of interest, but also studying the expression profiles of the other enzymes involved in a particular pathway so as to better understand the context of expression. The tissue patterns we observed highlight the variety of important functions they conduct and provide insight into many of the clinical observations from their disruption. PMID:19345634
Gene and genon concept: coding versus regulation
2007-01-01
We analyse here the definition of the gene in order to distinguish, on the basis of modern insight in molecular biology, what the gene is coding for, namely a specific polypeptide, and how its expression is realized and controlled. Before the coding role of the DNA was discovered, a gene was identified with a specific phenotypic trait, from Mendel through Morgan up to Benzer. Subsequently, however, molecular biologists ventured to define a gene at the level of the DNA sequence in terms of coding. As is becoming ever more evident, the relations between information stored at DNA level and functional products are very intricate, and the regulatory aspects are as important and essential as the information coding for products. This approach led, thus, to a conceptual hybrid that confused coding, regulation and functional aspects. In this essay, we develop a definition of the gene that once again starts from the functional aspect. A cellular function can be represented by a polypeptide or an RNA. In the case of the polypeptide, its biochemical identity is determined by the mRNA prior to translation, and that is where we locate the gene. The steps from specific, but possibly separated sequence fragments at DNA level to that final mRNA then can be analysed in terms of regulation. For that purpose, we coin the new term “genon”. In that manner, we can clearly separate product and regulative information while keeping the fundamental relation between coding and function without the need to introduce a conceptual hybrid. In mRNA, the program regulating the expression of a gene is superimposed onto and added to the coding sequence in cis - we call it the genon. The complementary external control of a given mRNA by trans-acting factors is incorporated in its transgenon. A consequence of this definition is that, in eukaryotes, the gene is, in most cases, not yet present at DNA level. Rather, it is assembled by RNA processing, including differential splicing, from various pieces, as steered by the genon. It emerges finally as an uninterrupted nucleic acid sequence at mRNA level just prior to translation, in faithful correspondence with the amino acid sequence to be produced as a polypeptide. After translation, the genon has fulfilled its role and expires. The distinction between the protein coding information as materialised in the final polypeptide and the processing information represented by the genon allows us to set up a new information theoretic scheme. The standard sequence information determined by the genetic code expresses the relation between coding sequence and product. Backward analysis asks from which coding region in the DNA a given polypeptide originates. The (more interesting) forward analysis asks in how many polypeptides of how many different types a given DNA segment is expressed. This concerns the control of the expression process for which we have introduced the genon concept. Thus, the information theoretic analysis can capture the complementary aspects of coding and regulation, of gene and genon. PMID:18087760
Hannibal, Laure; Lorquin, Jean; D'Ortoli, Nicolas Angles; Garcia, Nelly; Chaintreuil, Clemence; Masson-Boivin, Catherine; Dreyfus, Bernard; Giraud, Eric
2000-01-01
A carotenoid biosynthesis gene cluster involved in canthaxanthin production was isolated from the photosynthetic Bradyrhizobium sp. strain ORS278. This cluster includes five genes identified as crtE, crtY, crtI, crtB, and crtW that are organized in at least two operons. The functional assignment of each open reading frame was confirmed by complementation studies. PMID:10851005
Ley, Daniel; Seresht, Ali Kazemi; Engmark, Mikael; Magdenoska, Olivera; Nielsen, Kristian Fog; Kildegaard, Helene Faustrup
2015-01-01
ABSTRACT Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi‐omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO‐K1 cells under growth‐limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO‐producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)+, adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT‐PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)+ and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post‐translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time‐course analysis of high‐ and low‐producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity. Biotechnol. Bioeng. 2015;112: 2373–2387. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:25995028
Chen, Xiao-Hua; Koumoutsi, Alexandra; Scholz, Romy; Borriss, Rainer
2009-01-01
The genome of environmental Bacillus amyloliquefaciens FZB42 harbors numerous gene clusters involved in synthesis of antifungal and antibacterial acting secondary metabolites. Five gene clusters, srf, bmy, fen, nrs, dhb, covering altogether 137 kb, direct non-ribosomal synthesis of the cyclic lipopeptides surfactin, bacillomycin, fengycin, an unknown peptide, and the iron siderophore bacillibactin. Bacillomycin and fengycin were shown to act against phytopathogenic fungi in a synergistic manner. Three gene clusters, mln, bae, and dif, with a total length of 199 kb were shown to direct synthesis of the antibacterial acting polyketides macrolactin, bacillaene, and difficidin. Both, non-ribosomal synthesis of cyclic lipopeptides and synthesis of polyketides are dependent on the presence of a functional sfp gene product, 4'-phosphopantetheinyl transferase, as evidenced by knockout mutation of the sfp gene resulting in complete absence of all those eight compounds. In addition, here we present evidence that a gene cluster encoding enzymes involved in synthesis and export of the antibacterial acting dipeptide bacilysin is also functional in FZB42. In summary, environmental FZB42 devoted about 340 kb, corresponding to 8.5% of its total genetic capacity, to synthesis of secondary metabolites useful to cope with other competing microorganisms present in the plant rhizosphere. Copyright (c) 2008 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Abdala, Z. M.; Powell, K.; Cronin, D.; Chappell, D.
2016-02-01
A comparative gene expression analysis of iron-limited cultures of Chaetoceros socialis and Pseudo-nitzschia arenysensisusing newly developed iron assays Zuzanna M. Abdala, Kimberly Powell, Dylan P. Cronin, P. Dreux Chappell Diatoms, accounting for about 40% of the primary production in marine ecosystems, play a vital role in the dynamics of marine systems. Iron availability is understood to be a driving factor controlling productivity of many marine phytoplankton, including diatoms, as it functions as a cofactor for many proteins including several involved with photosynthetic processes. Previous work examining transcriptomes of diatoms of the Thalassiosira genus grown in controlled laboratory settings has identified genes whose expression can be used as sensitive markers of iron status. Data mining publically available diatom transcriptome data for these genes enables development of additional iron status assays for environmentally-relevant diatoms. For the present study, gene expression analysis of iron-limited laboratory cultures of Chaetoceros socialis and Pseudo-nitzschia arenysensis grown in continuous light was done using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). C. socialis and P. arenysensis serve as comparative models for analyzing gene expression in iron limitation in different ecological community assemblages. These data may ultimately assist to illuminate the function of iron in photosynthetic activity in diatoms.
Polarity-defective mutants of Aspergillus nidulans.
Osherov, N; Mathew, J; May, G S
2000-12-01
We have identified two polarity-defective (pod) mutants in Aspergillus nidulans from a collection of heat-sensitive lethal mutants. At restrictive temperature, these mutants are capable of nuclear division but are unable to establish polar hyphal growth. We cloned the two pod genes by complementation of their heat-sensitive lethal phenotypes. The libraries used to clone the pod genes are under the control of the bidirectional niaD and niiA promoters. Complementation of the pod mutants is dependent on growth on inducing medium. We show that rescue of the heat-sensitive phenotype on inducing media is independent of the orientation of the gene relative to the niaD or niiA promoters, demonstrating that the intergenic region between the niaD and the niiA genes functions as an orientation-independent enhancer and repressor that is capable of functioning over long distances. The products of the podG and the podH genes were identified as homologues of the alpha subunit of yeast mitochondrial phenylalanyl--tRNA synthetase and transcription factor IIF interacting component of the CTD phosphatase. Neither of these gene products would have been predicted to produce a pod mutant phenotype based on studies of cellular polarity mutants in other organisms. The implications of these results are discussed. Copyright 2000 Academic Press.
The Production of Curli Amyloid Fibers Is Deeply Integrated into the Biology of Escherichia coli
Smith, Daniel R.; Price, Janet E.; Burby, Peter E.; Blanco, Luz P.; Chamberlain, Justin; Chapman, Matthew R.
2017-01-01
Curli amyloid fibers are the major protein component of the extracellular matrix produced by Enterobacteriaceae during biofilm formation. Curli are required for proper biofilm development and environmental persistence by Escherichia coli. Here, we present a complete and vetted genetic analysis of functional amyloid fiber biogenesis. The Keio collection of single gene deletions was screened on Congo red indicator plates to identify E. coli mutants that had defective amyloid production. We discovered that more than three hundred gene products modulated curli production. These genes were involved in fundamental cellular processes such as regulation, environmental sensing, respiration, metabolism, cell envelope biogenesis, transport, and protein turnover. The alternative sigma factors, σS and σE, had opposing roles in curli production. Mutations that induced the σE or Cpx stress response systems had reduced curli production, while mutant strains with increased σS levels had increased curli production. Mutations in metabolic pathways, including gluconeogenesis and the biosynthesis of lipopolysaccharide (LPS), produced less curli. Regulation of the master biofilm regulator, CsgD, was diverse, and the screen revealed several proteins and small RNAs (sRNA) that regulate csgD messenger RNA (mRNA) levels. Using previously published studies, we found minimal overlap between the genes affecting curli biogenesis and genes known to impact swimming or swarming motility, underlying the distinction between motile and sessile lifestyles. Collectively, the diversity and number of elements required suggest curli production is part of a highly regulated and complex developmental pathway in E. coli. PMID:29088115
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward DeLong
2011-10-07
Our overarching goals in this project were to: Develop and improve high-throughput sequencing methods and analytical approaches for quantitative analyses of microbial gene expression at the Hawaii Ocean Time Series Station and the Bermuda Atlantic Time Series Station; Conduct field analyses following gene expression patterns in picoplankton microbial communities in general, and Prochlorococcus flow sorted from that community, as they respond to different environmental variables (light, macronutrients, dissolved organic carbon), that are predicted to influence activity, productivity, and carbon cycling; Use the expression analyses of flow sorted Prochlorococcus to identify horizontally transferred genes and gene products, in particular those thatmore » are located in genomic islands and likely to confer habitat-specific fitness advantages; Use the microbial community gene expression data that we generate to gain insights, and test hypotheses, about the variability, genomic context, activity and function of as yet uncharacterized gene products, that appear highly expressed in the environment. We achieved the above goals, and even more over the course of the project. This includes a number of novel methodological developments, as well as the standardization of microbial community gene expression analyses in both field surveys, and experimental modalities. The availability of these methods, tools and approaches is changing current practice in microbial community analyses.« less
A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast
2005-05-01
Chaleff DT, Valent B, Fink GR. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 1984; 107(2): 179-97... mutations , and are synthetically lethal with rotl mutations ROX3 YBL093C Repressor Of hypoXic genes : RNA polymerase I1 holcenzyme component 3,3 SSS...mitochondrial gene products; mutation causes an elevated rate of mitochondrial turnover; 3 MOD after 60 generations, MOD on NaCI YNDI YER005W Yeast Nucleoside
Natural Products Version 2.0: Connecting Genes to Molecules
Walsh, Christopher T.; Fischbach, Michael A.
2009-01-01
Natural products have played a prominent role in the history of organic chemistry, and they continue to be important as drugs, biological probes, and targets of study for synthetic and analytical chemists. In this perspective, we explore how connecting Nature’s small molecules to the genes that encode them has sparked a renaissance in natural product research, focusing primarily on the biosynthesis of polyketides and nonribosomal peptides. We survey monomer biogenesis, coupling chemistries from templated and non-templated pathways, and the broad set of tailoring reactions and hybrid pathways that give rise to the diverse scaffolds and functionalization patterns of natural products. We conclude by considering two questions: What would it take to find all natural product scaffolds? What kind of scientists will be studying natural products in the future? PMID:20121095
AmyR Is a Novel Negative Regulator of Amylovoran Production in Erwinia amylovora
Wang, Dongping; Korban, Schuyler S.; Pusey, P. Lawrence; Zhao, Youfu
2012-01-01
In this study, we attempted to understand the role of an orphan gene amyR in Erwinia amylovora, a functionally conserved ortholog of ybjN in Escherichia coli, which has recently been characterized. Amylovoran, a high molecular weight acidic heteropolymer exopolysaccharide, is a virulent factor of E. amylovora. As reported earlier, amylovoran production in an amyR knockout mutant was about eight-fold higher than that in the wild type (WT) strain of E. amylovora. When a multicopy plasmid containing the amyR gene was introduced into the amyR mutant or WT strains, amylovoran production was strongly inhibited. Furthermore, amylovoran production was also suppressed in various amylovoran-over-producing mutants, such as grrSA containing multicopies of the amyR gene. Consistent with amylovoran production, an inverse correlation was observed between in vitro expression of amyR and that of amylovoran biosynthetic genes. However, both the amyR knockout mutant and over-expression strains showed reduced levan production, another exopolysaccharide produced by E. amylovora. Virulence assays demonstrated that while the amyR mutant was capable of inducing slightly greater disease severity than that of the WT strain, strains over-expressing the amyR gene did not incite disease on apple shoots or leaves, and only caused reduced disease on immature pear fruits. Microarray studies revealed that amylovoran biosynthesis and related membrane protein-encoding genes were highly expressed in the amyR mutant, but down-regulated in the amyR over-expression strains in vitro. Down-regulation of amylovoran biosynthesis genes in the amyR over-expression strain partially explained why over-expression of amyR led to non-pathogenic or reduced virulence in vivo. These results suggest that AmyR plays an important role in regulating exopolysaccharide production, and thus virulence in E. amylovora. PMID:23028751
AmyR is a novel negative regulator of amylovoran production in Erwinia amylovora.
Wang, Dongping; Korban, Schuyler S; Pusey, P Lawrence; Zhao, Youfu
2012-01-01
In this study, we attempted to understand the role of an orphan gene amyR in Erwinia amylovora, a functionally conserved ortholog of ybjN in Escherichia coli, which has recently been characterized. Amylovoran, a high molecular weight acidic heteropolymer exopolysaccharide, is a virulent factor of E. amylovora. As reported earlier, amylovoran production in an amyR knockout mutant was about eight-fold higher than that in the wild type (WT) strain of E. amylovora. When a multicopy plasmid containing the amyR gene was introduced into the amyR mutant or WT strains, amylovoran production was strongly inhibited. Furthermore, amylovoran production was also suppressed in various amylovoran-over-producing mutants, such as grrSA containing multicopies of the amyR gene. Consistent with amylovoran production, an inverse correlation was observed between in vitro expression of amyR and that of amylovoran biosynthetic genes. However, both the amyR knockout mutant and over-expression strains showed reduced levan production, another exopolysaccharide produced by E. amylovora. Virulence assays demonstrated that while the amyR mutant was capable of inducing slightly greater disease severity than that of the WT strain, strains over-expressing the amyR gene did not incite disease on apple shoots or leaves, and only caused reduced disease on immature pear fruits. Microarray studies revealed that amylovoran biosynthesis and related membrane protein-encoding genes were highly expressed in the amyR mutant, but down-regulated in the amyR over-expression strains in vitro. Down-regulation of amylovoran biosynthesis genes in the amyR over-expression strain partially explained why over-expression of amyR led to non-pathogenic or reduced virulence in vivo. These results suggest that AmyR plays an important role in regulating exopolysaccharide production, and thus virulence in E. amylovora.
Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii.
Anitha, P; Anbarasu, Anand; Ramaiah, Sudha
2014-05-01
Multi Drug Resistance (MDR) in Acinetobacter baumannii is one of the major threats for emerging nosocomial infections in hospital environment. Multidrug-resistance in A. baumannii may be due to the implementation of multi-combination resistance mechanisms such as β-lactamase synthesis, Penicillin-Binding Proteins (PBPs) changes, alteration in porin proteins and in efflux pumps against various existing classes of antibiotics. Multiple antibiotic resistance genes are involved in MDR. These resistance genes are transferred through plasmids, which are responsible for the dissemination of antibiotic resistance among Acinetobacter spp. In addition, these resistance genes may also have a tendency to interact with each other or with their gene products. Therefore, it becomes necessary to understand the impact of these interactions in antibiotic resistance mechanism. Hence, our study focuses on protein and gene network analysis on various resistance genes, to elucidate the role of the interacting proteins and to study their functional contribution towards antibiotic resistance. From the search tool for the retrieval of interacting gene/protein (STRING), a total of 168 functional partners for 15 resistance genes were extracted based on the confidence scoring system. The network study was then followed up with functional clustering of associated partners using molecular complex detection (MCODE). Later, we selected eight efficient clusters based on score. Interestingly, the associated protein we identified from the network possessed greater functional similarity with known resistance genes. This network-based approach on resistance genes of A. baumannii could help in identifying new genes/proteins and provide clues on their association in antibiotic resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Jun; Zhang, Lei; Geng, Alei; Liu, Fanghua; Zhao, Guoping; Wang, Shengyue; Zhou, Zhihua; Yan, Xing
2015-01-01
Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future. PMID:26070087
Prochloraz is a fungicide known to cause endocrine disruption through effects on the hypothalamic-pituitary-gonadal (HPG) axis. To determine the short-term impacts of prochloraz on gene expression and steroid production, adult female fathead minnows (Pimephales promelas) were exp...
Deletion Analysis of the Tumorous-Head (tuh–3) Gene in DROSOPHILA MELANOGASTER
Kuhn, David T.; Woods, Daniel F.; Andrew, Deborah J.
1981-01-01
In the presence of the naturally occurring maternal-effect alleles tuh-1h or tuh-1g, the tuh-3 mutant gene can cause the tumorous-head trait or the sac-testis trait. The tuh-3 gene functions as a semidominant in the presence of the tuh-1h maternal effect. Eye-antennal structures are replaced by posterior abdominal tergites and genital structures. If tuh-1h is replaced by its naturally occurring allele tuh-1g, tuh-3 functions as a recessive hypomorph and the defect switches from anterior to posterior structures, with a male genital-disc defect appearing with variable penetrance. Function and regulation of tuh-3+ may better be understood in light of the cytological localization of tuh-3 either adjacent to or as part of the bithorax complex. The tuh-3+ gene product appears to be essential for normal development, at least in the posterior end of the embryo. PMID:6804305
Ponting, C P; Mott, R; Bork, P; Copley, R R
2001-12-01
Sequence database searching methods such as BLAST, are invaluable for predicting molecular function on the basis of sequence similarities among single regions of proteins. Searches of whole databases however, are not optimized to detect multiple homologous regions within a single polypeptide. Here we have used the prospero algorithm to perform self-comparisons of all predicted Drosophila melanogaster gene products. Predicted repeats, and their homologs from all species, were analyzed further to detect hitherto unappreciated evolutionary relationships. Results included the identification of novel tandem repeats in the human X-linked retinitis pigmentosa type-2 gene product, repeated segments in cystinosin, associated with a defect in cystine transport, and 'nested' homologous domains in dysferlin, whose gene is mutated in limb girdle muscular dystrophy. Novel signaling domain families were found that may regulate the microtubule-based cytoskeleton and ubiquitin-mediated proteolysis, respectively. Two families of glycosyl hydrolases were shown to contain internal repetitions that hint at their evolution via a piecemeal, modular approach. In addition, three examples of fruit fly genes were detected with tandem exons that appear to have arisen via internal duplication. These findings demonstrate how completely sequenced genomes can be exploited to further understand the relationships between molecular structure, function, and evolution.
The effect of music performance on the transcriptome of professional musicians.
Kanduri, Chakravarthi; Kuusi, Tuire; Ahvenainen, Minna; Philips, Anju K; Lähdesmäki, Harri; Järvelä, Irma
2015-03-25
Music performance by professional musicians involves a wide-spectrum of cognitive and multi-sensory motor skills, whose biological basis is unknown. Several neuroscientific studies have demonstrated that the brains of professional musicians and non-musicians differ structurally and functionally and that musical training enhances cognition. However, the molecules and molecular mechanisms involved in music performance remain largely unexplored. Here, we investigated the effect of music performance on the genome-wide peripheral blood transcriptome of professional musicians by analyzing the transcriptional responses after a 2-hr concert performance and after a 'music-free' control session. The up-regulated genes were found to affect dopaminergic neurotransmission, motor behavior, neuronal plasticity, and neurocognitive functions including learning and memory. Particularly, candidate genes such as SNCA, FOS and DUSP1 that are involved in song perception and production in songbirds, were identified, suggesting an evolutionary conservation in biological processes related to sound perception/production. Additionally, modulation of genes related to calcium ion homeostasis, iron ion homeostasis, glutathione metabolism, and several neuropsychiatric and neurodegenerative diseases implied that music performance may affect the biological pathways that are otherwise essential for the proper maintenance of neuronal function and survival. For the first time, this study provides evidence for the candidate genes and molecular mechanisms underlying music performance.
Riffle, Michael; Merrihew, Gennifer E; Jaschob, Daniel; Sharma, Vagisha; Davis, Trisha N; Noble, William S; MacCoss, Michael J
2015-11-01
Regulation of protein abundance is a critical aspect of cellular function, organism development, and aging. Alternative splicing may give rise to multiple possible proteoforms of gene products where the abundance of each proteoform is independently regulated. Understanding how the abundances of these distinct gene products change is essential to understanding the underlying mechanisms of many biological processes. Bottom-up proteomics mass spectrometry techniques may be used to estimate protein abundance indirectly by sequencing and quantifying peptides that are later mapped to proteins based on sequence. However, quantifying the abundance of distinct gene products is routinely confounded by peptides that map to multiple possible proteoforms. In this work, we describe a technique that may be used to help mitigate the effects of confounding ambiguous peptides and multiple proteoforms when quantifying proteins. We have applied this technique to visualize the distribution of distinct gene products for the whole proteome across 11 developmental stages of the model organism Caenorhabditis elegans. The result is a large multidimensional dataset for which web-based tools were developed for visualizing how translated gene products change during development and identifying possible proteoforms. The underlying instrument raw files and tandem mass spectra may also be downloaded. The data resource is freely available on the web at http://www.yeastrc.org/wormpes/ . Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Riffle, Michael; Merrihew, Gennifer E.; Jaschob, Daniel; Sharma, Vagisha; Davis, Trisha N.; Noble, William S.; MacCoss, Michael J.
2015-11-01
Regulation of protein abundance is a critical aspect of cellular function, organism development, and aging. Alternative splicing may give rise to multiple possible proteoforms of gene products where the abundance of each proteoform is independently regulated. Understanding how the abundances of these distinct gene products change is essential to understanding the underlying mechanisms of many biological processes. Bottom-up proteomics mass spectrometry techniques may be used to estimate protein abundance indirectly by sequencing and quantifying peptides that are later mapped to proteins based on sequence. However, quantifying the abundance of distinct gene products is routinely confounded by peptides that map to multiple possible proteoforms. In this work, we describe a technique that may be used to help mitigate the effects of confounding ambiguous peptides and multiple proteoforms when quantifying proteins. We have applied this technique to visualize the distribution of distinct gene products for the whole proteome across 11 developmental stages of the model organism Caenorhabditis elegans. The result is a large multidimensional dataset for which web-based tools were developed for visualizing how translated gene products change during development and identifying possible proteoforms. The underlying instrument raw files and tandem mass spectra may also be downloaded. The data resource is freely available on the web at http://www.yeastrc.org/wormpes/.
2012-01-01
Interrogation of the evolutionary history underlying the remarkable structures and biological activities of natural products has been complicated by not knowing the functions they have evolved to fulfill. Siderophores—soluble, low molecular weight compounds—have an easily understood and measured function: acquiring iron from the environment. Bacteria engage in a fierce competition to acquire iron, which rewards the production of siderophores that bind iron tightly and cannot be used or pirated by competitors. The structures and biosyntheses of “odd” siderophores can reveal the evolutionary strategy that led to their creation. We report a new Serratia strain that produces serratiochelin and an analog of serratiochelin. A genetic approach located the serratiochelin gene cluster, and targeted mutations in several genes implicated in serratiochelin biosynthesis were generated. Bioinformatic analyses and mutagenesis results demonstrate that genes from two well-known siderophore clusters, the Escherichia coli enterobactin cluster and the Vibrio cholera vibriobactin cluster, were shuffled to produce a new siderophore biosynthetic pathway. These results highlight how modular siderophore gene clusters can be mixed and matched during evolution to generate structural diversity in siderophores. PMID:22830960
Seyedsayamdost, Mohammad R; Cleto, Sara; Carr, Gavin; Vlamakis, Hera; João Vieira, Maria; Kolter, Roberto; Clardy, Jon
2012-08-22
Interrogation of the evolutionary history underlying the remarkable structures and biological activities of natural products has been complicated by not knowing the functions they have evolved to fulfill. Siderophores-soluble, low molecular weight compounds-have an easily understood and measured function: acquiring iron from the environment. Bacteria engage in a fierce competition to acquire iron, which rewards the production of siderophores that bind iron tightly and cannot be used or pirated by competitors. The structures and biosyntheses of "odd" siderophores can reveal the evolutionary strategy that led to their creation. We report a new Serratia strain that produces serratiochelin and an analog of serratiochelin. A genetic approach located the serratiochelin gene cluster, and targeted mutations in several genes implicated in serratiochelin biosynthesis were generated. Bioinformatic analyses and mutagenesis results demonstrate that genes from two well-known siderophore clusters, the Escherichia coli enterobactin cluster and the Vibrio cholera vibriobactin cluster, were shuffled to produce a new siderophore biosynthetic pathway. These results highlight how modular siderophore gene clusters can be mixed and matched during evolution to generate structural diversity in siderophores.
Wang, Jingrui; Tang, Wei; Zheng, Yongna; Xing, Zhuqing; Wang, Yanping
2016-09-01
A novel lactic acid bacteria strain Lactobacillus kefiranofaciens ZW3 exhibited the characteristics of high production of exopolysaccharide (EPS). The epsN gene, located in the eps gene cluster of this strain, is associated with EPS biosynthesis. Bioinformatics analysis of this gene was performed. The conserved domain analysis showed that the EpsN protein contained MATE-Wzx-like domains. Then the epsN gene was amplified to construct the recombinant expression vector pMG36e-epsN. The results showed that the EPS yields of the recombinants were significantly improved. By determining the yields of EPS and intracellular polysaccharide, it was considered that epsN gene could play its Wzx flippase role in the EPS biosynthesis. This is the first time to prove the effect of EpsN on L. kefiranofaciens EPS biosynthesis and further prove its functional property.
Zhu, Jia-Hong; Xu, Jing; Chang, Wen-Jun; Zhang, Zhi-Li
2015-01-01
Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1–7) of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment.These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production. PMID:25690030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Qi; Zhao, Mengxin; Wang, Shiping
As the highest place of the world, the Tibetan plateau is a fragile ecosystem. Given the importance of microbial communities in driving soil nutrient cycling, it is of interest to document the microbial biogeographic pattern here. We adopted a microarray-based tool named GeoChip 4.0 to investigate grassland microbial functional genes along an elevation gradient from 3200 to 3800 m above sea level open to free grazing by local herdsmen and wild animals. Interestingly, microbial functional diversities increase with elevation, so does the relative abundances of genes associated with carbon degradation, nitrogen cycling, methane production, cold shock and oxygen limitation. Themore » range of Shannon diversities (10.27–10.58) showed considerably smaller variation than what was previously observed at ungrazed sites nearby (9.95–10.65), suggesting the important role of livestock grazing on microbial diversities. Closer examination showed that the dissimilarity of microbial community at our study sites increased with elevations, revealing an elevation-decay relationship of microbial functional genes. Both microbial functional diversity and the number of unique genes increased with elevations. Furthermore, we detected a tight linkage of greenhouse gas (CO2) and relative abundances of carbon cycling genes. Our biogeographic study provides insights on microbial functional diversity and soil biogeochemical cycling in Tibetan pastures.« less
Meslin, Camille; Plakke, Melissa S.; Deutsch, Aaron B.; Small, Brandon S.; Morehouse, Nathan I.; Clark, Nathan L.
2015-01-01
Persistent adaptive challenges are often met with the evolution of novel physiological traits. Although there are specific examples of single genes providing new physiological functions, studies on the origin of complex organ functions are lacking. One such derived set of complex functions is found in the Lepidopteran bursa copulatrix, an organ within the female reproductive tract that digests nutrients from the male ejaculate or spermatophore. Here, we characterized bursa physiology and the evolutionary mechanisms by which it was equipped with digestive and absorptive functionality. By studying the transcriptome of the bursa and eight other tissues, we revealed a suite of highly expressed and secreted gene products providing the bursa with a combination of stomach-like traits for mechanical and enzymatic digestion of the male spermatophore. By subsequently placing these bursa genes in an evolutionary framework, we found that the vast majority of their novel digestive functions were co-opted by borrowing genes that continue to be expressed in nonreproductive tissues. However, a number of bursa-specific genes have also arisen, some of which represent unique gene families restricted to Lepidoptera and may provide novel bursa-specific functions. This pattern of promiscuous gene borrowing and relatively infrequent evolution of tissue-specific duplicates stands in contrast to studies of the evolution of novelty via single gene co-option. Our results suggest that the evolution of complex organ-level phenotypes may often be enabled (and subsequently constrained) by changes in tissue specificity that allow expression of existing genes in novel contexts, such as reproduction. The extent to which the selective pressures encountered in these novel roles require resolution via duplication and sub/neofunctionalization is likely to be determined by the need for specialized reproductive functionality. Thus, complex physiological phenotypes such as that found in the bursa offer important opportunities for understanding the relative role of pleiotropy and specialization in adaptive evolution. PMID:25725432
Lu, Lin; Roberts, George G; Oszust, Cynthia; Hudson, Alan P
2005-10-01
A putative yeast mitochondrial upstream activating sequence (UAS) was used in a one-hybrid screening procedure that identified the YJR127C ORF on chromosome X. This gene was previously designated ZMS1 and is listed as a transcription factor on the SGD website. Real time RT-PCR assays showed that expression of YJR127C/ZMS1 was glucose-repressible, and a deletion mutant for the gene showed a growth defect on glycerol-based but not on glucose- or ethanol-based medium. Real time RT-PCR analyses identified severely attenuated transcript levels from GUT1 and GUT2 to be the source of that growth defect, the products of GUT1 and GUT2 are required for glycerol utilization. mRNA levels from a large group of mitochondria- and respiration-related nuclear genes also were shown to be attenuated in the deletion mutant. Importantly, transcript levels from the mitochondrial OLI1 gene, which has an associated organellar UAS, were attenuated in the DeltaYJR127C mutant during glycerol-based growth, but those from COX3 (OXI2), which lacks an associated mitochondrial UAS, were not. Transcriptome analysis of the glycerol-grown deletion mutant showed that genes in several metabolic and other categories are affected by loss of this gene product, including protein transport, signal transduction, and others. Thus, the product of YJR127C/ZMS1 is involved in transcriptional control for genes in both cellular genetic compartments, many of which specify products required for glycerol-based growth, respiration, and other functions.
Bhushan, Bharat; Tomar, S K; Chauhan, Arun
2017-01-01
An appropriate selection of Lactobacillus strain (probiotic/starter/functional) on the basis of its techno-functional characteristics is required before developing a novel fermented functional food. We compared vitamin B 12 (B 12 , cobalamin) producing Lactobacillus plantarum isolates, BHM10 and BCF20, for functional (vitamin over-production, genomic insight to B 12 structural genes, and probiotic attributes) and technological [milks (skim and soy) fermentation and B 12 bio-fortification] characteristics. Addition of B 12 precursors (5-amonolevulinate and dimethylbenzimidazole) to cobalamin-free fermentation medium increased vitamin production in BHM10, BCF20, and DSM20016 (a positive standard) by 3.4-, 4.4-, and 3.86-folds, respectively. Three important B 12 structural genes were detected in L. plantarum species (strains BHM10 and BCF20) by PCR for the first time. The gene sequences were submitted to NCBI GenBank and found phylogenetically closer to respective sequences in B 12 producing Lactobacillus reuteri strains. During comparative probiotic testing, BCF20 showed significantly higher (p < 0.05 to p < 0.001) gastrointestinal tolerance and cell surface hydrophobicity (p < 0.05) than BHM10. Moreover, only BCF20 was found positive for BSH activity and also exhibited comparatively better antagonistic potential against potent pathogens. Conversely, high acid and bile susceptible strain BHM10 displayed significantly higher soy milk fermentation and resultant B 12 bio-fortification abilities during technological testing. Two B 12 quantification techniques, UFLC and competitive immunoassay, confirmed the in vitro and in situ bio-production of bio-available form of B 12 after BHM10 fermentation. Conclusively, techno-functional differentiation of two B 12 producing strains elucidates their diverse future use; BCF20 either for B 12 over-production (in vitro) or as a probiotic candidate, while BHM10 for cobalamin bio-fortification (in situ) in soy milk.
Raethong, Nachon; Wong-ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa
2016-01-01
Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction. PMID:27274991
Raethong, Nachon; Wong-Ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa
2016-01-01
Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H(+)-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction.
Exploring autophagy with Gene Ontology
2018-01-01
ABSTRACT Autophagy is a fundamental cellular process that is well conserved among eukaryotes. It is one of the strategies that cells use to catabolize substances in a controlled way. Autophagy is used for recycling cellular components, responding to cellular stresses and ridding cells of foreign material. Perturbations in autophagy have been implicated in a number of pathological conditions such as neurodegeneration, cardiac disease and cancer. The growing knowledge about autophagic mechanisms needs to be collected in a computable and shareable format to allow its use in data representation and interpretation. The Gene Ontology (GO) is a freely available resource that describes how and where gene products function in biological systems. It consists of 3 interrelated structured vocabularies that outline what gene products do at the biochemical level, where they act in a cell and the overall biological objectives to which their actions contribute. It also consists of ‘annotations’ that associate gene products with the terms. Here we describe how we represent autophagy in GO, how we create and define terms relevant to autophagy researchers and how we interrelate those terms to generate a coherent view of the process, therefore allowing an interoperable description of its biological aspects. We also describe how annotation of gene products with GO terms improves data analysis and interpretation, hence bringing a significant benefit to this field of study. PMID:29455577
Deng, Peng; Foxfire, Adam; Xu, Jianhong; Baird, Sonya M; Jia, Jiayuan; Delgado, Keren H; Shin, Ronald; Smith, Leif; Lu, Shi-En
2017-04-15
Burkholderia contaminans MS14 was isolated from soil in Mississippi. When it is cultivated on nutrient broth-yeast extract agar, the colonies exhibit bactericidal activity against a wide range of plant-pathogenic bacteria. A bacteriostatic compound with siderophore activity was successfully purified and was determined by nuclear magnetic resonance spectroscopy to be ornibactin. Isolation of the bactericidal compound has not yet been achieved; therefore, the exact nature of the bactericidal compound is still unknown. During an attempt to isolate the bactericidal compound, an interesting relationship between the production of ornibactin and the bactericidal activity of MS14 was characterized. Transposon mutagenesis resulted in two strains that lost bactericidal activity, with insertional mutations in a nonribosomal peptide synthetase (NRPS) gene for ornibactin biosynthesis and a luxR family transcriptional regulatory gene. Coculture of these two mutant strains resulted in restoration of the bactericidal activity. Furthermore, the addition of ornibactin to the NRPS mutant restored the bactericidal phenotype. It has been demonstrated that, in MS14, ornibactin has an alternative function, aside from iron sequestration. Comparison of the ornibactin biosynthesis genes in Burkholderia species shows diversity among the regulatory elements, while the gene products for ornibactin synthesis are conserved. This is an interesting observation, given that ornibactin is thought to have the same defined function within Burkholderia species. Ornibactin is produced by most Burkholderia species, and its role in regulating the production of secondary metabolites should be investigated. IMPORTANCE Identification of the antibacterial product from strain MS14 is not the key feature of this study. We present a series of experiments that demonstrate that ornibactin is directly involved in the bactericidal phenotype of MS14. This observation provides evidence for an alternative function for ornibactin, aside from iron sequestration. Ornibactin should be further evaluated for its role in regulating the biosynthesis of secondary metabolites in other Burkholderia species. Copyright © 2017 American Society for Microbiology.
Deng, Peng; Foxfire, Adam; Xu, Jianhong; Baird, Sonya M.; Jia, Jiayuan; Delgado, Keren H.; Shin, Ronald
2017-01-01
ABSTRACT Burkholderia contaminans MS14 was isolated from soil in Mississippi. When it is cultivated on nutrient broth-yeast extract agar, the colonies exhibit bactericidal activity against a wide range of plant-pathogenic bacteria. A bacteriostatic compound with siderophore activity was successfully purified and was determined by nuclear magnetic resonance spectroscopy to be ornibactin. Isolation of the bactericidal compound has not yet been achieved; therefore, the exact nature of the bactericidal compound is still unknown. During an attempt to isolate the bactericidal compound, an interesting relationship between the production of ornibactin and the bactericidal activity of MS14 was characterized. Transposon mutagenesis resulted in two strains that lost bactericidal activity, with insertional mutations in a nonribosomal peptide synthetase (NRPS) gene for ornibactin biosynthesis and a luxR family transcriptional regulatory gene. Coculture of these two mutant strains resulted in restoration of the bactericidal activity. Furthermore, the addition of ornibactin to the NRPS mutant restored the bactericidal phenotype. It has been demonstrated that, in MS14, ornibactin has an alternative function, aside from iron sequestration. Comparison of the ornibactin biosynthesis genes in Burkholderia species shows diversity among the regulatory elements, while the gene products for ornibactin synthesis are conserved. This is an interesting observation, given that ornibactin is thought to have the same defined function within Burkholderia species. Ornibactin is produced by most Burkholderia species, and its role in regulating the production of secondary metabolites should be investigated. IMPORTANCE Identification of the antibacterial product from strain MS14 is not the key feature of this study. We present a series of experiments that demonstrate that ornibactin is directly involved in the bactericidal phenotype of MS14. This observation provides evidence for an alternative function for ornibactin, aside from iron sequestration. Ornibactin should be further evaluated for its role in regulating the biosynthesis of secondary metabolites in other Burkholderia species. PMID:28188204
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min
2013-01-18
Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulatingmore » the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.« less
Construction and Analysis of Functional Networks in the Gut Microbiome of Type 2 Diabetes Patients.
Li, Lianshuo; Wang, Zicheng; He, Peng; Ma, Shining; Du, Jie; Jiang, Rui
2016-10-01
Although networks of microbial species have been widely used in the analysis of 16S rRNA sequencing data of a microbiome, the construction and analysis of a complete microbial gene network are in general problematic because of the large number of microbial genes in metagenomics studies. To overcome this limitation, we propose to map microbial genes to functional units, including KEGG orthologous groups and the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) orthologous groups, to enable the construction and analysis of a microbial functional network. We devised two statistical methods to infer pairwise relationships between microbial functional units based on a deep sequencing dataset of gut microbiome from type 2 diabetes (T2D) patients as well as healthy controls. Networks containing such functional units and their significant interactions were constructed subsequently. We conducted a variety of analyses of global properties, local properties, and functional modules in the resulting functional networks. Our data indicate that besides the observations consistent with the current knowledge, this study provides novel biological insights into the gut microbiome associated with T2D. Copyright © 2016. Production and hosting by Elsevier Ltd.
Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene.
Ryner, L C; Goodwin, S F; Castrillon, D H; Anand, A; Villella, A; Baker, B S; Hall, J C; Taylor, B J; Wasserman, S A
1996-12-13
Sexual orientation and courtship behavior in Drosophila are regulated by fruitless (fru), the first gene in a branch of the sex-determination hierarchy functioning specifically in the central nervous system (CNS). The phenotypes of new fru mutants encompass nearly all aspects of male sexual behavior. Alternative splicing of fru transcripts produces sex-specific proteins belonging to the BTB-ZF family of transcriptional regulators. The sex-specific fru products are produced in only about 500 of the 10(5) neurons that comprise the CNS. The properties of neurons expressing these fru products suggest that fru specifies the fates or activities of neurons that carry out higher order control functions to elicit and coordinate the activities comprising male courtship behavior.
Gene Expression in Human Accessory Lacrimal Glands of Wolfring
Ubels, John L.; Gipson, Ilene K.; Spurr-Michaud, Sandra J.; Tisdale, Ann S.; Van Dyken, Rachel E.; Hatton, Mark P.
2012-01-01
Purpose. The accessory lacrimal glands are assumed to contribute to the production of tear fluid, but little is known about their function. The goal of this study was to conduct an analysis of gene expression by glands of Wolfring that would provide a more complete picture of the function of these glands. Methods. Glands of Wolfring were isolated from frozen sections of human eyelids by laser microdissection. RNA was extracted from the cells and hybridized to gene expression arrays. The expression of several of the major genes was confirmed by immunohistochemistry. Results. Of the 24 most highly expressed genes, 9 were of direct relevance to lacrimal function. These included lysozyme, lactoferrin, tear lipocalin, and lacritin. The glands of Wolfring are enriched in genes related to protein synthesis, targeting, and secretion, and a large number of genes for proteins with antimicrobial activity were detected. Ion channels and transporters, carbonic anhydrase, and aquaporins were abundantly expressed. Genes for control of lacrimal function, including cholinergic, adrenergic, vasoactive intestinal polypeptide, purinergic, androgen, and prolactin receptors were also expressed in gland of Wolfring. Conclusions. The data suggest that the function of glands of Wolfring is similar to that of main lacrimal glands and are consistent with secretion electrolytes, fluid, and protein under nervous and hormonal control. Since these glands secrete directly onto the ocular surface, their location may allow rapid response to exogenous stimuli and makes them readily accessible to topical drugs. PMID:22956620
Structural and Biochemical Characterization of a Novel Aminopeptidase from Human Intestine
Tykvart, Jan; Bařinka, Cyril; Svoboda, Michal; ...
2015-03-09
N-acetylated α-linked acidic dipeptidase-like protein (NAALADase L), encoded by the NAALADL1 gene, is a close homolog of glutamate carboxypeptidase II, a metallopeptidase that has been intensively studied as a target for imaging and therapy of solid malignancies and neuropathologies. However, neither the physiological functions nor structural features of NAALADase L are known at present. In this paper, we report a thorough characterization of the protein product of the human NAALADL1 gene, including heterologous overexpression and purification, structural and biochemical characterization, and analysis of its expression profile. By solving the NAALADase L x-ray structure, we provide the first experimental evidence thatmore » it is a zinc-dependent metallopeptidase with a catalytic mechanism similar to that of glutamate carboxypeptidase II yet distinct substrate specificity. A proteome-based assay revealed that the NAALADL1 gene product possesses previously unrecognized aminopeptidase activity but no carboxy- or endopeptidase activity. These findings were corroborated by site-directed mutagenesis and identification of bestatin as a potent inhibitor of the enzyme. Analysis of NAALADL1 gene expression at both the mRNA and protein levels revealed the small intestine as the major site of protein expression and points toward extensive alternative splicing of the NAALADL1 gene transcript. Taken together, our data imply that the NAALADL1 gene product's primary physiological function is associated with the final stages of protein/peptide digestion and absorption in the human digestive system. Finally, based on these results, we suggest a new name for this enzyme: human ileal aminopeptidase (HILAP).« less
Hu, Jianpeng; Xuan, Xujun; Han, Conghui; Hao, Lin; Zhang, Peiying; Chen, Meng; He, Houguang; Fan, Tao; Dong, Binzheng
2012-03-01
To construct an adenovirus carrying SEA gene and regulated by telomerase reverse transcriptase (hTERT) and hypoxia-inducible factor (HIF) promoters and investigate its anti-tumor function in vitro, as well as its role in lymphocyte production. hTERT and HIF genes were cloned into adenovirus E1A and E1B shuttle plasmids. The control vector for SEA gene expression is under the regulation of CMV and SV40 promoters. Double regulation was obtained through homologous recombination. The positive clones of replicable adenovirus H2-SEA-Ad were selected by plaque assay. The adenovirus was purified, titrated, and DNA was verified by PCR. The obtained virus was used to infect EJ bladder tumor cells and the SEA Mrna, and protein expression was measured by RT-PCR, western blot, and immunofluorescence microscopy, respectively. Co-culture of lymphocytes and tumor cells was observed dynamically under microscope. The construction of shuttle plasmid p315-CSS-SEA was confirmed by PCR and DNA sequencing. Insertion of superantigen SEA gene in adenovirus (H2-SEA-Ad.SEA) was obtained by homologous recombination. In lymphocytes and tumor cell co-culture, the number of viable tumor cells in test groups was significantly lower than that in control group after 12, 24, and 48 h of treatment. Production of interleukin-2, interleukin-4, and tumor necrosis factor were higher in test groups than in control group. Expression of SEA gene in bladder tumor cells by adenoviral vector caused reduced tumor cell proliferation, as well as stimulation of inflammatory cytokine productions in co-cultures with lymphocytes.
Schnitzler, Christine E; Pang, Kevin; Powers, Meghan L; Reitzel, Adam M; Ryan, Joseph F; Simmons, David; Tada, Takashi; Park, Morgan; Gupta, Jyoti; Brooks, Shelise Y; Blakesley, Robert W; Yokoyama, Shozo; Haddock, Steven Hd; Martindale, Mark Q; Baxevanis, Andreas D
2012-12-21
Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light production and light reception may be functionally connected in ctenophore photocytes. We also present genomic evidence of a complete ciliary phototransduction cascade in Mnemiopsis. This study elucidates the genomic organization, evolutionary history, and developmental expression of photoprotein and opsin genes in the ctenophore Mnemiopsis leidyi, introduces a novel dual role for ctenophore photocytes in both bioluminescence and phototransduction, and raises the possibility that light production and light reception are linked in this early-branching non-bilaterian animal.
2012-01-01
Background Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. Results The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light production and light reception may be functionally connected in ctenophore photocytes. We also present genomic evidence of a complete ciliary phototransduction cascade in Mnemiopsis. Conclusions This study elucidates the genomic organization, evolutionary history, and developmental expression of photoprotein and opsin genes in the ctenophore Mnemiopsis leidyi, introduces a novel dual role for ctenophore photocytes in both bioluminescence and phototransduction, and raises the possibility that light production and light reception are linked in this early-branching non-bilaterian animal. PMID:23259493
Genetics of Mitochondrial Disease.
Saneto, Russell P
2017-01-01
Mitochondria are intracellular organelles responsible for adenosine triphosphate production. The strict control of intracellular energy needs require proper mitochondrial functioning. The mitochondria are under dual controls of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial dysfunction can arise from changes in either mtDNA or nDNA genes regulating function. There are an estimated ∼1500 proteins in the mitoproteome, whereas the mtDNA genome has 37 proteins. There are, to date, ∼275 genes shown to give rise to disease. The unique physiology of mitochondrial functioning contributes to diverse gene expression. The onset and range of phenotypic expression of disease is diverse, with onset from neonatal to seventh decade of life. The range of dysfunction is heterogeneous, ranging from single organ to multisystem involvement. The complexity of disease expression has severely limited gene discovery. Combining phenotypes with improvements in gene sequencing strategies are improving the diagnosis process. This chapter focuses on the interplay of the unique physiology and gene discovery in the current knowledge of genetically derived mitochondrial disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Jung, Ki-Hong; Dardick, Christopher; Bartley, Laura E; Cao, Peijian; Phetsom, Jirapa; Canlas, Patrick; Seo, Young-Su; Shultz, Michael; Ouyang, Shu; Yuan, Qiaoping; Frank, Bryan C; Ly, Eugene; Zheng, Li; Jia, Yi; Hsia, An-Ping; An, Kyungsook; Chou, Hui-Hsien; Rocke, David; Lee, Geun Cheol; Schnable, Patrick S; An, Gynheung; Buell, C Robin; Ronald, Pamela C
2008-10-06
Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice (Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy. To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and validated the biological significance of the data by analyzing sources of variation and confirming expression trends with reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally, we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice functional genomics.
Nayeri, Shadi; Sargolzaei, Mehdi; Abo-Ismail, Mohammed K; May, Natalie; Miller, Stephen P; Schenkel, Flavio; Moore, Stephen S; Stothard, Paul
2016-06-10
Genome-wide association studies (GWAS) are a powerful tool for detecting genomic regions explaining variation in phenotype. The objectives of the present study were to identify or refine the positions of genomic regions affecting milk production, milk components and fertility traits in Canadian Holstein cattle, and to use these positions to identify genes and pathways that may influence these traits. Several QTL regions were detected for milk production (MILK), fat production (FAT), protein production (PROT) and fat and protein deviation (FATD, PROTD respectively). The identified QTL regions for production traits (including milk production) support previous findings and some overlap with genes with known relevant biological functions identified in earlier studies such as DGAT1 and CPSF1. A significant region on chromosome 21 overlapping with the gene FAM181A and not previous linked to fertility in dairy cattle was identified for the calving to first service interval and days open. A functional enrichment analysis of the GWAS results yielded GO terms consistent with the specific phenotypes tested, for example GO terms GO:0007595 (lactation) and GO:0043627 (response to estrogen) for milk production (MILK), GO:0051057 (positive regulation of small GTPase mediated signal transduction) for fat production (FAT), GO:0040019 (positive regulation of embryonic development) for first service to calving interval (CTFS) and GO:0043268 (positive regulation of potassium ion transport) for days open (DO). In other cases the connection between the enriched GO terms and the traits were less clear, for example GO:0003279 (cardiac septum development) for FAT and GO:0030903 (notochord development) for DO trait. The chromosomal regions and enriched pathways identified in this study confirm several previous findings and highlight new regions and pathways that may contribute to variation in production or fertility traits in dairy cattle.
Presence of a novel exon 2E encoding a putative transmembrane protein in human IL-33 gene.
Tominaga, Shin-ichi; Hayakawa, Morisada; Tsuda, Hidetoshi; Ohta, Satoshi; Yanagisawa, Ken
2013-01-18
Interleukin-33 (IL-33) is a dual-function molecule that regulates gene expression in nuclei and, as a cytokine, conveys proinflammatory signals from outside of cells via its specific receptor ST2L. There are still a lot of questions about localization and processing of IL-33 gene products. In the course of re-evaluating human IL-33 gene, we found distinct promoter usage depending on the cell type, similar to the case in the ST2 gene. Furthermore, we found a novel exon 2E in the conventional intron 2 whose open reading frame corresponded to a transmembrane protein of 131 amino acids. Dependence of exon 2E expression on differentiation of HUVEC cells is of great interest in relation to human IL-33 function. Copyright © 2012 Elsevier Inc. All rights reserved.
Muccioli, Giulio G.; Sia, Angela; Muchowski, Paul J.; Stella, Nephi
2009-01-01
Background Lipids can act as signaling molecules, activating intracellular and membrane-associated receptors to regulate physiological functions. To understand how a newly discovered signaling lipid functions, it is necessary to identify and characterize the enzymes involved in their production and inactivation. The signaling lipid N-palmitoylethanolamine (PEA) is known to activate intracellular and membrane-associated receptors and regulate physiological functions, but little is known about the enzymes involved in its production and inactivation. Principal Findings Here we show that Saccharomyces cerevisiae produce and inactivate PEA, suggesting that genetic manipulations of this lower eukaryote may be used to identify the enzymes involved in PEA metabolism. Accordingly, using single gene deletion mutants, we identified yeast genes that control PEA metabolism, including SPO14 (a yeast homologue of the mammalian phospholipase D) that controls PEA production and YJU3 (a yeast homologue of the mammalian monoacylglycerol lipase) that controls PEA inactivation. We also found that PEA metabolism is affected by heterologous expression of two mammalian proteins involved in neurodegenerative diseases, namely huntingtin and α-synuclein. Significance Together these findings show that forward and reverse genetics in S. cerevisiae can be used to identify proteins involved in PEA production and inactivation, and suggest that mutated proteins causing neurodegenerative diseases might affect the metabolism of this important signaling lipid. PMID:19529773
Reyes-Dominguez, Yazmid; Boedi, Stefan; Sulyok, Michael; Wiesenberger, Gerlinde; Stoppacher, Norbert; Krska, Rudolf; Strauss, Joseph
2012-01-01
Chromatin modifications and heterochromatic marks have been shown to be involved in the regulation of secondary metabolism gene clusters in the fungal model system Aspergillus nidulans. We examine here the role of HEP1, the heterochromatin protein homolog of Fusarium graminearum, for the production of secondary metabolites. Deletion of Hep1 in a PH-1 background strongly influences expression of genes required for the production of aurofusarin and the main tricothecene metabolite DON. In the Hep1 deletion strains AUR genes are highly up-regulated and aurofusarin production is greatly enhanced suggesting a repressive role for heterochromatin on gene expression of this cluster. Unexpectedly, gene expression and metabolites are lower for the trichothecene cluster suggesting a positive function of Hep1 for DON biosynthesis. However, analysis of histone modifications in chromatin of AUR and DON gene promoters reveals that in both gene clusters the H3K9me3 heterochromatic mark is strongly reduced in the Hep1 deletion strain. This, and the finding that a DON-cluster flanking gene is up-regulated, suggests that the DON biosynthetic cluster is repressed by HEP1 directly and indirectly. Results from this study point to a conserved mode of secondary metabolite (SM) biosynthesis regulation in fungi by chromatin modifications and the formation of facultative heterochromatin. PMID:22100541
Roles of lignin biosynthesis and regulatory genes in plant development
Yoon, Jinmi; Choi, Heebak
2015-01-01
Abstract Lignin is an important factor affecting agricultural traits, biofuel production, and the pulping industry. Most lignin biosynthesis genes and their regulatory genes are expressed mainly in the vascular bundles of stems and leaves, preferentially in tissues undergoing lignification. Other genes are poorly expressed during normal stages of development, but are strongly induced by abiotic or biotic stresses. Some are expressed in non‐lignifying tissues such as the shoot apical meristem. Alterations in lignin levels affect plant development. Suppression of lignin biosynthesis genes causes abnormal phenotypes such as collapsed xylem, bending stems, and growth retardation. The loss of expression by genes that function early in the lignin biosynthesis pathway results in more severe developmental phenotypes when compared with plants that have mutations in later genes. Defective lignin deposition is also associated with phenotypes of seed shattering or brittle culm. MYB and NAC transcriptional factors function as switches, and some homeobox proteins negatively control lignin biosynthesis genes. Ectopic deposition caused by overexpression of lignin biosynthesis genes or master switch genes induces curly leaf formation and dwarfism. PMID:26297385
Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Kai; Yuan, Mengting M.; Xie, Jianping
Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. Withmore » less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. IMPORTANCE Global change involves simultaneous alterations, including those caused by climate warming and land management practices (e.g., clipping). Data on the interactive effects of warming and clipping on ecosystems remain elusive, particularly in microbial ecology. This study found that clipping alters microbial responses to warming and demonstrated the effects of antagonistic interactions between clipping and warming on microbial functional genes. Clipping alone or combined with warming enriched genes degrading relatively recalcitrant carbon, likely reflecting the decreased quantity of soil carbon input from litter, which could weaken long-term soil C stability and trigger positive warming feedback. These results have important implications in assessing and predicting the consequences of global climate change and indicate that the removal of aboveground biomass for biofuel production may need to be reconsidered.« less
Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming
Xue, Kai; Yuan, Mengting M.; Xie, Jianping; ...
2016-09-27
Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. Withmore » less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. IMPORTANCE Global change involves simultaneous alterations, including those caused by climate warming and land management practices (e.g., clipping). Data on the interactive effects of warming and clipping on ecosystems remain elusive, particularly in microbial ecology. This study found that clipping alters microbial responses to warming and demonstrated the effects of antagonistic interactions between clipping and warming on microbial functional genes. Clipping alone or combined with warming enriched genes degrading relatively recalcitrant carbon, likely reflecting the decreased quantity of soil carbon input from litter, which could weaken long-term soil C stability and trigger positive warming feedback. These results have important implications in assessing and predicting the consequences of global climate change and indicate that the removal of aboveground biomass for biofuel production may need to be reconsidered.« less
Clinical trials of GMP products in the gene therapy field.
Bamford, Kathleen B
2011-01-01
Advances in gene therapy are increasingly leading to clinical assessment in many fields of medicine with diverse approaches. The basic science stems from approaches aimed at different functions such as correcting a missing/abnormal gene, altering the proportion or expression of normal genes to augment a physiological process or using this principle to destroy malignant or infected cells. As the technology advances, it is increasingly important to ensure that clinical trials answer the questions that need to be asked. In this chapter we review examples of published clinical trials, resources for accessing information about registered trials, the process of regulating trials, good clinical practice, and good manufacturing practice as well as summarising the approach taken by regulatory authorities in reviewing applications for the introduction of products for use in the clinic.
Genetics Home Reference: glycogen storage disease type III
... thought to lead to the production of an enzyme with reduced function. All AGL gene mutations lead to storage of ... Saltiel AR. Distinct mutations in the glycogen debranching enzyme found in glycogen ... in diverse cellular functions. Hum Mol Genet. 2009 Jun 1;18(11): ...
Growth factor transgenes interactively regulate articular chondrocytes.
Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B
2013-04-01
Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.
La Russa, M; Bogen, C; Uhmeyer, A; Doebbe, A; Filippone, E; Kruse, O; Mussgnug, J H
2012-11-30
Photosynthetic organisms like plants and algae can use sunlight to produce lipids as important metabolic compounds. Plant-derived triacylglycerols (TAGs) are valuable for human and animal nutrition because of their high energy content and are becoming increasingly important for the production of renewable biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) have been demonstrated to play an important role in the accumulation of TAG compounds in higher plants. DGAT homologue genes have been identified in the genome of the green alga Chlamydomonas reinhardtii, however their function in vivo is still unknown. In this work, the three most promising type-2 DGAT candidate genes potentially involved in TAG lipid accumulation (CrDGAT2a, b and c) were investigated by constructing overexpression strains. For each of the genes, three strains were identified which showed enhanced mRNA levels of between 1.7 and 29.1 times that of the wild type (wt). Total lipid contents, neutral lipids and fatty acid profiles were determined and showed that an enhanced mRNA expression level of the investigated DGAT genes did not boost the intracellular TAG accumulation or resulted in alterations of the fatty acid profiles compared to wild type during standard growth condition or during nitrogen or sulfur stress conditions. We conclude that biotechnological efforts to enhance cellular TAG amount in microalgae need further insights into the complex network of lipid biosynthesis to identify potential bottlenecks of neutral lipid production. Copyright © 2012 Elsevier B.V. All rights reserved.
Hippe, Berit; Zwielehner, Jutta; Liszt, Kathrin; Lassl, Cornelia; Unger, Frank; Haslberger, Alexander G
2011-03-01
The gastrointestinal microbiota produces short-chain fatty acids, especially butyrate, which affect colonic health, immune function and epigenetic regulation. To assess the effects of nutrition and aging on the production of butyrate, the butyryl-CoA:acetate CoA-transferase gene and population shifts of Clostridium clusters lV and XlVa, the main butyrate producers, were analysed. Faecal samples of young healthy omnivores (24 ± 2.5 years), vegetarians (26 ± 5 years) and elderly (86 ± 8 years) omnivores were evaluated. Diet and lifestyle were assessed in questionnaire-based interviews. The elderly had significantly fewer copies of the butyryl-CoA:acetate CoA-transferase gene than young omnivores (P=0.014), while vegetarians showed the highest number of copies (P=0.048). The thermal denaturation of the butyryl-CoA:acetate CoA-transferase gene variant melting curve related to Roseburia/Eubacterium rectale spp. was significantly more variable in the vegetarians than in the elderly. The Clostridium cluster XIVa was more abundant in vegetarians (P=0.049) and in omnivores (P<0.01) than in the elderly group. Gastrointestinal microbiota of the elderly is characterized by decreased butyrate production capacity, reflecting increased risk of degenerative diseases. These results suggest that the butyryl-CoA:acetate CoA-transferase gene is a valuable marker for gastrointestinal microbiota function. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
The Genome of Ganderma lucidum Provide Insights into Triterpense Biosynthesis and Wood Degradation
Huang, Zhuo; Zhang, Hong-Mei; Liu, Wei; Liu, Le; Ma, Junping; Xia, Zhilan; Chen, Yuxin; Chen, Yuewen; Wang, Depeng; Ni, Peixiang; Guo, An-Yuan; Xiong, Xingyao
2012-01-01
Background Ganoderma lucidum (Reishi or Ling Zhi) is one of the most famous Traditional Chinese Medicines and has been widely used in the treatment of various human diseases in Asia countries. It is also a fungus with strong wood degradation ability with potential in bioenergy production. However, genes, pathways and mechanisms of these functions are still unknown. Methodology/Principal Findings The genome of G. lucidum was sequenced and assembled into a 39.9 megabases (Mb) draft genome, which encoded 12,080 protein-coding genes and ∼83% of them were similar to public sequences. We performed comprehensive annotation for G. lucidum genes and made comparisons with genes in other fungi genomes. Genes in the biosynthesis of the main G. lucidum active ingredients, ganoderic acids (GAs), were characterized. Among the GAs synthases, we identified a fusion gene, the N and C terminal of which are homologous to two different enzymes. Moreover, the fusion gene was only found in basidiomycetes. As a white rot fungus with wood degradation ability, abundant carbohydrate-active enzymes and ligninolytic enzymes were identified in the G. lucidum genome and were compared with other fungi. Conclusions/Significance The genome sequence and well annotation of G. lucidum will provide new insights in function analyses including its medicinal mechanism. The characterization of genes in the triterpene biosynthesis and wood degradation will facilitate bio-engineering research in the production of its active ingredients and bioenergy. PMID:22567134
Khosravi, Claire; Kun, Roland Sándor; Visser, Jaap; Aguilar-Pontes, María Victoria; de Vries, Ronald P; Battaglia, Evy
2017-11-06
The genes of the non-phosphorylative L-rhamnose catabolic pathway have been identified for several yeast species. In Schefferomyces stipitis, all L-rhamnose pathway genes are organized in a cluster, which is conserved in Aspergillus niger, except for the lra-4 ortholog (lraD). The A. niger cluster also contains the gene encoding the L-rhamnose responsive transcription factor (RhaR) that has been shown to control the expression of genes involved in L-rhamnose release and catabolism. In this paper, we confirmed the function of the first three putative L-rhamnose utilisation genes from A. niger through gene deletion. We explored the identity of the inducer of the pathway regulator (RhaR) through expression analysis of the deletion mutants grown in transfer experiments to L-rhamnose and L-rhamnonate. Reduced expression of L-rhamnose-induced genes on L-rhamnose in lraA and lraB deletion strains, but not on L-rhamnonate (the product of LraB), demonstrate that the inducer of the pathway is of L-rhamnonate or a compound downstream of it. Reduced expression of these genes in the lraC deletion strain on L-rhamnonate show that it is in fact a downstream product of L-rhamnonate. This work showed that the inducer of RhaR is beyond L-rhamnonate dehydratase (LraC) and is likely to be the 2-keto-3-L-deoxyrhamnonate.
Evaluating Functional Annotations of Enzymes Using the Gene Ontology.
Holliday, Gemma L; Davidson, Rebecca; Akiva, Eyal; Babbitt, Patricia C
2017-01-01
The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.
Hu, Bo Hua; Cai, Qunfeng; Hu, Zihua; Patel, Minal; Bard, Jonathan; Jamison, Jennifer; Coling, Donald
2012-01-01
Matrix metalloproteinases (MMPs) and their related gene products regulate essential cellular functions. An imbalance in MMPs has been implicated in various neurological disorders, including traumatic injuries. Here, we report a role for MMPs and their related gene products in the modulation of cochlear responses to acoustic trauma in rats. The normal cochlea was shown to be enriched in MMP enzymatic activity, and this activity was reduced in a time-dependent fashion after traumatic noise injury. The analysis of gene expression by RNA-seq and qRT-PCR revealed the differential expression of MMPs and their related genes between functionally specialized regions of the sensory epithelium. The expression of these genes was dynamically regulated between the acute and chronic phases of noise-induced hearing loss. Moreover, noise-induced expression changes in two endogenous MMP inhibitors, Timp1 and Timp2, in sensory cells were dependent upon the stage of nuclear condensation, suggesting a specific role for MMP activity in sensory cell apoptosis. A short-term application of doxycycline, a broad-spectrum inhibitor of MMPs, prior to noise exposure reduced noise-induced hearing loss and sensory cell death. By contrast, a 7-day treatment compromised hearing sensitivity and potentiated noise-induced hearing loss. This detrimental effect of the long-term inhibition of MMPs on noise-induced hearing loss was further confirmed using targeted Mmp7 knockout mice. Together, these observations suggest that MMPs and their related genes participate in the regulation of cochlear responses to acoustic overstimulation and that the modulation of MMP activity can serve as a novel therapeutic target for the reduction of noise-induced cochlear damage. PMID:23100416
Chatterjee, Ranjini; Millard, Cynthia Sanville; Champion, Kathleen; Clark, David P.; Donnelly, Mark I.
2001-01-01
Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0.5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICBglc. Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B. PMID:11133439
Clinical and Functional Analyses of p73R1 Mutations in Prostate Cancer
2005-02-01
mutations in several genes (BRCA 1, BRCA2, and CHEK2) whose products are involved in this pathway have been associated with increased risk for this...screened this gene for mutations in prostate cancer. Two germline truncating mutations were identified. Genotyping of 403 men with sporadic prostate...based on mutation screening of candidate genes involved in the DNA damage- signaling pathway. Genomic instability is a common feature of all human
Brown, William M
2015-12-01
Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). Gene ontology (ie, gene product elucidation)/meta-analysis. 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. CRD42014009800. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Export of Extracellular Polysaccharides Modulates Adherence of the Cyanobacterium Synechocystis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, ML; Allen, R; Luo, YQ
2013-09-10
The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter),more » slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.« less
Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming
Xue, Kai; Yuan, Mengting M.; Xie, Jianping; Li, Dejun; Qin, Yujia; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Tiedje, James M.
2016-01-01
ABSTRACT Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. PMID:27677789
Cloning and analysis of the positively acting regulatory gene amdR from Aspergillus nidulans.
Andrianopoulos, A; Hynes, M J
1988-01-01
The positively acting regulatory gene amdR of Aspergillus nidulans coordinately regulates the expression of four unlinked structural genes involved in acetamide (amdS), omega amino acid (gatA and gabA), and lactam (lamA) catabolism. By the use of DNA-mediated transformation of A. nidulans, the amdR regulatory gene was cloned from a genomic cosmid library. Southern blot analysis of DNA from various loss-of-function amdR mutants revealed the presence of four detectable DNA rearrangements, including a deletion, an insertion, and a translocation. No detectable DNA rearrangements were found in several constitutive amdRc mutants. Analysis of the fate of amdR-bearing plasmids in transformants showed that 10 to 20% of the transformation events were homologous integrations or gene conversions, and this phenomenon was exploited in developing a strategy by which amdRc and amdR- alleles can be readily cloned and analyzed. Examination of the transcription of amdR by Northern blot (RNA blot) analysis revealed the presence of two mRNAs (2.7 and 1.8 kilobases) which were constitutively synthesized at a very low level. In addition, amdR transcription did not appear to depend on the presence of a functional amdR product nor was it altered in amdRc mutants. The dosage effects of multiple copies of amdR in transformants were examined, and it was shown that such transformants exhibited stronger growth than did the wild type on acetamide and pyrrolidinone media, indicating increased expression of the amdS and lamA genes, respectively. These results were used to formulate a model for amdR-mediated regulation of gene expression in which the low constitutive level of amdR product sets the upper limits of basal and induced transcription of the structural genes. Multiple copies of 5' sequences from the amdS gene can result in reduced growth on substrates whose utilization is dependent on amdR-controlled genes. This has been attributed to titration of limiting amdR gene product. Strong support for this proposal was obtained by showing that multiple copies of the amdR gene can reverse this phenomenon (antititration). Images PMID:3062382
Inherited Mitochondrial Diseases of DNA Replication
Copeland, William C.
2007-01-01
Mitochondrial genetic diseases can result from defects in mitochondrial DNA (mtDNA) in the form of deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These mutations may be spontaneous, maternally inherited, or a result of inherited nuclear defects in genes that maintain mtDNA. This review focuses on our current understanding of nuclear gene mutations that produce mtDNA alterations and cause mitochondrial depletion syndrome (MDS), progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). To date, all of these etiologic nuclear genes fall into one of two categories: genes whose products function directly at the mtDNA replication fork, such as POLG, POLG2, and TWINKLE, or genes whose products supply the mitochondria with deoxynucleotide triphosphate pools needed for DNA replication, such as TK2, DGUOK, TP, SUCLA2, ANT1, and possibly the newly identified MPV17. PMID:17892433
German, M S; Moss, L G; Wang, J; Rutter, W J
1992-01-01
The pancreatic beta cell makes several unique gene products, including insulin, islet amyloid polypeptide (IAPP), and beta-cell-specific glucokinase (beta GK). The functions of isolated portions of the insulin, IAPP, and beta GK promoters were studied by using transient expression and DNA binding assays. A short portion (-247 to -197 bp) of the rat insulin I gene, the FF minienhancer, contains three interacting transcriptional regulatory elements. The FF minienhancer binds at least two nuclear complexes with limited tissue distribution. Sequences similar to that of the FF minienhancer are present in the 5' flanking DNA of the human IAPP and rat beta GK genes and also the rat insulin II and mouse insulin I and II genes. Similar minienhancer constructs from the insulin and IAPP genes function as cell-specific transcriptional regulatory elements and compete for binding of the same nuclear factors, while the beta GK construct competes for protein binding but functions poorly as a minienhancer. These observations suggest that the patterns of expression of the beta-cell-specific genes result in part from sharing the same transcriptional regulators. Images PMID:1549125
Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori
2018-06-01
In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohta, Kazuyoshi; Beall, D.S.; Mejia, J.P.
1991-04-01
Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high levels of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose tomore » ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).« less
Bhawna; Bonthala, V S; Gajula, Mnv Prasad
2016-01-01
The common bean [Phaseolus vulgaris (L.)] is one of the essential proteinaceous vegetables grown in developing countries. However, its production is challenged by low yields caused by numerous biotic and abiotic stress conditions. Regulatory transcription factors (TFs) symbolize a key component of the genome and are the most significant targets for producing stress tolerant crop and hence functional genomic studies of these TFs are important. Therefore, here we have constructed a web-accessible TFs database for P. vulgaris, called PvTFDB, which contains 2370 putative TF gene models in 49 TF families. This database provides a comprehensive information for each of the identified TF that includes sequence data, functional annotation, SSRs with their primer sets, protein physical properties, chromosomal location, phylogeny, tissue-specific gene expression data, orthologues, cis-regulatory elements and gene ontology (GO) assignment. Altogether, this information would be used in expediting the functional genomic studies of a specific TF(s) of interest. The objectives of this database are to understand functional genomics study of common bean TFs and recognize the regulatory mechanisms underlying various stress responses to ease breeding strategy for variety production through a couple of search interfaces including gene ID, functional annotation and browsing interfaces including by family and by chromosome. This database will also serve as a promising central repository for researchers as well as breeders who are working towards crop improvement of legume crops. In addition, this database provide the user unrestricted public access and the user can download entire data present in the database freely.Database URL: http://www.multiomics.in/PvTFDB/. © The Author(s) 2016. Published by Oxford University Press.
Shimozato, Osamu; Ugai, Shin-ichi; Chiyo, Masako; Takenobu, Hisanori; Nagakawa, Hiroyasu; Wada, Akihiko; Kawamura, Kiyoko; Yamamoto, Hiroshi; Tagawa, Masatoshi
2006-01-01
Interleukin (IL)-23 is a heterodimeric cytokine consisting of a novel p19 molecule and the p40 subunit of IL-12. Since secreted p40 can act as an antagonist for IL-12, we investigated whether p40 also inhibited IL-23-mediated immunological functions. p40 did not induce interferon (IFN)-γ or IL-17 production from splenocytes but impaired IL-23-induced cytokine production by competitive binding to the IL-23 receptors. Furthermore, a mixed population of murine colon carcinoma Colon 26 cells transduced with the p40 gene and those transduced with the IL-23 gene developed tumours in syngenic mice, whereas the IL-23-expressing Colon 26 cells were completely rejected. p40 also suppressed IFN-γ production of antigen-stimulated splenocytes and IL-23-mediated cytotoxic T-lymphocyte activities in the mice that rejected Colon 26 cells expressing IL-23. p40 can thereby antagonize IL-23 and is a possible therapeutic agent for suppression of IL-23 functions. PMID:16423037
Coutinho, Eduarda; Batista, Cátia; Sousa, Fani; Queiroz, João; Costa, Diana
2017-03-06
Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.
The functional genomic studies of curcumin.
Huminiecki, Lukasz; Horbańczuk, Jarosław; Atanasov, Atanas G
2017-10-01
Curcumin is a natural plant-derived compound that has attracted a lot of attention for its anti-cancer activities. Curcumin can slow proliferation of and induce apoptosis in cancer cell lines, but the precise mechanisms of these effects are not fully understood. However, many lines of evidence suggested that curcumin has a potent impact on gene expression profiles; thus, functional genomics should be the key to understanding how curcumin exerts its anti-cancer activities. Here, we review the published functional genomic studies of curcumin focusing on cancer. Typically, a cancer cell line or a grafted tumor were exposed to curcumin and profiled with microarrays, methylation assays, or RNA-seq. Crucially, these studies are in agreement that curcumin has a powerful effect on gene expression. In the majority of the studies, among differentially expressed genes we found genes involved in cell signaling, apoptosis, and the control of cell cycle. Curcumin can also induce specific methylation changes, and is a powerful regulator of the expression of microRNAs which control oncogenesis. We also reflect on how the broader technological progress in transcriptomics has been reflected on the field of curcumin. We conclude by discussing the areas where more functional genomic studies are highly desirable. Integrated OMICS approaches will clearly be the key to understanding curcumin's anticancer and chemopreventive effects. Such strategies may become a template for elucidating the mode of action of other natural products; many natural products have pleiotropic effects that are well suited for a systems-level analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches.
Belizário, José E; Napolitano, Mauro
2015-01-01
The human body is the residence of a large number of commensal (non-pathogenic) and pathogenic microbial species that have co-evolved with the human genome, adaptive immune system, and diet. With recent advances in DNA-based technologies, we initiated the exploration of bacterial gene functions and their role in human health. The main goal of the human microbiome project is to characterize the abundance, diversity and functionality of the genes present in all microorganisms that permanently live in different sites of the human body. The gut microbiota expresses over 3.3 million bacterial genes, while the human genome expresses only 20 thousand genes. Microbe gene-products exert pivotal functions via the regulation of food digestion and immune system development. Studies are confirming that manipulation of non-pathogenic bacterial strains in the host can stimulate the recovery of the immune response to pathogenic bacteria causing diseases. Different approaches, including the use of nutraceutics (prebiotics and probiotics) as well as phages engineered with CRISPR/Cas systems and quorum sensing systems have been developed as new therapies for controlling dysbiosis (alterations in microbial community) and common diseases (e.g., diabetes and obesity). The designing and production of pharmaceuticals based on our own body's microbiome is an emerging field and is rapidly growing to be fully explored in the near future. This review provides an outlook on recent findings on the human microbiomes, their impact on health and diseases, and on the development of targeted therapies.
Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches
Belizário, José E.; Napolitano, Mauro
2015-01-01
The human body is the residence of a large number of commensal (non-pathogenic) and pathogenic microbial species that have co-evolved with the human genome, adaptive immune system, and diet. With recent advances in DNA-based technologies, we initiated the exploration of bacterial gene functions and their role in human health. The main goal of the human microbiome project is to characterize the abundance, diversity and functionality of the genes present in all microorganisms that permanently live in different sites of the human body. The gut microbiota expresses over 3.3 million bacterial genes, while the human genome expresses only 20 thousand genes. Microbe gene-products exert pivotal functions via the regulation of food digestion and immune system development. Studies are confirming that manipulation of non-pathogenic bacterial strains in the host can stimulate the recovery of the immune response to pathogenic bacteria causing diseases. Different approaches, including the use of nutraceutics (prebiotics and probiotics) as well as phages engineered with CRISPR/Cas systems and quorum sensing systems have been developed as new therapies for controlling dysbiosis (alterations in microbial community) and common diseases (e.g., diabetes and obesity). The designing and production of pharmaceuticals based on our own body’s microbiome is an emerging field and is rapidly growing to be fully explored in the near future. This review provides an outlook on recent findings on the human microbiomes, their impact on health and diseases, and on the development of targeted therapies. PMID:26500616
The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function
Theos, Alexander C.; Truschel, Steven T.; Raposo, Graça; Marks, Michael S.
2009-01-01
Summary Mouse coat color mutants have led to the identification of more than 120 genes that encode proteins involved in all aspects of pigmentation, from the regulation of melanocyte development and differentiation to the transcriptional activation of pigment genes, from the enzymatic formation of pigment to the control of melanosome biogenesis and movement [Bennett and Lamoreux (2003) Pigment Cell Res. 16, 333]. One of the more perplexing of the identified mouse pigment genes is encoded at the Silver locus, first identified by Dunn and Thigpen [(1930) J. Heredity 21, 495] as responsible for a recessive coat color dilution that worsened with age on black backgrounds. The product of the Silver gene has since been discovered numerous times in different contexts, including the initial search for the tyrosinase gene, the characterization of major melanosome constituents in various species, and the identification of tumor-associated antigens from melanoma patients. Each discoverer provided a distinct name: Pmel17, gp100, gp95, gp85, ME20, RPE1, SILV and MMP115 among others. Although all its functions are unlikely to have yet been fully described, the protein clearly plays a central role in the biogenesis of the early stages of the pigment organelle, the melanosome, in birds, and mammals. As such, we will refer to the protein in this review simply as pre-melanosomal protein (Pmel). This review will summarize the structural and functional aspects of Pmel and its role in melanosome biogenesis. PMID:16162173
Pinheiro, Pedro F.; Leitão, Jorge H.
2013-01-01
This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47). Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min−1.mg−1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis. PMID:23460819
Functional characterization of a prokaryotic Kir channel.
Enkvetchakul, Decha; Bhattacharyya, Jaya; Jeliazkova, Iana; Groesbeck, Darcy K; Cukras, Catherine A; Nichols, Colin G
2004-11-05
The Kir gene family encodes inward rectifying K+ (Kir) channels that are widespread and critical regulators of excitability in eukaryotic cells. A related gene family (KirBac) has recently been identified in prokaryotes. While a crystal structure of one member, Kir-Bac1.1, has been solved, there has been no functional characterization of any KirBac gene products. Here we present functional characterization of KirBac1.1 reconstituted in liposomes. Utilizing a 86Rb+ uptake assay, we demonstrate that KirBac1.1 generates a K+ -selective permeation path that is inhibited by extraliposomal Ba2+ and Ca2+ ions. In contrast to KcsA (an acid-activated bacterial potassium channel), KirBac1.1 is inhibited by extraliposomal acid (pKa approximately 6). This characterization of KirBac1.1 activity now paves the way for further correlation of structure and function in this model Kir channel.
Silencing of six susceptibility genes results in potato late blight resistance.
Sun, Kaile; Wolters, Anne-Marie A; Vossen, Jack H; Rouwet, Maarten E; Loonen, Annelies E H M; Jacobsen, Evert; Visser, Richard G F; Bai, Yuling
2016-10-01
Phytophthora infestans, the causal agent of late blight, is a major threat to commercial potato production worldwide. Significant costs are required for crop protection to secure yield. Many dominant genes for resistance (R-genes) to potato late blight have been identified, and some of these R-genes have been applied in potato breeding. However, the P. infestans population rapidly accumulates new virulent strains that render R-genes ineffective. Here we introduce a new class of resistance which is based on the loss-of-function of a susceptibility gene (S-gene) encoding a product exploited by pathogens during infection and colonization. Impaired S-genes primarily result in recessive resistance traits in contrast to recognition-based resistance that is governed by dominant R-genes. In Arabidopsis thaliana, many S-genes have been detected in screens of mutant populations. In the present study, we selected 11 A. thaliana S-genes and silenced orthologous genes in the potato cultivar Desiree, which is highly susceptible to late blight. The silencing of five genes resulted in complete resistance to the P. infestans isolate Pic99189, and the silencing of a sixth S-gene resulted in reduced susceptibility. The application of S-genes to potato breeding for resistance to late blight is further discussed.
Scott, Barry; Young, Carolyn A.; Saikia, Sanjay; McMillan, Lisa K.; Monahan, Brendon J.; Koulman, Albert; Astin, Jonathan; Eaton, Carla J.; Bryant, Andrea; Wrenn, Ruth E.; Finch, Sarah C.; Tapper, Brian A.; Parker, Emily J.; Jameson, Geoffrey B.
2013-01-01
The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse). This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis. PMID:23949005
USDA-ARS?s Scientific Manuscript database
Drought is the No. 1 factor that limits agricultural production in the world, thus, making crops more drought tolerant is a major goal in agriculture. Many genes with functions in abiotic stress tolerance were identified, and overexpression of these genes confers increased drought tolerance in trans...
Hereditary renal cell carcinoma (RCC) in Eker rats results from an inherited insertional mutation in the Tsc2 tumor suppressor gene and provides a valuable experimental model to characterize the function of the Tsc2 gene product, tuberin in vivo. The Tsc2 mutation predisposes the...
The Fragile X Syndrome: From Molecular Genetics to Neurobiology
ERIC Educational Resources Information Center
Willemsen, Rob; Oostra, Ben A.; Bassell, Gary J.; Dictenberg, Jason
2004-01-01
Since the identification of the FMR1 gene basic research has been focused on the molecular characterization of the FMR1 gene product, the fragile X mental retardation protein (FMRP). Recent developments in fragile X research have provided new insights and knowledge about the physiological function of FMRP in the cell and the nerve cell in…
USDA-ARS?s Scientific Manuscript database
The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. These techniques involve the production of full-length cDNA libraries as a source of plasmid-based clones to expres...
Sawicki, Rafał; Singh, Sharda P; Mondal, Ashis K; Benes, Helen; Zimniak, Piotr
2003-01-01
From the fruitfly, Drosophila melanogaster, ten members of the cluster of Delta-class glutathione S-transferases (GSTs; formerly denoted as Class I GSTs) and one member of the Epsilon-class cluster (formerly GST-3) have been cloned, expressed in Escherichia coli, and their catalytic properties have been determined. In addition, nine more members of the Epsilon cluster have been identified through bioinformatic analysis but not further characterized. Of the 11 expressed enzymes, seven accepted the lipid peroxidation product 4-hydroxynonenal as substrate, and nine were active in glutathione conjugation of 1-chloro-2,4-dinitrobenzene. Since the enzymically active proteins included the gene products of DmGSTD3 and DmGSTD7 which were previously deemed to be pseudogenes, we investigated them further and determined that both genes are transcribed in Drosophila. Thus our present results indicate that DmGSTD3 and DmGSTD7 are probably functional genes. The existence and multiplicity of insect GSTs capable of conjugating 4-hydroxynonenal, in some cases with catalytic efficiencies approaching those of mammalian GSTs highly specialized for this function, indicates that metabolism of products of lipid peroxidation is a highly conserved biochemical pathway with probable detoxification as well as regulatory functions. PMID:12443531
Wei, Dan-Dan; Chen, Er-Hu; Ding, Tian-Bo; Chen, Shi-Chun; Dou, Wei; Wang, Jin-Jun
2013-01-01
Background As a major stored-product pest insect, Liposcelis entomophila has developed high levels of resistance to various insecticides in grain storage systems. However, the molecular mechanisms underlying resistance and environmental stress have not been characterized. To date, there is a lack of genomic information for this species. Therefore, studies aimed at profiling the L. entomophila transcriptome would provide a better understanding of the biological functions at the molecular levels. Methodology/Principal Findings We applied Illumina sequencing technology to sequence the transcriptome of L. entomophila. A total of 54,406,328 clean reads were obtained and that de novo assembled into 54,220 unigenes, with an average length of 571 bp. Through a similarity search, 33,404 (61.61%) unigenes were matched to known proteins in the NCBI non-redundant (Nr) protein database. These unigenes were further functionally annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of genes potentially involved in insecticide resistance were manually curated, including 68 putative cytochrome P450 genes, 37 putative glutathione S-transferase (GST) genes, 19 putative carboxyl/cholinesterase (CCE) genes, and other 126 transcripts to contain target site sequences or encoding detoxification genes representing eight types of resistance enzymes. Furthermore, to gain insight into the molecular basis of the L. entomophila toward thermal stresses, 25 heat shock protein (Hsp) genes were identified. In addition, 1,100 SSRs and 57,757 SNPs were detected and 231 pairs of SSR primes were designed for investigating the genetic diversity in future. Conclusions/Significance We developed a comprehensive transcriptomic database for L. entomophila. These sequences and putative molecular markers would further promote our understanding of the molecular mechanisms underlying insecticide resistance or environmental stress, and will facilitate studies on population genetics for psocids, as well as providing useful information for functional genomic research in the future. PMID:24244605
Hoyt, M A; He, L; Totis, L; Saunders, W S
1993-09-01
The kinesin-related products of the CIN8 and KIP1 genes of Saccharomyces cerevisiae redundantly perform an essential function in mitosis. The action of either gene-product is required for an outwardly directed force that acts upon the spindle poles. We have selected mutations that suppress the temperature-sensitivity of a cin8-temperature-sensitive kip1-delta strain. The extragenic suppressors analyzed were all found to be alleles of the KAR3 gene. KAR3 encodes a distinct kinesin-related protein whose action antagonizes Cin8p/Kip1p function. All seven alleles analyzed were altered within the region of KAR3 that encodes the putative force-generating (or "motor") domain. These mutations also suppressed the inviability associated with the cin8-delta kip1-delta genotype, a property not shared by a deletion of KAR3. Other properties of the suppressing alleles revealed that they were not null for function. Six of the seven were unaffected for the essential karyogamy and meiosis properties of KAR3 and the seventh was dominant for the suppressing trait. Our findings suggest that despite an antagonistic relationship between Cin8p/Kip1p and Kar3p, aspects of their mitotic roles may be similar.
Cloned transgenic heart-healthy pork?
Prather, Randall S
2006-08-01
Here I comment on the production and uses of swine that express a humanized fat-1 gene. The gene product is a fatty acid desaturase that converts omega-6 fatty acids to omega-3 fatty acids. Omega-3 fatty acids have been implicated as being important for reproductive success, maintaining a healthy cardiovascular system, sustaining a functional immune system, and even preventing depression and cancer. The descendants of these hfat-1 transgenic swine will be very useful as models of the human condition, and if they are permitted to enter the food chain, they may improve human health.
Nitrous oxide as a function of oxygen and archaeal gene abundance in the North Pacific
NASA Astrophysics Data System (ADS)
Trimmer, Mark; Chronopoulou, Panagiota-Myrsini; Maanoja, Susanna T.; Upstill-Goddard, Robert C.; Kitidis, Vassilis; Purdy, Kevin J.
2016-12-01
Oceanic oxygen minimum zones are strong sources of the potent greenhouse gas N2O but its microbial source is unclear. We characterized an exponential response in N2O production to decreasing oxygen between 1 and 30 μmol O2 l-1 within and below the oxycline using 15NO2-, a relationship that held along a 550 km offshore transect in the North Pacific. Differences in the overall magnitude of N2O production were accounted for by archaeal functional gene abundance. A one-dimensional (1D) model, parameterized with our experimentally derived exponential terms, accurately reproduces N2O profiles in the top 350 m of water column and, together with a strong 45N2O signature indicated neither canonical nor nitrifier-denitrification production while statistical modelling supported production by archaea, possibly via hybrid N2O formation. Further, with just archaeal N2O production, we could balance high-resolution estimates of sea-to-air N2O exchange. Hence, a significant source of N2O, previously described as leakage from bacterial ammonium oxidation, is better described by low-oxygen archaeal production at the oxygen minimum zone's margins.
Rau, Martin Holm; Calero, Patricia; Lennen, Rebecca M; Long, Katherine S; Nielsen, Alex T
2016-10-13
Economically viable biobased production of bulk chemicals and biofuels typically requires high product titers. During microbial bioconversion this often leads to product toxicity, and tolerance is therefore a critical element in the engineering of production strains. Here, a systems biology approach was employed to understand the chemical stress response of Escherichia coli, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol, hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps of transcription changes within and between chemical groups, with functions such as energy metabolism, stress response, membrane modification, transporters and iron metabolism being affected. Regulon enrichment analysis identified key regulators likely mediating the transcriptional response, including CRP, RpoS, OmpR, ArcA, Fur and GadX. These regulators, the genes within their regulons and the above mentioned cellular functions therefore constitute potential targets for increasing E. coli chemical tolerance. Fitness determination of genome-wide transposon mutants (Tn-seq) subjected to the same chemical stress identified 294 enriched and 336 depleted mutants and experimental validation revealed up to 60 % increase in mutant growth rates. Mutants enriched in several conditions contained, among others, insertions in genes of the Mar-Sox-Rob regulon as well as transcription and translation related gene functions. The combination of the transcriptional response and mutant screening provides general targets that can increase tolerance towards not only single, but multiple chemicals.
Xie, Wenping; Lv, Xiaomei; Ye, Lidan; Zhou, Pingping; Yu, Hongwei
2015-07-01
Improved supply of farnesyl diphosphate (FPP) is often considered as a typical strategy for engineering Saccharomyces cerevisiae towards efficient terpenoid production. However, in the engineered strains with enhanced precursor supply, the production of the target metabolite is often impeded by insufficient capacity of the heterologous terpenoid pathways, which limits further conversion of FPP. Here, we tried to assemble an unimpeded biosynthesis pathway by combining directed evolution and metabolic engineering in S. cerevisiae for lycopene-overproduction. First, the catalytic ability of phytoene syntheses from different sources was investigated based on lycopene accumulation. Particularly, the lycopene cyclase function of the bifunctional enzyme CrtYB from Xanthophyllomyces dendrorhous was inactivated by deletion of functional domain and directed evolution to obtain mutants with solely phytoene synthase function. Coexpression of the resulting CrtYB11M mutant along with the CrtE and CrtI genes from X. dendrorhous, and the tHMG1 gene from S. cerevisiae led to production of 4.47 mg/g DCW (Dry cell weight) of lycopene and 25.66 mg/g DCW of the by-product squalene. To further increase the FPP competitiveness of the lycopene synthesis pathway, we tried to enhance the catalytic performance of CrtE by directed evolution and created a series of pathway variants by varying the copy number of Crt genes. Finally, fed-batch fermentation was conducted for the diploid strain YXWPD-14 resulting in accumulation of 1.61 g/L (24.41 mg/g DCW) of lycopene, meanwhile, the by-production of squalene was reduced to below 1 mg/g DCW. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Perez, Rodney H; Ishibashi, Naoki; Inoue, Tomoko; Himeno, Kohei; Masuda, Yoshimitsu; Sawa, Narukiko; Zendo, Takeshi; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji
2016-01-15
A putative biosynthetic gene cluster of the enterocin NKR-5-3B (Ent53B), a novel circular bacteriocin, was analyzed by sequencing the flanking regions around enkB, the Ent53B structural gene, using a fosmid library. A region approximately 9 kb in length was obtained, and the enkB1, enkB2, enkB3, and enkB4 genes, encoding putative biosynthetic proteins involved in the production, maturation, and secretion of Ent53B, were identified. We also determined the identity of proteins mediating self-immunity against the effects of Ent53B. Heterologous expression systems in various heterologous hosts, such as Enterococcus faecalis and Lactococcus lactis strains, were successfully established. The production and secretion of the mature Ent53B required the cooperative functions of five genes. Ent53B was produced only by those heterologous hosts that expressed protein products of the enkB, enkB1, enkB2, enkB3, and enkB4 genes. Moreover, self-immunity against the antimicrobial action of Ent53B was conferred by at least two independent mechanisms. Heterologous hosts harboring the intact enkB4 gene and/or a combination of intact enkB1 and enkB3 genes were immune to the inhibitory action of Ent53B. In addition to their potential application as food preservatives, circular bacteriocins are now considered possible alternatives to therapeutic antibiotics due to the exceptional stability conferred by their circular structure. The successful practical application of circular bacteriocins will become possible only if the molecular details of their biosynthesis are fully understood. The results of the present study offer a new perspective on the possible mechanism of circular bacteriocin biosynthesis. In addition, since some enterococcal strains are associated with pathogenicity, virulence, and drug resistance, the establishment of the first multigenus host heterologous production of Ent53B has very high practical significance, as it widens the scope of possible Ent53B applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Perez, Rodney H.; Ishibashi, Naoki; Inoue, Tomoko; Himeno, Kohei; Masuda, Yoshimitsu; Sawa, Narukiko; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji
2015-01-01
ABSTRACT A putative biosynthetic gene cluster of the enterocin NKR-5-3B (Ent53B), a novel circular bacteriocin, was analyzed by sequencing the flanking regions around enkB, the Ent53B structural gene, using a fosmid library. A region approximately 9 kb in length was obtained, and the enkB1, enkB2, enkB3, and enkB4 genes, encoding putative biosynthetic proteins involved in the production, maturation, and secretion of Ent53B, were identified. We also determined the identity of proteins mediating self-immunity against the effects of Ent53B. Heterologous expression systems in various heterologous hosts, such as Enterococcus faecalis and Lactococcus lactis strains, were successfully established. The production and secretion of the mature Ent53B required the cooperative functions of five genes. Ent53B was produced only by those heterologous hosts that expressed protein products of the enkB, enkB1, enkB2, enkB3, and enkB4 genes. Moreover, self-immunity against the antimicrobial action of Ent53B was conferred by at least two independent mechanisms. Heterologous hosts harboring the intact enkB4 gene and/or a combination of intact enkB1 and enkB3 genes were immune to the inhibitory action of Ent53B. IMPORTANCE In addition to their potential application as food preservatives, circular bacteriocins are now considered possible alternatives to therapeutic antibiotics due to the exceptional stability conferred by their circular structure. The successful practical application of circular bacteriocins will become possible only if the molecular details of their biosynthesis are fully understood. The results of the present study offer a new perspective on the possible mechanism of circular bacteriocin biosynthesis. In addition, since some enterococcal strains are associated with pathogenicity, virulence, and drug resistance, the establishment of the first multigenus host heterologous production of Ent53B has very high practical significance, as it widens the scope of possible Ent53B applications. PMID:26503847
Deng, Wei; Yan, Fang; Liu, Minchun; Wang, Xinyu; Li, Zhengguo
2012-08-01
The Aux/IAA family genes encode short-lived nuclear proteins that function as transcriptional regulators in auxin signal transduction. Aux/IAA genes have been reported to control many processes of plant development. Our recent study showed that down-regulation of SlIAA15 in tomato reduced apical dominance, altered pattern of axillary shoot development, increased lateral root formation and leaves thickness. The SlIAA15 suppressed lines display strong reduction of trichome density, suggesting that SlIAA15 is involved in trichome formation. Here, we reported that SlIAA15-suppressed transgenic lines display increased number of xylem cells compared to wild-type plants. Moreover, the monoterpene content in trichome exudates are significantly reduced in SlIAA15 down-regulated leaves. The results provide the roles of SlIAA15 in production of volatile compounds in leaf exudates and xylem development, clearly indicating that members of the Aux/IAA gene family can play distinct and specific functions.
Pearson, J L; Pintel, D J
2000-03-30
Recombination within the coding region of the nonstructural genes of minute virus of mice (MVM), which generates functional levels of wild-type NS1, was observed in the absence of selective pressure following cotransfection of nonreplicating plasmids. P38 activity was used as a measure of recombinant NS1 production, which, together with direct detection of recombinant-generated products by RT-PCR, allowed an estimation of recombination efficiency. In addition, we show that very low levels of wild-type NS1 were able to significantly transactivate P38. Given that recombination following cotransfection can generate NS1 at these levels, our observations have implications for the study of parvoviral genetics, the construction of recombinant parvoviral vectors for gene therapy applications, and perhaps other systems using cotransfection of plasmids that share homologous sequences. Copyright 2000 Academic Press.
Richard, François; Bowden, Laura; Morison, James I.L.; Mullineaux, Philip M.
2013-01-01
Heat-stressed crops suffer dehydration, depressed growth, and a consequent decline in water productivity, which is the yield of harvestable product as a function of lifetime water consumption and is a trait associated with plant growth and development. Heat shock transcription factor (HSF) genes have been implicated not only in thermotolerance but also in plant growth and development, and therefore could influence water productivity. Here it is demonstrated that Arabidopsis thaliana plants with increased HSFA1b expression showed increased water productivity and harvest index under water-replete and water-limiting conditions. In non-stressed HSFA1b-overexpressing (HSFA1bOx) plants, 509 genes showed altered expression, and these genes were not over-represented for development-associated genes but were for response to biotic stress. This confirmed an additional role for HSFA1b in maintaining basal disease resistance, which was stress hormone independent but involved H2O2 signalling. Fifty-five of the 509 genes harbour a variant of the heat shock element (HSE) in their promoters, here named HSE1b. Chromatin immunoprecipitation-PCR confirmed binding of HSFA1b to HSE1b in vivo, including in seven transcription factor genes. One of these is MULTIPROTEIN BRIDGING FACTOR1c (MBF1c). Plants overexpressing MBF1c showed enhanced basal resistance but not water productivity, thus partially phenocopying HSFA1bOx plants. A comparison of genes responsive to HSFA1b and MBF1c overexpression revealed a common group, none of which harbours a HSE1b motif. From this example, it is suggested that HSFA1b directly regulates 55 HSE1b-containing genes, which control the remaining 454 genes, collectively accounting for the stress defence and developmental phenotypes of HSFA1bOx. PMID:23828547
Hirasawa, Takashi; Saito, Masaki; Yoshikawa, Katsunori; Furusawa, Chikara; Shmizu, Hiroshi
2018-05-01
Corynebacterium glutamicum is known for its ability to produce glutamic acid and has been utilized for the fermentative production of various amino acids. Glutamic acid production in C. glutamicum is induced by penicillin. In this study, the transcriptome and metabolome of C. glutamicum is analyzed to understand the mechanism of penicillin-induced glutamic acid production. Transcriptomic analysis with DNA microarray revealed that expression of some glycolysis- and TCA cycle-related genes, which include those encoding the enzymes involved in conversion of glucose to 2-oxoglutaric acid, is upregulated after penicillin addition. Meanwhile, expression of some TCA cycle-related genes, encoding the enzymes for conversion of 2-oxoglutaric acid to oxaloacetic acid, and the anaplerotic reactions decreased. In addition, expression of NCgl1221 and odhI, encoding proteins involved in glutamic acid excretion and inhibition of the 2-oxoglutarate dehydrogenase, respectively, is upregulated. Functional category enrichment analysis of genes upregulated and downregulated after penicillin addition revealed that genes for signal transduction systems are enriched among upregulated genes, whereas those for energy production and carbohydrate and amino acid metabolisms are enriched among the downregulated genes. As for the metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry, the intracellular content of most metabolites of the glycolysis and the TCA cycle decreased dramatically after penicillin addition. Overall, these results indicate that the cellular metabolism and glutamic acid excretion are mainly optimized at the transcription level during penicillin-induced glutamic acid production by C. glutamicum. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Xiaopeng; Nie, Zuoming; Zheng, Zhiyong; Zhu, Li; Zhang, Hongtao; Zhan, Xiaobei
2017-09-01
To reveal effects of different nitrogen sources on the expressions and functions of genes in Sphingomonas sp. ATCC 31555, it was cultivated in medium containing inorganic nitrogen (IN), organic nitrogen (ON), or inorganic-organic combined nitrogen (CN). Welan gum production and bacterial biomass were determined, and RNA sequencing (RNA-seq) was performed. Differentially expressed genes (DEGs) between the different ATCC 31555 groups were identified, and their functions were analyzed. Welan gum production and bacterial biomass were significantly higher in the ON and CN groups compared with those in the IN group. RNA-seq produced 660 unigenes, among which 488, 731, and 844 DEGs were identified between the IN vs. ON, IN vs. CN, and ON vs. CN groups, respectively. All the DEGs were related significantly to metabolic process and signal transduction. DEGs between the IN vs. CN and ON vs. CN groups were potentially associated with bacterial chemotaxis. Real-time PCR confirmed the expressions of selected DEGs. Organic nitrogen led to higher bacterial biomass and welan gum production than inorganic nitrogen, which might reflect differences in gene expression associated with metabolic process, signal transduction, and bacterial chemotaxis induced by different nitrogen sources.
Proteomic characterization of hempseed (Cannabis sativa L.).
Aiello, Gilda; Fasoli, Elisa; Boschin, Giovanna; Lammi, Carmen; Zanoni, Chiara; Citterio, Attilio; Arnoldi, Anna
2016-09-16
This paper presents an investigation on hempseed proteome. The experimental approach, based on combinatorial peptide ligand libraries (CPLLs), SDS-PAGE separation, nLC-ESI-MS/MS identification, and database search, permitted identifying in total 181 expressed proteins. This very large number of identifications was achieved by searching in two databases: Cannabis sativa L. (56 gene products identified) and Arabidopsis thaliana (125 gene products identified). By performing a protein-protein association network analysis using the STRING software, it was possible to build the first interactomic map of all detected proteins, characterized by 137 nodes and 410 interactions. Finally, a Gene Ontology analysis of the identified species permitted to classify their molecular functions: the great majority is involved in the seed metabolic processes (41%), responses to stimulus (8%), and biological process (7%). Hempseed is an underexploited non-legume protein-rich seed. Although its protein is well known for its digestibility, essential amino acid composition, and useful techno-functional properties, a comprehensive proteome characterization is still lacking. The objective of this work was to fill this knowledge gap and provide information useful for a better exploitation of this seed in different food products. Copyright © 2016 Elsevier B.V. All rights reserved.
Efficient production of antibody Fab fragment by transient gene expression in insect cells.
Mori, Keita; Hamada, Hirotsugu; Ogawa, Takafumi; Ohmuro-Matsuyama, Yuki; Katsuda, Tomohisa; Yamaji, Hideki
2017-08-01
Transient gene expression allows a rapid production of diverse recombinant proteins in early-stage preclinical and clinical developments of biologics. Insect cells have proven to be an excellent platform for the production of functional recombinant proteins. In the present study, the production of an antibody Fab fragment by transient gene expression in lepidopteran insect cells was investigated. The DNA fragments encoding heavy-chain (Hc; Fd fragment) and light-chain (Lc) genes of an Fab fragment were individually cloned into the plasmid vector pIHAneo, which contained the Bombyx mori actin promoter downstream of the B. mori nucleopolyhedrovirus (BmNPV) IE-1 transactivator and the BmNPV HR3 enhancer for high-level expression. Trichoplusia ni BTI-TN-5B1-4 (High Five) cells were co-transfected with the resultant plasmid vectors using linear polyethyleneimine. When the transfection efficiency was evaluated, a plasmid vector encoding an enhanced green fluorescent protein (EGFP) gene was also co-transfected. Transfection and culture conditions were optimized based on both the flow cytometry of the EGFP expression in transfected cells and the yield of the secreted Fab fragments determined by enzyme-linked immunosorbent assay (ELISA). Under optimal conditions, a yield of approximately 120 mg/L of Fab fragments was achieved in 5 days in a shake-flask culture. Transient gene expression in insect cells may offer a promising approach to the high-throughput production of recombinant proteins. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Evolution of Saxitoxin Synthesis in Cyanobacteria and Dinoflagellates
Hackett, Jeremiah D.; Wisecaver, Jennifer H.; Brosnahan, Michael L.; Kulis, David M.; Anderson, Donald M.; Bhattacharya, Debashish; Plumley, F. Gerald; Erdner, Deana L.
2013-01-01
Dinoflagellates produce a variety of toxic secondary metabolites that have a significant impact on marine ecosystems and fisheries. Saxitoxin (STX), the cause of paralytic shellfish poisoning, is produced by three marine dinoflagellate genera and is also made by some freshwater cyanobacteria. Genes involved in STX synthesis have been identified in cyanobacteria but are yet to be reported in the massive genomes of dinoflagellates. We have assembled comprehensive transcriptome data sets for several STX-producing dinoflagellates and a related non-toxic species and have identified 265 putative homologs of 13 cyanobacterial STX synthesis genes, including all of the genes directly involved in toxin synthesis. Putative homologs of four proteins group closely in phylogenies with cyanobacteria and are likely the functional homologs of sxtA, sxtG, and sxtB in dinoflagellates. However, the phylogenies do not support the transfer of these genes directly between toxic cyanobacteria and dinoflagellates. SxtA is split into two proteins in the dinoflagellates corresponding to the N-terminal portion containing the methyltransferase and acyl carrier protein domains and a C-terminal portion with the aminotransferase domain. Homologs of sxtB and N-terminal sxtA are present in non-toxic strains, suggesting their functions may not be limited to saxitoxin production. Only homologs of the C-terminus of sxtA and sxtG were found exclusively in toxic strains. A more thorough survey of STX+ dinoflagellates will be needed to determine if these two genes may be specific to SXT production in dinoflagellates. The A. tamarense transcriptome does not contain homologs for the remaining STX genes. Nevertheless, we identified candidate genes with similar predicted biochemical activities that account for the missing functions. These results suggest that the STX synthesis pathway was likely assembled independently in the distantly related cyanobacteria and dinoflagellates, although using some evolutionarily related proteins. The biological role of STX is not well understood in either cyanobacteria or dinoflagellates. However, STX production in these two ecologically distinct groups of organisms suggests that this toxin confers a benefit to producers that we do not yet fully understand. PMID:22628533
Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates.
Hackett, Jeremiah D; Wisecaver, Jennifer H; Brosnahan, Michael L; Kulis, David M; Anderson, Donald M; Bhattacharya, Debashish; Plumley, F Gerald; Erdner, Deana L
2013-01-01
Dinoflagellates produce a variety of toxic secondary metabolites that have a significant impact on marine ecosystems and fisheries. Saxitoxin (STX), the cause of paralytic shellfish poisoning, is produced by three marine dinoflagellate genera and is also made by some freshwater cyanobacteria. Genes involved in STX synthesis have been identified in cyanobacteria but are yet to be reported in the massive genomes of dinoflagellates. We have assembled comprehensive transcriptome data sets for several STX-producing dinoflagellates and a related non-toxic species and have identified 265 putative homologs of 13 cyanobacterial STX synthesis genes, including all of the genes directly involved in toxin synthesis. Putative homologs of four proteins group closely in phylogenies with cyanobacteria and are likely the functional homologs of sxtA, sxtG, and sxtB in dinoflagellates. However, the phylogenies do not support the transfer of these genes directly between toxic cyanobacteria and dinoflagellates. SxtA is split into two proteins in the dinoflagellates corresponding to the N-terminal portion containing the methyltransferase and acyl carrier protein domains and a C-terminal portion with the aminotransferase domain. Homologs of sxtB and N-terminal sxtA are present in non-toxic strains, suggesting their functions may not be limited to saxitoxin production. Only homologs of the C-terminus of sxtA and sxtG were found exclusively in toxic strains. A more thorough survey of STX+ dinoflagellates will be needed to determine if these two genes may be specific to SXT production in dinoflagellates. The A. tamarense transcriptome does not contain homologs for the remaining STX genes. Nevertheless, we identified candidate genes with similar predicted biochemical activities that account for the missing functions. These results suggest that the STX synthesis pathway was likely assembled independently in the distantly related cyanobacteria and dinoflagellates, although using some evolutionarily related proteins. The biological role of STX is not well understood in either cyanobacteria or dinoflagellates. However, STX production in these two ecologically distinct groups of organisms suggests that this toxin confers a benefit to producers that we do not yet fully understand.
Ceapă, Corina Diana; Vázquez-Hernández, Melissa; Rodríguez-Luna, Stefany Daniela; Cruz Vázquez, Angélica Patricia; Jiménez Suárez, Verónica; Rodríguez-Sanoja, Romina; Alvarez-Buylla, Elena R; Sánchez, Sergio
2018-01-01
Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions.
Rodríguez-Luna, Stefany Daniela; Cruz Vázquez, Angélica Patricia; Jiménez Suárez, Verónica; Rodríguez-Sanoja, Romina; Alvarez-Buylla, Elena R.; Sánchez, Sergio
2018-01-01
Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions. PMID:29447216
Rutllant, Josep
2016-01-01
Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value. PMID:27200191
Irizarry, Kristopher J L; Rutllant, Josep
2016-01-01
Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.
Herzog, Etienne; Guerra-Peraza, Orlene; Hohn, Thomas
2000-01-01
Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus whose DNA genome contains four genes encoding three proteins and a large polyprotein. The function of most of the viral proteins is still unknown. To investigate the role of the gene II product (P2), we searched for interactions between this protein and other RTBV proteins. P2 was shown to interact with the coat protein (CP) domain of the viral gene III polyprotein (P3) both in the yeast two-hybrid system and in vitro. Domains involved in the P2-CP association have been identified and mapped on both proteins. To determine the importance of this interaction for viral multiplication, the infectivity of RTBV gene II mutants was investigated by agroinoculation of rice plants. The results showed that virus viability correlates with the ability of P2 to interact with the CP domain of P3. This study suggests that P2 could participate in RTBV capsid assembly. PMID:10666237
Liu, Y; Chatterjee, A; Chatterjee, A K
1994-12-01
In most soft-rotting Erwinia spp., including E. carotovora subsp. carotovora strain 71 (Ecc71), production of the plant cell wall degrading enzyme pectin lyase (Pnl) is activated by DNA-damaging agents such as mitomycin C (MC). Induction of Pnl production in Ecc71 requires a functional recA gene and the rdg locus. DNA sequencing and RNA analyses revealed that the rdg locus contains two regulatory genes, rdgA and rdgB, in separate transcriptional units. There is high homology between RdgA and repressors of lambdoid phages, specially phi 80. RdgB, however, has significant homology with transcriptional activators of Mu phage. Both RdgA and RdgB are also predicted to possess helix-turn-helix motifs. By replacing the rdgB promoter with the IPTG-inducible tac promoter, we have determined that rdgB by itself can activate Pnl production in Escherichia coli. However, deletion analysis of rdg+ DNA indicated that, when driven by their native promoters, functions of both rdgA and rdgB are required for the induction of pnlA expression by MC treatment. While rdgB transcription occurs only after MC treatment, a substantial level of rdgA mRNA is detected in the absence of MC treatment. Moreover, upon induction with MC, a new rdgA mRNA species, initiated from a different start site, is produced at a high level. Thus, the two closely linked rdgA and rdgB genes, required for the regulation of Pnl production, are expressed differently in Ecc71.
Jones, Clinton
2013-01-01
α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776
Genomics of Clostridium taeniosporum, an organism which forms endospores with ribbon-like appendages
Cambridge, Joshua M.; Blinkova, Alexandra L.; Salvador Rocha, Erick I.; Bode Hernández, Addys; Moreno, Maday; Ginés-Candelaria, Edwin; Goetz, Benjamin M.; Hunicke-Smith, Scott; Satterwhite, Ed; Tucker, Haley O.
2018-01-01
Clostridium taeniosporum, a non-pathogenic anaerobe closely related to the C. botulinum Group II members, was isolated from Crimean lake silt about 60 years ago. Its endospores are surrounded by an encasement layer which forms a trunk at one spore pole to which about 12–14 large, ribbon-like appendages are attached. The genome consists of one 3,264,813 bp, circular chromosome (with 26.6% GC) and three plasmids. The chromosome contains 2,892 potential protein coding sequences: 2,124 have specific functions, 147 have general functions, 228 are conserved but without known function and 393 are hypothetical based on the fact that no statistically significant orthologs were found. The chromosome also contains 101 genes for stable RNAs, including 7 rRNA clusters. Over 84% of the protein coding sequences and 96% of the stable RNA coding regions are oriented in the same direction as replication. The three known appendage genes are located within a single cluster with five other genes, the protein products of which are closely related, in terms of sequence, to the known appendage proteins. The relatedness of the deduced protein products suggests that all or some of the closely related genes might code for minor appendage proteins or assembly factors. The appendage genes might be unique among the known clostridia; no statistically significant orthologs were found within other clostridial genomes for which sequence data are available. The C. taeniosporum chromosome contains two functional prophages, one Siphoviridae and one Myoviridae, and one defective prophage. Three plasmids of 5.9, 69.7 and 163.1 Kbp are present. These data are expected to contribute to future studies of developmental, structural and evolutionary biology and to potential industrial applications of this organism. PMID:29293521
Bershtein, Shimon; Serohijos, Adrian W R; Bhattacharyya, Sanchari; Manhart, Michael; Choi, Jeong-Mo; Mu, Wanmeng; Zhou, Jingwen; Shakhnovich, Eugene I
2015-10-01
Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular environment of the host organism.
Fernandes, Chantal; Mendes, Vitor; Costa, Joana; Empadinhas, Nuno; Jorge, Carla; Lamosa, Pedro; Santos, Helena; da Costa, Milton S.
2010-01-01
The compatible solute mannosylglucosylglycerate (MGG), recently identified in Petrotoga miotherma, also accumulates in Petrotoga mobilis in response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase (gene Pmob_1143), which we functionally characterized as a mannosylglucosyl-3-phosphoglycerate synthase and designated MggA, were identified in the genome of Ptg. mobilis. This enzyme used the product of GpgS, glucosyl-3-phosphoglycerate (GPG), as well as GDP-mannose to produce mannosylglucosyl-3-phosphoglycerate (MGPG), the phosphorylated precursor of MGG. The MGPG dephosphorylation was determined in cell extracts, and the native enzyme was partially purified and characterized. Surprisingly, a gene encoding a putative glucosylglycerate synthase (Ggs) was also identified in the genome of Ptg. mobilis, and an active Ggs capable of producing glucosylglycerate (GG) from ADP-glucose and d-glycerate was detected in cell extracts and the recombinant enzyme was characterized, as well. Since GG has never been identified in this organism nor was it a substrate for the MggA, we anticipated the existence of a nonphosphorylating pathway for MGG synthesis. We putatively identified the corresponding gene, whose product had some sequence homology with MggA, but it was not possible to recombinantly express a functional enzyme from Ptg. mobilis, which we named mannosylglucosylglycerate synthase (MggS). In turn, a homologous gene from Thermotoga maritima was successfully expressed, and the synthesis of MGG was confirmed from GDP-mannose and GG. Based on the measurements of the relevant enzyme activities in cell extracts and on the functional characterization of the key enzymes, we propose two alternative pathways for the synthesis of the rare compatible solute MGG in Ptg. mobilis. PMID:20061481
Cambridge, Joshua M; Blinkova, Alexandra L; Salvador Rocha, Erick I; Bode Hernández, Addys; Moreno, Maday; Ginés-Candelaria, Edwin; Goetz, Benjamin M; Hunicke-Smith, Scott; Satterwhite, Ed; Tucker, Haley O; Walker, James R
2018-01-01
Clostridium taeniosporum, a non-pathogenic anaerobe closely related to the C. botulinum Group II members, was isolated from Crimean lake silt about 60 years ago. Its endospores are surrounded by an encasement layer which forms a trunk at one spore pole to which about 12-14 large, ribbon-like appendages are attached. The genome consists of one 3,264,813 bp, circular chromosome (with 26.6% GC) and three plasmids. The chromosome contains 2,892 potential protein coding sequences: 2,124 have specific functions, 147 have general functions, 228 are conserved but without known function and 393 are hypothetical based on the fact that no statistically significant orthologs were found. The chromosome also contains 101 genes for stable RNAs, including 7 rRNA clusters. Over 84% of the protein coding sequences and 96% of the stable RNA coding regions are oriented in the same direction as replication. The three known appendage genes are located within a single cluster with five other genes, the protein products of which are closely related, in terms of sequence, to the known appendage proteins. The relatedness of the deduced protein products suggests that all or some of the closely related genes might code for minor appendage proteins or assembly factors. The appendage genes might be unique among the known clostridia; no statistically significant orthologs were found within other clostridial genomes for which sequence data are available. The C. taeniosporum chromosome contains two functional prophages, one Siphoviridae and one Myoviridae, and one defective prophage. Three plasmids of 5.9, 69.7 and 163.1 Kbp are present. These data are expected to contribute to future studies of developmental, structural and evolutionary biology and to potential industrial applications of this organism.
Huang, You-Jun; Zhou, Qin; Huang, Jian-Qin; Zeng, Yan-Ru; Wang, Zheng-Jia; Zhang, Qi-Xiang; Zhu, Yi-Hang; Shen, Chen; Zheng, Bing-Song
2015-06-01
Hickory (Carya cathayensis Sarg.) seed has one of the highest oil content and is rich in polyunsaturated fatty acids (PUFAs), which kernel is helpful to human health, particularly to human brain function. A better elucidation of lipid accumulation mechanism would help to improve hickory production and seed quality. DDRT-PCR analysis was used to examine gene expression in hickory at thirteen time points during seed development process. A total of 67 unique genes involved in seed development were obtained, and those expression patterns were further confirmed by semi-quantitative RT-PCR and real time RT-PCR analysis. Of them, the genes with known functions were involved in signal transduction, amino acid metabolism, nuclear metabolism, fatty acid metabolism, protein metabolism, carbon metabolism, secondary metabolism, oxidation of fatty acids and stress response, suggesting that hickory underwent a complex metabolism process in seed development. Furthermore, 6 genes related to fatty acid synthesis were explored, and their functions in seed development process were further discussed. The data obtained here would provide the first clues for guiding further functional studies of fatty acid synthesis in hickory. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Ibeagha-Awemu, Eveline M.; Kgwatalala, Patrick; Ibeagha, Aloysius E.
2008-01-01
Genetic variations through their effects on gene expression and protein function underlie disease susceptibility in farm animal species. The variations are in the form of single nucleotide polymorphisms, deletions/insertions of nucleotides or whole genes, gene or whole chromosomal rearrangements, gene duplications, and copy number polymorphisms or variants. They exert varying degrees of effects on gene action, such as substitution of an amino acid for another, shift in reading frame and premature termination of translation, and complete deletion of entire exon(s) or gene(s) in diseased individuals. These factors influence gene function by affecting mRNA splicing pattern or by altering/eliminating protein function. Elucidating the genetic bases of diseases under the control of many genes is very challenging, and it is compounded by several factors, including host × pathogen × environment interactions. In this review, the genetic variations that underlie several diseases of livestock (under monogenic and polygenic control) are analyzed. Also, factors hampering research efforts toward identification of genetic influences on animal disease identification and control are highlighted. A better understanding of the factors analyzed could be better harnessed to effectively identify and control, genetically, livestock diseases. Finally, genetic control of animal diseases can reduce the costs associated with diseases, improve animal welfare, and provide healthy animal products to consumers, and should be given more attention. PMID:18350334
Li, Chaoqiong; Luo, Li; Fu, Qiantang; Niu, Longjian; Xu, Zeng-Fu
2014-05-08
Physic nut (Jatropha curcas L.) is a potential feedstock for biofuel production because Jatropha oil is highly suitable for the production of the biodiesel and bio-jet fuels. However, Jatropha exhibits low seed yield as a result of unreliable and poor flowering. FLOWERING LOCUS T (FT) -like genes are important flowering regulators in higher plants. To date, the flowering genes in Jatropha have not yet been identified or characterized. To better understand the genetic control of flowering in Jatropha, an FT homolog was isolated from Jatropha and designated as JcFT. Sequence analysis and phylogenetic relationship of JcFT revealed a high sequence similarity with the FT genes of Litchi chinensis, Populus nigra and other perennial plants. JcFT was expressed in all tissues of adult plants except young leaves, with the highest expression level in female flowers. Overexpression of JcFT in Arabidopsis and Jatropha using the constitutive promoter cauliflower mosaic virus 35S or the phloem-specific promoter Arabidopsis SUCROSE TRANSPORTER 2 promoter resulted in an extremely early flowering phenotype. Furthermore, several flowering genes downstream of JcFT were up-regulated in the JcFT-overexpression transgenic plant lines. JcFT may encode a florigen that acts as a key regulator in flowering pathway. This study is the first to functionally characterize a flowering gene, namely, JcFT, in the biofuel plant Jatropha.
Liu, Qiuping; Liu, Ying; Tang, Yuanman; Chen, Juanni; Ding, Wei
2017-01-01
WRKY transcription factors (TFs) modulate plant responses to biotic and abiotic stresses. Here, we characterized a WRKY IIc TF, NtWRKY50, isolated from tobacco (Nicotiana tabacum) plants. The results showed that NtWRKY50 is a nuclear-localized protein and that its gene transcript is induced in tobacco when inoculated with the pathogenic bacterium Ralstonia solanacearum. Overexpression of NtWRKY50 enhanced bacterial resistance, which correlated with enhanced SA and JA/ET signaling genes. However, silencing of the NtWRKY50 gene had no obvious effects on plant disease resistance, implying functional redundancy of NtWRKY50 with other TFs. In addition, it was found that NtWRKY50 can be induced by various biotic or abiotic stresses, such as Potato virus Y, Rhizoctonia solani, Phytophthora parasitica, hydrogen peroxide, heat, cold, and wounding as well as the hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Importantly, additional analysis suggests that NtWRKY50 overexpression markedly promotes SA levels but prevents pathogen-induced JA production. These data indicate that NtWRKY50 overexpression leads to altered SA and JA content, increased expression of defense-related genes and enhanced plant resistance to R. solanacearum. These probably due to increased activity of endogenous NtWRKY50 gene or could be gain-of-function phenotypes by altering the profile of genes affected by NtWRKY50. PMID:29075272
Liu, Qiuping; Liu, Ying; Tang, Yuanman; Chen, Juanni; Ding, Wei
2017-01-01
WRKY transcription factors (TFs) modulate plant responses to biotic and abiotic stresses. Here, we characterized a WRKY IIc TF, NtWRKY50, isolated from tobacco ( Nicotiana tabacum ) plants. The results showed that NtWRKY50 is a nuclear-localized protein and that its gene transcript is induced in tobacco when inoculated with the pathogenic bacterium Ralstonia solanacearum . Overexpression of NtWRKY50 enhanced bacterial resistance, which correlated with enhanced SA and JA/ET signaling genes. However, silencing of the NtWRKY50 gene had no obvious effects on plant disease resistance, implying functional redundancy of NtWRKY50 with other TFs. In addition, it was found that NtWRKY50 can be induced by various biotic or abiotic stresses, such as Potato virus Y, Rhizoctonia solani, Phytophthora parasitica , hydrogen peroxide, heat, cold, and wounding as well as the hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Importantly, additional analysis suggests that NtWRKY50 overexpression markedly promotes SA levels but prevents pathogen-induced JA production. These data indicate that NtWRKY50 overexpression leads to altered SA and JA content, increased expression of defense-related genes and enhanced plant resistance to R. solanacearum. These probably due to increased activity of endogenous NtWRKY50 gene or could be gain-of-function phenotypes by altering the profile of genes affected by NtWRKY50 .
Sykes, Timothy; Yates, Steven; Nagy, Istvan; Asp, Torben; Small, Ian
2017-01-01
Perennial ryegrass (Lolium perenne L.) is widely used for forage production in both permanent and temporary grassland systems. To increase yields in perennial ryegrass, recent breeding efforts have been focused on strategies to more efficiently exploit heterosis by hybrid breeding. Cytoplasmic male sterility (CMS) is a widely applied mechanism to control pollination for commercial hybrid seed production and although CMS systems have been identified in perennial ryegrass, they are yet to be fully characterized. Here, we present a bioinformatics pipeline for efficient identification of candidate restorer of fertility (Rf) genes for CMS. From a high-quality draft of the perennial ryegrass genome, 373 pentatricopeptide repeat (PPR) genes were identified and classified, further identifying 25 restorer of fertility-like PPR (RFL) genes through a combination of DNA sequence clustering and comparison to known Rf genes. This extensive gene family was targeted as the majority of Rf genes in higher plants are RFL genes. These RFL genes were further investigated by phylogenetic analyses, identifying three groups of perennial ryegrass RFLs. These three groups likely represent genomic regions of active RFL generation and identify the probable location of perennial ryegrass PPR-Rf genes. This pipeline allows for the identification of candidate PPR-Rf genes from genomic sequence data and can be used in any plant species. Functional markers for PPR-Rf genes will facilitate map-based cloning of Rf genes and enable the use of CMS as an efficient tool to control pollination for hybrid crop production. PMID:26951780
Watanabe, Mutsumi; Mochida, Keiichi; Kato, Tomohiko; Tabata, Satoshi; Yoshimoto, Naoko; Noji, Masaaki; Saito, Kazuki
2008-01-01
Ser acetyltransferase (SERAT), which catalyzes O-acetyl-Ser (OAS) formation, plays a key role in sulfur assimilation and Cys synthesis. Despite several studies on SERATs from various plant species, the in vivo function of multiple SERAT genes in plant cells remains unaddressed. Comparative genomics studies with the five genes of the SERAT gene family in Arabidopsis thaliana indicated that all three Arabidopsis SERAT subfamilies are conserved across five plant species with available genome sequences. Single and multiple knockout mutants of all Arabidopsis SERAT gene family members were analyzed. All five quadruple mutants with a single gene survived, with three mutants showing dwarfism. However, the quintuple mutant lacking all SERAT genes was embryo-lethal. Thus, all five isoforms show functional redundancy in vivo. The developmental and compartment-specific roles of each SERAT isoform were also demonstrated. Mitochondrial SERAT2;2 plays a predominant role in cellular OAS formation, while plastidic SERAT2;1 contributes less to OAS formation and subsequent Cys synthesis. Three cytosolic isoforms, SERAT1;1, SERAT3;1, and SERAT3;2, may play a major role during seed development. Thus, the evolutionally conserved SERAT gene family is essential in cellular processes, and the substrates and products of SERAT must be exchangeable between the cytosol and organelles. PMID:18776059
Silencing GhNDR1 and GhMKK2 compromised cotton resistance to Verticillium wilt
Gao, Xiquan; Wheeler, Terry; Li, Zhaohu; Kenerley, Charles M.; He, Ping; Shan, Libo
2011-01-01
SUMMARY Cotton is an important cash crop worldwide and serves as a significant source of fiber, feed, foodstuff, oil and biofuel products. Considerable effort in genetics and genomics has been expended to increase sustainable yield and quality through molecular breeding and genetic engineering of new cotton cultivars. With the effort of whole genome sequencing of cotton, it is essential to develop molecular tools and resources for large-scale analysis of gene functions at the genome-wide level. We have successfully established an Agrobacterium-mediated virus-induced gene silencing (VIGS) assay in several cotton cultivars with different genetic backgrounds. The genes of interest were potently and readily silenced within 2 weeks after inoculation at the seedling stage. Importantly, we showed that silencing GhNDR1 and GhMKK2 compromised cotton resistance to the infection by Verticillium dahliae, a fungal pathogen causing Verticillium wilt. Furthermore, we established a cotton protoplast system for transient gene expression to study gene functions by a gain-of-function approach. The viable protoplasts were isolated from green cotyledons, etiolated cotyledons, and true leaves, and responded to a wide range of pathogen elicitors and phytohormones. Remarkably, cotton plants possess conserved, but also distinct MAP kinase activation with Arabidopsis upon bacterial elicitor flagellin perception. Thus, we demonstrated that GhNDR1 and GhMKK2 are required for Verticillium resistance in cotton using gene silencing assays, and established the high throughput loss-of-function and gain-of-function assays for functional genomic studies in cotton. PMID:21219508
Schallmey, Marcus; Ly, Anh; Wang, Chunxia; Meglei, Gabriela; Voget, Sonja; Streit, Wolfgang R; Driscoll, Brian T; Charles, Trevor C
2011-08-01
We previously reported the construction of metagenomic libraries in the IncP cosmid vector pRK7813, enabling heterologous expression of these broad-host-range libraries in multiple bacterial hosts. Expressing these libraries in Sinorhizobium meliloti, we have successfully complemented associated phenotypes of polyhydroxyalkanoate synthesis mutants. DNA sequence analysis of three clones indicates that the complementing genes are homologous to, but substantially different from, known polyhydroxyalkanaote synthase-encoding genes. Thus we have demonstrated the ability to isolate diverse genes for polyhydroxyalkanaote synthesis by functional complementation of defined mutants. Such genes might be of use in the engineering of more efficient systems for the industrial production of bioplastics. The use of functional complementation will also provide a vehicle to probe the genetics of polyhydroxyalkanaote metabolism and its relation to carbon availability in complex microbial assemblages. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function.
Stanton, Richard J; McSharry, Brian P; Armstrong, Melanie; Tomasec, Peter; Wilkinson, Gavin W G
2008-12-01
With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.
The GATA transcription factor gene gtaG is required for terminal differentiation in Dictyostelium
2016-01-01
ABSTRACT The GATA transcription factor GtaG is conserved in Dictyostelids and is essential for terminal differentiation in Dictyostelium discoideum, but its function is not well understood. Here, we show that gtaG is expressed in prestalk cells at the anterior region of fingers and in the extending stalk during culmination. The gtaG− phenotype is cell-autonomous in prestalk cells and non-cell-autonomous in prespore cells. Transcriptome analyses reveal that GtaG regulates prestalk gene expression during cell differentiation before culmination and is required for progression into culmination. GtaG-dependent genes include genetic suppressors of the Dd-STATa-defective phenotype (Dd-STATa is also known as DstA) as well as Dd-STATa target-genes, including extracellular matrix genes. We show that GtaG might be involved in the production of two culmination-signaling molecules, cyclic di-GMP (c-di-GMP) and the spore differentiation factor SDF-1, and that addition of c-di-GMP rescues the gtaG− culmination and spore formation deficiencies. We propose that GtaG is a regulator of terminal differentiation that functions in concert with Dd-STATa and controls culmination through regulating c-di-GMP and SDF-1 production in prestalk cells. PMID:26962009
Involvement of Ethylene in the Latex Metabolism and Tapping Panel Dryness of Hevea brasiliensis
Putranto, Riza-Arief; Herlinawati, Eva; Rio, Maryannick; Leclercq, Julie; Piyatrakul, Piyanuch; Gohet, Eric; Sanier, Christine; Oktavia, Fetrina; Pirrello, Julien; Kuswanhadi; Montoro, Pascal
2015-01-01
Ethephon, an ethylene releaser, is used to stimulate latex production in Hevea brasiliensis. Ethylene induces many functions in latex cells including the production of reactive oxygen species (ROS). The accumulation of ROS is responsible for the coagulation of rubber particles in latex cells, resulting in the partial or complete stoppage of latex flow. This study set out to assess biochemical and histological changes as well as changes in gene expression in latex and phloem tissues from trees grown under various harvesting systems. The Tapping Panel Dryness (TPD) susceptibility of Hevea clones was found to be related to some biochemical parameters, such as low sucrose and high inorganic phosphorus contents. A high tapping frequency and ethephon stimulation induced early TPD occurrence in a high latex metabolism clone and late occurrence in a low latex metabolism clone. TPD-affected trees had smaller number of laticifer vessels compared to healthy trees, suggesting a modification of cambial activity. The differential transcript abundance was observed for twenty-seven candidate genes related to TPD occurrence in latex and phloem tissues for ROS-scavenging, ethylene biosynthesis and signalling genes. The predicted function for some Ethylene Response Factor genes suggested that these candidate genes should play an important role in regulating susceptibility to TPD. PMID:26247941
Involvement of Ethylene in the Latex Metabolism and Tapping Panel Dryness of Hevea brasiliensis.
Putranto, Riza-Arief; Herlinawati, Eva; Rio, Maryannick; Leclercq, Julie; Piyatrakul, Piyanuch; Gohet, Eric; Sanier, Christine; Oktavia, Fetrina; Pirrello, Julien; Kuswanhadi; Montoro, Pascal
2015-08-04
Ethephon, an ethylene releaser, is used to stimulate latex production in Hevea brasiliensis. Ethylene induces many functions in latex cells including the production of reactive oxygen species (ROS). The accumulation of ROS is responsible for the coagulation of rubber particles in latex cells, resulting in the partial or complete stoppage of latex flow. This study set out to assess biochemical and histological changes as well as changes in gene expression in latex and phloem tissues from trees grown under various harvesting systems. The Tapping Panel Dryness (TPD) susceptibility of Hevea clones was found to be related to some biochemical parameters, such as low sucrose and high inorganic phosphorus contents. A high tapping frequency and ethephon stimulation induced early TPD occurrence in a high latex metabolism clone and late occurrence in a low latex metabolism clone. TPD-affected trees had smaller number of laticifer vessels compared to healthy trees, suggesting a modification of cambial activity. The differential transcript abundance was observed for twenty-seven candidate genes related to TPD occurrence in latex and phloem tissues for ROS-scavenging, ethylene biosynthesis and signalling genes. The predicted function for some Ethylene Response Factor genes suggested that these candidate genes should play an important role in regulating susceptibility to TPD.
Applying gene regulatory network logic to the evolution of social behavior.
Baran, Nicole M; McGrath, Patrick T; Streelman, J Todd
2017-06-06
Animal behavior is ultimately the product of gene regulatory networks (GRNs) for brain development and neural networks for brain function. The GRN approach has advanced the fields of genomics and development, and we identify organizational similarities between networks of genes that build the brain and networks of neurons that encode brain function. In this perspective, we engage the analogy between developmental networks and neural networks, exploring the advantages of using GRN logic to study behavior. Applying the GRN approach to the brain and behavior provides a quantitative and manipulative framework for discovery. We illustrate features of this framework using the example of social behavior and the neural circuitry of aggression.
Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii
2017-01-01
ABSTRACT Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae. Furthermore, formate dehydrogenase (FDH) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns to protein functions. However, hybrid organisms present a challenge to the standard use of mRNA sequencing (RNA-seq) to study transcriptional responses to stress, because their genomes contain two similar copies of almost every gene. Here we used stringent mapping methods and a high-quality genome sequence to study the transcriptional response to lactic acid stress in Zygosaccharomyces parabailii ATCC 60483, a natural interspecies hybrid yeast that contains two complete subgenomes that are approximately 7% divergent in sequence. Beyond the insights we gained into lactic acid tolerance in this study, the methods we developed will be broadly applicable to other yeast hybrid strains. PMID:29269498
Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii.
Ortiz-Merino, Raúl A; Kuanyshev, Nurzhan; Byrne, Kevin P; Varela, Javier A; Morrissey, John P; Porro, Danilo; Wolfe, Kenneth H; Branduardi, Paola
2018-03-01
Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii 's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae Furthermore, formate dehydrogenase ( FDH ) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns to protein functions. However, hybrid organisms present a challenge to the standard use of mRNA sequencing (RNA-seq) to study transcriptional responses to stress, because their genomes contain two similar copies of almost every gene. Here we used stringent mapping methods and a high-quality genome sequence to study the transcriptional response to lactic acid stress in Zygosaccharomyces parabailii ATCC 60483, a natural interspecies hybrid yeast that contains two complete subgenomes that are approximately 7% divergent in sequence. Beyond the insights we gained into lactic acid tolerance in this study, the methods we developed will be broadly applicable to other yeast hybrid strains. Copyright © 2018 Ortiz-Merino et al.
Addlesee, Hugh A.; Fiedor, Leszek; Hunter, C. Neil
2000-01-01
The purple photosynthetic bacterium Rhodobacter sphaeroides has within its genome a cluster of photosynthesis-related genes approximately 41 kb in length. In an attempt to identify genes involved in the terminal esterification stage of bacteriochlorophyll biosynthesis, a previously uncharacterized 5-kb region of this cluster was sequenced. Four open reading frames (ORFs) were identified, and each was analyzed by transposon mutagenesis. The product of one of these ORFs, bchG, shows close homologies with (bacterio)chlorophyll synthetases, and mutants in this gene were found to accumulate bacteriopheophorbide, the metal-free derivative of the bacteriochlorophyll precursor bacteriochlorophyllide, suggesting that bchG is responsible for the esterification of bacteriochlorophyllide with an alcohol moiety. This assignment of function to bchG was verified by the performance of assays demonstrating the ability of BchG protein, heterologously synthesized in Escherichia coli, to esterify bacteriochlorophyllide with geranylgeranyl pyrophosphate in vitro, thereby generating bacteriochlorophyll. This step is pivotal to the assembly of a functional photosystem in R. sphaeroides, a model organism for the study of structure-function relationships in photosynthesis. A second gene, orf177, is a member of a large family of isopentenyl diphosphate isomerases, while sequence homologies suggest that a third gene, orf427, may encode an assembly factor for photosynthetic complexes. The function of the remaining ORF, bchP, is the subject of a separate paper (H. Addlesee and C. N. Hunter, J. Bacteriol. 181:7248–7255, 1999). An operonal arrangement of the genes is proposed. PMID:10809697
Global Genetic Determinants of Mitochondrial DNA Copy Number
Zhang, Hengshan; Singh, Keshav K.
2014-01-01
Many human diseases including development of cancer is associated with depletion of mitochondrial DNA (mtDNA) content. These diseases are collectively described as mitochondrial DNA depletion syndrome (MDS). High similarity between yeast and human mitochondria allows genomic study of the budding yeast to be used to identify human disease genes. In this study, we systematically screened the pre-existing respiratory-deficient Saccharomyces cerevisiae yeast strains using fluorescent microscopy and identified 102 nuclear genes whose deletions result in a complete mtDNA loss, of which 52 are not reported previously. Strikingly, these genes mainly encode protein products involved in mitochondrial protein biosynthesis process (54.9%). The rest of these genes either encode protein products associated with nucleic acid metabolism (14.7%), oxidative phosphorylation (3.9%), or other protein products (13.7%) responsible for bud-site selection, mitochondrial intermembrane space protein import, assembly of cytochrome-c oxidase, vacuolar protein sorting, protein-nucleus import, calcium-mediated signaling, heme biosynthesis and iron homeostasis. Thirteen (12.7%) of the genes encode proteins of unknown function. We identified human orthologs of these genes, conducted the interaction between the gene products and linked them to human mitochondrial disorders and other pathologies. In addition, we screened for genes whose defects affect the nuclear genome integrity. Our data provide a systematic view of the nuclear genes involved in maintenance of mitochondrial DNA. Together, our studies i) provide a global view of the genes regulating mtDNA content; ii) provide compelling new evidence toward understanding novel mechanism involved in mitochondrial genome maintenance and iii) provide useful clues in understanding human diseases in which mitochondrial defect and in particular depletion of mitochondrial genome plays a critical role. PMID:25170845
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrad, R.; Thomas, J.; Spieth, J.
In nematodes, the RNA products of some genes are trans-spliced to a 22-nucleotide spliced leader (SL), while the RNA products of other genes are not. In Caenorhabditis elegans, there are two SLs, Sl1 and SL2, donated by two distinct small nuclear ribonucleoprotein particles in a process functionally quite similar to nuclear intron removal. The authors demonstrate here that it is possible to convert a non-trans-spliced gene into a trans-spliced gene by placement of an intron missing only the 5[prime] splice site into the 5[prime] untranslated region. Stable transgenic strains were isolated expressing a gene in which 69 nucleotides of amore » vit-5 intron, including the 3[prime] splice site, were inserted into the 5[prime] untranslated region of a vit-2/vit-6 fusion gene. The RNA product of this gene was examined by primer extension and PCR amplification. Although the vit-2/vit-6 transgene product is not normally trans-spliced, the majority of transcripts from this altered gene were trans-spliced to SL1. They termed the region of a trans-spliced mRNA precursor between the 5[prime] end and the first 3[prime] splice site an 'outrun'. The results suggest that if a transcript begins with intronlike sequence followed by a 3[prime] splice site, this alone may constitute an outrun and be sufficient to demarcate a transcript as a trans-splice acceptor. These findings leave open the possibility that specific sequences are required to increase the efficiency of trans-splicing.« less
A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy
Brenton, Zachary W.; Cooper, Elizabeth A.; Myers, Mathew T.; Boyles, Richard E.; Shakoor, Nadia; Zielinski, Kelsey J.; Rauh, Bradley L.; Bridges, William C.; Morris, Geoffrey P.; Kresovich, Stephen
2016-01-01
With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning, and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes representing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement. Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide a foundation for future improvement of sorghum and related grasses for bioenergy production. PMID:27356613
Kong, Min; Wang, Fengjuan; Tian, Liuying; Tang, Hui; Zhang, Liping
2017-12-15
Glutathione (GSH) fulfills a variety of metabolic functions, participates in oxidative stress response, and defends against toxic actions of heavy metals and xenobiotics. In this study, GSH was detected in Rhodosporidium diobovatum by high-performance liquid chromatography (HPLC). Then, two novel enzymes from R. diobovatum were characterized that convert glutamate, cysteine, and glycine into GSH. Based on reverse transcription PCR, we obtained the glutathione synthetase gene (GSH2), 1866 bp, coding for a 56.6-kDa protein, and the glutamate cysteine ligase gene (GSH1), 2469 bp, coding for a 90.5-kDa protein. The role of GSH1 and GSH2 for the biosynthesis of GSH in the marine yeast R. diobovatum was determined by deletions using the CRISPR-Cas9 nuclease system and enzymatic activity. These results also showed that GSH1 and GSH2 were involved in the production of GSH and are thus being potentially useful to engineer GSH pathways. Alternatively, pET-GSH constructed using vitro recombination could be used to detect the function of genes related to GSH biosynthesis. Finally, the fermentation parameters determined in the present study provide a reference for industrial GSH production in R. diobovatum.
NASA Astrophysics Data System (ADS)
Kong, Min; Wang, Fengjuan; Tian, Liuying; Tang, Hui; Zhang, Liping
2018-02-01
Glutathione (GSH) fulfills a variety of metabolic functions, participates in oxidative stress response, and defends against toxic actions of heavy metals and xenobiotics. In this study, GSH was detected in Rhodosporidium diobovatum by high-performance liquid chromatography (HPLC). Then, two novel enzymes from R. diobovatum were characterized that convert glutamate, cysteine, and glycine into GSH. Based on reverse transcription PCR, we obtained the glutathione synthetase gene ( GSH2), 1866 bp, coding for a 56.6-kDa protein, and the glutamate cysteine ligase gene ( GSH1), 2469 bp, coding for a 90.5-kDa protein. The role of GSH1 and GSH2 for the biosynthesis of GSH in the marine yeast R. diobovatum was determined by deletions using the CRISPR-Cas9 nuclease system and enzymatic activity. These results also showed that GSH1 and GSH2 were involved in the production of GSH and are thus being potentially useful to engineer GSH pathways. Alternatively, pET- GSH constructed using vitro recombination could be used to detect the function of genes related to GSH biosynthesis. Finally, the fermentation parameters determined in the present study provide a reference for industrial GSH production in R. diobovatum.
Arachchi, H S Jayasinghe; Kalra, Vijay; Lal, Banwari; Bhatia, Vikram; Baba, C S; Chakravarthy, S; Rohatgi, S; Sarma, Priyangshu M; Mishra, V; Das, Bimal; Ahuja, Vineet
2007-12-01
The duodenal ulcer (DU)-promoting gene (dupA) of Helicobacter pylori has been identified as a novel virulent marker associated with an increased risk for DU. The presence or absence of dupA gene of H. pylori present in patients with DU and functional dyspepsia in North Indian population was studied by polymerase chain reaction (PCR) and hybridization analysis. One hundred and sixty-six patients (96 DU and 70 functional dyspepsia) were included in this study. In addition, sequence diversity of dupA gene of H. pylori found in these patients was analyzed by sequencing the PCR products jhp0917 and jhp0918 on both strands with appropriate primers. PCR and hybridization analyses indicated that dupA gene was present in 37.5% (36/96) of H. pylori strains isolated from DU patients and 22.86% (16/70) of functional dyspepsia patients (p < or = .05). Of these, 35 patients with DU (97.2%) and 14 patients with functional dyspepsia (81.25%) were infected by H. pylori positive for cagA genotype. Furthermore, the presence of dupA was significantly associated with the cagA-positive genotype (p < or = .02). Results of our study have shown that significant association of dupA gene with DU in this population. The dupA gene can be considered as a novel virulent marker for DU in this population.
Transformation of the US bread wheat Butte 86 and silencing of omega-5 gliadin genes
USDA-ARS?s Scientific Manuscript database
Complex groups of proteins determine the unique functional properties of wheat flour and are sometimes responsible for food intolerances and allergies in individuals that consume wheat products. Transgenic approaches can be used to explore the functions of different flour proteins, but are limited t...
Unifying measures of gene function and evolution.
Wolf, Yuri I; Carmel, Liran; Koonin, Eugene V
2006-06-22
Recent genome analyses revealed intriguing correlations between variables characterizing the functioning of a gene, such as expression level (EL), connectivity of genetic and protein-protein interaction networks, and knockout effect, and variables describing gene evolution, such as sequence evolution rate (ER) and propensity for gene loss. Typically, variables within each of these classes are positively correlated, e.g. products of highly expressed genes also have a propensity to be involved in many protein-protein interactions, whereas variables between classes are negatively correlated, e.g. highly expressed genes, on average, evolve slower than weakly expressed genes. Here, we describe principal component (PC) analysis of seven genome-related variables and propose biological interpretations for the first three PCs. The first PC reflects a gene's 'importance', or the 'status' of a gene in the genomic community, with positive contributions from knockout lethality, EL, number of protein-protein interaction partners and the number of paralogues, and negative contributions from sequence ER and gene loss propensity. The next two PCs define a plane that seems to reflect the functional and evolutionary plasticity of a gene. Specifically, PC2 can be interpreted as a gene's 'adaptability' whereby genes with high adaptability readily duplicate, have many genetic interaction partners and tend to be non-essential. PC3 also might reflect the role of a gene in organismal adaptation albeit with a negative rather than a positive contribution of genetic interactions; we provisionally designate this PC 'reactivity'. The interpretation of PC2 and PC3 as measures of a gene's plasticity is compatible with the observation that genes with high values of these PCs tend to be expressed in a condition- or tissue-specific manner. Functional classes of genes substantially vary in status, adaptability and reactivity, with the highest status characteristic of the translation system and cytoskeletal proteins, highest adaptability seen in cellular processes and signalling genes, and top reactivity characteristic of metabolic enzymes.
Functional dissection of drought-responsive gene expression patterns in Cynodon dactylon L.
Kim, Changsoo; Lemke, Cornelia; Paterson, Andrew H
2009-05-01
Water deficit is one of the main abiotic factors that affect plant productivity in subtropical regions. To identify genes induced during the water stress response in Bermudagrass (Cynodon dactylon), cDNA macroarrays were used. The macroarray analysis identified 189 drought-responsive candidate genes from C. dactylon, of which 120 were up-regulated and 69 were down-regulated. The candidate genes were classified into seven groups by cluster analysis of expression levels across two intensities and three durations of imposed stress. Annotation using BLASTX suggested that up-regulated genes may be involved in proline biosynthesis, signal transduction pathways, protein repair systems, and removal of toxins, while down-regulated genes were mostly related to basic plant metabolism such as photosynthesis and glycolysis. The functional classification of gene ontology (GO) was consistent with the BLASTX results, also suggesting some crosstalk between abiotic and biotic stress. Comparative analysis of cis-regulatory elements from the candidate genes implicated specific elements in drought response in Bermudagrass. Although only a subset of genes was studied, Bermudagrass shared many drought-responsive genes and cis-regulatory elements with other botanical models, supporting a strategy of cross-taxon application of drought-responsive genes, regulatory cues, and physiological-genetic information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaohan; Ye, Chuyu; Bisaria, Anjali
2011-01-01
Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additionalmore » genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.« less
Chakraborty, Anirban; Mitra, Joy; Bhattacharyya, Jagannath; Pradhan, Subrata; Sikdar, Narattam; Das, Srirupa; Chakraborty, Saikat; Kumar, Sachin; Lakhanpaul, Suman; Sen, Soumitra K
2015-06-01
Over-expression of the unedited mitochondrial orfB gene product generates male sterility in fertile indica rice lines in a dose-dependent manner. Cytoplasmic male sterility (CMS) and nuclear-controlled fertility restoration are widespread developmental features in plant reproductive systems. In self-pollinated crop plants, these processes often provide useful tools to exploit hybrid vigour. The wild abortive CMS has been employed in the majority of the "three-line" hybrid rice production since 1970s. In the present study, we provide experimental evidence for a positive functional relationship between the 1.1-kb unedited orfB gene transcript, and its translated product in the mitochondria with male sterility. The generation of the 1.1-kb unedited orfB gene transcripts increased during flowering, resulting in low ATP synthase activity in sterile plants. Following insertion of the unedited orfB gene into the genome of male-fertile plants, the plants became male sterile in a dose-dependent manner with concomitant reduction of ATPase activity of F1F0-ATP synthase (complex V). Fertility of the transgenic lines and normal activity of ATP synthase were restored by down-regulation of the unedited orfB gene expression through RNAi-mediated silencing. The genetic elements deciphered in this study could further be tested for their use in hybrid rice development.
Lwin, Wint Wah; Park, Ken; Wauson, Matthew; Gao, Qin; Finn, Patricia W; Perkins, David; Khanna, Ajai
2012-07-01
Systems biology is gaining importance in studying complex systems such as the functional interconnections of human genes [1]. To investigate the molecular interactions involved in T cell immune responses, we used databases of physical gene-gene interactions to constructed molecular interaction networks (interconnections) with R language algorithms. This helped to identify highly interconnected "hub" genes AT(1)P5C1, IL6ST, PRKCZ, MYC, FOS, JUN, and MAPK1. We hypothesized that suppression of these hub genes in the gene network would result in significant phenotypic effects on T cells and examined this in vitro. The molecular interaction networks were then analyzed and visualized with Cytoscape. Jurkat and HeLa cells were transfected with siRNA for the selected hub genes. Cell proliferation was measured using ATP luminescence and BrdU labeling, which were measured 36, 72, and 96 h after activation. Following T cell stimulation, we found a significant decrease in ATP production (P < 0.05) when the hub genes ATP5C1 and PRKCZ were knocked down using siRNA transfection, whereas no difference in ATP production was observed in siRNA transfected HeLa cells. However, HeLa cells showed a significant (P < 0.05) decrease in cell proliferation when the genes MAPK1, IL6ST, ATP5C1, JUN, and FOS were knocked down. In both Jurkat and HeLa cells, targeted gene knockdown using siRNA showed decreased cell proliferation and ATP production in both Jurkat and HeLa cells. However, Jurkat T cells and HELA cells use different hub genes to regulate activation responses. This experiment provides proof of principle of applying siRNA knockdown of T cell hub genes to evaluate their proliferative capacity and ATP production. This novel concept outlines a systems biology approach to identify hub genes for targeted therapeutics. Published by Elsevier Inc.
Probing the Boundaries of Orthology: The Unanticipated Rapid Evolution of Drosophila centrosomin
Eisman, Robert C.; Kaufman, Thomas C.
2013-01-01
The rapid evolution of essential developmental genes and their protein products is both intriguing and problematic. The rapid evolution of gene products with simple protein folds and a lack of well-characterized functional domains typically result in a low discovery rate of orthologous genes. Additionally, in the absence of orthologs it is difficult to study the processes and mechanisms underlying rapid evolution. In this study, we have investigated the rapid evolution of centrosomin (cnn), an essential gene encoding centrosomal protein isoforms required during syncytial development in Drosophila melanogaster. Until recently the rapid divergence of cnn made identification of orthologs difficult and questionable because Cnn violates many of the assumptions underlying models for protein evolution. To overcome these limitations, we have identified a group of insect orthologs and present conserved features likely to be required for the functions attributed to cnn in D. melanogaster. We also show that the rapid divergence of Cnn isoforms is apparently due to frequent coding sequence indels and an accelerated rate of intronic additions and eliminations. These changes appear to be buffered by multi-exon and multi-reading frame maximum potential ORFs, simple protein folds, and the splicing machinery. These buffering features also occur in other genes in Drosophila and may help prevent potentially deleterious mutations due to indels in genes with large coding exons and exon-dense regions separated by small introns. This work promises to be useful for future investigations of cnn and potentially other rapidly evolving genes and proteins. PMID:23749319
Structural and functional analyses of Saccharomyces cerevisiae wild-type and mutant RNA1 genes.
Traglia, H M; Atkinson, N S; Hopper, A K
1989-01-01
The yeast gene RNA1 has been defined by the thermosensitive rna1-1 lesion. This lesion interferes with the processing and production of all major classes of RNA. Each class of RNA is affected at a distinct and presumably unrelated step. Furthermore, RNA does not appear to exit the nucleus. To investigate how the RNA1 gene product can pleiotropically affect disparate processes, we undertook a structural analysis of wild-type and mutant RNA1 genes. The wild-type gene was found to contain a 407-amino-acid open reading frame that encodes a hydrophilic protein. No clue regarding the function of the RNA1 protein was obtained by searching banks for similarity to other known gene products. Surprisingly, the rna1-1 lesion was found to code for two amino acid differences from wild type. We found that neither single-amino-acid change alone resulted in temperature sensitivity. The carboxy-terminal region of the RNA1 open reading frame contains a highly acidic domain extending from amino acids 334 to 400. We generated genomic deletions that removed C-terminal regions of this protein. Deletion of amino acids 397 to 407 did not appear to affect cell growth. Removal of amino acids 359 to 397, a region containing 24 acidic residues, caused temperature-sensitive growth. This allele, rna1-delta 359-397, defines a second conditional lesion of the RNA1 locus. We found that strains possessing the rna1-delta 359-397 allele did not show thermosensitive defects in pre-rRNA or pre-tRNA processing. Removal of amino acids 330 to 407 resulted in loss of viability. Images PMID:2674676
Kenney, M. Cristina; Chwa, Marilyn; Atilano, Shari R.; Pavlis, Janelle M.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Hsu, Tiffany; Woo, Grace; Soe, Kyaw; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin
2013-01-01
Background Mitochondrial dysfunction is associated with the development and progression of age-related macular degeneration (AMD). Recent studies using populations from the United States and Australia have demonstrated that AMD is associated with mitochondrial (mt) DNA haplogroups (as defined by combinations of mtDNA polymorphisms) that represent Northern European Caucasians. The aim of this study was to use the cytoplasmic hybrid (cybrid) model to investigate the molecular and biological functional consequences that occur when comparing the mtDNA H haplogroup (protective for AMD) versus J haplogroup (high risk for AMD). Methodology/Principal Findings Cybrids were created by introducing mitochondria from individuals with either H or J haplogroups into a human retinal epithelial cell line (ARPE-19) that was devoid of mitochondrial DNA (Rho0). In cybrid lines, all of the cells carry the same nuclear genes but vary in mtDNA content. The J cybrids had significantly lower levels of ATP and reactive oxygen/nitrogen species production, but increased lactate levels and rates of growth. Q-PCR analyses showed J cybrids had decreased expressions for CFH, C3, and EFEMP1 genes, high risk genes for AMD, and higher expression for MYO7A, a gene associated with retinal degeneration in Usher type IB syndrome. The H and J cybrids also have comparatively altered expression of nuclear genes involved in pathways for cell signaling, inflammation, and metabolism. Conclusion/Significance Our findings demonstrate that mtDNA haplogroup variants mediate not only energy production and cell growth, but also cell signaling for major molecular pathways. These data support the hypothesis that mtDNA variants play important roles in numerous cellular functions and disease processes, including AMD. PMID:23365660
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Shaomei; Malfatti, Stephanie A.; McFarland, Jack W.
Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhousemore » gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities that mediate carbon cycling in wetlands is critical to accurately predicting their responses to changes in land management and climate. Here, we studied a restored wetland and revealed substantial spatial heterogeneity in biogeochemistry, methane production, and microbial communities, largely associated with the wetland hydraulic design. We observed patterns in microbial community composition and functions correlated with biogeochemistry and methane production, including diverse microorganisms involved in methane production and consumption. We found that methanogenesis gene abundance is inversely correlated with genes from pathways exploiting other electron acceptors, yet the ubiquitous presence of genes from all these pathways suggests that diverse electron acceptors contribute to the energetic balance of the ecosystem. These investigations represent an important step toward effective management of wetlands to reduce methane flux to the atmosphere and enhance belowground carbon storage.« less
He, Shaomei; Malfatti, Stephanie A.; McFarland, Jack W.; ...
2015-05-19
Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhousemore » gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities that mediate carbon cycling in wetlands is critical to accurately predicting their responses to changes in land management and climate. Here, we studied a restored wetland and revealed substantial spatial heterogeneity in biogeochemistry, methane production, and microbial communities, largely associated with the wetland hydraulic design. We observed patterns in microbial community composition and functions correlated with biogeochemistry and methane production, including diverse microorganisms involved in methane production and consumption. We found that methanogenesis gene abundance is inversely correlated with genes from pathways exploiting other electron acceptors, yet the ubiquitous presence of genes from all these pathways suggests that diverse electron acceptors contribute to the energetic balance of the ecosystem. These investigations represent an important step toward effective management of wetlands to reduce methane flux to the atmosphere and enhance belowground carbon storage.« less
He, Shaomei; Malfatti, Stephanie A; McFarland, Jack W; Anderson, Frank E; Pati, Amrita; Huntemann, Marcel; Tremblay, Julien; Glavina del Rio, Tijana; Waldrop, Mark P; Windham-Myers, Lisamarie; Tringe, Susannah G
2015-05-19
Wetland restoration on peat islands previously drained for agriculture has potential to reverse land subsidence and sequester atmospheric carbon dioxide as peat accretes. However, the emission of methane could potentially offset the greenhouse gas benefits of captured carbon. As microbial communities play a key role in governing wetland greenhouse gas fluxes, we are interested in how microbial community composition and functions are associated with wetland hydrology, biogeochemistry, and methane emission, which is critical to modeling the microbial component in wetland methane fluxes and to managing restoration projects for maximal carbon sequestration. Here, we couple sequence-based methods with biogeochemical and greenhouse gas measurements to interrogate microbial communities from a pilot-scale restored wetland in the Sacramento-San Joaquin Delta of California, revealing considerable spatial heterogeneity even within this relatively small site. A number of microbial populations and functions showed strong correlations with electron acceptor availability and methane production; some also showed a preference for association with plant roots. Marker gene phylogenies revealed a diversity of major methane-producing and -consuming populations and suggested novel diversity within methanotrophs. Methanogenic archaea were observed in all samples, as were nitrate-, sulfate-, and metal-reducing bacteria, indicating that no single terminal electron acceptor was preferred despite differences in energetic favorability and suggesting spatial microheterogeneity and microniches. Notably, methanogens were negatively correlated with nitrate-, sulfate-, and metal-reducing bacteria and were most abundant at sampling sites with high peat accretion and low electron acceptor availability, where methane production was highest. Wetlands are the largest nonanthropogenic source of atmospheric methane but also a key global carbon reservoir. Characterizing belowground microbial communities that mediate carbon cycling in wetlands is critical to accurately predicting their responses to changes in land management and climate. Here, we studied a restored wetland and revealed substantial spatial heterogeneity in biogeochemistry, methane production, and microbial communities, largely associated with the wetland hydraulic design. We observed patterns in microbial community composition and functions correlated with biogeochemistry and methane production, including diverse microorganisms involved in methane production and consumption. We found that methanogenesis gene abundance is inversely correlated with genes from pathways exploiting other electron acceptors, yet the ubiquitous presence of genes from all these pathways suggests that diverse electron acceptors contribute to the energetic balance of the ecosystem. These investigations represent an important step toward effective management of wetlands to reduce methane flux to the atmosphere and enhance belowground carbon storage. Copyright © 2015 He et al.
Strong FANCA/FANCG but weak FANCA/FANCC interaction in the yeast 2-hybrid system.
Reuter, T; Herterich, S; Bernhard, O; Hoehn, H; Gross, H J
2000-01-15
Three of at least 8 Fanconi anemia (FA) genes have been cloned (FANCA, FANCC, FANCG), but their functions remain unknown. Using the yeast 2-hybrid system and full-length cDNA, the authors found a strong interaction between FANCA and FANCG proteins. They also obtained evidence for a weak interaction between FANCA and FANCC. Neither FANCA nor FANCC was found to interact with itself. These results support the notion of a functional association between the FA gene products. (Blood. 2000;95:719-720)
Yin, Xian; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian
2017-01-01
ABSTRACT The dynamic control of gene expression is important for adjusting fluxes in order to obtain desired products and achieve appropriate cell growth, particularly when the synthesis of a desired product drains metabolites required for cell growth. For dynamic gene expression, a promoter responsive to a particular environmental stressor is vital. Here, we report a low-pH-inducible promoter, Pgas, which promotes minimal gene expression at pH values above 5.0 but functions efficiently at low pHs, such as pH 2.0. First, we performed a transcriptional analysis of Aspergillus niger, an excellent platform for the production of organic acids, and we found that the promoter Pgas may act efficiently at low pH. Then, a gene for synthetic green fluorescent protein (sGFP) was successfully expressed by Pgas at pH 2.0, verifying the results of the transcriptional analysis. Next, Pgas was used to express the cis-aconitate decarboxylase (cad) gene of Aspergillus terreus in A. niger, allowing the production of itaconic acid at a titer of 4.92 g/liter. Finally, we found that Pgas strength was independent of acid type and acid ion concentration, showing dependence on pH only. IMPORTANCE The promoter Pgas can be used for the dynamic control of gene expression in A. niger for metabolic engineering to produce organic acids. This promoter may also be a candidate tool for genetic engineering. PMID:28087530
Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang
2014-01-01
Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN.
Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang
2014-01-01
Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome and microRNome levels. Additionally, a web tool for information retrieval and analysis of SoyFGNs can be accessed at SoyFN: http://nclab.hit.edu.cn/SoyFN. PMID:25423109
Lien, Espen; Andersen, Guro; Bao, Yongde; Gordish-Dressman, Heather; Skranes, Jon S.; Blackman, James A.; Vik, Torstein
2015-01-01
Aim ApolipoproteinE (apoE) influences repair and other processes in the brain and the apoE4 variant is a risk factor for Alzheimer's disease and for prolonged recovery following traumatic brain injury. We previously reported that specific single nucleotide polymorphisms in the APOE or TOMM40 genes affecting the structure and production of apoE were associated with epilepsy, more impaired hand function and gastrostomy tube feeding in children with cerebral palsy (CP). This study explored how various combinations of the same polymorphisms may affect these clinical manifestations. Methods Successful DNA analyses of APOE and TOMM40 were carried out on 227 children. The CP Register of Norway provided details of gross and fine motor function, epilepsy and gastrostomy tube feeding. Possible associations between these clinical manifestations and various combinations of the APOEε2, ε3 or ε4 alleles and of the rs59007384 polymorphism in the TOMM40 gene were explored. Results Epilepsy, impaired fine motor function and gastrostomy tube feeding were less common in children carrying the combination of rs59007384 GG and APOEε2 or ε3 than in children with other combinations. Conclusion Our findings suggest that specific combinations of genes influence the structure and production of apoE differently and affect the clinical manifestations of CP. PMID:25703783
Genome-wide identification and characterization of aquaporin gene family in Beta vulgaris
Kong, Weilong; Yang, Shaozong; Wang, Yulu; Bendahmane, Mohammed
2017-01-01
Aquaporins (AQPs) are essential channel proteins that execute multi-functions throughout plant growth and development, including water transport, uncharged solutes uptake, stress response, and so on. Here, we report the first genome-wide identification and characterization AQP (BvAQP) genes in sugar beet (Beta vulgaris), an important crop widely cultivated for feed, for sugar production and for bioethanol production. Twenty-eight sugar beet AQPs (BvAQPs) were identified and assigned into five subfamilies based on phylogenetic analyses: seven of plasma membrane (PIPs), eight of tonoplast (TIPs), nine of NOD26-like (NIPs), three of small basic (SIPs), and one of x-intrinsic proteins (XIPs). BvAQP genes unevenly mapped on all chromosomes, except on chromosome 4. Gene structure and motifs analyses revealed that BvAQP have conserved exon-intron organization and that they exhibit conserved motifs within each subfamily. Prediction of BvAQPs functions, based on key protein domains conservation, showed a remarkable difference in substrate specificity among the five subfamilies. Analyses of BvAQPs expression, by mean of RNA-seq, in different plant organs and in response to various abiotic stresses revealed that they were ubiquitously expressed and that their expression was induced by heat and salt stresses. These results provide a reference base to address further the function of sugar beet aquaporins and to explore future applications for plants growth and development improvements as well as in response to environmental stresses. PMID:28948097
hSMR3A as a Marker for Patients With Erectile Dysfunction
Tong, Yuehong; Tar, Moses; Monrose, Val; DiSanto, Michael; Melman, Arnold; Davies, Kelvin P.
2007-01-01
Purpose We recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in 3 distinct models of erectile dysfunction. Since gene transfer of plasmids expressing Vcsa1 or intracorporeal injection of its mature peptide product sialorphin into the corpora of aging rats was shown to restore erectile function, we proposed that the Vcsa1 gene has a direct role in erectile function. To determine if similar changes in gene expression occur in the corpora of human subjects with erectile dysfunction we identified a human homologue of Vcsa1 (hSMR3A) and determined the level of expression of hSMR3A in patients. Materials and Methods hSMR3A was identified as a homologue of Vcsa1 by searching protein databases for proteins with similarity. hSMR3A cDNA was generated and subcloned into the plasmid pVAX to generate pVAX-hSMR3A. pVAX-hSMR3A (25 or 100 μg) was intracorporeally injected into aging rats. The effect on erectile physiology was compared histologically and by measuring intracorporeal pressure/blood pressure with controls treated with the empty plasmid pVAX. Total RNA was extracted from human corporeal tissue obtained from patients undergoing previously scheduled penile surgery. Patients were grouped according to normal erectile function (3), erectile dysfunction and diabetes (5) and patients without diabetes but with erectile dysfunction (5). Quantitative reverse-transcriptase polymerase chain reaction was used to determine the hSMR3A expression level. Results Intracorporeal injection of 25 μg pVAX-hSMR3A was able to significantly increase the intracorporeal pressure-to-blood pressure ratio in aging rats compared to age matched controls. Higher amounts (100 μg) of gene transfer of the plasmid caused less of an improvement in the intracorporeal pressure-to-blood pressure ratio compared to controls, although there was histological and visual evidence that the animals were post-priapitic. These physiological effects were similar to previously reported effects of intracorporeal injection of pVAX-Vcsa1 into the corpora of aging rats, establishing hSMR3A as a functional homologue of Vcsa1. More than 10-fold down-regulation in hSMR3A transcript expression was observed in the corpora of patients with vs without erectile dysfunction. In patients with diabetes associated and nondiabetes associated erectile dysfunction hSMR3A expression was found to be down-regulated. Conclusions These results suggest that hSMR3A can act as a marker for erectile dysfunction associated with diabetic and nondiabetic etiologies. Given that our previous studies demonstrated that gene transfer of the Vcsa1 gene and intracorporeal injection of its protein product in rats can restore erectile function, these results suggest that therapies that increase the hSMR3A gene and product expression could potentially have a positive impact on erectile function. PMID:17512016
hSMR3A as a marker for patients with erectile dysfunction.
Tong, Yuehong; Tar, Moses; Monrose, Val; DiSanto, Michael; Melman, Arnold; Davies, Kelvin P
2007-07-01
We recently reported that Vcsa1 is one of the most down-regulated genes in the corpora of rats in 3 distinct models of erectile dysfunction. Since gene transfer of plasmids expressing Vcsa1 or intracorporeal injection of its mature peptide product sialorphin into the corpora of aging rats was shown to restore erectile function, we proposed that the Vcsa1 gene has a direct role in erectile function. To determine if similar changes in gene expression occur in the corpora of human subjects with erectile dysfunction we identified a human homologue of Vcsa1 (hSMR3A) and determined the level of expression of hSMR3A in patients. hSMR3A was identified as a homologue of Vcsa1 by searching protein databases for proteins with similarity. hSMR3A cDNA was generated and subcloned into the plasmid pVAX to generate pVAX-hSMR3A. pVAX-hSMR3A (25 or 100 microg) was intracorporeally injected into aging rats. The effect on erectile physiology was compared histologically and by measuring intracorporeal pressure/blood pressure with controls treated with the empty plasmid pVAX. Total RNA was extracted from human corporeal tissue obtained from patients undergoing previously scheduled penile surgery. Patients were grouped according to normal erectile function (3), erectile dysfunction and diabetes (5) and patients without diabetes but with erectile dysfunction (5). Quantitative reverse-transcriptase polymerase chain reaction was used to determine the hSMR3A expression level. Intracorporeal injection of 25 microg pVAX-hSMR3A was able to significantly increase the intracorporeal pressure-to-blood pressure ratio in aging rats compared to age matched controls. Higher amounts (100 microg) of gene transfer of the plasmid caused less of an improvement in the intracorporeal pressure-to-blood pressure ratio compared to controls, although there was histological and visual evidence that the animals were post-priapitic. These physiological effects were similar to previously reported effects of intracorporeal injection of pVAX-Vcsa1 into the corpora of aging rats, establishing hSMR3A as a functional homologue of Vcsa1. More than 10-fold down-regulation in hSMR3A transcript expression was observed in the corpora of patients with vs without erectile dysfunction. In patients with diabetes associated and nondiabetes associated erectile dysfunction hSMR3A expression was found to be down-regulated. These results suggest that hSMR3A can act as a marker for erectile dysfunction associated with diabetic and nondiabetic etiologies. Given that our previous studies demonstrated that gene transfer of the Vcsa1 gene and intracorporeal injection of its protein product in rats can restore erectile function, these results suggest that therapies that increase the hSMR3A gene and product expression could potentially have a positive impact on erectile function.
Ramakrishnan, Gayatri; Ochoa-Montaño, Bernardo; Raghavender, Upadhyayula S; Mudgal, Richa; Joshi, Adwait G; Chandra, Nagasuma R; Sowdhamini, Ramanathan; Blundell, Tom L; Srinivasan, Narayanaswamy
2015-01-01
The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better understanding of pathogenesis and to accelerate the process of drug target discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Convergence of the Insulin and Serotonin Programs in the Pancreatic β-Cell
Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B.; Honig, Gerard; Kim, Hail; Gasa, Rosa M.; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H.; Deneris, Evan S.; German, Michael S.
2011-01-01
OBJECTIVE Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. RESEARCH DESIGN AND METHODS We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. RESULTS We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. CONCLUSIONS These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes. PMID:22013016
Convergence of the insulin and serotonin programs in the pancreatic β-cell.
Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B; Honig, Gerard; Kim, Hail; Gasa, Rosa M; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H; Deneris, Evan S; German, Michael S
2011-12-01
Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes.
Identification of quorum sensing-controlled genes in Burkholderia ambifaria
Chapalain, Annelise; Vial, Ludovic; Laprade, Natacha; Dekimpe, Valérie; Perreault, Jonathan; Déziel, Eric
2013-01-01
The Burkholderia cepacia complex (Bcc) comprises strains with a virulence potential toward immunocompromised patients as well as plant growth–promoting rhizobacteria (PGPR). Owing to the link between quorum sensing (QS) and virulence, most studies among Bcc species have been directed toward QS of pathogenic bacteria. We have investigated the QS of B. ambifaria, a PGPR only infrequently recovered from patients. The cepI gene, responsible for the synthesis of the main signaling molecule N-octanoylhomoserine lactone (C8-HSL), was inactivated. Phenotypes of the B. ambifaria cepI mutant we observed, such as increased production of siderophores and decreased proteolytic and antifungal activities, are in agreement with those of other Bcc cepI mutants. The cepI mutant was then used as background strain for a whole-genome transposon-insertion mutagenesis strategy, allowing the identification of 20 QS-controlled genes, corresponding to 17 loci. The main functions identified are linked to antifungal and antimicrobial properties, as we have identified QS-controlled genes implicated in the production of pyrrolnitrin, burkholdines (occidiofungin-like molecules), and enacyloxins. This study provides insights in the QS-regulated functions of a PGPR, which could lead to beneficial potential biotechnological applications. PMID:23382083
RpfF-dependent regulon of Xylella fastidiosa.
Wang, Nian; Li, Jian-Liang; Lindow, Steven E
2012-11-01
ABSTRACT Xylella fastidiosa regulates traits important to both virulence of grape as well as colonization of sharpshooter vectors via its production of a fatty acid signal molecule known as DSF whose production is dependent on rpfF. Although X. fastidiosa rpfF mutants exhibit increased virulence to plants, they are unable to be spread from plant to plant by insect vectors. To gain more insight into the traits that contribute to these processes, a whole-genome Agilent DNA microarray for this species was developed and used to determine the RpfF-dependent regulon by transcriptional profiling. In total, 446 protein coding genes whose expression was significantly different between the wild type and an rpfF mutant (false discovery rate < 0.05) were identified when cells were grown in PW liquid medium. Among them, 165 genes were downregulated in the rpfF mutant compared with the wild-type strain whereas 281 genes were over-expressed. RpfF function was required for regulation of 11 regulatory and σ factors, including rpfE, yybA, PD1177, glnB, rpfG, PD0954, PD0199, PD2050, colR, rpoH, and rpoD. In general, RpfF is required for regulation of genes involved in attachment and biofilm formation, enhancing expression of hemagglutinin genes hxfA and hxfB, and suppressing most type IV pili and gum genes. A large number of other RpfF-dependent genes that might contribute to virulence or insect colonization were also identified such as those encoding hemolysin and colicin V, as well as genes with unknown functions.
Moran, Bruce; Butler, Stephen T; Moore, Stephen G; MacHugh, David E; Creevey, Christopher J
2017-02-01
Profitable milk production in dairy cows requires good reproductive performance. Calving interval is a trait used to measure reproductive efficiency. Herein we used a novel lactating Holstein cow model of fertility that displayed genetic and phenotypic divergence in calving interval, a trait used to define reproductive performance using a national breeding index in Ireland. Cows had similar genetic merit for milk production traits, but either very good genetic merit for fertility (Fert+; n=7) or very poor genetic merit for fertility (Fert-; n=6). We tested the hypothesis that Fert+ cows would have a corresponding detectable difference in endometrial gene expression compared with the Fert- cows. To do this, we sequenced the transcriptome of endometrial biopsies collected on Day 7 of the oestrous cycle (non-pregnant). This is an important stage for uterine remodelling and initiation of histotroph secretion. Significant differential expression (false discovery rate-adjusted P<0.1) of 403 genes between Fert+ and Fert- cows was found. A novel network-based functional analysis highlighted 123 genes from three physiologically relevant networks of the endometrium: (1) actin and cytoskeletal components; (2) immune function; and (3) ion transportation. In particular, our results indicate an overall downregulation of inflammation-related genes and an upregulation of multiple ion transporters and gated-voltage channels and cytoskeletal genes in Fert+ cows. These three topics, which are discussed in terms of the uterus and in the context of fertility, provide molecular evidence for an association between gene expression in the uterine environment and genetic merit for fertility in dairy cows.
Seki, Hikaru; Tamura, Keita; Muranaka, Toshiya
2018-06-01
Increased public awareness of negative health effects associated with excess sugar consumption has triggered increasing interest in plant-derived natural sweeteners. Steviol glycosides are a group of highly sweet diterpene glycosides contained in the leaves of stevia (Stevia rebaudiana). Mogrosides, extracted from monk fruit (Siraitia grosvenorii), are a group of cucurbitane-type triterpenoid glycosides. Glycyrrhizin is an oleanane-type triterpenoid glycoside derived from the underground parts of Glycyrrhiza plants (licorice). This review focuses on the natural isoprenoid sweetening agents steviol glycosides, mogrosides, and glycyrrhizin, and describes recent progress in gene discovery and elucidation of the catalytic functions of their biosynthetic enzymes. Recently, remarkable progress has been made in engineering the production of various plant-specialized metabolites in microbial hosts such as Saccharomyces cerevisiae via the introduction of biosynthetic enzyme genes. Perspectives on the microbial production of plant-derived natural sweeteners are also discussed.
The seco-iridoid pathway from Catharanthus roseus
Miettinen, Karel; Dong, Lemeng; Navrot, Nicolas; Schneider, Thomas; Burlat, Vincent; Pollier, Jacob; Woittiez, Lotte; van der Krol, Sander; Lugan, Raphaël; Ilc, Tina; Verpoorte, Robert; Oksman-Caldentey, Kirsi-Marja; Martinoia, Enrico; Bouwmeester, Harro; Goossens, Alain; Memelink, Johan; Werck-Reichhart, Danièle
2014-01-01
The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications. PMID:24710322
Nepal, Keshav Kumar; Oh, Tae-Jin; Subba, Bimala; Yoo, Jin Cheol; Sohng, Jae Kyung
2009-01-31
Amino acid homology analysis predicted that rbmD, a putative glycosyltransferase from Streptomyces ribosidificus ATCC 21294, has the highest homology with neoD in neomycin biosynthesis. S. fradiae BS1, in which the production of neomycin was abolished, was generated by disruption of the neoD gene in the neomycin producer S. fradiae. The restoration of neomycin by self complementation suggested that there was no polar effect in the mutant. In addition, S. fradiae BS6 was created with complementation by rbmD in S. fradiae BS1, and secondary metabolite analysis by ESI/MS, LC/MS and MS/MS showed the restoration of neomycin production in S. fradiae BS6. These gene inactivation and complementation studies suggested that, like neoD, rbmD functions as a 2-N-acetlyglucosaminyltransferase and demonstrated the potential for the generation of novel aminoglycoside antibiotics using glycosyltransferases in vivo.
Chen, Wenqing; Huang, Tingting; He, Xinyi; Meng, Qingqing; You, Delin; Bai, Linquan; Li, Jialiang; Wu, Mingxuan; Li, Rui; Xie, Zhoujie; Zhou, Huchen; Zhou, Xiufen; Tan, Huarong; Deng, Zixin
2009-01-01
A gene cluster (pol) essential for the biosynthesis of polyoxin, a nucleoside antibiotic widely used for the control of phytopathogenic fungi, was cloned from Streptomyces cacaoi. A 46,066-bp region was sequenced, and 20 of 39 of the putative open reading frames were defined as necessary for polyoxin biosynthesis as evidenced by its production in a heterologous host, Streptomyces lividans TK24. The role of PolO and PolA in polyoxin synthesis was demonstrated by in vivo experiments, and their functions were unambiguously characterized as O-carbamoyltransferase and UMP-enolpyruvyltransferase, respectively, by in vitro experiments, which enabled the production of a modified compound differing slightly from that proposed earlier. These studies should provide a solid foundation for the elucidation of the molecular mechanisms for polyoxin biosynthesis, and set the stage for combinatorial biosynthesis using genes encoding different pathways for nucleoside antibiotics. PMID:19233844
USDA-ARS?s Scientific Manuscript database
Trunk diseases are responsible for important economic losses in all viticulture production systems. They are caused by distantly-related fungi that form chronic wood infections. Variation in wood-decay abilities and production of phytotoxic compounds are thought to contribute to differences in the d...
Gomez-Escobar, Natalia; Bennett, Clare; Prieto-Lafuente, Lidia; Aebischer, Toni; Blackburn, Clare C; Maizels, Rick M
2005-01-01
Background Parasites exploit sophisticated strategies to evade host immunity that require both adaptation of existing genes and evolution of new gene families. We have addressed this question by testing the immunological function of novel genes from helminth parasites, in which conventional transgenesis is not yet possible. We investigated two such novel genes from Brugia malayi termed abundant larval transcript (alt), expression of which reaches ~5% of total transcript at the time parasites enter the human host. Results To test the hypothesis that ALT proteins modulate host immunity, we adopted an alternative transfection strategy to express these products in the protozoan parasite Leishmania mexicana. We then followed the course of infection in vitro in macrophages and in vivo in mice. Expression of ALT proteins, but not a truncated mutant, conferred greater infectivity of macrophages in vitro, reaching 3-fold higher parasite densities. alt-transfected parasites also caused accelerated disease in vivo, and fewer mice were able to clear infection of organisms expressing ALT. alt-transfected parasites were more resistant to IFN-γ-induced killing by macrophages. Expression profiling of macrophages infected with transgenic L. mexicana revealed consistently higher levels of GATA-3 and SOCS-1 transcripts, both associated with the Th2-type response observed in in vivo filarial infection. Conclusion Leishmania transfection is a tractable and informative approach to determining immunological functions of single genes from heterologous organisms. In the case of the filarial ALT proteins, our data suggest that they may participate in the Th2 bias observed in the response to parasite infection by modulating cytokine-induced signalling within immune system cells. PMID:15788098
Kerekes, Éva; Kókai, Endre; Páldy, Ferenc Sándor; Dombrádi, Viktor
2014-06-01
The product of the CG9238 gene that we termed glycogen binding subunit 70E (Gbs-70E) was characterized by biochemical and molecular genetics methods. The interaction between Gbs-70E and all catalytic subunits of protein phosphatase 1 (Pp1-87B, Pp1-9C, Pp1-96A and Pp1-13C) of Drosophila melanogaster was confirmed by pairwise yeast two-hybrid tests, co-immunoprecipitation and pull down experiments. The binding of Gbs-70E to glycogen was demonstrated by sedimentation analysis. With RT-PCR we found that the mRNAs coding for the longer Gbs-70E PB/PC protein were expressed in all developmental stages of the fruit flies while the mRNA for the shorter Gbs-70E PA was restricted to the eggs and the ovaries of the adult females. The development specific expression of the shorter splice variant was not conserved in different Drosophila species. The expression level of the gene was manipulated by P-element insertions and gene deletion to analyze the functions of the gene product. A small or moderate reduction in the gene expression resulted in no significant changes, however, a deletion mutant expressing very low level of the transcript lived shorter and exhibited reduced glycogen content in the imagos. In addition, the gene deletion decreased the fertility of the fruit flies. Our results prove that Gbs-70E functions as the glycogen binding subunit of protein phosphatase 1 that regulates glycogen content and plays a role in the development of eggs in D. melanogaster. Copyright © 2014 Elsevier Ltd. All rights reserved.
The gene and the genon concept: a functional and information-theoretic analysis
Scherrer, Klaus; Jost, Jürgen
2007-01-01
‘Gene' has become a vague and ill-defined concept. To set the stage for mathematical analysis of gene storage and expression, we return to the original concept of the gene as a function encoded in the genome, basis of genetic analysis, that is a polypeptide or other functional product. The additional information needed to express a gene is contained within each mRNA as an ensemble of signals, added to or superimposed onto the coding sequence. To designate this programme, we introduce the term ‘genon'. Individual genons are contained in the pre-mRNA forming a pre-genon. A genomic domain contains a proto-genon, with the signals of transcription activation in addition to the pre-genon in the transcripts. Some contain several mRNAs and hence genons, to be singled out by RNA processing and differential splicing. The programme in the genon in cis is implemented by corresponding factors of protein or RNA nature contained in the transgenon of the cell or organism. The gene, the cis programme contained in the individual domain and transcript, and the trans programme of factors, can be analysed by information theory. PMID:17353929
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Ziyu; Mao, Xingxue; Magnuson, Jon K.
2004-04-01
The morphology of citric acid production strains of Aspergillus niger is sensitive to a variety of factors including the concentration of manganese (Mn2+). Upon increasing the Mn2+ concentration in A. niger (ATCC 11414) cultures to 14 ppb or higher, the morphology switches from pelleted to filamentous, accompanied by a rapid decline in citric acid production. Molecular mechanisms through which Mn2+ exerts effects on morphology and citric acid production in A. niger have not been well defined, but our use of suppression subtractive hybridization has identified 22 genes responsive to Mn2+. Fifteen genes were differentially expressed when A. niger was grownmore » in media containing 1000 ppb Mn2+ (filamentous form) and seven genes in 10 ppb Mn2+ (pelleted form). Of the fifteen filamentous-associated genes, seven are novel and eight share 47-100% identity to genes from other organisms. Five of the pellet-associated genes are novel, and the other two genes encode a pepsin-type protease and polyubiquitin. All ten genes with deduced functions are either involved in amino acid metabolism/protein catabolism or cell regulatory processes. Northern-blot analysis showed that the transcripts of all 22 genes were rapidly enhanced or suppressed by Mn2+. Steady-state mRNA levels of six selected filamentous associated genes remained high during five days of culture in a filamentous state and low under pelleted growth conditions. The opposite behavior was observed for four selected pellet-associated genes. The full-length cDNA of the filamentous-associated clone, Brsa-25 was isolated. Antisense expression of Brsa-25 permitted pelleted growth and increased citrate production at higher concentrations of Mn2+ than could be tolerated by the parent strain. The results suggest the involvement of the newly isolated genes in regulation of A. niger morphology.« less
Wu, Chih-Chiang; Chen, Rong-Fu; Kuo, Ho-Chang
2012-01-01
Asthma is a hereditary disease associated with IgE-mediated reaction. Whether maternal atopy and paternal atopy have different impacts on perinatal IgE production and asthma development remains unclear. This paper reviews and summarizes the effects of maternal and paternal atopy on the developmental aspects of IgE production and asthma. Maternal atopy affects both pre- and postnatal IgE production, whereas paternal atopy mainly affects the latter. Maternally transmitted genes GSTP1 and FceRI-beta are associated with lung function and allergic sensitization, respectively. In IgE production and asthma development, the maternal influence on gene-environment interaction is greater than paternal influence. Maternal, paternal, and/or postnatal environmental modulation of allergic responses have been linked to epigenetic mechanisms, which may be good targets for early prevention of asthma.
Wu, Chih-Chiang; Chen, Rong-Fu; Kuo, Ho-Chang
2012-01-01
Asthma is a hereditary disease associated with IgE-mediated reaction. Whether maternal atopy and paternal atopy have different impacts on perinatal IgE production and asthma development remains unclear. This paper reviews and summarizes the effects of maternal and paternal atopy on the developmental aspects of IgE production and asthma. Maternal atopy affects both pre- and postnatal IgE production, whereas paternal atopy mainly affects the latter. Maternally transmitted genes GSTP1 and FceRI-beta are associated with lung function and allergic sensitization, respectively. In IgE production and asthma development, the maternal influence on gene-environment interaction is greater than paternal influence. Maternal, paternal, and/or postnatal environmental modulation of allergic responses have been linked to epigenetic mechanisms, which may be good targets for early prevention of asthma. PMID:22272211
Gonzales, Bianca; Yang, Hushan; Henning, Dale; Valdez, Benigno C
2005-10-10
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development caused by mutations in the TCOF1 gene, which encodes the nucleolar phosphoprotein treacle. We previously reported a function for mammalian treacle in ribosomal DNA gene transcription by its interaction with upstream binding factor. As an initial step in the development of a TCS model for frog the cDNA that encodes the Xenopus laevis treacle was cloned. Although the derived amino acid sequence shows a poor homology with its mammalian orthologues, Xenopus treacle has 11 highly homologous direct repeats near the center of the protein molecule similar to those present in its human, dog and mouse orthologues. Comparison of their amino acid compositions indicates conservation of predominant specific amino acid residues. Antisense-mediated down-regulation of treacle expression in X. laevis oocytes resulted in inhibition of rDNA gene transcription. The results suggest evolutionary conservation of the function of treacle in ribosomal RNA biogenesis in higher eukaryotes.
Yang, Marty G; West, Anne E
2016-12-01
The dynamic orchestration of gene expression is crucial for the proper differentiation, function, and adaptation of cells. In the brain, transcriptional regulation underlies the incredible diversity of neuronal cell types and contributes to the ability of neurons to adapt their function to the environment. Recently, novel methods for genome and epigenome editing have begun to revolutionize our understanding of gene regulatory mechanisms. In particular, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has proven to be a particularly accessible and adaptable technique for genome engineering. Here, we review the use of CRISPR/Cas9 in neurobiology and discuss how these studies have advanced understanding of nervous system development and plasticity. We cover four especially salient applications of CRISPR/Cas9: testing the consequences of enhancer mutations, tagging genes and gene products for visualization in live cells, directly activating or repressing enhancers in vivo , and manipulating the epigenome. In each case, we summarize findings from recent studies and discuss evolving adaptations of the method.
γ-PGA Hydrolases of Phage Origin in Bacillus subtilis and Other Microbial Genomes.
Mamberti, Stefania; Prati, Paola; Cremaschi, Paolo; Seppi, Claudio; Morelli, Carlo F; Galizzi, Alessandro; Fabbi, Massimo; Calvio, Cinzia
2015-01-01
Poly-γ-glutamate (γ-PGA) is an industrially interesting polymer secreted mainly by members of the class Bacilli which forms a shield able to protect bacteria from phagocytosis and phages. Few enzymes are known to degrade γ-PGA; among them is a phage-encoded γ-PGA hydrolase, PghP. The supposed role of PghP in phages is to ensure access to the surface of bacterial cells by dismantling the γ-PGA barrier. We identified four unannotated B. subtilis genes through similarity of their encoded products to PghP; in fact these genes reside in prophage elements of B. subtilis genome. The recombinant products of two of them demonstrate efficient polymer degradation, confirming that sequence similarity reflects functional homology. Genes encoding similar γ-PGA hydrolases were identified in phages specific for the order Bacillales and in numerous microbial genomes, not only belonging to that order. The distribution of the γ-PGA biosynthesis operon was also investigated with a bioinformatics approach; it was found that the list of organisms endowed with γ-PGA biosynthetic functions is larger than expected and includes several pathogenic species. Moreover in non-Bacillales bacteria the predicted γ-PGA hydrolase genes are preferentially found in species that do not have the genetic asset for polymer production. Our findings suggest that γ-PGA hydrolase genes might have spread across microbial genomes via horizontal exchanges rather than via phage infection. We hypothesize that, in natural habitats rich in γ-PGA supplied by producer organisms, the availability of hydrolases that release glutamate oligomers from γ-PGA might be a beneficial trait under positive selection.
Busch-Nentwich, Elisabeth; Söllner, Christian; Roehl, Henry; Nicolson, Teresa
2004-02-01
Over 30 genes responsible for human hereditary hearing loss have been identified during the last 10 years. The proteins encoded by these genes play roles in a diverse set of cellular functions ranging from transcriptional regulation to K(+) recycling. In a few cases, the genes are novel and do not give much insight into the cellular or molecular cause for the hearing loss. Among these poorly understood deafness genes is DFNA5. How the truncation of the encoded protein DFNA5 leads to an autosomal dominant form of hearing loss is not clear. In order to understand the biological role of Dfna5, we took a reversegenetic approach in zebrafish. Here we show that morpholino antisense nucleotide knock-down of dfna5 function in zebrafish leads to disorganization of the developing semicircular canals and reduction of pharyngeal cartilage. This phenotype closely resembles previously isolated zebrafish craniofacial mutants including the mutant jekyll. jekyll encodes Ugdh [uridine 5'-diphosphate (UDP)-glucose dehydrogenase], an enzyme that is crucial for production of the extracellular matrix component hyaluronic acid (HA). In dfna5 morphants, expression of ugdh is absent in the developing ear and pharyngeal arches, and HA levels are strongly reduced in the outgrowing protrusions of the developing semicircular canals. Previous studies suggest that HA is essential for differentiating cartilage and directed outgrowth of the epithelial protrusions in the developing ear. We hypothesize that the reduction of HA production leads to uncoordinated outgrowth of the canal columns and impaired facial cartilage differentiation.
Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila
2016-10-20
The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.
Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Huey; Shabbir, Arsalan; Molnar, Merced
2007-03-30
Multiple pseudogenes have been proposed for embryonic stem (ES) cell-specific genes, and their abundance suggests that some of these potential pseudogenes may be functional. ES cell-specific expression of Oct4 regulates stem cell pluripotency and self-renewing state. Although Oct4 expression has been reported in adult tissues during gene reprogramming, the detected Oct4 signal might be contributed by Oct4 pseudogenes. Among the multiple Oct4 transcripts characterized here is a {approx}1 kb clone derived from P19 embryonal carcinoma stem cells, which shares a {approx}87% sequence homology with the parent Oct4 gene, and has the potential of encoding an 80-amino acid product (designated asmore » Oct4P1). Adenoviral expression of Oct4P1 in mesenchymal stem cells promotes their proliferation and inhibits their osteochondral differentiation. These dual effects of Oct4P1 are reminiscent of the stem cell regulatory function of the parent Oct4, and suggest that Oct4P1 may be a functional pseudogene or a novel Oct4-related gene with a unique function in stem cells.« less
Recent advances in the development of new transgenic animal technology.
Miao, Xiangyang
2013-03-01
Transgenic animal technology is one of the fastest growing biotechnology areas. It is used to integrate exogenous genes into the animal genome by genetic engineering technology so that these genes can be inherited and expressed by offspring. The transgenic efficiency and precise control of gene expression are the key limiting factors in the production of transgenic animals. A variety of transgenic technologies are available. Each has its own advantages and disadvantages and needs further study because of unresolved technical and safety issues. Further studies will allow transgenic technology to explore gene function, animal genetic improvement, bioreactors, animal disease models, and organ transplantation. This article reviews the recently developed animal transgenic technologies, including the germ line stem cell-mediated method to improve efficiency, gene targeting to improve accuracy, RNA interference-mediated gene silencing technology, zinc-finger nuclease gene targeting technology and induced pluripotent stem cell technology. These new transgenic techniques can provide a better platform to develop transgenic animals for breeding new animal varieties and promote the development of medical sciences, livestock production, and other fields.
Khang, Chang Hyun; Park, Sook-Young; Lee, Yong-Hwan; Kang, Seogchan
2005-06-01
Rapid progress in fungal genome sequencing presents many new opportunities for functional genomic analysis of fungal biology through the systematic mutagenesis of the genes identified through sequencing. However, the lack of efficient tools for targeted gene replacement is a limiting factor for fungal functional genomics, as it often necessitates the screening of a large number of transformants to identify the desired mutant. We developed an efficient method of gene replacement and evaluated factors affecting the efficiency of this method using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum. This method is based on Agrobacterium tumefaciens-mediated transformation with a mutant allele of the target gene flanked by the herpes simplex virus thymidine kinase (HSVtk) gene as a conditional negative selection marker against ectopic transformants. The HSVtk gene product converts 5-fluoro-2'-deoxyuridine to a compound toxic to diverse fungi. Because ectopic transformants express HSVtk, while gene replacement mutants lack HSVtk, growing transformants on a medium amended with 5-fluoro-2'-deoxyuridine facilitates the identification of targeted mutants by counter-selecting against ectopic transformants. In addition to M. grisea and F. oxysporum, the method and associated vectors are likely to be applicable to manipulating genes in a broad spectrum of fungi, thus potentially serving as an efficient, universal functional genomic tool for harnessing the growing body of fungal genome sequence data to study fungal biology.
Heterologous expression of the Aspergillus nidulans regulatory gene nirA in Fusarium oxysporum.
Daboussi, M J; Langin, T; Deschamps, F; Brygoo, Y; Scazzocchio, C; Burger, G
1991-12-20
We have isolated strains of Fusarium oxysporum carrying mutations conferring a phenotype characteristic of a loss of function in the regulatory gene of nitrate assimilation (nirA in Aspergillus nidulans, nit-4 in Neurospora crassa). One of these nir- mutants was successfully transformed with a plasmid containing the nirA gene of A. nidulans. The nitrate reductase of the transformants is still inducible, although the maximum activity is lower than in the wild type. Single and multiple integration events were found, as well as a strict correlation between the presence of the nirA gene and the Nir+ phenotype of the F. oxysporum transformants. We also investigated how the A. nidulans structural gene (niaD) is regulated in F. oxysporum. Enzyme assays and Northern experiments show that the niaD gene is subject to nitrate induction and that it responds to nitrogen metabolite repression in a F. oxysporum genetic background. This indicates that both the mechanisms of specific induction, mediated by a gene product isofunctional to nirA, and nitrogen metabolite repression, presumably mediated by a gene product isofunctional to the homologous gene of A. nidulans, are operative in F. oxysporum.
Design and construction of functional AAV vectors.
Gray, John T; Zolotukhin, Serge
2011-01-01
Using the basic principles of molecular biology and laboratory techniques presented in this chapter, researchers should be able to create a wide variety of AAV vectors for both clinical and basic research applications. Basic vector design concepts are covered for both protein coding gene expression and small non-coding RNA gene expression cassettes. AAV plasmid vector backbones (available via AddGene) are described, along with critical sequence details for a variety of modular expression components that can be inserted as needed for specific applications. Protocols are provided for assembling the various DNA components into AAV vector plasmids in Escherichia coli, as well as for transferring these vector sequences into baculovirus genomes for large-scale production of AAV in the insect cell production system.
Flather, Dylan; Semler, Bert L.
2015-01-01
The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review. PMID:26150805
Differential Effect of Active Smoking on Gene Expression in Male and Female Smokers
Paul, Sunirmal; Amundson, Sally A
2015-01-01
Smoking is the second leading cause of preventable death in the United States. Cohort epidemiological studies have demonstrated that women are more vulnerable to cigarette-smoking induced diseases than their male counterparts, however, the molecular basis of these differences has remained unknown. In this study, we explored if there were differences in the gene expression patterns between male and female smokers, and how these patterns might reflect different sex-specific responses to the stress of smoking. Using whole genome microarray gene expression profiling, we found that a substantial number of oxidant related genes were expressed in both male and female smokers, however, smoking-responsive genes did indeed differ greatly between male and female smokers. Gene set enrichment analysis (GSEA) against reference oncogenic signature gene sets identified a large number of oncogenic pathway gene-sets that were significantly altered in female smokers compared to male smokers. In addition, functional annotation with Ingenuity Pathway Analysis (IPA) identified smoking-correlated genes associated with biological functions in male and female smokers that are directly relevant to well-known smoking related pathologies. However, these relevant biological functions were strikingly overrepresented in female smokers compared to male smokers. IPA network analysis with the functional categories of immune and inflammatory response gene products suggested potential interactions between smoking response and female hormones. Our results demonstrate a striking dichotomy between male and female gene expression responses to smoking. This is the first genome-wide expression study to compare the sex-specific impacts of smoking at a molecular level and suggests a novel potential connection between sex hormone signaling and smoking-induced diseases in female smokers. PMID:25621181
Effect of Estrogen on Mutagenesis in Human Mammary Epithelial Cells
2005-06-01
instability remains undefined in most human cancers, it appears to arise from subtle, intragenic mutations of the genes , whose products play a key role in...cells and is less labor-intensive. A G-G or T-G mismatch was introduced into ATG start codon of the enhanced green fluorescent protein (EGFP) gene ...Repair of the G-G or T-G mismatch to G-C or T-A, respectively in the heteroduplex plasmid generates a functional EGFP gene expression. The heteroduplex
Keel, B N; Nonneman, D J; Rohrer, G A
2017-08-01
Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole-genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire-Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss-of-function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss-of-function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Genes uniquely expressed in human growth plate chondrocytes uncover a distinct regulatory network.
Li, Bing; Balasubramanian, Karthika; Krakow, Deborah; Cohn, Daniel H
2017-12-20
Chondrogenesis is the earliest stage of skeletal development and is a highly dynamic process, integrating the activities and functions of transcription factors, cell signaling molecules and extracellular matrix proteins. The molecular mechanisms underlying chondrogenesis have been extensively studied and multiple key regulators of this process have been identified. However, a genome-wide overview of the gene regulatory network in chondrogenesis has not been achieved. In this study, employing RNA sequencing, we identified 332 protein coding genes and 34 long non-coding RNA (lncRNA) genes that are highly selectively expressed in human fetal growth plate chondrocytes. Among the protein coding genes, 32 genes were associated with 62 distinct human skeletal disorders and 153 genes were associated with skeletal defects in knockout mice, confirming their essential roles in skeletal formation. These gene products formed a comprehensive physical interaction network and participated in multiple cellular processes regulating skeletal development. The data also revealed 34 transcription factors and 11,334 distal enhancers that were uniquely active in chondrocytes, functioning as transcriptional regulators for the cartilage-selective genes. Our findings revealed a complex gene regulatory network controlling skeletal development whereby transcription factors, enhancers and lncRNAs participate in chondrogenesis by transcriptional regulation of key genes. Additionally, the cartilage-selective genes represent candidate genes for unsolved human skeletal disorders.
Transposon tagging of genes for cell-cell interactions in Myxococcus xanthus.
Kalos, M; Zissler, J
1990-01-01
The prokaryote Myxococcus xanthus is a model for cell interactions important in multicellular behavior. We used the transposon TnphoA to specifically identify genes for cell-surface factors involved in cell interactions. From a library of 10,700 insertions of TnphoA, we isolated 36 that produced alkaline phosphatase activity. Three TnphoA insertions tagged cell motility genes, called cgl, which control the adventurous movement of cells. The products of the tagged cgl genes could function in trans upon other cells and were localized primarily in the cell envelope and extracellular space, consistent with TnphoA tagging genes for extracellular factors controlling motility. Images PMID:2172982
Zhou, Yingbiao; Zhu, Yueming; Dai, Longhai; Men, Yan; Wu, Jinhai; Zhang, Juankun; Sun, Yuanxia
2017-01-01
Melibiose is widely used as a functional carbohydrate. Whole-cell biocatalytic production of melibiose from raffinose could reduce its cost. However, characteristics of strains for whole-cell biocatalysis and mechanism of such process are unclear. We compared three different Saccharomyces cerevisiae strains (liquor, wine, and baker's yeasts) in terms of concentration variations of substrate (raffinose), target product (melibiose), and by-products (fructose and galactose) in whole-cell biocatalysis process. Distinct difference was observed in whole-cell catalytic efficiency among three strains. Furthermore, activities of key enzymes (invertase, α-galactosidase, and fructose transporter) involved in process and expression levels of their coding genes (suc2, mel1, and fsy1) were investigated. Conservation of key genes in S. cerevisiae strains was also evaluated. Results show that whole-cell catalytic efficiency of S. cerevisiae in the raffinose substrate was closely related to activity of key enzymes and expression of their coding genes. Finally, we summarized characteristics of producing strain that offered advantages, as well as contributions of key genes to excellent strains. Furthermore, we presented a dynamic mechanism model to achieve some mechanism insight for this whole-cell biocatalytic process. This pioneering study should contribute to improvement of whole-cell biocatalytic production of melibiose from raffinose.
Semantics based approach for analyzing disease-target associations.
Kaalia, Rama; Ghosh, Indira
2016-08-01
A complex disease is caused by heterogeneous biological interactions between genes and their products along with the influence of environmental factors. There have been many attempts for understanding the cause of these diseases using experimental, statistical and computational methods. In the present work the objective is to address the challenge of representation and integration of information from heterogeneous biomedical aspects of a complex disease using semantics based approach. Semantic web technology is used to design Disease Association Ontology (DAO-db) for representation and integration of disease associated information with diabetes as the case study. The functional associations of disease genes are integrated using RDF graphs of DAO-db. Three semantic web based scoring algorithms (PageRank, HITS (Hyperlink Induced Topic Search) and HITS with semantic weights) are used to score the gene nodes on the basis of their functional interactions in the graph. Disease Association Ontology for Diabetes (DAO-db) provides a standard ontology-driven platform for describing genes, proteins, pathways involved in diabetes and for integrating functional associations from various interaction levels (gene-disease, gene-pathway, gene-function, gene-cellular component and protein-protein interactions). An automatic instance loader module is also developed in present work that helps in adding instances to DAO-db on a large scale. Our ontology provides a framework for querying and analyzing the disease associated information in the form of RDF graphs. The above developed methodology is used to predict novel potential targets involved in diabetes disease from the long list of loose (statistically associated) gene-disease associations. Copyright © 2016 Elsevier Inc. All rights reserved.
Chang, Ji Suk; Jun, Hee-Jin; Park, Minsung
2016-10-01
The transcriptional coactivator PGC-1α plays a central role in hepatic gluconeogenesis. We previously reported that alternative splicing of the PGC-1α gene produces an additional transcript encoding the truncated protein NT-PGC-1α NT-PGC-1α is co-expressed with PGC-1α and highly induced by fasting in the liver. NT-PGC-1α regulates tissue-specific metabolism, but its role in the liver has not been investigated. Thus, the objective of this study was to determine the role of hepatic NT-PGC-1α in the regulation of gluconeogenesis. Adenovirus-mediated expression of NT-PGC-1α in primary hepatocytes strongly stimulated the expression of key gluconeogenic enzyme genes (PEPCK and G6Pase), leading to increased glucose production. To further understand NT-PGC-1α function in hepatic gluconeogenesis in vivo, we took advantage of a previously reported FL-PGC-1α -/- mouse line that lacks full-length PGC-1α (FL-PGC-1α) but retains a slightly shorter and functionally equivalent form of NT-PGC-1α (NT-PGC-1α 254 ). In FL-PGC-1α -/- mice, NT-PGC-1α 254 was induced by fasting in the liver and recruited to the promoters of PEPCK and G6Pase genes. The enrichment of NT-PGC-1α 254 at the promoters was closely associated with fasting-induced increase in PEPCK and G6Pase gene expression and efficient production of glucose from pyruvate during a pyruvate tolerance test in FL-PGC-1α -/- mice. Moreover, FL-PGC-1α -/- primary hepatocytes showed a significant increase in gluconeogenic gene expression and glucose production after treatment with dexamethasone and forskolin, suggesting that NT-PGC-1α 254 is sufficient to stimulate the gluconeogenic program in the absence of FL-PGC-1α Collectively, our findings highlight the role of hepatic NT-PGC-1α in stimulating gluconeogenic gene expression and glucose production. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Chen, Ruoxi; Barphagha, Inderjit K.; Ham, Jong Hyun
2015-01-01
Burkholderia glumae is the chief causal agent for bacterial panicle blight of rice. The acyl-homoserine lactone (AHL)-mediated quorum-sensing (QS) system dependent on a pair of luxI and luxR homologs, tofI and tofR, is the primary cell-to-cell signaling mechanism determining the virulence of this bacterium. Production of toxoflavin, a major virulence factor of B. glumae, is known to be dependent on the tofI/tofR QS system. In our previous study, however, it was observed that B. glumae mutants defective in tofI or tofR produced toxoflavin if they grew on the surface of a solid medium, suggesting that alternative signaling pathways independent of tofI or tofR are activated in that growth condition for the production of toxoflavin. In this study, potential genetic components involved in the tofI- and tofR-independent signaling pathways for toxoflavin production were sought through screening random mini-Tn5 mutants of B. glumae to better understand the intercellular signaling pathways of this pathogen. Fifteen and three genes were initially identified as the potential genetic elements of the tofI- and tofR-independent pathways, respectively. Especially, the ORF (bglu_2g06320) divergently transcribed from toxJ, which encodes an orphan LuxR protein and controls toxoflavin biosynthesis, was newly identified in this study as a gene required for the tofR-independent toxoflavin production and named as toxK. Among those genes, flhD, dgcB, and wzyB were further studied to validate their functions in the tofI-independent toxoflavin production, and similar studies were also conducted with qsmR and toxK for their functions in the tofR-independent toxoflavin production. This work provides a foundation for future comprehensive studies of the intercellular signaling systems of B. glumae and other related pathogenic bacteria. PMID:25806356
2013-01-01
Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571
Neubauer, Lisa; Dopstadt, Julian; Humpf, Hans-Ulrich; Tudzynski, Paul
2016-01-01
Claviceps purpurea is a phytopathogenic fungus infecting a broad range of grasses including economically important cereal crop plants. The infection cycle ends with the formation of the typical purple-black pigmented sclerotia containing the toxic ergot alkaloids. Besides these ergot alkaloids little is known about the secondary metabolism of the fungus. Red anthraquinone derivatives and yellow xanthone dimers (ergochromes) have been isolated from sclerotia and described as ergot pigments, but the corresponding gene cluster has remained unknown. Fungal pigments gain increasing interest for example as environmentally friendly alternatives to existing dyes. Furthermore, several pigments show biological activities and may have some pharmaceutical value. This study identified the gene cluster responsible for the synthesis of the ergot pigments. Overexpression of the cluster-specific transcription factor led to activation of the gene cluster and to the production of several known ergot pigments. Knock out of the cluster key enzyme, a nonreducing polyketide synthase, clearly showed that this cluster is responsible for the production of red anthraquinones as well as yellow ergochromes. Furthermore, a tentative biosynthetic pathway for the ergot pigments is proposed. By changing the culture conditions, pigment production was activated in axenic culture so that high concentration of phosphate and low concentration of sucrose induced pigment syntheses. This is the first functional analysis of a secondary metabolite gene cluster in the ergot fungus besides that for the classical ergot alkaloids. We demonstrated that this gene cluster is responsible for the typical purple-black color of the ergot sclerotia and showed that the red and yellow ergot pigments are products of the same biosynthetic pathway. Activation of the gene cluster in axenic culture opened up new possibilities for biotechnological applications like the dye production or the development of new pharmaceuticals.
2013-01-01
Background Sequence-specific DNA-binding proteins, with their paramount importance in the regulation of expression of the genetic material, are encoded by approximately 5% of the genes in an animal’s genome. But it is unclear to what extent alternative transcripts from these genes may further increase the complexity of the transcription factor complement. Results Of the 938 potential C. elegans transcription factor genes, 197 were annotated in WormBase as encoding at least two distinct isoforms. Evaluation of prior evidence identified, with different levels of confidence, 50 genes with alternative transcript starts, 23 with alternative transcript ends, 35 with alternative splicing and 34 with alternative transcripts generated by a combination of mechanisms, leaving 55 that were discounted. Expression patterns were determined for transcripts for a sample of 29 transcription factor genes, concentrating on those with alternative transcript starts for which the evidence was strongest. Seamless fosmid recombineering was used to generate reporter gene fusions with minimal modification to assay expression of specific transcripts while maintaining the broad genomic DNA context and alternative transcript production. Alternative transcription factor gene transcripts were typically expressed with identical or substantially overlapping distributions rather than in distinct domains. Conclusions Increasingly sensitive sequencing technologies will reveal rare transcripts but many of these are clearly non-productive. The majority of the transcription factor gene alternative transcripts that are productive may represent tolerable noise rather than encoding functionally distinct isoforms. PMID:23586691
Britto, Alan M A; Amoedo, Nívea D; Pezzuto, Paula; Afonso, Adriana O; Martínez, Ana M B; Silveira, Jussara; Sion, Fernando S; Machado, Elizabeth S; Soares, Marcelo A; Giannini, Ana L M
2013-07-31
TLRs (Toll-like receptors) and RLRs (RIG-I-like receptors) mediate innate immune responses by detecting microorganism invasion. RIG-I activation results in the production of interferon (IFN) type 1 and IFN responsive genes (ISGs). As the ubiquitin ligases RNF125 and TRIM25 are involved in regulating RIG-I function, our aim was to assess whether the levels of these three genes vary between healthy and HIV-infected individuals and whether these levels are related to disease progression. Gene expression analyses for RIG-I, RNF125, and TRIM25 were performed for HIV-infected adults and the children's peripheral blood mononuclear cells (PBMCs). Reverse transcription-quantitative PCRs (RT-qPCRs) were performed in order to quantify the expression levels of RIG-I, RNF125 and TRIM25 from PBMCs purified from control or HIV-infected individuals. Controls express higher levels of the three genes when compared to HIV-infected patients. These expressions are clearly distinct between healthy and progressors, and are reproduced in adults and children. In controls, RNF125 is the highest expressed gene, whereas in progressors, RIG-I is either the highest expressed gene or is expressed similarly to RNF125 and TRIM25. A pattern of expression of RIG-I, RNF125, and TRIM25 genes in HIV patients is evident. The high expression of RNF125 in healthy individuals reflects the importance of keeping RIG-I function off, inhibiting unnecessary IFN production. Consistent with this assumption, RNF125 levels are lower in HIV patients and importantly, the RNF125/RIG-I ratio is lower in patients who progress to AIDS. Our results might help to predict disease progression and unveil the role of poorly characterized host genes during HIV infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penn, Kevin; Jenkins, Caroline; Nett, Markus
Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we reportmore » the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification« less